Introduction

This chapter contains the following sections:

• Product Notes, on page 2
• Overview, on page 3
• User Privilege Levels, on page 4
• CLI Command Modes, on page 5
• Interfaces for Debug Access, on page 7
• Accessing the CLI, on page 8
• CLI Command Conventions, on page 10
• Editing Features, on page 11
• Interface Naming Conventions, on page 13
• IPv6z Address Conventions, on page 15
• Loopback Interface, on page 16
• Remote IP Address and OOB Port, on page 18
• PHY Diagnostics, on page 19
• CLI Output Modifiers, on page 20
This CLI guide provides CLI commands and guidelines for the CBS350 Stacking Product Line. This Product line supports 2 "sub-types" - the devices in the first sub-type support 10GigabitEthernet on all ports, the devices of the 2nd subtype support 10GigabitEthernet only on the uplink ports. Besides a few CLI commands, which will be mentioned below, the CLI commands included in this document can be applied to both "subtypes". Following are the notes and differences in CLI command support in regards to these product lines:

• Ports types—
 • The "all 10G" port subtype support ports with TengigabitEthernet (XG) speed.
 • The "10G uplink" port subtype can support different network ports type of: Gigabitethernet (GE), 2.5 Gigabit Ethernet (TW) and 5 Gigabit Ethernet (FI); In addition these devices support 4 XG uplink ports.

CLI examples in this document use the GE port type in examples, but the same commands can be applied to TW, FI or XG port types, unless there is a difference in feature implementation between port types.

• Speed and negotiation settings—Each port type supports the negotiation and speed setting relevant to the port type. For example a GE interface does not support speed or negotiation of 10G interface.

• OOB interface—The "all 10G" port subtype supports an OOB interface, while the "10G uplink port subtype does not. Therefore, OOB as a configurable interface is relevant only to the "all 10G" port subtype. For devices that support OOB -- DHCP client and default IP address (192.168.1.254) are applied to the OOB port and not to the default VLAN.

• Power Over Ethernet—PoE is supported on some of the "10G uplink" port subtype devices and not on the "all 10G" port subtype devices. Therefore PoE commands are relevant only to the "10G uplink" port subtype.

• Stacking—On both subtypes only 10G interfaces can be defined as stacking interfaces. Short reach and energy detect—Short Reach is always enabled on the "all 10G" port subtype devices and TW and FI ports (all SKUs); Energy Detect is always enabled on XG ports of the "all 10G" port subtype devices; For all other interface types- both of these features can be enabled or disabled (default is disabled).

• MAC address aging time—The maximum value for "all 10G" port subtype devices is 630 seconds, while the maximum value for "10G uplink" port subtype devices and Hybrid mode stack is 400 seconds. The default value for both subtypes is the same – 300 seconds.

• IPv6 tunnels—IPv6 Manual, 6to4 and ISATAP routing tunnels are supported on the "all 10G" port subtype devices, and are not supported on "10G uplink" port subtype devices.

• System Router Resources—The default values stated in command are for the "10G uplink" port subtype devices. The "all 10G" port subtype devices supports the following default values:
 • policy-ip-entries—16
 • policy-ipv6-entries—16
 • VLAN mapping entries —32
Overview

The CLI is divided into various command modes. Each mode includes a group of commands. These modes are described in CLI Command Modes, on page 5.

Users are assigned privilege levels. Each user privilege level can access specific CLI modes. User levels are described in the section below.
User Privilege Levels

Users can be created with one of the following user levels:

- **Level 1**—Users with this level can only run User EXEC mode commands. Users at this level cannot access the web GUI or commands in the Privileged EXEC mode.

- **Level 7**—Users with this level can run commands in the User EXEC mode and a subset of commands in the Privileged EXEC mode. Users at this level cannot access the web GUI.

- **Level 15**—Users with this level can run all commands. Only users at this level can access the web GUI.

A system administrator (user with level 15) can create passwords that allow a lower level user to temporarily become a higher level user. For example, the user may go from level 1 to level 7, level 1 to 15, or level 7 to level 15.

The passwords for each level are set (by an administrator) using the following command:

```
enable password [level privilege-level]{password|encrypted encrypted-password}
```

Using these passwords, you can raise your user level by entering the command: enable and the password for level 7 or 15. You can go from level 1 to level 7 or directly to level 15. The higher level holds only for the current session.

The disable command returns the user to a lower level.

To create a user and assign it a user level, use the username command. Only users with command level 15, can create users at this level.

Example—Create passwords for level 7 and 15 (by the administrator):

```
switchxxxxxx#configure
switchxxxxxx<conf># enable password level 7 level7@aBc
switchxxxxxx<conf># enable password level 15 level15@aBc
```

Create a user with user level 1:

```
switchxxxxxx#configure
switchxxxxxx<conf> username john password John1234 privilege 1
```

Example 2—Switch between Level 1 to Level 15. The user must know the password:

```
switchxxxxxx#
switchxxxxxx# enable
Enter Password: ****** (this is the password for level 15
= Level15@abc)
switchxxxxxx#
```

Note

If authentication of passwords is performed on RADIUS or TACACS+ servers, the passwords assigned to user level 7 and user level 15 must be configured on the external server and associated with the $enable7$ and $enable15$ user names, respectively.
CLI Command Modes

The CLI is divided into four command modes. The command modes are (in the order in which they are accessed):

- User EXEC mode
- Privileged EXEC mode
- Global Configuration mode

Each command mode has its own unique console prompt and set of CLI commands. Entering a question mark at the console prompt displays a list of available commands for the current mode and for the level of the user. Specific commands are used to switch from one mode to another.

Users are assigned privilege levels that determine the modes and commands available to them.

User EXEC Mode

Users with level 1 initially log into User EXEC mode. User EXEC mode is used for tasks that do not change the configuration, such as performing basic tests and listing system information.

The user-level prompt consists of the switch host name followed by a #. The default host name is switchxxxxxx where xxxxxx is the last six digits of the device’s MAC address, as shown below

switchxxxxxx#

The default host name can be changed via the hostname command in Global Configuration mode.

Privileged EXEC Mode

A user with level 7 or 15 automatically logs into Privileged EXEC mode.

Users with level 1 can enter Privileged Exec mode by entering the enable command, and when prompted, the password for level 15.

To return from the Privileged EXEC mode to the User EXEC mode, use the disable command

Global Configuration Mode

The Global Configuration mode is used to run commands that configure features at the system level, as opposed to the interface level.

Only users with command level of 7 or 15 can access this mode.

To access Global Configuration mode from Privileged EXEC mode, enter the configure command at the Privileged EXEC mode prompt and press Enter. The Global Configuration mode prompt, consisting of the device host name followed by (config)#, is displayed:

switchxxxxxx(config)#

Use any of the following commands to return from Global Configuration mode to the Privileged EXEC mode:

- exit
- end
- Ctrl+Z
The following example shows how to access Global Configuration mode and return to Privileged EXEC mode:

```
switchxxxxxx#
switchxxxxxx# configure
switchxxxxxx(config)# exit
switchxxxxxx#
```

Interface or Line Configuration Modes

Various submodes may be entered from Global Configuration mode. These submodes enable performing commands on a group of interfaces or lines.

For instance to perform several operations on a specific port or range of ports, you can enter the Interface Configuration mode for that interface.

The following example enters Interface Configuration mode for vlan1 and then sets their speed:

```
The exit command returns to Global Configuration mode.
```

```
switcxxxxxx#
switchxxxxxx# configure
switchxxxxxx(config)# interface range vlan1
switchxxxxxx(config-if)# speed 10
switchxxxxxx(config-if)#exit
switchxxxxxx(config)#
```

The following is a sample of some of the available submodes:

- **Interface**—Contains commands that configure a specific interface (port, VLAN, port channel, or tunnel) or range of interfaces. The Global Configuration mode command interface is used to enter the Interface Configuration mode. The interface Global Configuration command is used to enter this mode.

- **Line Interface**—Contains commands used to configure the management connections for the console, Telnet and SSH. These include commands such as line timeout settings, etc. The line Global Configuration command is used to enter the Line Configuration command mode.

- **VLAN Database**—Contains commands used to configure a VLAN as a whole. The vlan database Global Configuration mode command is used to enter the VLAN Database Interface Configuration mode.

- **Management Access List**—Contains commands used to define management access-lists. The management access-list Global Configuration mode command is used to enter the Management Access List Configuration mode.

- **MAC Access-List, IPv6 Access List, IP Access List**—Configures conditions required to allow traffic based on MAC addresses, IPv6 address and IPv4 address, respectively. The mac access-list, ipv6 access-list and ip access-list Global Configuration mode commands are used to enter the these configuration mode.

To return from any Interface Configuration mode to the Global Configuration mode, use the exit command.
Interfaces for Debug Access

In addition to the standard CLI interface modes detailed above, the device supports additional interfaces for device debug access. These interfaces are intended to be used by a Cisco Support Team personnel, in cases where it is required to debug device’s behavior. These interfaces are password protected. The passwords are held by the Cisco support team.

The device supports the following debug interfaces:

• U-BOOT access during boot sequence (access is possible only via serial console terminal)
• Linux Kernel access during boot sequence (access is possible only via serial console terminal)
• Run time debug modes - allows Cisco Support Team personnel to view device settings, and to apply protocol and layer 1 debug commands and settings (access is possible via serial, telnet or SSH console terminal)
Accessing the CLI

The CLI can be accessed from a terminal or computer by performing one of the following tasks:

- Running a terminal application, such as HyperTerminal, on a computer’s com port that is directly connected to the switch’s console port, or
- Running a Telnet session from a command prompt on a computer with a network connection to the switch.
- Using SSH from an application that supports SSH client running on a computer with a network connection to the switch.

Note
Telnet and SSH are disabled by default on the switch.

If access is via a Telnet or SSH connection, ensure that the following conditions are met before using CLI commands:

- The switch has a defined IP address
- Corresponding management access is enabled.
- There is an IP path such that the computer and the switch can reach each other

Using HyperTerminal over the Console Interface

Some of the devices in this product line support a single RJ45 console management interface, while other devices in this product line support a dual console management interface - mini USB and an RJ45 port. The RJ45 interface provides a direct connection to a computer’s serial port using a standard DB-9 null-modem or crossover cable. If Both min USB and RJ45 are connected, on the devices that support dual management interfaces, the mini USB interface has precedence

Note
Mini USB interface will become active a few seconds after device is turned on/rebooted

After the computer and switch are connected, run a terminal application to access the CLI. The terminal emulator must be configured to databits=8 and parity=None.

Click Enter twice, so that the device sets the serial port speed to match the PC’s serial port speed.

When the CLI appears, enter cisco at the User Name prompt and then enter cisco for the Password prompt.

Note
If this is the first time that you have logged on with the default username and password, the device will display a prompt to change username and Password. The new password needs to comply to password complexity rules.

The switchxxxxxx# prompt is displayed. You can now enter CLI commands to manage the switch. For detailed information on CLI commands, refer to the appropriate chapter(s) of this reference guide.
Using Telnet over an Ethernet Interface

Telnet provides a method of connecting to the CLI over an IP network.

To establish a telnet session from the command prompt, perform the following steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Click Start, then select All Programs > Accessories > Command Prompt to open a command prompt.</td>
</tr>
<tr>
<td>Step 2</td>
<td>At the prompt, enter <code>telnet 1<IP address of switch></code>, then press Enter.</td>
</tr>
<tr>
<td>Step 3</td>
<td>CLI will be displayed.</td>
</tr>
<tr>
<td>Step 4</td>
<td>When the CLI appears, enter the defined username at the User Name prompt and then enter the defined password at the Password prompt. The switchxxxxxx# prompt is displayed. You can now enter CLI commands to manage the switch.</td>
</tr>
</tbody>
</table>

For detailed information on CLI commands, refer to the appropriate chapter(s) of this reference guide.
CLI Command Conventions

When entering commands there are certain command entry standards that apply to all commands. The following table describes the command conventions.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>In a command line, square brackets indicate an optional entry.</td>
</tr>
<tr>
<td>{}</td>
<td>In a command line, curly brackets indicate a selection of compulsory parameters separated by the</td>
</tr>
<tr>
<td>""" (inverted commas)</td>
<td>When the input string contains space and/or reserved words (i.e. VLAN), put the string in inverted commas.</td>
</tr>
<tr>
<td>parameter</td>
<td>Italic text indicates a parameter.</td>
</tr>
<tr>
<td>press key</td>
<td>Names of keys to be pressed are shown in bold.</td>
</tr>
<tr>
<td>Ctrl+F4</td>
<td>Keys separated by the + character are to be pressed simultaneously on the keyboard.</td>
</tr>
<tr>
<td>Screen Display</td>
<td>Fixed-width font indicates CLI prompts, CLI commands entered by the user, and system messages displayed on the console.</td>
</tr>
<tr>
<td>all</td>
<td>When a parameter is required to define a range of ports or parameters and all is an option, the default for the command is all when no parameters are defined. For example, the command interface range port-channel has the option of either entering a range of channels, or selecting all. When the command is entered without a parameter, it automatically defaults to all.</td>
</tr>
<tr>
<td>text</td>
<td>When free text can be entered as a parameter for a command (for example in command: snmp-server contact) if the text consists of multiple words separated by blanks, the entire string must appear in double quotes. For example: snmp-server contact "QA on floor 8"</td>
</tr>
</tbody>
</table>
Editing Features

Entering Commands

A CLI command is a series of keywords and arguments. Keywords identify a command, and arguments specify configuration parameters. For example, in the command `show interfaces status Gigabitethernet 1`, `show`, `interfaces` and `status` are keywords, `Gigabitethernet` is an argument that specifies the interface type, and `1` specifies the port.

To enter commands that require parameters, enter the required parameters after the command keyword. For example, to set a password for the administrator, enter:

```
switchxxxxxx(config)# username admin password Alansmith1
```

When working with the CLI, the command options are not displayed. The standard command to request help is `?`.

There are two instances where help information can be displayed:

- Keyword lookup — The character `?` is entered in place of a command. A list of all valid commands and corresponding help messages are displayed.
- Partial keyword lookup — If a command is incomplete and/or the character `?` is entered in place of a parameter, the matched keyword or parameters for this command are displayed.

Terminal Command Buffer

Every time a command is entered in the CLI, it is recorded on an internally managed Command History buffer. Commands stored in the buffer are maintained on a First In First Out (FIFO) basis. These commands can be recalled, reviewed, modified, and reissued. This buffer is not preserved across device resets.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-Arrow key</td>
<td>Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Down-Arrow key</td>
<td>Returns to more recent commands in the history buffer after recalling commands with the up-arrow key. Repeating the key sequence will recall successively more recent commands.</td>
</tr>
</tbody>
</table>

By default, the history buffer system is enabled, but it can be disabled at any time. For more information on enabling or disabling the history buffer, refer to the history command.

There is a standard default number of commands that are stored in the buffer. The standard number of 10 commands can be increased to 216. By configuring 0, the effect is the same as disabling the history buffer system. For more information on configuring the command history buffer, refer to the `history size` command.

To display the history buffer, refer to the `show history` command.

Negating the Effect of Commands

For many configuration commands, the prefix keyword `no` can be entered to cancel the effect of a command or reset the configuration to the default value. This Reference Guide provides a description of the negation effect for each CLI command.
Command Completion

If the command entered is incomplete, invalid or has missing or invalid parameters, then the appropriate error message is displayed. This assists in entering the correct command. By pressing Tab after an incomplete command is entered, the system will attempt to identify and complete the command. If the characters already entered are not enough for the system to identify a single matching command, press ? to display the available commands matching the characters already entered.

Keyboard Shortcuts

The CLI has a range of keyboard shortcuts to assist in editing the CLI commands. The following table describes the CLI shortcuts.

<table>
<thead>
<tr>
<th>Keyboard Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-arrow</td>
<td>Recalls commands from the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Down-arrow</td>
<td>Returns the most recent commands from the history buffer after recalling commands with the up arrow key. Repeating the key sequence will recall successively more recent commands.</td>
</tr>
<tr>
<td>Ctrl+A</td>
<td>Moves the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl+E</td>
<td>Moves the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Ctrl+Z / End</td>
<td>Returns back to the Privileged EXEC mode from any configuration mode.</td>
</tr>
<tr>
<td>Backspace</td>
<td>Deletes one character left to the cursor position.</td>
</tr>
</tbody>
</table>

Copying and Pasting Text

Up to 1000 lines of text (or commands) can be copied and pasted into the device.

Note

It is the user’s responsibility to ensure that the text copied into the device consists of legal commands only.

When copying and pasting commands from a configuration file, make sure that the following conditions exist:

- A device Configuration mode has been accessed.

The commands contain no encrypted data, like encrypted passwords or keys. Encrypted data cannot be copied and pasted into the device except for encrypted passwords where the keyword encrypted is used before the encrypted data (for instance in the enable password command).
Interface Naming Conventions

Interfaces on the device can be one of the following types:

- Gigabit Ethernet (10/100/1000 kbits) ports—These can be written as either GigabitEthernet or gi or GE.

- 2.5 Gigabit Ethernet (10/100/1000/25000 kbits) ports—These can be written as either TwoPointFiveGigabitEthernet or tw.

- 5 Gigabit Ethernet (10/100/1000/25000/50000 kbits) ports—These can be written as either FiveGigabitEthernet or fi.

- LAG (Port Channel)—Written as either Port-Channel or po.

- VLAN—Written as VLAN

- Tunnel—Written as tunnel or tu

- OOB—Written as OutOfBand or oob

Within the CLI, interfaces are denoted by concatenating the following elements:

- Type of Interface—As described above
- Unit Number—Unit in stack.
- Slot Number—The slot number is always 0.
- The syntax for interface names in stacking mode is:
 \{<port-type>[][<unit-number>/]<slot-number>/<port-number>\} | {port-channel | po | <port-channel-number> | {tunnel | tu}[]<tunnel-number> | vlan[]<vlan-id}
- Interface Number—Port, LAG, tunnel or VLAN numbers

Samples of these various options are shown in the example below:

```
switchxxxxxx(config)#interface GigabitEthernet 1
switchxxxxxx(config)#interface GE 1
switchxxxxxx(config)#interface TwoPointFiveGigabitEthernet
switchxxxxxx(config)#interface po 1
switchxxxxxx(config)# interface vlan 1
```

Interface Range

Interfaces may be described on an individual basis or within a range. The interface range command has the following syntax:

```
<interface-range> ::=  
{|<port-type>[
][<unit-number>/]<slot-number>/<first-port-number>[ -
<last-port-number>]} | 
port-channel[ ]<first-port-channel-number>[ -
```
<last-port-channel-number> | tunnel []<first-tunnel-number>[-<last-tunnel-number>] | vlan []<first-vlan-id>[-<last-vlan-id>]

A sample of this command is shown in the example below:

switchxxxxxx#configure
switchxxxxxx(config-if)#interface range gi1-5g

List of Multiple Interface Types

A combination of interface types can be specified in the interface range command in the following format:

<range-list> ::= <interface-range> | <range-list>, <interface-range>

Up to five ranges can be included.

Note

Range lists can contain either ports and port-channels or VLANs. Combinations of port/port-channels and VLANs are not allowed.

The space after the comma is optional.

When a range list is defined, a space after the first entry and before the comma (,) must be entered.

A sample of this command is shown in the example below:

switchxxxxxx#configure
switchxxxxxx(config)#interface range gi1-5, vlan 1-2
IPv6z Address Conventions

The following describes how to write an IPv6z address, which is a link-local IPv6 address.

The format is: `<ipv6-link-local-address>%<egress-interface>`

where:

`egress-interface` (also known as zone) = vlan<vlan-id> | po<number> | tunnel<number> | port<number> | 0

If the egress interface is not specified, the default interface is selected. Specifying `egress interface = 0` is equal to not defining an egress interface.

The following combinations are possible:

- `ipv6_address%egress-interface`—Refers to the IPv6 address on the interface specified.
- `ipv6_address%0`—Refers to the IPv6 address on the single interface on which an IPv6 address is defined.
- `ipv6_address`—Refers to the IPv6 address on the single interface on which an IPv6 address is defined.
Loopback Interface

When an IP application on a router wants to communicate with a remote IP application, it must select the local IP address to be used as its IP address. It can use any IP address defined on the router, but if this link goes down, the communication is aborted, even though there might well be another IP route between these IP applications.

The loopback interface is a virtual interface whose operational state is always up. If the IP address that is configured on this virtual interface is used as the local address when communicating with remote IP applications, the communication will not be aborted even if the actual route to the remote application was changed.

The name of the loopback interface is loopback1.

A loopback interface does not support bridging; it cannot be a member of any VLAN, and no layer 2 protocol can be enabled on it.

Layer 3 Specification

IP Interface

IPv4 and IPv6 addresses can be assigned to a loopback interface.

The IPv6 link-local interface identifier is 1.

Routing Protocols

A routing protocol running on the switch supports the advertising of the IP prefixes defined on the loopback interfaces via the routing protocol redistribution mechanism.

Configuration Examples

Static Routing

The following example shows you how to configure IP on a switch with static routing:

```
Switch# configure terminal
Switch(config)# interface vlan 1
Switch(config-if)# ip address 10.10.10.2 /24
Switch(config-if)# ipv6 address 2001:DB8:2222:7270::2312/64
Switch(config-if)# exit
Switch(config)# interface vlan 2
Switch(config-if)# ip address 10.11.11.2 /24
Switch(config-if)# ipv6 address 2001:DB8:3333:7271::2312/64
Switch(config-if)# exit
Switch(config)# interface loopback 1
Switch(config-if)# ip address 172.25.13.2 /32
Switch(config-if)# ipv6 address 2001:DB8:2222:7272::72/128
Switch(config-if)# exit
Switch(config)# ip route 0.0.0.0/0 10.10.11.1
Switch(config)# ip route 10.11.0.0 /16 10.11.11.1
Switch(config)# ipv6 route 0::/0 2001:DB8:2222:7270::1
Switch(config)# ipv6 route 2001:DB8:3333::/48

The neighbor router 10.10.11.1 should be configured with the following static route: ip route 172.25.13.2 /32
10.10.10.2.

The neighbor router 10.11.11.1 should be configured with the following static route: ip route 172.25.13.2 /32
10.11.11.2.
```
The neighbor router 2001:DB8:2222:7270::1 connected to VLAN 1 should be configured with the following static route:

```
ipv6 route 2001:DB8:2222:7272::72/128 2001:DB8:2222:7270::2312
```

The neighbor router 2001:DB8:3333:7271::1 connected to VLAN 1 should be configured with the static route defined immediately below.

```
```
Remote IP Address and OOB Port

The switch supports an IP stack on the OutOfBand (OOB) port. This IP stack is separate from the IP stack running on the ASIC ports, and it requires specific route table configuration.

If the switch supports more than one IP interface, when you specify a remote IP address or a DNS name, you must also specify the IP stack that is being referred to.
PHY Diagnostics

The following exceptions exist:

• Copper Ports—PHY diagnostics are only supported on copper ports.

• 10G ports—TDR test is supported when the operational port speed is 10G. Cable length resolution is 20 meters.
CLI Output Modifiers

To all `show` and `more` commands (except `show technical support`) an output modifier may be added as follows:

```
<show/more command> | <output-modifier> <regular-expression-pattern>
```

The output modifiers are:

- **begin**: Start output from the first line that has a sequence of characters matching the given regular expression pattern.
- **include**: Includes only lines that have a sequence of characters matching the given regular expression pattern.
- **exclude**: Excludes all lines that have a sequence of characters matching the given regular expression pattern.
- **count**: Counts all lines that have a sequence of characters matching the given regular expression pattern and displays the result (no other output is displayed).

Only 1 output modifier can be used in each command. The remainder of the text typed in is part of the regular expression pattern.

A regular expression is a pattern (a phrase, number, or more complex pattern). The CLI String Search feature matches regular expressions to the `show` or `more` command output. Regular expressions are case-sensitive and allow for complex matching requirements.

A regular expression can be a single-character pattern or a multiple-character pattern. That is, a regular expression can be a single character that matches the same single character in the command output or multiple characters that match the same multiple characters in the command output. The pattern in the command output is referred to as a string. This section describes creating both single-character patterns and multiple-character patterns. It also discusses creating more complex regular expressions, using multipliers, alternation, anchoring, and parentheses.

Single-Character Patterns

The simplest regular expression is a single character that matches the same single character in the command output. You can use any letter (A-Z, a-z) or digit (0-9) as a single-character pattern. You can also use other keyboard characters (such as `!` or `~`) as single-character patterns, but certain keyboard characters have special meaning when used in regular expressions. The following table lists the keyboard characters that have special meanings.

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>Matches any single character, including white space.</td>
</tr>
<tr>
<td>*</td>
<td>Matches 0 or more sequences of the pattern.</td>
</tr>
<tr>
<td>+</td>
<td>Matches 1 or more sequences of the pattern.</td>
</tr>
<tr>
<td>?</td>
<td>Matches 0 or 1 occurrences of the pattern.</td>
</tr>
<tr>
<td>Character</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>^</td>
<td>Matches the beginning of the string.</td>
</tr>
<tr>
<td>$</td>
<td>Matches the end of the string.</td>
</tr>
</tbody>
</table>

To use these special characters as single-character patterns, remove the special meaning by preceding each character with a backslash (\).

The following examples are single-character patterns matching a dollar sign, an underscore, and a plus sign, respectively.
```
\$ \_ \+
```

You can specify a range of single-character patterns to match against command output. For example, you can create a regular expression that matches a string containing one of the following letters: a, e, i, o, or u. Only one of these characters must exist in the string for pattern matching to succeed. To specify a range of single-character patterns, enclose the single-character patterns in square brackets ([]). For example, [aeiou] matches any one of the five vowels of the lowercase alphabet, while [abcdABCD] matches any one of the first four letters of the lower- or uppercase alphabet.

You can simplify ranges by entering only the endpoints of the range separated by a dash (-).

Simplify the previous range as follows:
```
[a-dA-D]
```

To add a dash as a single-character pattern in your range, include another dash and precede it with a backslash:
```
[a-dA-D-d]
```

You can also include a right square bracket (]) as a single-character pattern in your range, as shown here:
```
[a-dA-D-d]]
```

The previous example matches any one of the first four letters of the lower- or uppercase alphabet, a dash, or a right square bracket. You can reverse the matching of the range by including a caret (^) at the start of the range. The following example matches any letter except the ones listed:
```
[^a-dqsv]
```

The following example matches anything except a right square bracket (]) or the letter d:
```
[^\]d]
```

Multiple-Character Patterns

When creating regular expressions, you can also specify a pattern containing multiple characters. You create multiple-character regular expressions by joining letters, digits, or keyboard characters that do not have special meaning. For example, a4% is a multiple-character regular expression.

With multiple-character patterns, order is important. The regular expression a4% matches the character a followed by a 4 followed by a % sign. If the string does not have a4%, in that order, pattern matching fails. The multiple-character regular expression a. uses the special meaning of the period character to match the letter a followed by any single character. With this example, the strings ab, a!, or a2 are all valid matches for the regular expression.

You can remove the special meaning of the period character by inserting a backslash before it. For example, when the expression a\. is used in the command syntax, only the string a. will be matched.
You can create a multiple-character regular expression containing all letters, all digits, all keyboard characters, or a combination of letters, digits, and other keyboard characters. For example, telebit 3107 v32bis is a valid regular expression.

Multipliers

You can create more complex regular expressions that instruct the system to match multiple occurrences of a specified regular expression. To do so, use some special characters with your single-character and multiple-character patterns. Table 1 lists the special characters that specify multiples of a regular expression.

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Matches 0 or more single-character or multiple-character patterns.</td>
</tr>
<tr>
<td>+</td>
<td>Matches 1 or more single-character or multiple-character patterns.</td>
</tr>
<tr>
<td>?</td>
<td>Matches 0 or 1 occurrences of a single-character or multiple-character pattern.</td>
</tr>
</tbody>
</table>

The following example matches any number of occurrences of the letter a, including none:

```
a*
```

The following pattern requires that at least one letter a be in the string to be matched:

```
a+
```

The following pattern matches the string bb or bab:

```
ba?b
```

The following string matches any number of asterisks (*):

```
\**
```

To use multipliers with multiple-character patterns, enclose the pattern in parentheses. In the following example, the pattern matches any number of the multiple-character string ab:

```
(ab)*
```

The following pattern matches one or more instances of alphanumeric pairs, but not none (that is, an empty string is not a match):

```
([A-Za-z][0-9])+
```

The order for matches using multipliers (*, +, or ?) is to put the longest construct first. Nested constructs are matched from outside to inside. Concatenated constructs are matched beginning at the left side of the construct. Thus, the regular expression above matches A9b3, but not 9Ab3 because the letters are specified before the numbers.

Alternation

Alternation allows you to specify alternative patterns to match against a string. You separate the alternative patterns with a vertical bar (|). Only one of the alternatives can match the string. For example, the regular expression `codex|telebit` either matches the string `codex` or the string `telebit`, but not both `codex` and `telebit`.
Anchoring

You can instruct the system to match a regular expression pattern against the beginning or the end of the string. You anchor these regular expressions to a portion of the string using the special characters shown in Table 2.

Table 2: Special Characters Used for Anchoring

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^</td>
<td>Matches the beginning of the string.</td>
</tr>
<tr>
<td>$</td>
<td>Matches the end of the string.</td>
</tr>
</tbody>
</table>

For example, the regular expression ^con matches any string that starts with con, and $sole matches any string that ends with sole.

In addition to indicating the beginning of a string, the ^ symbol can be used to indicate the logical function not when used in a bracketed range. For example, the expression [^abcd] indicates a range that matches any single letter, as long as it is not the letters a, b, c, or d.
802-1x Commands

This chapter contains the following sections:

- aaa authentication dot1x, on page 27
- authentication open, on page 28
- clear dot1x statistics, on page 29
- data, on page 30
- description 802.1x, on page 31
- dot1x auth-not-req, on page 32
- dot1x authentication, on page 33
- dot1x credentials, on page 34
- dot1x eap-max-retrans, on page 35
- dot1x guest-vlan, on page 36
- dot1x guest-vlan enable, on page 37
- dot1x guest-vlan timeout, on page 38
- dot1x host-mode, on page 39
- dot1x mac-auth, on page 42
- dot1x mac-auth password, on page 44
- dot1x max-hosts, on page 45
- dot1x max-login-attempts, on page 46
- dot1x max-req, on page 47
- dot1x page customization, on page 48
- dot1x port-control, on page 49
- dot1x radius-attributes vlan, on page 51
- dot1x re-authenticate, on page 53
- dot1x reauthentication, on page 54
- dot1x supplicant, on page 55
- dot1x supplicant traps authentication failure, on page 56
- dot1x supplicant traps authentication success, on page 57
- dot1x system-auth-control, on page 58
- dot1x timeout eap-timeout, on page 59
- dot1x timeout quiet-period, on page 60
- dot1x timeout reauth-period, on page 61
- dot1x timeout server-timeout, on page 62
- dot1x timeout silence-period, on page 63
• dot1x timeout supp-timeout, on page 64
• dot1x timeout supplicant-held-period, on page 65
• dot1x timeout tx-period, on page 66
• dot1x traps authentication failure, on page 67
• dot1x traps authentication quiet, on page 68
• dot1x traps authentication success, on page 69
• dot1x unlock client, on page 70
• dot1x violation-mode, on page 71
• password, on page 72
• show dot1x, on page 73
• show dot1x credentials, on page 78
• show dot1x locked clients, on page 79
• show dot1x statistics, on page 80
• show dot1x users, on page 82
• username (dot1x credentials), on page 83
aaa authentication dot1x

To specify which servers are used for authentication when 802.1X authentication is enabled, use the **aaa authentication dot1x** command in Global Configuration mode. To restore the default configuration, use the **no** form of this command.

Syntax

```
aaa authentication dot1x default {radius | none | {radius none}}
no aaa authentication dot1x default
```

Parameters

- **radius** - Uses the list of all RADIUS servers for authentication
- **none** - Uses no authentication

Default Configuration

RADIUS server.

Command Mode

Global Configuration mode

User Guidelines

You can select either authentication by a RADIUS server, no authentication (**none**), or both methods.

If you require that authentication succeeds even if no RADIUS server response was received, specify **none** as the final method in the command line.

Example

The following example sets the 802.1X authentication mode to RADIUS server authentication. Even if no response was received, authentication succeeds.

```
switchxxxxx(config)# aaa authentication dot1x default radius none
```
authentication open

To enable open access (monitoring mode) on this port, use the `authentication open` command in Interface Configuration mode. To disable open access on this port, use the `no` form of this command.

Syntax

`authentication open`

`no authentication open`

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled.

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

Open Access or Monitoring mode allows clients or devices to gain network access before authentication is performed. In the mode the switch performs failure replies received from a Radius server as success.

