THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If the equipment causes interference to radio or television reception, which can be determined by turning the equipment off and on, users are encouraged to try to correct the interference by using one or more of the following measures:

• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

Modifications to this product not authorized by Cisco could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2016 Cisco Systems, Inc. All rights reserved.
CONTENTS

PREFACE

Preface vii
Audience vii
Conventions vii
Related Cisco UCS Documentation ix
Obtaining Documentation and Submitting a Service Request ix

CHAPTER 1

Overview 1
Cisco UCS B200 M4 Blade Server 1
External Features Overview 2
LEDs 2
Buttons 4
Local Console Connection 4
Secure Digital Cards 5
Storage Module 6

CHAPTER 2

Installing a Blade Server 7
Installing a Half-width Blade Server 7
Server Configuration 8
Powering Off a Blade Server Using the Power Button 9
Removing a Blade Server 9
Server Troubleshooting 10

CHAPTER 3

Servicing a Blade Server 11
Replacing a Drive 11
Removing a Blade Server Hard Drive 12
Installing a Blade Server Drive 12
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4K Sector Format SAS/SATA Drives Considerations</td>
<td>13</td>
</tr>
<tr>
<td>Setting Up UEFI Mode Booting in the UCS Manager Boot Policy</td>
<td>13</td>
</tr>
<tr>
<td>Removing a Blade Server Cover</td>
<td>14</td>
</tr>
<tr>
<td>Air Baffles</td>
<td>15</td>
</tr>
<tr>
<td>Internal Components</td>
<td>15</td>
</tr>
<tr>
<td>Diagnostics Button and LEDs</td>
<td>16</td>
</tr>
<tr>
<td>Installing a CMOS Battery</td>
<td>17</td>
</tr>
<tr>
<td>Installing the FlexStorage Module</td>
<td>18</td>
</tr>
<tr>
<td>Upgrading to Intel Xeon E5-2600 v4 CPUs</td>
<td>19</td>
</tr>
<tr>
<td>Removing a Heat Sink and CPU</td>
<td>20</td>
</tr>
<tr>
<td>Installing a New CPU and Heat Sink</td>
<td>21</td>
</tr>
<tr>
<td>Installing Memory</td>
<td>24</td>
</tr>
<tr>
<td>Supported DIMMs</td>
<td>24</td>
</tr>
<tr>
<td>Memory Population</td>
<td>24</td>
</tr>
<tr>
<td>DIMMs and Channels</td>
<td>25</td>
</tr>
<tr>
<td>Memory Performance</td>
<td>26</td>
</tr>
<tr>
<td>Memory Mirroring and RAS</td>
<td>27</td>
</tr>
<tr>
<td>Installing a Virtual Interface Card Adapter</td>
<td>27</td>
</tr>
<tr>
<td>Installing an Adapter Card in Addition to the VIC mLOM Adapter</td>
<td>28</td>
</tr>
<tr>
<td>Installing the NVIDIA M6 GPU Adapter Card</td>
<td>29</td>
</tr>
<tr>
<td>Enabling the Trusted Platform Module</td>
<td>32</td>
</tr>
</tbody>
</table>

CHAPTER 4

Technical Specifications
Physical Specifications for the Cisco UCS B200 M4 Blade Server

APPENDIX A

NVIDIA Licensing Information
NVIDIA GRID License Server Overview
Registering Your Product Activation Keys with NVIDIA
Downloading the GRID Software Suite
Installing NVIDIA GRID License Server Software
Platform Requirements for NVIDIA GRID License Server
Installing on Windows
Installing on Linux
Installing GRID Licenses From the NVIDIA Licensing Portal to the License Server
Preface

• Audience, on page vii
• Conventions, on page vii
• Related Cisco UCS Documentation, on page ix
• Obtaining Documentation and Submitting a Service Request, on page ix

Audience

To use this installation guide, you must be familiar with electronic circuitry and wiring practices and preferably be an electronic or electromechanical technician who has experience with electronic and electromechanical equipment.

Only trained and qualified service personnel (as defined in IEC 60950-1 and AS/NZS60950) should install, replace, or service the equipment. Install the system in accordance with the U.S. National Electric Code if you are in the United States.

Conventions

<table>
<thead>
<tr>
<th>Text Type</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUI elements</td>
<td>GUI elements such as tab titles, area names, and field labels appear in this font. Main titles such as window, dialog box, and wizard titles appear in this font.</td>
</tr>
<tr>
<td>TUI elements</td>
<td>In a Text-based User Interface, text the system displays appears in this font.</td>
</tr>
<tr>
<td>System output</td>
<td>Terminal sessions and information that the system displays appear in this font.</td>
</tr>
<tr>
<td>CLI commands</td>
<td>CLI command keywords appear in this font. Variables in a CLI command appear in this font.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>Text Type</td>
<td>Indication</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>{x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
<tr>
<td>< ></td>
<td>Nonprinting characters such as passwords are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

Note

Means **reader take note.** Notes contain helpful suggestions or references to material not covered in the document.

Tip

Means **the following information will help you solve a problem.** The tips information might not be troubleshooting or even an action, but could be useful information, similar to a Timesaver.

Timesaver

Means **the described action saves time.** You can save time by performing the action described in the paragraph.

Caution

Means **reader be careful.** In this situation, you might perform an action that could result in equipment damage or loss of data.

Warning

IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device.

SAVE THESE INSTRUCTIONS
Related Cisco UCS Documentation

Documentation Roadmaps
For a complete list of all B-Series documentation, see the Cisco UCS B-Series Servers Documentation Roadmap available at the following URL: http://www.cisco.com/go/unifiedcomputing/b-series-doc.

For a complete list of all C-Series documentation, see the Cisco UCS C-Series Servers Documentation Roadmap available at the following URL: http://www.cisco.com/go/unifiedcomputing/c-series-doc.

For information on supported firmware versions and supported UCS Manager versions for the rack servers that are integrated with the UCS Manager for management, refer to Release Bundle Contents for Cisco UCS Software.

Other Documentation Resources
Follow Cisco UCS Docs on Twitter to receive document update notifications.

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation.

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
Follow Cisco UCS Docs on Twitter to receive document update notifications.
Overview

This chapter contains the following sections:

- Cisco UCS B200 M4 Blade Server, on page 1
- External Features Overview, on page 2
- Storage Module, on page 6

Cisco UCS B200 M4 Blade Server

The Cisco UCS B200 M4 is a density-optimized, half-width blade server that supports two CPU sockets for Intel E5-2600 v4 and v3 series CPUs and up to 24 DDR4 DIMMs. It supports one modular LOM (dedicated slot for Cisco's Virtual Interface Card) and one mezzanine adapter. In addition, the UCS B200 M4 supports an optional FlexStorage module that supports up to 2 SAS or SATA hard drives or solid state disks (SSDs). The UCS B200 M4 also supports PCIe NVMe SSDs. You can install up to eight UCS B200 blade servers in a UCS chassis, mixing with other models of Cisco UCS blade servers in the chassis if desired.

