

Design and Deployment Guide

Cisco Public

© 2024 Cisco and/or its affiliates. All rights reserved. Page 1 of 128

FlexPod Datacenter with Generative AI

Inferencing

 Design and Deployment Guide

© 2024 Cisco and/or its affiliates. All rights reserved. Page 2 of 128

Published: February 2024

In partnership with:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 3 of 128

About the Cisco Validated Design Program

The Cisco Validated Design (CVD) program consists of systems and solutions designed, tested, and documented

to facilitate faster, more reliable, and more predictable customer deployments. For more information, go to:

http://www.cisco.com/go/designzone.

http://www.cisco.com/go/designzone

© 2024 Cisco and/or its affiliates. All rights reserved. Page 4 of 128

Executive Summary

The FlexPod Datacenter solution is a validated approach for deploying Cisco and NetApp technologies and

products to build shared private and public cloud infrastructure. Cisco and NetApp have partnered to deliver a

series of FlexPod solutions that enable strategic data-center platforms. The success of the FlexPod solution is

driven through its ability to evolve and incorporate both technology and product innovations in the areas of

management, compute, storage, and networking. This document explains the design and deployment details of

implementing a platform for Generative Artificial Intelligence (AI) Inferencing on the latest FlexPod Datacenter

design with Cisco UCS M7 servers with NVIDIA GPUs managed from Cisco Intersight, end-to-end 100 Gbps

networking with Cisco Nexus 9000 series switches, NetApp ONTAP 9.13.1 on the NetApp AFF A800 with NetApp

NetApp Astra Trident for persistent storage, VMware vSphere 8.0, NVIDIA AI Enterprise (NVAIE) software, and the

the latest release of Red Hat Openshift Container Platform (OCP). This solution takes the latest FlexPod Datacenter

with VMware validated design and layers on NVIDIA GPUs, NVAIE, OCP, and NetApp Astra Trident to produce a

powerful platform for running Generative AI Inferencing software and models. Some of the key advantages of this

Generative AI Inferencing on FlexPod Datacenter platform are:

● A platform built on a proven, reliable infrastructure: FlexPod Datacenter is an industry-leading Converged

Infrastructure built on proven, high-quality components from Cisco and NetApp. The optimal FlexPod con-

figuration is then documented and tested, using only firmware and software that have been tested for in-

teroperability and published.

● High Performance: From the latest Cisco UCS M7 servers with the latest Intel CPUs and memory, to

end-to-end 100 Gbps networking, to the latest version of NetApp ONTAP on NetApp’s high end storage

controllers with NVMe drives, to later model NVIDIA GPUs, this platform is built to provide high performance

with Generative AI Inferencing workloads.

● Sustainability: taking advantage of sustainability and power usage monitoring features of all the compo-

nents of the stack, including GPUs, and utilizing the Cisco UCS X-Series advanced power and cooling poli-

cies.

● Simpler and programmable infrastructure: infrastructure as code delivered using Ansible.

● Built for investment protections: design ready for future technologies such as newer or higher performing

GPUs.

In addition to the compute-specific hardware and software innovations, the integration of the Cisco Intersight

cloud platform with VMware vCenter, NetApp Active IQ Unified Manager, and Cisco Nexus switches delivers

monitoring, and orchestration capabilities for different layers (virtualization, storage, and networking) of the

FlexPod infrastructure. The modular nature of the Cisco Intersight platform also provides an easy upgrade path to

additional services as they become available.

For information about the FlexPod design and deployment details, including the configuration of various elements

of design and associated best practices, refer to Cisco Validated Designs for FlexPod, here:

https://www.cisco.com/c/en/us/solutions/design-zone/data-center-design-guides/flexpod-design-guides.html

.

https://www.cisco.com/c/en/us/solutions/design-zone/data-center-design-guides/flexpod-design-guides.html
https://www.cisco.com/c/en/us/solutions/design-zone/data-center-design-guides/flexpod-design-guides.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 5 of 128

Solution Overview and Design

This chapter contains the following:

● Introduction

● Audience

● Purpose of this Document

● What’s New in this Release?

● Solution Summary

Introduction

Generative AI Inferencing is the process of using a pretrained AI model to generate predictions, make decisions,

or produce outputs based on specific input data and contexts. During inference, the model applies the knowledge

and patterns it acquired during its training phase to respond with new and unique content.

In simpler terms, think of it as the moment of truth for an AI model. It’s when the model takes real-time data,

compares it with what it learned during training, and produces an actionable result. For example, it can transcribe

speech, identify spam emails, or summarize lengthy documents. The goal is to apply what the model learned and

put it into practice.

However, there’s an interesting twist: while training an AI model can be expensive, inferencing is where the real

costs lie. Running an AI model for inference consumes energy, dollars, and contributes to carbon emissions. In

fact, up to 90% of an AI model’s life is spent in inference mode, making it a critical area for optimization. Tech

companies are actively working on speeding up inferencing to improve user experience and reduce operational

costs.

Audience

The intended audience of this document includes but is not limited to IT architects, sales engineers, field con-

sultants, professional services, IT managers, partner engineering, and customers who want to take advantage of

an infrastructure built to deliver IT efficiency and enable IT innovation.

Purpose of this Document

This document provides design and deployment guidance around implementing FlexPod Datacenter with Red Hat

Openshift Container Platform (OCP), NVIDIA GPUs, and NVIDIA AI Enterprise (NVAIE) software as a platform for

running Generative AI Inferencing. This document provides best practice configuration of both FlexPod and the

additional components to support Generative AI Inferencing.

What’s New in this Release?

The following design elements are added to FlexPod Datacenter to build a platform for Generative AI Inferencing:

● Specifying how to add a tenant to FlexPod Datacenter to house the components for Generative AI Infer-

encing

© 2024 Cisco and/or its affiliates. All rights reserved. Page 6 of 128

● NetApp ONTAP 9.13.1

● Layering of OCP on top of a VMware vSphere based FlexPod

● Use of NetApp Astra Trident with OCP to provide persistent storage to containers

● Addition of NVIDIA GPUs to Cisco UCS Servers

● Use of NVAIE GPU and vGPU drivers and software with both VMware vSphere and OCP

● Use of Cisco Intersight and other tools to monitor GPU and server energy consumption, temperatures, and

utilization

● Demonstration of how to deploy and monitor performance of various Generative AI Inferencing servers and

models

Solution Summary

The FlexPod Datacenter solution as a platform for Generative AI Inferencing offers the following key benefits:

● The ability to implement readily available AI Inferencing models quickly and easily on a powerful platform

with high-speed persistent storage, reducing customer spending on cloud.

● Save time and reduce errors with deployment ready Ansible playbooks for the base FlexPod setup and for

FlexPod AI additions in the future.

● Simplified cloud-based management of solution components

● Hybrid-cloud-ready, policy-driven modular design

● Highly available and scalable platform with flexible architecture that supports various deployment models

● Cooperative support model and Cisco Solution Support

● Easy to deploy, consume, and manage architecture, which saves time and resources required to research,

procure, and integrate off-the-shelf components

● Support for component monitoring, solution automation and orchestration, and workload optimization

Like all other FlexPod solution designs, FlexPod Datacenter with Generative AI Inferencing is configurable ac-

cording to demand and usage. You can purchase exactly the infrastructure you need for your current application

requirements and can then scale-up by adding more resources to the FlexPod system or scale-out by adding

more FlexPod instances. Since many Generative AI Inferencing applications are containerized, use of OCP pro-

vides a single platform for hosting these applications and the corresponding AI models.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 7 of 128

Technology Overview

This chapter contains the following:

● FlexPod Datacenter

● NVIDIA GPUs

● Cisco Unified Computing System Additions

● Cisco Nexus Switching Fabric

● NetApp AFF A-Series Storage

● NetApp AFF C-Series Storage

● NVAIE on VMware vSphere 8.0

● Red Hat OCP on VMware vSphere

● NVAIE on OCP

● NetApp Astra Trident

● NetApp DataOps Toolkit

● AI Software

● GPU Monitoring

● Sustainability

FlexPod Datacenter

The IP-based end-to-end 100G FlexPod Datacenter was used as the basis for this solution, and is specified here:

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_m7_imm_vmware_design.

html. This document will not repeat information from that document but will instead present what was updated or

added for each component. The base FlexPod used in this validation used the following specific components:

● Cisco UCS X9508 Chassis with Cisco UCSX-I-9108-100G Intelligent Fabric Modules, Cisco UCS 9416

X-Fabric Modules and Cisco UCS X210c M7 and X210c M6 Compute Nodes

● Fifth-generation Cisco UCS 6536 Fabric Interconnects to support 10/25/40/100GbE connectivity from

various components

● Cisco UCS C220 M7 and C240 M7 Rack Mount Servers attached directly to the Fabric Interconnects

● High-speed Cisco NX-OS-based Cisco Nexus 93600CD-GX switching designed to support up to 400GE

connectivity

● NetApp AFF A800 end-to-end NVMe storage with up to 100GE connectivity

● NVIDIA A100-80 GPUs in Cisco UCS X440p PCIe Nodes connected to Cisco UCS X210c M7 Servers by

Cisco UCS X-Fabric

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_m7_imm_vmware_design.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_m7_imm_vmware_design.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 8 of 128

NVIDIA GPUs

The NVIDIA A100-80 PCIe GPU (UCSX-GPU-A100-80-D) was specifically used for this validation. However, any

NVIDIA GPU supported with either the Cisco UCS X210C M7 or UCS C240/C220 M7 servers can be used in this

platform. For information on the A100-80, see https://www.nvidia.com/en-us/data-center/a100/.

This validation used the A100-80 in two ways:

The first way the NVIDIA GPU was used was in NVIDIA Virtual Compute Server (vCS) mode, which took the

physical GPU, loaded the NVAIE driver in VMware ESXi, and broke the physical GPU into multiple virtual GPUs

(vGPUs) that could be assigned to Red Hat OCP worker VMs with VMware PCI passthrough. The NVAIE driver

creates multiple sized vGPU profiles that divide up the 80GB of GPU frame buffer provided by the A100-80 and

are used for assignment. In vCS mode, GPU frame buffer memory is divided up, but the entire GPU compute re-

sources are shared by all the vGPUs. vCS mode is supported in all NVIDIA GPUs supported in Cisco UCS and the

functionality used in this CVD can be applied to all supported NVIDIA GPUs. NVIDIA Multi-Instance GPU (MIG)

described here: https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html is another option that se-

curely partitions a GPU into up to seven separate GPU Instances each with their own isolated memory and com-

pute resources. This method of assigning vGPUs using profiles is useful when multiple vGPUs can be used to run a

larger number of smaller AI models or replicas of the same smaller AI model at the same time.

Note: MIG is only supported in a subset of NVIDIA GPUs and was not validated in this CVD.

The second way the NVIDIA GPU was used was to not load the VMware NVAIE drivers and to assign the full

physical GPU to the Red Hat OCP worker VM with VMware PCI passthrough. This method required a different GPU

driver to be installed in OCP instead of the vGPU driver. This method of assigning the entire physical GPU to an

OCP worker VM allows larger AI models, such as Llama 2 70B, to be run.

Cisco Unified Computing System Additions

To support Generative AI Inferencing, NVIDIA GPUs were added to Cisco UCS X210c M7 servers. The Cisco UCS

X210c M7 supports up to two NVIDIA T4 GPUs in the front mezzanine GPU adapter. The Cisco UCS X210c M7

supports additional GPUs when used with Cisco UCS X-Fabric and the X440p PCIe Node.

Cisco UCS X-Fabric

The first generation of X-Fabric Technology, Cisco UCS 9416 X-Fabric Modules connect Cisco UCS X210c and

X410c server nodes to Cisco UCS X440p PCIe Nodes. Cisco UCS X-Fabric also requires a Cisco UCS PCI Mezz

Card (UCSX-V4-PCIME-D) or a mezzanine Cisco VIC card and Cisco VIC bridge card in the mezzanine slot to

enable connectivity to the X440p PCIe node described below.

Cisco UCS X440p PCIe Node

The Cisco UCS X440p PCIe Node is the first PCIe resource node to integrate into the Cisco UCS X-Series Modular

System. The Cisco UCS X9508 Chassis has eight node slots, up to four of which can be X440p PCIe nodes when

paired with a Cisco UCS X210c M7 or M6 Compute Node. The Cisco UCS X440p PCIe Node supports two x16

full-height, full-length dual slot PCIe cards, or four x8 half-height, half-length single slot PCIe cards and requires

both Cisco UCS 9416 X-Fabric modules for PCIe connectivity. This provides up to 16 GPUs per chassis to ac-

celerate your applications with the Cisco UCS X440p Nodes. If your application needs even more GPU accelera-

https://www.nvidia.com/en-us/data-center/a100/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 9 of 128

tion, up to two additional GPUs can be added on each Cisco UCS X210c compute node as stated above. For

additional information on the Cisco UCS X440p PCIe Node, including the latest updates, see the datasheet here:

https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-x-series-modular-system/u

cs-x440p-pcle-node-ds.html.

Cisco UCS X440p supports the following GPU options:

● NVIDIA H100 Tensor Core GPU

● NVIDIA L40 GPU

● NVIDIA L4 Tensor Core GPU

● NVIDIA A100 Tensor Core GPU

● NVIDIA A16 GPU

● NVIDIA A40 GPU

● Intel Data Center GPU Flex 140

● Intel Data Center GPU Flex 170

Note: Intel Data Center GPUs, although supported with the X440p, would require a different driver setup and

process, and were not validated in this CVD.

 Cisco UCS X440p PCIe Node Figure 1.

Figure 2 shows the typical setup of Cisco UCS X440p modules paired with Cisco UCS X210c M6 and M7 servers.

The server is usually placed in an odd-numbered slot and the Cisco UCS X440p is placed next to it in an

even-numbered slot. For current information on supported GPUs associated requirements, see the Cisco UCS

X210c M7 spec sheet here:

https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-x-series-modular-syst

em/x210cm7-specsheet.pdf and the Cisco UCS X410c M7 spec sheet here:

https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-x-series-modular-syst

em/x410cm7-specsheet.pdf.

Note: In the diagram, even though X-fabric connectivity is shown on four server slots, this connectivity extends

across all eight server slots.

https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-x-series-modular-system/ucs-x440p-pcle-node-ds.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-x-series-modular-system/ucs-x440p-pcle-node-ds.html
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-x-series-modular-system/x210cm7-specsheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-x-series-modular-system/x210cm7-specsheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-x-series-modular-system/x410cm7-specsheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-x-series-modular-system/x410cm7-specsheet.pdf

© 2024 Cisco and/or its affiliates. All rights reserved. Page 10 of 128

 Cisco UCS X-Fabric Connectivity Figure 2.

Cisco UCS C220 M7 and C240 M7 NVIDIA GPU Options

The Cisco UCS C220 M7 can support up to 3 NVIDIA L4 GPUs or up to 3 Intel Flex 140 GPUs (Spec Sheet:

https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers

/c220m7-sff-specsheet.pdf). The Cisco UCS C240 M7 can support a wide range of GPUs including up to 3

NVIDIA A100-80 GPUs. For detailed information on the Cisco UCS C240 M7, see the spec sheet here:

https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers

/c240m7-sff-specsheet.pdf. Cisco UCS C-Series servers were not validated with GPUs in this CVD, but they are

supported. Go to:

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_gpu_aiml.html for an ex-

ample of Cisco UCS C-Series servers being validated with NVIDIA GPUs.

https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/c220m7-sff-specsheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/c220m7-sff-specsheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/c240m7-sff-specsheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/c240m7-sff-specsheet.pdf
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_gpu_aiml.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 11 of 128

Cisco Nexus Switching Fabric

Cisco Nexus 93600CD-GX

Based on Cisco Cloud Scale technology, the Cisco Nexus 9300-GX switches are the next generation of fixed

Cisco Nexus 9000 Series Switches capable of supporting 400 Gigabit Ethernet (GE). With the increase in use

cases for applications requiring Artificial Intelligence (AI) and Machine Learning (ML), the platform addresses the

need for high-performance, power-efficient, compact switches in the networking infrastructure. These switches

are designed to support 100G and 400G fabrics for mobile service provider environments, including the network

edge, 5G, IoT, Professional Media Networking platform (PMN), and Network Functions Virtualization (NFV).

The Cisco Nexus 93600CD-GX Switch (Figure 3.) is a 1RU switch that supports 12 Tbps of bandwidth and 4.0

bpps across 28 fixed 40/100G QSFP-28 ports and 8 fixed 10/25/40/50/100/200/400G QSFP-DD ports.

Cisco provides two modes of operation for Cisco Nexus 9000 Series Switches. Organizations can deploy Cisco

Application Centric Infrastructure (Cisco ACI) or Cisco NX-OS mode.

 Cisco UCS Nexus 93600CD-GX Switch Figure 3.

For more details, go to:

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/nexus-9300-gx-seri

es-switches-ds.html.

The switching infrastructure in this document utilized the NX-OS switching mode. The switching infrastructure in

future iterations of this document will follow the Cisco Data Center Networking Blueprint for AI/ML Applications

and will utilize a spine-leaf architecture and VXLAN EVPN Network.

NetApp AFF A-Series Storage

NetApp AFF A800 is mentioned in this document. Detailed information about NetApp AFF A-Series Storage is

specified here:

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_m7_imm_vmware_design.

html#NetApp_AFF_A_Series_Storage

NetApp AFF C-Series Storage

Detailed information about NetApp AFF C-Series Storage is specified here:

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_m7_imm_vmware_design.

html#NetAppAFFCSeriesStorage

NVAIE on VMware vSphere 8.0

In order to implement NVIDIA GPU vCS mode, a pair of NVAIE vibs or drivers were installed on each VMware ESXi

8.0 host that had GPUs. After installing these drivers and setting the Graphics Device Settings to Shared Direct

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/nexus-9300-gx-series-switches-ds.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/nexus-9300-gx-series-switches-ds.html
https://www.cisco.com/c/en/us/td/docs/dcn/whitepapers/cisco-data-center-networking-blueprint-for-ai-ml-applications.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_m7_imm_vmware_design.html#NetApp_AFF_A_Series_Storage
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_m7_imm_vmware_design.html#NetApp_AFF_A_Series_Storage
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_m7_imm_vmware_design.html#NetAppAFFCSeriesStorage
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_m7_imm_vmware_design.html#NetAppAFFCSeriesStorage

© 2024 Cisco and/or its affiliates. All rights reserved. Page 12 of 128

Vendor shared passthrough graphics, vGPUs could then be assigned to VMs, including Red Hat OCP worker VMs

after OCP installation. NVAIE also installs the nvidia-smi application on the ESXi host, providing a tool to monitor

and manage installed NVIDIA GPUs. On VMware ESXi, this tool provides physical GPU statistics such as GPU

temperature, power consumption, memory usage of assigned vGPUs, and GPU utilization in addition to how much

vGPU memory is assigned to worker VMs.

 nvidia-smi Tool on VMware ESXi Figure 4.

Red Hat OCP on VMware vSphere

The RedHat OpenShift Container Platform (OCP) is a container application platform that brings together CRI-0 and

Kubernetes and provides an API and web interface to manage these services. CRI-O is an implementation of the

Kubernetes CRI (Container Runtime Interface) to enable using Open Container Initiative (OCI) compatible runtimes.

It is a lightweight alternative to using Docker as the runtime for Kubernetes.

OCP allows you to create and manage containers. Containers are standalone processes that run within their own

environment, independent of operating system and the underlying infrastructure. OCP helps developing, deploy-

ing, and managing container-based applications. It provides a self-service platform to create, modify, and deploy

applications on demand, thus enabling faster development and release life cycles. OCP has a micro-

services-based architecture of smaller, decoupled units that work together. It runs on top of a Kubernetes cluster,

with data about the objects stored in etcd, a reliable clustered key-value store.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 13 of 128

 Openshift Container Platform Overview Figure 5.

Kubernetes Infrastructure

Within OpenShift Container Platform, Kubernetes manages containerized applications across a set of CRI-O

runtime hosts and provides mechanisms for deployment, maintenance, and application-scaling. The CRI-O ser-

vice packages, instantiates, and runs containerized applications.

A Kubernetes cluster consists of one or more masters and a set of worker nodes. This solution design includes HA

functionality at the VMware level as well as the OCP software level. A Kubernetes cluster is designed to run in HA

mode with 3 master nodes and a minimum of 2 worker nodes to help ensure that the cluster has no single point of

failure.

Red Hat Core OS

OpenShift Container Platform uses Red Hat Enterprise Linux CoreOS (RHCOS), a container-oriented operating

system that combines some of the best features and functions of the CoreOS and Red Hat Atomic Host operating

systems. RHCOS is specifically designed for running containerized applications from OpenShift Container Platform

and works with new tools to provide fast installation, Operator-based management, and simplified upgrades.

RHCOS includes the following:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 14 of 128

● Ignition, which OpenShift Container Platform uses as a first boot system configuration for initially bringing up

and configuring machines.

● CRI-O, a Kubernetes native container runtime implementation that integrates closely with the operating

system to deliver an efficient and optimized Kubernetes experience. CRI-O provides facilities for running,

stopping, and restarting containers. It fully replaces the Docker Container Engine, which was used in

OpenShift Container Platform 3.

● Kubelet, the primary node agent for Kubernetes that is responsible for launching and monitoring containers.

In this CVD OCP was installed on VMware using the Red Hat OCP Installer-Provisioned-Infrastructure (IPI) installer.

The IPI installer connects to VMware vCenter, creates the needed master and worker VMs, and installs and con-

figures RHCOS.

NVAIE on OCP

Once OCP is installed on top of VMware vSphere with the NVAIE drivers installed and vGPUs are added to the

OCP worker VMs, the NVIDIA GPU Operator can then be installed in OCP. The NVIDIA GPU operator provides

access to the Openshift vGPU driver which is used in the containers that the vGPU(s) are attached. The NVIDIA

GPU operator also pulls vGPU licenses from an NVIDIA license server that can be installed on premis or in the

NVIDIA cloud. Proper licensing is required for the vGPUs to perform. A number of pods that support NVIDIA vGPU

operation and monitoring are also created in each worker VM that has vGPUs assigned. The nvidia-smi tool, with

the vGPU view, is also available in the nvidia-driver-daemonset pod in the nvidia-gpu-operator project. This tool

does not report power or temperature data, but does show vGPU memory usage, GPU utilization (since GPU

compute resources are shared with vCS), and any pods or containers that are attached to the vGPU. In the figure

below, two vGPUs are assigned to the OCP worker VM with the profile that provides 80G of memory to each

vGPU.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 15 of 128

 nvidia-smi from the vGPU Figure 6.