Example

The following example enables open mode on interface gi1/0/1:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# authentication open
```
clear dot1x statistics

To clear 802.1X statistics, use the **clear dot1x statistics** command in Privileged EXEC mode.

Syntax

`clear dot1x statistics [interface-id]`

Parameters

- `interface-id`—Specify an Ethernet port ID.

Default Configuration

Statistics on all ports are cleared.

Command Mode

Privileged EXEC mode

User Guidelines

This command clears all the counters displayed in the `show dot1x` and `show dot1x statistics` command.

Example

```
switchxxxxxx# clear dot1x statistics
```
To specify web-based page customizing, the **data** command is used in Web-Based Page Customization Configuration mode.

Syntax

```
data value
```

Parameters

- **value**—String of hexadecimal digit characters up to 320 characters.

Default Configuration

No user customization.

Command Mode

Web-Based Page Customization Configuration mode

User Guidelines

The command should not be entered or edited manually (unless using copy-paste). It is a part of the configuration file produced by the switch.

A user can only customize the web-based authentication pages by using the WEB interface.

Example 1—The following example shows a partial web-based page customization configuration:

```
switchxxxxxx(config)# dot1x page customization
switchxxxxxx(config-web-page)# data 1feabcde
switchxxxxxx(config-web-page)# data 17645874
switchxxxxxx(config-web-page)# exit
```

Example 2—The following example shows how Web-Based Page customization is displayed when running the `show running-config` command:

```
switchxxxxxx# show running-config
dot1x page customization
data ********
exit
```
description 802.1x

To specify a description for an 802.1X credential structure, use the `description` command in Dot1x credentials configuration mode. To remove the description, use the `no` form of this command.

Syntax

```
description text
no description
```

Parameters

- `text`—Text description. The description can be up to 80 characters.

Default Configuration

A description is not specified.

Command Mode

Dot1x credentials configuration mode

User Guidelines

An 802.1X credential structure is necessary when configuring the switch as a supplicant (client). This credentials structure must contain a username and password and may contain a description.

Example

The following example configures an 802.1X credential structure:

```
switchxxxxxx(config)# dot1x credentials site-A
switchxxxxxx(config-dot1x-cred)# username inner-switch
switchxxxxxx(config-dot1x-cred)# password 6f3c576n8
switchxxxxxx(config-dot1x-cred)# description This credentials profile should be used to connected to site-A
```
dot1x auth-not-req

To enable unauthorized devices access to a VLAN, use the **dot1x auth-not-req** command in Interface (VLAN) Configuration mode. To disable access to a VLAN, use the **no** form of this command.

Syntax

- `dot1x auth-not-req`
- `no dot1x auth-not-req`

Default Configuration

Access is enabled.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

The guest VLAN cannot be configured as unauthorized VLAN.

Example

The following example enables unauthorized devices access to VLAN 5.

```console
switchxxxxxx(config)# interface vlan 5
switchxxxxxx(config-if)# dot1x auth-not-req
```
dot1x authentication

To enable authentication methods on a port, use the `dot1x authentication` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x authentication [802.1x] [mac] [web]
no dot1x authentication
```

Parameters

- **802.1x**—Enables authentication based on 802.1X (802.1X-based authentication).
- **mac**—Enables authentication based on the station's MAC address (MAC-Based authentication).
- **web**—Enables WEB-Based authentication.

Default Configuration

802.1X-Based authentication is enabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Static MAC addresses cannot be authorized by the MAC-based method.

It is not recommended to change a dynamic MAC address to a static one or delete it if the MAC address was authorized by the MAC-based authentication:

1. If a dynamic MAC address authenticated by MAC-based authentication is changed to a static one, it will not be manually re-authenticated.
2. Removing a dynamic MAC address authenticated by the MAC-based authentication causes its re-authentication.

802.1x enabled on a port associated with a port channel has the following limitations:

- Only the 802.1X-based authentication is supported.
- Only the multi-host (legacy 802.1x mode) mode is supported.

Example

The following example enables authentication based on 802.1x and the station’s MAC address on port gi1/0/1:

```
switchxxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# dot1x authentication 802.1x mac
```
dot1x credentials

To define the name of an 802.1X credential structure and enter the Dot1x credentials configuration mode, use the \texttt{dot1x credentials} command in Global Configuration mode. To remove the credential structure, use the \texttt{no} form of this command.

\textbf{Syntax}

\begin{verbatim}
dot1x credentials \textit{name}
no dot1x credentials \textit{name}
\end{verbatim}

\textbf{Parameters}

- \textit{name} — The credential structure name up to 32 characters.

\textbf{Default Configuration}

A credentials structure is not specified

\textbf{Command Mode}

Global Configuration mode

\textbf{User Guidelines}

Use the \texttt{dot1x credentials} command to start configuration of credential structure. The credential structure contains the parameters of supplicant (client) and it is used during the 802.1X supplicant enabling on interface.

The credential configuration takes a place only after exit from the credential context.

Changing configuration of used credential causes supplicant logoff and logon.

The switch supports up to 24 credentials.

Use the \texttt{no dot1x credentials} command, to delete a credential. A used credential cannot be deleted.

\textbf{Example}

The following example configures an 802.1X credential structure:

\begin{verbatim}
switchxxxxxx(config)# dot1x credentials site-A
switchxxxxxx(config-dot1x-cred)# username inner-switch
switchxxxxxx(config-dot1x-cred)# password agrcx5642
switchxxxxxx(config-dot1x-cred)# description This credentials profile should be used to connected to site-A
\end{verbatim}
dot1x eap-max-retrans

To set the EAP maximum number retransmissions, use the `dot1x eap-max-retrans` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x eap-max-retrans count
no dot1x eap-max-retrans
```

Parameters

- `count`—Specifies the maximum number of times that the EAP Server (EAP Authenticator) retransmits an EAP request when no response from a EAP client (EAP Peer) was received. (Range: 1–10).

Default Configuration

The default maximum number of attempts is 2.

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The parameter is used by the 802.1x Supplicant.

Example

The following example sets the EAP maximum number retransmissions to 6:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x eap-max-retrans 6
```
dot1x guest-vlan

To define a guest VLAN, use the `dot1x guest-vlan` mode command in Interface (VLAN) Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

`dot1x guest-vlan`

`no dot1x guest-vlan`

Default Configuration

No VLAN is defined as a guest VLAN.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

A device can have only one global guest VLAN.

The guest VLAN must be a static VLAN and it cannot be removed.

An unauthorized VLAN cannot be configured as guest VLAN.

Example

The following example defines VLAN 2 as a guest VLAN.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxxx(config-if)# dot1x guest-vlan
```
dot1x guest-vlan enable

To enable unauthorized users on the access interface to the guest VLAN, use the `dot1x guest-vlan enable` command in Interface Configuration mode. To disable access, use the `no` form of this command.

Syntax

`dot1x guest-vlan enable`
`no dot1x guest-vlan enable`

Default Configuration
The default configuration is disabled.

Command Mode
Interface (Ethernet) Configuration mode

User Guidelines
The guest VLAN and the WEB-Based authentication cannot be configured on a port at the same time. This command cannot be configured if the monitoring VLAN is enabled on the interface. If the port does not belong to the guest VLAN it is added to the guest VLAN as an egress untagged port. If the authentication mode is single-host or multi-host, the value of PVID is set to the guest VLAN_ID. If the authentication mode is multi-sessions mode, the PVID is not changed and all untagged traffic and tagged traffic not belonging to the unauthenticated VLANs from unauthorized hosts are mapped to the guest VLAN. If 802.1X is disabled, the port static configuration is reset.

Example
The following example enables unauthorized users on gi1/0/1 to access the guest VLAN.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x guest-vlan enable
```
dot1x guest-vlan timeout

To set the time delay between enabling 802.1X (or port up) and adding a port to the guest VLAN, use the `dot1x guest-vlan timeout` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

`dot1x guest-vlan timeout timeout`

`no dot1x guest-vlan timeout`

Parameters

- `timeout`—Specifies the time delay in seconds between enabling 802.1X (or port up) and adding the port to the guest VLAN. (Range: 30–180).

Default Configuration

The guest VLAN is applied immediately.

Command Mode

Global Configuration mode

User Guidelines

This command is relevant if the guest VLAN is enabled on the port. Configuring the timeout adds a delay from enabling 802.1X (or port up) to the time the device adds the port to the guest VLAN.

Example

The following example sets the delay between enabling 802.1X and adding a port to a guest VLAN to 60 seconds.

```
switchxxxxxx(config)# dot1x guest-vlan timeout 60
```
dot1x host-mode

To allow a single host (client) or multiple hosts on an IEEE 802.1X-authorized port, use the `dot1x host-mode` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x host-mode {multi-host | single-host | multi-sessions}
```

Parameters

- `multi-host`—Enable multiple-hosts mode.
- `single-host`—Enable single-hosts mode.
- `multi-sessions`—Enable multiple-sessions mode.

Default Configuration

Default mode is multi-host.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Single-Host Mode

The single-host mode manages the authentication status of the port: the port is authorized if there is an authorized host. In this mode, only a single host can be authorized on the port.

When a port is unauthorized and the guest VLAN is enabled, untagged traffic is remapped to the guest VLAN. Tagged traffic is dropped unless the VLAN tag is the guest VLAN or the unauthenticated VLANs. If guest VLAN is not enabled on the port, only tagged traffic belonging to the unauthenticated VLANs is bridged.

When a port is authorized, untagged and tagged traffic from the authorized host is bridged based on the static vlan membership configured at the port. Traffic from other hosts is dropped.

A user can specify that untagged traffic from the authorized host will be remapped to a VLAN that is assigned by a RADIUS server during the authentication process. In this case, tagged traffic is dropped unless the VLAN tag is the RADIUS-assigned VLAN or the unauthenticated VLANs.

The switch removes from FDB all MAC addresses learned on a port when its authentication status is changed from authorized to unauthorized.

Multi-Host Mode

The multi-host mode manages the authentication status of the port: the port is authorized after at least one host is authorized.

When a port is unauthorized and the guest VLAN is enabled, untagged traffic is remapped to the guest VLAN. Tagged traffic is dropped unless the VLAN tag is the guest VLAN or the unauthenticated VLANs. If guest VLAN is not enabled on the port, only tagged traffic belonging to the unauthenticated VLANs is bridged.
When a port is authorized, untagged and tagged traffic from all hosts connected to the port is bridged based on the static VLAN membership configured at the port.

A user can specify that untagged traffic from the authorized port will be remapped to a VLAN that is assigned by a RADIUS server during the authentication process. In this case, tagged traffic is dropped unless the VLAN tag is the RADIUS assigned VLAN or the unauthenticated VLANs.

The switch removes from FDB all MAC addresses learned on a port when its authentication status is changed from authorized to unauthorized.

Multi-Sessions Mode

Unlike the single-host and multi-host modes (port-based modes) the multi-sessions mode manages the authentication status for each host connected to the port (session-based mode). If the multi-sessions mode is configured on a port the port does have any authentication status. Any number of hosts can be authorized on the port. The `dot1x max-hosts` command can limit the maximum number of authorized hosts allowed on the port.

Each authorized client requires a TCAM rule. If there is no available space in the TCAM, the authentication is rejected.

When using the `dot1x host-mode` command to change the port mode to single-host or multi-host when authentication is enabled, the port state is set to unauthorized.

If the `dot1x host-mode` command changes the port mode to multi-session when authentication is enabled, the state of all attached hosts is set to unauthorized.

To change the port mode to single-host or multi-host, set the port (`dot1x port-control`) to force-unauthorized, change the port mode to single-host or multi-host, and set the port to authorization auto.

Multi-sessions mode cannot be configured on the same interface together with Policy Based VLANs configured by the following commands:

- `switchport general map protocol-group vlans`
- `switchport general map macs-group vlans`

Tagged traffic belonging to the unauthenticated VLANs is always bridged regardless if a host is authorized or not.

When the guest VLAN is enabled, untagged and tagged traffic from unauthorized hosts not belonging to the unauthenticated VLANs is bridged via the guest VLAN.

Traffic from an authorized hosts is bridged in accordance with the port static configuration. A user can specify that untagged and tagged traffic from the authorized host not belonging to the unauthenticated VLANs will be remapped to a VLAN that is assigned by a RADIUS server during the authentication process.

The switch does not remove from FDB the host MAC address learned on the port when its authentication status is changed from authorized to unauthorized. The MAC address will be removed after the aging timeout expires.

802.1x enabled on a port associated with a port channel has the following limitations:

- Only the 802.1X-based authentication is supported.
- Only the multi-host (legacy 802.1x mode) mode is supported.
Example

switchxxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# dot1x host-mode multi-host
dot1x mac-auth

To specify a type (EAP or Radius), and MAC based username format, that MAC-Based authentication will use, use the `dot1x mac-auth` command in Global Configuration mode. To reset the default configuration, use the `no` form of the command.

Syntax

```
dot1x mac-auth {eap | radius} [username groupsize {1|2|4|12} separator {~ | : | .} [lowercase | uppercase]]
```

no dot1x mac-auth

Parameters

- **eap**—specifies that the EAP MD5-Challenge authentication is used.
- **radius**—specifies that only Radius (without EAP) authentication with the Service-Type attribute equals to Call-Check(10) is used.
- **username**—specifies the format of the username. If the keyword is not configured the format without separator with the lower case is applied.
- **groupsize**—specifies the numbers of ASCII characters between delimiters.
- **separator**—specifies the delimiter.
- **lowercase**—specifies that the username is coded in the lower case. The argument is applied if the case argument is not configured.
- **uppercase**—specifies that the username is coded in the upper case.

Default Configuration

EAP MD5-Challenge Authentication

Command Mode

Global Configuration mode

User Guidelines

The switch supports the following two types of MAC-Based authentication with the host MAC address as user name and password:

- EAP MD5-Challenge authentication.
- Pure Radius authentication with the Service-Type attribute equals to Call-Check(10) and with username and password in the ASCII format.

Use the `eap` keyword, to specify the EAP MD5-Challenge authentication type.

Use the `radius` keyword, to specify the pure Radius authentication type. The pure Radius authentication uses the following Radius attributes:
• User-Name: Host MAC address
• Password
• Service-Type: Call-Check(10)
• Frame-MTU
• Called-Station-Id: MAC address of the switch
• Calling-Station-Id: MAC address of the host
• Message-Authentication
• NAS-Port-Type: Ethernet(15)
• NAS-Port: ifIndex of the port where the host is connected to
• NAS-Port-Id: full CLI name of the port where the host is connected to (for example: GigabitEthernet2/0/2)
• NAS-IP-Address: IP address of the switch

Use the **username** keyword, to specify the format of the Username attributes. The following table gives examples of the Username coding for MAC address 08002b8619de:

<table>
<thead>
<tr>
<th>Size</th>
<th>Separator</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0-8-0-0-2-b-8-6-1-9-d-e</td>
</tr>
<tr>
<td>2</td>
<td>:</td>
<td>08:00:2b:86:19:de</td>
</tr>
<tr>
<td>4</td>
<td>.</td>
<td>0800.2b86.19de</td>
</tr>
<tr>
<td>12</td>
<td>N/A</td>
<td>08002b8619de</td>
</tr>
</tbody>
</table>

Changing of the username format or the authentication type (EAP or Radius) causes reauthentication.

Example 1. The following example specifies that MAC-Based authentication will use the pure Radius authentication and specifies the attributes to use in username based on the station’s MAC address:
```
switchxxxxxx(config)# dot1x mac-auth radius username groupsize 2 separator : uppercase
```

Example 2. The following example specifies that MAC-Based authentication will use the EAP MD5-Challenge authentication. The username format will be set to format without separator, with lower case:
```
switchxxxxxx(config)# dot1x mac-auth eap
```
dot1x mac-auth password

To specify a global password for MAC-Based authentication, use the `dot1x mac-auth password` command in Global Configuration mode. To remove the password, use the `no` form of this command.

Syntax

```plaintext
encrypted dot1x mac-auth password encrypted-password
dot1x mac-auth password password
no dot1x mac-auth password
```

Parameters

- `encrypted-password` — The password in encrypted format.
- `password` — The password up to 32 characters.

Default Configuration

Username.

Command Mode

Global Configuration mode

User Guidelines

Use the command, to specify a password that will be used for MAC-Based authentication instead of the host MAC address.

Changing of the password or its format causes reauthentication.

Example

The following example configures a global password for MAC-Based authentication:

```plaintext
switchxxxxxx(config)# dot1x mac-auth password 87b$#9hv5*
```
dot1x max-hosts

To configure the maximum number of authorized hosts allowed on the interface, use the dot1x max-hosts command in Interface Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

dot1x max-hosts *count*

no dot1x max-hosts

Parameters

* count — Specifies the maximum number of authorized hosts allowed on the interface. May be any 32 bits positive number.

Default Configuration

No limitation.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

By default, the number of authorized hosts allowed on an interface is not limited. To limit the number of authorized hosts allowed on an interface, use the dot1x max-hosts command.

This command is relevant only for multi-session mode.

Example

The following example limits the maximum number of authorized hosts on Ethernet port gi1/0/1 to 6:

switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x max-hosts 6
dot1x max-login-attempts

To set the maximum number of allowed login attempts, use the `dot1x max-login-attempts` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x max-login-attempts count
no dot1x max-login-attempts
```

Parameters

- `count` — Specifies the maximum number of allowed login attempts. A value of 0 means an infinite number of attempts. The valid range is 3-10.

Default Configuration

Unlimited.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

By default, the switch does not limit the number of failed login attempts. To specify the number of allowed fail login attempts, use this command.

The command is applied only to the Web-based authentication.

Example

The following example sets maximum number of allowed login attempts to 5:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x max-login-attempts 5
```
dot1x max-req

To set the maximum number of times that the device sends an Extensible Authentication Protocol (EAP) request/identity frame (assuming that no response is received) to the client before restarting the authentication process, use the `dot1x max-req` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```plaintext
dot1x max-req count
no dot1x max-req
```

Parameters

- `count`—Specifies the maximum number of times that the device sends an EAP request/identity frame before restarting the authentication process. (Range: 1–10).

Default Configuration

The default maximum number of attempts is 2.

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Example

The following example sets the maximum number of times that the device sends an EAP request/identity frame to 6.

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x max-req 6
```
dot1x page customization

To enter Web-Based Page Customization Configuration mode, use the `dot1x page customization` command in Global Configuration mode.

Syntax

`dot1x page customization`

Default Configuration

No user customization.

Command Mode

Global Configuration mode

User Guidelines

The command should not be entered or edited manually (unless when using copy-paste). It is a part of the configuration file produced by the switch.

A user must customize the web-based authentication pages by using the browser Interface.

Example

The following example shows part of a web-based page customization configuration:

```
switchxxxxxx(config)# dot1x page customization
switchxxxxxx(config-web-page)# data 1feabcde
switchxxxxxx(config-web-page)# data 17645874
switchxxxxxx(config-web-page)# exit
```
dot1x port-control

To enable manual control of the port authorization state, use the `dot1x port-control` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x port-control {auto | force-authorized | force-unauthorized} [time-range time-range-name]
```

Parameters

- `auto`—Enables 802.1X authentication on the port and causes it to transition to the authorized or unauthorized state, based on the 802.1X authentication exchange between the device and the client.
- `force-authorized`—Disables 802.1X authentication on the interface and causes the port to transition to the authorized state without any authentication exchange required. The port sends and receives traffic without 802.1X-based client authentication.
- `force-unauthorized`—Denies all access through this port by forcing it to transition to the unauthorized state and ignoring all attempts by the client to authenticate. The device cannot provide authentication services to the client through this port.
- `time-range time-range-name`—Specifies a time range. When the Time Range is not in effect, the port state is Unauthorized. (Range: 1-32 characters).

Default Configuration

The port is in the force-authorized state.

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

802.1X authentication cannot be enabled on an interface if port security feature is already enabled on the same interface.

The switch removes all MAC addresses learned on a port when its authorization control is changed from `force-authorized` to another.

Note

It is recommended to disable spanning tree or to enable spanning-tree PortFast mode on 802.1X edge ports in `auto` state that are connected to end stations, in order to proceed to the forwarding state immediately after successful authentication.

Example

The following example sets 802.1X authentication on gi1/0/1 to auto mode.
switchxxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# dot1x port-control auto
dot1x radius-attributes vlan

To enable RADIUS-based VLAN assignment, use the `dot1x radius-attributes vlan` command in Interface Configuration mode. To disable RADIUS-based VLAN assignment, use the `no` form of this command.

Syntax

```
dot1x radius-attributes vlan [reject | static]
no dot1x radius-attributes vlan
```

Parameters

- `reject`—If the RADIUS server authorized the supplicant, but did not provide a supplicant VLAN the supplicant is rejected. If the parameter is omitted, this option is applied by default.
- `static`—If the RADIUS server authorized the supplicant, but did not provide a supplicant VLAN, the supplicant is accepted.

Default Configuration

reject

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

If RADIUS provides invalid VLAN information, the authentication is rejected.

If a RADIUS server assigns a client with a non-existing VLAN, the switch creates the VLAN. The VLAN is removed when it is no longer being used.

If RADIUS provides valid VLAN information and the port does not belong to the VLAN received from RADIUS, it is added to the VLAN as an egress untagged port. When the last authorized client assigned to the VLAN becomes unauthorized or 802.1x is disabled on the port, the port is excluded from the VLAN.

If the authentication mode is single-host or multi-host, the value of PVID is set to the VLAN_ID.

If an authorized port in the single-host or multi-host mode changes its status to unauthorized, the port static configuration is reset.

If the authentication mode is multi-sessions mode, the PVID is not changed and all untagged traffic and tagged traffic not belonging to the unauthenticated VLANs are mapped to the VLAN using TCAM.

If the last authorized host assigned to a VLAN received from RADIUS connected to a port in the multi-sessions mode changes its status to unauthorized, the port is removed from the VLAN if it is not in the static configuration.

See the User Guidelines of the `dot1x host-mode` command for more information.

If 802.1X is disabled the port static configuration is reset.

If the `reject` keyword is configured and the RADIUS server authorizes the host but the RADIUS accept message does not assign a VLAN to the supplicant, authentication is rejected.
If the `static` keyword is configured and the RADIUS server authorizes the host then even though the RADIUS accept message does not assign a VLAN to the supplicant, authentication is accepted and the traffic from the host is bridged in accordance with port static configuration.

If this command is used when there are authorized ports/hosts, it takes effect at subsequent authentications. To manually re-authenticate, use the `dot1x re-authenticate` command.

Example 1. This example enables user-based VLAN assignment. If the RADIUS server authorized the supplicant, but did not provide a supplicant VLAN, the supplicant is rejected.

```bash
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x radius-attributes vlan
switchxxxxxx(config-if)# exit
```

Example 2. This example enables user-based VLAN assignment. If the RADIUS server authorized the supplicant but did not provide a supplicant VLAN, the supplicant is accepted and the static VLAN configurations is used.

```bash
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x radius-attributes static
switchxxxxxx(config-if)# exit
```
dot1x re-authenticate

To initiate manually re-authentication of all 802.1X-enabled ports or the specified 802.1X-enabled port, use the `dot1x re-authenticate` command in Privileged EXEC mode.

Syntax

`dot1x re-authenticate [interface-id]`

Parameters

- `interface-id`—Specifies an Ethernet port or OOB port.

Default Configuration

If no port is specified, command is applied to all ports.

Command Mode

Privileged EXEC mode

Example

The following command manually initiates re-authentication of 802.1X-enabled gi1/0/1:

```
switchxxxxxx# dot1x re-authenticate gi1/0/1
```
dot1x reauthentication

To enable periodic re-authentication of the client, use the `dot1x reauthentication` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x reauthentication
no dot1x reauthentication
```

Default Configuration

Periodic re-authentication is disabled.

Command Mode

Interface (Ethernet, OOB) Configuration mode

Example

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x reauthentication
```
dot1x supplicant

To enable the dot1x supplicant role for a given interface, use the `dot1x supplicant` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x supplicant name
no dot1x supplicant
```

Parameters

- `name`—The name of the credential structure applied on the interface.

Default Configuration

The supplicant role is disabled.

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

Use the `dot1x supplicant` command to enable the dot1x supplicant on a given interface. When the supplicant is enabled on an interface the interface becomes an unauthorized. When the 802.1X authentication successes the interface state is changed to authorized.

If the `name` argument specifies an undefined or not fully defined (password or username is not configured) 802.1X credential structure, the command is rejected.

Authenticator and Supplicant cannot be enabled together on the same interface.

The command cannot be configured a few times on the same port. To replace the configured credential, use the `no` form of the command before configuration a new credential.

Unlike unauthorized authenticator interface an unauthorized supplicant interface does not limit any traffic passed through.

The following events start the 802.1X supplicant authentication on a port:

- The `dot1x supplicant` command enables the supplicant on the port in the UP status.
- The status of the port is changed to UP and the supplicant is enabled on the port.
- The EAP Identifier Request message is received on the port and the supplicant is enabled on the port.

Example

The following example configures an 802.1X supplicant on port gi1/0/1:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x supplicant upstream-port
```
dot1x supplicant traps authentication failure

To enable sending traps when an 802.1X supplicant authentication fails, use the `dot1x supplicant traps authentication failure` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x supplicant traps authentication failure
no dot1x supplicant traps authentication failure
```

Default Configuration

Traps are disabled.

Command Mode

Global Configuration mode

User Guidelines

A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when an 802.1X supplicant authentication failed:

```
switchxxxxxx(config)# dot1x supplicant traps authentication failure
```
dot1x supplicant traps authentication success

To enable sending traps when an 802.1X supplicant authentication is succeeded, use the `dot1x supplicant traps authentication success` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x supplicant traps authentication success
no dot1x supplicant traps authentication success
```

Default Configuration

Traps are disabled.

Command Mode

Global Configuration mode

User Guidelines

A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when an 802.1X supplicant authentication is succeeded:

```
switchxxxxx(config)# dot1x supplicant traps authentication success
```
dot1x system-auth-control

To enable 802.1X globally, use the `dot1x system-auth-control` command in Global Configuration mode. To restore the default configuration, use the **no** form of this command.

Syntax

```
  dot1x system-auth-control  
  no dot1x system-auth-control
```

Default Configuration

Disabled.

Command Mode

Global Configuration mode

Example

The following example enables 802.1X globally.

```
switchxxxxxx(config)# dot1x system-auth-control
```
dot1x timeout eap-timeout

To set the EAP timeout, use the `dot1x timeout eap-timeout` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x timeout eap-timeout seconds
no dot1x timeout eap-timeout
```

Parameters

- `seconds` — Specifies the time interval in seconds during which the EAP Server (EAP Authenticator) waits for a response from the EAP client (EAP Peer) before the request retransmission. (Range: 1–65535 seconds).

Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The parameter is used by the 802.1x Supplicant.

Example

The following example sets the EAP timeout to 45 seconds.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x timeout eap-timeout 45
```
dot1x timeout quiet-period

To set the time interval that the device remains in a quiet state following a failed authentication exchange, use the `dot1x timeout quiet-period` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x timeout quiet-period seconds
no dot1x timeout quiet-period
```

Parameters

- `seconds`—Specifies the time interval in seconds that the device remains in a quiet state following a failed authentication exchange with a client. (Range: 10–65535 seconds).

Default Configuration

The default quiet period is 60 seconds.

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

During the quiet period, the device does not accept or initiate authentication requests.

The default value of this command should only be changed to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

To provide faster response time to the user, a smaller number than the default value should be entered.

For 802.1x and MAC-based authentication, the number of failed logins is 1.

For WEB-based authentication, the quiet period is applied after a number of failed attempts.

For 802.1x-based and MAC-based authentication methods, the quiet period is applied after each failed attempt.

Example

The following example sets the time interval that the device remains in the quiet state following a failed authentication exchange to 120 seconds.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x timeout quiet-period 120
```
dot1x timeout reauth-period

To set the number of seconds between re-authentication attempts, use the `dot1x timeout reauth-period` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x timeout reauth-period seconds
no dot1x timeout reauth-period
```

Parameters

- `reauth-period` seconds—Number of seconds between re-authentication attempts. (Range: 300-4294967295).

Default Configuration

3600

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

The command is only applied to the 802.1x authentication method.

Example

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x timeout reauth-period 5000
```
dot1x timeout server-timeout

To set the time interval during which the device waits for a response from the authentication server, use the `dot1x timeout server-timeout` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

dot1x timeout server-timeout `seconds`

no dot1x timeout server-timeout

Parameters

- `server-timeout seconds`—Specifies the time interval in seconds during which the device waits for a response from the authentication server. (Range: 1–65535 seconds).

Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

The actual timeout period can be determined by comparing the value specified by this command to the result of multiplying the number of retries specified by the radius-server retransmit command by the timeout period specified by the radius-server transmit command, and selecting the lower of the two values.

Example

The following example sets the time interval between retransmission of packets to the authentication server to 3600 seconds.

```
switchxxxxxxx(config)# interface gi1/0/1
switchxxxxxxx(config-if)# dot1x timeout server-timeout 3600
```
dot1x timeout silence-period

To set the authentication silence time, use the `dot1x timeout silence-period` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

`dot1x timeout silence-period seconds`

```
no dot1x timeout silence-period
```

Parameters

- `seconds` — Specifies the silence interval in seconds. The valid range is 60 - 65535.

Default Configuration

The silence period is not limited.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The silence time is the number of seconds that if an authorized client does not send traffic during this period, the client is changed to unauthorized.

If an authorized client does not send traffic during the silence period specified by the command, the state of the client is changed to unauthorized.

The command is only applied to WEB-based authentication.

Example

The following example sets the authentication silence time to 100 seconds:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x timeout silence-period 100
```
dot1x timeout supp-timeout

To set the time interval during which the device waits for a response to an Extensible Authentication Protocol (EAP) request frame from the client before resending the request, use the `dot1x timeout supp-timeout` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x timeout supp-timeout seconds
no dot1x timeout supp-timeout
```

Parameters

- `supp-timeout seconds`—Specifies the time interval in seconds during which the device waits for a response to an EAP request frame from the client before resending the request. (Range: 1–65535 seconds).

Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The command is only applied to the 802.1x authentication method.

Example

The following example sets the time interval during which the device waits for a response to an EAP request frame from the client before resending the request to 3600 seconds.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x timeout supp-timeout 3600
```
dot1x timeout supplicant-held-period

To set the time period during which the supplicant waits before restarting authentication after receiving the FAIL response from the Radius server, use the `dot1x timeout supplicant-held-period` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
dot1x timeout supplicant-held-period seconds
no dot1x timeout supplicant-held-period
```

Parameters

- `seconds`—Specifies the time period during which the supplicant waits before restarting authentication after receiving the FAIL response from the Radius server. (Range: 1–65535 seconds).

Default Configuration

The default timeout period is 60 seconds.

Command Mode

Interface (Ethernet, OOB) Configuration mode

User Guidelines

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Example

The following example sets the time period during which the supplicant waits before restarting authentication after receiving the FAIL response from the Radius server to 70 seconds.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x timeout supplicant-held-period 70
```
dot1x timeout tx-period

To set the time interval during which the device waits for a response to an Extensible Authentication Protocol (EAP) request/identity frame from the client before resending the request, use the `dot1x timeout tx-period` command in Interface Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

dot1x timeout tx-period seconds

no dot1x timeout tx-period

Parameters

- `seconds`—Specifies the time interval in seconds during which the device waits for a response to an EAP-request/identity frame from the client before resending the request. (Range: 30–65535 seconds).

Default Configuration
The default timeout period is 30 seconds.

Command Mode
Interface (Ethernet, OOB) Configuration mode

User Guidelines
The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The command is only applied to the 802.1x authentication method.

Example
The following command sets the time interval during which the device waits for a response to an EAP request/identity frame to 60 seconds.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x timeout tx-period 60
```
dot1x traps authentication failure

To enable sending traps when an 802.1X authentication method failed, use the dot1x traps authentication failure command in Global Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

dot1x traps authentication failure {{802.1x} [mac] [web]}

no dot1x traps authentication failure

Parameters

- **802.1x**—Enables traps for 802.1X-based authentication.
- **mac**—Enables traps for MAC-based authentication.
- **web**—Enables traps for WEB-based authentication.

Default Configuration

All traps are disabled.

Command Mode

Global Configuration mode

User Guidelines

Any combination of the keywords are allowed. At least one keyword must be configured. A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when a MAC address fails to be authorized by the 802.1X mac-authentication access control.

switchxxxxxx(config)# dot1x traps authentication failure 802.1x
dot1x traps authentication quiet

To enable sending traps when a host state is set to the quiet state after failing the maximum sequential attempts of login, use the `dot1x traps authentication quiet` command in Global Configuration mode. To disable the traps, use the `no` form of this command.

Syntax

- `dot1x traps authentication quiet`
- `no dot1x traps authentication quiet`

Default Configuration

Quiet traps are disabled.