Figure 1: Cisco UCS B200 M4 Front Panel

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset pull tag</td>
<td>Blade ejector handle</td>
</tr>
<tr>
<td>Each server has a blank plastic tag that pulls out of the front panel which is provided so that you can add your own asset tracking label without interfering with the intended air flow.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejector captive screw</td>
<td>Hard drive bay 1</td>
</tr>
</tbody>
</table>
External Features Overview

The features of the blade server that are externally accessible are described in this section.

LEDs

Server LEDs indicate whether the blade server is in active or standby mode, the status of the network link, the overall health of the blade server, and whether the server is set to give a blinking blue locator light from the locator button.

The removable drives also have LEDs indicating hard disk access activity and disk health.
Table 1: Blade Server LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Off</td>
<td>Power off.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Main power state. Power is supplied to all server components and the server is operating normally.</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Standby power state. Power is supplied only to the service processor of the server so that the server can still be managed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The front-panel power button is disabled by default. It can be re-enabled through Cisco UCS Manager. After it's enabled, if you press and release the front-panel power button, the server performs an orderly shutdown of the 12 V main power and goes to standby power state. You cannot shut down standby power from the front-panel power button. See the Cisco UCS Manager Configuration Guides for information about completely powering off the server from the software interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link</th>
<th>Off</th>
<th>None of the network links are up.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Green</td>
<td>At least one network link is up.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health</th>
<th>Off</th>
<th>Power off.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Green</td>
<td>Normal operation.</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Minor error.</td>
</tr>
<tr>
<td></td>
<td>Blinking Amber</td>
<td>Critical error.</td>
</tr>
</tbody>
</table>

Cisco UCS B200 M4 Blade Server Installation and Service Note
Buttons

The Reset button is recessed in the front panel of the server. You can press the button with the tip of a paper clip or a similar item. Hold the button down for five seconds, and then release it to restart the server if other methods of restarting do not work.

The locator function for an individual server may get turned on or off by pressing the locator button/LED.

The front-panel power button is disabled by default. It can re-enabled through Cisco UCS Manager. After it's enabled, The power button allows you to manually take a server temporarily out of service but leave it in a state where it can be restarted quickly. If the desired power state for a service profile associated with a blade server is set to "off," using the power button or Cisco UCS Manager to reset the server will cause the desired power state of the server to become out of sync with the actual power state and the server may unexpectedly shut down at a later time. To safely reboot a server from a power-down state, use the Boot Server action in Cisco UCS Manager.

Local Console Connection

The local console connector allows a direct connection to a blade server to allow operating system installation and other management tasks to be done directly rather than remotely. The port uses the KVM dongle cable that provides a connection into a Cisco UCS blade server; it has a DB9 serial connector, a VGA connector for a monitor, and dual USB ports for a keyboard and mouse. With this cable, you can create a direct connection to the operating system and the BIOS running on a blade server. A KVM cable ships standard with each blade chassis accessory kit.
Secure Digital Cards

Secure Digital (SD) card slots are provided and one or more SD cards can be populated. If two SD cards are populated, they can be used in a mirrored mode.

Note

Do no mix different capacity cards in the same server.

The SD cards can be used to store operating system boot images or other information. Once the server has been removed from the chassis, you can access the SD card slots by rotating the latch up so that it does not cover the slots. Remove or insert the SD cards as needed. Either or both slots may be used. Rotate the latch down to cover the slots before installing the server in the chassis.
Storage Module

The Cisco UCS B200 M4 blade server has an optional storage module that can be configured with SAS or SATA hard drives or solid state disks (SSDs). Because the UCS B200 M4 can be used without disk drives, it does not necessarily come with the storage module installed. A blanking panel (UCSB-LSTOR-BK) can be used to cover an empty drive bay. Order the same number of blanking panels as there are empty drive bays.

For information on installing the storage module, see Installing the FlexStorage Module, on page 18.
Installing a Blade Server

This chapter contains the following sections:

- Installing a Half-width Blade Server, on page 7
- Server Configuration, on page 8
- Powering Off a Blade Server Using the Power Button, on page 9
- Removing a Blade Server, on page 9
- Server Troubleshooting, on page 10

Installing a Half-width Blade Server

Before you begin
The blade server must have its cover installed before installing the server into the chassis to ensure adequate airflow.

Procedure

Step 1 Grasp the front of the blade server and place your other hand under the blade to support it.
Figure 4: Positioning a Blade Server in the Chassis

Step 2 Open the ejector levers in the front of the blade server.
Step 3 Gently slide the blade into the opening until you cannot push it any farther.
Step 4 Press the ejector so that it catches the edge of the chassis and presses the blade server all the way in.
Step 5 Tighten the captive screw on the front of the blade to no more than 3 in-lbs. Tightening only with bare fingers is unlikely to lead to stripped or damaged captive screws.

Cisco UCS Manager automatically reacknowledges, reassociates, and recommissions the server, provided any hardware changes are allowed by the service profile.

Server Configuration

Cisco UCS blade servers should be configured and managed using Cisco UCS Manager. For details, see the Configuration Guide for the version of Cisco UCS Manager that you are using. The configuration guides are available at the following URL:
Powering Off a Blade Server Using the Power Button

Note
The front panel power button is disabled by default to ensure that servers are decommissioned through the UCS Manager software before shutdown. If you prefer to shut down the server locally with the button, you can enable front power-button control in UCS Manager.

Tip
You can also shut down servers remotely using Cisco UCS Manager. For details, see the Configuration Guide for the version of Cisco UCS Manager that you are using. The configuration guides are available at the following URL: http://www.cisco.com/en/US/products/ps10281/products_installation_and_configuration_guides_list.html

Procedure

Step 1 If you are local to the server, check the color of the Power Status LED for each server in the chassis that you want to power off.
 - Green indicates that the server is running and must be shut down before it can be safely powered off. Go to Step 2.
 - Amber indicates that the server is already in standby mode and can be safely powered off. Go to Step 3.

Step 2 If you previously enabled front power-button control through Cisco UCS Manager, press and release the Power button, then wait until the Power Status LED changes to amber.

The operating system performs a graceful shutdown and the server goes to standby mode.

Caution To avoid data loss or damage to your operating system, you should always invoke a graceful shutdown of the operating system.

Step 3 (Optional) If you are shutting down all blade servers in a chassis, disconnect the power cords from the chassis to completely power off the servers.

Step 4 Remove the appropriate servers from the chassis.