NetApp Astra Trident

Astra Trident is an open-source, fully supported storage orchestrator for containers created by NetApp. It has

been designed from the ground up to help you meet your containerized applications persistence demands using

industry-standard interfaces, such as the Container Storage Interface (CSI). With Astra Trident, microservices and

containerized applications can take advantage of enterprise-class storage services provided by the full NetApp

portfolio of storage systems. In a FlexPod environment, Astra Trident is utilized to allow end users to dynamically

provision and manage persistent volumes for containers backed by FlexVols and LUNs hosted on ONTAP-based

products such as NetApp AFF and FAS systems.

Astra Trident deploys as a single Trident Controller Pod and one or more Trident Node Pods on the Kubernetes

cluster and uses standard Kubernetes CSI Sidecar Containers to simplify the deployment of CSI

plugins. Kubernetes CSI Sidecar Containers are maintained by the Kubernetes Storage community.

Kubernetes node selectors and tolerations and taints are used to constrain a pod to run on a specific or preferred

node. You can configure node selectors and tolerations for controller and node pods during Astra Trident instal-

lation.

● The controller plugin handles volume provisioning and management, such as snapshots and resizing.

● The node plugin handles attaching the storage to the node.

https://kubernetes-csi.github.io/docs/introduction.html
https://docs.netapp.com/us-en/trident/trident-get-started/architecture.html#trident-controller-pod
https://docs.netapp.com/us-en/trident/trident-get-started/architecture.html#trident-node-pods
https://kubernetes-csi.github.io/docs/sidecar-containers.html
https://kubernetes-csi.github.io/docs/sidecar-containers.html
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

© 2024 Cisco and/or its affiliates. All rights reserved. Page 16 of 128

 Astra Trident deployed on the Kubernetes cluster Figure 7.

NetApp DataOps Toolkit

The NetApp DataOps Toolkit is a Python library that makes it easy for developers, data scientists, and data en-

gineers to perform numerous data management tasks. These tasks include provisioning a new data volume or

development workspace, cloning a data volume or development workspace almost instantaneously, and creating

a NetApp Snapshot copy of a data volume or development workspace for traceability and baselining. This Python

library can function as either a command-line utility or a library of functions that can be imported into any Python

program or Jupyter Notebook.

The DataOps Toolkit supports Linux and macOS hosts. The toolkit must be used in conjunction with a NetApp data

storage system or service. It simplifies various data management tasks that are executed by the data storage

system or service. To facilitate this simplification, the toolkit communicates with the data storage system or ser-

vice through an API.

The NetApp DataOps Toolkit for Kubernetes abstracts storage resources and Kubernetes workloads up to the

data-science workspace level. These capabilities are packaged in a simple, easy-to-use interface that is de-

signed for data scientists and data engineers. Using the familiar form of a Python program, the Toolkit enables

data scientists and engineers to provision and destroy JupyterLab workspaces in just seconds. These workspaces

can contain terabytes, or even petabytes, of storage capacity, enabling data scientists to store all their training

datasets directly in their project workspaces. Gone are the days of separately managing workspaces and data

volumes.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 17 of 128

 NetApp Data Science Toolkit Figure 8.

AI Software

Various Generative AI Inferencing Models were run and benchmarked as part of this validation. One method for

Generative AI Inferencing is to load an inferencing server with an AI model. The inferencing server then has a

listener that waits for inferencing requests and responds to the requests. A second method is to load the model

into the GPU(s), run the inferencing request(s), provide the response(s), and unload the model. In this validation,

NetApp Astra Trident-provided persistent storage was used to store the AI models, preventing the models from

being downloaded each time a pod was created or re-created. For this validation, AI software and models were

obtained from NVAIE, Hugging Face, Github, and other sources. NVAIE provides a wide range of inferencing

servers, AI frameworks, and AI models for NVIDIA GPUs.

NVIDIA NeMo Framework Inference

NVIDIA NeMo™ Framework is an end-to-end, cloud-native enterprise framework to build, customize, and deploy

generative AI models with billions of parameters. The NeMo Framework Inferencing container utilizes the NVIDIA

Triton Inferencing Server to serve NeMo formatted AI inferencing models. To obtain NeMo, you need to sign up for

ea-bignlp/ga-participants in the NVIDIA NGC Catalog. NeMo will then appear in your Private Registry under

Containers.

Text Generation Inference (TGI)

TGI is a toolkit for deploying and serving Large Language Models (LLMs). The TGI container is downloaded from

Hugging Face and contains all of the necessary software to support usage of NVIDIA GPUs. TGI supports a wide

range of AI models, and fourteen different AI Inferencing models were run as part of the validation.

https://huggingface.co/
https://github.com/
https://registry.ngc.nvidia.com/orgs/ea-bignlp/teams/ga-participants/containers/nemofw-inference
https://huggingface.co/docs/text-generation-inference/index

© 2024 Cisco and/or its affiliates. All rights reserved. Page 18 of 128

PyTorch

PyTorch is an optimized tensor library for deep learning using GPUs and CPUs. The PyTorch container is down-

loaded from the NVIDIA NGC Catalog and is NVAIE supported. When running AI Inferencing models with PyTorch,

the model is loaded into the GPU, inferencing is run, response is provided, and the model is unloaded.

Table 1. AI Inferencing Models Run

Inferencing Serving Model Base Container Used for Inferencing

NeMo Framework Inference Nemo GPT 2B nvcr.io/ea-bignlp/ga-participants/nemofw-inference:23.10

Nemotron 3 8B QA

Llama-2-7B-Chat

Llama-2-13B-Chat

Llama-2-70B-Chat

Llama-2-SteerLM-Chat

TGI BLOOM 7B ghcr.io/huggingface/text-generation-inference

Google FLAN-T5 XL 2.85B

Google FLAN-T5 XXL 11.3B

GALACTICA 30B

GPT-NeoX-20B

OPT- 2.7B

MPT-30B

Falcon-40B

Mistral-7B-v0.1

Code Llama 34B-Base

Code Llama 70B-Base

Llama-2-70B-Chat-HF

Defog SQLCoder-15B

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

© 2024 Cisco and/or its affiliates. All rights reserved. Page 19 of 128

Inferencing Serving Model Base Container Used for Inferencing

Defog SQLCoder-34B

PyTorch Llama-2-7B-Chat nvcr.io/nvidia/pytorch:23.10-py3

Llama-2-13B-Chat

resnet34*

Stable Diffusion 1.4*

Stable Diffusion 1.5*

Stable Diffusion 2*

Stable Diffusion 2.1*

Stable Diffusion XL*

Openjourney*

Dreamlike Diffusion 1.0*

Hotshot-XL*

*Run using NetApp DataOps Toolkit with a Jupyter Notebook.

GPU Monitoring

In this solution, GPUs were monitored in three ways:

nvidia-smi

The first was with the nvidia-smi tool that is installed as part of NVAIE and is mentioned above. From a monitoring

perspective, the main screen of the tool can be monitored constantly by using the loop command line parameter

or by using the Linux watch command. The tool also has numerous command line options to generate data about

the GPU and can produce CSV files with data at specified intervals for graphing GPU data. The important thing to

remember with nvidia-smi in this solution is where it is being run from. If it is run from VMware ESXi, it returns

physical GPU statistics and data. If it is run from a container or pod in OCP, it returns vGPU statistics and data.

VMware vCenter GPU Statistics

In addition to nvidia-smi, the NVAIE vibs that are installed on VMware ESXi allow VMware vCenter to collect and

show real time physical GPU data. GPU memory usage, memory used, temperature, and utilization are collected

and up to two of these items can be charted and displayed in VMware vCenter. The figure below shows an ex-

ample while running GPU Burn.

https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf

© 2024 Cisco and/or its affiliates. All rights reserved. Page 20 of 128

 VMware vCenter GPU Statistics While Running GPU Burn Figure 9.

OCP Console NVIDIA DCGM Exporter Dashboard

The NVIDIA GPU Operator exposes vGPU telemetry for Prometheus by using the NVIDIA DCGM Exporter. These

metrics can be visualized using a monitoring dashboard based on Grafana. The NVIDIA DCGM Exporter Grafana

Dashboard can be installed in OCP and viewed in the OCP console. Figure 10 shows an example while running

GPU Burn.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 21 of 128

 NVIDIA DCGM Exporter Dashboard While Running GPU Burn Figure 10.

Sustainability

Cisco Intersight

In Cisco Intersight, power consumption of GPUs installed in a Cisco UCS X440p and attached to an X210C M7

server using Cisco UCS X-Fabric is added to the server’s power consumption and shown in the server Metrics

screen. In Figure 11, the Cisco UCS X210C M7 was using around 600W before GPU Burn was started. Each of the

2 NIVIDIA A100-80 GPUs attached to this server have a maximum usage of 300W. GPU Burn adds 600W of power

consumption to the server from the GPUs to get to a server power consumption of around 1200W.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 22 of 128

 Cisco UCS Server Power Usage While Running GPU Burn Figure 11.

Cisco Intersight has also recently added a Power & Energy Metrics Dashboard under My Dashboard. This dash-

board shows summary power and energy metrics for all servers in the Intersight Account.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 23 of 128

 Cisco Intersight Power and Energy Metrics Dashboard Figure 12.

VMware vSphere

In VMware vSphere, Distributed Power Management (DPM) was tested as part of this validation. The

FlexPod-Management cluster in this validation consisted of 7 VMs running on a cluster of 3 VMware ESXi hosts

and the OCP cluster consisted of 6 VMs running on a cluster of 5 VMware ESXi hosts. DPM uses IPMI over LAN to

power on hosts that have been put into Standby mode when necessary. DPM was enabled in a manual automation

© 2024 Cisco and/or its affiliates. All rights reserved. Page 24 of 128

mode for each cluster, and it was disabled with an override for hosts with GPUs. Then two hosts (one in each

cluster) were suspended (powered off), saving energy consumption.

 VMware vSphere DPM Figure 13.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 25 of 128

Solution Design

This chapter contains the following:

● Design Requirements

● Physical Topology

● FlexPod Multi-Tenant Configuration

● Red Hat OCP

● FlexPod Security

● Design Summary

Design Requirements

The FlexPod Datacenter with Cisco UCS and Cisco Intersight meets the following general design requirements:

● Resilient design across all layers of the infrastructure with no single point of failure

● Scalable design with the flexibility to add compute capacity, storage, or network bandwidth as needed

● Modular design that can be replicated to expand and grow as the needs of the business grow

● Flexible design that can support different models of various components with ease

● Simplified design with ability to integrate and automate with external automation tools

● Cloud-enabled design which can be configured, managed, and orchestrated from the cloud using GUI or

APIs

To deliver a solution which meets all these design requirements, various solution components are connected and

configured as covered in the upcoming sections.

Physical Topology

The FlexPod Datacenter solution with Cisco UCS IMM M7, VMware 8.0, and NetApp ONTAP 9.13.1 is built using

the following hardware components:

● Cisco UCS X9508 Chassis with Cisco UCSX-I-9108-100G intelligent fabric modules (IFMs), up to eight

Cisco UCS X210C M7 Compute Nodes with 4th Generation Intel Xeon Scalable CPUs, and up to four Cisco

UCS X440p PCIe Nodes each with up to two NVIDIA A100-80 GPUs (each X440p would go in place of an

X210c)

● Fourth-generation Cisco UCS 6536 Fabric Interconnects to support 100GbE and 25GbE connectivity from

various components

● Cisco UCS C220 M7 and C240 M7 rack mount servers with 4th Generation Intel Xeon Scalable CPUs

● High-speed Cisco NX-OS-based Nexus 93600CD-GX switching design to support 100GE and 400GE

connectivity

● NetApp AFF A800 end-to-end NVMe storage with 25G or 100G Ethernet

© 2024 Cisco and/or its affiliates. All rights reserved. Page 26 of 128

The software components of this solution consist of:

● Cisco Intersight to deploy, maintain, and support the Cisco UCS server components

● Cisco Intersight SaaS platform to maintain and support the FlexPod components

● Cisco Intersight Assist Virtual Appliance to help connect NetApp ONTAP, VMware vCenter, and Cisco

Nexus switches with Cisco Intersight

● NetApp Active IQ Unified Manager to monitor and manage the storage and for NetApp ONTAP integration

with Cisco Intersight

● VMware vCenter to set up and manage the virtual infrastructure as well as Cisco Intersight integration

● Red Hat OCP to manage a Kubernetes containerized environment

● NVAIE at both the VMware ESXi and Red Hat OCP layers to manage GPU and vGPU drivers and to provide AI

Inferencing software containers

● NetApp Astra Trident to provide persistent storage to OCP containers

● NetApp DataOps Toolkit to provide Jupyter notebooks for running AI Inferencing software

FlexPod Datacenter with Generative AI Inferencing with IP-based Storage Access

Figure 14 shows various hardware components and the network connections for the IP-based FlexPod design for

Generative AI Inferencing.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 27 of 128

 FlexPod Datacenter Physical Topology for IP-based Storage Access Figure 14.

The reference hardware configuration includes:

● Two Cisco Nexus 93600CD-GX Switches in Cisco NX-OS mode provide the switching fabric.

● Two Cisco UCS 6536 Fabric Interconnects (FI) provide the chassis connectivity. Two 100 Gigabit Ethernet

ports from each FI, configured as a Port-Channel, are connected to each Nexus 93600CD-GX.

● One Cisco UCS X9508 Chassis connects to fabric interconnects using Cisco UCS UCSX-I-9108-100G

IFMs, where four 100 Gigabit Ethernet ports are used on each IOM to connect to the appropriate FI. If ad-

ditional bandwidth is required, all eight 100G ports can be utilized.

● The Cisco UCS X9508 Chassis is also equipped with a pair of Cisco UCS 9416 X-Fabric modules.

● One NetApp AFF A800 HA pair connects to the Cisco Nexus 93600CD-GX Switches using two 100 GE ports

from each controller configured as a Port-Channel.

● One Cisco UCS C240 M7 rack mount server connects to the Fabric Interconnects using two 100 GE ports

per server.

● One Cisco UCS C220 M7 rack mount server connects to the Fabric Interconnects using four 25 GE ports per

server via breakout.

NetApp storage

controllers

AFF-A800

Cisco Nexus

93600CD-GX

vPC vPC

vPC vPC

Legend

100 Gbps Ethernet

100 Gbps converged

Cisco Unified

Computing System
Cisco UCS 6536 Fabric

Interconnect, Cisco UCS

X9508 Chassis with 9108-

100G IFM and 9416 X-

Fabric, Cisco UCS M7

Servers, Cisco UCS X440p

with Up To 2 NVIDIA A100-

80 GPUs

AFF
A800

AFF
A800

6

5

4

3

2

1

87654321

1 3

5

2 4

6

UCS 9508

1 3

5

2 4

6

1 3

5

2 4

6

1 3

5

2 4

6

1 3

5

2 4

6

1 3

5

2 4

6

1 3

5

2 4

6

1 3

5

2 4

6

x4 x4

UCS

C225 M6

2
 T

B
H

D
2T

7
K

L6
G

N

S
A

T
A

 H
D

D

X

2
 T

B
H

D
2T

7
K

L6
G

N

S
A

T
A

 H
D

D

X

1

6

S

2

7 8

3

9

4

10

5

2
 T

B
H

D
2T

7
K

L6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2T

7
K

L6
G

N

S
A

T
A

 H
D

D

X

2
 T

B
H

D
2T

7
K

L6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2T

7
K

L6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2T

7
K

L6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2T

7
K

L6
G

N

S
A

T
A

 H
D

D

X

2
 T

B
H

D
2T

7
K

L6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2T

7
K

L6
G

N

S
A

T
A

 H
D

D

X

25 Gbps Converged

LS

1

UCS-FI-6536

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 31 3229 3027 28

2

3

4

BCN STS ENV

33 34 35 36

LS

1

UCS-FI-6536

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 31 3229 3027 28

2

3

4

BCN STS ENV

33 34 35 36

UCS

C245 M7

S

X

NVME SSD

800 GB
NVMEHWH800

X

NVME SSD

800 GB
NVMEHWH800

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

821 76543

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

2 TB
HD2T7KL6GN

SATA HDD

X

14131211109 201918171615 24232221

X

NVME SSD

800 GB
NVMEHWH800

X

NVME SSD

800 GB
NVMEHWH800

STS

BCN

ENV

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

29

30

31

32

33

34

35

36

27

28

STS

BCN

ENV

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

29

30

31

32

33

34

35

36

27

28

© 2024 Cisco and/or its affiliates. All rights reserved. Page 28 of 128

● Up to two NVIDIA A100-80 GPUs are installed in the Cisco UCS X440p cards and are connected to the

Cisco UCS X210C M7 in the adjacent slot by X-Fabric.

● This reference configuration consists of 2 Cisco UCS X210c M7 servers each with an X440p card with 2

NVIDIA A100-80 GPUs, 2 additional Cisco UCS X210c M7 servers, 2 Cisco UCS X210c M6 servers, 1 Cisco

UCS C240 M7, and 1 Cisco UCS C220 M7.

FlexPod Multi-Tenant Configuration

In the deployment section of this document, a base FlexPod is setup using Ansible playbooks and following the

latest FlexPod Datacenter using IaC with Cisco IMM M7, VMware vSphere 8, and NetApp ONTAP 9.12.1 De-

ployment Guide. This validation uses NetApp ONTAP 9.13.1, but the Ansible playbooks have been successfully

tested with ONTAP 9.13.1. In thinking about a FlexPod Multi-Tenant Configuration, the base FlexPod setup is a

setup of the first FlexPod Infrastructure tenant. This CVD adds a second tenant (OCP) to the FlexPod, setting up a

platform to run Generative AI Inferencing.

The first question that must be answered in setting up a multi-tenant environment is how the servers are going to

be configured and booted. In this FlexPod environment all servers are running the VMware ESXi hypervisor, and

we have two tenants. The first decision to be made is whether to run a fully shared infrastructure where both

tenants run on all servers, or to dedicate servers to tenants. In this setup, it made the most sense to dedicate

servers to the two tenants instead of setting up a fully shared infrastructure. Because this is a virtualized setup, it

can be run on a minimum of six ESXi hosts, three for each tenant cluster. In this setup, there are eight total servers

available, and the decision was made to dedicate three servers to the FlexPod Infrastructure tenant, where both

FlexPod and OCP management VMs reside, and five servers to the OCP cluster, where the three OCP master VMs

and three OCP worker VMs reside. The OCP master VMs have minimal requirements and more than one of these

VMs can run on a single ESXi host. The OCP worker VMs can also be sized where more than one worker, or one

worker and one master can run on a single ESXi host. Given that a separate NetApp Storage Virtual Machine (SVM)

is used for each tenant, the second decision to be made is whether to iSCSI SAN boot all servers from the FlexPod

Infrastructure SVM or to boot the three FlexPod Management servers from the Infrastructure SVM and the five

OCP servers from the OCP SVM. Booting the OCP servers from the OCP SVM would require a new UCS Server

Profile to be created with different iSCSI vNICs, different iSCSI boot IP pools in different subnets, and different

iSCSI connection policies. Also, because adding a FlexPod tenant mainly involves adding VLANs and a NetApp

SVM for a tenant, and the base FlexPod design allows these VLANs to be added to the UCS Domain Profile VLAN

Policy, the base UCS Server Profile and VMware vDSs without generating a new Server Profile, it made the most

sense to boot all of the servers from the FlexPod Infrastructure VM and use the same Server Profile template for

both tenants.

Nexus Switch OCP Tenant Additions

To add the OCP tenant to this FlexPod, we first added four VLANs (one for OCP management, one for OCP NFS,

and two for OCP NVMe-TCP) to the switches. We then added those VLANs to the appropriate switchports or port

channels. Finally, to simplify OCP NTP setup, we added a switched virtual interface (SVI) in each switch as an

OCP-MGMT VLAN interface. Since in NX-OS mode, if you have NTP distribution enabled, any SVI becomes and

NTP distribution interface. We also added an OCP Virtual Route Forwarding (VRF) and default gateway in this VRF

in case requests come into the OCP SVI from another subnet.

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_imm_m7_iac.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 29 of 128

NetApp Storage OCP Tenant Additions

To add the OCP tenant to the NetApp storage we first created VLAN interfaces for the four OCP VLANs, then

created corresponding broadcast domains and added the VLAN interfaces to these broadcast domains. After that

we followed best practices in creating the OCP SVM and created Logical Interfaces (LIFs) inside that SVM for OCP

management and storage interfaces. Next, we added two volumes to become NFS datastores, one for OCP

management VMs and the other for OCP master and worker VMs. Finally, we enabled and set a password for the

OCP SVM vsadmin user, which was used by NetApp Astra Trident to provision persistent container storage for

OCP. The OCP SVM storage layout is shown below. Persistent container storage volumes are also added to this

SVM by NetApp Astra Trident.

 Initial Storage Layout of NetApp OCP SVM Figure 15.

Cisco UCS OCP Tenant Additions

In Cisco UCS IMM, the VLANs were first need added to the VLAN policy that is a part of the UCS Domain Profile

and the Domain Profile was redeployed. The VLANs were then added to the appropriate Ethernet Network Group

policies to add them to the vNICs for vDS0 and the iSCSI-NVMe-TCP-vDS. Next, the standard virtualization BIOS

© 2024 Cisco and/or its affiliates. All rights reserved. Page 30 of 128

Policy was cloned, and some BIOS tokens modified for use on the servers with GPUs. The default BIOS and

VMware settings for servers in FlexPod uses a balanced power profile where power is conserved with very little

effect on performance. For servers with GPUs, it is recommended to use a high-performance power profile policy

and also to enable the BIOS token for Memory Mapped IO above 4GiB. The appropriate Server Profile was cloned,

and the cloned BIOS policy was added to cloned template. This new template was then applied to the servers with

GPUs. All server profiles were then redeployed and only the servers with GPUs were rebooted.

VMware vSphere OCP Tenant Additions

In VMware vCenter, the first thing that was done was to create a separate OCP ESXi cluster to hold the OCP ESXi

hosts, this cluster, along with the FlexPod-Management cluster, was setup to be managed with a single image.