Command Mode

Global Configuration mode

User Guidelines

The traps are sent after the client is set to the quiet state after the maximum sequential attempts of login. A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when a host is set in the quiet state:

```
switchxxxxx(config)# dot1x traps authentication quiet
```
dot1x traps authentication success

To enable sending traps when a host is successfully authorized by an 802.1X authentication method, use the `dot1x traps authentication success` command in Global Configuration mode. To disable the traps, use the `no` form of this command.

Syntax

```
dot1x traps authentication success {[802.1x] [mac] [web]}
```

```
no dot1x traps authentication success
```

Parameters

- `802.1x`—Enables traps for 802.1X-based authentication.
- `mac`—Enables traps for MAC-based authentication.
- `web`—Enables traps for WEB-based authentication.

Default Configuration

Success traps are disabled.

Command Mode

Global Configuration mode

User Guidelines

Any combination of the keywords are allowed. At least one keyword must be configured.

A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when a MAC address is successfully authorized by the 802.1X MAC-authentication access control.

```
switchxxxxxx(config)# dot1x traps authentication success mac
```
dot1x unlock client

To unlock a locked (in the quiet period) client, use the `dot1x unlock client` command in Privileged EXEC mode.

Syntax

```plaintext
dot1x unlock client interface-id mac-address
```

Parameters

- `interface-id`—Interface ID where the client is connected to.
- `mac-address`—Client MAC address.

Default Configuration

The client is locked until the silence interval is over.

Command Mode

Privileged EXEC mode

User Guidelines

Use this command to unlock a client that was locked after the maximum allowed authentication failed attempts and to end the quiet period. If the client is not in the quiet period, the command has no affect.

Example

```
switchxxxxxx# dot1x unlock client gi1/0/1 00:01:12:af:00:56
```
dot1x violation-mode

To configure the action to be taken when an unauthorized host on authorized port in single-host mode attempts to access the interface, use the **dot1x violation-mode** command in Interface Configuration mode. To restore the default configuration, use the **no** form of this command.

Syntax

```
dot1x violation-mode {restrict | protect | shutdown} [traps seconds]
```

```
no dot1x violation-mode
```

Parameters

- **restrict**—Generates a trap when a station, whose MAC address is not the supplicant MAC address, attempts to access the interface. The minimum time between the traps is 1 second. Those frames are forwarded but their source addresses are not learned.

- **protect**—Discard frames with source addresses that are not the supplicant address.

- **shutdown**—Discard frames with source addresses that are not the supplicant address and shutdown the port.

- **trap seconds** - Send SNMP traps, and specifies the minimum time between consecutive traps. If seconds = 0 traps are disabled. If the parameter is not specified, it defaults to 1 second for the restrict mode and 0 for the other modes.

Default Configuration

Protect

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The command is relevant only for single-host mode.

For BPDU messages whose MAC addresses are not the supplicant MAC address are not discarded in Protect mode.

BPDU message whose MAC addresses are not the supplicant MAC address cause a shutdown in Shutdown mode.

Example

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# dot1x violation-mode protect
```
password

To specify a password for an 802.1X credential structure, use the `password` command in Dot1x credentials configuration mode. To remove the password, use the `no` form of this command.

Syntax

`encrypted password` `encrypted-password`

`password` `password`

`no password`

Parameters

- `encrypted-password` — The password in encrypted format.
- `password` — The password up to 64 characters.

Default Configuration

A password is not specified.

Command Mode

Dot1x credentials configuration mode

User Guidelines

An 802.1X credential structure is necessary when configuring a supplicant (client). This credentials structure must contain a username and password and might contain a description.

Example

The following example configures an 802.1X credential structure:

```
switchxxxxxx(config)# dot1x credentials site-A
switchxxxxxx(config-dot1x-cred)# username inner-switch
switchxxxxxx(config-dot1x-cred)# password $87b$9hv5*
switchxxxxxx(config-dot1x-cred)# description This credentials profile should be used to connect to site-A.
```
show dot1x

To display the 802.1X interfaces or specified interface status, use the `show dot1x` command in Privileged EXEC mode.

Syntax

```
show dot1x [interface interface-id | detailed]
```

Parameters

- `interface-id`—Specifies an Ethernet port or OOB port.
- `detailed`—Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If `detailed` is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays authentication information for all interfaces on which 802.1x is enabled:

```
switchxxxxxx# show dot1x
Authentication is enabled
Authenticator Global Configuration:
Authenticating Servers: Radius, None
MAC-Based Authentication:
  Type: Radius
  Username Groupsize: 2
  Username Separator: -
  Username case: Lowercase
  Password: MD5 checksum 1238af77aaca17568f12988601fcabed
Unauthenticated VLANs: 100, 1000, 1021
Guest VLAN: VLAN 11, timeout 30 sec
Authentication failure traps are enabled for 802.1x+mac
Authentication success traps are enabled for 802.1x
Authentication quiet traps are enabled for 802.1x
Supplicant Global Configuration:
  Supplicant Authentication failure traps are enabled
  Supplicant Authentication success traps are enabled
  gil/0/1
  Authenticator is enabled
  Supplicant is disabled
  Authenticator Configuration:
  Host mode: multi-sessions
  Authentication methods: 802.1x+mac
  Port Adminstrated status: auto
  Guest VLAN: enabled
  VLAN Radius Attribute: enabled, static
  Open access: disabled
  Time range name: work_hours (Active now)
  Server-timeout: 30 sec
```
Maximum Hosts: unlimited
Maximum Login Attempts: 3
Reauthentication is enabled
Reauthentication period: 3600 sec
Silence period: 1800 sec
Quiet Period: 60 sec
Interfaces 802.1X-Based Parameters
 EAP Timeout: 30 sec
 EAP Max-Retrans: 2
 Tx period: 30 sec
 Supplicant timeout: 30 sec
 max-req: 2
Authentication success: 9
Authentication fails: 1
Number of Authorized Hosts: 10
Supplicant Configuration:
 retry-max: 2
 EAP time period: 15 sec
 Supplicant Held Period: 30 sec

gi1/0/2
Authenticator is enabled
Supplicant is disabled
Authenticator Configuration:
 Host mode: single-host
 Authentication methods: 802.1x+mac
 Port Adminstrated status: auto
 Port Operational status: authorized
 Guest VLAN: disabled
 VLAN Radius Attribute: enabled
 Open access: enabled
 Time range name: work_hours (Active now)
 Server-timeout: 30 sec
 Applied Authenticating Server: Radius
 Applied Authentication method: 802.1x
 Session Time (HH:MM:SS): 00:25:22
 MAC Address: 00:08:78:32:98:66
 Username: Bob
 Violation:
 Mode: restrict
 Trap: enabled
 Trap Min Interval: 20 sec
 Violations were detected: 9
 Reauthentication is enabled
 Reauthentication period: 3600 sec
 Silence period: 1800 sec
 Quiet Period: 60 sec
Interfaces 802.1X-Based Parameters
 EAP Timeout: 30 sec
 EAP Max-Retrans: 2
 Tx period: 30 sec
 Supplicant timeout: 30 sec
 max-req: 2
 Authentication success: 2
 Authentication fails: 0

gi1/0/3
Authenticator is enabled
Supplicant is disabled
Authenticator Configuration:
 Host mode: multi-host
 Authentication methods: 802.1x+mac
 Port Adminstrated status: auto
 Port Operational status: authorized
 Guest VLAN: disabled
 VLAN Radius Attribute: disabled
show dot1x

time range name: work_hours (active now)
open access: disabled
server-timeout: 30 sec
applied authenticating server: radius
applied authentication method: 802.1x
session time (hh:mm:ss): 00:25:22
mac address: 00:08:78:32:98:66
username: bob
violation:
 mode: restrict
 trap: enabled
 trap min interval: 20 sec
 violations were detected: 0
reauthentication is enabled
reauthentication period: 3600 sec
silence period: 1800 sec
quiet period: 60 sec
interfaces 802.1x-based parameters
 eap timeout: 30 sec
 eap max-retrans: 2
 tx period: 30 sec
 supplicant timeout: 30 sec
 max-req: 2
 authentication success: 20
 authentication fails: 0
supplicant configuration:
 retry-max: 2
 eap time period: 15 sec
 supplicant held period: 30 sec
gil/0/4
 authenticator is disabled
 supplicant is enabled
 authenticator configuration:
 host mode: multi-host
 authentication methods: 802.1x+mac
 port administrated status: force-auto
 guest vlan: disabled
 vlan radius attribute: disabled
 time range name: work_hours (active now)
 open access: disabled
 server-timeout: 30 sec
 applied authenticating server: radius
 applied authentication method: 802.1x
 session time (hh:mm:ss): 00:25:22
 mac address: 00:08:78:32:98:66
 username: bob
 violation:
 mode: restrict
 trap: enabled
 trap min interval: 20 sec
 violations were detected: 0
 reauthentication is enabled
 reauthentication period: 3600 sec
 silence period: 1800 sec
 quiet period: 60 sec
 interfaces 802.1x-based parameters
 eap timeout: 30 sec
 eap max-retrans: 2
 tx period: 30 sec
 supplicant timeout: 30 sec
 max-req: 2
 authentication success: 0
 authentication fails: 0
 supplicant configuration:
retry-max: 2
EAP time period: 15 sec
Supplicant Held Period: 30 sec
Credentials Name: Basic-User
Supplicant Operational status: authorized

The following describes the significant fields shown in the display:

- **Port**—The port interface-id.
- **Host mode**—The port authentication configured mode. Possible values: single-host, multi-host, multi-sessions.
 - single-host
 - multi-host
 - multi-sessions
- **Authentication methods**—Authentication methods configured on port. Possible values are combinations of the following methods:
 - 802.1x
 - mac
 - wba
- **Port Administrated status**—The port administration (configured) mode. Possible values: force-auth, force-unauth, auto.
- **Port Operational status**—The port operational (actual) mode. Possible values: authorized or unauthorized.
- **Username**—Username representing the supplicant identity. This field shows the username if the port control is auto. If the port is Authorized, it displays the username of the current user. If the port is Unauthorized, it displays the last user authorized successfully.
- **Quiet period**—Number of seconds that the device remains in the quiet state following a failed authentication exchange (for example, the client provided an invalid password).
- **Silence period**—Number of seconds that if an authorized client does not send traffic during the silence period specified by the command, the state of the client is changed to unauthorized.
- **EAP timeout**—Time interval in seconds during which the EAP Server (EAPAuthenticator) waits for a response from the EAP client (EAP Peer) before the requestretransmission
- **EAP Max Retrans**—Maximum number of times that the EAP Server (EAPAuthenticator) retransmits an EAP request when no response from a EAP client (EAPPeer) was received.
- **Tx period**—Number of seconds that the device waits for a response to an Extensible Authentication Protocol (EAP) request/identity frame from the client before resending the request.
- **Max req**—Maximum number of times that the device sends an EAP request frame (assuming that no response is received) to the client before restarting the authentication process.
- **Server timeout**—Number of seconds that the device waits for a response from the authentication server before resending the request.
- **Session Time**—Amount of time (HH:MM:SS) that the user is logged in.
• **MAC address**—Supplicant MAC address.

• **Authentication success**—Number of times the state machine received a Success message from the Authentication Server.

• **Authentication fails**—Number of times the state machine received a Failure message from the Authentication Server.
show dot1x credentials

To display 802.1X credentials, use the `show dot1x credentials` mode command in Privileged EXEC mode.

Syntax

`show dot1x credentials`

Command Mode

Privileged EXEC mode

Examples

The following example displays dot1x credentials:

```
switchxxxxxx# show dot1x credentials
downstream-interface
description: should be used for downstream ports
username: downstream
password’s MD5: 1238af77aaca17568f12988601fcabed
upstream-interface
description: should be used for connection to ISP
username: up2isp
password’s MD5: 1238bbff75431230965394466ac76549
```
show dot1x locked clients

To display all clients who are locked and in the quiet period, use the `show dot1x locked clients` command in Privileged EXEC mode.

Syntax

```plaintext
show dot1x locked clients
```

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show dot1x locked clients` command to display all locked (in the quiet period) clients.

Example

The following example displays locked clients:

```
switchxxxxxx# show dot1x locked clients

<table>
<thead>
<tr>
<th>Port</th>
<th>MAC Address</th>
<th>Remaining Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>0008.3b79.8787</td>
<td>20</td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>0008.3b89.3128</td>
<td>40</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>0008.3b89.3129</td>
<td>10</td>
</tr>
</tbody>
</table>
```
show dot1x statistics

To display 802.1X statistics for the specified port, use the `show dot1x statistics` command in Privileged EXEC mode.

Syntax

```
show dot1x statistics interface interface-id
```

Parameters

- `interface-id`—Specifies an Ethernet port or OOB port.

Command Mode

Privileged EXEC mode

Example

The following example displays 802.1X statistics for gi1/0/1.

```
switchxxxxxx# show dot1x statistics interface gi1/0/1
EapolEapFramesRx: 10
EapolStartFramesRx: 0
EapolLogoffFramesRx: 1
EapolAnnouncementFramesRx: 0
EapolAnnouncementReqFramesRx: 0
EapolInvalidFramesRx: 0
EapolEapLengthErrorFramesRx: 0
EapolMkNoCknFramesRx: 0
EapolMkInvalidFramesRx: 0
EapolLastRxFrameVersion: 3
EapolLastRxFrameSource: 00:08:78:32:98:78
EapolSuppEapFramesTx: 0
EapolStartFramesTx: 1
EapolLogoffFramesTx: 0
EapolAnnouncementFramesTx: 0
EapolAnnouncementReqFramesTx: 0
EapolAuthEapFramesTx: 9
EapolMkaFramesTx: 0
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>EapolInvalidFramesRx</code></td>
<td>The number of invalid EAPOL frames of any type that have been received by this PAE.</td>
</tr>
<tr>
<td><code>EapolEapLengthErrorFramesRx</code></td>
<td>The number of EAPOL frames that the Packet Body Length does not match a Packet Body that is contained within the octets of the received EAPOL MPDU in this PAE.</td>
</tr>
<tr>
<td><code>EapolAnnouncementFramesRx</code></td>
<td>The number of EAPOL-Announcement frames that have been received by this PAE.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>EapolAnnouncementReqFramesRx</td>
<td>The number of EAPOL-Announcement-Req frames that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolStartFramesRx</td>
<td>The number of EAPOL-Start frames that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolEapFramesRx</td>
<td>The number of EAPOL-EAP frames that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolLogoffFramesRx</td>
<td>The number of EAPOL-Logoff frames that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolMkNoCknFramesRx</td>
<td>The number of MKPDUs received with MKA not enabled or CKN not recognized in this PAE.</td>
</tr>
<tr>
<td>EapolMkInvalidFramesRx</td>
<td>The number of MKPDUs failing in message authentication on receipt process in this PAE.</td>
</tr>
<tr>
<td>EapolLastRxFrameVersion</td>
<td>The version of last received EAPOL frame by this PAE.</td>
</tr>
<tr>
<td>EapolLastRxFrameSource</td>
<td>The source MAC address of last received EAPOL frame by this PAE.</td>
</tr>
<tr>
<td>EapolSuppEapFramesTx</td>
<td>The number of EAPOL-EAP frames that have been transmitted by the supplicant of this PAE.</td>
</tr>
<tr>
<td>EapolLogoffFramesTx</td>
<td>The number of EAPOL-Logoff frames that have been transmitted by this PAE.</td>
</tr>
<tr>
<td>EapolAnnouncementFramesTx</td>
<td>The number of EAPOL-Announcement frames that have been transmitted by this PAE.</td>
</tr>
<tr>
<td>EapolAnnouncementReqFramesTx</td>
<td>The number of EAPOL-Announcement-Req frames that have been transmitted by this PAE.</td>
</tr>
<tr>
<td>EapolStartFramesTx</td>
<td>The number of EAPOL-Start frames that have been received by this PAE.</td>
</tr>
<tr>
<td>EapolAuthEapFramesTx</td>
<td>The number of EAPOL-EAP frames that have been transmitted by the authenticator of this PAE.</td>
</tr>
<tr>
<td>EapolMkaFramesTx</td>
<td>The number of EAPOL-MKA frames with no CKN information that have been transmitted by this PAE.</td>
</tr>
</tbody>
</table>
show dot1x users

To display active 802.1X authorized users for the device, use the `show dot1x users` command in Privileged EXEC mode.

Syntax

```
show dot1x users [username username]
```

Parameters

- `username` username—Specifies the supplicant username (Length: 1–160 characters).

Default Configuration

Display all users.

Command Mode

Privileged EXEC mode

Example 1. The following commands displays all 802.1x users:

```
show dot1x users
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Username</th>
<th>MAC Address</th>
<th>Auth Method</th>
<th>Auth Server</th>
<th>Session Time</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Bob</td>
<td>0008.3b71.1111</td>
<td>802.1x</td>
<td>Remote</td>
<td>09:01:00</td>
<td>1020</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>00083b798787</td>
<td>0008.3b79.8787</td>
<td>MAC</td>
<td>Remote</td>
<td>00:11:12</td>
<td></td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>John</td>
<td>0008.3baa.0022</td>
<td>WBA</td>
<td>Remote</td>
<td>00:27:16</td>
<td></td>
</tr>
</tbody>
</table>

Example 2. The following example displays 802.1X user with supplicant username Bob:

```
switchxxxxxx# show dot1x users username Bob
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Username</th>
<th>MAC Address</th>
<th>Auth Method</th>
<th>Auth Server</th>
<th>Session Time</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Bob</td>
<td>0008.3b71.1111</td>
<td>802.1x</td>
<td>Remote</td>
<td>09:01:00</td>
<td>1020</td>
</tr>
</tbody>
</table>
username (dot1x credentials)

To specify a username for an 802.1X credential structure, use the `username` command in Dot1x credentials configuration mode. To remove the username, use the `no` form of this command.

Syntax

```
username username
no username
```

Parameters

- `username`—The user name up to 32 characters.

Default Configuration

A username is not specified.

Command Mode

Dot1x credentials configuration mode

User Guidelines

An 802.1X credential structure is necessary when configuring a supplicant (client). This credentials structure may contain a username, password, and description.

Example

The following example configures an 802.1X credential structure:

```plaintext
switchxxxxxx(config)# dot1x credentials site-A
switchxxxxxx(config-dot1x-cred)# username inner-switch
switchxxxxxx(config-dot1x-cred)# password 87%$#bgd98^
switchxxxxxx(config-dot1x-cred)# description This credentials profile should be used to connected to site-A
```
username (dot1x credentials)
ACL Commands

This chapter contains the following sections:

- ip access-list (IP extended), on page 86
- permit (IP), on page 87
- deny (IP), on page 90
- ipv6 access-list (IPv6 extended), on page 93
- permit (IPv6), on page 94
- deny (IPv6), on page 97
- mac access-list, on page 100
- permit (MAC), on page 101
- deny (MAC), on page 103
- service-acl input, on page 105
- service-acl output, on page 107
- time-range, on page 108
- absolute, on page 110
- periodic, on page 111
- show time-range, on page 112
- show access-lists, on page 113
- clear access-lists counters, on page 114
- show interfaces access-lists trapped packets, on page 115
- ip access-list (IP standard), on page 116
- ipv6 access-list (IP standard), on page 118
ip access-list (IP extended)

Use the `ip access-list extended` Global Configuration mode command to name an IPv4 access list (ACL) and to place the device in IPv4 Access List Configuration mode. All commands after this command refer to this ACL. The rules (ACEs) for this ACL are defined in the `permit (IP)`, on page 87 and `deny (IP)`, on page 90 commands. The `service-acl input`, on page 105 command is used to attach this ACL to an interface.

Use the `no` form of this command to remove the access list.

Syntax

`ip access-list extended acl-name`

`no ip access-list extended acl-name`

Parameters

- `acl-name`—Name of the IPv4 access list. (Range 1-32 characters)

Default Configuration

No IPv4 access list is defined.

Command Mode

Global Configuration mode

User Guidelines

An IPv4 ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

Example

```
switchxxxxxx(config)# ip access-list extended server
switchxxxxxx(config-ip-al)#
```
permit (IP)

Use the permit IP Access-list Configuration mode command to set permit conditions for an IPv4 access list (ACL). Permit conditions are also known as access control entries (ACEs). Use the no form of the command to remove the access control entry.

Syntax

```
permit protocol {any | source source-wildcard} {any | destination destination-wildcard} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [dscp number | precedence number] [time-range time-range-name] [log-input]

permit tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [ace-priority priority] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [log-input]

permit udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit protocol {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [dscp number | precedence number] [time-range time-range-name] [log-input]

no permit tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [log-input]

no permit udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [dscp number | precedence number] [time-range time-range-name] [log-input]
```

Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names are: icmp, igmp, ip, tcp, egp, igp, udp, hmp, rdp, idpr, ipv6, ipv6:rout, ipv6:frag, idrp, rsvp, gre, esp, ah, ipv6:icmp, eigrp, ospf, ipinip, pim, l2tp, isis. To match any protocol, use the ip keyword. (Range: 0–255)

- **source**—Source IP address of the packet.

- **source-wildcard**—Wildcard bits to be applied to the source IP address. Use ones in the bit position that you want to be ignored.

- **destination**—Destination IP address of the packet.
• **destination-wildcard**—Wildcard bits to be applied to the destination IP address. Use ones in the bit position that you want to be ignored.

• **priority** - Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)

• **dscp number**—Specifies the DSCP value.

• **precedence number**—Specifies the IP precedence value.

• **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: echo-reply, destination-unreachable, source-quench, redirect, alternate-host-address, echo-request, router-advertisement, router-solicitation, time-exceeded, parameter-problem, timestamp, timestamp-reply, information-request, information-reply, address-mask-request, address-mask-reply, traceroute, datagram-conversion-error, mobile-host-redirect, mobile-registration-request, mobile-registration-reply, domain-name-request, domain-name-reply, skip, photuris. (Range: 0–255)

• **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

• **igmp-type**—IGMP packets can be filtered by IGMP message type. Enter a number or one of the following values: host-query, host-report, dvmrp, pim, cisco-trace, host-report-v2, host-leave-v2, host-report-v3. (Range: 0–255)

• **destination-port**—Specifies the UDP/TCP destination port. You can enter range of ports by using hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), ldp (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), on500-iskamp (4500), ntp (123), rip (520), smnp (161), smntrap (162), sunrpc (111), syslog (514), tacacs-ds (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535).

• **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

• **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set, it is prefixed by “+”. If a flag should be unset, it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

• **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

• **log-input**—Specifies sending an informational SYSLOG message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No IPv4 access list is defined.

Command Mode

IP Access-list Configuration mode
User Guidelines

If a range of ports is used for source port in an ACE, it is not counted again, if it is also used for a source port in another ACE. If a range of ports is used for the destination port in an ACE, it is not counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port it is counted again if it is also used for destination port.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```
switchxxxxxx(config)# ip access-list extended server
switchxxxxxx(config-ip-al)# permit ip 176.212.0.0 00.255.255 any
```
deny (IP)

Use the deny IP Access-list Configuration mode command to set deny conditions for IPv4 access list. Deny conditions are also known as access control entries (ACEs). Use the no form of the command to remove the access control entry.

Syntax

```
deny protocol {any | source source-wildcard} {any | destination destination-wildcard} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port] [log-input] 
deny icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port] [log-input] 
deny igmp {any | source source-wildcard} {any | destination destination-wildcard} [igmp-type] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port] [log-input] 
deny tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} [any | destination-port/port-range] [ace-priority priority] [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [disable-port] [log-input] 
deny udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} [any | destination-port/port-range] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [disable-port] [log-input] 
```

Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names: icmp, igmp, ip, tcp, egp, igrp, udp, hmp, rdp, idrp, ipv6, ipv6:frag, idrp, rsvp, gre, esp, ah, ipv6:icmp, eigrp, ospf, ipinip, ping, l2tp, isis. To match any protocol, use the ip keyword. (Range: 0–255)

- **source**—Source IP address of the packet.

- **source-wildcard**—Wildcard bits to be applied to the source IP address. Use 1s in the bit position that you want to be ignored.

- **destination**—Destination IP address of the packet.
• **destination-wildcard**—Wildcard bits to be applied to the destination IP address. Use 1s in the bit position that you want to be ignored.

• **priority** - Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)

• **dscp number**—Specifies the DSCP value.

• **precedence number**—Specifies the IP precedence value.

• **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: echo-reply, destination-unreachable, source-quench, redirect, alternate-host-address, echo-request, router-advertisement, router-solicitation, time-exceeded, parameter-problem, timestamp, timestamp-reply, information-request, information-reply, address-mask-request, address-mask-reply, traceroute, datagram-conversion-error, mobile-host-redirect, mobile-registration-request, mobile-registration-reply, domain-name-request, domain-name-reply, skip, photuris. (Range: 0–255)

• **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

• **igmp-type**—IGMP packets can be filtered by IGMP message type. Enter a number or one of the following values: host-query, host-report, dvmrp, pim, cisco-trace, host-report-v2, host-leave-v2, host-report-v3. (Range: 0–255)

• **destination-port**—Specifies the UDP/TCP destination port. You can enter range of ports by using hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), ldap (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), smtp (18), smtp (25), smtp (58), smtp (514), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), who (513), xdmcp (177). (Range: 0–65535)

• **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

• **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-“. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

• **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

• **disable-port**—The Ethernet interface is disabled if the condition is matched.

• **log-input**—Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No IPv4 access list is defined.
Command Mode

IP Access-list Configuration mode

User Guidelines

The number of TCP/UDP ranges that can be defined in ACLs is limited. If a range of ports is used for a source port in ACE it is not counted again if it is also used for source port in another ACE. If a range of ports is used for destination port in ACE it is not counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port, it is counted again if it is also used for destination port.

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```
switchxxxxxx(config)# ip access-list extended server
switchxxxxxx(config-ip-al)# deny ip 176.212.0.0 00.255.255 any
```
ipv6 access-list (IPv6 extended)

Use the `ipv6 access-list` Global Configuration mode command to define an IPv6 access list (ACL) and to place the device in IPv6 Access-list Configuration mode. All commands after this command refer to this ACL.

Use the `no` form of this command to remove the access list.

Syntax

```
ipv6 access-list [acl-name]
no ipv6 access-list [acl-name]
```

Parameters

- `acl-name`—Name of the IPv6 access list. Range 1-32 characters.

Default Configuration

No IPv6 access list is defined.

Command Mode

Global Configuration mode

User Guidelines

IPv6 ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

Every IPv6 ACL has an implicit `permit icmp any any nd-ns any, permit icmp any any nd-na any`, and `deny ipv6 any any` statements as its last match conditions. (The former two match conditions allow for ICMPv6 neighbor discovery.)

The IPv6 neighbor discovery process uses the IPv6 network layer service, therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, uses a separate data link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Example

```
switchxxxxxx(config)# ipv6 access-list acl1
switchxxxxxx(config-ip-al)# permit tcp 2001:0DB8:0300:0201::/64 any any 80
```
permit (IPv6)

Use the `permit` command in IPv6 Access-list Configuration mode to set permit conditions (ACEs) for IPv6 ACLs. Use the `no` form of the command to remove the access control entry.

Syntax

```
permit protocol {any | [source-prefix/length] | [destination-prefix/length]} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]
```

```
permit icmp [any | [source-prefix/length] | [destination-prefix/length]] [any | icmp-type] [any | icmp-code] [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]
```

```
permit tcp {any | [source-prefix/length] | [destination-prefix/length]} {any | source-port} {any | destination-prefix/length} {any | destination-port} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]
```

```
permit udp {any | [source-prefix/length] | [destination-prefix/length]} {any | source-port} {any | destination-prefix/length} {any | destination-port} [ace-priority priority] [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]
```

```
no permit protocol {any | [source-prefix/length] | [destination-prefix/length]} [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]
```

```
no permit icmp {any | [source-prefix/length] | [destination-prefix/length]} {any | icmp-type} [any | icmp-code] [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]
```

```
no permit tcp {any | [source-prefix/length] | [destination-prefix/length]} {any | source-port} {any | destination-prefix/length} {any | destination-port} [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]
```

```
no permit udp {any | [source-prefix/length] | [destination-prefix/length]} {any | source-port} {any | destination-prefix/length} {any | destination-port} [dscp number | precedence number] [time-range time-range-name] [log-input] [flow-label flow-label-value]
```

Parameters

- **protocol** — The name or the number of an IP protocol. Available protocol names are: icmp (58), tcp (6) and udp (17). To match any protocol, use the ipv6 keyword. (Range: 0–255)

- **source-prefix/length** — The source IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **destination-prefix/length** — The destination IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **priority** — Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)

- **dscp number** — Specifies the DSCP value. (Range: 0–63)
• **precedence number**—Specifies the IP precedence value.

• **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), mld-query (130), mld-report (131), mldv2-report (143), mld-done (132), router-solicitation (133), router-advertisement (134), nd-ns (135), nd-na (136). (Range: 0–255)

• **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

• **destination-port**—Specifies the UDP/TCP destination port. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), mnt (119), pop2 (109), pop3 (110), smtp (110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), smtp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

• **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

• **match-all list-of-flag**—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

• **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

• **log-input**—Specifies sending an informational SYSLOG message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

• **flow-label flow-label-value**—Specifies the IPv6 Flow Label value. A value of these arguments must be in range 0–1048575.

Default Configuration

No IPv6 access list is defined.

Command Mode

Ipv6 Access-list Configuration mode

User Guidelines

If ace-priority is omitted, the system sets the rule’s priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Flow label and port range cannot be configured together.

Flow label cannot be configured into an output ACL.

Example 1. This example defines an ACL by the name of server and enters a rule (ACE) for tcp packets.
Example 2. This example defines an ACL with the `flow-label` keyword:

```plaintext
switchxxxxx(config)# ipv6 access-list server
switchxxxxx(config-ipv6-al)# permit tcp 3001::2/64 any any 80
```
deny (IPv6)

Use the `deny` command in IPv6 Access-list Configuration mode to set deny conditions (ACEs) for IPv6 ACLs. Use the no form of the command to remove the access control entry.

Syntax

```
deny protocol {any | {source-prefix/length} | any | destination-prefix/length} | ace-priority priority | [dscp number | precedence number | [time-range time-range-name] | [disable-port | [log-input] | [flow-label flow-label-value]

deny icmp {any | {source-prefix/length} | any | destination-prefix/length} | any | icmp-type | any | icmp-code | [ace-priority priority | [dscp number | precedence number | [time-range time-range-name] | [disable-port | [log-input] | [flow-label flow-label-value]

deny tcp {any | {source-prefix/length} | any | source-port} | any | destination-prefix/length} | any | destination-port | [ace-priority priority | [dscp number | precedence number | [match-all list-of-flags] | [time-range time-range-name] | [disable-port | [log-input] | [flow-label flow-label-value]

deny udp {any | {source-prefix/length} | any | source-port} | any | destination-prefix/length} | any | destination-port | [ace-priority priority | [dscp number | precedence number | [time-range time-range-name] | [disable-port | [log-input] | [flow-label flow-label-value]
```

**no deny protocol {any | {source-prefix/length} | any | destination-prefix/length} | [dscp number | precedence number] | [time-range time-range-name] | [disable-port | [log-input] | [flow-label flow-label-value]

Parameters

- **protocol** — The name or the number of an IP protocol. Available protocol names are: icmp (58), tcp (6) and udp (17). To match any protocol, use the ipv6 keyword. (Range: 0–255)

- **source-prefix/length** — The source IPv6 network or class of networks about which to set permit conditions. This argument must be in the format documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **destination-prefix/length** — The destination IPv6 network or class of networks about which to set permit conditions. This argument must be in the format documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

- **priority** — Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)
• **dscp number**—Specifies the DSCP value. (Range: 0–63)

• **precedence number**—Specifies the IP precedence value.

• **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), mld-query (130), mld-report (131), mldv2-report (143), mld-done (132), router-solicitation (133), router-advertisement (134), nd-nsc (135), nd-na (136). (Range: 0–255)

• **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

• **destination-port**—Specifies the UDP/TCP destination port. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data 20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dns (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

• **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)

• **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “−”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

• **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

• **disable-port**—The Ethernet interface is disabled if the condition is matched.

• **log-input**—Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

• **flow-label flow-label-value**—Specifies the IPv6 Flow Label value. A value of these arguments must be in range 0–1048575.

Default Configuration

No IPv6 access list is defined.

Command Mode

Ipv6 Access-list Configuration mode

User Guidelines

If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL.If the user types already existed priority, then the command is rejected.

Flow label and port range cannot be configured together.
Flow label cannot be configured into an output ACL.

Example

`switchxxxxx(config)# ipv6 access-list server
switchxxxxx(config-ipv6-al)# deny tcp 3001::2/64 any any 80`
mac access-list

Use the `mac access-list` Global Configuration mode command to define a Layer 2 access list (ACL) based on source MAC address filtering and to place the device in MAC Access-list Configuration mode. All commands after this command refer to this ACL.

Use the `no` form of this command to remove the access list.