Removing a Blade Server

Using UCS Manager, decommission the server before physically removing the server. To remove a blade server from the chassis, follow these steps:
Procedure

Step 1 Loosen the captive screws on the front of the blade.
Step 2 Remove the blade from the chassis by pulling the ejector lever on the blade until it unseats the blade server.
Step 3 Slide the blade part of the way out of the chassis, and place your other hand under the blade to support its weight.
Step 4 Once removed, place the blade on an antistatic mat or antistatic foam if you are not immediately reinstalling it into another slot.
Step 5 If the slot is to remain empty, install a blank faceplate (N20-CBLKB1) to maintain proper thermal temperature and keep dust out of the chassis.

Server Troubleshooting

For general troubleshooting information, see the Cisco UCS Manager Troubleshooting Reference Guide.
CHAPTER 3

Servicing a Blade Server

This chapter contains the following sections:

- Replacing a Drive, on page 11
- Removing a Blade Server Cover, on page 14
- Air Baffles, on page 15
- Internal Components, on page 15
- Diagnostics Button and LEDs, on page 16
- Installing a CMOS Battery, on page 17
- Installing the FlexStorage Module, on page 18
- Upgrading to Intel Xeon E5-2600 v4 CPUs, on page 19
- Removing a Heat Sink and CPU, on page 20
- Installing a New CPU and Heat Sink, on page 21
- Installing Memory, on page 24
- Installing a Virtual Interface Card Adapter, on page 27
- Installing an Adapter Card in Addition to the VIC mLOM Adapter, on page 28
- Installing the NVIDIA M6 GPU Adapter Card, on page 29
- Enabling the Trusted Platform Module, on page 32

Replacing a Drive

The Cisco UCS B200 M4 blade server uses an optional Cisco UCS FlexStorage modular storage subsystem that can provide support for two drive bays and RAID controller, or NVMe-based PCIe SSD support functionality. If you purchased the UCS B200 M4 blade server without the modular storage system configured as a part of the system, a pair of blanking panels may be in place. These panels should be removed before installing hard drives, but should remain in place to ensure proper cooling and ventilation if the drive bays are unused.

You can remove and install hard drives without removing the blade server from the chassis.

The drives supported in this blade server come with the hot-plug drive sled attached. Empty hot-plug drive sled carriers (containing no drives) are not sold separately from the drives. A list of currently supported drives is in the Cisco UCS B200 M4 Blade Server Specification Sheet.

Before upgrading or adding a drive to a running blade server, check in the service profile and make sure the new hardware configuration will be within the parameters allowed by the service profile.
Removing a Blade Server Hard Drive

To remove a hard drive from a blade server, follow these steps:

Procedure

Step 1 Push the button to release the ejector, and then pull the hard drive from its slot.

Step 2 Place the hard drive on an antistatic mat or antistatic foam if you are not immediately reinstalling it in another server.

Step 3 Install a hard disk drive blank faceplate to keep dust out of the blade server if the slot will remain empty.

Installing a Blade Server Drive

To install a drive in a blade server, follow these steps:

Procedure

Step 1 Place the drive ejector into the open position by pushing the release button.

Figure 5: Installing a Hard Drive in a Blade Server

Step 2 Gently slide the drive into the opening in the blade server until it seats into place.

Step 3 Push the drive ejector into the closed position.

You can use Cisco UCS Manager to format and configure RAID services. For details, see the *Configuration Guide* for the version of Cisco UCS Manager that you are using. The configuration guides are available at the following URL:

If you need to move a RAID cluster, see the Cisco UCS Manager Troubleshooting Reference Guide.

4K Sector Format SAS/SATA Drives Considerations

- You must boot 4K sector format drives in UEFI mode, not legacy mode. See the procedure in this section for setting UEFI boot mode in the boot policy.
- Do not configure 4K sector format and 512-byte sector format drives as part of the same RAID volume.
- Operating system support on 4K sector drives is as follows: Windows: Win2012 and Win2012R2; Linux: RHEL 6.5, 6.6, 6.7, 7.0, 7.2, 7.3; SLES 11 SP3, and SLES 12. ESXi/VMware is not supported.

Setting Up UEFI Mode Booting in the UCS Manager Boot Policy

Procedure

Step 1 In the Navigation pane, click Servers.
Step 2 Expand Servers > Policies.
Step 3 Expand the node for the organization where you want to create the policy. If the system does not include multitenancy, expand the root node.
Step 4 Right-click Boot Policies and select Create Boot Policy. The Create Boot Policy wizard displays.
Step 5 Enter a unique name and description for the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters other than - (hyphen), _ (underscore), : (colon), and . (period). You cannot change this name after the object is saved.
Step 6 (Optional) After you make changes to the boot order, check the Reboot on Boot Order Change check box to reboot all servers that use this boot policy. For boot policies applied to a server with a non-Cisco VIC adapter, even if the Reboot on Boot Order Change check box is not checked, when SAN devices are added, deleted, or their order is changed, the server always reboots when boot policy changes are saved.
Step 7 (Optional) If desired, check the Enforce vNIC/vHBA/iSCSI Name check box.
 - If checked, Cisco UCS Manager displays a configuration error and reports whether one or more of the vNICs, vHBAs, or iSCSI vNICs listed in the Boot Order table match the server configuration in the service profile.
 - If not checked, Cisco UCS Manager uses the vNICs or vHBAs (as appropriate for the boot option) from the service profile.
Step 8 In the Boot Mode field, choose the UEFI radio button.
Step 9 Check the Boot Security check box if you want to enable UEFI boot security.
Step 10

Configure one or more of the following boot options for the boot policy and set their boot order:

- **Local Devices boot**—To boot from local devices, such as local disks on the server, virtual media, or remote virtual disks, continue with *Configuring a Local Disk Boot for a Boot Policy* in the *Cisco UCS Manager Server Management Guide* for your release.

- **SAN boot**—To boot from an operating system image on the SAN, continue with *Configuring a SAN Boot for a Boot Policy* in the *Cisco UCS Manager Server Management Guide* for your release.

You can specify a primary and a secondary SAN boot. If the primary boot fails, the server attempts to boot from the secondary.

- **LAN boot**—To boot from a centralized provisioning server, continue with *Configuring a LAN Boot For a Boot Policy* in the *Cisco UCS Manager Server Management Guide* for your release.

- **iSCSI boot**—To boot from an iSCSI LUN, continue with *Creating an iSCSI Boot Policy* in the *Cisco UCS Manager Server Management Guide* for your release.

Removing a Blade Server Cover

Procedure

Step 1
Press and hold the button down as shown in the figure below.

Step 2
While holding the back end of the cover, pull the cover back and then up.

Figure 6: Opening a Cisco UCS B200 M4 Blade Server
Air Baffles

The air baffles direct and improve air flow for the server components. Two identical baffles ship with each B200 M4 server. No tools are necessary to install them, just place them over the DIMMs as shown, with the holes in the center of the baffles aligned with the corresponding motherboard standoffs.