The image for the FlexPod-Management cluster included the standard FlexPod drivers including the Cisco VIC

nenic driver, the NetApp NFS VAAI plugin, and the Cisco UCS tool component. The image for the OCP cluster had

all the FlexPod drivers plus the two NVAIE drivers required for the GPUs. The servers used for OCP were then

moved to the OCP cluster and remediated to add the NVAIE drivers. Port groups were added to the two vDSs for

OCP-MGMT, OCP-NFS, OCP-NVMe-TCP-A, and OCP-NVMe-TCP-B. The Infra-NVMe-TCP VMkernel ports

were removed from the OCP servers and an OCP-NFS VMkernel port was added to each OCP host and to each

FlexPod-Management host. It was not necessary to configure OCP NVMe-TCP VMkernel ports since OCP

NVMe-TCP was only used to map persistent storage directly to the worker VMs. The OCP-MGMT datastore was

mounted on all ESXi hosts and the OCP datastore was then mounted only on the OCP hosts. This mounting al-

lowed the OCP management VMs (Windows AD and OCP Installer) to run in either the FlexPod-Management or

OCP cluster. Finally, the Hardware Power Policy for the ESXi hosts with GPUs was changed to High performance.

VMware VMs can be successfully live migrated between Cisco UCS M7 servers with Intel 4th Generation Xeon

Scalable CPUs and Cisco UCS M6 servers with Intel 3rd Generation Xeon Scalable CPUs. This capability allowed us

to mix Cisco UCS M7 and M6 servers in the same VMware ESXi cluster and have vMotion without using Enhanced

vMotion Compatibility (EVC).

The VMware network design with OCP included is shown in Figure 16. This diagram shows the base FlexPod

VMware Network Design with pinning and the OCP tenant port groups added. In many ways, this diagram sums up

the network design of the FlexPod. It shows how tenant connectivity can be added to the FlexPod, and it provides

a platform to add additional tenants in a consistent way.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 31 of 128

 VMware Network Design with OCP Tenant Figure 16.

Red Hat OCP

To install Red Hat OCP, first two Windows AD/DNS/DHCP server VMs, each with 4 network interfaces

(OCP-MGMT, OCP-NFS, OCP-NVMe-TCP-A, and OCP-NVMe-TCP-B) with a DHCP scope for each network

interface and required DNS entries for OCP were setup. Next, a Rocky Linux ocp-installer VM was setup. After that,

the OCP IPI installer with a yaml file specifying the VMware vCenter IP address, user id, password, cluster, and

datastore for OCP was used to install and bring up the OCP cluster. Next, OCP post configuration was done

around properly setting up NTP servers and setting up NVMe-TCP. In VMware vCenter the OCP VM template was

modified with some advanced settings for connecting PCI devices to VMs and upgraded to VM version 20 to allow

for up to 8 vGPUs per worker VM. The OCP Machineset was then modified to resize the worker VMs and to add

NFS and NVMe-TCP network interfaces to the worker VMs. These storage interfaces get their IP addresses via

DHCP from the OCP AD/DNS/DHCP servers. The number of Machineset replicas was then set to zero then back to

three to regenerate the workers.

NVIDIA GPU Operator

After OCP was installed and setup, the NVIDIA GPU Operator was installed to provide vGPU drivers and licensing.

The first step is to install and configure an NVIDIA licensing server connected to the NVIDIA cloud. In this validation,

an on-prem NVIDIA Delegated License Server (DLS) was installed from OVA and connected to the NVIDIA cloud to

receive licenses. A Cloud-base License Server (CLS) in the NVIDIA cloud can also be used. Next, the VMware

ESXi host GPU settings were adjusted to Share Direct graphics and vGPUs were assigned to OCP worker nodes.

Next, the OCP Node Feature Discovery (NFD) Operator was installed to identify vGPUs connected to worker VMs.

Then, the NVIDIA GPU Operator was installed with secure connectivity to the DLS for license retrieval and to the

NVIDIA NGC Catalog for retrieval of the NVAIE vGPU driver. Once the NVIDIA GPU Operator was fully up and op-

erational, vGPU licensing was checked to ensure GPU performance. This step also verified that the vGPUs and

© 2024 Cisco and/or its affiliates. All rights reserved. Page 32 of 128

drivers are properly set up. The final steps were to enable the vGPU Dashboard in the OCP Console and to enable

GPU monitoring in VMware vCenter.

NetApp Astra Trident

NetApp Astra Trident was then installed into OCP with Helm and three storage classes for persistent storage

created:

● NFS 4.1 with a Single Volume with Shared or Single User Access

● NFS 4.1 with NetApp FlexGroup with Shared or Single User Access

● NVMe-TCP with Single User Access

Once the storage classes were created, a persistent volume claim (PVC) could be created with Trident creating

backing storage on the NetApp AFF A800. Then when a pod or container was deployed, the PVC could be used to

attach the persistent storage to the pod or container. Data in the persistent storage is not deleted each time a

container is recreated meaning the pod can be deleted and a replacement pod automatically added without losing

any data in the persistent storage. This capability was used in this solution where the AI Inferencing models were

stored in persistent storage and standard containers used for the inferencing server or software. With limited GPU

resources, deployments of different inferencing servers could be deleted and re-added without having to

re-download the AI Inferencing models. The other aspect of the storage classes was Shared or Single User Ac-

cess. With the NFS-based Storage Classes, multiple containers and other devices could be attached to the same

persistent storage. This could allow more than one Inferencing Servers to share a single AI model repository. In

this validation, NFS-based persistent storage was mounted from the OCP Installer VM to allow direct copying of AI

models to persistent storage. All three Storage Classes were tested in this validation.

FlexPod Security

Each layer of this platform was built with base security as a requirement. If further security is needed, please refer

to FlexPod Datacenter Zero Trust Framework Design Guide. The FlexPod multi-tenant architecture defined in this

document aligns with the model in the Zero Trust document.

Design Summary

The base FlexPod with VMware vSphere architecture was configured, then NVIDIA GPUs and an OCP tenant were

added followed by NVAIE on VMware, Red Hat OCP, NVAIE on OCP, and NetApp Astra Trident to build a powerful

platform for running Generative AI Inferencing. This layered approach is summarized in the figure below. Each

layer was configured with best practices and security, resulting in a high-performance, secure platform for Gen-

erative AI Inferencing. This platform can be extended for further AI applications such as Training, Fine Tuning, and

Retrieval Augmentation Generation (RAG), provided that the platform is sized for the application.

https://docs.netapp.com/us-en/ontap/flexgroup/definition-concept.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_zero_trust_design.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 33 of 128

 FlexPod as a Platform for Generative AI Inferencing Figure 17.

Note: If the NVIDIA physical GPUs are assigned to the Red Hat OCP workers as PCI devices and the NVAIE driver

is not installed in VMware ESXi, then the NVAIE layer between VMware vSphere and Red Hat OCP can be re-

moved.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 34 of 128

Solution Deployment

This chapter contains the following:

● VLAN Configuration

● Software Revisions

● Deploy FlexPod

● Deploy OCP FlexPod Tenant

● Deploy OCP

● Deploy the NVIDIA GPU Operator on OCP

● Deploy NetApp Astra Trident

● NetApp DataOps Toolkit

Note: The NetApp storage controller and disk shelves should be connected according to best practices for the

specific storage controller and disk shelves. For disk shelf cabling, refer to NetApp Support:

https://docs.netapp.com/us-en/ontap-systems/index.html

VLAN Configuration

Table 2 lists VLANs configured for setting up the FlexPod environment along with their usage.

Table 2. VLAN Usage

VLAN ID Name Usage IP Subnet used in this

deployment

2 Native-VLAN Use VLAN 2 as native VLAN instead of

default VLAN (1).

1020 OOB-MGMT-VLAN Out-of-band management VLAN to connect

management ports for various devices

10.102.0.0/24; GW: 10.102.0.254

1021 IB-MGMT-VLAN In-band management VLAN utilized for all

in-band management connectivity - for

example, ESXi hosts, VM management, and

so on.

10.102.1.0/24; GW: 10.102.1.254

1022 OCP-MGMT OCP management traffic VLAN – used in

place of VM-Traffic VLAN

10.102.2.0/24; GW: 10.102.2.254

3050 NFS-VLAN NFS VLAN for mounting datastores in ESXi

servers for VMs

192.168.50.0/24 **

3010 iSCSI-A iSCSI-A path for storage traffic including

boot-from-san traffic

192.168.10.0/24 **

https://mysupport.netapp.com/
https://docs.netapp.com/us-en/ontap-systems/index.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 35 of 128

VLAN ID Name Usage IP Subnet used in this

deployment

3020 iSCSI-B iSCSI-B path for storage traffic including

boot-from-san traffic

192.168.20.0/24 **

3030 NVMe-TCP-A NVMe-TCP-A path when using NVMe-TCP 192.168.30.0/24 **

3040 NVMe-TCP-B NVMe-TCP-B path when using NVMe-TCP 192.168.40.0/24 **

3000 vMotion VMware vMotion traffic 192.168.0.0/24 **

3052* OCP-NFS NFS VLAN for OCP persistent storage and

OCP cluster and support VMs

192.168.52.0/24 **

3032* OCP-NVMe-TCP-A NVMe-TCP-A path when using NVMe-TCP

for persistent storage

192.168.32.0/24 **

3042* OCP-NVMe-TCP-B NVMe-TCP-B path when using NVMe-TCP

for persistent storage

192.168.42.0/24 **

* To be added after initial build.

** IP gateway is not needed since no routing is required for these subnets

Some of the key highlights of VLAN usage are as follows:

● VLAN 1020 allows you to manage and access out-of-band management interfaces of various devices.

● VLAN 1021 is used for in-band management of VMs, ESXi hosts, and other infrastructure services.

● VLAN 1022 is used for OCP management.

● VLAN 3050 provides ESXi hosts access to the NFS datastores hosted on the NetApp Controllers for de-

ploying VMs.

● A pair of iSCSI VLANs (3010 and 3020) is configured to provide access to boot LUNs for ESXi hosts. These

VLANs are not needed if you are using FC-only connectivity.

● A pair of NVMe-TCP VLANs (3030 and 3040) are configured to provide access to NVMe datastores when

NVMe-TCP is being used.

● VLAN 3000 is used for VM vMotion.

● Additional storage VLANs (3032, 3042, and 3052) are configured for OCP persistent storage and OCP VMs.

Note: iSCSI VLANs are not being configured for OCP persistent storage since NVMe-TCP VLANs are being

configured.

Table 3 lists the infrastructure VMs necessary for deployment as outlined in this document.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 36 of 128

Table 3. Virtual Machines

Virtual Machine

Description

VLAN IP Address Comments

vCenter Server 1021 10.102.1.100 Hosted on either pre-existing

management infrastructure

(preferred) or on FlexPod

NetApp ONTAP

Tools for VMware

vSphere

1021 10.102.1.99 Hosted on FlexPod

NetApp SnapCenter

Plug-in for VMware

vSphere

1021 10.102.1.98 Hosted with vCenter on either

pre-existing management

infrastructure (preferred) or on

FlexPod

NetApp Active IQ

Unified Manager

1021 10.102.1.97 Hosted on FlexPod

Cisco Intersight

Assist

1021 10.102.1.96 Hosted on FlexPod

FlexPod Ansible 1021 10.102.1.151 Hosted on pre-existing

management infrastructure

and used to run Ansible

playbooks to set up the

FlexPod

OCP AD 1 and 2 1022 10.102.2.249 and 10.102.2.250 Hosted on FlexPod - Microsoft

Windows AD servers to

provide DNS and DHCP for the

OCP environment. These VMs

can also be Linux VMs and

would use Linux DNS and

DHCP server software

OCP Installer 1022 10.102.2.10 Hosted on FlexPod – Linux VM

to install and configure the

OCP environment.

NVIDIA DLS 1021 10.102.1.17 Hosted on FlexPod – OVA to

issue NVIDIA vGPU licenses.

Could also have been in VLAN

1022.

Software Revisions

Table 4 lists the software revisions for various components of the solution.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 37 of 128

Table 4. Software Revisions

Layer Device Image

Bundle

Comments

Compute Cisco UCS 4.2(3h) Cisco UCS GA release for infrastructure including

FIs and IFM

Cisco UCS X210C M7 5.2(0.230092)

Cisco UCS C220/240 M7 4.3(2.230270)

GPU NVIDIA A100-80 535.129.03

Network Cisco Nexus 93600CD-GX NX-OS 10.2(6)M

Storage NetApp AFF A800 ONTAP

9.13.1P6

Latest patch release

Software Cisco Intersight Assist Appliance 1.0.9-630 1.0.9-630 initially installed and then automatically

upgraded to latest release

VMware vCenter 8.0 Latest 8.0 Build

VMware ESXi 8.0 Latest 8.0 Build

VMware ESXi nenic Ethernet Driver 2.0.11.0

NetApp ONTAP Tools for VMware

vSphere

9.13 Formerly Virtual Storage Console (VSC)

NetApp SnapCenter Plug-in for

VMware vSphere

4.9

NetApp Active IQ Unified Manager 9.14RC1

FlexPod Cabling

The information in this section is provided as a reference for cabling the physical equipment in a FlexPod envi-

ronment. To simplify cabling requirements, a cabling diagram was used.

The cabling diagram in this section contains the details for the prescribed and supported configuration of the

NetApp AFF 800 running NetApp ONTAP 9.13.1P6.

Note: For any modifications of this prescribed architecture, consult the NetApp Interoperability Matrix Tool (IMT).

Note: This document assumes that out-of-band management ports are plugged into an existing management

infrastructure at the deployment site. These interfaces will be used in various configuration steps.

https://imt.netapp.com/matrix

© 2024 Cisco and/or its affiliates. All rights reserved. Page 38 of 128

Note: Be sure to use the cabling directions in this section as a guide.

The NetApp storage controller and disk shelves should be connected according to best practices for the specific

storage controller and disk shelves. For disk shelf cabling, refer to NetApp Support.

Figure 18 details the cable connections used in the validation lab for the FlexPod topology based on the Cisco

UCS 6536 fabric interconnect. Two 100Gb links connect each Cisco UCS Fabric Interconnect to the Cisco Nexus

Switches and each NetApp AFF controller to the Cisco Nexus Switches. Additional 1Gb management connections

will be needed for out-of-band network switches that sit apart from the FlexPod infrastructure. Each Cisco UCS

fabric interconnect and Cisco Nexus switch is connected to the out-of-band network switches, and each AFF

controller has a connection to the out-of-band network switches. Layer 3 network connectivity is required be-

tween the Out-of-Band (OOB) and In-Band (IB) Management Subnets. This cabling diagram shows the

iSCSI-boot configuration.

https://support.netapp.com/

© 2024 Cisco and/or its affiliates. All rights reserved. Page 39 of 128

 FlexPod Cabling with Cisco UCS 6536 Fabric Interconnect Figure 18.

NetApp AFF A800

Controller - 1
NetApp AFF A800

Controller - 2

UCS 6536

Fabric Interconnect - A
UCS 6536

Fabric Interconnect - B

Nexus 93600CD-GX Switch - A Nexus 93600CD-GX Switch - B

e5a e5b e5a e5b

e0a

ifgrp a0a ifgrp a0a

x9508 Chassis

X
9

1
0

8
-1

0
0

G

X
9

1
0

8
-1

0
0

G

E1/31

L1

L2

L1

L2

E1/5 E1/6

E1/25

E1/32 E1/31 E1/32

E1/5 E1/6

E1/26

E1/25

E1/26

E1/1 E1/2E1/1 E1/2

FI Uplink

Ports
FI Uplink

Ports

FI Server Ports

Po10

Po131 Po131

Po15Po16 Po16Po15

Po11 Po12 Po11 Po12

Peer Link

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

UCS C220 M7

E1/13 E1/9-12

x 4

E1/13E1/9-12

x 4

e0d

e0a

e0d

UCS VIC 15428
3

4

1

2

1 GbE

10 GbE

25 GbE

100 GbE

32 GbFC

Port Channel

vPC
UCS C240 M7

UCS VIC 152381 2

E1/17/1-4 E1/17/1-4

Deploy FlexPod

Procedure 1. Deploy FlexPod

Step 1. Using the information in the above tables and diagrams, use FlexPod Datacenter using IaC with
Cisco IMM M7, VMware vSphere 8, and NetApp ONTAP 9.12.1 to deploy the FlexPod up until the beginning of the
FlexPod Management Tools Setup. Rename the VM-Traffic VLAN with a name like OCP-MGMT. Deploy a mini-
mum of 6 servers with ESXi. In this lab setup, 8 total servers were deployed. Deploy an iSCSI-booted FlexPod with
NVMe-TCP. The result of this setup will be all servers in the FlexPod-Management cluster.

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_imm_m7_iac.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_imm_m7_iac.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 40 of 128

Note: Do not use the OCP storage VLANs in the initial configuration. Those VLANs will be added later in the

process. At the end of the VMware configuration, only configure NVMe-TCP on the three servers that will be used

for management and will stay in the FlexPod-Management cluster.

Step 2. If mapping vGPUs to OCP, using your NVIDIA Enterprise account login, connect to
https://ui.licensing.nvidia.com/software and download the NVIDIA AI Enterprise 4.1 Software Package for
VMware vSphere 8.0. From the downloaded NVID-
IA-AI-Enterprise-vSphere-8.0-535.129.03-535.129.03-537.70.zip file extract the
NVD-AIE-800_535.129.03-1OEM.800.1.0.20613240_22670890.zip offline bundle and the
nvd-gpu-mgmt-daemon_535.129.03-0.0.0000_22676950.zip file.

Step 3. Create an OCP ESXi cluster, turning on vSphere DRS and vSphere HA. Select Manage all hosts in
the cluster with a single image and Compose a new image. In FlexPod Datacenter using IaC with Cisco IMM
M7, VMware vSphere 8, and NetApp ONTAP 9.12.1, use Create a FlexPod ESXi Custom ISO using VMware
vCenter in the Appendix as a guide, set up an image for the OCP cluster with the latest version of ESXi 8.0 (not
ESXi 8.0 U1 or U2) with Cisco UCS Addon-ESXi version 4.2.3-b Vendor Addon. Click the Updates tab for the
cluster, edit the image and include as Components the two drivers extracted in Step 2 (if mapping vGPUs to OCP)
along with all drivers added in the ESXi Ansible scripts. Move the hosts that will be used for OCP to the OCP
cluster. Make sure to set the swap file location to Datastore specified by host under the General setting. Put the
hosts to be used for OCP in Maintenance Mode and move these hosts to the OCP cluster. Once the OCP hosts are
moved to the OCP cluster, go to the cluster settings and under vSphere Cluster Services, add the vCLS datastore.
Select the Updates tab, click REMEDIATE ALL and follow the prompts to Remediate all of the OCP hosts.

Note: If mapping the full physical GPUs to OCP workers as PCI devices, do not include the NVAIE driver or

nvd-gpu-mgmt-daemon in the cluster image.

Step 4. Set up an image for the FlexPod-Management cluster with the latest version of ESXi 8.0 (not ESXi
8.0 U1 or U2) with Cisco UCS Addon-ESXi version 4.2.3-b Vendor Addon. Click the Updates tab for the cluster,
edit the image and include as Components all drivers added in the ESXi Ansible scripts. It is not necessary to add
the NVIDIA drivers to this cluster image. Select the Updates tab, click REMEDIATE ALL and follow the prompts to
Remediate all of the FlexPod-Management hosts.

Step 5. Return to FlexPod Datacenter using IaC with Cisco IMM M7, VMware vSphere 8, and NetApp
ONTAP 9.12.1 and complete the management tools installation and Cisco Intersight integration, including creating
a FlexPod Integrated System.

Note: In order to do a first-time Intersight HCL check, it may be necessary to log into each VMware ESXi host

with ssh and run python /opt/ucs_tool_esxi/ucs_host_inventory.py

Deploy OCP FlexPod Tenant

Use the following procedures and steps to add an OCP tenant to your FlexPod so that OCP can be installed to

build a platform to install AI Generative Inferencing software.

Procedure 1. Configure Nexus Switches for the OCP Tenant

Run the following commands to add NTP distribution interfaces to the switches and for VLANs used for OCP

persistent storage access. Execute these steps in an ssh session on both switches.

config t

vrf context OCP

description VRF for routing OCP subnets/VLANs

https://ui.licensing.nvidia.com/software
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_imm_m7_iac.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_imm_m7_iac.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_imm_m7_iac.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_imm_m7_iac.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 41 of 128

ip route 0.0.0.0/0 10.102.2.254

interface VLAN1022

vrf member OCP

ip address 10.102.2.3/24 # Use 10.102.2.4/24 in the second switch

no shutdown

exit

vlan 3032

name OCP-NVMe-TCP-A

vlan 3042

name OCP-NVMe-TCP-B

vlan 3052

name OCP-NFS

exit

int Po10,Po11,Po12,Po15,Po16

switchport trunk allowed vlan add 3032,3042,3052 # Add OCP Storage VLANs to vPC Peer Link, Storage Interfaces,

and UCS FI Uplink Interfaces

int Po11,Po12,Po127

switchport trunk allowed vlan add 1022 # Add OCP-MGMT VLAN to Storage Interfaces and make sure it is on the Uplink

Interface

copy r s

Procedure 2. Configure NetApp ONTAP Storage for the OCP Tenant

Complete the following steps to add VLAN ports and broadcast domains to the NetApp storage for the

OCP-MGMT and OCP storage VLANs, and then add and configure the SVM for OCP persistent storage volumes,

including adding management, NFS, and NVMe-TCP LIFs and the vsadmin user and password. Execute these

steps from the storage cluster ssh interface.