Syntax

```
mac access-list extended acl-name
no mac access-list extended acl-name
```

Parameters

- `acl-name`—Specifies the name of the MAC ACL (Range: 1–32 characters).

Default Configuration

No MAC access list is defined.

Command Mode

Global Configuration mode

User Guidelines

A MAC ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name. If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```
switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
```
permit (MAC)

Use the permit command in MAC Access-list Configuration mode to set permit conditions (ACEs) for a MAC ACL. Use the no form of the command to remove the access control entry.

Syntax

`permit [any | source source-wildcard] [destination destination-wildcard] [ace-priority priority] [eth-type 0 | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | vlan vlan-id] [cos cos-wildcard] [time-range time-range-name] [log-input]`

`no permit [any | source source-wildcard] [destination destination-wildcard] [eth-type 0 | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | vlan vlan-id] [cos cos-wildcard] [time-range time-range-name] [log-input]`

Parameters

- `source`—Source MAC address of the packet.
- `source-wildcard`—Wildcard bits to be applied to the source MAC address. Use 1s in the bit position that you want to be ignored.
- `destination`—Destination MAC address of the packet.
- `destination-wildcard`—Wildcard bits to be applied to the destination MAC address. Use 1s in the bit position that you want to be ignored.
- `priority` - Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority. (Range: 1-2147483647)
- `eth-type`—The Ethernet type in hexadecimal format of the packet.
- `vlan-id`—The VLAN ID of the packet. (Range: 1–4094)
- `cos`—The Class of Service of the packet. (Range: 0–7)
- `cos-wildcard`—Wildcard bits to be applied to the CoS.
- `time-range-name`—Name of the time range that applies to this permit statement. (Range: 1–32)
- `log-input`—Specifies sending an informational SYSLOG message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

User Guidelines

A MAC ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name. If ace-priority is omitted, the system sets the rule's priority to the current highest priority ACE
(in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Default Configuration

No MAC access list is defined.

Command Mode

MAC Access-list Configuration mode

Example

```
switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
```
deny (MAC)

Use the `deny` command in MAC Access-list Configuration mode to set deny conditions (ACEs) for a MAC ACL. Use the `no` form of the command to remove the access control entry.

Syntax

```
```

```
```

Parameters

- **source**—Source MAC address of the packet.
- **source-wildcard**—Wildcard bits to be applied to the source MAC address. Use ones in the bit position that you want to be ignored.
- **destination**—Destination MAC address of the packet.
- **destination-wildcard**—Wildcard bits to be applied to the destination MAC address. Use 1s in the bit position that you want to be ignored.
- **priority**—Specify the priority of the access control entry (ACE) in the access control list (ACL). "1" value represents the highest priority and "2147483647" number represents the lowest priority.(Range: 1-2147483647)
- **eth-type**—The Ethernet type in hexadecimal format of the packet.
- **vlan-id**—The VLAN ID of the packet. (Range: 1–4094).
- **cos**—The Class of Service of the packet.(Range: 0–7).
- **cos-wildcard**—Wildcard bits to be applied to the CoS.
- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)
- **disable-port**—The Ethernet interface is disabled if the condition is matched.
- **log-input**—Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding/dropping is done in hardware and logging is done in software, if a large number of packets match an ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default Configuration

No MAC access list is defined.

Command Mode

MAC Access-list Configuration mode
User Guidelines

A MAC ACL is defined by a unique name. IPv4 ACL, IPv6 ACL, MAC ACL or policy maps cannot have the same name.

If `ace-priority` is omitted, the system sets the rule's priority to the current highest priority ACE (in the current ACL) + 20. The ACE-priority must be unique per ACL. If the user types already existed priority, then the command is rejected.

Example

```plaintext
switchxxxxxx(config)# mac access-list extended server1
switchxxxxxx(config-mac-al)# deny 00:00:00:00:01 00:00:00:ff any
```
service-acl input

Use the `service-acl input` command in Interface Configuration mode to bind an access list(s) (ACL) to an interface.

Use the `no` form of this command to remove all ACLs from the interface.

Syntax

```
sevice-acl input acl-name1 [acl-name2] [default-action {deny-any | permit-any}]
```

```
no service-acl input
```

Parameters

- `acl-name`—Specifies an ACL to apply to the interface. See the user guidelines. (Range: 1–32 characters).
- `deny-any`—Deny all packets (that were ingress at the port) that do not meet the rules in this ACL.
- `permit-any`—Forward all packets (that were ingress at the port) that do not meet the rules in this ACL.

Default Configuration

No ACL is assigned. Default action for ACL is deny-any.

Command Mode

Interface Configuration mode (Ethernet, Port-Channel,, VLAN)

User Guidelines

The following rules govern when ACLs can be bound or unbound from an interface:

- IPv4 ACLs and IPv6 ACLs can be bound together to an interface.
- A MAC ACL cannot be bound on an interface which already has an IPv4 ACL or IPv6 ACL bound to it.
- Two ACLs of the same type cannot be bound to a port.
- An ACL cannot be bound to a port that is already bound to an ACL, without first removing the current ACL. Both ACLs must be mentioned at the same time in this command.
- MAC ACLs that include a VLAN as match criteria cannot be bound to a VLAN.
- ACLs with time-based configuration on one of its ACEs cannot be bound to a VLAN.
- ACLs with the action Shutdown cannot be bound to a VLAN.
- When the user binds ACL to an interface, TCAM resources will be consumed. One TCAM rule for each MAC or IP ACE and two TCAM rules for each IPv6 ACE. The TCAM consumption is always even number, so in case of odd number of rules the consumption will be increased by 1.
- An ACL cannot be bound as input if it has been bound as output.
Example

switchxxxxx(config)# mac access-list extended server-acl
switchxxxxxx(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
switchxxxxxx(config-mac-al)# exit
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# service-acl input server-acl default-action deny-any
service-acl output

Use the `service-acl output` command in Interface Configuration mode to control access to an interface on the egress (transmit path).

Use the `no` form of this command to remove the access control.

Syntax

```
service-acl output acl-name1 [acl-name2] [default-action {deny-any | permit-any}]
no service-acl output
```

Parameters

- `acl-name` — Specifies an ACL to apply to the interface. See the user guidelines. (Range: 1–32 characters).
- `deny-any` — Deny all packets (on the output of port) that do not meet the rules in this ACL.
- `permit-any` — Forward all packets (on the output of port) that do not meet the rules in this ACL.

Default

No ACL is assigned. Default action is deny-any

Command Mode

Interface Configuration mode (Ethernet, Port-Channel).

User Guidelines

The rule actions: log-input is not supported. Trying to use it will result in an error.

The deny rule action disable-port is not supported. Trying to use it will result in an error.

IPv4 and IPv6 ACLs can be bound together on an interface.

A MAC ACL cannot be bound on an interface together with an IPv4 ACL or IPv6 ACL.

Two ACLs of the same type cannot be added to a port.

An ACL cannot be added to a port that is already bounded to an ACL, without first removing the current ACL and binding the two ACLs together.

An ACL cannot be bound as output if it has been bound as input.

Example

This example binds an egress ACL to a port:

```
switchxxxxxx(config)# mac access-list extended server
switchxxxxxx(config-mac-al)# permit 00:00:00:00:01 00:00:00:00:ff any
switchxxxxxx(config-mac-al)# exit
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# service-acl output server
```
time-range

Use the **time-range** Global Configuration mode command to define time ranges for different functions. In addition, this command enters the Time-range Configuration mode. All commands after this one refer to the time-range being defined.

This command sets a time-range name. Use the **absolute, on page 110** and **periodic, on page 111** commands to actually configure the time-range.

Use the **no** form of this command to remove the time range from the device.

Syntax

```
time-range time-range-name
no time-range time-range-name
```

Parameters

- **time-range-name**—Specifies the name for the time range. (Range: 1–32 characters)

Default Configuration

No time range is defined

Command Mode

Global Configuration mode

User Guidelines

If a time-range command has both absolute and periodic values specified, then the periodic items are evaluated only after the absolute start time is reached, and are not evaluated again after the absolute end time is reached. All time specifications are interpreted as local time.

To ensure that the time range entries take effect at the desired times, the software clock should be set by the user or by SNTP. If the software clock is not set by the user or by SNTP, the time range ACEs are not activated.

The user cannot delete a time-range that is bound to any features.

When a time range is defined, it can be used in the following commands:

- dot1x port-control
- power inline
- operation time
- permit (IP)
- deny (IP)
- permit (IPv6)
- deny (IPv6)
- permit (MAC)
• deny (MAC)

Example

switchxxxxx(config)# time-range http-allowed
console(config-time-range)#periodic mon 12:00 to wed 12:00
absolute

Use the **absolute** Time-range Configuration mode command to specify an absolute time when a time range is in effect. Use the **no** form of this command to remove the time limitation.

Syntax

```plaintext
absolute start hh:mm day month year
no absolute start
absolute end hh:mm day month year
no absolute end
```

Parameters

- **start**—Absolute time and date that the permit or deny statement of the associated function going into effect. If no start time and date are specified, the function is in effect immediately.

- **end**—Absolute time and date that the permit or deny statement of the associated function is no longer in effect. If no end time and date are specified, the function is in effect indefinitely.

- **hh:mm**—Time in hours (military format) and minutes (Range: 0–23, mm: 0–5)

- **day**—Day (by date) in the month. (Range: 1–31)

- **month**—Month (first three letters by name). (Range: Jan...Dec)

- **year**—Year (no abbreviation) (Range: 2000–2097)

Default Configuration

There is no absolute time when the time range is in effect.

Command Mode

Time-range Configuration mode

Example

```plaintext
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# absolute start 12:00 1 jan 2005
switchxxxxxx(config-time-range)# absolute end 12:00 31 dec 2005
```
Use the periodic Time-range Configuration mode command to specify a recurring (weekly) time range for functions that support the time-range feature. Use the no form of this command to remove the time limitation.

Syntax

```
periodic day-of-the-week hh:mm to day-of-the-week hh:mm  
no periodic day-of-the-week hh:mm to day-of-the-week hh:mm
```

```
periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2… day-of-the-week7]  
no periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2… day-of-the-week7]
```

```
periodic list hh:mm to hh:mm all  
no periodic list hh:mm to hh:mm all
```

Parameters

- **day-of-the-week** — The starting day that the associated time range is in effect. The second occurrence is the ending day the associated statement is in effect. The second occurrence can be the following week (see description in the User Guidelines). Possible values are: mon, tue, wed, thu, fri, sat, and sun.

- **hh:mm** — The first occurrence of this argument is the starting hours:minutes (military format) that the associated time range is in effect. The second occurrence is the ending hours:minutes (military format) the associated statement is in effect. The second occurrence can be at the following day (see description in the User Guidelines). (Range: 0–23, mm: 0–59)

- **list day-of-the-week** — Specifies a list of days that the time range is in effect.

Default Configuration

There is no periodic time when the time range is in effect.

Command Mode

Time-range Configuration mode

User Guidelines

The second occurrence of the day can be at the following week, e.g. Thursday–Monday means that the time range is effective on Thursday, Friday, Saturday, Sunday, and Monday. The second occurrence of the time can be on the following day, e.g. “22:00–2:00”.

Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# periodic mon 12:00 to wed 12:00
```
show time-range

Use the `show time-range` User EXEC mode command to display the time range configuration.

Syntax

```
show time-range time-range-name
```

Parameters

- `time-range-name`—Specifies the name of an existing time range.

Command Mode

User EXEC mode

Example

```
switchxxxxxx> show time-range
http-allowed
------------
absolute start 12:00 1 Jan 2005 end 12:00 31 Dec 2005
periodic Monday 12:00 to Wednesday 12:00
```
show access-lists

Use the **show access-lists** Privileged EXEC mode command to display access control lists (ACLs) configured on the switch.

Syntax

```
show access-lists [name]
show access-lists time-range-active [name]
```

Parameters

- **name**—Specifies the name of the ACL. (Range: 1-160 characters).
- **time-range-active**—Shows only the Access Control Entries (ACEs) whose time-range is currently active (including those that are not associated with time-range).

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show access-lists
Standard IP access list 1
Extended IP access list ACL2
permit 234 172.30.19.1 0.0.0.255 any priority 20 time-range weekdays
permit 234 172.30.23.8 0.0.0.255 any priority 40 time-range weekdays
switchxxxxxx# show access-lists time-range-active
Extended IP access list ACL1
permit 234 172.30.8.8 0.0.0.0 any priority 20
Extended IP access list ACL2
permit 234 172.30.19.1 0.0.0.255 any priority 20 time-range weekdays
switchxxxxxx# show access-lists time-range weekdays
Extended IP access list ACL1
permit 234 172.30.40.1 0.0.0.0 any priority 20
Extended IP access list ACL1
permit 234 172.30.8.8 0.0.0.0 any priority 40
```

Cisco Business Switches 350 Series CLI Guide
clear access-lists counters

Use the clear access-lists counters Privileged EXEC mode command to clear access-lists (ACLs) counters.

Syntax

```
clear access-lists counters [interface-id]
```

Parameters

```
interface-id — Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
```

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# clear access-lists counters gi1/0/1
```
show interfaces access-lists trapped packets

Use the show interfaces access-lists trapped packets Privileged EXEC mode command to display Access List (ACLs) trapped packets.

Syntax

show interfaces access-lists trapped packets [interface-id | port-channel-number | VLAN]

Parameters

- interface-id—Specifies an interface ID, the interface ID is an Ethernet port port-channel.
- port-channel—Specifies a port-channel.
- VLAN—Specifies a VLAN

Command Mode

Privileged EXEC mode

User Guidelines

This command shows whether packets were trapped from ACE hits with logging enable on an interface.

Example 1:

switchxxxxxx# show interfaces access-lists trapped packets
Ports/LAGs: gi1/0/1-gi1/0/3, ch1-ch3, ch4
VLANs: VLAN1, VLAN12-VLAN15
Packets were trapped globally due to lack of resources

Example 2:

switchxxxxxx# show interfaces access-lists trapped packets gi1/0/1
Packets were trapped on interface gi1/0/1
ip access-list (IP standard)

Use the `ip access-list` Global Configuration mode command to define an IP standard list. The `no` format of the command removes the list.

Syntax

```
ip access-list access-list-name {deny|permit} {src-addr[src-len] | any}
no ip access-list access-list-name
```

Parameters

- **access-list-name**—The name of the Standard IP access list. The name may contain maximum 32 characters.
- **deny/permit**—Denies/permits access if the conditions are matched.
- **src-addr[src-len] | any**—IP prefix defined as an IP address and length or any. The any value matches all IP addresses. If src-len is not defined, a value of 32 is applied. A value of src-len must be in the interval 1-32.

Default Configuration

No access list is defined.

Command Mode

Global Configuration mode

User Guidelines

Use the `ip access-list` command to configure IP address filtering. Access lists are configured with `permit` or `deny` keywords to either permit or deny an IP address based on a matching condition. An implicit `deny` is applied to address that does not match any access-list entry.

An access-list entry consists of an IP address and a bit mask. The bit mask is a number from 1 to 32.

Evaluation of an IP address by an access list starts with the first entry of the list and continues down the list until a match is found. When the IP address match is found, the permit or deny statement is applied to that address and the remainder of the list is not evaluated.

Use the `no ip access-list` command to delete the access list.

The IPv4 standard access list is used to filter received and sent IPv4 routing information.

Example 1 - The following example of a standard access list allows only the three specified networks. Any IP address that does not match the access list statements will be rejected.

```
switchxxxxxx(config)# ip access-list 1 permit 192.168.34.0/24
switchxxxxxx(config)# ip access-list 1 permit 10.88.0.0/16
switchxxxxxx(config)# ip access-list 1 permit 10.0.0.0/8
```

Note: all other access is implicitly denied.
Example 2 - The following example of a standard access list allows access for IP addresses in the range from 10.29.2.64 to 10.29.2.127. All IP addresses not in this range will be rejected.

```
switchxxxxxx(config)# ip access-list apo permit 10.29.2.64/26
```

Note: all other access is implicitly denied.

Example 3 - To specify a large number of individual addresses more easily, you can omit the mask length if it is 32. Thus, the following two configuration commands are identical in effect:

```
switchxxxxxx(config)# ip access-list 2aa permit 10.48.0.3
switchxxxxxx(config)# ip access-list 2aa permit 10.48.0.3/32
```
ipv6 access-list (IP standard)

The `ipv6 access-list` Global Configuration mode command defines an IPv6 standard list. The `no` format of the command removes the list.

Syntax

```
ipv6 access-list access-list-name {deny|permit} {src-addr[/src-len] | any}
no ipv6 access-list access-list-name
```

Parameters

- **access-list-name**—The name of the Standard IPv6 access list. The name may contain maximum 32 characters.
- **deny**—Denies access if the conditions are matched.
- **permit**—Permits access if the conditions are matched.
- **src-addr[/src-len] | any**—IPv6 prefix defined as an IPv6 address and length or any. The `any` value matches to all IPv6 addresses. If the `src-len` is not defined a value of 128 is applied. A value of `src-len` must be in interval 1-128.

Default Configuration

no access list

Command Mode

Global Configuration mode

User Guidelines

Use the `ipv6 access-list` command to configure IPv6 address filtering. Access lists are configured with `permit` or `deny` keywords to either permit or deny an IPv6 address based on a matching condition. An implicit `deny` is applied to address that does not match any access-list entry.

An access-list entry consists of an IP address and a bit mask. The bit mask is a number from 1 to 128.

Evaluation of an IPv6 address by an access list starts with the first entry of the list and continues down the list until a match is found. When the IPv6 address match is found, the permit or deny statement is applied to that address and the remainder of the list is not evaluated.

Use the `no ipv6 access-list` command to delete the access list.

The IPv6 standard access list is used to filter received and sent IPv6 routing information.

Example

The following example of an access list allows only the one specified prefix: Any IPv6 address that does not match the access list statements will be rejected.

```
switchxxxxxx(config)# ipv6 access-list 1 permit 3001::2/64
```
Note: all other access implicitly denied.
ipv6 access-list (IP standard)
Address Table Commands

This chapter contains the following sections:

- bridge multicast filtering, on page 123
- bridge multicast mode, on page 124
- bridge multicast address, on page 126
- bridge multicast forbidden address, on page 127
- bridge multicast ip-address, on page 128
- bridge multicast forbidden ip-address, on page 130
- bridge multicast source group, on page 131
- bridge multicast forbidden source group, on page 132
- bridge multicast ipv6 mode, on page 133
- bridge multicast ipv6 ip-address, on page 135
- bridge multicast ipv6 forbidden ip-address, on page 136
- bridge multicast ipv6 source group, on page 137
- bridge multicast ipv6 forbidden source group, on page 138
- bridge multicast unregistered, on page 139
- bridge multicast forward-all, on page 140
- bridge multicast forbidden forward-all, on page 141
- bridge unicast unknown, on page 142
- show bridge unicast unknown, on page 143
- mac address-table static, on page 144
- clear mac address-table, on page 146
- mac address-table aging-time, on page 147
- port security, on page 148
- port security mode, on page 150
- port security max, on page 151
- port security routed secure-address, on page 152
- show mac address-table, on page 153
- show mac address-table count, on page 155
- show bridge multicast mode, on page 157
- show bridge multicast address-table, on page 158
- show bridge multicast address-table static, on page 160
- show bridge multicast filtering, on page 162
- bridge multicast unregistered, on page 163
• show ports security, on page 164
• show ports security addresses, on page 166
• bridge multicast reserved-address, on page 167
• show bridge multicast reserved-addresses, on page 169
bridge multicast filtering

To enable the filtering of Multicast addresses, use the bridge multicast filtering Global Configuration mode command. To disable Multicast address filtering, use the no form of this command.

Syntax

bridge multicast filtering
no bridge multicast filtering

Parameters

This command has no arguments or keywords.

Default Configuration

Multicast address filtering is disabled. All Multicast addresses are flooded to all ports.

Command Mode

Global Configuration mode

User Guidelines

When this feature is enabled, unregistered Multicast traffic (as opposed to registered) will still be flooded. All registered Multicast addresses will be forwarded to the Multicast groups.

Example

The following example enables bridge Multicast filtering.

switchxxxxxx(config)# bridge multicast filtering
bridge multicast mode

To configure the Multicast bridging mode, use the bridge multicast mode Interface (VLAN) Configuration mode command. To return to the default configuration, use the no form of this command.

Syntax

bridge multicast mode /mac-group | ipv4-group | ipv4-src-group/

no bridge multicast mode

Parameters

• mac-group—Specifies that Multicast bridging is based on the packet's VLAN and MAC address.
• ipv4-group—Specifies that Multicast bridging is based on the packet's VLAN and MAC address for non-IPv4 packets, and on the packet's VLAN and IPv4 destination address for IPv4 packets.
• ipv4-src-group—Specifies that Multicast bridging is based on the packet's VLAN and MAC address for non-IPv4 packets, and on the packet's VLAN, IPv4 destination address and IPv4 source address for IPv4 packets.

Default Configuration

The default mode is mac-group.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the mac-group option when using a network management system that uses a MIB based on the Multicast MAC address. Otherwise, it is recommended to use the ipv4 mode, because there is no overlapping of IPv4 Multicast addresses in these modes.

The following table describes the actual data that is written to the Forwarding Data Base (FDB) as a function of the IGMP version that is used in the network:

<table>
<thead>
<tr>
<th>FDB mode</th>
<th>IGMP version 2</th>
<th>IGMP version 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>MAC group address</td>
<td>MAC group address</td>
</tr>
<tr>
<td>ipv4-group</td>
<td>IP group address</td>
<td>IP group address</td>
</tr>
<tr>
<td>ipv4-src-group</td>
<td>(*)</td>
<td>IP source and group addresses</td>
</tr>
</tbody>
</table>

(*) Note that (*,G) cannot be written to the FDB if the mode is ipv4-src-group. In that case, no new FDB entry is created, but the port is added to the static (S,G) entries (if they exist) that belong to the requested group. It is recommended to set the FDB mode to ipv4-group or mac-group for IGMP version 2.

If an application on the device requests (*,G), the operating FDB mode is changed to ipv4-group.
Example

The following example configures the Multicast bridging mode as an mac-group on VLAN 2.

```
switchxxxxx(config)# interface vlan 2
switchxxxxx(config-if)# bridge multicast mode mac-group
```
bridge multicast address

To register a MAC-layer Multicast address in the bridge table and statically add or remove ports to or from the group, use the bridge multicast address Interface (VLAN) Configuration mode command. To unregister the MAC address, use the no form of this command.

Syntax

bridge multicast address {mac-multicast-address | ipv4-multicast-address} [{add | remove} {ethernet interface-list | port-channel port-channel-list}]

no bridge multicast address mac-multicast-address

Parameters

- mac-multicast-address | ipv4-multicast-address—Specifies the group Multicast address.
- add—(Optional) Adds ports to the group.
- remove—(Optional) Removes ports from the group.
- ethernet interface-list—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- port-channel port-channel-list—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

If ethernet interface-list or port-channel port-channel-list is specified without specifying add or remove, the default option is add.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the mac-multicast-address parameter only.

Static Multicast addresses can be defined on static VLANs only. You can execute the command before the VLAN is created.

Example 1 - The following example registers the MAC address to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast address 01:00:5e:02:02:03
```

Example 2 - The following example registers the MAC address and adds ports statically.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast address 01:00:5e:02:02:03 add gi1/0/1-2
```
bridge multicast forbidden address

To forbid adding or removing a specific Multicast address to or from specific ports, use the `bridge multicast forbidden address` Interface (VLAN) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
bridge multicast forbidden address {mac-multicast-address | ipv4-multicast-address} {add | remove}
{ethernet interface-list | port-channel port-channel-list}
```

```
o bridge multicast forbidden address mac-multicast-address
```

Parameters

- `mac-multicast-address | ipv4-multicast-address`—Specifies the group Multicast address.
- `add`—Forbids adding ports to the group.
- `remove`—Forbids removing ports from the group.
- `ethernet interface-list`—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Default option is `add`.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered, using bridge multicast address.

You can execute the command before the VLAN is created.

Example

The following example forbids MAC address 0100.5e02.0203 on port gi1/0/4 within VLAN 8.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast address 0100.5e02.0203
switchxxxxxx(config-if)# bridge multicast forbidden address 0100.5e02.0203 add gi1/0/4
```
bridge multicast ip-address

To register IP-layer Multicast addresses to the bridge table, and statically add or remove ports to or from the group, use the `bridge multicast ip-address` Interface (VLAN) Configuration mode command. To unregister the IP address, use the no form of this command.

Syntax

```
bridge multicast ip-address ip-multicast-address [[add | remove] {interface-list | port-channel port-channel-list}]
```

```
no bridge multicast ip-address ip-multicast-address
```

Parameters

- `ip-multicast-address` — Specifies the group IP Multicast address.
- `add` — (Optional) Adds ports to the group.
- `remove` — (Optional) Removes ports from the group.
- `interface-list` — (Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list` — (Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

Default option is `add`.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the `ip-multicast-address` parameter only.

Static Multicast addresses can be defined on static VLANs only.

You can execute the command before the VLAN is created.

Example

The following example registers the specified IP address to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ip-address 239.2.2.2
```

The following example registers the IP address and adds ports statically.
switchxxxxx(config)# interface vlan 8
switchxxxxx(config-if)# bridge multicast ip-address 239.2.2.2 add gi1/0/4
bridge multicast forbidden ip-address

To forbid adding or removing a specific IP Multicast address to or from specific ports, use the `bridge multicast forbidden ip-address` Interface (VLAN) Configuration mode command. To restore the default configuration, use the `no form` of this command.

Syntax

```
bridge multicast forbidden ip-address /ip-multicast-address/ {add | remove} {ethernet interface-list | port-channel port-channel-list}
no bridge multicast forbidden ip-address ip-multicast-address
```

Parameters

- `ip-multicast-address`—Specifies the group IP Multicast address.
- `add`—(Optional) Forbids adding ports to the group.
- `remove`—(Optional) Forbids removing ports from the group.
- `ethernet interface-list`—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.

Example

The following example registers IP address 239.2.2.2, and forbids the IP address on port gi1/0/4 within VLAN 8.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ip-address 239.2.2.2
switchxxxxxx(config-if)# bridge multicast forbidden ip-address 239.2.2.2 add gi1/0/4
```
bridge multicast source group

To register a source IP address - Multicast IP address pair to the bridge table, and statically add or remove ports to or from the source-group, use the bridge multicast source group Interface (VLAN) Configuration mode command. To unregister the source-group-pair, use the no form of this command.

Syntax
bridge multicast source ip-address group ip-multicast-address [[add | remove] { ethernet interface-list | port-channel port-channel-list }]
no bridge multicast source ip-address group ip-multicast-address

Parameters
- ip-address—Specifies the source IP address.
- ip-multicast-address—Specifies the group IP Multicast address.
- add—(Optional) Adds ports to the group for the specific source IP address.
- remove—(Optional) Removes ports from the group for the specific source IP address.
- ethernet interface-list—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- port-channel port-channel-list—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration
No Multicast addresses are defined.
The default option is add.

Command Mode
Interface (VLAN) Configuration mode

User Guidelines
You can execute the command before the VLAN is created.

Example
The following example registers a source IP address - Multicast IP address pair to the bridge table:

switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 13.16.1.1 group 239.2.2.2
bridge multicast forbidden source group

To forbid adding or removing a specific IP source address - Multicast address pair to or from specific ports, use the `bridge multicast forbidden source group` Interface (VLAN) Configuration mode command. To return to the default configuration, use the no form of this command.

Syntax

```
bridge multicast forbidden source ip-address group ip-multicast-address {add | remove} {ethernet interface-list | port-channel port-channel-list}

no bridge multicast forbidden source ip-address group ip-multicast-address
```

Parameters

- **ip-address**—Specifies the source IP address.
- **ip-multicast-address**—Specifies the group IP Multicast address.
- **add**—(Optional) Forbids adding ports to the group for the specific source IP address.
- **remove**—(Optional) Forbids removing ports from the group for the specific source IP address.
- **ethernet interface-list**—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.

Example

The following example registers a source IP address - Multicast IP address pair to the bridge table, and forbids adding the pair to port gi1/0/4 on VLAN 8:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast source 13.16.1.1 group 239.2.2.2
switchxxxxxx(config-if)# bridge multicast forbidden source 13.16.1.1 group 239.2.2.2 add gi1/0/4
```
bridge multicast ipv6 mode

To configure the Multicast bridging mode for IPv6 Multicast packets, use the `bridge multicast ipv6 mode` Interface (VLAN) Configuration mode command. To return to the default configuration, use the no form of this command.

Syntax

```
broadcast multicast ipv6 mode {mac-group | ip-group | ip-src-group}
```

Parameters

- **mac-group**—Specifies that Multicast bridging is based on the packet's VLAN and MAC destination address.
- **ip-group**—Specifies that Multicast bridging is based on the packet's VLAN and IPv6 destination address for IPv6 packets.
- **ip-src-group**—Specifies that Multicast bridging is based on the packet's VLAN, IPv6 destination address and IPv6 source address for IPv6 packets.

Default Configuration

The default mode is **mac-group**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the **mac-group** mode when using a network management system that uses a MIB based on the Multicast MAC address.

The following table describes the actual data that is written to the Forwarding Data Base (FDB) as a function of the MLD version that is used in the network:

<table>
<thead>
<tr>
<th>FDB mode</th>
<th>MLD version 1</th>
<th>MLD version 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-group</td>
<td>MAC group address</td>
<td>MAC group address</td>
</tr>
<tr>
<td>ipv6-group</td>
<td>IPv6 group address</td>
<td>IPv6 group address</td>
</tr>
<tr>
<td>ipv6-src-group</td>
<td>(*) IPv6 source and group addresses</td>
<td></td>
</tr>
</tbody>
</table>

(*) In **ip-src-group** mode a match is performed on 4 bytes of the multicast address and 4 bytes of the source address. In the group address the last 4 bytes of the address are checked for match. In the source address the last 3 bytes and 5th from last bytes of the interface ID are examined.

(*) Note that (*,G) cannot be written to the FDB if the mode is **ip-src-group**. In that case, no new FDB entry is created, but the port is added to the (S,G) entries (if they exist) that belong to the requested group.
If an application on the device requests (*,G), the operating FDB mode is changed to **ip-group**.

You can execute the command before the VLAN is created.

Example

The following example configures the Multicast bridging mode as an **ip-group** on VLAN 2.

```bash
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast ipv6 mode
   ip-group
```

Cisco Business Switches 350 Series CLI Guide

Address Table Commands
bridge multicast ipv6 ip-address

To register an IPv6 Multicast address to the bridge table, and statically add or remove ports to or from the group, use the bridge multicast ipv6 ip-address Interface (VLAN) Configuration mode command. To unregister the IPv6 address, use the no form of this command.

Syntax

bridge multicast ipv6 ip-address ipv6-multicast-address [[add | remove] {ethernet interface-list | port-channel port-channel-list}]

no bridge multicast ipv6 ip-address

Parameters

- ipv6-multicast-address—Specifies the group IPv6 multicast address.
- add—(Optional) Adds ports to the group.
- remove—(Optional) Removes ports from the group.
- ethernet interface-list—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces; use a hyphen to designate a range of ports.
- port-channel port-channel-list—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.
The default option is add.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

To register the group in the bridge database without adding or removing ports or port channels, specify the ipv6-multicast-address parameter only.

Static Multicast addresses can be defined on static VLANs only. You can execute the command before the VLAN is created.

Example 1 - The following example registers the IPv6 address to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1
```

Example 2 - The following example registers the IPv6 address and adds ports statically.

```
switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1 add gil/0/1-2
```
bridge multicast ipv6 forbidden ip-address

To forbid adding or removing a specific IPv6 Multicast address to or from specific ports, use the bridge multicast ipv6 forbidden ip-address Interface (VLAN) Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

bridge multicast ipv6 forbidden ip-address {ipv6-multicast-address} {add | remove} {ethernet interface-list | port-channel port-channel-list}
no bridge multicast ipv6 forbidden ip-address ipv6-multicast-address

Parameters

• ipv6-multicast-address—Specifies the group IPv6 Multicast address.
• add—(Optional) Forbids adding ports to the group.
• remove—(Optional) Forbids removing ports from the group.
• ethernet interface-list—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
• port-channel port-channel-list—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.
The default option is add.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.
You can execute the command before the VLAN is created.

Example

The following example registers an IPv6 Multicast address, and forbids the IPv6 address on port gi1/0/4 within VLAN 8.

switchxxxxxx(config)# interface vlan 8
switchxxxxxx(config-if)# bridge multicast ipv6 ip-address FF00:0:0:0:4:4:4:1
switchxxxxxx(config-if)# bridge multicast ipv6 forbidden ip-address FF00:0:0:4:4:4:1 add gi1/0/4
bridge multicast ipv6 source group

To register a source IPv6 address - Multicast IPv6 address pair to the bridge table, and statically add or remove ports to or from the source-group, use the `bridge multicast ipv6 source group` Interface (VLAN) Configuration mode command. To unregister the source-group-pair, use the `no` form of this command.