Figure 7: Cisco UCS B200 M4 Air Baffles

Internal Components

Figure 8: Inside View of the UCS B200 M4 Blade Server

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SD card slots</td>
</tr>
<tr>
<td>2</td>
<td>Modular storage subsystem connector</td>
</tr>
</tbody>
</table>
Diagnostics Button and LEDs

At blade start-up, POST diagnostics test the CPUs, DIMMs, HDDs, and rear mezzanine modules, and any failure notifications are sent to Cisco UCS Manager. You can view these notifications in the Cisco UCS Manager System Error Log or in the output of the `show tech-support` command. If errors are found, an amber diagnostic LED also lights up next to the failed component. During run time, the blade BIOS and component drivers monitor for hardware faults and will light up the amber diagnostic LED as needed.

LED states are saved, and if you remove the blade from the chassis the LED values will persist for up to 10 minutes. Pressing the LED diagnostics button on the motherboard causes the LEDs that currently show a component fault to light for up to 30 seconds for easier component identification. LED fault values are reset when the blade is reinserted into the chassis and booted, and the process begins from its start.

If DIMM insertion errors are detected, they may cause the blade discovery process to fail and errors will be reported in the server POST information, which is viewable using the UCS Manager GUI or CLI. DIMMs must be populated according to specific rules. The rules depend on the blade server model. Refer to the documentation for a specific blade server for those rules.

Faults on the DIMMs or rear mezzanine modules also cause the server health LED to light solid amber for minor error conditions or blinking amber for critical error conditions.

Note

When the storage module is installed, the USB connector is underneath it. Use the small cutout opening in the storage module to visually determine the location of the USB connector when you need to insert it.
Installing a CMOS Battery

All Cisco UCS blade servers use a CR2032 battery to preserve BIOS settings while the server is not installed in a powered-on chassis. Cisco supports the industry standard CR2032 battery that is available at most electronics stores.

Warning

There is danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer’s instructions.

To install or replace the battery, follow these steps:

Procedure

Step 1 Remove the existing battery:

a) Power off the blade, remove it from the chassis, and remove the top cover.

b) Push the battery socket retaining clip away from the battery.

c) Lift the battery from the socket. Use needle-nose pliers to grasp the battery if there is not enough clearance for your fingers.

Step 2 Install the replacement battery:

a) Push the battery socket retaining clip away from where the battery fits in the housing.

b) Insert the new battery into the socket with the battery’s positive (+) marking facing away from the retaining clip. Ensure that the retaining clip can click over the top of the battery to secure it in the housing.

c) Replace the top cover.

d) Replace the blade server in the chassis.
Installing the FlexStorage Module

The Cisco UCS B200 M4 blade server uses an optional Cisco UCS FlexStorAge modular storage subsystem that can provide support for two drive bays and RAID controller or NVMe-based PCIe SSD support functionality.

Procedure

Step 1 Place the FlexStorage module over the two standoff posts on the motherboard at the front of the server.
Step 2 Press down on the drive bay cage where it is labeled "Press Here to Install" until the FlexStorage module clicks into place.
Step 3 Using a Phillips-head screwdriver, tighten the four screws to secure the FlexStorage module. The locations of the screws are labeled "Secure Here."

Upgrading to Intel Xeon E5-2600 v4 CPUs

Before upgrading to Intel Xeon E5-2600 v4 Series CPUs, ensure that the server is running the required minimum software and firmware versions that support Intel E5-2600 v4 Series CPUs, as listed in the following table.

<table>
<thead>
<tr>
<th>Software or Firmware</th>
<th>Minimum Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco UCS Manager</td>
<td>Release 3.1(1e) with 3.1(1g) ucs-catalog.3.1.1g.T.bin, or Release 2.2(7b) (See the following Note for additional supported versions.)</td>
</tr>
<tr>
<td>Cisco IMC</td>
<td>Release 3.1(1g) or Release 2.2(7b)</td>
</tr>
<tr>
<td>BIOS</td>
<td>Release 3.1(1g) or Release 2.2(7b)</td>
</tr>
</tbody>
</table>

Note

Cisco UCS Manager Release 2.2(4) introduced a server pack feature that allows Intel E5-2600 v4 CPUs to run with Cisco UCS Manager Release 2.2(4) or later, provided that the Cisco IMC, BIOS and Capability Catalog are all running Release 2.2(7) or later.

Caution

Ensure that the server is running the required software and firmware before installing the Intel E5-2600 v4 Series CPUs. Failure to do so can result in a non-bootable CPU.
Do one of the following actions:

- If the server software and firmware are already at the required minimum version as shown in the preceding table, replace the CPUs by using the procedure in the following section.
- If the server software or firmware is not at the required minimum version, follow the instructions in the Cisco UCS B200 M4 Server Upgrade Guide for E5-2600 v4 Series CPUs to upgrade it. Then replace the CPUs by using the procedure in the following section.

Removing a Heat Sink and CPU

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unscrew the four captive screws.</td>
<td>Remove the heat sink.</td>
</tr>
</tbody>
</table>

Figure 11: Removing the Heat Sink and CPU

- Step 3 Unhook the self-loading socket (SLS) lever that has the unlock icon.
- Step 4 Unhook the SLS lever that has the lock icon.
- Step 5 Grasp the sides of the CPU carrier (indicated by the arrows in the illustration) and swing it into a standing position in the SLS plug seat.
Installing a New CPU and Heat Sink

Before installing a new CPU in a server, verify the following:

- A BIOS update is available and installed that supports the CPU and the given server configuration.
- The service profile for this server in Cisco UCS Manager will recognize and allow the new CPU.
- The CPUs and heat sinks are different and must be installed in the correct location. The front heat sink and CPU 1 can only be installed in the front of the blade server and the rear heat sink and CPU 2 can only be installed in the rear of the blade server.

Procedure

Step 1
Hold the CPU carrier by its sides (indicated by the arrows). Insert and align the two CPU carrier pegs into the self-loading socket (SLS) plug seat. To ensure proper seating, verify that the horizontal yellow line below the word ALIGN is straight.

Step 6
Pull the CPU carrier up and out of the SLS plug seat.
Step 2 Press gently on the top of the CPU carrier from the exterior side until it snaps into place.
Step 3 Close the socket latch.
Step 4 Hook the self-loading socket (SLS) lever that has the lock icon.
Step 5 Hook the SLS lever that has the unlock icon.
Step 6 Thermally bond the CPU and heat sink. Using the syringe of thermal grease provided with the replacement CPU, apply 2 cubic centimeters of thermal grease to the top of the CPU where it will contact the heat sink. Apply the grease in the pattern shown in the following figure, which should use approximately half the contents of the syringe.
Step 7 Replace the heat sink. The yellow CPU heat sink install guide pins that are attached to the motherboard must align with the cutout on the heat sink to ensure proper installation of the heat sink.