Step 1. Create the OCP-MGMT, OCP-NVMe-TCP-A , and OCP-NVMe-TCP-B, OCP-NFS broadcast
domain with a maximum transmission unit (MTU) of 9000, run the following commands in ONTAP:

network port broadcast-domain create -broadcast-domain OCP-MGMT -mtu 1500

network port broadcast-domain create -broadcast-domain OCP-NVMe-TCP-A -mtu 9000

network port broadcast-domain create -broadcast-domain OCP-NVMe-TCP-B -mtu 9000

network port broadcast-domain create -broadcast-domain OCP-NFS -mtu 9000

Step 2. Create the OCP management VLAN ports and add them to the OCP management broadcast do-
main:

network port vlan create -node AA02-A800-01 -vlan-name a0a-1022

network port vlan create -node AA02-A800-02 -vlan-name a0a-1022

© 2024 Cisco and/or its affiliates. All rights reserved. Page 42 of 128

network port broadcast-domain add-ports -broadcast-domain OCP-MGMT -ports

AA02-A800-01:a0a-1022,AA02-A800-02:a0a-1022

Step 3. Create the OCP NVMe-TCP VLAN ports and add them to the broadcast domain:

network port vlan create -node AA02-A800-01 -vlan-name a0a-3032

network port vlan create -node AA02-A800-02 -vlan-name a0a-3032

network port broadcast-domain add-ports -broadcast-domain OCP-NVMe-TCP-A -ports

AA02-A800-01:a0a-3032,AA02-A800-02:a0a-3032

network port vlan create -node AA02-A800-01 -vlan-name a0a-3042

network port vlan create -node AA02-A800-02 -vlan-name a0a-3042

network port broadcast-domain add-ports -broadcast-domain OCP-NVMe-TCP-B -ports

AA02-A800-01:a0a-3042,AA02-A800-02:a0a-3042

Step 4. Create the OCP NFS VLAN ports and add them to the OCP NFS broadcast domain:

network port vlan create -node AA02-A800-01 -vlan-name a0a-3052

network port vlan create -node AA02-A800-02 -vlan-name a0a-3052

network port broadcast-domain add-ports -broadcast-domain OCP-NFS -ports

AA02-A800-01:a0a-3052,AA02-A800-02:a0a-3052

Step 5. Create SVM (Storage Virtual Machine). Run the vserver create command:

vserver create -vserver OCP-SVM

Step 6. Add the required data protocols to the SVM & Remove the unused data protocols from the SVM:

vserver add-protocols -vserver OCP-SVM -protocols nfs,nvme

vserver remove-protocols -vserver OCP-SVM -protocols cifs,fcp,iscsi,s3

Step 7. Add the two data aggregates to the OCP-SVM aggregate list & Enable and run the NFS protocol in
the SVM::

vserver modify -vserver OCP-SVM -aggr-list AA02_A800_01_NVME_SSD_1,AA02_A800_02_NVME_SSD_1

vserver nfs create -vserver OCP-SVM -udp disabled -v3 enabled -v4.1 enabled -vstorage enabled

Step 8. Create a Load-Sharing Mirror of the SVM Root Volume. Create a volume to be the load-sharing
mirror of the infrastructure SVM root volume only on the node that does not have the Root Volume:

volume show -vserver OCP-SVM # Identify the aggregate and node where the root volume is located.

volume create -vserver OCP-SVM -volume OCP_SVM_root_lsm0<x> -aggregate AA02_A800_0<x>_NVME_SSD_1 -size 1GB -type

DP # Create the mirror volume on the other node.

Step 9. Create the mirroring relationship:

snapmirror create -source-path OCP-SVM:OCP_SVM_root -destination-path OCP-SVM:OCP_SVM_root_lsm0<x> -type LS

-schedule 15min

Step 10. Initialize the mirroring relationship & verify the same:

snapmirror initialize-ls-set -source-path OCP-SVM:OCP_SVM_root

snapmirror show -vserver OCP-SVM

 Progress

Source Destination Mirror Relationship Total Last

Path Type Path State Status Progress Healthy Updated

----------- ---- ------------ ------- -------------- --------- ------- --------

AA02-A800://OCP-SVM/OCP_SVM_root

 LS AA02-A800://OCP-SVM/OCP_SVM_root_lsm01

 Snapmirrored

 Idle - true -

© 2024 Cisco and/or its affiliates. All rights reserved. Page 43 of 128

Step 11. Create NVMe Service:

vserver nvme create -vserver OCP-SVM -status-admin up

vserver nvme show -vserver OCP-SVM

 Vserver Name: OCP-SVM

 Administrative Status: up

Discovery Subsystem NQN: nqn.1992-08.com.netapp:sn.00f61b2cb31b11ee8d1700a098e217cb:discovery

Step 12. To create login banner for the SVM, run the following command:

security login banner modify -vserver OCP-SVM -message "This OCP-SVM is reserved for authorized users only!"

Step 13. Remove insecure ciphers from the SVM. Ciphers with the suffix CBC are considered insecure. To
remove the CBC ciphers, run the following NetApp ONTAP command:

security ssh remove -vserver OCP-SVM -ciphers aes256-cbc,aes192-cbc,aes128-cbc,3des-cbc

Step 14. Create a new rule for the SVM NFS subnet in the default export policy and assign the policy to the
SVM:

vserver export-policy rule create -vserver OCP-SVM -policyname default -ruleindex 1 -protocol nfs -clientmatch

192.168.52.0/24 -rorule sys -rwrule sys -superuser sys -allow-suid true

volume modify –vserver OCP-SVM –volume OCP_SVM_root –policy default

Step 15. Create FlexVol Volumes.

The following information is required to create a NetApp FlexVol volume:

● The volume name

● The volume size

● The aggregate on which the volume exists
volume create -vserver OCP-SVM -volume audit_log -aggregate AA02_A800_01_NVME_SSD_1 -size 50GB -state online

-policy default -junction-path /audit_log -space-guarantee none -percent-snapshot-space 0

Step 16. Update set of load-sharing mirrors using the following command:

snapmirror update-ls-set -source-path OCP-SVM:OCP_SVM_root

Step 17. Run the following commands to create NFS LIFs:

network interface create -vserver OCP-SVM -lif nfs-lif-01 -service-policy default-data-files -home-node

AA02-A800-01 -home-port a0a-3052 -address 192.168.52.31 -netmask 255.255.255.0 -status-admin up -failover-policy

broadcast-domain-wide -auto-revert true

network interface create -vserver OCP-SVM -lif nfs-lif-02 -service-policy default-data-files -home-node

AA02-A800-02 -home-port a0a-3052 -address 192.168.52.32 -netmask 255.255.255.0 -status-admin up -failover-policy

broadcast-domain-wide -auto-revert true

Step 18. Run the following commands to create NVMe-TCP LIFs:

network interface create -vserver OCP-SVM -lif nvme-tcp-lif-01a -service-policy default-data-nvme-tcp -home-node

AA02-A800-01 -home-port a0a-3032 -address 192.168.32.31 -netmask 255.255.255.0 -status-admin up

network interface create -vserver OCP-SVM -lif nvme-tcp-lif-01b -service-policy default-data-nvme-tcp -home-node

AA02-A800-01 -home-port a0a-3042 -address 192.168.42.31 -netmask 255.255.255.0 -status-admin up

network interface create -vserver OCP-SVM -lif nvme-tcp-lif-02a -service-policy default-data-nvme-tcp -home-node

AA02-A800-02 -home-port a0a-3032 -address 192.168.32.32 -netmask 255.255.255.0 -status-admin up

network interface create -vserver OCP-SVM -lif nvme-tcp-lif-02b -service-policy default-data-nvme-tcp -home-node

AA02-A800-02 -home-port a0a-3042 -address 192.168.42.32 -netmask 255.255.255.0 -status-admin up

© 2024 Cisco and/or its affiliates. All rights reserved. Page 44 of 128

Step 19. Run the following commands to create SVM-MGMT LIF:

network interface create -vserver OCP-SVM -lif svm-mgmt -service-policy default-management -home-node AA02-A800-01

-home-port a0a-1022 -address 10.102.2.30 -netmask 255.255.255.0 -status-admin up -failover-policy

broadcast-domain-wide -auto-revert true

Step 20. Run the following commands to verify:

 network interface show -vserver OCP-SVM

 Logical Status Network Current Current Is

Vserver Interface Admin/Oper Address/Mask Node Port Home

----------- ---------- ---------- ------------------ ------------- ------- ----

OCP-SVM

 nfs-lif-01 up/up 192.168.52.31/24 AA02-A800-01 a0a-3052

 true

 nfs-lif-02 up/up 192.168.52.32/24 AA02-A800-02 a0a-3052

 true

 nvme-tcp-lif-01a

 up/up 192.168.32.31/24 AA02-A800-01 a0a-3032

 true

 nvme-tcp-lif-01b

 up/up 192.168.42.31/24 AA02-A800-01 a0a-3042

 true

 nvme-tcp-lif-02a

 up/up 192.168.32.32/24 AA02-A800-02 a0a-3032

 true

 nvme-tcp-lif-02b

 up/up 192.168.42.32/24 AA02-A800-02 a0a-3042

 true

 svm-mgmt up/up 10.102.2.30/24 AA02-A800-01 a0a-1022

 true

7 entries were displayed.

Step 21. Create a default route that enables the SVM management interface to reach the outside world:

network route create -vserver OCP-SVM -destination 0.0.0.0/0 -gateway 10.102.2.254

Step 22. Set password for SVM vsadmin user and unlock the user.

security login password -username vsadmin -vserver OCP-SVM

Enter a new password:

Enter it again:

security login unlock -username vsadmin -vserver OCP-SVM

Step 23. Create and enable auditing configuration for the SVM.

vserver audit create -vserver OCP-SVM -destination /audit_log

vserver audit enable -vserver OCP-SVM

Procedure 3. Configure Cisco UCS IMM for the OCP Tenant

Use the following steps to add VLANs and BIOS Policy settings to IMM. Execute these steps from Cisco Intersight.

Step 1. In Cisco Intersight, select Infrastructure Service > Policies. Add a Filter of Type VLAN. Select and
edit the UCS Domain VLAN policy (for example, AA02-6536-VLAN). Click Next. As you did when building the
FlexPod, add the OCP-NVMe-TCP-A, OCP-NVMe-TCP-B, and OCP-NFS VLANs to the policy. Click Save to save
the policy.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 45 of 128

Step 2. In Cisco Intersight, select Infrastructure Service > Profiles > UCS Domain Profiles. Click the
ellipses to the right of the UCS Domain Profile and select Deploy. Click Deploy to deploy the profile.

Step 3. In Cisco Intersight, select Infrastructure Service > Policies. Add a Filter of Type Ethernet Net-
work Group. Select and edit the vDS0-NetGrp-Policy. Click Next. Add the OCP-NFS VLAN ID to the Allowed
VLANs list. Click Save.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 46 of 128

Step 4. In Cisco Intersight, select Infrastructure Service > Policies. Add a Filter of Type Ethernet Net-
work Group. Select and edit the iSCSI-A-NetGrp-Policy. Click Next. Add the OCP-NVMe-TCP-A VLAN ID to the
Allowed VLANs list. Click Save.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 47 of 128

Step 5. In Cisco Intersight, select Infrastructure Service > Policies. Add a Filter of Type Ethernet Net-
work Group. Select and edit the iSCSI-B-NetGrp-Policy. Click Next. Add the OCP-NVMe-TCP-B VLAN ID to the
Allowed VLANs list. Click Save.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 48 of 128

Step 6. In Cisco Intersight, select Infrastructure Service > Policies. In the center pane, click Add Filter
and add a filter of Type BIOS. To the right of the BIOS Policy that applies to your server(s) with GPUs, click the
ellipses and select Clone. Modify the clone’s Policy Name (for example, add -GPU to the original policy name to
get Prefix-Intel-M7-Virt-BIOS-GPU. Click Clone to clone the BIOS Policy.

Step 7. Refresh the page to update the list of policies. The cloned policy should now appear at the top of
the list. To the right of the cloned policy, click the ellipses and select Edit. Click Next. Expand Processor and set
the CPU Performance token to high-throughput. Expand PCI and set the Memory Mapped IO above 4GiB token to
enabled. Click Save to save the updated policy.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 49 of 128

© 2024 Cisco and/or its affiliates. All rights reserved. Page 50 of 128

Step 8. In Cisco Intersight, select Infrastructure Service > Templates. To the right of the template being
used on the servers that have GPUs, click the ellipses and select Clone. Leave Number of Clones set at 1 and click
Next. Add -GPU- in the template name (for example, Prefix-M7-Intel-5G-VIC-GPU-iSCSI-Boot-Template) and
click Clone.

Step 9. In the Templates list, click the ellipses to the right of the newly cloned GPU template and select
Edit. Click Next to get to the Compute Configuration window. Place the cursor on the BIOS line and click the x to
remove the current BIOS policy. Click Detach to complete the removal. On the BIOS line, click Select Policy and
select the GPU BIOS policy. Once the check appears next to the updated BIOS policy, click Close.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 51 of 128

Step 10. In Cisco Intersight, select Infrastructure Service > Profiles > UCS Server Profiles. For each
server that has GPU(s) installed, on the corresponding profile, click the ellipses to the right of the profile and select
Detach from Template. Once the profile is detached from the template, click the ellipses again and select Attach
to Template. Select the GPU template and click Next. Click Attach.

Step 11. The UCS IMM Ansible scripts set the VMware-HighTrf Ethernet Adapter policy on the vDS0 vNICs.
To change this to the AA02-EthAdapter-16RXQs-5G policy, in Cisco Intersight, select Infrastructure Service >
Configure > Policies. Add a filter of Type LAN Connectivity. Click the ellipses to the right of the policy used for the
OCP servers and select Edit. Click Next. Select the 02-vDS0-A vNIC and click the pencil icon to edit the vNIC.
Scroll down and click the x to remove the existing Ethernet Adapter policy. Click Ethernet Adapter > Select Policy
to select a new policy. Choose AA02-EthAdapter-16RXQs-5G and click Update. Repeat to set the
AA02-EthAdapter-16RXQs-5G policy for the 03-vDS0-B vNIC. Click Save & Deploy then Save & Proceed to
save the change to the UCS Server Profiles.

Step 12. In the Deploy Server Profiles popup, select Reboot Immediately to Activate and click Deploy to
deploy the profiles.

Procedure 4. Configure VMware vSphere for the OCP Tenant

Use the following steps to add distributed switch port groups, VMkernel ports, and a datastore to the OCP

VMware ESXi hosts. Execute these steps from the VMware vCenter web interface.

Step 1. In VMware vCenter, select Inventory > Networking, expand the vCenter and Datacenter, and
right-click vDS0. Select Distributed Port Group > New Distributed Port Group. Name the port group OCP-NFS
and click NEXT. Select VLAN type VLAN and enter the OCP NFS VLAN ID. Click NEXT. Click FINISH to complete
adding the port group.

Step 2. Right-click iSCSI-NVMe-TCP-vDS. Select Distributed Port Group > New Distributed Port
Group. Name the port group OCP-NVMe-TCP-A and click NEXT. Select VLAN type VLAN and enter the OCP
NVMe-TCP-A VLAN ID. Select Customize default policies configuration. Click NEXT through the prompts to get
to “5 Teaming and Failover”. Move Uplink 2 under “Unused uplinks” to pin all OCP-NVMe-TCP-A traffic to Fabric
A. Click NEXT through the process. Click FINISH to complete adding the port group.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 52 of 128

© 2024 Cisco and/or its affiliates. All rights reserved. Page 53 of 128

Step 3. Right-click iSCSI-NVMe-TCP-vDS. Select Distributed Port Group > New Distributed Port
Group. Name the port group OCP-NVMe-TCP-B and click NEXT. Select VLAN type VLAN and enter the OCP
NVMe-TCP-B VLAN ID. Select Customize default policies configuration. Click NEXT through the prompts to get
to “5 Teaming and Failover.” Move Uplink 1 under “Unused uplinks” to pin all OCP-NVMe-TCP-B traffic to Fabric
B. Click NEXT through the process. Click FINISH to complete adding the port group.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 54 of 128

© 2024 Cisco and/or its affiliates. All rights reserved. Page 55 of 128

Step 4. Select Hosts and Clusters. Expand the vCenter, Datacenter, and OCP Cluster. Select each OCP
ESXi host and select Configure > VMkernel Adapters. Remove the vmk5 (Infra-NVMe-TCP-A) and vmk6 (In-
fra-NVMe-TCP-B) adapters (not needed for OCP hosts). Click ADD NETWORKING. With “VMkernel Network
Adapter” selected, click NEXT. Select the OCP-NFS network and click NEXT. Leave all settings default, including
MTU 9000, and click NEXT. Select Use static IPv4 settings and fill in an IPv4 address and Subnet mask. Click
NEXT. Click FINISH to complete adding the VMkernel port. Repeat this process for all six OCP ESXi hosts.

Note: It is not necessary to add VMkernel ports for NVMe-TCP since the NVMe-TCP namespaces will be

mounted from within OCP.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 56 of 128

Step 5. As detailed in Step 4, add an OCP-NFS VMkernel port to each of the FlexPod-Management
VMware ESXi hosts.

Step 6. In VMware vCenter, select NetApp ONTAP Tools. Select Storage Systems. Click REDISCOVER
ALL. Select Inventory > Hosts and Clusters. Right-click the OCP cluster and select NetApp ONTAP tools >
Provision Datastore. Leave NFS selected and name the datastore OCP_MGMT_datastore. Set the size to at least
3TB and select NFS 4.1. Uncheck “Use storage capability profile for provisioning.” Click NEXT.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 57 of 128

Step 7. Leave “Don’t use Kerberos authentication” selected and click NEXT. Select your Storage system
and the OCP-SVM. Click NEXT. Select the aggregate for storage node 02, expand the Advanced options and
select Space reserve Thin and click NEXT.

Step 8. Click FINISH to complete creating the datastore for OCP management virtual machines (VMs).

© 2024 Cisco and/or its affiliates. All rights reserved. Page 58 of 128

Step 9. Repeat steps 6-8 to create an NFS 4.1 6TB OCP_datastore in the OCP-SVM on the storage node
01 aggregate to hold the OCP master and worker VMs.

Step 10. Select Inventory > Datastores. Right-click the OCP_MGMT_datastore and select Mount Datas-
tore to Additional Hosts. Select all of the FlexPod-Management hosts and click NEXT. Click FINISH to complete
adding the OCP_MGMT_datastore to the FlexPod-Management hosts.

Step 11. Under Inventory, select the first server that has GPU(s). In the center pane, select the Configure
tab. In the list on the left side of the center pane, select Hardware > Overview. In the center pane, scroll down to

© 2024 Cisco and/or its affiliates. All rights reserved. Page 59 of 128

Power Management and click EDIT POWER POLICY. Select High performance and click OK. Repeat this step for
all servers that have GPUs.

Deploy OCP

Procedure 1. Deploy DNS/DHCP Servers

Step 1. Deploy two Windows AD server VMs (Server 2019 was used in this validation) in the
FlexPod-Management ESXi cluster and in the OCP_MGMT_datastore.

Step 2. Deploy 4 vmxnet3 network interfaces (one each in the OCP-MGMT, OCP-NFS,
OCP-NVMe-TCP-A, and OCP-NVMe-TCP-B vDS port groups) on each VM.

Step 3. Install Windows Server Standard on each VM. When each VM boots up, install VMware Tools, then
open Control Panel and open Network and Sharing Center.

Step 4. On the left select Change adapter settings.

Step 5. In VMware vCenter, right-click the VM and select Edit Settings. Expand each network adapter to
see its MAC address.

Step 6. Back in Windows, in the Network Connections window, right-click each adapter and select Status,
then select Details. You can determine which adapter is open by matching the MAC address from the Details
window with the MAC address in the VM’s Edit Settings window.

Step 7. Once you have determined which interface you have open, close the Details window, and click
Properties.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 60 of 128

Step 8. Set the interface’s IPV4 address and disable IPV6 if desired. Click OK to save the IP settings. If this
interface is an NFS or NVMe-TCP storage interface, click Properties again, then click Configure to configure the
Ethernet Adapter.

Step 9. Select the Advanced tab, then Jumbo Packet in the list. Set the value to 9000 to enable Jumbo
frames on this interface. Click OK. Right-click the interface and select Rename to give the interface a more ap-
propriate name. Assign IPs on all interfaces, set Jumbo frames on the three storage interfaces, and rename all
interfaces on both Windows AD VMs.

Step 10. On both Windows AD VMs, use Server Manager to add the Active Directory Domain Services and
DHCP Server roles and associated Features.

Step 11. After the role installation on the first server, create a domain of the format OCPDomain-
Name.ExistingFlexPodDomain.

Note: In this validation, ocp.flexpodb4.cisco.com was created as a new domain in a new forest. Create this

domain according to your organizational policies.

Step 12. When promoting this domain controller, make sure to add the DNS server and create a DNS del-
egation in your existing FlexPod DNS domain. Once AD is fully installed on the first VM, install Active Directory
Domain Services and DHCP Server on the second VM by adding a domain controller to the existing AD domain.

Step 13. Once AD, DNS, and DHCP are installed on both VMs and you have a working/replicating domain,
go into DNS on the first VM and configure reverse lookup zones. The following two Host (A) records need to be
created in DNS for OCP to work:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 61 of 128

Note: The records show, api.ocp.flexpodb4.cisco.com and *.apps.ocp.flexpodb4.cisco.com, are what was used

in this validation. Modify these entries for your environment and use IPs that do not conflict with any DHCP scope

or static entries.

Step 14. On both Windows AD VMs, open DHCP and authorize the server in the domain. Right-click IPV4
and select Properties.

Step 15. Set the DNS properties as shown below. On the first Windows AD VM, under IPv4, create a scope
for the OCP-MGMT subnet and configure scope options for Router, DNS Servers, DNS Domain Name and NTP
Servers. Configure failover on the scope with the second Windows AD VM if desired. Create scopes, with failover
if desired, for the OCP-NFS, OCP-NVMe-TCP-A, and OCP-NVMe-TCP-B subnets. It is not necessary to create
any scope options for the storage subnet scopes.

Step 16. When both AD/DNS/DHCP servers are in place, add the DNS domain to the NetApp OCP tenant
SVM from the NetApp cluster command line interface:

vserver services name-service dns create -vserver OCP-SVM -domains ocp.flexpodb4.cisco.com,flexpodb4.cisco.com

-name-servers 10.102.2.249,10.102.2.250

Procedure 2. Deploy OCP Installer VM

© 2024 Cisco and/or its affiliates. All rights reserved. Page 62 of 128

Step 1. Deploy either a RHEL 8 or Rocky Linux 8 OCP-Installer VM in the FlexPod-Management ESXi
cluster and in the OCP_MGMT_datastore. Deploy 1 vmxnet3 network interface in the OCP-MGMT subnet.

Step 2. Deploy a 2.1TB thin provisioned hard drive, ensuring that at least 2TB is provisioned in /home.
Deploy Server with GUI and create an admin user. Once the VM is up and running, configure NTP servers and do a
complete update.

Procedure 3. Deploy and Configure OCP on VMware vSphere

Use the following steps to deploy OCP from the OCP Installer VM.