Syntax

```
bridge multicast ipv6 source ipv6-source-address group ipv6-multicast-address [[add | remove] {ethernet interface-list | port-channel port-channel-list}]
no bridge multicast ipv6 source ipv6-address group ipv6-multicast-address
```

Parameters

- `ipv6-source-address`—Specifies the source IPv6 address.
- `ipv6-multicast-address`—Specifies the group IPv6 Multicast address.
- `add`—(Optional) Adds ports to the group for the specific source IPv6 address.
- `remove`—(Optional) Removes ports from the group for the specific source IPv6 address.
- `ethernet interface-list`—(Optional) Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—(Optional) Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

No Multicast addresses are defined.

The default option is `add`.

Command Mode

Interface (VLAN) Configuration mode

Example

The following example registers a source IPv6 address - Multicast IPv6 address pair to the bridge table:

```
switchxxxxxx(config)# interface vlan 8
```
bridge multicast ipv6 forbidden source group

To forbid adding or removing a specific IPv6 source address - Multicast address pair to or from specific ports, use the `bridge multicast ipv6 forbidden source group` Interface (VLAN) Configuration mode command. To return to the default configuration, use the `no` form of this command.

Syntax

```
bridge multicast ipv6 forbidden source ipv6-source-address group ipv6-multicast-address {add | remove}
{ethernet interface-list | port-channel port-channel-list}
```

```
no bridge multicast ipv6 forbidden source ipv6-address group ipv6-multicast-address
```

Parameters

- `ipv6-source-address`—Specifies the source IPv6 address.
- `ipv6-multicast-address`—Specifies the group IPv6 Multicast address.
- `add`—Forbids adding ports to the group for the specific source IPv6 address.
- `remove`—Forbids removing ports from the group for the specific source IPv6 address.
- `ethernet interface-list`—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

No forbidden addresses are defined.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Before defining forbidden ports, the Multicast group should be registered.

You can execute the command before the VLAN is created.

Example

The following example registers a source IPv6 address - Multicast IPv6 address pair to the bridge table, and forbids adding the pair to gi1/0/4 on VLAN 8:

```
switchxxxxxx(config)#  interface vlan 8
switchxxxxxx(config-if)#  bridge multicast forbidden source 2001:0:0:4:4:4:4:4:1 group FF00:0:0:4:4:4:4:4:1 add gi1/0/4
```
bridge multicast unregistered

To configure forwarding unregistered Multicast addresses, use the **bridge multicast unregistered** Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

bridge multicast unregistered {forwarding | filtering}

no bridge multicast unregistered

Parameters

- **forwarding**—Forwards unregistered Multicast packets.
- **filtering**—Filters unregistered Multicast packets.

Default Configuration

Unregistered Multicast addresses are forwarded.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Do not enable unregistered Multicast filtering on ports that are connected to routers, because the 224.0.0.x address range should not be filtered. Note that routers do not necessarily send IGMP reports for the 224.0.0.x range.

You can execute the command before the VLAN is created.

Example

The following example specifies that unregistered Multicast packets are filtered on gi1/0/1:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# bridge multicast unregistered filtering
```
bridge multicast forward-all

To enable forwarding all multicast packets for a range of ports or port channels, use the `bridge multicast forward-all` Interface (VLAN) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
bridge multicast forward-all {add | remove} {ethernet interface-list | port-channel port-channel-list}
no bridge multicast forward-all
```

Parameters

- `add`—Forces forwarding of all Multicast packets.
- `remove`—Does not force forwarding of all Multicast packets.
- `ethernet interface-list`—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration

Forwarding of all Multicast packets is disabled.

Command Mode

Interface (VLAN) Configuration mode

Example

The following example enables all Multicast packets on port gi1/0/4 to be forwarded.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast forward-all add gi1/0/4
```
bridge multicast forbidden forward-all

To forbid a port to dynamically join Multicast groups, use the `bridge multicast forbidden forward-all` Interface (VLAN) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
bridge multicast forbidden forward-all {add | remove} {ethernet interface-list | port-channel port-channel-list}
no bridge multicast forbidden forward-all
```

Parameters

- **add**—Forbids forwarding of all Multicast packets.
- **remove**—Does not forbid forwarding of all Multicast packets.
- **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

Default Configuration

Ports are not forbidden to dynamically join Multicast groups.

The default option is **add**.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to forbid a port to dynamically join (by IGMP, for example) a Multicast group. The port can still be a Multicast router port.

Example

The following example forbids forwarding of all Multicast packets to gi1/0/1 within VLAN 2.

```bash
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# bridge multicast forbidden forward-all add ethernet gi1/0/1
```
bridge unicast unknown

To enable egress filtering of Unicast packets where the destination MAC address is unknown to the device, use the bridge unicast unknown Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

bridge unicast unknown {filtering | forwarding}

no bridge unicast unknown

Parameters

- filtering — Filter unregistered Unicast packets.
- forwarding — Forward unregistered Unicast packets.

Default Configuration

Forwarding.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode.

Example

The following example drops Unicast packets on gi1/0/1 when the destination is unknown.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# bridge unicast unknown filtering
```
show bridge unicast unknown

To display the unknown Unicast filtering configuration, use the show bridge unicast unknown Privileged EXEC mode command.

Syntax

`show bridge unicast unknown [interface-id]`

Parameters

interface-id—(Optional) Specify an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel

Command Mode

Privileged EXEC mode

Example

```
Console # show bridge unicast unknown

<table>
<thead>
<tr>
<th>Port</th>
<th>Unregistered</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>Forward</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Filter</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Filter</td>
</tr>
</tbody>
</table>
```
mac address-table static

To add a MAC-layer station source address to the MAC address table, use the `mac address-table static` command. To delete the MAC address, use the `no` form of this command.

Syntax

```plaintext
mac address-table static mac-address vlan vlan-id interface interface-id [permanent | delete-on-reset | delete-on-timeout | secure]
no mac address-table static [mac-address] vlan vlan-id
```

Parameters

- `mac-address`—MAC address (Range: Valid MAC address)
- `vlan-id`—Specify the VLAN
- `interface-id`—Specify an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel (Range: valid ethernet port, valid port-channel)
- `permanent`—(Optional) The permanent static MAC address. The keyword is applied by the default.
- `delete-on-reset`—(Optional) The delete-on-reset static MAC address.
- `delete-on-timeout`—(Optional) The delete-on-timeout static MAC address.
- `secure`—(Optional) The secure MAC address. May be used only in a secure mode.

Default Configuration

No static addresses are defined. The default mode for an added address is permanent.

Command Mode

Global Configuration mode

User Guidelines

Use the command to add a static MAC address with given time-to-live in any mode or to add a secure MAC address in a secure mode.

Each MAC address in the MAC address table is assigned two attributes: **type** and **time-to-live**.

The following value of time-of-live is supported:

- `permanent`—MAC address is saved until it is removed manually.
- `delete-on-reset`—MAC address is saved until the next reboot.
- `delete-on-timeout`—MAC address that may be removed by the aging timer.

The following types are supported:

- `static`—MAC address manually added by the command with the following keywords specifying its time-of-live:
permanent
delete-on-reset
delete-on-timeout

A static MAC address may be added in any port mode.

secure — A MAC address added manually or learned in a secure mode. Use the `mac address-table static` command with the `secure` keyword to add a secure MAC address. The MAC address cannot be relearned.

A secure MAC address may be added only in a secure port mode.

• dynamic — a MAC address learned by the switch in non-secure mode. A value of its `time-to-live` attribute is `delete-on-timeout`.

Example 1 - The following example adds two permanent static MAC address:

```
switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b1 vlan 1 interface gi1/0/1 permanent
switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1 interface gi1/0/1
```

Example 2 - The following example adds a deleted-on-reset static MAC address:

```
switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1 interface gi1/0/1 delete-on-reset
```

Example 3 - The following example adds a deleted-on-timeout static MAC address:

```
switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1 interface gi1/0/1 delete-on-timeout
```

Example 4 - The following example adds a secure MAC address:

```
switchxxxxxx(config)# mac address-table static 00:3f:bd:45:5a:b2 vlan 1 interface gi1/0/1 secure
```
clear mac address-table

To remove learned or secure entries from the forwarding database (FDB), use the clear mac address-table Privileged EXEC mode command.

Syntax

clear mac address-table dynamic interface interface-id
clear mac address-table secure interface interface-id

Parameters

- **dynamic interface interface-id**—Delete all dynamic (learned) addresses on the specified interface. The interface ID can be one of the following types: Ethernet port or port-channel. If interface ID is not supplied, all dynamic addresses are deleted.
- **secure interface interface-id**—Delete all the secure addresses learned on the specific interface. A secure address on a MAC address learned on ports on which port security is defined.

Default Configuration

For dynamic addresses, if interface-id is not supplied, all dynamic entries are deleted.

Command Mode

Privileged EXEC mode

Example 1 - Delete all dynamic entries from the FDB.

```
switchxxxxxx# clear mac address-table dynamic
```

Example 2 - Delete all secure entries from the FDB learned on secure port gi1/0/1.

```
switchxxxxxx# clear mac address-table secure interface gi1/0/1
```
mac address-table aging-time

To set the aging time of the address table, use the **mac address-table aging-time** Global configuration command. To restore the default, use the **no** form of this command.

Syntax

mac address-table aging-time *seconds*

no mac address-table aging-time

Parameters

seconds—Time is number of seconds. (Range: 10-400)

Default Configuration

300

Command Mode

Global Configuration mode

Example

switchxxxxxx(config)# mac address-table aging-time 600
port security

To enable port security learning mode on an interface, use the `port security` Interface (Ethernet, Port Channel) Configuration mode command. To disable port security learning mode on an interface, use the `no` form of this command.

Syntax

```
port security [forward | discard | discard-shutdown] [trap seconds]
```

```
no port security
```

Parameters

- `forward`—(Optional) Forwards packets with unlearned source addresses, but does not learn the address.
- `discard`—(Optional) Discards packets with unlearned source addresses.
- `discard-shutdown`—(Optional) Discards packets with unlearned source addresses and shuts down the port.
- `trap seconds`—(Optional) Sends SNMP traps and specifies the minimum time interval in seconds between consecutive traps. (Range: 1–1000000)

Default Configuration

The feature is disabled by default.

The default mode is `discard`.

The default number of seconds is zero, but if `traps` is entered, a number of seconds must also be entered.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.

Port Security cannot be enabled on an interface if 802.1X authentication is already active on the interface.

When the `port security` command enables the `lock` mode on a port all dynamic addresses learned on the port are changed to `permanent secure` addresses.

When the `port security` command enables a mode on a port differing from the `lock` mode all dynamic addresses learned on the port are deleted.

When the `no port security` command cancels a secure mode on a port all secure addresses defined on the port are changed to `dynamic` addresses.

Additionally to set a mode, use the `port security` command to set an action that the switch should perform on a frame which source MAC address cannot be learned.
Example

The following example forwards all packets to port gi1/0/1 without learning addresses of packets from unknown sources and sends traps every 100 seconds, if a packet with an unknown source address is received.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# port security mode lock
switchxxxxxx(config-if)# port security forward trap 100
switchxxxxxx(config-if)# exit
```
port security mode

To configure the port security learning mode, use the **port security mode** Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

`port security mode {max-addresses | lock | secure permanent | secure delete-on-reset}`

`no port security mode`

Parameters

- **max-addresses** — Non-secure mode with limited learning dynamic MAC addresses.
- **lock** — Secure mode without MAC learning.
- **secure permanent** — Secure mode with limited learning permanent secure MAC addresses with the `permanent` time-of-live. The static and secure MAC addresses may be added on the port manually by the **mac address-table static** command.
- **secure delete-on-reset** — Secure mode with limited learning secure MAC addresses with the `delete-on-reset` time-of-live. The static and secure MAC addresses may be added on the port manually by the **mac address-table static** command.

Default Configuration

The default port security mode is **lock**.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The default port mode is called regular. In this mode, the port allows unlimited learning of dynamic addresses. The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.

Example

The following example sets the port security mode to Lock for gi1/0/4.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# port security mode lock

switchxxxxxx(config-if)# port security
switchxxxxxx(config-if)# exit
```
port security max

To configure the maximum number of addresses that can be learned on the port while the port is in port, max-addresses or secure mode, use the `port security max` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```plaintext
port security max max-addr
no port security max
```

Parameters

- `max-addr`—Specifies the maximum number of addresses that can be learned on the port. (Range: 0–256)

Default Configuration

This default maximum number of addresses is 1.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The command may be used only when the interface in the regular (non-secure with unlimited MAC learning) mode.

Example

The following example sets the port to limited learning mode:

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# port security mode max
switchxxxxxx(config-if)# port security max 20
switchxxxxxx(config-if)# port security
switchxxxxxx(config-if)# exit
```
port security routed secure-address

To add a MAC-layer secure address to a routed port. (port that has an IP address defined on it), use the `port security routed secure-address` Interface (Ethernet, Port Channel) Configuration mode command. To delete a MAC address from a routed port, use the no form of this command.

Syntax

```
port security routed secure-address mac-address
no port security routed secure-address mac-address
```

Parameters

- `mac-address`—Specifies the MAC address.

Default Configuration

No addresses are defined.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode. It cannot be configured for a range of interfaces (range context).

User Guidelines

This command enables adding secure MAC addresses to a routed port in port security mode. The command is available when the port is a routed port and in port security mode. The address is deleted if the port exits the security mode or is not a routed port.

Example

The following example adds the MAC-layer address 00:66:66:66:66:66 to gi1/0/1.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# port security routed secure-address 00:66:66:66:66:66
```
show mac address-table

To display entries in the MAC address table, use the **show mac address-table** Privileged EXEC mode command.

Syntax

```
show mac address-table [dynamic | static | secure] [vlan vlan] [interface interface-id] [address mac-address]
```

Parameters

- **dynamic**—(Optional) Displays only dynamic MAC address table entries.
- **static**—(Optional) Displays only static MAC address table entries.
- **secure**—(Optional) Displays only secure MAC address table entries.
- **vlan**—(Optional) Displays entries for a specific VLAN.
- **interface interface-id**—(Optional) Displays entries for a specific interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **address mac-address**—(Optional) Displays entries for a specific MAC address.

Default Configuration

If no parameters are entered, the entire table is displayed.

Command Mode

Privileged EXEC mode

User Guidelines

Internal usage VLANs (VLANs that are automatically allocated on routed ports) are presented in the VLAN column by a port number and not by a VLAN ID.

Example 1 - Displays entire address table.

```
switchxxxxxx# show mac address-table
Aging time is 300 sec

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Port</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00:26:08:13:23</td>
<td>0</td>
<td>self</td>
</tr>
<tr>
<td>1</td>
<td>00:3f:bd:45:5a:b1</td>
<td>gi1/0/1</td>
<td>static</td>
</tr>
<tr>
<td>1</td>
<td>00:a1:b0:69:63:f3</td>
<td>gi1/0/2</td>
<td>dynamic</td>
</tr>
<tr>
<td>2</td>
<td>00:a1:b0:69:63:f3</td>
<td>gi1/0/3</td>
<td>dynamic</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>00:a1:b0:69:61:12</td>
<td>gi1/0/4</td>
<td>dynamic</td>
</tr>
</tbody>
</table>
```
Example 2 - Displays address table entries containing the specified MAC address.

```
switchxxxxxx# show mac address-table address 00:3f:bd:45:5a:b1
Aging time is 300 sec
VLAN   MAC Address      Port   Type
-------- --------------------- ---------- ----------
1       00:3f:bd:45:5a:b1 static      gi1/0/4
```
show mac address-table count

To display the number of addresses present in the Forwarding Database, use the `show mac address-table count` Privileged EXEC mode command.

Syntax

`show mac address-table count [vlan vlan | interface interface-id]`

Parameters

- `vlan vlan`—(Optional) Specifies VLAN.
- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show mac address-table count` command to display the Forwarding Database capacity (total number of entries), free entries (the number of entries that can still be used) and the consumed entries breakdown by type of entry. The following entry types are displayed:

- **Used Unicast** - Occupied Forwarding Database entries which are layer 2 MAC unicast addresses.
- **Used Multicast** - Occupied Forwarding Database entries which are layer 2 MAC Multicast addresses.
- **IPv4 hosts** - Occupied Forwarding Database entries which are IPv4 Layer 3 host entries.
- **IPv6 hosts** - Occupied Forwarding Database entries which are IPv6 Layer 3 host entries.
- **Secure** - The amount of the secure unicast entries.
- **Dynamic Unicast** - The amount of the dynamic unicast entries.
- **Static Unicast** - The amount of the static (configured by user) unicast entries.
- **Internal** - The amount of the internal entries. For example device own MAC address.

The Secure, Dynamic Unicast, Static Unicast and Internal entry types present further breakdown of the Used Unicast entries.

The total number of **consumed** entries is the aggregate value of the following entry types: Used Unicast; Used Multicast; IPv4 hosts; IPv6 hosts.

If the `Interface` parameter is used the command will display only the following entry types: Used Unicast, secure, Dynamic Unicast, Static Unicast and Internal.

Example 1 - The following example displays the number of entries present in forwarding table for the entire device:
switchxxxxx# **show mac address-table count**
This may take some time.
Capacity : 16384
Free : 16378
Used unicast : 5
Used multicast: 1
Used IPv4 hosts: 1
Used IPv6 hosts: 1 (each IPv6 host consumes 2 entries in MAC address table)
Secure : 0
Dynamic unicast : 2
Static unicast : 2
Internal : 1
console#

Example 2 - The following example displays the number of entries present in forwarding table for a specific device interface.

switchxxxxx# **show mac address-table count interface gi1/0/1**
This may take some time.
Capacity : 16384
Free : 16378
Used unicast : 5
Secure : 0
Dynamic unicast : 2
Static unicast : 2
Internal : 0
console#
show bridge multicast mode

To display the Multicast bridging mode for all VLANs or for a specific VLAN, use the `show bridge multicast mode` Privileged EXEC mode command.

Syntax

```
show bridge multicast mode [vlan vlan-id]
```

Parameters

`vlan vlan-id`—(Optional) Specifies the VLAN ID.

Command Mode

Privileged EXEC mode

Example

The following example displays the Multicast bridging mode for all VLANs

```
switchxxxxxx# show bridge multicast mode

+-----------------+-----------------+-----------------+-----------------+
<table>
<thead>
<tr>
<th>VLAN</th>
<th>IPv4 Multicast Mode</th>
<th>IPv6 Multicast Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin</td>
<td>Oper</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>MAC-GROUP</td>
<td>MAC-GROUP</td>
</tr>
<tr>
<td>1</td>
<td>IPv4-GROUP</td>
<td>IPv4-GROUP</td>
</tr>
<tr>
<td>12</td>
<td>IPv4-SRC-GROUP</td>
<td>IPv4-SRC-GROUP</td>
</tr>
</tbody>
</table>
```
show bridge multicast address-table

To display Multicast MAC addresses or IP Multicast address table information, use the `show bridge multicast address-table` Privileged EXEC mode command.

Syntax

```
show bridge multicast address-table
show bridge multicast address-table [vlan vlan-id] [address mac-multicast-address] [format {ip | mac}]
show bridge multicast address-table [vlan vlan-id] [address ipv4-multicast-address] [source ipv4-source-address]
show bridge multicast address-table [vlan vlan-id] [address ipv6-multicast-address] [source ipv6-source-address]
```

Parameters

- `vlan-id` — (Optional) Display entries for specified VLAN ID.
- `address` — (Optional) Display entries for specified Multicast address. The possible values are:
 - `mac-multicast-address` — (Optional) Specifies the MAC Multicast address.
 - `ipv4-multicast-address` — (Optional) Specifies the IPv4 Multicast address.
 - `ipv6-multicast-address` — (Optional) Specifies the IPv6 Multicast address.
- `format` — (Optional) Applies if `mac-multicast-address` was selected. In this case either MAC or IP format can be displayed. Display entries for specified Multicast address format. The possible values are:
 - `ip` — Specifies that the Multicast address is an IP address.
 - `mac` — Specifies that the Multicast address is a MAC address.
- `source` — (Optional) Specifies the source address. The possible values are:
 - `ipv4-address` — (Optional) Specifies the source IPv4 address.
 - `ipv6-address` — (Optional) Specifies the source IPv6 address.

Default Configuration

If the `format` is not specified, it defaults to `mac` (only if `mac-multicast-address` was entered).

If VLAN ID is not entered, entries for all VLANs are displayed.

If MAC or IP address is not supplied, entries for all addresses are displayed.

Command Mode

Privileged EXEC mode
User Guidelines

A MAC address can be displayed in IP format only if it is within the range 0100.5e00.0000 through 0100.5e7f.ffff.

Multicast router ports (defined statically or discovered dynamically) are members in all MAC groups.

Changing the Multicast mode can move static Multicast addresses that are written in the device FDB to a shadow configuration because of FDB hash collisions.

Example

The following example displays bridge Multicast address information.

```
switchxxxxxx# show bridge multicast address-table
Multicast address table for VLANs in MAC-GROUP bridging mode:
Vlan  MAC Address  Type  Ports
----  ----------------- --------- -----
8     01:00:5e:02:02:03  Static  1-2
Forbidden ports for Multicast addresses:
Vlan  MAC Address  Type  Ports
----  ----------------- --------- -----
8     01:00:5e:02:02:03  gi1/0/4

Multicast address table for VLANs in IPv4-GROUP bridging mode:
Vlan  MAC Address  Type  Ports
----  ----------------- --------- -----
1     224.0.0.251  Dynamic  gi1/0/2
Forbidden ports for Multicast addresses:
Vlan  MAC Address  Type  Ports
----  ----------------- --------- ----- 
1     232.5.6.5
1     233.22.2.6

Multicast address table for VLANs in IPv4-SRC-GROUP bridging mode:
Vlan  Group Address  Source address  Type  Ports
----  ---------------  ---------------  -------- ----- 
1     224.2.2.251  11.2.2.3  Dynamic  gi1/0/1
Forbidden ports for Multicast addresses:
Vlan  Group Address  Source address  Type  Ports
----  ---------------  ---------------  -------- -----
8     239.2.2.2  *  gi1/0/4
8     239.2.2.2  1.1.1.11  gi1/0/4

Multicast address table for VLANs in IPv6-GROUP bridging mode:
Vlan  IP/MAC Address  Type  Ports
----  ----------------- ---------------------
8     ff02::4:4:4  Static  gi1/0/1-2, gi1/0/3, Po1
Forbidden ports for Multicast addresses:
Vlan  IP/MAC Address  Type  Ports
----  -----------------  ----------- 
8     ff02::4:4:4  gi1/0/4

Multicast address table for VLANs in IPv6-SRC-GROUP bridging mode:
Vlan  Group Address  Source address  Type  Ports
----  ---------------  ---------------  -------- ----- 
8     ff02::4:4:4  *  gi1/0/1-2, gi1/0/3, Po1
8     ff02::4:4:4  fe80::200:7ff:fe00:200  Static  gi1/0/4
Forbidden ports for Multicast addresses:
Vlan  Group Address  Source address  Type  Ports
----  ---------------  ---------------  -------- -----
8     ff02::4:4:4  *  gi1/0/4
8     ff02::4:4:4  fe80::200:7ff:fe00:200  gi1/0/4
```
show bridge multicast address-table static

To display the statically-configured Multicast addresses, use the `show bridge multicast address-table static` Privileged EXEC mode command.

Syntax

```
show bridge multicast address-table static [vlan vlan-id] [all]
show bridge multicast address-table static [vlan vlan-id] [address mac-multicast-address] [mac ip]
show bridge multicast address-table static [vlan vlan-id] [address ipv4-multicast-address] [source ipv4-source-address]
show bridge multicast address-table static [vlan vlan-id] [address ipv6-multicast-address] [source ipv6-source-address]
```

Parameters

- `vlan vlan-id` — (Optional) Specifies the VLAN ID.
- `address` — (Optional) Specifies the Multicast address. The possible values are:
 - `mac-multicast-address` — (Optional) Specifies the MAC Multicast address.
 - `ipv4-multicast-address` — (Optional) Specifies the IPv4 Multicast address.
 - `ipv6-multicast-address` — (Optional) Specifies the IPv6 Multicast address.
- `source` — (Optional) Specifies the source address. The possible values are:
 - `ipv4-address` — (Optional) Specifies the source IPv4 address.
 - `ipv6-address` — (Optional) Specifies the source IPv6 address.

Default Configuration

When `all/mac/ip` is not specified, all entries (MAC and IP) will be displayed.

Command Mode

Privileged EXEC mode

User Guidelines

A MAC address can be displayed in IP format only if it is within the range 0100.5e00.0000—0100.5e7f.ffff.

Example

The following example displays the statically-configured Multicast addresses.

```
switchxxxxxx# show bridge multicast address-table static
MAC-GROUP table

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0100.9923.8787</td>
<td>gi1/0/1, gi1/0/2</td>
</tr>
</tbody>
</table>
```
Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>

IPv4-GROUP Table

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231.2.2.3</td>
<td>gi1/0/1, gi1/0/2</td>
</tr>
<tr>
<td>19</td>
<td>231.2.2.8</td>
<td>gi1/0/2-3</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231.2.2.3</td>
<td>gi1/0/4</td>
</tr>
<tr>
<td>19</td>
<td>231.2.2.8</td>
<td>gi1/0/3</td>
</tr>
</tbody>
</table>

IPv4-SRC-GROUP Table:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>FF12::8</td>
<td>FF12::3</td>
<td>gi1/0/4</td>
</tr>
</tbody>
</table>

IPv6-GROUP Table

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>FF12::8</td>
<td>gi1/0/4</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FF12::8</td>
<td>gi1/0/4</td>
</tr>
<tr>
<td>191</td>
<td>FF12::8</td>
<td>gi1/0/4</td>
</tr>
</tbody>
</table>

IPv6-SRC-GROUP Table:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>FF12::8</td>
<td>FF12::3</td>
<td>gi1/0/4</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>FF12::8</td>
<td>FF12::3</td>
<td>gi1/0/4</td>
</tr>
</tbody>
</table>
show bridge multicast filtering

To display the Multicast filtering configuration, use the `show bridge multicast filtering` Privileged EXEC mode command.

Syntax

`show bridge multicast filtering vlan-id`

Parameters

`vlan-id`—Specifies the VLAN ID. (Range: Valid VLAN)

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays the Multicast configuration for VLAN 1.

```
switchxxxxxx# show bridge multicast filtering 1
Filtering: Enabled
VLAN: 1
Forward=All

<table>
<thead>
<tr>
<th>Port</th>
<th>Static</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Forbidden</td>
<td>Filter</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Forward</td>
<td>Forward(s)</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>-</td>
<td>Forward(d)</td>
</tr>
</tbody>
</table>
```
bridge multicast unregistered

To configure forwarding unregistered Multicast addresses, use the `bridge multicast unregistered` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
bridge multicast unregistered {forwarding | filtering}
no bridge multicast unregistered
```

Parameters

- **forwarding**—Forwards unregistered Multicast packets.
- **filtering**—Filters unregistered Multicast packets.

Default Configuration

Unregistered Multicast addresses are forwarded.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Do not enable unregistered Multicast filtering on ports that are connected to routers, because the 224.0.0.x address range should not be filtered. Note that routers do not necessarily send IGMP reports for the 224.0.0.x range.

You can execute the command before the VLAN is created.

Example

The following example specifies that unregistered Multicast packets are filtered on gi1/0/1:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# bridge multicast unregistered filtering
```
show ports security

To display the port-lock status, use the `show ports security` Privileged EXEC mode command.

Syntax

`show ports security [interface-id | detailed]`

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the port-lock status of all ports.

```
switchxxxxxx# show ports security
Port  Status   Learning  Action  Maximum  Trap  Frequency
------- -------- -------- ------ ------ ------ ------- --------
gi1/0/1  Enabled  Max-Addresses Discard 3  Enabled  100
        gi1/0/2  Disabled  Max-Addresses - 28 - -
        gi1/0/3  Enabled  Lock  Discard 8  Disabled -
```

The following table describes the fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Status</td>
<td>The port security status. The possible values are: Enabled or Disabled.</td>
</tr>
<tr>
<td>Action</td>
<td>The action taken on violation.</td>
</tr>
<tr>
<td>Maximum</td>
<td>The maximum number of addresses that can be associated on this port in the Max-Addresses mode.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Trap</td>
<td>The status of SNMP traps. The possible values are: Enable or Disable.</td>
</tr>
<tr>
<td>Frequency</td>
<td>The minimum time interval between consecutive traps.</td>
</tr>
</tbody>
</table>
show ports security addresses

To display the current dynamic addresses in locked ports, use the `show ports security addresses` Privileged EXEC mode command.

Syntax

`show ports security addresses [interface-id | detailed]`

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays dynamic addresses in all currently locked port:

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Learning</th>
<th>Current</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Disabled</td>
<td>Lock</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

...
bridge multicast reserved-address

To define the action on Multicast reserved-address packets, use the **bridge multicast reserved-address** Global Configuration mode command. To revert to default, use the `no` form of this command.

Syntax

```
bridge multicast reserved-address mac-multicast-address [ethernet-v2 ethtype | llc sap | llc-snap pid] 
{discard | bridge}
```

```
no bridge multicast reserved-address mac-multicast-address [ethernet-v2 ethtype | llc sap | llc-snap pid]
```

Parameters

- `mac-multicast-address` — MAC Multicast address in the reserved MAC addresses range. (Range: 01-80-C2-00-00-00, 01-80-C2-00-00-02–01-80-C2-00-00-0F)

- `ethernet-v2 ethtype` — (Optional) Specifies that the packet type is Ethernet v2 and the Ethernet type field (16 bits in hexadecimal format). (Range: 0x0600–0xFFFF)

- `llc sap` — (Optional) Specifies that the packet type is LLC and the DSAP-SSAP field (16 bits in hexadecimal format). (Range: 0xFFFF)

- `llc-snap pid` — (Optional) Specifies that the packet type is LLC-SNAP and the PID field (40 bits in hexadecimal format). (Range: 0x0000000000-0xFFFFFFFFFF)

- `discard` — Specifies discarding the packets.

- `bridge` — Specifies bridging (forwarding) the packets

Default Configuration

- If the user-supplied MAC Multicast address, ethertype and encapsulation (LLC) specifies a protocol supported on the device (called Peer), the default action (discard or bridge) is determined by the protocol.

- If not, the default action is as follows:
 - For MAC addresses in the range 01-80-C2-00-00-00, 01-80-C2-00-00-02–01-80-C2-00-00-0F, the default is **discard**.
 - For MAC addresses in the range 00-80-C2-00-00-10–01-80-C2-00-00-2F, the default is **bridge**.

Command Mode

Global Configuration mode

User Guidelines

If the packet/service type (ethertype/encapsulation) is not specified, the configuration is relevant to all the packets with the configured MAC address.

Specific configurations (that contain service type) have precedence over less specific configurations (contain only MAC address).
The packets that are bridged are subject to security ACLs. The actions define by this command has precedence over forwarding rules defined by applications/protocols (STP, LLDP etc.) supported on the device.

Example

```
switchxxxxxx(config)# bridge multicast reserved-address 00:3f:bd:45:5a:b1
```
show bridge multicast reserved-addresses

To display the Multicast reserved-address rules, use the `show bridge multicast reserved-addresses` Privileged EXEC mode command.

