
Cisco IMC XML API

This chapter includes the following sections:

• About the Cisco IMC XML API, on page 1
• Cisco UCS Management Information Model, on page 2
• Cisco IMC XML API Sample Flow, on page 2
• Object Naming, on page 3
• API Method Categories, on page 4
• Success or Failure Response, on page 6

About the Cisco IMC XML API
The Cisco IMC XMLAPI is a programmatic interface to the Cisco Integrated Management Controller (Cisco
IMC) software for a C-Series Rack-Mount Server. The API accepts XML documents throughHTTP or HTTPS.
Developers can use any programming language to generate XML documents that contain the API methods.
Configuration and state information for Cisco IMC is stored in a hierarchical tree structure known as the MIT
(Management Information Tree), which is completely accessible through the XML API.

The Cisco IMC XML API implements a subset of the methods and management information model available
in the Cisco UCS Manager XML API. The behavior of both APIs is similar in syntax and semantics, and you
can use the same client development tools and techniques for both. The scope of the Cisco IMC XML API is
limited to a single C-Series Rack-Mount Server, in contrast to the Cisco UCS Manager XML API, which
controls an entire Cisco UCS domain consisting of switches, FEX modules, servers, and other devices.

Using the Cisco IMC XML API, the user has programmatic access to Cisco IMC to configure, administer,
and monitor the server. The API provides most of the functions that are accessible through the Cisco IMC
CLI and GUI interfaces.

Operation of the API is transactional and terminates on a single data model maintained in Cisco IMC.

The API model includes the following programmatic entities:

• Classes—Define the properties and states of objects in the MIT.

• Methods—Actions that the API performs on one or more objects.

• Types—Object properties that map values to the object state (for example, equipmentPresence).

Cisco IMC XML API
1



A typical request comes into Cisco IMC and is placed in the transactor queue in FIFO order. The transactor
gets the request from the queue, interprets the request, and performs an authorization check. After the request
is confirmed, the transactor updates the MIT. This complete operation is done in a single transaction.

Event subscription is supported. Up to four Cisco IMC XML API clients can subscribe to receive event
notifications from Cisco IMC. The event subscription operation establishes a connection session allowing a
client to receive XML-formatted event notification messages that are sent asynchronously by Cisco IMC.

In Release 1.5(1.x), the Cisco IMC XML API sends event notifications only for fault-related events.Note

Cisco UCS Management Information Model
All the physical and logical components that comprise Cisco UCS are represented in a hierarchical management
information model (MIM), also referred to as the MIT. Each node in the tree represents a managed object
(MO) or group of objects that contains its administrative state and its operational state.

The hierarchical structure starts at the top (sys) and contains parent and child nodes. Each node in this tree
is a managed object and each object in Cisco UCS has a unique distinguished name (DN) that describes the
object and its place in the tree. Managed objects are abstractions of the Cisco UCS resources, such as CPUs,
DIMMs, adapter cards, fans, and power supply units..

Configuration policies are the majority of the policies in the system and describe the configurations of different
Cisco UCS components. Policies determine how the system behaves under specific circumstances. Certain
managed objects are not created by users, but are automatically created by the Cisco UCS, for example, power
supply objects and fan objects. By invoking the API, you are reading and writing objects to the MIM.

Cisco IMC Management Information Model

The Cisco IMCmanagement informationmodel is a subset of the Cisco UCSmanagement informationmodel.
A C-Series Rack-Mount Server is modeled starting with sys/rack-unit-1 in the MIT as in the following
example:
Figure 1: Illustration of the CIMC MIM Structure

Tree (topRoot):—————————————-Distinguished Name:

|——sys———————————––– (sys)
|——rack-unit-1————————(sys/rack-unit-1)

|——adaptor-1————————(sys/rack-unit-1/adaptor-1)
|——psu-1————————(sys/rack-unit-1/psu-1)
|——psu-2————————(sys/rack-unit-1/psu-2)

Cisco IMC XML API Sample Flow
A typical request comes into Cisco IMC and is placed in the transactor queue in FIFO order. The transactor
gets the request from the queue, interprets the request, and performs an authorization check. After the request
is confirmed, the transactor updates the management information tree. This operation is done in a single
transaction.