Figure 15: Replacing the Heat Sink

Step 8 Tighten the four captive screws in the order shown.
Installing Memory

To install a DIMM into the blade server, follow these steps:

Procedure

Step 1 Open both DIMM connector latches.

Step 2 Press the DIMM into its slot evenly on both ends until it clicks into place.

DIMMs are keyed. If a gentle force is not sufficient, make sure the notch on the DIMM is correctly aligned.

Note Be sure that the notch in the DIMM aligns with the slot. If the notch is misaligned you may damage the DIMM, the slot, or both.

Step 3 Press the DIMM connector latches inward slightly to seat them fully.

Supported DIMMs

Do not use any memory DIMMs other than those listed in the specification sheet. Doing so may irreparably damage the server and require down time.

Memory Population

The blade server contains 24 DIMM slots—12 for each CPU. Each set of 12 DIMM slots is arranged into four channels, where each channel has three DIMMs.

Figure 16: Memory Slots In the Blade Server
DIMMs and Channels

Each channel is identified by a letter—A, B, C, D for CPU 1, and E, F, G, H for CPU 2. Each DIMM slot is numbered 1, 2, or 3. Note that each DIMM slot 1 is blue, each slot 2 is black, and each slot 3 is off-white or beige.

The figure below shows how DIMMs and channels are physically laid out on the blade server. The DIMM slots in the upper and lower right are associated with the second CPU (CPU shown on right in the diagram), while the DIMM slots in the upper and lower left are associated with the first CPU (CPU shown on left).

Figure 17: Physical Representation of DIMMs and Channels

The figure below shows a logical view of the DIMMs and channels.

Figure 18: Logical Representation of DIMMs and Channels

DIMMs can be used in the blade server in a one DIMM per Channel (1DPC) configuration, in a two DIMMs per Channel (2DPC) configuration, or a three DIMMs per Channel (3DPC) configuration.

The following tables show recommended DIMM population order for non-mirroring and mirroring configurations. For single-CPU configurations, read only the CPU 1 columns of the tables.

Table 2: Supported DIMM Population Order (Non-Mirroring)

<table>
<thead>
<tr>
<th>DIMMs Per CPU</th>
<th>CPU 1 Installed Slots</th>
<th>CPU 2 Installed Slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>E1</td>
</tr>
</tbody>
</table>
Memory Performance

When considering the memory configuration of the blade server, there are several things to consider. For example:

- When mixing DIMMs of different densities (capacities), the highest density DIMM goes in slot 1 then in descending density.
- Besides DIMM population and choice, the selected CPU(s) can have some effect on performance.
- DIMMs can be run in a 1DPC, a 2DPC, or a 3DPC configuration. 1DPC and 2DPC can provide the maximum rated speed that the CPU and DIMMs are rated for. 3DPC causes the DIMMs to run at a slower speed.
Memory Mirroring and RAS

The Intel CPUs within the blade server support memory mirroring only when an even number of channels are populated with DIMMs. Furthermore, if memory mirroring is used, DRAM size is reduced by 50 percent for reasons of reliability.

Installing a Virtual Interface Card Adapter

The Cisco Virtual Interface Card (VIC) 1340 and VIC 1240 are specialized adapters that provide dual 2 x 10 Gb of Ethernet or Fiber Channel over Ethernet (FCoE) connectivity to each blade server. They plug into the dedicated VIC connector, and they are the only adapters that can be plugged into the slot 1 connector. They provide connectivity through Cisco UCS 6100, 6200, and 6300 Series Fabric Interconnects. The Cisco VIC 1200 Series (1240 and 1280) is compatible in UCS domains that implement both UCS 6100 and 6200 Series Fabric Interconnects. The Cisco VIC 1300 Series (1340 and 1380) is compatible with the UCS 6200 Series Fabric Interconnects and UCS 6300 Series Fabric Interconnects.

Note

You must remove the adapter card to service it.

To install a Cisco VIC 1340 or VIC 1240 in the blade server, follow these steps:

Procedure

Step 1
Position the VIC board connector above the motherboard connector and align the captive screw to the standoff post on the motherboard.

Step 2
Firmly press the VIC board connector into the motherboard connector.

Step 3
Tighten the captive screw.

Tip
To remove a VIC, reverse the above procedure. You might find it helpful when removing the connector from the motherboard to gently rock the board along the length of the connector until it loosens.
Installing an Adapter Card in Addition to the VIC mLOM Adapter

All supported adapter cards have a common installation process. A list of currently supported and available adapters for this server is in the Cisco UCS B200 M4 Blade Server Specification Sheet.

The UCS B200 M4 blade server has two adapter slots (Slots 1 [mLOM slot] and 2) that support the following VIC cards:

• VIC 1340 and VIC 1380
• VIC 1240 and VIC 1280

Slot 1 is for the VIC 1340 or VIC 1240 mLOM adapter cards. Slot 2 is for the VIC 1380 and VIC 1280 cards, and can also be used for the VIC port expander, the nVidia M6 GPU, the Intel Crypto accelerator card, and non-I/O mezzanine cards, such as Fusion ioMemory 3 Series.

Note

When the Cisco Nexus 2104XP Fabric Extender (FEX) module is used, the VIC 1280 and the VIC port expander cards are ignored because there are no traces on the Cisco 2104XP to connect to any VIC or IO card installed in Slot 2.

The VIC 1340 and VIC 1380 require a Cisco UCS 6200 Series Fabric Interconnect or Cisco UCS 6300 Series Fabric Interconnect, and they support the Cisco Nexus 2208XP, 2204XP, 2348UPQ FEX modules.

The VIC 1240 and VIC 1280 support Cisco UCS 6200 and 6100 Series Fabric Interconnects, and they support the Cisco Nexus 2208XP, 2204XP, and 2104XP FEX modules. When a VIC 1240 or 1280 is used with a UCS 6100 Series Fabric Interconnect, the UCS B200 M4 blade server requires a maximum software release of 2.2(x) for Cisco UCS Manager.

If you are switching from one type of adapter card to another, before you physically perform the switch make sure that you download the latest device drivers and load them into the server’s operating system. For more
information, see the firmware management chapter of one of the Cisco UCS Manager software configuration guides.

Procedure

Step 1 Position the adapter board connector above the motherboard connector and align the two adapter captive screws to the standoff posts on the motherboard.

Step 2 Firmly press the adapter connector into the motherboard connector (callout 2).

Step 3 Tighten the two captive screws (callout 3).

Tip Removing an adapter card is the reverse of installing it. You might find it helpful when removing the connector from the motherboard to gently rock the board along the length of the connector until it loosens.