Syntax

`show bridge multicast reserved-addresses`

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx # show bridge multicast reserved-addresses
MAC Address   | Frame Type | Protocol | Action
---------------|------------|----------|--------
01-80-C2-00-00 | LLC-SNAP   | 00-00-0C-01-29 | Bridge
```

Cisco Business Switches 350 Series CLI Guide
show bridge multicast reserved-addresses
AAA Commands

This chapter contains the following sections:

- aaa authentication login, on page 172
- aaa authentication enable, on page 174
- login authentication, on page 176
- enable authentication, on page 177
- ip http authentication, on page 178
- show authentication methods, on page 179
- password, on page 180
- enable password , on page 181
- service password-recovery, on page 183
- username , on page 184
- show users accounts, on page 186
- aaa accounting login start-stop, on page 187
- aaa accounting dot1x , on page 189
- show accounting, on page 191
- passwords complexity, on page 192
- passwords aging, on page 193
- show passwords configuration, on page 194
aaa authentication login

Use the **aaa authentication login** Global Configuration mode command to set one or more authentication methods to be applied during login. Use the **no** form of this command to restore the default authentication method.

Syntax

```plaintext
aaa authentication login [authorization] {default | list-name} method1 [method2...]
no aaa authentication login {default | list-name}
```

Parameters

- **authorization**—Specifies that authentication and authorization are applied to the given list. If the keyword is not configured, then only authentication is applied to the given list.
- **default**—Uses the authentication methods that follow this argument as the default method list when a user logs in (this list is unnamed).
- **list-name**—Specifies a name of a list of authentication methods activated when a user logs in. (Length: 1–12 characters)
- **method1 [method2...]**—Specifies a list of methods that the authentication algorithm tries (in the given sequence). Each additional authentication method is used only if the previous method returns an error, not if it fails. To ensure that the authentication succeeds even if all methods return an error, specify **none** as the final method in the command line. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Uses the enable password for authentication.</td>
</tr>
<tr>
<td>line</td>
<td>Uses the line password for authentication.</td>
</tr>
<tr>
<td>local</td>
<td>Uses the locally-defined usernames for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Uses the list of all TACACS+ servers for authentication.</td>
</tr>
</tbody>
</table>

Default Configuration

If no methods are specified, the default are the locally-defined users and passwords. This is the same as entering the command **aaa authentication login local.**

Command Mode

Global Configuration mode
User Guidelines

Create a list of authentication methods by entering this command with the `list-name` parameter where `list-name` is any character string. The method arguments identifies the list of methods that the authentication algorithm tries, in the given sequence.

Note. If authorization is enabled for login and the switch receives from a TACACS+ server user level 15, then the enable command is not required and if received level 1 the enable command is required.

The `no aaa authentication login list-name` command deletes a list-name only if it has not been referenced by another command.

Example

The following example sets the authentication login methods for the console.

```
switchxxxxxx(config)# aaa authentication login authen-list radius local none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# login authentication authen-list
```
aaa authentication enable

The **aaa authentication enable** Global Configuration mode command sets one or more authentication methods for accessing higher privilege levels. To restore the default authentication method, use the **no** form of this command.

Syntax

```plaintext
aaa authentication enable [authorization] {default | list-name} method [method2...]
no aaa authentication enable {default | list-name}
```

Parameters

- **authorization** — Specifies that authentication and authorization are applied to the given list. If the keyword is not configured, then only authentication is applied to the given list.
- **default** — Uses the listed authentication methods that follow this argument as the default method list, when accessing higher privilege levels.
- **list-name** — Specifies a name for the list of authentication methods activated when a user accesses higher privilege levels. (Length: 1–12 characters)
- **method [method2...]** — Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication methods are used only if the previous method returns an error, not if it fails. Specify **none** as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Uses the enable password for authentication.</td>
</tr>
<tr>
<td>line</td>
<td>Uses the line password for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Uses the list of all TACACS+ servers for authentication.</td>
</tr>
</tbody>
</table>

Default Configuration

No Authentication lists exist by default.

Command Mode

Global Configuration mode
User Guidelines

Create a list by entering the `aaa authentication enable list-name method1 [method2...]` command where `list-name` is any character string used to name this list. The method argument identifies the list of methods that the authentication algorithm tries, in the given sequence.

All `aaa authentication enable` requests sent by the device to a RADIUS server include the username `$enabx$`, where `x` is the requested privilege level.

All `aaa authentication enable` requests sent by the device to a TACACS+ server include the username that is entered for login authentication.

The additional methods of authentication are used only if the previous method returns an error, not if it fails. Specify `none` as the final method in the command line to ensure that the authentication succeeds even if all methods return an error.

`no aaa authentication enable list-name` deletes list-name if it has not been referenced.

Example

The following example sets the enable password for authentication for accessing higher privilege levels.

```
switchxxxxxx(config)# aaa authentication enable enable-list radius none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# enable authentication enable-list
```
login authentication

The login authentication Line Configuration mode command specifies the login authentication method list for a remote Telnet or console session. Use the no form of this command to restore the default authentication method.

Syntax

login authentication {default | list-name}

no login authentication

Parameters

- **default**—Uses the default list created with the `aaa authentication login` command.
- **list-name**—Uses the specified list created with the `aaa authentication login` command.

Default Configuration
default

Command Mode

Line Configuration Mode

Example 1 - The following example specifies the login authentication method as the default method for a console session.

```
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# login authentication default
```

Example 2 - The following example sets the authentication login methods for the console as a list of methods.

```
switchxxxxxx(config)# aaa authentication login authen-list radius local none
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# login authentication authen-list
```
enable authentication

The `enable authentication` Line Configuration mode command specifies the authentication method for accessing a higher privilege level from a remote Telnet or console. Use the `no` form of this command to restore the default authentication method.

Syntax

`enable authentication {default | list-name}`

`no enable authentication`

Parameters

- `default`—Uses the default list created with the `aaa authentication enable` command.
- `list-name`—Uses the specified list created with the `aaa authentication enable` command.

Default Configuration
default.

Command Mode
Line Configuration Mode

Example 1 - The following example specifies the authentication method as the default method when accessing a higher privilege level from a console.

```
switchxxxxx(config)# line console
switchxxxxx(config-line)# enable authentication default
```

Example 2 - The following example sets a list of authentication methods for accessing higher privilege levels.

```
switchxxxxx(config)# aaa authentication enable enable-list radius none
switchxxxxx(config)# line console
switchxxxxx(config-line)# enable authentication enable-list
```
ip http authentication

The **ip http authentication** Global Configuration mode command specifies authentication methods for HTTP server access. Use the **no** form of this command to restore the default authentication method.

Syntax

```
ip http authentication aaa login-authentication [login-authorization] method1 [method2...]
no ip http authentication aaa login-authentication
```

Parameters

- **login-authorization**—Specifies that authentication and authorization are applied. If the keyword is not configured, then only authentication is applied.
- **method [method2...]**—Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication methods are used only if the previous method returns an error, not if it fails. Specify **none** as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Uses the local username database for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Uses the list of all TACACS+ servers for authentication.</td>
</tr>
</tbody>
</table>

Default Configuration

The local user database is the default authentication login method. This is the same as entering the **ip http authentication local** command.

Command Mode

Global Configuration mode

User Guidelines

The command is relevant for HTTP and HTTPS server users.

Example

The following example specifies the HTTP access authentication methods.

```
switchxxxxxx(config)# ip http authentication aaa login-authentication radius local none
```
show authentication methods

The show authentication methods Privileged EXEC mode command displays information about the authentication methods.

Syntax

show authentication methods

Command Mode

Privileged EXEC mode

Example

The following example displays the authentication configuration:

switchxxxxx# show

authentication methods
Login Authentication Method Lists

Default: Radius, Local, Line
Cons1_Login(with authorization): Line, None
Enable Authentication Method Lists

Default: Radius, Enable
Cons1_Enable(with authorization): Enable, None

<table>
<thead>
<tr>
<th>Line</th>
<th>Login Method List</th>
<th>Enable Method List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console</td>
<td>Cons1_Login</td>
<td>Cons1_Enable</td>
</tr>
<tr>
<td>Telnet</td>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td>SSH</td>
<td>Default</td>
<td>Default</td>
</tr>
</tbody>
</table>

HTTP, HTTPS: Radius, local
Dot1x: Radius
password

Use the `password` Line Configuration mode command to specify a password on a line (also known as an access method, such as a console or Telnet). Use the `no` form of this command to return to the default password.

Syntax

```
password {unencrypted-password [method hash-method] | encrypted-password encrypted}
no password
```

Parameters

- **unencrypted-password** — The authentication password for the user. (Range: 1–64)
- **[method hash-method]** — (optional) specifies the method used for encrypting the clear-text password. Supported values:
 - `sha512` - PBKDF2 encryption with HMAC using the SHA512 as the underlying Hashing Algorithm. This is the default method if the `method` parameter is not specified.
- **encrypted** encrypted-password — Specifies that the password is encrypted and hashed using a salt. Use this keyword to enter a password that is already encrypted (for instance, a password that was copied from the configuration file of another device). The `encrypted-password` is specified in the format of `$<type>$<salt>$<encrypted-password>`, where:
 - `<type>` - is an integer value that indicates the type of hash algorithm used to generate the hash
 - `<salt>` - The base64 encoding of the 96 bits used for salt (length – 16 bytes)
 - `<encrypted-password>` - The base64 encoding of the encrypted hash output (length - 86 bytes)

Default Configuration

No password is defined.

Command Mode

Line Configuration Mode

User Guidelines

The `unencrypted-password` must comply to password complexity requirements

Example

The following example specifies the password ‘secreT123!’ on the console line.

```
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# password secreT123!
```
enable password

Use the enable password Global Configuration mode command to set a local password to control access to normal and privilege levels. Use the no form of this command to return to the default password.

Syntax

enable password [level privilege-level] {[method hash-method] unencrypted-password | encrypted encrypted-password}

no enable password [level privilege-level]

Parameters

• **level** privilege-level—Level for which the password applies. If not specified, the level is 15. (Range: 1–15)

• [method hash-method] — (optional) specifies the method used for encrypting the clear-text password. Supported values:

 sha512 - PBKDF2 encryption with HMAC using the SHA512 as the underlying Hashing Algorithm. This is the default method if the method parameter is not specified.

• **unencrypted-password**—Password for this level. (Range: 0–159 chars)

• **encrypted** encrypted-password—Specifies that the password is encrypted and hashed using a salt. Use this keyword to enter a password that is already encrypted (for instance, a password that was copied from the configuration file of another device). The encrypted-password is specified in the format of $<type>$<salt>$<encrypted-password >, where:

 <type> - is an integer value that indicates the type of hash algorithm used to generate the hash

 <salt> - The base64 encoding of the 96 bits used for salt (length – 16 bytes)

 • <encrypted-password> - The base64 encoding of the encrypted hash output (length - 86 bytes)

Default Configuration

Default for level is 15.

Command Mode

Global Configuration mode

User Guidelines

The unencrypted-password must comply to password complexity requirements

When the administrator configures a new enable password, this password is encrypted automatically and saved to the configuration file. No matter how the password was entered, it appears in the configuration file with the keyword encrypted and the encrypted value. The administrator is required to use the encrypted keyword only when actually entering an encrypted keyword.
If the administrator wants to manually copy a password that was configured on one switch (for instance, switch B) to another switch (for instance, switch A), the administrator must add `encrypted` in front of this encrypted password when entering the `enable` command in switch A. In this way, the two switches will have the same password.

The administrator is required to use the `encrypted` keyword only when actually entering an encrypted keyword.

Example 1 - The command sets a password that has already been encrypted. It will be copied to the configuration file just as it is entered. To login to device using this password, the user must know its unencrypted form.

```
switchxxxxxx(config)# enable password encrypted
```

Example 2 - The command sets an unencrypted password for level 1 (it will be encrypted in the configuration file).

```
switchxxxxxx(config)# enable password level 1 let-me-In
```
service password-recovery

Use the `service password-recovery` Global Configuration mode command to enable the password-recovery mechanism. This mechanism allows an end user, with physical access to the console port of the device, to enter the boot menu and trigger the password recovery process. Use the `no service password-recovery` command to disable the password-recovery mechanism. When the password-recovery mechanism is disabled, accessing the boot menu is still allowed and the user can trigger the password recovery process. The difference is, that in this case, all the configuration files and all the user files are removed. The following log message is generated to the terminal: “All the configuration and user files were removed.”

Syntax

```
service password-recovery
no service password-recovery
```

Default Configuration

The service password recovery is enabled by default.

Command Mode

Global Configuration mode

User Guidelines

- If password recovery is enabled, the user can access the boot menu and trigger the password recovery in the boot menu. All configuration files and user files are kept.
- If password recovery is disabled, the user can access the boot menu and trigger the password recovery in the boot menu. The configuration files and user files are removed.
- If a device is configured to protect its sensitive data with a user-defined passphrase for (Secure Sensitive Data), then the user cannot trigger the password recovery from the boot menu even if password recovery is enabled.

Example

The following command disables password recovery:

```
switchxxxxxx(config)# no service password recovery
```

Note that choosing to use Password recovery option in the Boot Menu during the boot process will remove the configuration files and the user files. Would you like to continue ? Y/N.
username

Use the **username** Global Configuration mode command to create or edit a username based user authentication account. Use the **no** form to remove a user account.

Syntax

```
username name { [method hash-method] password { unencrypted-password | encrypted encrypted-password } } | { privilege privilege-level { [method hash-method] unencrypted-password | encrypted encrypted-password } }

no username name
```

Parameters

- **name** — The name of the user. (Range: 1–20 characters)
- **[method hash-method]** — (optional) specifies the method used for encrypting the clear-text password. Supported values:
 - `sha512` - PBKDF2 encryption with HMAC using the SHA512 as the underlying Hashing Algorithm. This is the default method if the **method** parameter is not specified.
- **password** — Specifies the password for this username.
- **unencrypted-password** — The authentication password for the user. (Range: 1–64)
- **encrypted** encrypted-password — Specifies that the password is encrypted and hashed using a salt. Use this keyword to enter a password that is already encrypted (for instance, a password that was copied from the configuration file of another device). The encrypted-password is specified in the format of `$<type>$<salt>$<encrypted-password $`, where:
 - `<type>` - is an integer value that indicates the type of hash algorithm used to generate the hash
 - `<salt>` - The base64 encoding of the 96 bits used for salt (length – 16 bytes)
 - `<encrypted-password>` - The base64 encoding of the encrypted hash output (length - 86 bytes)
- **privilege** privilege-level — User account privilege level. If not specified the level is 1. (Range: 1–15).

Default Configuration

No user is defined.

Command Mode

Global Configuration mode

Usage Guidelines

The **unencrypted-password** must comply to password complexity requirements

The last level 15 user cannot be removed and cannot be a remote user.

Example 1 - Sets an unencrypted password for user tom (level 15). It will be encrypted in the configuration file.
switchxxxxxx(config)# username tom password 1234Ab$5678

Example 2 - Sets a password for user jerry (level 15) that has already been encrypted. It will be copied to the configuration file just as it is entered. To use it, the user must know its unencrypted form.

switchxxxxxxx(config)# username jerry privilege 15 encrypted 15TqKC13RgV/qJb2Mb$54.Jme7/wgRGH2iwx90$M$3uQeO2CM1hkJN56.3M6A$uMgwhwRbsRtX72zakc72hLxt/YhEknPA61X7fTgqz2n6W==
show users accounts

The **show users accounts** Privileged EXEC mode command displays information about the users local database.

Syntax

`show users accounts`

Command Mode

Privileged EXEC mode

Example

The following example displays information about the users local database:

```
switchxxxxxx# show users accounts
----------  -------
Username    Privilege  Expiry date
----------  -------  ---------
Bob         15        Jan 18 2005
Robert      15        Jan 19 2005
Smith       15        Jan 18 2005
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>The user name.</td>
</tr>
<tr>
<td>Privilege</td>
<td>The user’s privilege level.</td>
</tr>
<tr>
<td>Password Expiry date</td>
<td>The user's password expiration date.</td>
</tr>
</tbody>
</table>
aaa accounting login start-stop

Use the `aaa accounting login start-stop` command in Global Configuration mode to enable accounting of device management sessions. Use the `no` form of this command to disable accounting.

Syntax

`aaa accounting login start-stop group {radius | tacacs+}`

`no aaa accounting login start-stop`

Parameters

- `group radius`—Uses a RADIUS server for accounting.
- `group tacacs+`—Uses a TACACS+ server for accounting.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

This command enables the recording of device management sessions (Telnet, serial and WEB but not SNMP).

It records only users that were identified with a username (e.g. a user that was logged in with a line password is not recorded).

If accounting is activated, the device sends a “start”/“stop” messages to a RADIUS server when a user logs in / logs out respectively.

The device uses the configured priorities of the available RADIUS/TACACS+ servers in order to select the RADIUS/TACACS+ server.

The following table describes the supported RADIUS accounting attributes values, and in which messages they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Start Message</th>
<th>Stop Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name (1)</td>
<td>Yes</td>
<td>Yes</td>
<td>User’s identity.</td>
</tr>
<tr>
<td>NAS-IP-Address (4)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch IP address that is used for the session with the RADIUS server.</td>
</tr>
<tr>
<td>Class (25)</td>
<td>Yes</td>
<td>Yes</td>
<td>Arbitrary value is included in all accounting packets for a specific session.</td>
</tr>
</tbody>
</table>
The switch IP address that is used for the management session.

The user IP address.

A unique accounting identifier.

Indicates how the supplicant was authenticated.

Indicates how long the user was logged in.

Reports why the session was terminated.

The following table describes the supported TACACS+ accounting arguments and in which messages they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Start Message</th>
<th>Stop Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>task_id</td>
<td>A unique accounting session identifier.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>user</td>
<td>username that is entered for login authentication</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>rem-addr</td>
<td>IP address of the user</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>elapsed-time</td>
<td>Indicates how long the user was logged in.</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>reason</td>
<td>Reports why the session was terminated.</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Example

switchxxxxxx(config)# aaa accounting login start-stop group radius
aaa accounting dot1x

To enable accounting of 802.1x sessions, use the `aaa accounting dot1x` Global Configuration mode command. Use the `no` form of this command to disable accounting.

Syntax

```
aaa accounting dot1x start-stop group radius
no aaa accounting dot1x start-stop group radius
```

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

This command enables the recording of 802.1x sessions.

If accounting is activated, the device sends start/stop messages to a RADIUS server when a user logs in / logs out to the network, respectively. The device uses the configured priorities of the available RADIUS servers in order to select the RADIUS server.

If a new supplicant replaces an old supplicant (even if the port state remains authorized), the software sends a stop message for the old supplicant and a start message for the new supplicant.

In multiple sessions mode (dot1x multiple-hosts authentication), the software sends start/stop messages for each authenticated supplicant.

In multiple hosts mode (dot1x multiple-hosts), the software sends start/stop messages only for the supplicant that has been authenticated. The software does not send start/stop messages if the port is force-authorized.

The software does not send start/stop messages for hosts that are sending traffic on the guest VLAN or on the unauthenticated VLANs.

The following table describes the supported Radius accounting Attributes Values and when they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Start</th>
<th>Stop</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name (1)</td>
<td>Yes</td>
<td>Yes</td>
<td>Supplicant’s identity.</td>
</tr>
<tr>
<td>NAS-IP-Address (4)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch IP address that is used for the session with the RADIUS server.</td>
</tr>
<tr>
<td>NAS-Port (5)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch port from where the supplicant has logged in.</td>
</tr>
<tr>
<td>Name</td>
<td>Start</td>
<td>Stop</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Class (25)</td>
<td>Yes</td>
<td></td>
<td>The arbitrary value that is included in all accounting packets for a specific session.</td>
</tr>
<tr>
<td>Called-Station-ID (30)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch MAC address.</td>
</tr>
<tr>
<td>Calling-Station-ID (31)</td>
<td>Yes</td>
<td>Yes</td>
<td>The supplicant MAC address.</td>
</tr>
<tr>
<td>Acct-Session-ID (44)</td>
<td>Yes</td>
<td></td>
<td>A unique accounting identifier.</td>
</tr>
<tr>
<td>Acct-Authentic (45)</td>
<td>Yes</td>
<td></td>
<td>Indicates how the supplicant was authenticated.</td>
</tr>
<tr>
<td>Acct-Session-Time (46)</td>
<td>No</td>
<td>Yes</td>
<td>Indicates how long the supplicant was logged in.</td>
</tr>
<tr>
<td>Acct-Terminate-Cause (49)</td>
<td>No</td>
<td>Yes</td>
<td>Reports why the session was terminated.</td>
</tr>
<tr>
<td>Nas-Port-Type (61)</td>
<td>Yes</td>
<td></td>
<td>Indicates the supplicant physical port type.</td>
</tr>
</tbody>
</table>

Example

```
switchxxxxxx(config)# aaa accounting dot1x start-stop group radius
```
show accounting

The `show accounting` EXEC mode command displays information as to which type of accounting is enabled on the switch.

Syntax

```
show accounting
```

Command Mode

User EXEC mode

Example

The following example displays information about the accounting status.

```
switchxxxxxx# show accounting
Login: Radius
802.1x: Disabled
```
passwords complexity

Use the `passwords complexity` Global Configuration mode commands to control the minimum requirements from a password when password complexity is enabled. Use the `no` form of these commands to return to default.

Syntax

```
passwords complexity {min-length number} | {min-classes number} | {no-repeat number} | no-current | not-username | not-manufacturer-name
```

```
no passwords complexity min-length | min-classes | no-repeat | not-current | not-username | not-manufacturer-name
```

Parameters

- **min-length** number—Sets the minimal length of the password. (Range: 8–64)
- **min-classes** number—Sets the minimal character classes (uppercase letters, lowercase letters, numbers, and special characters available on a standard keyboard). (Range: 1–4)
- **no-repeat** number—Specifies the maximum number of characters in the new password that can be repeated consecutively. (Range: 1–16)
- **not-current**—Specifies that the new password cannot be the same as the current password.
- **not-username**—Specifies that the password cannot repeat or reverse the user name or any variant reached by changing the case of the characters.
- **not-manufacturer-name**—Specifies that the password cannot repeat or reverse the manufacturer’s name or any variant reached by changing the case of the characters.

Default Configuration

The minimal length is 8.

The number of classes is 3.

The default for no-repeat is 3.

All the other controls are enabled by default.

Command Mode

Global Configuration mode

Example

The following example configures the minimal required password length to 10 characters.

```
switchxxxxxx(config)# passwords complexity min-length 10
```
passwords aging

Use the `passwords aging` Global Configuration mode command to enforce password aging. Use the `no` form of this command to return to default.

Syntax

```
passwords aging days
no passwords aging
```

Parameters

- `days` — Specifies the number of days before a password change is forced. You can use 0 to disable aging. (Range: 0–365).

Default Configuration

180

Command Mode

Global Configuration mode

User Guidelines

Aging is relevant only to users of the local database with privilege level 15 and to enable a password of privilege level 15.

To disable password aging, use `passwords aging 0`.

Using `no passwords aging` sets the aging time to the default.

Example

The following example configures the aging time to be 24 days.

```
witchxxxxxx(config)# passwords aging 24
```
show passwords configuration

The **show passwords configuration** Privileged EXEC mode command displays information about the password management configuration.

Syntax

`show passwords configuration`

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show passwords configuration
Passwords aging is enabled with aging time 180 days.
Passwords complexity is enabled with the following attributes:
  Minimal length: 3 characters
  Minimal classes: 3
  New password must be different than the current: Enabled
  Maximum consecutive same characters: 3
  New password must be different than the user name: Enabled
  New password must be different than the manufacturer name: Enabled
Following set to internal since it is not supported
Enable Passwords
Level
-----
  1
  15
Line Passwords
Line
-----
  Console
  Telnet
  SSH
```
Auto-Update and Auto-Configuration

This chapter contains the following sections:

- boot host auto-config, on page 196
- boot host auto-update, on page 197
- show boot, on page 198
- ip dhcp tftp-server ip address, on page 200
- ip dhcp tftp-server file, on page 201
- ip dhcp tftp-server image file, on page 202
- show ip dhcp tftp-server, on page 203
boot host auto-config

Use the `boot host auto-config` Global Configuration mode command to enable auto configuration via DHCP. Use the `no` form of this command to disable DHCP auto configuration.

Syntax

```
boot host auto-config [tftp | scp | auto [extension]]
no boot host auto-config
```

Parameters

- **tftp**—Only the TFTP protocol is used by auto-configuration.
- **scp**—Only the SCP protocol is used by auto-configuration.
- **auto**—(Default) Auto-configuration uses the TFTP or SCP protocol depending on the configuration file's extension. If this option is selected, the extension parameter may be specified or, if not, the default extension is used.
- **extension**—The SCP file extension. When no value is specified, 'scp' is used. (Range: 1-16 characters)

Default Configuration

Enabled by default with the `auto` option.

Command Mode

Global Configuration mode

User Guidelines

The TFTP or SCP protocol is used to download/upload a configuration file.

Example 1. The following example specifies the auto mode and specifies "scon" as the SCP extension:

```
switchxxxxxx(config)# boot host auto-config auto scon
```

Example 2. The following example specifies the auto mode and does not provide an SCP extension. In this case "scp" is used.

```
switchxxxxxx(config)# boot host auto-config auto
```

Example 3. The following example specifies that only the SCP protocol will be used:

```
switchxxxxxx(config)# boot host auto-config scp
```
boot host auto-update

Use the `boot host auto-update` Global Configuration mode command to enable the support of auto update via DHCP. Use the `no` form of this command to disable DHCP auto configuration.

Syntax

```plaintext
boot host auto-update [tftp | scp | auto [extension]]
no boot host auto-update
```

Parameters

- **tftp**—Only the TFTP protocol is used by auto-update.
- **scp**—Only the SCP protocol is used by auto-update.
- **auto** (Default)—Auto-update uses the TFTP or SCP protocol depending on the Indirect image file's extension. If this option is selected, the extension parameter may be specified or, if not, the default extension is used.
- **extension**—The SCP file extension. When no value is specified, 'scp' is used. (Range: 1-16 characters)

Default Configuration

Enabled by default with the `auto` option.

Command Mode

Global Configuration mode

User Guidelines

The TFTP or SCP protocol is used to download/upload an image file.

Example 1—The following example specifies the auto mode and specifies "scon" as the SCP extension:

```
switchxxxxxx(config)# boot host auto-update auto scon
```

Example 2—The following example specifies the auto mode and does not provide an SCP extension. In this case "scp" is used.

```
switchxxxxxx(config)# boot host auto-update auto
```

Example 3—The following example specifies that only the SCP protocol will be used:

```
switchxxxxxx(config)# boot host auto-update scp
```
Use the **show boot** Privilege EXEC mode command to show the status of the IP DHCP Auto Config process.

Syntax

```
show boot
```

Command Mode

Privileged EXEC mode

Examples

```
switchxxxxxx# show boot
Auto Config
-----------------
Config Download via DHCP: enabled
Download Protocol: auto
SCP protocol will be used for files with extension: scp
Configuration file auto-save: enabled
Auto Config State: Finished successfully
Server IP address: 1.2.20.2
Configuration filename: /config/configfile1.cfg
  Auto Update
-----------------
Image Download via DHCP: enabled
switchxxxxxx# show boot
Auto Config
-----------------
Config Download via DHCP: enabled
Download Protocol: scp
Configuration file auto-save: enabled
Auto Config State: Opening <hostname>-config file
  Auto Update
-----------------
Image Download via DHCP: enabled
switchxxxxxx# show boot
Auto Config
-----------------
Config Download via DHCP: enabled
"Download Protocol: scp
Configuration file auto-save: enabled
Auto Config State: Downloading configuration file
  Auto Update
-----------------
Image Download via DHCP: enabled
switchxxxxxx# show boot
Auto Config
-----------------
Config Download via DHCP: enabled
Download Protocol: tftp
Configuration file auto-save: enabled
Auto Config State: Searching device hostname in indirect file
  Auto Update
-----------------
Image Download via DHCP: enabled
switchxxxxxx# show boot
Auto Config
-----------------
```

Cisco Business Switches 350 Series CLI Guide
Auto-Update and Auto-Configuration

show boot

Config Download via DHCP: enabled
Download Protocol: tftp
Configuration file auto-save: enabled
Auto Update

Image Download via DHCP: enabled
Auto Update State: Downloaded indirect image file
Indirect Image filename: /image/indirectimage.txt
ip dhcp tftp-server ip address

Use the `ip dhcp tftp-server ip address` Global Configuration mode command to set the backup server’s IP address. This address server as the default address used by a switch when it has not been received from the DHCP server. Use the `no` form of the command to return to default.

Syntax

`ip dhcp tftp-server ip address ip-addr`

`no ip dhcp tftp-server ip address`

Parameters

- `ip-addr`—IPv4 Address, or IPv6 Address or DNS name of TFTP or SCP server.

Default Configuration

No IP address

Command Mode

Global Configuration mode

User Guidelines

The backup server can be a TFTP server or a SCP server.

Examples

Example 1. The example specifies the IPv4 address of TFTP server:

```
switchxxxxxx(config)# ip dhcp tftp-server ip address 10.5.234.232
```

Example 2. The example specifies the IPv6 address of TFTP server:

```
switchxxxxxx(config)# ip dhcp tftp-server ip address 3000:1::12
```

Example 3. The example specifies the IPv6 address of TFTP server:

```
switchxxxxxx(config)# ip dhcp tftp-server ip address tftp-server.company.com
```
ip dhcp tftp-server file

Use the `ip dhcp tftp-server file` Global Configuration mode command to set the full file name of the configuration file to be downloaded from the backup server when it has not been received from the DHCP server. Use the `no` form of this command to remove the name.

Syntax

```
ip dhcp tftp-server file file-path
no ip dhcp tftp-server file
```

Parameters

- `file-path`—Full file path and name of the configuration file on the server.

Default Configuration

No file name

Command Mode

Global Configuration mode

User Guidelines

The backup server can be a TFTP server or an SCP server.

Examples

```
switchxxxxxx(config)# ip dhcp tftp-server file conf/conf-file
```
ip dhcp tftp-server image file

Use the `ip dhcp tftp-server image file` Global Configuration mode command to set the indirect file name of the image file to be downloaded from the backup server when it has not been received from the DHCP server. Use the `no` form of this command to remove the file name.

Syntax

```
ip dhcp tftp-server image file file-path
no ip dhcp tftp-server image file
```

Parameters

- `file-path`—Full indirect file path and name of the configuration file on the server.

Default Configuration

No file name

Command Mode

Global Configuration mode

User Guidelines

The backup server can be a TFTP server or a SCP server.

Examples

```
switchxxxxx(config)# ip dhcp tftp-server image file imag/imag-file
```
show ip dhcp tftp-server

Use the **show ip dhcp tftp-server** EXEC mode command to display information about the backup server.

Syntax

`show ip dhcp tftp-server`

Command Mode

User EXEC mode

User Guidelines

The backup server can be a TFTP server or a SCP server.

Example

```
show ip dhcp tftp-server
server address
active 1.1.1.1 from sname
manual 2.2.2.2
file path on server
active conf/conf-file from option 67
manual conf/conf-file1
```
show ip dhcp tftp-server
Bonjour Commands

This chapter contains the following sections:

- bonjour enable, on page 206
- bonjour interface range, on page 207
- show bonjour, on page 208
bonjour enable

To enable Bonjour globally, use the `bonjour enable` command in Global Configuration mode. To disable Bonjour globally, use the `no` format of the command.

Syntax

`bonjour enable`

`no bonjour enable`.

Default Configuration

Enable

Command Mode

Global Configuration mode

Examples

```
switchxxxxxx(config)# bonjour enable
```
Bonjour Commands

bonjour interface range

To add L2 interfaces to the Bonjour L2 interface list, use the `bonjour interface range` command in Global Configuration mode. To remove L2 interfaces from this list, use the `no` format of the command.

Syntax

```
bonjour interface range interface-list
no bonjour interface range [interface-list]
```

Parameters

- `interface-list`—Specifies a list of interfaces. Only interfaces supporting L2 Multicast forwarding can be specified. The follow: LAN and point, which support be of the following types: OOB, Ethernet port, Port-channel, and VLAN.

Default Configuration

The list includes the Default VLAN and OOB.

Command Mode

Global Configuration mode

User Guidelines

The Bonjour L2 interface list specifies a set of interfaces on which Bonjour is enabled.

Use the `bonjour interface range interface-list` command, to add the specified interfaces to the Bonjour L2 interface list.

Use the `no bonjour interface range interface-list` command, to remove the specified interfaces from the Bonjour L2 interface list.

Use the `no bonjour interface range` command, to clear the Bonjour L2 interface list.

Examples

```
switchxxxxxx(config)# bonjour interface range VLAN 100-103
```
show bonjour

To display Bonjour information, use the **show bonjour** command in Privileged EXEC mode.

Syntax

```
show bonjour [interface-id]
```

Parameters

- `interface-id`—Specifies an interface.

Command Mode

Privileged EXEC mode

Examples

The example displays Bonjour status.