Step 1. From the OCP Installer VM terminal prompt, run the following:

ssh-keygen -t ed25519 -N '' -f ~/.ssh/id_ed25519

Step 2. Using Firefox, connect to your vCenter FQDN. On the right, under vSphere Web Services SDK,
select Download trusted root CA certificates to download these certificates to your Downloads directory. From
a terminal prompt, run the following:

cd

cd Downloads

unzip download.zip

sudo cp certs/lin/* /etc/pki/ca-trust/source/anchors

sudo update-ca-trust extract

rm -rf certs

rm download.zip

Step 3. Using Firefox, connect to https://console.redhat.com/openshift/create and log in with your Red
Hat account id. Select the Datacenter tab. Select vSphere. Under Automated, select CLI-based. Leaving Linux
selected in the drop-down list, click Download installer. Click Download pull secret. Click Download com-
mand-line tools.

Step 4. From the OCP Installer VM terminal prompt, run the following:

cd

mkdir ocp-files

mv Downloads/openshift* ocp-files/

mv Downloads/pull-secret ocp-files/

cd ocp-files

tar -xvf openshift-install-linux.tar.gz

./openshift-install create install-config --dir ocp

Select .ssh/id_ed25519

Select vsphere

Enter the vCenter FQDN

Enter administrator@vsphere.local

Enter administrator@vsphere.local’s password

Select the OCP cluster

Select OCP_datastore

Select OCP-MGMT

Enter API IP (entered in DNS)

Enter *.apps IP

Enter Base Domain (for example, flexpodb4.cisco.com)

Enter Cluster Name (for example, ocp)

Copy in Pull Secret

Step 5. Using the Text Editor, edit the install-config.yaml file in the ocp directory specified above and
insert “diskType: thin” just after the vCenters user line as shown to setup thin provisioning of the Openshift VM
disks as shown:

https://console.redhat.com/openshift/create
mailto:administrator@vsphere.local
mailto:administrator@vsphere.local’s

© 2024 Cisco and/or its affiliates. All rights reserved. Page 63 of 128

Step 6. From the OCP Installer VM terminal prompt, deploy the OCP cluster by running the following:

./openshift-install create cluster --dir ocp --log-level=info

Step 7. When the install is complete, you can access Openshift web-console by connecting to the URL
listed with the kubeadmin user and password listed. Bookmark this page.

Step 8. To install and use the Openshift CLI, run the following:

mkdir openshift-cli

mv openshift-client-linux.tar.gz openshift-cli/

cd openshift-cli

tar -xvf openshift-client-linux.tar.gz

sudo mv kubectl /usr/sbin/

sudo mv oc /usr/sbin/

export KUBECONFIG=/home/admin/ocp-files/ocp/auth/kubeconfig

oc get nodes

Step 9. To enable permanent oc access to the OCP cluster, run the following:

cp /home/admin/ocp-files/ocp/auth/kubeconfig /home/admin/.kube/config

Step 10. To enable oc tab completion for bash, run the following:

oc completion bash > oc_bash_completion

sudo cp oc_bash_completion /etc/bash_completion.d/

Note: When you open a new terminal window, oc is logged into the OCP cluster and tab completion is enabled.

Step 11. To configure NTP on the Openshift worker and master nodes and NVMe-TCP on the worker
nodes, run the following:

cd

cd ocp-files

mkdir ocp-postconfig

cd ocp-postconfig

curl https://mirror.openshift.com/pub/openshift-v4/clients/butane/latest/butane --output butane

chmod +x butane

Step 12. Build the following files in the ocp-postconfig directory with variations for your network:

cat 99-master-chrony-conf-override.bu

variant: openshift

version: 4.14.0

metadata:

 name: 99-master-chrony-conf-override

 labels:

 machineconfiguration.openshift.io/role: master

storage:

 files:

 - path: /etc/chrony.conf

 mode: 0644

 overwrite: true

 contents:

 inline: |

 # The Machine Config Operator manages this file.

 Server 10.102.2.3 iburst

 server 10.102.2.4 iburst

 stratumweight 0

 driftfile /var/lib/chrony/drift

 rtcsync

 makestep 10 3

 bindcmdaddress 127.0.0.1

 bindcmdaddress ::1

 keyfile /etc/chrony.keys

 commandkey 1

 generatecommandkey

© 2024 Cisco and/or its affiliates. All rights reserved. Page 64 of 128

 noclientlog

 logchange 0.5

 logdir /var/log/chrony

cat 99-worker-chrony-conf-override.bu

variant: openshift

version: 4.14.0

metadata:

 name: 99-worker-chrony-conf-override

 labels:

 machineconfiguration.openshift.io/role: worker

storage:

 files:

 - path: /etc/chrony.conf

 mode: 0644

 overwrite: true

 contents:

 inline: |

 # The Machine Config Operator manages this file.

 Server 10.102.2.3 iburst

 server 10.102.2.4 iburst

 stratumweight 0

 driftfile /var/lib/chrony/drift

 rtcsync

 makestep 10 3

 bindcmdaddress 127.0.0.1

 bindcmdaddress ::1

 keyfile /etc/chrony.keys

 commandkey 1

 generatecommandkey

 noclientlog

 logchange 0.5

 logdir /var/log/chrony

cat 99-worker-nvme-discovery.bu

variant: openshift

version: 4.14.0

metadata:

 name: 99-worker-nvme-discovery

 labels:

 machineconfiguration.openshift.io/role: worker

openshift:

 kernel_arguments:

 - loglevel=7

storage:

 files:

 - path: /etc/nvme/discovery.conf

 mode: 0644

 overwrite: true

 contents:

 inline: |

 --transport=tcp --traddr=192.168.32.31 --trsvcid=8009

 --transport=tcp --traddr=192.168.42.32 --trsvcid=8009

Step 13. Create .yaml files from the butane files with butane, then load the configurations into Openshift:

./butane 99-master-chrony-conf-override.bu -o ./99-master-chrony-conf-override.yaml

./butane 99-worker-chrony-conf-override.bu -o ./99-worker-chrony-conf-override.yaml

./butane 99-worker-nvme-discovery.bu -o ./99-worker-nvme-discovery.yaml

oc create -f 99-master-chrony-conf-override.yaml

oc create -f 99-worker-chrony-conf-override.yaml

oc create -f 99-worker-nvme-discovery.yaml

Step 14. In the Openshift web-console, select Compute > MachineSets. Click the asterick to the right of
the machineset and select Edit MachineSet.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 65 of 128

Note: In the lab used in this validation, the servers used for OCP worker VMs have 512GB RAM and 72 CPU

cores. Because of this, resize the worker VMs to 64 CPUs, 240GB RAM, and a 512GB hard drive. In the annota-

tions, set machine.openshift.io/memoryMb to 2245760 and machine.openshift.io/vCPU to 64. Under spec, set

replicas to 0, numCoresPerSocket to 32, diskGiB to 512, memoryMiB to 245760, and numCPUs to 64. Under

network > devices add - networkName: OCP-NFS, - networkName: OCP-NVMe-TCP-A, and - networkName:

OCP-NVMe-TCP-B. Click Save and then Reload. Two of the three workers should be deleted.

Note: The worker VM memory allocation was calculated assuming that you could run two workers on an ESXi

host with vGPUs smaller than the full physical GPU, for example 2 vGPUs with 40G framebuffer instead of 1 vGPU

with 80G. Since all VM memory is reserved when using PCI devices and VMware uses 6% of the server memory,

on a server with 512GB RAM, VMs can use 480GB RAM. We then divide this by two worker VMs to get 240GB

RAM. Size the worker VMs appropriately for your environment.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 66 of 128

© 2024 Cisco and/or its affiliates. All rights reserved. Page 67 of 128

Step 15. In VMware vCenter, put in a host group and a VM group along with affinity rules to lock the OCP
master VMs to a set of servers. The worker VMs will be regenerated, do not set affinity rules for them at this time.
Select Network and expand the vCenter, the Datacenter, and the ocp folder. Right-click the template and select
Convert to Virtual Machine. Click NEXT and FINISH to complete the conversion. Right-click the newly converted
VM and select Compatibility > Upgrade VM Compatibility. Click Yes and then click OK to upgrade the VM to
hardware version 20.

Step 16. Edit the VM settings following
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/nvaie-with-ocp.html. The RDMA settings are
optional but can be entered in for future work.

Step 17. Right-click the template VM and select Template > Convert to Template. Click YES to complete
the conversion.

Step 18. Back in the Openshift web-console, select Compute > MachineSets. Click the asterick to the right
of the machineset and select Edit Machine count. Change the number from 0 to 3 and click Save. Three new
workers will be created.

Step 19. Select Compute > Nodes. Once the three new worker nodes show the Status of Ready, click on
the first new worker node and select the Details tab. If any Taints are shown, select the Taint. Click the minus
symbol to remove the taint and click Save.

Step 20. Repeat this process for all three of the new workers. The console ingress route will be moved from
the one old worker that was remaining to one of the new workers, and the old worker will be deleted. This deletion
may take a few minutes. The three workers that are created will have all the specs previously.

Deploy the NVIDIA GPU Operator on OCP

Procedure 1. Deploy NVIDIA License Server

If mapping vGPUs to OCP workers, complete the following steps to deploy an NVIDIA License Server.

Step 1. From https://ui.licensing.nvidia.com/software, download and extract the VMware vSphere NLS
License Server (DLS) OVA.

Step 2. Follow
https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html#installing-dls-virtu
al-appliance-on-vmware-vsphere to install the DLS appliance in the FlexPod-Management cluster and in the
OCP_MGMT_datastore.

Step 3. Once the OVA is installed and powered on, proceed to
https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html#registering-dls-ad
ministrator-user.

Step 4. Proceed to
https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html#configuring-servic
e-instance and work through Creating a License Server on the NVIDIA Licensing Portal (making sure to add a
feature with a number of licenses to cover the number of vGPUs you plan to deploy), DLS Instance Instructions,
Registering an on-Premises DLS Instance with the NVIDIA Licensing Portal, Binding a License Server to a Service
Instance, and Installing a License Server on a DLS Instance.

Note: If mapping the full physical GPUs to OCP workers as PCI devices, it is not necessary to deploy an NVIDIA

License Server.

Procedure 2. Add vGPUs to OCP Worker VMs

https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/nvaie-with-ocp.html
https://ui.licensing.nvidia.com/software
https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html#installing-dls-virtual-appliance-on-vmware-vsphere
https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html#installing-dls-virtual-appliance-on-vmware-vsphere
https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html#registering-dls-administrator-user
https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html#registering-dls-administrator-user
https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html#configuring-service-instance
https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html#configuring-service-instance

© 2024 Cisco and/or its affiliates. All rights reserved. Page 68 of 128

If mapping vGPUs to OCP workers, complete the following steps.

Step 1. In VMware vCenter, for each VMware ESXi host that has GPU(s) installed, under Inventory select
the ESXi host and then select the Configure tab in the center pane. Select Hardware > Graphics. The GPU(s)
should appear under Graphics Devices. Click HOST GRAPHICS then click EDIT. Select Shared Direct Vendor
shared passthrough graphics and make sure Spread VMs across GPUs (best performance) is selected. Click
OK.

Step 2. Repeat this process for all ESXi hosts that have GPUs. Place each host that was modified into
Maintenance Mode and then Reboot. Wait for the reboot to complete and take the host(s) out of Maintenance
Mode.

Step 3. Move OCP Worker VMs to hosts that have GPUs.

Note: In this validation lab, we had two ESXi hosts each with two NVIDIA A100-80 GPUs. The initial vGPU setup

was two workers each with 2 80G vGPUs and each on one ESXi host. The third worker did not have vGPUs as-

signed.

Step 4. Migrate the first worker to the first host with GPU(s) and shut down its Guest OS. Once the VM is
shut down, right-click it and select Edit Settings. Click ADD NEW DEVICE and select PCI Device. A list of NVIDIA
GRID vGPU devices should appear. Select the device appropriate to your deployment and click SELECT.

Step 5. If you are assigning more than one vGPU to this worker, repeat this process to add additional
vGPU(s). Click OK to save the Worker configuration. Power on the Worker VM with vGPUs assigned. After power
on, make sure the Worker VM is still running on the host that you migrated it to.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 69 of 128

Step 6. Repeat this entire procedure to assign vGPUs to all Worker VMs.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 70 of 128

Note: On a single GPU, if more than one device is assigned, all devices must be the same size or from the same

profile. Multiple vGPUs can be assigned from a single GPU up to the frame buffer capacity of the GPU.

Step 7. In the Red Hat Openshift Console, select Compute > Nodes. Wait until all three Workers have the
Ready status.

Step 8. Skip to Procedure 4.

Procedure 3. Add Physical GPUs to OCP Worker VMs

© 2024 Cisco and/or its affiliates. All rights reserved. Page 71 of 128

If you’re mapping the full physical GPUs to OCP workers as PCI devices, complete the following steps.

Step 1. In VMware vCenter, for each VMware ESXi host that has GPU(s) installed, under Inventory select
the ESXi host and then select the Configure tab in the center pane. Select Hardware > PCI Devices > ALL PCI
DEVICES. Filter the list by Vendor Name and enter NVIDIA. Select all NVIDIA GPUs and choose TOGGLE
PASSTHROUGH.

Step 2. Choose PASSTHROUGH-ENABLED DEVICES. The GPUs should now show Passthrough Enabled.

Step 3. Repeat this process for all ESXi hosts that have GPUs. Migrate the first worker to the first host with
GPU(s) and shut down its Guest OS. Once the VM is shut down, right-click it and select Edit Settings. Click ADD
NEW DEVICE and select PCI Device. A list of NVIDIA GPU devices should appear. Select a Dynamic DirectPath IO
device appropriate to your deployment and click SELECT.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 72 of 128

Step 4. If you are assigning more than one GPU to this worker, repeat this process to add additional
GPU(s). Click OK to save the Worker configuration. Power on the Worker VM with GPUs assigned. After power on,
make sure the Worker VM is still running on the host that you migrated it to.

Step 5. Repeat this entire procedure to assign GPUs to all Worker VMs.

Step 6. In the Red Hat Openshift Console, select Compute > Nodes. Wait until all three workers have the
Ready status.

Procedure 4. Install the Node Feature Discovery (NFD) Operator

© 2024 Cisco and/or its affiliates. All rights reserved. Page 73 of 128

Using https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/install-nfd.html#install-nfd, install the

Red Hat NFD Operator.

Procedure 5. Install the NVIDIA GPU Operator

Step 1. Using
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/install-gpu-ocp.html#install-nvidiagpu, install
the NVIDIA GPU Operator.

Step 2. Using https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/nvaie-with-ocp.html,
start with Create the NGC secret and continue with Create the ConfigMap for NLS Token. When creating the
ConfigMap, make sure the YAML includes “gridd.conf: ‘# empty file’” as the last line. If mapping the full physical
GPUs to OCP workers as PCI devices, it is not necessary to create the NGC secret or ConfigMap.

Step 3. Continuing with
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/nvaie-with-ocp.html, create the Cluster Policy
Instance. Install driver version 535.129.03 and image vgpu-guest-driver-4-1. If mapping the full physical GPUs to
OCP workers as PCI devices, use nvcr.io/nvidia as the repository, 535.129.03 as the version and image driver and
do not fill in the NGC secret or ConfigMap.

Note: If mapping vGPUs to OCP, this procedure utilizes the NVAIE vGPU driver container downloaded from the

nvcr.io/nvaie registry. If you do not have access to this registry, you can build an image container as specified in

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/install-gpu-operator-vgpu.html.

Procedure 6. Ensure vGPUs are Licensed

If you’re mapping vGPUs to OCP, complete the following steps.

Step 1. On the ocp-installer VM, switch to the nvidia-gpu-operator project:

oc project nvidia-gpu-operator

Step 2. Query the running pods, looking for pods with nvidia-driver-daemonset in the name:

oc get pods

NAME READY STATUS RESTARTS AGE

nvidia-driver-daemonset-414.92.202312191502-0-429vr 2/2 Running 0 7h35m

nvidia-driver-daemonset-414.92.202312191502-0-cx8ks 2/2 Running 0 7h16m

Note: You should see one of these pods for each worker VM that has vGPUs attached.

Step 3. Connect to the bash shell of one of the containers:

oc exec -it nvidia-driver-daemonset-414.92.202312191502-0-429vr – bash

Step 4. Use nvidia-smi to check licensing status:

nvidia-smi -q | grep License

 vGPU Software Licensed Product

 License Status : Licensed (Expiry: 2024-2-15 2:44:42 GMT)

 vGPU Software Licensed Product

 License Status : Licensed (Expiry: 2024-2-15 2:44:42 GMT)

Step 5. Repeat this procedure for all nvidia-driver-daemonset containers.

Procedure 7. Enable the vGPU Monitoring Dashboard

https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/install-nfd.html#install-nfd
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/install-gpu-ocp.html#install-nvidiagpu
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/nvaie-with-ocp.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/nvaie-with-ocp.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/install-gpu-operator-vgpu.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 74 of 128

Step 1. Using
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/enable-gpu-monitoring-dashboard.html, ena-
ble to GPU Monitoring Dashboard to monitor vGPUs in the Openshift Web-Console.

Note: Notice that GPU hardware parameters such as Temperature and Power are not available with vGPUs but

are available if mapping the full physical GPUs to OCP workers as PCI devices.

Procedure 8. Enable GPU Monitoring in VMware vCenter

If you’re mapping vGPUs to OCP, complete the following steps.

Step 1. In VMware vCenter, select an ESXi host that has GPU(s) installed and select the Monitor tab in the
center pane. Select Performance > Advanced.

Step 2. Click Chart Options. In the list on the left under Chart Metrics, select GPU. Select up to two
counters (Temperature and Utilization recommended) and make sure all Target Objects are selected.

Step 3. Click SAVE OPTIONS AS. Enter GPU for the Chart options name and click OK.

Step 4. Click OK to view the chart. This chart is now available on all ESXi hosts with GPUs.

https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/enable-gpu-monitoring-dashboard.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 75 of 128

Deploy NetApp Astra Trident

Astra Trident is an open-source, fully supported storage orchestrator for containers and Kubernetes distributions.

It was designed to help meet the containerized applications’ persistence demands using industry-standard in-

terfaces, such as the Container Storage Interface (CSI). With Astra Trident, microservices and containerized ap-

plications can take advantage of enterprise-class storage services provided by NetApp portfolio of storage sys-

tems. More information about Trident can be found here: NetApp Trident Documentation. NetApp Astra Trident

can be installed via different methods. In this solution we will discuss using helm.

Note: The Infrastructure SVM created earlier (OCP-SVM) can be used for Trident backend.

Note: In this solution, we validated NetApp Trident with ontap-nas driver and ONTAP NAS FlexGroup driver

using the NFS protocol. We also validated ontap-san driver for NVMe/TCP.

Note: For information to understand the storage platform preparation for Trident, go to:

https://docs.netapp.com/us-en/trident/trident-reco/storage-config-best-practices.html

Prerequisites

Note: You need full support and access to a Kubernetes cluster min. version 1.23

Procedure 1. Install Helm version

Step 1. Download the Helm binary and add it to your path:

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-amd64 -o

/usr/local/bin/helm

Step 2. Make the binary file executable:

chmod +x /usr/local/bin/helm

Step 3. Check the installed version:

helm version

Procedure 2. Trident installation using Helm

Step 1. Download Trident software from GitHub and untar the .gz file to obtain the trident-installer folder:

wget https://github.com/NetApp/trident/releases/download/v23.10.0/trident-installer-23.10.0.tar.gz

Saving to: ‘trident-installer-23.10.0.tar.gz’

tar –xvf trident-installer-23.10.0.tar.gz

cd trident-installer/helm

Step 2. Create Trident namespace:

oc create namespace trident

Step 3. Install using the helm:

helm install ocp-trident trident-operator-23.10.0.tgz –n trident

Step 4. Check the pods output after installation:

oc get pods -n trident

NAME READY STATUS RESTARTS AGE

trident-controller-7ddc988d7-vbxlp 6/6 Running 0 4m18s

trident-node-linux-525mk 2/2 Running 0 4m18s

https://docs.netapp.com/us-en/trident/
https://docs.netapp.com/us-en/trident/trident-reco/storage-config-best-practices.html
https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-amd64
https://github.com/NetApp/trident/releases/download/v23.10.0/trident-installer-23.10.0.tar.gz

© 2024 Cisco and/or its affiliates. All rights reserved. Page 76 of 128

trident-node-linux-cv7xs 2/2 Running 0 4m18s

trident-node-linux-f22qk 2/2 Running 0 4m18s

trident-node-linux-fk2gs 2/2 Running 0 4m18s

trident-node-linux-nfwsr 2/2 Running 0 4m18s

trident-node-linux-q7h57 2/2 Running 0 4m18s

trident-operator-5464f56594-qd5wp 1/1 Running 0 4m36s

Note: If the Astra Trident deployment fails and does not bring up the pods to Running state, use the tridentctl

logs -l all -n trident command for debugging.

Note: Before configuring the backend that Trident needs to use for user apps, go to:

https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-customresourcedefinition-ob

jects to understand the storage environment parameters and its usage in Trident.

Procedure 3. Prepare the Worker Node

Step 1. All the worker nodes in the Kubernetes cluster need to be able to mount the volumes that you have
provisioned for your pods. For the ontap-nas driver (NAS backend), workers need the NFS tools and for the on-
tap-san driver for NVMe/TCP, workers need the NVMe tools.