Cisco IMC XML API
2

Cisco IMC XML API
Cisco UCS Management Information Model



The following figure shows how Cisco IMC processes a boot server request. The following table describes
the steps involved in a boot server request.
Figure 2: Sample Flow of Boot Server Request

Table 1: Explanation of Boot Server Request

Operational Power State of
MO (Server)

Command/ProcessStep

DownCMD request: boot server1

DownRequest queued2

DownState change in management information tree and make persistent
the managed object (MO) state change

3

UpApply boot stimuli4

Object Naming
You can identify a specific object by its distinguished name (DN) or by its relative name (RN).

Distinguished Name

The distinguished name enables you to unambiguously identify a target object. The distinguished name has
the following format consisting of a series of relative names:

dn = {rn}/{rn}/{rn}/{rn}...

In the following example, the DN provides a fully qualified path for adaptor-1 from the top of the object tree
to the object. The DN specifies the exact managed object on which the API call is operating.

Cisco IMC XML API
3

Cisco IMC XML API
Object Naming



< dn =”sys/rack-unit-1//adaptor-1”/>

Relative Name

The relative name identifies an object within the context of its parent object. The distinguished name is
composed of a sequence of relative names.

For example, this distinguished name:

<dn = "sys/rack-unit-1//adaptor-1/host-eth-2"/>

is composed of the following relative names:

topSystem MO: rn="sys"
computeRackUnit MO: rn ="rack-unit-1"
adaptorUnit MO: rn="adaptor-<id>"
adaptorHostEthIf MO: rn="host-eth-<id>"

API Method Categories
Each method corresponds to an XML document.

Several code examples in this guide substitute the term <real_cookie> for an actual cookie (such as
1217377205/85f7ff49-e4ec-42fc-9437-da77a1a2c4bf). The XML API cookie is a 47-character string; it is
not the type of cookie that web browsers store locally to maintain session information.

Note

Authentication Methods
Authentication methods authenticate and maintain the session. For example:

• aaaLogin—Initial method for logging in.

• aaaRefresh—Refreshes the current authentication cookie.

• aaaLogout—Exits the current session and deactivates the corresponding authentication cookie.

Use the aaaLogin method to get a valid cookie. Use aaaRefresh to maintain the session and keep the
cookie active. Use the aaaLogout method to terminate the session (also invalidates the cookie). A maximum
of 4 sessions to the Cisco UCS can be opened at any one time.

Operations are performed using the HTTP post method (Cisco IMC supports both HTTP and HTTPS requests)
over TCP. HTTP and HTTPS can be configured to use different port numbers, but TCP/443 (or TCP/80 for
non-secure connections) is used by default. The HTTP envelope contains the XML configuration.

In Cisco IMC, HTTP to HTTPS redirection is enabled by default. To capture HTTP packets between the client
application and Cisco IMC, disable redirection in the Cisco IMC GUI or CLI.

Tip

Cisco IMC XML API
4

Cisco IMC XML API
API Method Categories



Query Methods
Query methods obtain information on the current configuration state of an object. The following are query
methods supported:

• configResolveDn—Retrieves objects by DN.

• configResolveClass—Retrieves objects of a given class.

• configResolveChildren—Retrieves the child objects of an object.

• configResolveParent—Retrieves the parent object of an object.

Most query methods have the argument inHierarchical (Boolean true/yes or false/no). If true, the inHierarchical
argument returns all child objects.

<configResolveDn … inHierarchical="false"></>
<configResolveDn … inHierarchical="true"></>

Because the amount of data returned from Cisco IMC can be quite large, the inHierarchical argument should
be used with care. For example, if the query method is used on a class or DN that refers to a managed object
(MO) that is located high on the management information tree and inHierarchical is set to true, the response
can contain almost the entire Cisco IMC configuration. The resources required for Cisco IMC to process the
request can be high, causing Cisco IMC to take an extended amount of time to respond. To avoid delays, the
query method should be performed on a smaller scale involving fewer MOs.

If a query method does not respond or is taking a long time to respond, increase the timeout period on the
client application or adjust the query method to involve fewer MOs.

Tip

The query API methods might also have an inRecursive argument to specify whether the call should be
recursive (for example, follow objects that point back to other objects or the parent object).

Until a host is powered on at least once, Cisco IMC may not have complete inventory and status information.
For example, if Cisco IMC is reset, it will not have detailed CPU, memory, or adapter inventory information
until the next time the host is powered on. If a query method is performed on a MO corresponding to the
unavailable data, the response will be blank.