Figure 20: Installing an Adapter Card

Installing the NVIDIA M6 GPU Adapter Card

The NVIDIA M6 graphics processing unit (GPU) adapter card provides graphics and computing capabilities to the server. If you are installing the NVIDIA GPU to a B200 M4 in the field, the option kit comes with the GPU itself (CPU and heat sink), a T-shaped installation wrench, and a custom standoff to support and attach the GPU on the B200 M4 motherboard. See the three components of the option kit in the following figure:
Before you begin

Before installing the NVIDIA M6 GPU:

- Remove any adapter card, such as a VIC 1380, VIC 1280, or VIC port expander card from slot 2. You cannot use any other card in slot 2 when the NVIDIA M6 GPU is installed.

- Upgrade the Cisco UCS domain that the GPU will installed into to a version of Cisco UCS Manager that supports this card. Refer to the latest version of the Release Notes for Cisco UCS Software at the following URL for information about supported hardware: http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-manager/products-release-notes-list.html.

Procedure

Step 1 Use the T-shaped wrench that comes with the GPU to remove the existing standoff at the back end of the motherboard.
Step 2 Install the custom standoff in the same location at the back end of the motherboard.

Step 3 Position the GPU over the connector on the motherboard and align all captive screws to the standoff posts (callout 1).

Step 4 Tighten the captive screws (callout 2).

Figure 22: Installing the NVIDIA M6 GPU

The following figure shows an NVIDIA M6 GPU installed in a Cisco UCS B200 M4 blade server.
What to do next

After you complete the installation of the NVIDIA M6 GPU, see NVIDIA Licensing Information, on page 37 for information on how to download NVIDIA software and acquire the necessary NVIDIA license. Follow the instructions to complete these steps in order:

1. Register your product activation keys with NVIDIA.
2. Download the GRID software suite.
3. Install the GRID License Server software to a host.
4. Generate licenses on the NVIDIA Licensing Portal and download them.
5. Manage your GRID licenses.
6. Decide whether to use the GPU in compute mode or graphics mode.

Enabling the Trusted Platform Module

The Trusted Platform Module (TPM) is a component that can securely store artifacts used to authenticate the server. These artifacts can include passwords, certificates, or encryption keys. A TPM can also be used to store platform measurements that help ensure that the platform remains trustworthy. Authentication (ensuring that the platform can prove that it is what it claims to be) and attestation (a process helping to prove that a platform is trustworthy and has not been breached) are necessary steps to ensure safer computing in all environments. It is a requirement for the Intel Trusted Execution Technology (TXT) security feature, which must be enabled in the BIOS settings for a server equipped with a TPM.
TPM installation is supported after-factory. However, a TPM installs with a one-way screw and cannot be replaced, upgraded, or moved to another server. If a server with a TPM is returned, the replacement server must be ordered with a new TPM.

If there is no existing TPM in the server, you can install TPM 2.0. You must first upgrade to UCS firmware that supports Intel E5-2600 v4 CPUs, which is Cisco UCS Manager Release 2.2(7) and later or Release 3.1(1) and later (because Cisco aligned support for TPM 2.0 with these CPUs).

Although TPM 2.0 can be installed in servers that are running Intel Xeon Processor E5-2600 v3 or v4 CPUs, TPM 2.0 requires UCS firmware that supports Intel E5-2600 v4 CPUs, either Cisco UCS Manager Release 2.2(7) and later or Release 3.1(1) and later.

Table 4: TPM Support Matrix by Intel CPU Version

<table>
<thead>
<tr>
<th>Intel CPU</th>
<th>TPM Version Supported</th>
<th>Minimum UCS Manager (UCSM) Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel E5-2600 v3</td>
<td>TPM 1.2</td>
<td>Release 2.2(3)</td>
</tr>
<tr>
<td></td>
<td>TPM 2.0</td>
<td>Release 2.2(7) or Release 3.1(1)</td>
</tr>
<tr>
<td>Intel E5-2600 v4</td>
<td>TPM 1.2</td>
<td>Release 2.2(7) or Release 3.1(1)</td>
</tr>
<tr>
<td></td>
<td>TPM 2.0</td>
<td>Release 2.2(7) or Release 3.1(1)</td>
</tr>
</tbody>
</table>

Caution

If the Cisco UCS B200 M4 server (with Intel E5-2600 v4 or v3 CPUs) is running UCS firmware that added support for Intel E5-2600 v4 CPUs, then it will work with TPM version 2.0. However, if you downgrade the firmware and BIOS to a version earlier than Release 2.2(7) or earlier than Release 3.1(1), then you are vulnerable to a potential security exposure. See the following support matrix for TPM versions.

Procedure

Step 1

Install the TPM hardware.

a) Decommission and remove the blade server from the chassis.
b) Remove the blade server cover.
c) Install the TPM to the TPM socket on the server motherboard and secure it using the one-way screw that is provided. See the figure below for the location of the TPM socket.
d) Return the blade server to the chassis and allow it to be automatically reacknowledged, reassOCIated, and recommissioned.
e) Continue with enabling TPM support in the server BIOS in the next step.
Step 2 Enable TPM Support in the BIOS.

If TPM support was disabled for any reason, use the following procedure to enable it.

a) In the Cisco UCS Manager Navigation pane, click the Servers tab.
b) On the Servers tab, expand Servers > Policies.
c) Expand the node for the organization where you want to configure the TPM.
d) Expand BIOS Policies and select the BIOS policy for which you want to configure the TPM.
e) In the Work pane, click the Advanced tab.
f) Click the Trusted Platform sub-tab.
g) To enable TPM support, click Enable or Platform Default.
h) Click Save Changes.
i) Continue with the next step.

Step 3 Enable TXT Support in the BIOS Policy.

Follow the procedures in the Cisco UCS Manager Configuration Guide for the release that is running on the server.
CHAPTER 4

Technical Specifications

This chapter contains the following section:

- Physical Specifications for the Cisco UCS B200 M4 Blade Server, on page 35

Physical Specifications for the Cisco UCS B200 M4 Blade Server

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>1.95 inches (50 mm)</td>
</tr>
<tr>
<td>Width</td>
<td>8.00 inches (203 mm)</td>
</tr>
<tr>
<td>Depth</td>
<td>24.4 inches (620 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>Base server weight = 9.51 lbs (4.31 kg) (no HDDs, no CPUs, no DIMMs, no mezzanine adapters or memory)</td>
</tr>
<tr>
<td></td>
<td>Minimally configured server = 11.29 lbs (5.12 kg) (no HDDs, 1 CPU, 8 DIMMs, VIC 1340/1240 but no additional mezzanine adapter)</td>
</tr>
<tr>
<td></td>
<td>Fully configured server = 15.98 lbs (7.25 kg) (2 HDDs, 2 CPUs, 24 DIMMs, VIC 1340/1240 and additional mezzanine adapter both populated)</td>
</tr>
</tbody>
</table>
NVIDIA Licensing Information

This chapter contains the following sections:

• NVIDIA GRID License Server Overview, on page 37
• Registering Your Product Activation Keys with NVIDIA, on page 38
• Downloading the GRID Software Suite, on page 39
• Installing NVIDIA GRID License Server Software, on page 39
• Installing GRID Licenses From the NVIDIA Licensing Portal to the License Server, on page 41
• Managing GRID Licenses, on page 43
• Installing Drivers to Support the NVIDIA GPU Cards, on page 44

NVIDIA GRID License Server Overview

The NVIDIA Tesla P6 GPU combines Tesla and GRID functionality when you enable the licensed GRID features *GRID vGPU* and *GRID Virtual Workstation*. You enable these features during OS boot by borrowing a software license that is served over the network from the NVIDIA GRID License Server virtual appliance. The license is returned to the GRID License Server when the OS shuts down.