```
switchxxxxxx# show bonjour
Bonjour global status: enabled
Bonjour L2 interfaces list: vlans 1
Service     Admin Status      Oper Status
------------ --------------- ---------------
cisco-sb    enabled          enabled
http        enabled          enabled
https       enabled          disabled
ssh         enabled          disabled
telnet      enabled          disabled
```
CA Certificate Commands

This chapter contains the following sections:

• ca-certificate install, on page 210
• ca-certificate revoke, on page 212
• show ca-certificate, on page 213
• show ca-certificate revocation, on page 215
ca-certificate install

To manually install a CA certificate, use the `ca-certificate install` command in Global Configuration mode. To remove a static CA certificate, use the `no` form of this command.

Syntax

```
ca-certificate install name name [owner owner]
nocacertificate install \{name name [owner owner]
```

Parameters

- `name`—Specifies the certificate name. The range is from 1 to 160 characters.
- `owner`—specifies the owner of the certificate. This is a string of 0 to 32 characters. If an owner is not specified, the default owner is "Static".

When adding a certificate, the certificate itself should follow the command on the command line.

Default Configuration

There are no installed certificates.

Command Mode

Global Configuration mode

User Guidelines

Use the `ca-certificate install name` command to install a CA certificate.

Following the command, the user will be prompted to enter the certificate in the command line. The user will need to enter or paste the certificate. Entering a period on a separate line indicates that the certificate input is complete.

The entered certificate must use the pem format.

A certificate will not be valid if the system clock was not set by user or synchronized with SNTP, or based on hardware based Real Time Clock (RTC).

Up to 256 certificates can be installed.

When using the `no` form of the command to remove certificates, a specific certificate can be removed by `name`. Alternatively, the `owner` keyword can be used to remove all static certificates belonging to a specific owner.

Example 1. The following example installs a CA certificate from the command line:

```
switchxxxxxx(config)# ca-certificate install root1
Please paste the input now, add a period (.) on a separate line after the
input, and press Enter.
-----BEGIN CERTIFICATE-----
MIIBkzCB/QIBADBUMQswCQYDVQQGEwIgIDEKMAgGA1UECBMBIDEKMAgGA1UEBxMB
IDEVMBMGA1UEAxMMMTAuNS4yMzQuMjA5MQowCAYDVQQKEwEgMQowCAYDVQQLEwEg
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDK+beogIcke73sBSL7tC2IMZrY
-----END CERTIFICATE-----
```

Cisco Business Switches 350 Series CLI Guide
Cisco Business Switches 350 Series CLI Guide

CA Certificate Commands

certificate install
ca-certificate revoke

To add a certificate to the revocation list, use the `ca-certificate revoke` command in Global Configuration mode. To remove a certificate from the revocation list, use the `no` form of this command.

Syntax

```
ca-certificate revoke issuer serial-number serial-number

no ca-certificate revoke issuer serial-number serial-number
```

Parameters

- `issuer`—The issuer string as it appears in the revoked certificate - including all parameters (Range: 1-160 characters).
- `serial-number`—The serial number of the revoked certificate. This is a string in hexadecimal format (Range: 1-16 pairs of characters).

Default Configuration

There are no revoked certificates.

Command Mode

Global Configuration mode

User Guidelines

Use the `ca-certificate revoke` command to add a certificate to the revocation list.

When entering the issuer information, the full issuer string should be entered as it appears in the certificate. If the string contains spaces, it must be contained in quotation marks.

Adding a certificate to this list will change the status of this certificate to "revoked" if it is installed. If the certificate is not installed, it will receive the revoked status if it is installed at a later date.

Up to 512 certificates can be added to the revocation list.

Example 1. The following example adds a CA certificate to the revocation list:

```
switchxxxxxx(config)# ca-certificate revoke issuer "C=US, O=GlobalSign nv-sa, CN=GlobalSign Organization Validation" serial-number 10ad0044a8418ad5005e45b6
switchxxxxxx(config)#
```
show ca-certificate

To display the CA certificates installed on the device and their status, use the `show ca-certificate` command in Privileged EXEC mode.

Syntax

```
show ca-certificate [name name][type type][owner owner-name][detailed]
```

Parameters

- **name name** - Specifies the certificate name. (Range: 1-160 characters).
- **type type**—Specifies the certificate type. The possible values are static, dynamic or signer.
- **owner owner-name**—Specifies the name of the certificate owner - this is the application that installed a dynamic certificate. (Range: 1-32 characters).
- **detailed** - This optional parameter shows detailed information of the displayed certificates. If this parameter is not used, only limited information will be displayed for each certificate.

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show ca-certificate` command to display all installed CA certificates.

Use the optional **name**, **type** and **owner** parameters to display the information of a subset of certificates.

Example 1 The following example displays brief information for all static CA certificates.

```
switchxxxxxx# show ca-certificate type static
Name       Type   Owner    Valid From    Valid To   Status
---------- ------ -------- ----------- ----------- ----------
local.cert static rnd 03-Aug-2019 03-Aug-2020 Valid
app1.cert1 static app1 16-Jan-2021 16-Jul-2023 Premature
app1.cert2 static app1 15-Mar-2017 14-Mar-2018 Expired
trusted-cert1 static app2 27-Jun-2019 26-Jun-2024 Valid
certif3    static app3 08-Feb-2018 08-Feb-2020 Revoked
```

Example 2 The following example displays detailed information for all CA certificates:

```
switchxxxxxx# show ca-certificate detailed
>C-CountryName, ST-StateOrProvinceName, L-Locality, O-Organization,
>OU-O rganizationalUnit, CN-CommonName
cert1
    Type: Signer
    Owner: N/A
    Version: 3 (0x2)
    Serial Number: 10:ad:00:44:a8:41:8a:d5:00:5e:45:b6
    Issuer: C=US, O=GlobalSign nv-sa, CN=GlobalSign Organization Validation
    Status: Valid
    Validity
        Not Before: Nov 21 08:00:00 2015 GMT
        Not After : Nov 22 07:59:59 2020 GMT
    Subject: C=US, O=GlobalSign nv-sa, CN=GlobalSign Organization Validation
```
show ca-certificate

Public Key Type: ECDSA_P256
Public Key Length: 2048 bits
Signature Algorithm: sha256RSA
certA
Type: Static
Owner: Static
Parent: cert1
Version: 3 (0x2)
Serial Number: 10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
Issuer: C=US, O=GlobalSign nv-sa, CN=GlobalSign Organization Validation
Status: Not Valid (expired)
Validity
 Not Before: Nov 21 08:00:00 2016 GMT
 Not After : Nov 22 07:59:59 2017 GMT
Subject: C=US, ST=California, L=San Francisco, O=AKB Foundation, Inc.,
 CN=*.wikipedia.org
Finger print: DC72343 DC88A988 127897BC BB789788
Public Key Type: ECDSA_P256
Public Key Length: 2048 bits
Signature Algorithm: sha256RSA
certB
Type: Dynamic
Owner: PnP
Parent: cert1
Version: 3 (0x2)
Serial Number: 88:cc:55:ae:a8:41:8a:d5:00:5e:45:b6
Issuer: C=US, O=Google Trust Services, CN=GTS CA 101
Status: Not Valid (revoked)
Validity
 Not Before: Sep 21 08:00:00 2019 GMT
 Not After : Sep 22 07:59:59 2020 GMT
Subject: C=US, S=California, L=Mountain View O=Google LLC, CN=*.google.com
Finger print: DC789788 DC88A988 127897BC BB789788
Public Key Type: ECDSA_P256
Public Key Length: 2048 bits
Signature Algorithm: sha256RSA
show ca-certificate revocation

To display the CA certificate revocation list, use the `show ca-certificate revocation` command in Privileged EXEC mode.

Syntax

```plaintext
show ca-certificate revocation
```

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show ca-certificate revocation` command to display the CA certificate revocation list.

Example. The following displays the revocation list:

```
switchxxxxxx# show ca-certificate revocation
> C=CountryName, ST-StateOrProvinceName, L-Locality, O=Organization,
> OU=OrganizationalUnit, CN=CommonName
Issuer: C=US, O=GlobalSign nv-sa, CN=GlobalSign Organization Validation
Serial Number: 10:ad:00:44:a8:41:8a:d5:00:5e:45:b6
--------------------------------------------------------------------------
Issuer: C=US, O=Google Trust Services, CN=GTS CA 101
Serial Number: 00:9e:44:1b:49:08:8d:75:bb:02:00:00:00:40:a5:b4
```
show ca-certificate revocation
CDP Commands

This chapter contains the following sections:

- cdp advertise-v2, on page 218
- cdp appliance-tlv enable, on page 219
- cdp device-id format, on page 220
- cdp enable, on page 221
- cdp holdtime, on page 222
- cdp log mismatch duplex, on page 223
- cdp log mismatch native, on page 224
- cdp log mismatch voip, on page 225
- cdp mandatory-tlvs validation, on page 226
- cdp pdu, on page 227
- cdp run, on page 228
- cdp source-interface, on page 229
- cdp timer, on page 230
- clear cdp counters, on page 231
- clear cdp table, on page 232
- show cdp, on page 233
- show cdp entry, on page 234
- show cdp interface, on page 235
- show cdp neighbors, on page 236
- show cdp tlv, on page 240
- show cdp traffic, on page 243
cdp advertise-v2

To specify version 2 of transmitted CDP packets, use the `cdp advertise-v2` command in Global Configuration mode. To specify version 1, use the `no` form of this command.

Syntax

- `cdp advertise-v2`
- `no cdp advertise-v2`

Default Configuration

Version 2.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# cdp run
switchxxxxxxx(config)# cdp advertise-v2
```
cdp appliance-tlv enable

To enable sending of the Appliance TLV, use the **cdp appliance-tlv enable** command in Global Configuration mode. To disable the sending of the Appliance TLV, use the **no** form of this command.

Syntax

```plaintext
cdp appliance-tlv enable
no cdp appliance-tlv enable
```

Default Configuration

Enabled

Command Mode

Global Configuration mode

User Guidelines

This MIB specifies the Voice Vlan ID (VVID) to which this port belongs:

- **0** — The CDP packets transmitting through this port contain Appliance VLAN-ID TLV with value of 0. VoIP and related packets are expected to be sent and received with VLAN-ID=0 and an 802.1p priority.

- **1..4094** — The CDP packets transmitting through this port contain Appliance VLAN-ID TLV with N. VoIP and related packets are expected to be sent and received with VLAN-ID=N and an 802.1p priority.

- **4095** — The CDP packets transmitting through this port contain Appliance VLAN-ID TLV with value of 4095. VoIP and related packets are expected to be sent and received untagged without an 802.1p priority.

- **4096** — The CDP packets transmitting through this port do not include Appliance VLAN-ID TLV; or, if the VVID is not supported on the port, this MIB object will not be configurable and will return 4096.

Example

```plaintext
switchxxxxxxx(config)# cdp appliance-tlv enable
```
cdp device-id format

To specify the format of the Device-ID TLV, use the `cdp device-id format` command in Global Configuration mode. To return to default, use the `no` form of this command.

Syntax

```
cdp device-id format {mac | serial-number | hostname}
no cdp device-id format
```

Parameters

- `mac`—Specifies that the Device-ID TLV contains the device’s MAC address.
- `serial-number`—Specifies that Device-ID TLV contains the device’s hardware serial number.
- `hostname`—Specifies that Device-ID TLV contains the device’s hostname.

Default Configuration

MAC address is selected by default.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# cdp device-id format serial-number
```
cdp enable

To enable CDP on an interface, use the `cdp enable` command in Interface (Ethernet) Configuration mode. To disable CDP on an interface, use the `no` form of the CLI command.

Syntax

```plaintext
cdp enable
```

Default Configuration

Enabled

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

For CDP to be enabled on an interface, it must first be enabled globally using `cdp advertise-v2`, on page 218.

Example

```
switchxxxxxx(config)# cdp run
switchxxxxxx(config-if)# interface gi1/0/1
switchxxxxxx(config-if)# cdp enable
```
cdp holdtime

To specify a value of the Time-to-Live field into sent CDP messages, use the `cdp holdtime` command in Global Configuration mode. To return to default, use the `no` form of this command.

Syntax

`cdp holdtime seconds`

`no cdp holdtime`

Parameters

`seconds`—Value of the Time-to-Live field in seconds. The value should be greater than the value of the Transmission Timer.

Parameters range

`seconds`—10 - 255.

Default Configuration

180 seconds.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# cdp holdtime 100
```
cdp log mismatch duplex

To enable validating that the duplex status of a port received in a CDP packet matches the ports actual configuration and generation the SYSLOG duplex mismatch messages if they do not match, use the `cdp log mismatch duplex` command in Global Configuration mode and Interface (Ethernet) Configuration mode. To disable the generation of the SYSLOG messages, use the `no` form of the CLI command.

Syntax

`cdp log mismatch duplex`

`no cdp log mismatch duplex`

Default Configuration

The switch reports duplex mismatches from all ports.

Command Mode

Global Configuration mode

Interface (Ethernet) Configuration mode

Example

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# cdp log mismatch duplex
```
cdp log mismatch native

To enable validating that the native VLAN received in a CDP packet matches the actual native VLAN of the port and generation the SYSLOG VLAN native mismatch messages if they do not match, use the **cdp log mismatch native** Global and Interface Configuration mode command in Global Configuration mode and Interface (Ethernet) Configuration mode. To disable the generation of the SYSLOG messages, use the **no** format of the CLI command.

Syntax

```plaintext
cdp log mismatch native
no cdp log mismatch native
```

Default Configuration

The switch reports native VLAN mismatches from all ports.

Command Mode

- Global Configuration mode
- Interface (Ethernet) Configuration mode

Example

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# cdp log mismatch native
```
To enable validating that the VoIP status of the port received in a CDP packet matches its actual configuration and generation the SYSLOG voip mismatch messages if they do not match, use the `cdp log mismatch voip` Global and Interface Configuration mode command in Global Configuration mode and Interface (Ethernet) Configuration mode. To disable the generation of the SYSLOG messages, use the `no` format of the CLI command.

Syntax

`cdp log mismatch voip`

`no cdp log mismatch voip`

Default Configuration

The switch reports VoIP mismatches from all ports.

Command Mode

Global Configuration mode

Interface (Ethernet) Configuration mode

Example

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# cdp log mismatch voip
```
cdp mandatory-tlvs validation

To validate that all mandatory (according to the CDP protocol) TLVs are present in received CDP frames, use the `cdp mandatory-tlvs validation` command in Global Configuration mode. To disable the validation, use the `no` form of this command.

Syntax

- `cdp mandatory-tlvs validation`
- `no cdp mandatory-tlvs validation`

Default Configuration

Enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the command to delete CDP packets not including all the mandatory TLVs.

Example

This example turns off mandatory TLV validation:

```
switchxxxxxx(config)# no cdp mandatory-tlvs validation
```
cdp pdu

To specify CDP packets handling when CDP is globally disabled, use the `cdp pdu` command in Global Configuration mode. To return to default, use the `no` form of this command.

Syntax

```
cdp pdu [filtering | bridging | flooding]
no cdp pdu
```

Parameters

- **filtering**—Specify that when CDP is globally disabled, CDP packets are filtered (deleted).
- **bridging**—Specify that when CDP is globally disabled, CDP packets are bridged as regular data packets (forwarded based on VLAN).
- **flooding**—Specify that when CDP is globally disabled, CDP packets are flooded to all the ports in the product that are in STP forwarding state, ignoring the VLAN filtering rules.

Default Configuration

```
bridging
```

Command Mode

Global Configuration mode

User Guidelines

When CDP is globally enabled, CDP packets are filtered (discarded) on CDP-disabled ports.

In the flooding mode, VLAN filtering rules are not applied, but STP rules are applied. In case of MSTP, the CDP packets are classified to instance 0.

Example

```
switchxxxxxx(config)# cdp run
switchxxxxxx(config)# cdp pdu flooding
```
cdp run

To enable CDP globally, use the `cdp run` command in Global Configuration mode. To disable CDP globally, use the `no` form of this command.

Syntax

```
cdp run
no cdp run
```

Default Configuration

Enabled.

Command Mode

Global Configuration mode

User Guidelines

CDP is a link layer protocols for directly-connected CDP/LLDP-capable devices to advertise themselves and their capabilities. In deployments where the CDP/LLDP capable devices are not directly connected and are separated with CDP/LLDP incapable devices, the CDP/LLDP capable devices may be able to receive the advertisement from other device(s) only if the CDP/LLDP incapable devices flood the CDP/LLDP packets they receives. If the CDP/LLDP incapable devices perform VLAN-aware flooding, then CDP/LLDP capable devices can hear each other only if they are in the same VLAN. It should be noted that a CDP/LLDP capable device may receive advertisement from more than one device if the CDP/LLDP incapable devices flood the CDP/LLDP packets.

To learn and advertise CDP information, it must be globally enabled (it is so by default) and also enabled on interfaces (also by default).

Example

```
switchxxxxxx(config)# cdp run
```
cdp source-interface

To specify the CDP source port used for source IP address selection, use the `cdp source-interface` command in Global Configuration mode. To delete the source interface, use the `no` form of this command.

Syntax

```
cdp source-interface interface-id
no cdp source-interface
```

Parameters

- `interface-id`: Source port used for Source IP address selection.

Default Configuration

No CDP source interface is specified.

Command Mode

Global Configuration mode

User Guidelines

Use the `cdp source-interface` command to specify an interface whose minimal IP address will be advertised in the TVL instead of the minimal IP address of the outgoing interface.

Example

```
switchxxxxxx(config)# cdp source-interface gi1/0/1
```
cdp timer

To specify how often CDP packets are transmitted, use the `cdp timer` command in Global Configuration mode. To return to default, use the `no` form of this command.

Syntax

```
cdp timer seconds
no cdp timer
```

Parameters

Default Configuration

60 seconds.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# cdp timer 100
```
clear cdp counters

To reset the CDP traffic counters to 0, use the `clear cdp counters` command in Privileged EXEC mode.

Syntax

clear cdp counters [global | interface-id]

Parameters

- `global`—Clear only the global counters.
- `interface-id`—Specifies the interface identifier of the counters that should be cleared.

Command Mode

Privileged EXEC mode

User Guidelines

Use the command `clear cdp counters` without parameters to clear all the counters.

Use the `clear cdp counters global` command to clear only the global counters.

Use the `clear cdp counters interface-id` command to clear the counters of the given interface.

Example

Example 1. The example clears all the CDP counters:

```
switchxxxxxx# clear cdp counters
```

Example 2. The example clears the CDP global counters.

```
switchxxxxxx# clear cdp counters global
```

Example 3. The example clears the CDP counters of Ethernet port gi1/0/1:

```
switchxxxxxx# clear cdp counters interface gi1/0/1
```
clear cdp table

To delete the CDP Cache tables, use the **clear cdp table** command in Privileged EXEC mode.

Syntax
clear cdp table

Command Mode
Privileged EXEC mode

Example The example deletes all entries from the CDP Cache tables:

```
switchxxxxxx# clear cdp table
```
show cdp

To display the interval between advertisements, the number of seconds the advertisements are valid and version of the advertisements, use the `show cdp` Privileged EXEC mode command in Privileged EXEC mode.

Syntax

```
show cdp
```

Command Mode

Privileged EXEC mode

Example

```
switchxxxxx# show cdp
Global CDP information:
  cdp is globally enabled
  cdp log duplex mismatch is globally enabled
  cdp log voice VLAN mismatch is globally enabled
  cdp log native VLAN mismatch is globally disabled
Mandatory TLVs are
  Device-ID TLV (0x0001)
  Address TLV (0x0002)
  Port-ID TLV (0x0003)
  Capabilities TLV (0x0004)
  Version TLV (0x0005)
  Platform TLV (0x0006)
Sending CDPv2 advertisements is enabled
Sending Appliance TLV is enabled
Device ID format is Serial Number
Sending CDP packets every 60 seconds
Sending a holdtime value of 180 seconds
```
show cdp entry

To display information about specific neighbors, use the `show cdp entry` command in Privileged EXEC mode.

Syntax

```
show cdp entry { * | device-name } [ protocol | version ]
```

Parameters

- `*`—Specifies all neighbors
- `device-name`—Specifies the name of the neighbor.
- `protocol`—Limits the display to information about the protocols enabled on neighbors.
- `version`—Limits the display to information about the version of software running on the neighbors.

Default Configuration

Version

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show cdp entry
device.cisco.com
Device ID: device.cisco.com
Advertisement version: 2
Entry address(es):
    IP address: 192.168.68.18
    CLNS address: 490001.1111.1111.1111.00
    DECnet address: 10.1
Platform: cisco 4500, Capabilities: Router
Interface: gi1/0/1, Port ID (outgoing port): Ethernet0
Holdtime: 125 sec
Version:
Cisco Internetwork Operating System Software
IOS (tm) 4500 Software (C4500-J-M), Version 11.1(10.4), MAINTENANCE INTERIM SOFTWARE
Copyright (c) 1986-1997 by cisco Systems, Inc.
Compiled Mon 07-Apr-97 19:51 by dschwart
switchxxxxxx# show cdp entry protocol
Protocol information for device.cisco.com:
    IP address: 192.168.68.18
    CLNS address: 490001.1111.1111.1111.00
    DECnet address: 10.1
switchxxxxxx# show cdp entry version
Version information for device.cisco.com:
Cisco Internetwork Operating System Software
IOS (tm) 4500 Software (C4500-J-M), Version 11.1(10.4), MAINTENANCE INTERIM SOFTWARE
Copyright (c) 1986-1997 by cisco Systems, Inc.
Compiled Mon 07-Apr-97 19:51 by dschwart
```
show cdp interface

To display information about ports on which CDP is enabled, use the `show cdp interface` command in Privileged EXEC mode.

Syntax

`show cdp interface interface-id`

Parameters

`interface-id`—Port ID.

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show cdp interface gi1/0/1
CDP is globally enabled
CDP log duplex mismatch
   Globally is enabled
   Per interface is enabled
CDP log voice VLAN mismatch
   Globally is enabled
   Per interface is enabled
CDP log native VLAN mismatch
   Globally is disabled
   Per interface is enabled
gi1/0/1 is Down, CDP is enabled
Sending CDP packets every 60 seconds
Holdtime is 180 seconds
```
show cdp neighbors

To display information about neighbors kept in the main or secondary cache, use the show cdp neighbors command in Privileged EXEC mode.

Syntax

show cdp neighbors [interface-id] [detail | secondary]

Parameters

- **interface-id** — Displays the neighbors attached to this port.
- **detail** — Displays detailed information about a neighbor (or neighbors) from the main cache including network address, enabled protocols, hold time, and software version.
- **secondary** — Displays information about neighbors from the secondary cache.

Default Configuration

If an interface ID is not specified, the command displays information for the neighbors of all ports.

If **detail** or **secondary** are not specified, the default is **secondary**.

Command Mode

Privileged EXEC mode

Example

switchxxxxxx# show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - VoIP Phone,
M - Remotely-Managed Device, C - CAST Phone Port, W - Two-Port MAC Relay

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - VoIP Phone,
M - Remotely-Managed Device, C - CAST Phone Port, W - Two-Port MAC Relay

<table>
<thead>
<tr>
<th>Device ID</th>
<th>Local Interface</th>
<th>Adv Time</th>
<th>Capability</th>
<th>Platform</th>
<th>Port ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTK-SW-A-86.company gi48 2 147 S I Company gi3/39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESW-520-8P gi48 2 153 S I ESW-520-8P g1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESW-540-8P gi48 2 146 S I ESW-540-8P g9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003106131611 gi48 2 137 S I Company fa2/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001828100211 gi48 2 173 S I Company fa2/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c47d4fed9302 gi48 2 137 S I Company fa2/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

switchxxxxxx# show cdp neighbors detail

Device ID: lab-7206
Advertisement version: 2
Entry address(es):
 IP address: 172.19.169.83
Platform: company x5660, Capabilities: Router
Interface: Ethernet0, Port ID (outgoing port): gi1/0/0
Time To Live : 123 sec
Version:
Company Network Operating System Software
NOS (tm) x5660 Software (D5660-I-N), Version 18.1(10.4), MAINTENANCE INTERIM SOFTWARE
Copyright (c) 1986-1997 by company Systems, Inc.
Compiled Mon 07-Apr-97 19:51 by xxdeeert
Duplex: half

Device ID: lab-as5300-1
Entry address(es):
 IP address: 172.19.169.87
Platform: company TD6780, Capabilities: Router
Device ID: SEP000427D400ED
Advertisement version: 2
Entry address(es):
 IP address: 1.6.1.81
Platform: Company IP Phone x8810, Capabilities: Host
Interface: gi1/0/1, Port ID (outgoing port): Port 1
Time To Live: 150 sec
Version:
P00303020204
Duplex: full
sysName: a-switch
Power drawn: 6.300 Watts
switchxxxxxxx# show cdp neighbors secondary
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone,M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Local Interface gi1/0/1, MAC Address: 00:00:01:23:86:9c
TimeToLive: 157
Capabilities: R S
VLAN-ID: 10
Platform: 206VXRYC
Local Interface gi1/0/1, MAC Address: 00:00:01:53:86:9c
TimeToLive: 163
Capabilities: R S
VLAN-ID: 10
Platform: ABCD-VSD
Power Available TLV: Request-ID is 1
 Power management-ID is 1;
 Available-Power is 15.4;
 Management-Power-Level is 0xFFFFFFFF
Local Interface gi1/0/2, MAC Address: 00:00:01:2b:86:9c
TimeToLive: 140
Capabilities: R S
VLAN-ID: 1210
Platform: QACSZ
4-wire Power-via-MDI (UPOE) TLV:
 4-pair PoE Supported: Yes
 Spare pair Detection/Classification required: Yes
 PD Spare Pair Desired State: Disabled
 PSE Spare Pair Operational State: Disabled
Request-ID is 1 Power management-ID is 1;
 Available-Power is 15.4;
 Management-Power-Level is 0xFFFFFFFF
Local Interface gi1/0/2, MAC Address: 00:00:01:2c:86:9c
TimeToLive: 132
Capabilities: T
VLAN-ID: 1005
Platform: CAT-3000

Field Definitions:

• **Advertisement version**—The version of CDP being used for CDP advertisements.

• **Capabilities**—The device type of the neighbor. This device can be a router, a bridge, a transparent bridge, a source-routing bridge, a switch, a host, an IGMP device, or a repeater.

• **COS for Untrusted Ports**—The COS value with which all packets received on an untrusted port should be marked by a simple switching device which cannot itself classify individual packets.

• **Device ID**—The name of the neighbor device and either the MAC address or the serial number of this device.

• **Duplex**—The duplex state of connection between the current device and the neighbor device.

• **Entry address(es)**—A list of network addresses of neighbor devices.

• **Extended Trust**—The Extended Trust.

• **External Port-ID**—Identifies the physical connector port on which the CDP packet is transmitted. It is used in devices, such as those with optical ports, in which signals from multiple hardware interfaces are multiplexed through a single physical port. It contains the name of the external physical port through which the multiplexed signal is transmitted.

• **Interface**—The protocol and port number of the port on the current device.

• **IP Network Prefix**—It is used by On Demand Routing (ODR). When transmitted by a hub router, it is a default route (an IP address). When transmitted by a stub router, it is a list of network prefixes of stub networks to which the sending stub router can forward IP packets.

• **Management Address**—When present, it contains a list of all the addresses at which the device will accept SNMP messages, including those it will only accept when received on interface(s) other than the one over which the CDP packet is being sent.

• **MTU**—The MTU of the interface via which the CDP packet is sent.

• **Native VLAN**—The ID number of the VLAN on the neighbor device.

• **Physical Location**—A character string indicating the physical location of a connector which is on, or physically connected to, the interface over which the CDP packet containing this TLV is sent.

• **Platform**—The product name and number of the neighbor device. In the case of the Secondary Cache only the 8 last characters of the value are printed.

• **Power Available**—Every switch interface transmits information in the Power Available TLV, which permits a device which needs power to negotiate and select an appropriate power setting. The Power Available TLV includes four fields.

• **Power Consumption**—The maximum amount of power, in milliwatts, expected to be obtained and consumed from the interface over which the CDP packet is sent.

• **Power Drawn**—The maximum requested power.

Note: For IP Phones the value shown is the maximum requested power (6.3 Watts). This value can be different than the actual power supplied by the routing device (generally 5 watts; shown using the show power command).
- **Protocol-Hello**—Specifies that a particular protocol has asked CDP to piggyback its "hello" messages within transmitted CDP packets.

- **Remote Port_ID**—Identifies the port the CDP packet is sent on.

- **sysName**—An ASCII string containing the same value as the sending device's sysName MIB object.

- **sysObjectId**—The OBJECT-IDENTIFIER value of the sending device's sysObjectID MIB object.

- **Time To Live**—The remaining amount of time, in seconds, the current device will hold the CDP advertisement from a transmitting router before discarding it.

- **Version**—The software version running on the neighbor device.

- **Voice VLAN-ID**—The Voice VLAN-ID.

- **VTP Management Domain**—A string that is the name of the collective group of VLANs associated with the neighbor device.
show cdp tlv

To display information about TLVs sent by CDP on all ports or on a specific port, use the `show cdp tlv` command in Privileged EXEC mode.

Syntax

```
show cdp tlv [interface-id]
```

Parameters

`interface-id`—Port ID.

Default Configuration

TLVs for all ports.

Command Mode

Privileged EXEC mode

User Guidelines

You can use the `show cdp tlv` command to verify the TLVs configured to be sent in CDP packets. The `show cdp tlv` command displays information for a single port if specified or for all ports if not specified. Information for a port is displayed if only CDP is really running on the port, i.e., CDP is enabled globally and on the port, which is UP.

Example 1 - In this example, CDP is disabled and no information is displayed.

```
switchxxxxxx# show cdp tlv
cdp globally is disabled
```

Example 2 - In this example, CDP is globally enabled but disabled on the port and no information is displayed.

```
switchxxxxxx# show cdp tlv gi1/0/2
cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi1/0/2
    CDP is disabled on gi1/0/2
```

Example 3 - In this example, CDP is globally enabled and enabled on the port, but the port is down and no information is displayed.

```
switchxxxxxx# show cdp tlv interface gi1/0/2
cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi1/0/3
    CDP is enabled on gi1/0/3
    Ethernet gi1/0/3 is down
```
Example 4 - In this example, CDP is globally enabled, and no ports are specified, so information is displayed for all ports on which CDP is enabled who are up.

switchxxxxxxx# show cdp tlv interface
cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, R - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi1/0/1
CDP is enabled
Ethernet gi1/0/1 is up,
Device ID TLV: type is MAC address; Value is 00:11:22:22:33:33:44:44
Address TLV: IPv4: 1.2.2.2 IPv6:
Port_ID TLV: gi1/0/1
Capabilities: S, I
Version TLV: 1 and 2
Platform TLV: VSD Ardd
Native VLAN TLV: 1
Full/Half Duplex TLV: full-duplex
Appliance VLAN_ID TLV: Appliance-ID is 1; VLAN-ID is 100
COS for Untrusted Ports TLV: 1
sysName: a-switch
4-wire Power-via-MDI (UPOE) TLV:
 4-pair PoE Supported: No
Power Available TLV: Request-ID is 1 Power management-ID is 1;
 Available-Power is 15.4;
 Management-Power-Level is 0xFFFFFFFF

Interface TLV: gi1/0/2
CDP is disabled on gi1/0/2
Interface TLV: gi1/0/3
CDP is enabled on gi1/0/3
Ethernet gi1/0/3 is down

Example 5 - In this example, CDP is globally enabled and enabled on the PSE PoE port, which is up and information is displayed.

switchxxxxxxx# show cdp tlv interface gi1/0/1
cdp globally is enabled
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater,
P - VoIP Phone, M - Remotely-Managed Device,
C - CAST Phone Port, W - Two-Port MAC Relay
Interface TLV: gi1/0/1
CDP is enabled
Ethernet gi1/0/1 is up,
Device ID TLV: type is MAC address; Value is 00:11:22:22:33:33:44:44
Address TLV: IPv4: 1.2.2.2 IPv6:
Port_ID TLV: gi1/0/1
Capabilities: S, I
Version TLV: 1 and 2
Platform TLV: VSD Ardd
Native VLAN TLV: 1
Full/Half Duplex TLV: full-duplex
Appliance VLAN_ID TLV: Appliance-ID is 1; VLAN-ID is 100
COS for Untrusted Ports TLV: 1
sysName: a-switch
Power Available TLV: Request-ID is 1 Power management-ID is 1;
 Available-Power is 15.4;
 Management-Power-Level is 0xFFFFFFFF

4-wire Power-via-MDI (UPOE) TLV:
 4-pair PoE Supported: Yes
 Spare pair Detection/Classification required: Yes
 PD Spare Pair Desired State: Disabled
PSE Spare Pair Operational State: Disabled
Request-ID is 1 Power management-ID is 1;
 Available-Power is 15.4;
 Management-Power-Level is 0xFFFFFFFF

show cdp tlv
show cdp traffic

To display the CDP counters, including the number of packets sent and received and checksum errors, use the `show cdp traffic` command in Privileged EXEC mode.

Syntax

```
show cdp traffic [global | interface-id]
```

Parameters

- **global**—Display only the global counters
- **interface-id**—Port for which counters should be displayed.

Command Mode

Privileged EXEC mode

User Guidelines

Use the command `show cdp traffic` without parameters to display all the counters.

Use the `show cdp traffic global` to display only the global counters.

Use the `show cdp traffic interface-id` command to display the counters of the given port.