Note

Configuration Methods
The Cisco IMC XML API supports only a single method to make configuration changes to managed objects:

• configConfMo—Affects a single managed object (for example, a DN).

Cisco IMC XML API
5

Cisco IMC XML API
Query Methods



Event Subscription Methods
Applications get state change information by regular polling or event subscription. For more efficient use of
resources, event subscription is the preferred method of notification. Polling should be used only under very
limited circumstances.

Use eventSubscribe to register for events, as shown the following example:

<eventSubscribe
cookie="<real_cookie>">

</eventSubscribe>

To receive notifications, open an HTTP or HTTPS session over TCP and keep the session open. On receiving
eventSubscribe, starts sending all new events as they occur. You can unsubscribe from these events
using the eventUnsubscribe method.

Each event has a unique event ID. Event IDs operate as counters and are included in all method responses.
When an event is generated, the event ID counter increments and is assigned as the new event ID. This
sequential numbering enables tracking of events and ensures that no event is missed.

An event channel connection opened by a user will be closed automatically by after 600 seconds of inactivity
associated with the event channel session cookie. To prevent automatic closing of the event channel connection
by , the user must either send the aaaKeepAlive request for the same event channel session cookie within 600
seconds or send any other XML API method to using the same event channel session cookie.

In releases 1.5(1.x) and later, the Cisco IMC API sends event notifications for fault-related events only.Note

Success or Failure Response
When responds to an XMLAPI request, the response indicates failure if the request is impossible to complete.
A successful response indicates only that the request is valid, not that the operation is complete. For example,
it may take some time for a server to finish a power-on request. The power state changes from down to up
only after the server actually powers on.

Successful Response
When a request has executed successfully, Cisco IMC returns an XML document with the information requested
or a confirmation that the changes were made. The following is an example of a configResolveDn query
on the distinguished name sys/rack-unit-1/adaptor-2/ext-eth-0:

<configResolveDn
dn="sys/rack-unit-1/adaptor-2/ext-eth-0"
cookie="<real_cookie>"
inHierarchical="false"/>

The response includes the following information:
<configResolveDn

cookie="<real_cookie>"

Cisco IMC XML API
6

Cisco IMC XML API
Event Subscription Methods

b_Cisco_IMC_api_40_chapter3.pdf#nameddest=unique_19


response="yes"
dn="sys/rack-unit-1/adaptor-2/ext-eth-0">
<outConfig>

<adaptorExtEthIf
id="0"
ifType="physical"
linkState="up"
mac="00:22:BD:D6:42:DA"
name=""
operState="up"
portId="0"
purpose="general"
transport="CE"
type=""
dn="sys/rack-unit-1/adaptor-2/ext-eth-0" >

</adaptorExtEthIf>
</outConfig>

</configResolveDn>

Failed Requests
The response to a failed request includes XML attributes for errorCode and errorDescr. The following is an
example of a response to a failed request:

<configConfMo dn="sys/rack-unit-1/adaptor-1/ext-eth-0"
cookie="<real_cookie>"
response="yes"
errorCode="103"
invocationResult="unidentified-fail"
errorDescr="can't create; object already exists.">

</configConfMo>

Empty Results
A query request for a nonexistent object is not treated as a failure by Cisco IMC. If the object does not exist,
Cisco IMC returns a success message, but the XML document contains an empty data field (<outConfig>
</outConfig>) to indicate that the requested object was not found. The following example shows the response
to an attempt to resolve the distinguished name on a nonexistent rack-mount server:

<configResolveDn
cookie="<real_cookie>"
response="yes"
dn="sys/rack-unit-1/adaptor-9999">
<outConfig>
</outConfig>

</configResolveDn>

Cisco IMC XML API
7

Cisco IMC XML API
Failed Requests



Cisco IMC XML API
8

Cisco IMC XML API
Empty Results


	Cisco IMC XML API
	About the Cisco IMC XML API
	Cisco UCS Management Information Model
	Cisco IMC XML API Sample Flow
	Object Naming
	API Method Categories
	Authentication Methods
	Query Methods
	Configuration Methods
	Event Subscription Methods

	Success or Failure Response
	Successful Response
	Failed Requests
	Empty Results