The NVIDIA Tesla P6 GPU has dual personality. It can work in Compute (Tesla) and GRID mode. Only GRID mode needs a license.

You obtain the licenses that are served by the GRID License Server from the NVIDIA Licensing Portal as downloadable license files, which you install into the GRID License Server via its management interface. See the following figure.
There are three editions of GRID licenses that enable three different classes of GRID features. The GRID software automatically selects the license edition based on the features that you are using. See the following table.

Table 5: GRID Licensing Editions

<table>
<thead>
<tr>
<th>GRID License Edition</th>
<th>GRID Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID Virtual GPU (vGPU)</td>
<td>Virtual GPUs for business desktop computing</td>
</tr>
<tr>
<td>GRID Virtual Workstation</td>
<td>Virtual GPUs for mid-range workstation computing</td>
</tr>
<tr>
<td>GRID Virtual Workstation - Extended</td>
<td>Virtual GPUs for high-end workstation computing Workstation graphics on GPU pass-through</td>
</tr>
</tbody>
</table>

Registering Your Product Activation Keys with NVIDIA

After your order is processed, NVIDIA sends you a Welcome email that contains your product activation keys (PAKs) and a list of the types and quantities of licenses that you purchased.

Procedure

Step 1 Select the Log In link, or the Register link if you do not already have an account.
The NVIDIA Software Licensing Center > License Key Registration dialog opens.

Step 2
Complete the License Key Registration form and then click **Submit My Registration Information**. The NVIDIA Software Licensing Center > Product Information Software Dialog opens.

Step 3
If you have additional PAKs, click **Register Additional Keys**. For each additional key, complete the form on the License Key Registration dialog, and then click **Submit My Registration Information**.

Step 4
Agree to the terms and conditions and set a password when prompted.

Downloading the GRID Software Suite

Procedure

Step 1
Return to the NVIDIA Software Licensing Center > Product Information Software dialog box.

Step 2
Click **Current Releases**.

Step 3
Click the **NVIDIA GRID** link to access the **Product Download** dialog. This dialog includes download links for:

- The NVIDIA License Manager software
- The `gpumodeswitch` utility
- The host driver software

Step 4
Use the links to download the software.

Installing NVIDIA GRID License Server Software

For full instructions and troubleshooting information, see the **NVIDIA GRID License Server User Guide**. Also see the **NVIDIA GRID License Server Release Notes** for the latest information about your release. Both documents are available at the following URL:

http://www.nvidia.com

Platform Requirements for NVIDIA GRID License Server

- The hosting platform can be a physical or a virtual machine. NVIDIA recommends using a host that is dedicated to running only the License Server.
- The hosting platform must run a supported Windows OS.
- The hosting platform must have a constant IP address.
- The hosting platform must have at least one constant Ethernet MAC address.
- The hosting platform's date and time must be set accurately.
Installing on Windows

Before you begin
The License Server requires a Java Runtime Environment and an Apache Tomcat installation. Apache Tomcat is installed when you use the NVIDIA installation wizard for Windows.

Procedure

Note Install the 32-bit Java Runtime Environment, regardless of whether your platform is Windows 32-bit or 64-bit.

Step 2 Create a server interface.
 a) In the NVIDIA Software Licensing Center dialog box, click Grid Licensing > Create License Server.
 b) In the Create Server dialog box, fill in your desired server details.
 c) Save the .bin file that is generated to your license server for installation.

Step 3 Unzip the NVIDIA License Server installer Zip file that you downloaded previously and run setup.exe.

Step 4 Accept the EULA for the NVIDIA License Server software and the Apache Tomcat software. Tomcat is installed automatically during the License Server installation.

Step 5 Use the installer wizard to step through the installation.

Note In the Choose Firewall Options dialog box, select the ports to be opened in the firewall. NVIDIA recommends that you use the default setting, which opens port 7070 but leaves port 8080 closed.

Step 6 To verify the installation, open a web browser on the License Server host and connect to the URL http://localhost:8080/licserver. If the installation was successful, you see the NVIDIA Licenses Client Manager interface.

Installing on Linux

Before you begin
The License Server requires a Java Runtime Environment and an Apache Tomcat installation. Use the following commands to install both separately before installing the License Server on Linux.

Procedure

Step 1 Verify that Java was installed with your Linux installation:

```
java -version
```

If a Java version does not display, use your Linux package manager to install Java:
sudo yum install java

Step 2
Use your Linux package manager to install the Tomcat and Tomcat webapp packages.

a) Install Tomcat:
 sudo yum install tomcat

b) Enable the Tomcat service for automatic startup on boot:
 sudo systemctl enable tomcat.service

c) Start the Tomcat service:
 sudo systemctl start tomcat.service

d) To verify that the Tomcat service is operational, open a web browser on the License Server host and connect to the URL http://localhost:8080. If the installation was successful, you see the Tomcat webapp.

Step 3
Install the License Server.

a) Unpack the License Server tar file:
 tar xzf NVIDIA-linux-2015.09-0001.tgz

b) Run the unpacked setup binary as root:
 sudo ./setup.bin

c) Accept the EULA and then continue with the installation wizard to finish the installation.

 Note: In the Choose Firewall options dialog, select the ports to be opened in the firewall. NVIDIA recommends that you use the default setting, which opens port 7070 but leaves port 8080 closed.

Step 4
To verify the installation, open a web browser on the License Server host and connect to the URL http://localhost:8080/licserver. If the installation was successful, you see the NVIDIA License Client Manager interface.

Installing GRID Licenses From the NVIDIA Licensing Portal to the License Server

Accessing the GRID License Server Management Interface

Open a web browser on the License Server host and access the URL http://localhost:8080/licserver.

If you configure the License Server host's firewall to permit remote access to the License Server, the management interface is accessible from remote machines at the URL http://localhost:8080/licserver.

