SGT Inline Tagging

March 30, 2018

This section includes the following topics:

- Information About SGT Inline Tagging, page 9-1
- Configuring SGT Inline Tagging, page 9-4
- Configuration Examples for SGT Inline Tagging, page 9-5
- Feature Information for SGT Inline Tagging, page 9-6

Information About SGT Inline Tagging

Overview of SGT Inline Tagging

Each security group in a Cisco TrustSec domain is assigned a unique 16 bit tag called the Security Group Tag (SGT). The SGT is a single label indicating the privileges of the source within the entire network. It is in turn propagated between network hops allowing any intermediary devices (switches, routers) to enforce policies based on the identity tag.

Cisco TrustSec-capable devices have built-in hardware capabilities that can send and receive packets with SGT embedded in the MAC (L2) layer. This feature is called Layer 2 (L2)-SGT Imposition. It allows Ethernet interfaces on the device to be enabled for L2-SGT imposition so that the device can insert an SGT in the packet to be carried to its next hop Ethernet neighbor. SGT-over-Ethernet is a method of hop-by-hop propagation of SGT embedded in clear-text (unencrypted) Ethernet packets. The inline identity propagation is scalable, provides near line-rate performance and avoids control plane overhead.

The Cisco TrustSec with SGT Exchange Protocol V4 (SXPv4) feature supports Cisco TrustSec metadata-based L2-SGT. When a packet enters a Cisco TrustSec-enabled interface, the IP-SGT mapping database (with dynamic entries built by SXP and/or static entries built by configuration commands) is analyzed to learn the SGT corresponding to the source IP address of the packet, which is then inserted into the packet and carried throughout the network within the Cisco TrustSec header.

As the tag represents the group of the source, the tag is also referred to as the Source Group Tag (SGT). At the egress edge of the network, the group assigned to the packet's destination becomes known. At this point, access control can be applied. With Cisco TrustSec, access control policies are defined between the security groups and are referred to as Security Group Access Control Lists (SGACL). From the view of any given packet, SGACL is simply being sourced from a security group and destined for another security group.
The SGT tag received in a packet from a trusted interface is propagated to the network, and is also used for Identity firewall classification. When IPsec support is added, the received SGT tag is shared with IPsec for SGT tagging.

A network device at the ingress of Cisco TrustSec cloud needs to determine the SGT of the packet entering the Cisco TrustSec cloud so that it can tag the packet with that SGT when it forwards it into the Cisco TrustSec cloud. The SGT of a packet can be determined with these methods:

SGT field on Cisco TrustSec header: If a packet is coming from a trusted peer device, it is assumed that the Cisco TrustSec header carries the correct SGT field. This situation applies to a network that is not the first network device in the Cisco TrustSec cloud for the packet.

SGT lookup based on source IP address: In some cases, the administrator may manually configure a policy to decide the SGT of a packet based upon the source IP address. An IP address to SGT table can also be populated by the SXP protocol.

L2 Inline Tagging is supported for IPv6 multicast traffic with unicast source IPv6 addresses.

SGT Inline Tagging on a NAT Enabled Device

Note

This section is applicable only for Cisco Catalyst 9000 Series Switches beginning from Cisco IOS XE 16.8.x release.

The following scenarios explain how SGT is determined for a packet that flows from a primary device, which has Network Address Translation (NAT) enabled on both ingress and egress ports, to a secondary device:

Note

All ports that are used for the flow must have CTS manual and trusted configured on both devices.

- **If inline tagging is enabled between both devices and SGT tag is not changed with CLI:**

 In this case, on the primary device Cisco TrustSec is enforced on the SGT tag corresponding to the packet’s source IP. The same SGT tag is tagged to the NAT IP. On the secondary device, Cisco TrustSec is enforced on the SGT tag corresponding to the packet’s source IP also.

 For example, a packet is received on the primary device with a source IP 192.0.2.5 and SGT tag 133. Cisco TrustSec is enforced for the SGT tag 133 on the primary device. After NAT translation the packet’s IP changes to 198.51.100.10 and tagged to the SGT tag 133. On the secondary device, the packet is received with IP address 198.51.100.10 and SGT tag 133. Cisco TrustSec is enforced with SGT tag 133 on the secondary device.

- **If inline tagging is enabled between both devices and SGT tag is changed with CLI:**

 In this case, on the primary device Cisco TrustSec is enforced on the SGT tag corresponding to the packet’s source IP. The SGT tag is changed by CLI but the SGT tag corresponding to the packets’s source IP is tagged to the packet’s NAT IP. On the secondary device, Cisco TrustSec is enforced on the SGT tag corresponding to the packet’s source IP also.