Step 2. Recent versions of RedHat CoreOS have the tools installed by default. Make sure that the utilities
are installed and running on all worker nodes:

rpm -qa | grep nfs-utils

systemctl status nfs-client.target

rpm -qa | grep nvme-cli

Procedure 4. Configure the Storage Backend in Trident

Step 1. Configure the connection to the SVM on the NetApp storage array created for the OCP installation.
For more options regarding storage backend configuration, refer to
https://docs.netapp.com/us-en/trident/trident-use/backends.html

Step 2. Backend definition for ONTAP NAS driver:

cat << EOF > backend_NFS.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ocp-nas-backend",

 "managementLIF": "10.102.2.30",

 "dataLIF": "192.168.52.31",

 "svm": "OCP-SVM",

 "username": "vsadmin",

 "password": "********",

 "defaults": {

 "spaceReserve": "volume",

 "exportPolicy": "default",

 "snapshotPolicy": "default",

 "snapshotReserve": "10"

 }

}

https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-customresourcedefinition-objects
https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-customresourcedefinition-objects
https://docs.netapp.com/us-en/trident/trident-use/backends.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 77 of 128

cat << EOF > backend_NFS_flexgroup.json

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "backendName": "ocp-nas-flexgroup",

 "managementLIF": "10.102.2.30",

 "dataLIF": "192.168.52.31",

 "svm": "OCP-SVM",

 "username": "vsadmin",

 "password": "********",

 "defaults": {

 "spaceReserve": "volume",

 "exportPolicy": "default",

 "snapshotPolicy": "default",

 "snapshotReserve": "10"

 }

}

For more information about configuring ONTAP NAS driver and ONTAP NAS FlexGroup driver for NFS in Trident,

go to: https://docs.netapp.com/us-en/trident/trident-use/ontap-nas.html

Step 3. Backend definition for ONTAP SAN drivers:

cat << EOF > backend_NVME.yaml

version: 1

backendName: ocp-nvme-backend

storageDriverName: ontap-san

managementLIF: 10.102.2.30

svm: OCP-SVM

username: vsadmin

password: *********

sanType: nvme

useREST: true

For more information about configuring ONTAP SAN driver for NVMe/TCP in Trident, go to:

https://docs.netapp.com/us-en/trident/trident-use/ontap-san.html

Step 4. Activate the backend storage configuration:

tridentctl -n trident create backend -f backend_NFS.json

tridentctl -n trident create backend -f backend_NFS_flexgroup.json

tridentctl -n trident create backend -f backend_NVME.yaml

https://docs.netapp.com/us-en/trident/trident-use/ontap-nas.html
https://docs.netapp.com/us-en/trident/trident-use/ontap-san.html

© 2024 Cisco and/or its affiliates. All rights reserved. Page 78 of 128

tridentctl -n trident get backend

+-------------------+---------------------+--------------------------------------+--------+------------+-----

----+

| NAME | STORAGE DRIVER | UUID | STATE | USER-STATE |

VOLUMES |

+-------------------+---------------------+--------------------------------------+--------+------------+-----

----+

| ocp-nas-backend | ontap-nas | e4595547-96b9-4a2c-84f2-ea16a237ee87 | online | normal | 1

|

| ocp-nvme-backend | ontap-san | 272dcbab-7191-4b25-a20b-d09a4b395f80 | online | normal | 1

|

| ocp-nas-flexgroup | ontap-nas-flexgroup | e9d2c647-e6f3-470f-a033-4801f564e61f | online | normal | 1

|

+-------------------+---------------------+--------------------------------------+--------+------------+-----

----+

Step 5. Configure a storage class based on the storage backend created earlier and make it the default:

cat << EOF > storage-class-csi.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-nas-sc

 annotations:

 storageclass.kubernetes.io/is-default-class: "true"

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-nas"

 provisioningType: "thin"

 snapshots: "true"

allowVolumeExpansion: true

cat storage-class-flexgroup.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-nas-flexgroup

 annotations:

 storageclass.kubernetes.io/is-default-class: "true"

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-nas-flexgroup"

 provisioningType: "thin"

 snapshots: "true"

allowVolumeExpansion: true

Step 6. storage class for ONTAP SAN backend:

cat storage-class-NVMe.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-nvme-test

parameters:

 backendType: "ontap-san"

 provisioningType: "thin"

 snapshots: "true"

provisioner: csi.trident.netapp

Step 7. Create a storage class:

oc create -f storage-class-csi.yaml

oc create -f storage-class-flexgroup.yaml

oc create -f storage-class-NVMe.yaml

© 2024 Cisco and/or its affiliates. All rights reserved. Page 79 of 128

oc get sc

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE

ALLOWVOLUMEEXPANSION AGE

ontap-nas-flexgroup (default) csi.trident.netapp.io Delete Immediate false

154m

ontap-nas-sc (default) csi.trident.netapp.io Delete Immediate false

6h8m

ontap-nvme csi.trident.netapp.io Delete Immediate false

3h11m

tridentctl get storageclass -n trident

+---------------------+

| NAME |

+---------------------+

| ontap-nas-sc |

| ontap-nvme |

| ontap-nas-flexgroup |

+---------------------+

Step 8. Create Volume Snapshot class for the OCP cluster.

cat volumesnapshot-class-csi.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

oc create -f volumesnapshot-class-csi.yaml

volumesnapshotclass.snapshot.storage.k8s.io/csi-snapclass created

Step 9. Test the storage connection by creating a Persistent Volume Claim (PVC):

cat pvc-basic.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: test

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-nas-sc

cat pvc-flexgroup.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: flexgroup-try

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 900Gi

 storageClassName: ontap-nas-flexgroup

© 2024 Cisco and/or its affiliates. All rights reserved. Page 80 of 128

For more information about creating PVC for custom applications, go to: KubernetesPersistentVolumeClaimOb-

jects

Step 10. PVC for ONTAP SAN:

cat pvc-nvme.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: nvme-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 700Gi

 storageClassName: ontap-nvme

Step 11. Create a PVC:

oc create -f pvc-basic.yaml

oc create -f pvc-flexgroup.yaml

oc create -f pvc-nvme.yaml

[root@ocp-installer trident-installer]# oc get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

flexgroup-try Bound pvc-00081a3c-9a95-4e5c-8823-6433ec348d04 900Gi RWO

ontap-nas-flexgroup 178m

nvme-pvc Bound pvc-65466967-7da9-4d46-b3da-13d71f044621 700Gi RWO ontap-nvme

3h34m

test Bound pvc-2a05bf9e-e0a4-4702-a6e7-7dee2ca471f5 1Gi RWO ontap-nas-sc

6h36m

[root@ocp-installer trident-installer]# tridentctl get volume -n trident

+--+---------+---------------------+----------+----------------------

----------------+-------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL | BACKEND

UUID | STATE | MANAGED |

+--+---------+---------------------+----------+----------------------

----------------+-------+---------+

| pvc-00081a3c-9a95-4e5c-8823-6433ec348d04 | 900 GiB | ontap-nas-flexgroup | file |

e9d2c647-e6f3-470f-a033-4801f564e61f | | true |

| pvc-2a05bf9e-e0a4-4702-a6e7-7dee2ca471f5 | 1.0 GiB | ontap-nas-sc | file |

e4595547-96b9-4a2c-84f2-ea16a237ee87 | | true |

| pvc-65466967-7da9-4d46-b3da-13d71f044621 | 700 GiB | ontap-nvme | block |

272dcbab-7191-4b25-a20b-d09a4b395f80 | | true |

+--+---------+---------------------+----------+----------------------

----------------+-------+---------+

Step 12. Verify that the PVC volume is created on the ONTAP storage backend.

AA02-A800::> volume show -vserver OCP-SVM

Vserver Volume Aggregate State Type Size Available Used%

--------- ------------ ------------ ---------- ---- ---------- ---------- -----

OCP-SVM trident_pvc_00081a3c_9a95_4e5c_8823_6433ec348d04

 - online RW 1000GB 896.0GB 0%

OCP-SVM trident_pvc_2a05bf9e_e0a4_4702_a6e7_7dee2ca471f5

 AA02_A800_02_NVME_SSD_1

 online RW 1.11GB 1023MB 0%

OCP-SVM trident_pvc_65466967_7da9_4d46_b3da_13d71f044621

 AA02_A800_02_NVME_SSD_1

 online RW 770GB 770.0GB 0%

https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-persistentvolumeclaim-objects
https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-persistentvolumeclaim-objects

© 2024 Cisco and/or its affiliates. All rights reserved. Page 81 of 128

This completes the NetApp Astra Trident installation and configuration.

NetApp DataOps Toolkit

The toolkit is currently compatible with Kubernetes versions 1.17 and above, and OpenShift versions 4.4 and

above.

The toolkit is currently compatible with Trident versions 20.07 and above. Additionally, the toolkit is compatible

with the following Trident backend types:

● ontap-nas

● ontap-nas-flexgroup

● gcp-cvs

● azure-netapp-files

More operations and capabilities about NetApp DataOps Toolkit are available and documented

here: https://github.com/NetApp/netapp-data-science-toolkit

Prerequisites

The NetApp DataOps Toolkit for Kubernetes requires that Python 3.8 or above be installed on the local host. Ad-

ditionally, the toolkit requires that pip for Python3 be installed on the local host. For more details regarding pip,

including installation instructions, refer to the pip documentation.

Procedure 1. Installation

Step 1. To install the NetApp DataOps Toolkit for Kubernetes, run the following command:

python3 -m pip install netapp-dataops-k8s

NetApp DataOps Toolkit is used to create jupyterlab, clone jupyterlab, create a snapshot for a JupyterLab work-

space, and so on.

Note: We used NetApp DataOps Toolkit to create Jupyter notebook in this solution. For more information, go to:

Create a new JupyterLab workspace.

https://github.com/NetApp/netapp-data-science-toolkit
https://pip.pypa.io/en/stable/installation/
https://github.com/NetApp/netapp-dataops-toolkit/blob/main/netapp_dataops_k8s/docs/workspace_management.md%23cli-create-jupyterlab

© 2024 Cisco and/or its affiliates. All rights reserved. Page 82 of 128

Generative Inferencing AI Model Deployment and Results

This chapter contains the following:

● NVIDIA NeMo Framework Inference

● Text Generation Inference

● PyTorch

● Stable Diffusion

● Resnet34

NVIDIA NeMo Framework Inference

NVIDIA NeMo™ is an end-to-end, cloud-native framework to build, customize, and deploy generative AI models

anywhere. It includes training and inferencing frameworks, guardrail toolkits, data curation tools, and pretrained

models, offering enterprises an easy, cost-effective, and fast way to adopt generative AI.

Note: In this validation, NVIDIA NeMo inferencing, which uses Triton Inferencing Server, was implemented along

with four AI models.

Table 5. Model information

Model Location Processing

Nemo GPT 2B https://huggingface.co/nvidia/GPT-2B-001 None

Nemotron-3-8B-QA-4k NVIDIA NGC Private Registry None

Llama-2-7B-Chat https://huggingface.co/meta-llama/Llama-2-7b-chat *Converted from

huggingface to nemo format

using NeMo training

container.

Llama-2-13B-Chat https://huggingface.co/meta-llama/Llama-2-13b-chat *Converted from

huggingface to nemo format

using NeMo training

container.

Llama-2-70B-Chat https://huggingface.co/meta-llama/Llama-2-70b-chat *Converted from

huggingface to nemo format

using NeMo training

container.

Llama-2-70B-SteerLM-Chat https://huggingface.co/nvidia/Llama2-70B-SteerLM-Chat .nemo file built using

instructions on model card.

* See

https://docs.nvidia.com/nemo-framework/user-guide/latest/playbooks/llama2peft.html#optional-convert-llama

https://huggingface.co/nvidia/GPT-2B-001
https://huggingface.co/meta-llama/Llama-2-7b-chat
https://huggingface.co/meta-llama/Llama-2-13b-chat
https://huggingface.co/meta-llama/Llama-2-70b-chat
https://huggingface.co/nvidia/Llama2-70B-SteerLM-Chat
https://docs.nvidia.com/nemo-framework/user-guide/latest/playbooks/llama2peft.html#optional-convert-llama2-from-huggingface-format-to-nemo-format

© 2024 Cisco and/or its affiliates. All rights reserved. Page 83 of 128

2-from-huggingface-format-to-nemo-format for the conversion procedure. The NeMo training container can be

deployed with a modified version of the deployment.yaml specified below.

Note: To convert the Llama-2-70B-Chat model from huggingface to nemo format required a worker VM with

more than 535GB of RAM (our worker VM had 960GB RAM on a server with 1TB RAM) and required 300GB of

shared memory.

Deployment

To deploy the NeMo Inferencing container, a nemo project was created in OCP to create a namespace for running

NeMo. A persistent volume claim (PVC) was first created using the Astra Trident NFS StorageClass (on-

tap-nas-sc).

https://docs.nvidia.com/nemo-framework/user-guide/latest/playbooks/llama2peft.html#optional-convert-llama2-from-huggingface-format-to-nemo-format

© 2024 Cisco and/or its affiliates. All rights reserved. Page 84 of 128

Once the PVC is created, the following deployment.yaml can be used to deploy a NeMo container:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nemo-framework-inference-deployment

spec:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 85 of 128

 strategy:

 type: Recreate

 # Replicas controls the number of instances of the Pod to maintain running at all times

 replicas: 1

 selector:

 matchLabels:

 app: nemo-framework-inference

 template:

 metadata:

 labels:

 app: nemo-framework-inference

 name: nemo-framework-inference-pod

 spec:

 imagePullSecrets:

 - name: ngc-registry

 volumes:

 - name: model-repository

 persistentVolumeClaim:

 claimName: nemo-nfs-pvc

 - name: dshm

 emptyDir:

 medium: Memory

 sizeLimit: 96Gi # Use 300Gi for Llama-2-70B

 containers:

 - name: nemo-framework-inference-container

 image: nvcr.io/ea-bignlp/ga-participants/nemofw-inference:23.10

 command: ["/bin/bash", "-c", "--"]

 args: ["while true; do sleep 30; done;"]

 volumeMounts:

 - name: model-repository

 mountPath: /opt/checkpoints

 - mountPath: /dev/shm

 name: dshm

 ports:

 - name: nemo

 containerPort: 8000

 resources:

 limits:

 nvidia.com/gpu: 2 # requesting 2 GPUs

Notice that the container is being pulled from a private NVIDIA registry where you need to request access. Also

notice the PVC attachment to /opt/checkpoints. This PVC must be large enough to hold all models that will be run.

Also notice that in this case, the PVC was created with Shared Access, meaning more than one instance of this

container could be attaching to the same model-repository. This allows more than one container instance to read

model data simultaneously, but the names must be adjusted when writing back to the TensorRT temp folder. This

validation also found that the NeMo Inference container must be run as root in the namespace.

Once a container is deployed, the “.nemo” model files can be copied to the model-repository mounted on per-

sistent storage at /opt/checkpoints. In this example, NFS storage was mapped and used. To see the NFS mount

for persistent storage, run the follow-ing from within the container (partial command output shown).

 df -h

Filesystem Size Used Avail Use% Mounted on

overlay 512G 110G 402G 22% /

tmpfs 64M 0 64M 0% /dev

tmpfs 48G 135M 48G 1% /etc/hostname

192.168.52.31:/trident_pvc_2936a6cd_beb6_466c_91a0_d92ddff457ad 900G 575G 326G 64% /opt/checkpoints

tmpfs 96G 0 96G 0% /dev/shm

© 2024 Cisco and/or its affiliates. All rights reserved. Page 86 of 128

To run NeMo Triton Inferencing server with a model, such as Llama 2 13B, run the following from the /opt/NeMo

directory within the container.

python scripts/deploy/deploy_triton.py --nemo_checkpoint /opt/checkpoints/Llama-2-13b-chat-hf.nemo

--model_type="llama" --triton_model_name Llama-2-13b-chat-hf --triton_model_repository

/opt/checkpoints/trt_llm_model_dir_13b --triton_http_address 0.0.0.0 --triton_port 8000 --num_gpus 2

--max_input_len 3072 --max_output_len 1024 --max_batch_size 8 &

Note: For the NeMo models, the model_type is gptnext.

Once the model is loaded, the following python script can be run from within the container to perform an inference

query.

from nemo.deploy import NemoQuery

nq = NemoQuery(url="localhost:8000", model_name="Llama-2-13b-chat-hf")

output = nq.query_llm(prompts=["What is the capital of the United States?"], max_output_token=1024, top_k=1,

top_p=0.0, temperature=1.0)

print(output)

The result of the query is:

[['Answer: The capital of the United States is Washington, D.C. (District of Columbia).']]

Results

The NeMo Inference container contains a python benchmark script that was run for each of the four models uti-

lizing either one or two vGPUs with results in the following two tables. Note that more data was generated but only

the first and last result sets were documented. As the models get larger, the benefit of the second GPU is shown.

To launch the benchmark script for the Nemotron 3 8B QA model, run the following from the /opt/NeMo directory

within the container.

python scripts/deploy/benchmark.py --nemo_checkpoint /opt/checkpoints/Nemotron-3-8B-QA-4k.nemo

--model_type="gptnext" --triton_model_name Nemotron-3-8B-QA-4k -tlf /opt/checkpoints/trt_llm_model_dir_8b -ng 2

-mil 2048 -mol 300 -mbs 10 -nr 50 --out_jsonl="/opt/checkpoints/Nemotron-3-8B-QA-4k.nemo.json"

Note: It is recommended to delete the trt_llm_model_dir directory between benchmark runs.

The results listed in the following tables are shown in the terminal window as the benchmark script is running.

Table 6. NeMo Framework Benchmark Results: Input Tokens Length: 128 and Output Tokens Length: 20

Model Batch

Size

Average Latency (ms) Average Throughput (sentence/s)

 1 GPU 2 GPUs 1 GPU 2 GPUs

Llama-2-7B-Chat 1 151.341 132.611 6.608 7.541

2 156.135 143.724 12.809 13.916

4 181.916 175.997 21.988 22.728

© 2024 Cisco and/or its affiliates. All rights reserved. Page 87 of 128

Model Batch

Size

Average Latency (ms) Average Throughput (sentence/s)

8 231.947 254.829 34.491 31.394

Llama-2-13B-Chat 1 445.038 325.023 2.247 3.077

2 464.125 357.096 4.309 5.601

4 512.184 436.986 7.81 9.154

8 604.336 551.75 13.238 14.499

NeMo GPT 2B 1 111.042 115.757 9.006 8.639

2 111.308 124.159 17.968 16.108

4 117.547 138.645 34.029 28.851

8 135.265 179.492 59.143 44.57

Nemotron 3 8B QA 1 268.788 212.526 3.72 4.705

2 274.21 226.204 7.294 8.842

4 301.054 265.123 13.287 15.087

8 350.81 356.066 22.804 22.468

Llama-2-70B-Chat* 1 1177.303 0.849

2 1289.825 1.551

4 1544.36 2.59

8 1955.497 4.091

Llama-2-70B-SteerLM-Chat* 1 1181.178 0.847

2 1291.574 1.548

4 1547.5 2.585

8 1955.021 4.092

© 2024 Cisco and/or its affiliates. All rights reserved. Page 88 of 128

*The Llama-2-70B models only ran on NeMo when the full physical GPUs were mapped to OCP, and with 2 GPUs

each with 80GB frame buffer, a worker with 480GB RAM, and 300GB shared memory.

Table 7. NeMo Framework Benchmark Results: Input Tokens Length: 2048 and Output Tokens Length: 300

Model Batch

Size

Average Latency (ms) Average Throughput (sentence/s)

 1 GPU 2 GPUs 1 GPU 2 GPUs

Llama-2-7B-Chat 1 4262.242 3416.611 0.235 0.293

2 4506.674 3736.085 0.444 0.535

4 5516.922 4389.155 0.725 0.911

8 7026.116 6341.28 1.139 1.262

Llama-2-13B-Chat 1 7198.969 5182.613 0.139 0.193

2 7802.567 5794.564 0.256 0.345

4 9288.796 7207.308 0.431 0.555

8 11851.359 9662.157 0.675 0.828

NeMo GPT 2B 1 1814.402 1813.078 0.551 0.552

2 1888.723 1988.144 1.059 1.006

4 2044.045 2245.199 1.957 1.782

8 2735.752 2902.535 2.924 2.756

Nemotron 3 8B QA 1 4392.053 3372.163 0.228 0.297

2 4621.118 3677.279 0.433 0.544

4 5605.302 4334.843 0.714 0.923

8 7071.629 6269.211 1.131 1.276

Llama-2-70B-Chat* 1 18810.341 0.053

2 20637.673 0.097

© 2024 Cisco and/or its affiliates. All rights reserved. Page 89 of 128

Model Batch

Size

Average Latency (ms) Average Throughput (sentence/s)

4 25515.891 0.157

8 Out of Memory Out of Memory

Llama-2-70B-SteerLM-Chat* 1 18827.029 0.053

2 20599.33 0.097

4 25535.6 0.157

8 Out of Memory Out of Memory

*The Llama-2-70B models only ran on NeMo when the full physical GPUs were mapped to OCP, and with 2 GPUs

each with 80GB frame buffer, a worker with 480GB RAM, and 300GB shared memory.

The following figures show the NVIDIA DGCM Exporter Dashboard from the OCP Console. The Llama 2 13B

Llama-2-13b-chat-hf.nemo file has a size of approximately 52 GB, which roughly corresponds to usage in the

figure below with single GPU usage. However, more than 70GB is used in each GPU with 2 GPUs. This usage was

less with the smaller models.

 Llama 2 13B Single GPU Benchmark Framebuffer Usage Figure 19.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 90 of 128

 Llama 2 13B 2 GPU Benchmark Framebuffer Usage (Starting Just Before 1:00PM) Figure 20.

Power usage was also monitored while running these models. Each NVIDIA A100-80 GPU had a maximum power

consumption of approximately 300W. Using 2 GPUs had 300W more power consumption, but did produce better

performance, especially with the larger models.

Text Generation Inference

Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables

high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder,

BLOOM, GPT-NeoX, and T5.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 91 of 128

 TGI Model Representation Figure 21.

The models run on TGI are listed in Table 8.

Table 8. AI Inferencing Models Run on TGI

Model Download Location

BLOOM-7B https://huggingface.co/bigscience/bloom-7b1

Google FLAN-T5 XL 2.85B https://huggingface.co/google/flan-t5-xl

Google FLAN-T5 XXL 11.3B https://huggingface.co/google/flan-t5-xxl

GALACTICA 30B https://huggingface.co/facebook/galactica-30b

GPT-NeoX-20B https://huggingface.co/EleutherAI/gpt-neox-20b

OPT-2.7B https://huggingface.co/facebook/opt-2.7b

MPT-30B https://huggingface.co/mosaicml/mpt-30b

https://huggingface.co/bigscience/bloom-7b1
https://huggingface.co/google/flan-t5-xl
https://huggingface.co/google/flan-t5-xxl
https://huggingface.co/facebook/galactica-30b
https://huggingface.co/EleutherAI/gpt-neox-20b
https://huggingface.co/facebook/opt-2.7b
https://huggingface.co/mosaicml/mpt-30b

© 2024 Cisco and/or its affiliates. All rights reserved. Page 92 of 128

Model Download Location

Falcon-40B https://huggingface.co/tiiuae/falcon-40b

Mistral-7B-Instruct-v0.1 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

Code Llama 34B-Base https://huggingface.co/codellama/CodeLlama-34b-hf

Code Llama 70B-Base https://huggingface.co/codellama/CodeLlama-70b-hf

Llama-2-70B-Chat-HF https://huggingface.co/meta-llama/Llama-2-70b-chat-hf

Defog SQLCoder-15B https://huggingface.co/defog/sqlcoder

Defog SQLCoder-34B https://huggingface.co/defog/sqlcoder-34b-alpha

Deployment

To deploy the TGI container, a “tgi” project was created in OCP to create a namespace for running TGI. A per-

sistent volume claim (PVC) was first created using the Astra Trident NFS FlexGroup StorageClass (on-

tap-nas-flexgroup).

https://huggingface.co/tiiuae/falcon-40b
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/codellama/CodeLlama-34b-hf
https://huggingface.co/codellama/CodeLlama-70b-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://huggingface.co/defog/sqlcoder
https://huggingface.co/defog/sqlcoder-34b-alpha

© 2024 Cisco and/or its affiliates. All rights reserved. Page 93 of 128

Once the PVC is created, the following yaml can be used to deploy a TGI container:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: tgi-deployment

spec:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 94 of 128

 strategy:

 type: Recreate

 replicas: 1

 selector:

 matchLabels:

 app: tgi

 template:

 metadata:

 labels:

 app: tgi

 name: tgi-pod

 spec:

 volumes:

 - name: tgi

 persistentVolumeClaim:

 claimName: tgi-flexgroup-pvc

 - name: shm

 emptyDir:

 medium: Memory

 sizeLimit: 10Gi

 restartPolicy: Always

 containers:

 - name: tgi-container

 image: ghcr.io/huggingface/text-generation-inference

 command: ["/bin/bash", "-c", "--"]

 args: ["while true; do sleep 30; done;"]

 volumeMounts:

 - name: tgi

 mountPath: /data

 - name: shm

 mountPath: /dev/shm

 resources:

 limits:

 nvidia.com/gpu: 2

Notice that the container is being pulled from the HuggingFace registry. Also notice the PVC attachment to /data.