Reading Your License Server's MAC Address

Your License Server's Ethernet MAC address is used as an identifier when registering the License Server with NVIDIA’s Licensing Portal.
Procedure

Step 1 Access the GRID License Server Management Interface in a browser.
Step 2 In the left-side License Server panel, select Configuration.
Step 3 In the License Server Configuration panel, from the Server host ID pull-down menu, select your License Server's Ethernet MAC address.

Note It is important to use the same Ethernet ID consistently to identify the server when generating licenses on NVIDIA's Licensing Portal. NVIDIA recommends that you select one entry for a primary, non-removable Ethernet interface on the platform.

Installing Licenses From the Licensing Portal

Procedure

Step 1 Access the GRID License Server Management Interface in a browser.
Step 2 In the left-side License Server panel, select Configuration.
Step 3 From the License Server Configuration menu, click Choose File.
Step 4 Browse to the license .bin file that you generated earlier and want to install, and click Open.
Step 5 Click Upload.
The license file installs on your License Server. When the installation is complete, you see the confirmation message, "Successfully applied license file to license server."

Viewing Available Licenses

Use the following procedure to view the licenses that are installed and available and their properties.

Procedure

Step 1 Access the GRID License Server Management Interface in a browser.
Step 2 In the left-side License Server panel, select Licensed Feature Usage.
Step 3 Click a feature in the Feature column to see detailed information about the current usage of that feature.

Viewing Current License Usage

Use the following procedure to view information about that licenses that are currently in-use and borrowed from the server.
Managing GRID Licenses

Features that require GRID licensing run at reduced capability until a GRID license is acquired.

Acquiring a GRID License on Windows

To acquire a GRID license on Windows, use the following procedure.

Procedure

Step 1 Open the NVIDIA Control Panel using one of the following methods:
 • Right-click the Windows desktop and select NVIDIA Control Panel from the menu.
 • Open the Windows Control Panel and double-click the NVIDIA Control Panel icon.

Step 2 In the NVIDIA Control Panel left pane under Licensing, select Manage License. The Manage License task pane opens and shows the current license edition being used. The GRID software automatically selects the license edition based on the feature that you are using. The default is Tesla (unlicensed).

Step 3 If you want to acquire a license for GRID Virtual Workstation, under License Edition, select GRID Virtual Workstation.

Step 4 In the License Server field, enter the address of your local GRID License Server. The address can be a domain name or an IP address.

Step 5 In the Port Number field, enter your port number or leave it set to the default used by the server, which is 7070.

Step 6 Select Apply. The system requests the appropriate license edition from your configured License Server. After a license is successfully acquired, the features of that license edition are enabled.

Note After you configure licensing settings in the NVIDIA Control Panel, the settings persist across reboots.
Acquiring a GRID License on Linux

To acquire a GRID license on Linux, use the following procedure.

Procedure

Step 1 Edit the configuration file:
 `sudo vi /etc/nvidia/gridd.conf`

Step 2 Edit the `ServerUrl` line with the address of your local GRID License Server.
 The address can be a domain name or an IP address. See the Sample Configuration File.

Step 3 Append the port number (default 7070) to the end of the address with a colon. See the Sample Configuration File.

Step 4 Edit the `FeatureType` line with an integer for the license type. See the Sample Configuration File.
 • GRID vGPU = 1
 • GRID Virtual Workstation = 2

Step 5 Restart the nvidia-gridd service:
 `sudo service nvidia-gridd restart`

 The service automatically acquires the license edition that you specified in the `FeatureType` line. You can confirm this in `/var/log/messages`.

 Note: After you configure licensing settings in `gridd.conf`, the settings persist across reboots.

Sample Configuration File

```
# /etc/nvidia/gridd.conf - Configuration file for NVIDIA Grid Daemon
# Description: Set License Server URL
# Data type: string
# Format: "<address>:<port>"
Server URL=10.31.20.45:7070

# Description: set Feature to be enabled
# Data type: integer
# Possible values:
# 1 -> for GRID vGPU
# 2 -> for GRID Virtual Workstation
FeatureType=1
```

Installing Drivers to Support the NVIDIA GPU Cards

After you install the hardware, you must update to the correct level of server BIOS, activate the BIOS firmware, and then install NVIDIA drivers and other software in this order:
1. Updating the Server BIOS Firmware

Install the latest Cisco server BIOS for your blade server by using Cisco UCS Manager.

Note

You must do this procedure before you update the NVIDIA drivers.

Caution

Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process completes. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure might corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Procedure

Step 1
In the Navigation pane, click Equipment.

Step 2
On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.

Step 3
Click the Name of the server for which you want to update the BIOS firmware.

Step 4
On the Properties page in the Inventory tab, click Motherboard.

Step 5
In the Actions area, click Update BIOS Firmware.

Step 6
In the Update Firmware dialog box, do the following:

a) From the Firmware Version drop-down list, select the firmware version to which you want to update the endpoint.

b) Click OK.

Cisco UCS Manager copies the selected firmware package to the backup memory slot, where it remains until you activate it.

Step 7
(Optional) Monitor the status of the update in the Update Status field.

The update process can take several minutes. Do not activate the firmware until the firmware package you selected displays in the Backup Version field in the BIOS area of the Inventory tab.

What to do next

Activate the server BIOS firmware.

2. Activating the Server BIOS Firmware

Procedure

Step 1
In the Navigation pane, click Equipment.

Step 2
On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Click the **Name** of the server for which you want to activate the BIOS firmware.
Step 4 On the **Properties** page in the **Inventory** tab, click **Motherboard**.
Step 5 In the **Actions** area, click **Activate BIOS Firmware**.
Step 6 In the **Activate Firmware** dialog box, do the following:
 a) Select the appropriate server BIOS version from the **Version To Be Activated** drop-down list.
 b) If you want to set only the start-up version and not change the version running on the server, check **Set Startup Version Only**.
 If you configure **Set Startup Version Only**, the activated firmware moves into the pending-next-reboot state and the server is not immediately rebooted. The activated firmware does not become the running version of firmware until the server is rebooted.
 c) Click **OK**.

What to do next
Update the NVIDIA drivers.

3. Updating the NVIDIA Drivers

After you update the server BIOS, you can install NVIDIA drivers to your hypervisor virtual machine.

Procedure

Step 1 Install your hypervisor software on a computer. Refer to your hypervisor documentation for the installation instructions.
Step 2 Create a virtual machine in your hypervisor. Refer to your hypervisor documentation for instructions.
Step 3 Install the NVIDIA drivers to the virtual machine. Download the drivers:
 • NVIDIA Enterprise Portal for GRID hypervisor downloads (requires NVIDIA login):
 https://nvidia.flexnetoperations.com/
Step 4 Restart the server.
Step 5 Check that the virtual machine is able to recognize the NVIDIA card. In Windows, use the **Device Manager** and look under **Display Adapters**.