 For example, a packet is received on the primary device with a source IP 192.0.2.5 and SGT tag 133. Cisco TrustSec is enforced for the SGT tag 133 on the primary device. The SGT tag is changed to 200 with CLI. After NAT translation the packet’s IP changes to 198.51.100.10 but tagged to the SGT tag 133. On the secondary device, the packet is received with IP address 198.51.100.10 and SGT tag 133. Cisco TrustSec is enforced on the SGT tag 133 on the secondary device.
• If inline tagging is disabled (SGT is populated through SXP protocol on the secondary device) and SGT tag is changed with CLI:

In this case, on the primary device Cisco TrustSec is enforced on the SGT tag corresponding to the packet's source IP. The SGT to Post Nat IP is defined through CLI and is learnt on the primary device. On the secondary device, Cisco TrustSec is enforced on the SGT tag corresponding to the NAT IP, if there is no direct Cisco TrustSec link between primary and secondary device and IP to SGT bindings are learnt through SXP in secondary device.

For example, a packet is received on the primary device with a source IP 192.0.2.5 and SGT tag 133. After NAT translation the source IP changes to 198.51.100.10, for which the SGT is defined through CLI as 200. Cisco TrustSec is enforced for the SGT tag 133 on the primary device. On the secondary device, IP to SGT binding is received through SXP and Cisco TrustSec is enforced on the SGT tag 200 on the secondary device.
Configuring SGT Inline Tagging

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Device# <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>- Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2 Device# <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 Device(config)# `interface {gigabitethernet port</td>
<td>vlan number}`</td>
</tr>
<tr>
<td>Step 4 Device(config-if)# <code>cts manual</code></td>
<td>Enables Cisco TrustSec SGT authorization and forwarding on the interface, and enters Cisco TrustSec manual interface configuration mode.</td>
</tr>
<tr>
<td>Step 5 Device(config-if-cts-manual)# <code>propagate sgt</code></td>
<td>Enables Cisco TrustSec SGT propagation on an interface.</td>
</tr>
<tr>
<td>- Use this command in situations where the peer device is not capable of receiving SGT over Ethernet packets (that is, when a peer device does not support Cisco Ethertype CMD 0x8909 frame format).</td>
<td></td>
</tr>
<tr>
<td>Step 6 Device(config-if-cts-manual)# <code>policy static sgt tag [trusted]</code></td>
<td>Configures a static SGT ingress policy on the interface and defines the trustworthiness of an SGT received on the interface.</td>
</tr>
</tbody>
</table>

Note The `trusted` keyword indicates that the interface is trustworthy for Cisco TrustSec. The SGT value received in the Ethernet packet on this interface is trusted and will be used by the device for any SG-aware policy enforcement or for the purpose of egress-tagging.
Example: SGT Static Inline Tagging

This example shows how to enable an interface on the device for L2-SGT tagging or imposition and defines whether the interface is trusted for Cisco TrustSec.

```
Device# configure terminal
Device(config)# interface gigabitethernet 1/0/1
Device(config-if)# cts manual
Device(config-if-cts-manual)# propagate sgt
Device(config-if-cts-manual)# policy static sgt 77 trusted
```

Configuration Examples for SGT Inline Tagging

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>Device(config-if-cts-manual)# end</td>
</tr>
<tr>
<td></td>
<td>Exits Cisco TrustSec manual interface configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Device# show cts interface brief</td>
</tr>
<tr>
<td></td>
<td>Displays Cisco TrustSec configuration statistics for the interface.</td>
</tr>
</tbody>
</table>

Step 7

```
Device(config-if-cts-manual)# end
```

Exits Cisco TrustSec manual interface configuration mode and enters privileged EXEC mode.

Step 8

```
Device# show cts interface brief
```

Displays Cisco TrustSec configuration statistics for the interface.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Cisco TrustSec is enabled, mode:</th>
<th>Propagate SGT</th>
<th>Peer SGT assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet Gi1/0/1</td>
<td>MANUAL</td>
<td>Enabled</td>
<td>Trusted</td>
</tr>
<tr>
<td>Gigabit Ethernet Gi1/0/1</td>
<td>MANUAL</td>
<td>Disabled</td>
<td>Untrusted</td>
</tr>
<tr>
<td>Gigabit Ethernet 0/3</td>
<td>Cisco TrustSec is disabled.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Feature Information for SGT Inline Tagging

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 9-1 Feature Information for SGT Inline Tagging

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGT Inline Tagging -IPv6 enablement</td>
<td>Cisco IOS XE</td>
<td>Each security group in a Cisco TrustSec domain is assigned a unique 16 bit tag called the Security Group Tag (SGT). The SGT is a single label indicating the privileges of the source within the entire network. It is in turn propagated between network hops allowing any intermediary devices (switches, routers) to enforce polices based on the identity tag. This feature was introduced.</td>
</tr>
<tr>
<td></td>
<td>Fuji 16.8.1</td>
<td></td>
</tr>
</tbody>
</table>