This PVC must be large enough to hold all models that will be run. Also notice that in this case, the PVC was

created with Shared Access, meaning more than one instance of this container could be attaching to the same

model-repository. This allows more than one container instance to read model data simultaneously. This validation

also found that the TGI Inference container must be run as root in the namespace.

Using an NFS-based Storage Class with SharedAccess allows the PV created from the PVC to be mounted to the

ocp-installer VM. An MTU 9000 network interface must be added to the VM in the OCP-NFS port group on

VMware vDS0. Once this network interface is in place, the PV can be mounted and the ocp-installer VM can be

used to directly pull the TGI-supported models and place them in the PV.

The following service file can also be applied to make the TGI server accessible:

kind: Service

apiVersion: v1

metadata:

 name: tgi-svc

spec:

 type: NodePort

 selector:

 app: tgi

 ports:

 - protocol: TCP

 nodePort:

 port: 8080

 targetPort: 8080

© 2024 Cisco and/or its affiliates. All rights reserved. Page 95 of 128

When this file is applied within the tgi project or namespace, a nodePort will automatically get assigned. This TCP

port can be determined by running:

oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

tgi-svc NodePort 172.30.170.1 <none> 8080:31234/TCP 6m49s

Then after TGI is up and running with the first command below under Results, inferencing can be done from a

machine outside the OCP cluster using one of the master or worker VM’s OCP-MGMT IPs or the *.apps IP as

shown:

[admin@ocp-installer tgi]$ curl 10.102.2.201:31234/generate -X POST -d '{"inputs":"What is the capital of South

Dakota?","parameters":{"max_new_tokens":50}}' -H 'Content-Type: application/json'

{"generated_text":"\nThe capital of South Dakota is Pierre."}

Results

The TGI container contains a python benchmark script that was run for each of the models utilizing two vGPUs with

results in the following table. Each model was first loaded from the container with:

text-generation-launcher --model-id /data/<model-dir> --json-output --sharded=true --num-shard=2

--trust-remote-code --hostname 0.0.0.0 -p 8080

Then, from another window in the container:

text-generation-benchmark --tokenizer-name=/data/<model-dir> --batch-size=<batch-size> --runs=100 --warmups=10

Table 9. TGI Benchmark Results

Model Batch

Size

Prefill

Latency

(ms)

Decode

Token

Latency

(ms)

Decode Total

Latency (ms)

Prefill

Throughpu

t (token/s)

Decode

Throughpu

t (token/s)

BLOOM 7B 1 15.08 14.51 101.57 70.36 70.48

2 16.82 14.80 103.62 124.96 137.82

4 19.19 15.67 109.68 208.52 261.15

8 26.73 17.16 120.10 299.39 474.25

Google FLAN-T5 XL

2.85B

1 43.51 26.03 182.21 23.21 38.61

2 46.98 28.18 197.28 42.97 71.22

4 49.87 29.84 208.85 80.67 134.41

8 54.43 32.11 224.75 148.27 249.72

© 2024 Cisco and/or its affiliates. All rights reserved. Page 96 of 128

Model Batch

Size

Prefill

Latency

(ms)

Decode

Token

Latency

(ms)

Decode Total

Latency (ms)

Prefill

Throughpu

t (token/s)

Decode

Throughpu

t (token/s)

Google FLAN-T5 XXL

11.3B

1 44.69 26.32 184.24 22.66 38.18

2 47.63 28.34 198.38 42.40 70.89

4 51.69 29.57 207.02 78.47 135.73

8 52.36 30.59 214.15 154.33 262.47

GALACTICA 30B 1 38.92 31.06 217.46 26.10 32.28

2 40.34 31.69 221.83 49.92 63.34

4 45.83 34.38 240.68 87.68 116.60

8 59.66 37.54 262.79 134.39 213.45

GPT-NeoX-20B 1 21.57 18.64 130.50 46.92 53.86

2 23.33 19.10 133.72 87.54 105.11

4 24.90 20.27 141.91 162.19 198.15

8 31.05 20.88 146.13 259.15 384.31

MPT-30B 1 36.19 29.21 204.46 28.18 34.38

2 39.40 30.63 214.39 51.40 65.57

4 44.46 33.20 232.38 90.48 120.85

8 57.76 35.41 247.85 138.98 226.45

Falcon-40B 1 39.09 34.01 238.07 25.68 29.44

2 41.04 34.96 244.73 48.91 57.26

4 47.28 36.70 256.94 86.66 109.09

8 55.35 37.67 263.67 144.61 212.49

© 2024 Cisco and/or its affiliates. All rights reserved. Page 97 of 128

Model Batch

Size

Prefill

Latency

(ms)

Decode

Token

Latency

(ms)

Decode Total

Latency (ms)

Prefill

Throughpu

t (token/s)

Decode

Throughpu

t (token/s)

Mistral-7B-Instruct-v0.1 1 44.32 24.35 170.47 30.15 44.48

2 44.91 24.68 172.76 55.39 86.71

4 61.20 24.70 172.92 88.26 172.72

8 56.50 25.20 176.42 167.70 334.30

Code Llama 34B-Base 1 35.28 29.27 204.88 28.76 34.39

2 38.38 30.45 213.15 52.78 65.99

4 43.23 32.94 230.59 93.62 122.03

8 56.72 34.14 238.97 141.18 235.06

Code Llama 70B-Base 1 63.61 53.72 376.08 15.77 18.62

2 69.05 56.34 394.39 28.98 35.52

4 78.19 60.43 423.03 51.29 66.26

8 101.31 62.29 436.03 78.96 128.48

Llama-2-70B-Chat-HF 1 66.35 55.99 391.91 15.24 17.91

2 72.69 57.22 400.53 28.13 34.99

4 77.64 61.92 433.48 51.52 64.71

8 103.77 62.70 438.88 77.20 127.65

Defog SQLCoder-15B 1 62.75 25.00 174.97 21.45 42.28

2 59.75 26.22 183.52 40.59 79.94

4 55.82 27.63 193.44 81.79 149.73

8 68.04 26.77 187.36 132.36 308.88

© 2024 Cisco and/or its affiliates. All rights reserved. Page 98 of 128

Model Batch

Size

Prefill

Latency

(ms)

Decode

Token

Latency

(ms)

Decode Total

Latency (ms)

Prefill

Throughpu

t (token/s)

Decode

Throughpu

t (token/s)

Defog SQLCoder-34B 1 35.18 28.79 201.57 28.84 34.87

2 37.87 30.34 212.41 53.53 66.19

4 42.50 32.24 225.68 95.27 124.28

8 56.52 33.10 231.68 142.06 242.03

Note: The OPT-2.7B model loaded and ran inference successfully but did not complete the benchmarks. An

example of inference with this model is:

root@tgi-deployment-9478dc8b9-dw7pw:/usr/src# curl 127.0.0.1:8080/generate -X POST -d '{"inputs":"What is the

capital of South Dakota?","parameters":{"max_new_tokens":50}}' -H 'Content-Type: application/json'

{"generated_text":"\n\nThe capital of South Dakota is Pierre. The city is located in the northeastern part of the

state. The city is the seat of the state government. The city is also the seat of the Pierre Indian Reservation.\n\nThe

city is"}

Note: From within the TCI container that the inference to 127.0.0.0:8080 still works even with the service con-

figured above to allow access from outside the OCP cluster.

An example showing frame buffer usage and GPU Utilization for the Llama-2-70B-Chat-HF model while running

the benchmark script is shown in Figure 22.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 99 of 128

 Frame Buffer Usage and GPU Utilization for Llama-2-70B-Chat-HF During Benchmark Figure 22.

Figure 23 shows the NVIDIA DGCM Exporter Dashboard from the OCP Console showing GPU Framebuffer Usage

while running the tests on the models above.

 GPU Benchmark Framebuffer Usage during TGI Tests Figure 23.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 100 of 128

PyTorch

PyTorch is a GPU accelerated tensor computational framework. The PyTorch container from the NVIDIA NGC

Catalog is optimized for GPU acceleration and contains a validated set of libraries that enable and optimize GPU

performance. Table 10 lists the models run on the modified PyTorch NGC container.

Table 10. Models Run on PyTorch

Model Download Location

Llama-2-7B-Chat https://llama.meta.com/llama-downloads

Llama-2-13B-Chat https://llama.meta.com/llama-downloads

Procedure 1. Deployment

Step 1. To prepare to download the Llama 2 models, visit https://llama.meta.com/llama-downloads and
fill out the form. You should receive an email with instructions on downloading the models. Model download will be
done later in this deployment.

Step 2. Build the modified PyTorch NGC container using podman with the Dockerfile below and push the
resulting image to a container registry.

FROM nvcr.io/nvidia/pytorch:23.10-py3

#Additional packages required to run the application can be installed

RUN apt-get update && apt-get install -y \

 apache2 \

 curl \

 git \

 python3-pip

RUN git clone https://github.com/facebookresearch/llama.git

RUN pip install -r /workspace/llama/requirements.txt

Step 3. Create a “llama-2” project in the Openshift console and then create a 100GB PVC. In this example,
NVMe-TCP storage is used and requires Single user access.

https://llama.meta.com/llama-downloads

© 2024 Cisco and/or its affiliates. All rights reserved. Page 101 of 128

Step 4. Use the following deployment.yaml to deploy the container.

Note: The container will need to be run as root.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: llama-2-deployment

spec:

 replicas: 1

 selector:

 matchLabels:

 app: llama-2

 template:

 metadata:

 labels:

 app: llama-2

 name: llama-2-pod

 spec:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 102 of 128

 #NetApp Astra Trident PVC to store the model weights and tokenizer

 volumes:

 - name: model-repository

 persistentVolumeClaim:

 claimName: llama-2-nvme-tcp-pvc

 containers:

 - name: llama-2-container

 image: quay.io/<user-id>/llama-2

 command: ["/bin/bash", "-c", "--"]

 args: ["while true; do sleep 30; done;"]

 resources:

 limits:

 nvidia.com/gpu: 2 # requesting 2 GPUs

 volumeMounts:

 - name: model-repository

 mountPath: /model_repository

Step 5. Once the container is running, connect to it and download the llama-2-13b-chat and lla-
ma-2-7b-chat models.

oc get pods

 NAME READY STATUS RESTARTS AGE

 llama-2-deployment-8555b5f975-7w6nc 1/1 Running 0 85m

oc exec -it llama-2-deployment-8555b5f975-7w6nc -- bash

cp -r llama/* /model_repository/

cd /model_repository

./download.sh – Enter the URL from the email and specify “7B-chat,13B-chat”

Step 6. To see the NVMe-TCP storage mount for this container, run the following (partial output listing).

df -h

Filesystem Size Used Avail Use% Mounted on

overlay 512G 164G 348G 33% /

tmpfs 64M 0 64M 0% /dev

shm 64M 0 64M 0% /dev/shm

tmpfs 48G 132M 48G 1% /etc/hostname

/dev/nvme0n1 100G 38G 63G 38% /model_repository

/dev/sda4 512G 164G 348G 33% /etc/hosts

Step 7. The NVMe-TCP storage paths can be seen from the worker node. In the OCP console, select
Compute > Nodes. Select the worker that is running the Llama 2 container (obtained by running “oc get pods -o
wide” in the project for Llama 2) and selecting the Terminal tab. The NVMe-TCP paths can be shown as in the
following screenshot:

© 2024 Cisco and/or its affiliates. All rights reserved. Page 103 of 128

Results

When running the following commands, the Llama-2-7B-Chat model with 1 vGPU loaded in 11.46 seconds and

ran in 26.473 seconds. The Llama-2-13B-Chat model with 2 vGPUs loaded in 16.78 seconds and ran in 41.532

seconds.

time torchrun --nproc_per_node 1 example_chat_completion.py --ckpt_dir llama-2-7b-chat/ --tokenizer_path

tokenizer.model --max_seq_len 512 --max_batch_size 6

time torchrun --nproc_per_node 2 example_chat_completion.py --ckpt_dir llama-2-13b-chat/ --tokenizer_path

tokenizer.model --max_seq_len 512 --max_batch_size 6

NVMe-TCP persistent storage was used with this model where the NVMe namespace is mapped to the OCP

worker VM with four paths through two NVMe-TCP interfaces. Openshift then connects the storage to the con-

tainer. These path connections were tested by disabling different combinations of the NVMe-TCP logical inter-

faces (LIFs) on the NetApp storage SVM hosting the OCP tenant and running the tests above. Disabling LIFs had

very little effect on tests as long as at least one path was available.

Stable Diffusion

Stable Diffusion is an open source image generation model that allows to generate images using a simple text

prompt.

Stable Diffusion is a text-to-image latent diffusion model created by the researchers and engineers

from CompVis, Stability AI and LAION. It is trained on 512x512 images from a subset of the LAION-5B database.

LAION-5B is the largest, freely accessible multi-modal dataset that currently exists.

Some of the image related tasks it performs are:

● Text-to-Image: Create an image from a text prompt.

https://github.com/CompVis
https://stability.ai/
https://laion.ai/

© 2024 Cisco and/or its affiliates. All rights reserved. Page 104 of 128

● Image-to-Image: Create an image from an existing image and a text prompt.

● Depth-Guided Diffusion: Modify an existing image with its depth map and a text prompt.

● Instruct Pix2Pix: Modify an existing image with a text prompt.

● Stable UnCLIP Variations: Create different versions of an image with a text prompt.

● Image Upscaling: Create a high-resolution image from an existing image with a text prompt.

● Diffusion Inpainting: Modify specific areas of an existing image with an image mask and a text prompt.

Table 11. Stable Diffusion versions

Model Models in Hugging Face

Stable Diffusion 1.4 https://huggingface.co/CompVis/stable-diffusion-v1-4

Stable Diffusion 1.5 https://huggingface.co/runwayml/stable-diffusion-v1-5

Stable Diffusion 2 https://huggingface.co/stabilityai/stable-diffusion-2

Stable Diffusion 2.1 https://huggingface.co/stabilityai/stable-diffusion-2-1

Stable Diffusion XL https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0

All tests are performed on Jupyter notebook, which was created using NetApp DataOps toolkit.

netapp_dataops_k8s_cli.py create jupyterlab --workspace-name=ai-models -c ontap-nas-sc --size=90Gi

--nvidia-gpu=1 -i nvcr.io/nvidia/pytorch:23.10-py3

We used a persistent volume claim (PVC) which was created using the Astra Trident NFS StorageClass (on-

tap-nas-sc).

Once the notebook is created, the following code is used to test the model:

pip install --upgrade diffusers transformers scipy

import torch

from diffusers import StableDiffusionPipeline

model_id = "CompVis/stable-diffusion-v1-4"

device = "cuda"

pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)

pipe = pipe.to(device)

prompt = "A photo of a cat wearing a hat"

image = pipe(prompt).images[0]

image.save("cat_wearing_hat.png")

© 2024 Cisco and/or its affiliates. All rights reserved. Page 105 of 128

The following image is generated by Stable Diffusion 1.4 for the prompt:

The inferencing was run with one A100 GPU. 16% of tensor core utilization with 4.3 Gigabyte of memory was

consumed:

For Stable Diffusion XL 1.0, use the following python script:

https://huggingface.co/CompVis/stable-diffusion-v1-4

© 2024 Cisco and/or its affiliates. All rights reserved. Page 106 of 128

import torch

from diffusers import StableDiffusionXLPipeline

model_id = "stabilityai/stable-diffusion-xl-base-1.0"

device = "cuda"

pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float16)

pipe = pipe.to(device)

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k resolution"

image = pipe(prompt).images[0]

image.save("astronaut.png")

The following image is generated by Stable Diffusion XL 1.0-base model for the prompt “Astronaut in a jungle,

cold color palette, muted colors, detailed, 8k resolution.”

Stable Diffusion XL can also be run just utilizing the Intel CPUs in the server under OpenVINO with the following:

pip install optimum[openvino]

Then use the following Python script:

from optimum.intel import OVStableDiffusionXLPipeline

© 2024 Cisco and/or its affiliates. All rights reserved. Page 107 of 128

model_id = "stabilityai/stable-diffusion-xl-base-1.0"

pipeline = OVStableDiffusionXLPipeline.from_pretrained(model_id)

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k resolution"

image = pipeline(prompt).images[0]

image.save("astronaut_intel.png")

Running this image generation using the NVIDIA GPU completed in 20.3 seconds, while running the image gen-

eration using only the CPU took 2 minutes 1.8 seconds.

Openjourney

Openjourney is an open-source Stable Diffusion fine-tuned model on Midjourney images. This model can be used

just like any other Stable Diffusion model.

Note: Include 'mdjrny-v4 style' in prompt.

Hugging face: https://huggingface.co/prompthero/openjourney

This code is used to test the model:

from diffusers import StableDiffusionPipeline

import torch

model_id = "prompthero/openjourney"

pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)

pipe = pipe.to("cuda")

prompt = "a lonely astronaut floating in space, surrounded by stars and planets, mdjrny-v4 style"

image = pipe(prompt).images[0]

image.save("./astronaut.png")

The following image is generated for the prompt:

https://huggingface.co/prompthero/openjourney

© 2024 Cisco and/or its affiliates. All rights reserved. Page 108 of 128

The inferencing was run with one A100 GPU. 50% of tensor core utilization with 4.3 Gigabyte of memory was

consumed.

Dreamlike Diffusion 1.0

Dreamlike Diffusion 1.0 is SD 1.5 fine tuned on high quality art, made by dreamlike.art. We used the same infer-

encing method as Stable Diffusion for Dreamlike Diffusion as well.

Note: Use the same prompts as you would for SD 1.5. Add dreamlikeart if the artstyle is too weak.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 109 of 128

Hugging face: https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0

This code is used to test the model:

from diffusers import StableDiffusionPipeline

import torch

model_id = "dreamlike-art/dreamlike-diffusion-1.0"

pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)

pipe = pipe.to("cuda")

prompt = "dreamlikeart, a dark fantasy castle on a cliff, surrounded by mist and lightning, in the style of Simon

Stålenhag, detailed, realistic, gloomy, ominous, sci-fi elements, flying cars, robots, drones, cyberpunk,

dystopian, 16:9 aspect ratio"

image = pipe(prompt).images[0]

image.save("./result.jpg")

The following image is generated by the prompt:

The inferencing was run with one A100 GPU. 56% of tensor core utilization with 2.8 Gigabyte of memory was

consumed.

https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0

© 2024 Cisco and/or its affiliates. All rights reserved. Page 110 of 128

Hotshot-XL

Hotshot-XL is an AI text-to-GIF model trained to work alongside Stable Diffusion XL. Hotshot-XL was trained to

generate 1 second GIFs at 8 FPS.

Hotshot-XL can generate GIFs with any fine-tuned SDXL model. It is possible to make GIFs with any existing or

newly fine-tuned SDXL model.

A new terminal is created on Jupyter notebook which was created using NetApp DataOps toolkit to test the model.

Git repo: https://github.com/hotshotco/Hotshot-XL

Hugging face: https://huggingface.co/hotshotco/Hotshot-XL

Clone the Git repo then use the following code to test the model:

git clone https://github.com/hotshotco/Hotshot-XL

cd Hotshot-XL

Environment Setup:

pip install virtualenv --upgrade

virtualenv -p $(which python3) venv

source venv/bin/activate

pip install -r requirements.txt

Download the Hotshot-XL Weights:

Make sure you have git-lfs installed (https://git-lfs.com)

git lfs install

git clone https://huggingface.co/hotshotco/Hotshot-XL

Download our fine-tuned SDXL model (or BYOSDXL):

https://github.com/hotshotco/Hotshot-XL
https://github.com/hotshotco/Hotshot-XL
https://huggingface.co/hotshotco/Hotshot-XL
https://github.com/hotshotco/Hotshot-XL

© 2024 Cisco and/or its affiliates. All rights reserved. Page 111 of 128

Make sure you have git-lfs installed (https://git-lfs.com)

git lfs install

git clone https://huggingface.co/hotshotco/SDXL-512

Text-to-GIF with ControlNet:

python inference.py \

 --prompt="a girl jumping up and down and pumping her fist, hd, high quality" \

 --output="output.gif" \

 --control_type="depth" \

--gif="https://media1.giphy.com/media/v1.Y2lkPTc5MGI3NjExbXNneXJicG1mOHJ2dzQ2Y2JteDY1ZWlrdjNjMjl3ZWxyeWFxY2Ez

dyZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/YOTAoXBgMCmFeQQzuZ/giphy.gif"

If git-lfs is not installed, run the following:

curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash

apt-get install git-lfs

A GIF image is generated for the prompt:

The inferencing was run with one A100 GPU. 64% of tensor core utilization with 12 Gigabyte of memory was

consumed.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 112 of 128

Resnet34

Deep learning has evolved a lot in recent years and we all are excited to build deeper architecture networks to

gain more accuracies for our models. These techniques are widely tried for Image related works like classification,

clustering, or synthesis.

Resnet models were proposed in “Deep Residual Learning for Image Recognition.” Here we have the 5 versions of

Resnet models, which contains 18, 34, 50, 101, 152 layers, respectively. In this document, we will look at one of

the healthcare use case (Diabetic Retinopathy Detection) Of ResNet-34 model using the Pytorch framework in

Python.

Deployment

Create a Jupyter notebook using NetApp DataOps toolkit to execute the model:

netapp_dataops_k8s_cli.py create jupyterlab --workspace-name=flexpod -c ontap-nas-sc --size=90Gi --nvidia-gpu=1

-i nvcr.io/nvidia/pytorch:23.10-py3

A persistent volume claim (PVC) was used and was created using the Astra Trident NFS StorageClass (on-

tap-nas-sc).

To download sample training and test dataset, go to:

https://www.kaggle.com/code/balajiai/diabetic-retinopathy-detection-using-pytorch/input.

To import libraries, Preprocess the Data, build the model, creating functions for training and validation, optimize

and test the model, we have referred:

https://www.kaggle.com/code/balajiai/diabetic-retinopathy-detection-using-pytorch/notebook

Results

We optimized the model using 60 Epoch. The following graph shows the training and validation loss.

https://www.analyticsvidhya.com/blog/2018/10/understanding-inception-network-from-scratch/
https://www.kaggle.com/code/balajiai/diabetic-retinopathy-detection-using-pytorch/input
https://www.kaggle.com/code/balajiai/diabetic-retinopathy-detection-using-pytorch/notebook

© 2024 Cisco and/or its affiliates. All rights reserved. Page 113 of 128

We achieved 88 percent accuracy on training set and around 78% accuracy on validation set.

The inferencing was run with one A100 GPU. 3% of tensor core utilization with 9.3 Gigabyte of memory was

consumed in each epoch.

Note: You can increase the accuracy of the model by various ways, like increasing the dataset size, increasing

the model complexity, and increasing the number of epochs.

Note: We executed the model using CPU and NVIDIA A100 GPU. Optimization of model works 2.5x times faster

with GPU.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 114 of 128

About the Authors

John George, Technical Marketing Engineer, Cisco Systems, Inc.

John is involved in designing, developing, validating, and supporting the FlexPod Converged Infrastructure since

its inception. Prior to his role with FlexPod, John supported and administered a large worldwide training network

and VPN infrastructure. John holds a master’s degree in Computer Engineering from Clemson University.

Ruchika Lahoti—Technical Marketing Engineer, NetApp

Ruchika has more than six years of experience in the IT industry. She focuses on FlexPod hybrid cloud infra-

structure solution design, implementation, validation, automation. Ruchika earned a bachelor’s degree in com-

puter science.

Acknowledgements

For their support and contribution to the design, validation, and creation of this Cisco Validated Design, the au-

thors would like to thank:

● Paniraja Koppa, Technical Marketing Engineer, Cisco Systems, Inc.

● Archana Sharma, Technical Marketing Engineer, Cisco Systems, Inc.

● Haseeb Niazi, Principal Technical Marketing Engineer, Cisco Systems, Inc.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 115 of 128

Appendix

This appendix contains the following:

● Glossary of Acronyms

● Glossary of Terms

Glossary of Acronyms

AAA—Authentication, Authorization, and Accounting

ACP—Access-Control Policy

ACI—Cisco Application Centric Infrastructure

ACK—Acknowledge or Acknowledgement

ACL—Access-Control List

AD—Microsoft Active Directory

AFI—Address Family Identifier

AMP—Cisco Advanced Malware Protection

AP—Access Point

API—Application Programming Interface

APIC— Cisco Application Policy Infrastructure Controller (ACI)

ASA—Cisco Adaptative Security Appliance

ASM—Any-Source Multicast (PIM)

ASR—Aggregation Services Router

Auto-RP—Cisco Automatic Rendezvous Point protocol (multicast)

AVC—Application Visibility and Control

BFD—Bidirectional Forwarding Detection

BGP—Border Gateway Protocol

BMS—Building Management System

© 2024 Cisco and/or its affiliates. All rights reserved. Page 116 of 128

BSR—Bootstrap Router (multicast)

BYOD—Bring Your Own Device

CAPWAP—Control and Provisioning of Wireless Access Points Protocol

CDP—Cisco Discovery Protocol

CEF—Cisco Express Forwarding

CMD—Cisco Meta Data

CPU—Central Processing Unit

CSR—Cloud Services Routers

CTA—Cognitive Threat Analytics

CUWN—Cisco Unified Wireless Network

CVD—Cisco Validated Design

CYOD—Choose Your Own Device

DC—Data Center

DHCP—Dynamic Host Configuration Protocol

DM—Dense-Mode (multicast)

DMVPN—Dynamic Multipoint Virtual Private Network

DMZ—Demilitarized Zone (firewall/networking construct)

DNA—Cisco Digital Network Architecture

DNS—Domain Name System

DORA—Discover, Offer, Request, ACK (DHCP Process)

DWDM—Dense Wavelength Division Multiplexing

ECMP—Equal Cost Multi Path

EID—Endpoint Identifier

EIGRP—Enhanced Interior Gateway Routing Protocol

© 2024 Cisco and/or its affiliates. All rights reserved. Page 117 of 128

EMI—Electromagnetic Interference

ETR—Egress Tunnel Router (LISP)

EVPN—Ethernet Virtual Private Network (BGP EVPN with VXLAN data plane)

FHR—First-Hop Router (multicast)

FHRP—First-Hop Redundancy Protocol

FMC—Cisco Firepower Management Center

FTD—Cisco Firepower Threat Defense

GBAC—Group-Based Access Control

GbE—Gigabit Ethernet

Gbit/s—Gigabits Per Second (interface/port speed reference)

GRE—Generic Routing Encapsulation

GRT—Global Routing Table

HA—High-Availability

HQ—Headquarters

HSRP—Cisco Hot-Standby Routing Protocol

HTDB—Host-tracking Database (SD-Access control plane node construct)

IBNS—Identity-Based Networking Services (IBNS 2.0 is the current version)

ICMP— Internet Control Message Protocol

IDF—Intermediate Distribution Frame; essentially a wiring closet.

IEEE—Institute of Electrical and Electronics Engineers

IETF—Internet Engineering Task Force

IGP—Interior Gateway Protocol

IID—Instance-ID (LISP)

IOE—Internet of Everything

© 2024 Cisco and/or its affiliates. All rights reserved. Page 118 of 128

IoT—Internet of Things

IP—Internet Protocol

IPAM—IP Address Management

IPS—Intrusion Prevention System

IPSec—Internet Protocol Security

ISE—Cisco Identity Services Engine

ISR—Integrated Services Router

IS-IS—Intermediate System to Intermediate System routing protocol

ITR—Ingress Tunnel Router (LISP)

LACP—Link Aggregation Control Protocol

LAG—Link Aggregation Group

LAN—Local Area Network

L2 VNI—Layer 2 Virtual Network Identifier; as used in SD-Access Fabric, a VLAN.

L3 VNI— Layer 3 Virtual Network Identifier; as used in SD-Access Fabric, a VRF.

LHR—Last-Hop Router (multicast)

LISP—Location Identifier Separation Protocol

MAC—Media Access Control Address (OSI Layer 2 Address)

MAN—Metro Area Network

MEC—Multichassis EtherChannel, sometimes referenced as MCEC

MDF—Main Distribution Frame; essentially the central wiring point of the network.

MnT—Monitoring and Troubleshooting Node (Cisco ISE persona)

MOH—Music on Hold

MPLS—Multiprotocol Label Switching

MR—Map-resolver (LISP)

© 2024 Cisco and/or its affiliates. All rights reserved. Page 119 of 128

MS—Map-server (LISP)

MSDP—Multicast Source Discovery Protocol (multicast)

MTU—Maximum Transmission Unit

NAC—Network Access Control

NAD—Network Access Device

NAT—Network Address Translation

NBAR—Cisco Network-Based Application Recognition (NBAR2 is the current version).

NFV—Network Functions Virtualization

NSF—Non-Stop Forwarding

OSI—Open Systems Interconnection model

OSPF—Open Shortest Path First routing protocol

OT—Operational Technology

PAgP—Port Aggregation Protocol

PAN—Primary Administration Node (Cisco ISE persona)

PCI DSS—Payment Card Industry Data Security Standard

PD—Powered Devices (PoE)

PETR—Proxy-Egress Tunnel Router (LISP)

PIM—Protocol-Independent Multicast

PITR—Proxy-Ingress Tunnel Router (LISP)

PnP—Plug-n-Play

PoE—Power over Ethernet (Generic term, may also refer to IEEE 802.3af, 15.4W at PSE)

PoE+—Power over Ethernet Plus (IEEE 802.3at, 30W at PSE)

PSE—Power Sourcing Equipment (PoE)

PSN—Policy Service Node (Cisco ISE persona)

© 2024 Cisco and/or its affiliates. All rights reserved. Page 120 of 128

pxGrid—Platform Exchange Grid (Cisco ISE persona and publisher/subscriber service)

PxTR—Proxy-Tunnel Router (LISP – device operating as both a PETR and PITR)

QoS—Quality of Service

RADIUS—Remote Authentication Dial-In User Service

REST—Representational State Transfer

RFC—Request for Comments Document (IETF)

RIB—Routing Information Base

RLOC—Routing Locator (LISP)

RP—Rendezvous Point (multicast)

RP—Redundancy Port (WLC)

RP—Route Processer

RPF—Reverse Path Forwarding

RR—Route Reflector (BGP)

RTT—Round-Trip Time

SA—Source Active (multicast)

SAFI—Subsequent Address Family Identifiers (BGP)

SD—Software-Defined

SDA—Cisco Software Defined-Access

SDN—Software-Defined Networking

SFP—Small Form-Factor Pluggable (1 GbE transceiver)

SFP+— Small Form-Factor Pluggable (10 GbE transceiver)

SGACL—Security-Group ACL

SGT—Scalable Group Tag, sometimes reference as Security Group Tag

SM—Spare-mode (multicast)

© 2024 Cisco and/or its affiliates. All rights reserved. Page 121 of 128

SNMP—Simple Network Management Protocol

SSID—Service Set Identifier (wireless)

SSM—Source-Specific Multicast (PIM)

SSO—Stateful Switchover

STP—Spanning-tree protocol

SVI—Switched Virtual Interface

SVL—Cisco StackWise Virtual

SWIM—Software Image Management

SXP—Scalable Group Tag Exchange Protocol

Syslog—System Logging Protocol

TACACS+—Terminal Access Controller Access-Control System Plus

TCP—Transmission Control Protocol (OSI Layer 4)

UCS— Cisco Unified Computing System

UDP—User Datagram Protocol (OSI Layer 4)

UPoE—Cisco Universal Power Over Ethernet (60W at PSE)

UPoE+— Cisco Universal Power Over Ethernet Plus (90W at PSE)

URL—Uniform Resource Locator

VLAN—Virtual Local Area Network

VM—Virtual Machine

VN—Virtual Network, analogous to a VRF in SD-Access

VNI—Virtual Network Identifier (VXLAN)

vPC—virtual Port Channel (Cisco Nexus)

VPLS—Virtual Private LAN Service

VPN—Virtual Private Network

© 2024 Cisco and/or its affiliates. All rights reserved. Page 122 of 128

VPNv4—BGP address family that consists of a Route-Distinguisher (RD) prepended to an IPv4 prefix

VPWS—Virtual Private Wire Service

VRF—Virtual Routing and Forwarding

VSL—Virtual Switch Link (Cisco VSS component)

VSS—Cisco Virtual Switching System

VXLAN—Virtual Extensible LAN

WAN—Wide-Area Network

WLAN—Wireless Local Area Network (generally synonymous with IEEE 802.11-based networks)

WoL—Wake-on-LAN

xTR—Tunnel Router (LISP – device operating as both an ETR and ITR)

Glossary of Terms

This glossary addresses some terms used in this document, for the purposes of aiding understanding. This is not a

complete list of all multicloud terminology. Some Cisco product links are supplied here also, where considered

useful for the purposes of clarity, but this is by no means intended to be a complete list of all applicable Cisco

products.

aaS/XaaS

(IT capability provided as

a Service)

Some IT capability, X, provided as a service (XaaS). Some benefits are:

 The provider manages the design, implementation, deployment, upgrades, resiliency, scalability, and ●

overall delivery of the service and the infrastructure that supports it.

 There are very low barriers to entry, so that services can be quickly adopted and dropped in response ●

to business demand, without the penalty of inefficiently utilized CapEx.

 The service charge is an IT OpEx cost (pay-as-you-go), whereas the CapEx and the service infra-●

structure is the responsibility of the provider.

 Costs are commensurate to usage and hence more easily controlled with respect to business demand ●

and outcomes.

Such services are typically implemented as “microservices,” which are accessed via REST APIs.

This architectural style supports composition of service components into systems. Access to

and management of aaS assets is via a web GUI and/or APIs, such that Infrastructure-as-code

(IaC) techniques can be used for automation, for example, Ansible and Terraform.

The provider can be any entity capable of implementing an aaS “cloud-native” architecture. The

cloud-native architecture concept is well-documented and supported by open-source software

and a rich ecosystem of services such as training and consultancy. The provider can be an

internal IT department or any of many third-party companies using and supporting the same

open-source platforms.

Service access control, integrated with corporate IAM, can be mapped to specific users and

business activities, enabling consistent policy controls across services, wherever they are

delivered from.

© 2024 Cisco and/or its affiliates. All rights reserved. Page 123 of 128

Ansible An infrastructure automation tool, used to implement processes for instantiating and configuring

IT service components, such as VMs on an IaaS platform. Supports the consistent execution of

processes defined in YAML “playbooks” at scale, across multiple targets. Because the Ansible

artefacts (playbooks) are text-based, they can be stored in a Source Code Management (SCM)

system, such as GitHub. This allows for software development like processes to be applied to

infrastructure automation, such as, Infrastructure-as-code (see IaC below).

https://www.ansible.com

AWS

(Amazon Web Services)

Provider of IaaS and PaaS.

https://aws.amazon.com

Azure Microsoft IaaS and PaaS.

https://azure.microsoft.com/en-gb/

Co-located data center “A colocation center (CoLo)…is a type of data center where equipment, space, and bandwidth

are available for rental to retail customers. Colocation facilities provide space, power, cooling,

and physical security for the server, storage, and networking equipment of other firms and also

connect them to a variety of telecommunications and network service providers with a minimum

of cost and complexity.”

https://en.wikipedia.org/wiki/Colocation_centre

https://www.ansible.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-gb/
https://en.wikipedia.org/wiki/Colocation_centre

© 2024 Cisco and/or its affiliates. All rights reserved. Page 124 of 128

Containers

(Docker)

A (Docker) container is a means to create a package of code for an application and its

dependencies, such that the application can run on different platforms which support the Docker

environment. In the context of aaS, microservices are typically packaged within Linux containers

orchestrated by Kubernetes (K8s).

https://www.docker.com

https://www.cisco.com/c/en/us/products/cloud-systems-management/containerplatform/index.html

DevOps The underlying principle of DevOps is that the application development and operations teams

should work closely together, ideally within the context of a toolchain that automates the stages

of development, test, deployment, monitoring, and issue handling. DevOps is closely aligned

with IaC, continuous integration and deployment (CI/CD), and Agile software development

practices.

https://en.wikipedia.org/wiki/DevOps

https://en.wikipedia.org/wiki/CI/CD

Edge compute Edge compute is the idea that it can be more efficient to process data at the edge of a network,

close to the endpoints that originate that data, or to provide virtualized access services, such as

at the network edge. This could be for reasons related to low latency response, reduction of the

amount of unprocessed data being transported, efficiency of resource utilization, and so on. The

generic label for this is Multi-access Edge Computing (MEC), or Mobile Edge Computing for

mobile networks specifically.

From an application experience perspective, it is important to be able to utilize, at the edge, the

same operations model, processes, and tools used for any other compute node in the system.

https://en.wikipedia.org/wiki/Mobile_edge_computing

IaaS

(Infrastructure as-a-Service)

Infrastructure components provided aaS, located in data centers operated by a provider,

typically accessed over the public Internet. IaaS provides a base platform for the deployment of

workloads, typically with containers and Kubernetes (K8s).

IaC

(Infrastructure as-Code)

Given the ability to automate aaS via APIs, the implementation of the automation is typically via

Python code, Ansible playbooks, and similar. These automation artefacts are programming code

that define how the services are consumed. As such, they can be subject to the same code

management and software development regimes as any other body of code. This means that

infrastructure automation can be subject to all of the quality and consistency benefits, CI/CD,

traceability, automated testing, compliance checking, and so on, that could be applied to any

coding project.

https://en.wikipedia.org/wiki/Infrastructure_as_code

IAM

(Identity and Access

Management)

IAM is the means to control access to IT resources so that only those explicitly authorized to

access given resources can do so. IAM is an essential foundation to a secure multicloud

environment.

https://en.wikipedia.org/wiki/Identity_management

IBM

(Cloud)

IBM IaaS and PaaS.

https://www.ibm.com/cloud

https://www.docker.com/
https://www.cisco.com/c/en/us/products/cloud-systems-management/containerplatform/index.html
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/CI/CD
https://en.wikipedia.org/wiki/Mobile_edge_computing
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://en.wikipedia.org/wiki/Identity_management
https://www.ibm.com/cloud

© 2024 Cisco and/or its affiliates. All rights reserved. Page 125 of 128

Intersight Cisco Intersight™ is a Software-as-a-Service (SaaS) infrastructure lifecycle management

platform that delivers simplified configuration, deployment, maintenance, and support.

https://www.cisco.com/c/en/us/products/servers-unified-computing/intersight/index.html

GCP

(Google Cloud Platform)

Google IaaS and PaaS.

https://cloud.google.com/gcp

Kubernetes

(K8s)

Kubernetes is an open-source system for automating deployment, scaling, and management of

containerized applications.

https://kubernetes.io

Microservices A microservices architecture is characterized by processes implementing fine-grained services,

typically exposed via REST APIs and which can be composed into systems. The processes are

often container-based, and the instantiation of the services often managed with Kubernetes.

Microservices managed in this way are intrinsically well suited for deployment into IaaS

environments, and as such, are the basis of a cloud native architecture.

https://en.wikipedia.org/wiki/Microservices

PaaS

(Platform-as-a-Service)

PaaS is a layer of value-add services, typically for application development, deployment,

monitoring, and general lifecycle management. The use of IaC with IaaS and PaaS is very closely

associated with DevOps practices.

Private on-premises

data center

A data center infrastructure housed within an environment owned by a given enterprise is

distinguished from other forms of data center, with the implication that the private data center is

more secure, given that access is restricted to those authorized by the enterprise. Thus,

circumstances can arise where very sensitive IT assets are only deployed in a private data

center, in contrast to using public IaaS. For many intents and purposes, the underlying

technology can be identical, allowing for hybrid deployments where some IT assets are privately

deployed but also accessible to other assets in public IaaS. IAM, VPNs, firewalls, and similar are

key technologies needed to underpin the security of such an arrangement.

REST API Representational State Transfer (REST) APIs is a generic term for APIs accessed over HTTP(S),

typically transporting data encoded in JSON or XML. REST APIs have the advantage that they

support distributed systems, communicating over HTTP, which is a well-understood protocol

from a security management perspective. REST APIs are another element of a cloud-native

applications architecture, alongside microservices.

https://en.wikipedia.org/wiki/Representational_state_transfer

SaaS

(Software-as-a-Service)

End-user applications provided “aaS” over the public Internet, with the underlying software

systems and infrastructure owned and managed by the provider.

SAML

(Security Assertion

Markup Language)

Used in the context of Single-Sign-On (SSO) for exchanging authentication and authorization

data between an identity provider, typically an IAM system, and a service provider (some form of

SaaS). The SAML protocol exchanges XML documents that contain security assertions used by

the aaS for access control decisions.

https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language

https://www.cisco.com/c/en/us/products/servers-unified-computing/intersight/index.html
https://cloud.google.com/gcp
https://kubernetes.io/
https://en.wikipedia.org/wiki/Microservices
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language

© 2024 Cisco and/or its affiliates. All rights reserved. Page 126 of 128

Terraform An open-source IaC software tool for cloud services, based on declarative configuration files.

https://www.terraform.io

https://www.terraform.io/

© 2024 Cisco and/or its affiliates. All rights reserved. Page 127 of 128

Feedback

For comments and suggestions about this guide and related guides, join the discussion on Cisco Community at

https://cs.co/en-cvds.

CVD Program

ALL DESIGNS, SPECIFICATIONS, STATEMENTS, INFORMATION, AND RECOMMENDATIONS (COLLECTIVELY,

"DESIGNS") IN THIS MANUAL ARE PRESENTED "AS IS," WITH ALL FAULTS. CISCO AND ITS SUPPLIERS DIS-

CLAIM ALL WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE WARRANTY OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING,

USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT,

SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR

LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THE DESIGNS, EVEN IF CISCO OR

ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE DESIGNS ARE SUBJECT TO CHANGE WITHOUT NOTICE. USERS ARE SOLELY RESPONSIBLE FOR THEIR

APPLICATION OF THE DESIGNS. THE DESIGNS DO NOT CONSTITUTE THE TECHNICAL OR OTHER PROFES-

SIONAL ADVICE OF CISCO, ITS SUPPLIERS OR PARTNERS. USERS SHOULD CONSULT THEIR OWN TECHNICAL

ADVISORS BEFORE IMPLEMENTING THE DESIGNS. RESULTS MAY VARY DEPENDING ON FACTORS NOT TESTED

BY CISCO.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco WebEx,

the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play,

and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To

You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork

Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Uni-

fied Computing System (Cisco UCS), Cisco UCS B-Series Blade Servers, Cisco UCS C-Series Rack Servers,

Cisco UCS S-Series Storage Servers, Cisco UCS Manager, Cisco UCS X-Series, Cisco UCS Management Soft-

ware, Cisco Unified Fabric, Cisco Application Centric Infrastructure, Cisco Nexus 9000 Series, Cisco Nexus 7000

Series. Cisco Prime Data Center Network Manager, Cisco NX-OS Software, Cisco MDS Series, Cisco Unity,

Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing,

FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study, LightStream, Linksys, MediaTone,

MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow,

PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, SE1tackWise, The Fast-

est Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trade-marks of

Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries. (LDW_P7)

All other trademarks mentioned in this document or website are the property of their respective owners. The use

of the word partner does not imply a partnership relationship between Cisco and any other company. (0809R)

https://cs.co/en-cvds
https://cs.co/en-cvds

© 2024 Cisco and/or its affiliates. All rights reserved. Page 128 of 128