Example

```
switchxxxxxx# show cdp traffic
CDP Global counters:
  Total packets output: 81684,  Input: 81790
  Hdr syntax: 0, Chksum error: 0, Invalid packet: 0
  No memory in main cache: 0, in secondary cache: 0
  CDP version 1 advertisements output: 100,  Input 0
  CDP version 2 advertisements output: 81784,  Input 0

  gi1/0/1
  Total packets output: 81684,  Input: 81790
  Hdr syntax: 0, Chksum error: 0, Invalid packet: 0
  No memory in main cache: 0, in secondary cache: 0
  CDP version 1 advertisements output: 100,  Input 0
  CDP version 2 advertisements output: 81784,  Input 0

  gi1/0/2
  Total packets output: 81684,  Input: 81790
  Hdr syntax: 0, Chksum error: 0, Invalid packet: 0
  No memory in main cache: 0, in secondary cache: 0
  CDP version 1 advertisements output: 100,  Input 0
  CDP version 2 advertisements output: 81784,  Input 0
```

Field Definition:

- **Total packets output**—The number of CDP advertisements sent by the local device. Note that this value is the sum of the CDP Version 1 advertisements output and CDP Version 2 advertisements output fields.

- **Input**—The number of CDP advertisements received by the local device. Note that this value is the sum of the CDP Version 1 advertisements input and CDP Version 2 advertisements input fields.
- **Hdr syntax**—The number of CDP advertisements with bad headers, received by the local device.

- **Chksum error**—The number of times the checksum (verifying) operation failed on incoming CDP advertisements.

- **No memory**—The number of times the local device did not have enough memory to store the CDP advertisements in the advertisement cache table when the device was attempting to assemble advertisement packets for transmission and parse them when receiving them.

- **Invalid**—The number of invalid CDP advertisements received.

- **CDP version 1 advertisements output**—The number of CDP Version 1 advertisements sent by the local device.

- **CDP version 1 advertisements Input**—The number of CDP Version 1 advertisements received by the local device.

- **CDP version 2 advertisements output**—The number of CDP Version 2 advertisements sent by the local device.

- **CDP version 2 advertisements Input**—The number of CDP Version 2 advertisements received by the local device.
Clock Commands

This chapter contains the following sections:

- absolute, on page 246
- clock dhcp timezone, on page 247
- clock set, on page 248
- clock source, on page 249
- clock summer-time, on page 250
- clock timezone, on page 252
- periodic, on page 253
- snntp anycast client enable, on page 254
- snntp authenticate, on page 255
- snntp authentication-key, on page 256
- snntp broadcast client enable, on page 257
- snntp client enable, on page 258
- snntp client enable (interface), on page 259
- snntp server, on page 260
- snntp source-interface, on page 262
- snntp source-interface-ipv6, on page 263
- snntp trusted-key, on page 264
- snntp unicast client enable, on page 265
- snntp unicast client poll, on page 266
- show clock, on page 267
- show snntp configuration, on page 269
- show snntp status, on page 270
- show time-range, on page 272
- time-range, on page 273
absolute

To specify an absolute time when a time range is in effect, use the `absolute` command in Time-range Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
absolute start hh:mm day month year
no absolute start
absolute end hh:mm day month year
no absolute end
```

Parameters

- **start**—Absolute time and date that the permit or deny statement of the associated function going into effect. If no start time and date are specified, the function is in effect immediately.
- **end**—Absolute time and date that the permit or deny statement of the associated function is no longer in effect. If no end time and date are specified, the function is in effect indefinitely.
- **hh:mm**—Time in hours (military format) and minutes (Range: 0–23, mm: 0–5)
- **day**—Day (by date) in the month. (Range: 1–31)
- **month**—Month (first three letters by name). (Range: Jan..Dec)
- **year**—Year (no abbreviation) (Range: 2000–2097)

Default Configuration

There is no absolute time when the time range is in effect.

Command Mode

Time-range Configuration mode

Example

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# absolute start 12:00 1 jan 2005
switchxxxxxx(config-time-range)# absolute end 12:00 31 dec 2005
```
clock dhcp timezone

To specify that the timezone and the Summer Time (Daylight Saving Time) of the system can be taken from the DHCP Timezone option, use the `clock dhcp timezone` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
clock dhcp timezone
no clock dhcp timezone
```

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

The Time Zone taken from the DHCP server has precedence over the static Time Zone.
The Summer Time taken from the DHCP server has precedence over static Summer Time.
The Time Zone and Summer Time remain effective after the IP address lease time has expired.
The Time Zone and Summer Time that are taken from the DHCP server are cleared after reboot.
The `no` form of the command clears the dynamic Time Zone and Summer Time from the DHCP server are cleared.

In case of multiple DHCP-enabled interfaces, the following precedence is applied: Disabling the DHCP client from where the DHCP-TimeZone option was taken, clears the dynamic Time Zone and Summer Time configuration.

- information received from DHCPv6 precedes information received from DHCPv4.
- information received from DHCP client running on lower interface precedes information received from DHCP client running on higher interface.

Example

```
switchxxxxxx(config)# clock dhcp timezone
```
clock set

To set the system clock manually, use the `clock set` command in Privileged EXEC mode.

Syntax

```
clock set hh:mm:ss {[day month] | [month day]} year
```

Parameters

- `hh:mm:ss` — Specifies the current time in hours (military format), minutes, and seconds. (Range: hh: 0-23, mm: 0-59, ss: 0-59)
- `day` — Specifies the current day of the month. (Range: 1-31)
- `month` — Specifies the current month using the first three letters of the month name. (Range: Jan–Dec)
- `year` — Specifies the current year. (Range: 2000–2037)

Default Configuration

The time of the image creation.

Command Mode

Privileged EXEC mode

User Guidelines

After boot the system clock is set to the time of the image creation.

Example

The following example sets the system time to 13:32:00 on March 7th, 2005.

```
switchxxxxxx# clock set 13:32:00 7 Mar 2005
```
clock source

To configure an external time source for the system clock, use the \texttt{clock source} command in Global Configuration mode. To disable the external time source, use the \texttt{no} form of this command.

\textbf{Syntax}

\begin{verbatim}
 \texttt{clock source \{sntp | browser\}}
 \texttt{no clock source \{sntp | browser\}}
\end{verbatim}

\textbf{Parameters}

- \texttt{sntp}—(Optional) Specifies that an SNTP server is the external clock source.
- \texttt{browser}—(Optional) Specifies that if the system clock is not already set (either manually or by SNTP) and a user login to the device using a WEB browser (either via HTTP or HTTPS), the system clock will be set according to the browser's time information.

\textbf{Default Configuration}

SNTP

\textbf{Command Mode}

Global Configuration mode

\textbf{User Guidelines}

After boot the system clock is set to the time of the image creation.

If no parameter is specified, SNTP will be configured as the time source.

if the command is executed twice, each time with a different clock source, both sources will be operational, SNTP has higher priority than time from browser.

\textbf{Example}

The following example configures an SNTP server as an external time source for the system clock.

\begin{verbatim}
switchxxxxxx(config)# clock source sntp
switchxxxxxx(config)# clock source browser
switchxxxxxx(config)# exit
switchxxxxxx# show clock
*10:46:48 UTC May 28 2013
Time source is sntp
Time from Browser is enabled
\end{verbatim}
clock summer-time

To configure the system to automatically switch to summer time (Daylight Saving Time), use the `clock summer-time` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
clock summer-time zone recurring {usa | eu | {week day month hh:mm week day month hh:mm}} [offset]
clock summer-time zone date day month year hh:mm date month year hh:mm [offset]
clock summer-time zone date month day year hh:mm month day year hh:mm [offset]
no clock summer-time
```

Parameters

- `zone`—The acronym of the time zone. (Range: 1-4 characters). Only letters can be included in the acronym.
- `recurring`—Indicates that summer time starts and ends on the corresponding specified days every year.
- `date`—Indicates that summer time starts on the first date listed in the command and ends on the second date in the command.
- `usa`—The summer time rules are the United States rules.
- `eu`—The summer time rules are the European Union rules.
- `week`—Week of the month. Can be 1-5, first to last.
- `day`—Day of the week (first three characters by name, such as Sun).
- `date`—Date of the month. (Range: 1-31)
- `month`—Month (first three characters by name, such as Feb).
- `year`—Year (no abbreviation). (Range: 2000-2097)
- `hh:mm`—Time (military format) in hours and minutes. (Range: hh:mmhh:0-23, mm: 0-59)
- `offset`—(Optional) Number of minutes to add during summer time (default is 60). (Range: 1440)

Default Configuration

Summer time is disabled.

Command Mode

Global Configuration mode

User Guidelines

In both the `date` and `recurring` forms of the command, the first part of the command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start
time is relative to standard time. The end time is relative to summer time. If the starting month is chronologically after the ending month, the system assumes that you are in the southern hemisphere.

USA rules for Daylight Saving Time:

• **From 2007:**
 - **Start:** Second Sunday in March
 - **End:** First Sunday in November
 - **Time:** 2 AM local time

• **Before 2007:**
 - **Start:** First Sunday in April
 - **End:** Last Sunday in October
 - **Time:** 2 AM local time

EU rules for Daylight Saving Time:

• **Start:** Last Sunday in March
• **End:** Last Sunday in October
 - **Time:** 1.00 am (01:00) Greenwich Mean Time (GMT)

Example

```
switchxxxxxx(config)# clock summer-time abc date apr 1 2010 09:00 aug 2 2010 09:00
```
clock timezone

To set the time zone for display purposes, use the clock timezone command in Global Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

clock timezone zone hours-offset [minutes-offset]
no clock timezone

Parameters

• **zone**—The acronym of the time zone. (Range: 1-4 characters). Only letters can be included in the acronym.

• **hours-offset**—Hours difference from UTC. (Range: (-12)–(+13))

• **minutes-offset**—(Optional) Minutes difference from UTC. (Range: 0–59)

Default Configuration

Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT), which is the same:

• Offsets are 0.

• Acronym is empty.

Command Mode

Global Configuration mode

User Guidelines

The system internally keeps time in UTC, so this command is used only for display purposes and when the time is manually set.

Example

```
switchxxxxxx(config)# clock timezone abc +2 minutes 32
```
periodic

To specify a recurring (weekly) time range for functions that support the time-range feature, use the periodic command in Time-range Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

periodic day-of-the-week hh:mm to day-of-the-week hh:mm
no periodic day-of-the-week hh:mm to day-of-the-week hh:mm
periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2... day-of-the-week7]
no periodic list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2... day-of-the-week7]
periodic list hh:mm to hh:mm all
no periodic list hh:mm to hh:mm all

Parameters

• day-of-the-week—The starting day that the associated time range is in effect. The second occurrence is the ending day the associated statement is in effect. The second occurrence can be the following week (see description in the User Guidelines). Possible values are: mon, tue, wed, thu, fri, sat, and sun.

• hh:mm—The first occurrence of this argument is the starting hours:minutes (military format) that the associated time range is in effect. The second occurrence is the ending hours:minutes (military format) the associated statement is in effect. The second occurrence can be at the following day (see description in the User Guidelines). (Range: 0–23, mm: 0–59)

• list day-of-the-week1—Specifies a list of days that the time range is in effect.

Default Configuration

There is no periodic time when the time range is in effect.

Command Mode

Time-range Configuration mode

User Guidelines

The second occurrence of the day can be at the following week, e.g. Thursday–Monday means that the time range is effective on Thursday, Friday, Saturday, Sunday, and Monday.

The second occurrence of the time can be on the following day, e.g. “22:00–2:00”.

Example

switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# periodic mon 12:00 to wed 12:00
sntp anycast client enable

To enable the SNTP Anycast client, use the `sntp anycast client enable` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp anycast client enable [both | ipv4 | ipv6]
```

Parameters

- **both**—(Optional) Specifies the IPv4 and IPv6 SNTP Anycast clients are enabled. If the parameter is not defined it is the default value.
- **ipv4**—(Optional) Specifies the IPv4 SNTP Anycast clients are enabled.
- **ipv6**—(Optional) Specifies the IPv6 SNTP Anycast clients are enabled.

Default Configuration

The SNTP anycast client is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use this command to enable the SNTP Anycast client.

Example

The following example enables SNTP Anycast clients.

```
switchxxxxxx(config)# sntp anycast client enable
```
sntp authenticate

To enable authentication for received SNTP traffic from servers, use the `sntp authenticate` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp authenticate
no sntp authenticate
```

Default Configuration

Authentication is disabled.

Command Mode

Global Configuration mode

Examples

The following example enables authentication for received SNTP traffic and sets the key and encryption key.

```
switchxxxxx(config)# sntp authenticate
switchxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxx(config)# sntp trusted-key 8
```
sntp authentication-key

To define an authentication key for Simple Network Time Protocol (SNTP), use the `sntp authentication-key` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

sntp authentication-key key-number md5 key-value

encrypted sntp authentication-key key-number md5 encrypted-key-value

no sntp authentication-key key-number

Parameters

- `key-number`—Specifies the key number. (Range: 1–4294967295)
- `key-value`—Specifies the key value. (Length: 1–8 characters)
- `encrypted-key-value`—Specifies the key value in encrypted format.

Default Configuration

No authentication key is defined.

Command Mode

Global Configuration mode

Examples

The following example defines the authentication key for SNTP.

switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authenticate
sntp broadcast client enable

To enable SNTP Broadcast clients, use the `sntp broadcast client enable` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp broadcast client enable [both | ipv4 | ipv6]
no sntp broadcast client enable
```

Parameters

- **both** *(Optional)* Specifies the IPv4 and IPv6 SNTP Broadcast clients are enabled. If the parameter is not defined it is the default value.
- **ipv4** *(Optional)* Specifies the IPv4 SNTP Broadcast clients are enabled.
- **ipv6** *(Optional)* Specifies the IPv6 SNTP Broadcast clients are enabled.

Default Configuration

The SNTP Broadcast client is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `sntp broadcast client enable` Interface Configuration mode command to enable the SNTP Broadcast client on a specific interface.

Example

The following example enables SNTP Broadcast clients.

```
switchxxxxxx(config)# sntp broadcast client enable
```
sntp client enable

To enable the SNTP Broadcast and Anycast client, use the `sntp client enable` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```plaintext
sntp client enable interface-id
no sntp client enable interface-id
```

Parameters

- `interface-id`—Specifies an interface ID, which can be one of the following types: Ethernet port, Port-channel or VLAN.

Default Configuration

The SNTP client is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `sntp client enable` command to enable SNTP Broadcast and Anycast clients.

Example

The following example enables the SNTP Broadcast and Anycast clients on VLAN 100:

```plaintext
switchxxxxxx(config)# sntp client enable vlan 100
```
sntp client enable (interface)

To enable the SNTP Broadcast and Anycast client on an interface, use the **sntp client enable** command in Interface Configuration mode. To restore the default configuration, use the **no** form of this command.

Syntax

```
sntp client enable
no sntp client enable
```

Default Configuration

The SNTP client is disabled on an interface.

Command Mode

Interface Configuration mode

User Guidelines

This command enables the SNTP Broadcast and Anycast client on an interface. Use the **no** form of this command to disable the SNTP client.

Example

The following example enables the SNTP broadcast and anycast client on an interface.

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# sntp client enable
switchxxxxxx(config-if)# exit
```
sntp server

To configure the device to use the SNTP to request and accept Network Time Protocol (NTP) traffic from a specified server (meaning to accept system time from an SNTP server), use the `sntp server` command in Global Configuration mode. To remove a server from the list of SNTP servers, use the `no` form of this command.

Syntax

```
sntp server {default | {ip-address | hostname} [poll] [key keyid]}
no sntp server [ip-address | hostname]
```

Parameters

- `default`—Default defined SNTP servers.
- `ip-address`—Specifies the server IP address. This can be an IPv4, IPv6 or IPv6z address.
- `hostname`—Specifies the server hostname. Only translation to IPv4 addresses is supported. (Length: 1–158 characters. Maximum label length for each part of the hostname: 63 characters)
- `poll`—(Optional) Enables polling.
- `key keyid`—(Optional) Specifies the Authentication key to use when sending packets to this peer. (Range: 1–4294967295)

Default Configuration

The following servers with polling and without authentication are defined:

- `time-a.timefreq.bldrdoc.gov`
- `time-b.timefreq.bldrdoc.gov`
- `time-c.timefreq.bldrdoc.gov`
- `pool.ntp.org`
- `time-pnp.cisco.com`

Command Mode

Global Configuration mode

User Guidelines

Use the `sntp server {ip-address | hostname} [poll] [key keyid]` command to define a SNTP server. The switch supports up to 8 SNTP servers.

Use the `sntp server default` command to return to the default configuration.

Use the `no sntp server ip-address | hostname` command to remove one SNTP server.

Use the `no sntp server` to remove all SNTP servers.
Example

The following example configures the device to accept SNTP traffic from the server on 192.1.1.1 with polling.

```plaintext
switchxxxxx(config)# sntp server 192.1.1.1 poll
```
sntp source-interface

To specify the source interface whose IPv4 address will be used as the source IPv4 address for communication with IPv4 SNTP servers, use the `sntp source-interface` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp source-interface interface-id
no sntp source-interface
```

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 SNTP server.

OOB cannot be defined as a source interface.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# sntp source-interface vlan 10
```
sntp source-interface-ipv6

To specify the source interface whose IPv6 address will be used as the Source IPv6 address for communication with IPv6 SNTP servers, use the `sntp source-interface-ipv6` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp source-interface-ipv6 interface-id
no sntp source-interface-ipv6
```

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The IPv6 source address is the IPv6 address defined of the outgoing interface and selected in accordance with RFC6724.

Command Mode

Global Configuration mode

User Guidelines

The outgoing interface is selected based on the SNTP server's IP address. If the source interface is the outgoing interface, the IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the interface and with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to communicate with an IPv6 SNTP server.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# sntp source-interface-ipv6 vlan 10
```
sntp trusted-key

To define the trusted key, use the `sntp trusted-key` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
sntp trusted-key key-number
no sntp trusted-key key-number
```

Parameters

- `key-number`—Specifies the key number of the authentication key to be trusted. (Range: 1–4294967295).

Default Configuration

No keys are trusted.

Command Mode

Global Configuration mode

User Guidelines

The trusted key is used for authentication of all servers not having personal keys assigned.

Examples

The following example authenticates key 8.

```
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authentication-key 8 md5 ClkKey
switchxxxxxx(config)# sntp trusted-key 8
switchxxxxxx(config)# sntp authenticate
```
sntp unicast client enable

To enable the device to use Simple Network Time Protocol (SNTP) Unicast clients, use the `sntp unicast client enable` command in Global Configuration mode. To disable the SNTP Unicast clients, use the `no` form of this command.

Syntax

```
sntp unicast client enable
no sntp unicast client enable
```

Default Configuration

The SNTP unicast clients are enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `sntp server` Global Configuration mode command to define SNTP servers.

Example

The following example enables the device to use SNTP Unicast clients.

```
switchxxxxx(config)# sntp unicast client enable
```
sntp unicast client poll

To enable polling for the SNTP Unicast clients, use the `sntp unicast client poll` command in Global Configuration mode. To disable the polling, use the `no` form of this command.

Syntax

```
sntp unicast client poll
no sntp unicast client poll
```

Default Configuration

Polling is enabled.

Command Mode

Global Configuration mode

User Guidelines

The polling interval is 1024 seconds.

Example

The following example enables polling for SNTP unicast clients.

```
switchxxxxxx(config)# sntp unicast client poll
```
show clock

To display the time and date from the system clock, use the show clock command in User EXEC mode.

Syntax

```
show clock [detail]
```

Parameters

- **detail**—(Optional) Displays the time zone and summer time configuration.

Command Mode

User EXEC mode

User Guidelines

The default output of the command shows the current system date and time, information on the operational source of the system time and general clock related configurations.

The detailed output of the command shows additional information about time-zone and daylight savings configuration.

The possible values for operational system time source are:

- **RTC** - Indicates that the system time was set from the Real Time Clock component. This happens if the system clock hasn’t been set by SNTP, by a user or by the browser.
- **User** - If the system clock was last set manually by a user.
- **SNTP** - if the system clock was last set by SNTP. In this case, the time since the last synchronization with the SNTP server is also displayed.
- **None** - If the clock hasn’t been set by any method since the last reboot and the system does not have an RTC component.

Example 1 - The following example displays general system time and date information.

```
switchxxxxxx# show clock
15:29:03 PDT (UTC-7) Jun 17 2019
Operational Time Source: SNTP (last synchronized 2 days, 18 hours, 29 minutes and 3 seconds ago)
Time from SNTP is enabled
Time from Browser is disabled
```

Example 2 - The following example displays the system time and date along with the time zone and daylight saving configuration.

```
switchxxxxxx# show clock detail
15:22:55 SUN Apr 23 2019
Operational Time Source: User
Time from SNTP is disabled
Time from Browser is enabled
Time zone (DHCPv4 on VLAN1):
Acronym is RAIN
Offset is UTC+2
Time zone (Static):
Offset is UTC+0
Summertime (DHCPv4 on VLAN1): Acronym is SUN
Recurring every year. Begins at first Sunday of Apr at 02:00.
Ends at first Tuesday of Sep at 02:00. Offset is 60 minutes.
Summertime (Static): Acronym is GMT
Recurring every year. Begins at first Sunday of Mar at 10:00.
Ends at first Sunday of Sep at 10:00. Offset is 60 minutes.
DHCP timezone: Enabled
show sntp configuration

To display the SNTP configuration on the device, use the `show sntp configuration` command in Privileged EXEC mode.

**Syntax**

```
show sntp configuration
```

**Command Mode**

Privileged EXEC mode

**Examples**

The following example displays the device’s current SNTP configuration.

```
switchxxxxxx# show sntp configuration
SNTP port : 123
Polling interval: 1024 seconds
MD5 Authentication Keys

 2 John123
 3 Alice456

Authentication is not required for synchronization.
No trusted keys
Unicast Clients: enabled
Unicast Clients Polling: enabled
Server: 1.1.1.121
 Polling: disabled
 Encryption Key: disabled
Server: 3001::1::1
 Polling: enabled
 Encryption Key: disabled
Server: dns_server1.comapany.com
 Polling: enabled
 Encryption Key: disabled
Server: dns_server2.comapany.com
 Polling: enabled
 Encryption Key: disabled
Broadcast Clients: enabled for IPv4 and IPv6
Anycast Clients: disabled
No Broadcast Interfaces
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
```
show sntp status

To display the SNTP servers status, use the `show sntp status` command in Privileged EXEC mode.

**Syntax**

`show sntp status`

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the SNTP servers status:

```
switchxxxxxx# show sntp status
Clock is synchronized, stratum 4, reference is 176.1.1.8, unicast
Reference time is afe2525e.70597b34 (00:10:22.438 PDT Jul 5 1993)
Unicast servers:
Server: 176.1.1.8
 Source: DHCPv4 on VLAN 1
 Status: Up
 Stratum Level: 1
 Offset: 7.33mSec
 Delay: 117.79mSec
Server: dns_server.comapany.com
 Source: static
 Status: Unknown
 Last response: 12:17.17.987 PDT Feb 19 2015
 Stratum Level: 1
 Offset: 8.98mSec
 Delay: 189.19mSec
Server: 3001:1:1::1
 Source: DHCPv6 on VLAN 2
 Status: Unknown
 Last response:
 Last request:
 Offset: mSec
 Delay: mSec
Server: dns1.company.com
 Source: DHCPv6 on VLAN 20
 Status: Unknown
 Last response:
 Last request:
 Offset: mSec
 Delay: mSec
Anycast servers:
Server: 176.1.11.8
 Interface: VLAN 112
 Status: Up
 Last request: 9:53:21.689 PDT Feb 19 2005
 Stratum Level: 10
 Offset: 9.98mSec
 Delay: 289.19mSec
Broadcast servers:
```
Server: 3001:1::12
Interface: VLAN 101
Last request: 9:53:21.689 PDT Feb 19 2005
Stratum Level: 255
show time-range

To display the time range configuration, use the **show time-range** command in User EXEC mode.

**Syntax**

```
show time-range time-range-name
```

**Parameters**

- **time-range-name**—Specifies the name of an existing time range.

**Command Mode**

User EXEC mode

**Example**

```
switchxxxxxx# show time-range
http-allowed

absolute start 12:00 1 Jan 2005 end 12:00 31 Dec 2005
periodic Monday 12:00 to Wednesday 12:00
```
time-range

To define time ranges and to enter to Time-range Configuration mode, use the **time-range** command to define time ranges and to enter to Time-range Configuration mode in Global Configuration mode. To restore the default configuration, use the **no** form of this command.

**Syntax**

```
time-range time-range-name
no time-range time-range-name
```

**Parameters**

- **time-range-name**—Specifies the name for the time range. (Range: 1–32 characters).

**Default Configuration**

No time range is defined

**Command Mode**

Global Configuration mode

**User Guidelines**

After entering to Time-range Configuration mode with this command, use the **absolute** and **periodic** commands to actually configure the time-range. Multiple **periodic** commands are allowed in a time range. Only one **absolute** command is allowed.

If a **time-range** command has both absolute and periodic values specified, then the periodic items are evaluated only after the absolute start time is reached, and are not evaluated again after the absolute end time is reached.

All time specifications are interpreted as local time.

To ensure that the time range entries take effect at the desired times, the software clock should be set by the user or by SNTP. If the software clock is not set by the user or by SNTP, the time range is not activated.

**Example**

```
switchxxxxxx(config)# time-range http-allowed
switchxxxxxx(config-time-range)# periodic mon 12:00 to wed 12:00
```
time-range
DoS Commands

This chapter contains the following sections:

- security-suite deny fragmented, on page 276
- security-suite deny icmp, on page 277
- security-suite deny martian-addresses, on page 278
- security-suite deny syn, on page 280
- security-suite deny syn-fin, on page 281
- security-suite dos protect, on page 282
- security-suite dos syn-attack, on page 283
- security-suite enable, on page 284
- security-suite syn protection mode, on page 286
- security-suite syn protection recovery, on page 287
- security-suite syn protection threshold, on page 288
- show security-suite configuration, on page 289
- show security-suite syn protection, on page 290
security-suite deny fragmented

To discard IP fragmented packets from a specific interface, use the `security-suite deny fragmented` Interface (Ethernet, Port Channel) Configuration mode command.

To permit IP fragmented packets, use the `no` form of this command.

**Syntax**

```
security-suite deny fragmented [{add ip-address | any} {mask | /prefix-length}] | {remove ip-address | any} {mask | /prefix-length]}
```

```
no security-suite deny fragmented
```

**Parameters**

- `add ip-address | any`—Specifies the destination IP address. Use `any` to specify all IP addresses.
- `mask`—Specifies the network mask of the IP address.
- `prefix-length`—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (`/`).

**Default Configuration**

Fragmented packets are allowed from all interfaces.

If `mask` is unspecified, the default is 255.255.255.255.

If `prefix-length` is unspecified, the default is 32.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

For this command to work, `show security-suite configuration, on page 289` must be enabled both globally and for interfaces.

**Example**

The following example attempts to discard IP fragmented packets from an interface.

```
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# security-suite deny fragmented add any /32
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.
security-suite deny icmp

To discard ICMP echo requests from a specific interface (to prevent attackers from knowing that the device is on the network), use the **security-suite deny icmp** Interface (Ethernet, Port Channel) Configuration mode command.

To permit echo requests, use the **no** form of this command.

**Syntax**

```
security-suite deny icmp
[<add> {ip-address | any} {mask | /prefix-length}] |
[<remove> {ip-address | any} {mask | /prefix-length}]]
```

**Parameters**

- **ip-address | any**—Specifies the destination IP address. Use **any** to specify all IP addresses.
- **mask**—Specifies the network mask of the IP address.
- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/).

**Default Configuration**

Echo requests are allowed from all interfaces.

If **mask** is not specified, it defaults to 255.255.255.255.

If **prefix-length** is not specified, it defaults to 32.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

For this command to work, **show security-suite configuration, on page 289** must be enabled both globally and for interfaces.

This command discards ICMP packets with "ICMP type= Echo request" that ingress the specified interface.

**Example**

The following example attempts to discard echo requests from an interface.

```
switchxxxxx(config)# security-suite enable global-rules-only
switchxxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# security-suite deny icmp add any /32
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.
security-suite deny martian-addresses

To deny packets containing system-reserved IP addresses or user-defined IP addresses, use the `security-suite deny martian-addresses` Global Configuration mode command.

To restore the default, use the `no` form of this command.

**Syntax**

```
security-suite deny martian-addresses [add {ip-address {mask | /prefix-length}}] | remove {ip-address {mask | /prefix-length}}] (Add/remove user-specified IP addresses)

security-suite deny martian-addresses reserved [add] | remove] (Add/remove system-reserved IP addresses, see tables below)

no security-suite deny martian-addresses (This command removes addresses reserved by `security-suite deny martian-addresses` and removes all entries added by the user. The user can remove a specific entry by using `remove ip-address {mask | /prefix-length}` parameter.

There is no `no` form of the `security-suite deny martian-addresses reserved [add] | remove]` command. Use instead the `security-suite deny martian-addresses reserved remove` command to remove protection (and free up hardware resources).

Parameters

- `reserved add/remove`—Add or remove the table of reserved addresses below.
- `ip-address`—Adds/discards packets with the specified IP source or destination address.
- `mask`—Specifies the network mask of the IP address.
- `prefix-length`—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/).
- `reserved`—Discards packets with the source or destination IP address in the block of the reserved (Martian) IP addresses. See the User Guidelines for a list of reserved addresses.

Default Configuration

Martian addresses are allowed.

Command Mode

Global Configuration mode

User Guidelines

For this command to work, `show security-suite configuration, on page 289` must be enabled globally.

`security-suite deny martian-addresses reserved` adds or removes the addresses in the following table:
<table>
<thead>
<tr>
<th>Address Block</th>
<th>Present Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/8 (except when 0.0.0.0/32 is the source address)</td>
<td>Addresses in this block refer to source hosts on "this" network.</td>
</tr>
<tr>
<td>127.0.0.0/8</td>
<td>This block is assigned for use as the Internet host loopback address.</td>
</tr>
<tr>
<td>192.0.2.0/24</td>
<td>This block is assigned as "TEST-NET" for use in documentation and example code.</td>
</tr>
<tr>
<td>224.0.0.0/4 as source</td>
<td>This block, formerly known as the Class D address space, is allocated for use in IPv4 multicast address assignments.</td>
</tr>
<tr>
<td>240.0.0.0/4 (except when 255.255.255.255/32 is the destination address)</td>
<td>This block, formerly known as the Class E address space, is reserved.</td>
</tr>
</tbody>
</table>

Note

If the reserved addresses are included, individual reserved addresses cannot be removed.

Example

The following example discards all packets with a source or destination address in the block of the reserved IP addresses.

```
switchxxxxxx(config)# security-suite deny martian-addresses reserved add
```
security-suite deny syn

To block the creation of TCP connections from a specific interface, use the `security-suite deny syn` Interface (Ethernet, Port Channel) Configuration mode command. This a complete block of these connections.

To permit creation of TCP connections, use the `no` form of this command.

Syntax

```
security-suite deny syn {[add {tcp-port | any} /ip-address | any] /mask | /prefix-length] | [remove {tcp-port | any} /ip-address | any] /mask | /prefix-length]}
```

```
no security-suite deny syn
```

Parameters

- **ip-address | any** — Specifies the destination IP address. Use `any` to specify all IP addresses.
- **mask** — Specifies the network mask of the destination IP address.
- **prefix-length** — Specifies the number of bits that comprise the destination IP address prefix. The prefix length must be preceded by a forward slash (/).
- **tcp-port | any** — Specifies the destination TCP port. The possible values are: `http`, `ftp-control`, `ftp-data`, `ssh`, `telnet`, `smtp`, or `port number`. Use `any` to specify all ports.

Default Configuration

Creation of TCP connections is allowed from all interfaces.

If the `mask` is not specified, it defaults to 255.255.255.255.

If the `prefix-length` is not specified, it defaults to 32.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

For this command to work, `show security-suite configuration`, on page 289 must be enabled both globally and for interfaces.

The blocking of TCP connection creation from an interface is done by discarding ingress TCP packets with "SYN=1", "ACK=0" and "FIN=0" for the specified destination IP addresses and destination TCP ports.

Example

The following example attempts to block the creation of TCP connections from an interface. It fails because security suite is enabled globally and not per interface.

```
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# security-suite deny syn add any /32 any
```

To perform this command, DoS Prevention must be enabled in the per-interface mode.
security-suite deny syn-fin

To drop all ingressing TCP packets in which both SYN and FIN are set, use the `security-suite deny syn-fin` Global Configuration mode command.

To permit TCP packets in which both SYN and FIN are set, use the `no` form of this command.

Syntax

```
security-suite deny syn-fin
no security-suite deny syn-fin
```

Parameters

This command has no arguments or keywords.

Default Configuration

The feature is enabled by default.

Command Mode

Global Configuration mode

Example

The following example blocks TCP packets in which both SYN and FIN flags are set.

```
switchxxxxxx(config)# security-suite deny syn-fin
```
security-suite dos protect

To protect the system from specific well-known Denial of Service (DoS) attacks, use the `security-suite dos protect` Global Configuration mode command. There are three types of attacks against which protection can be supplied (see parameters below).

To disable DoS protection, use the `no` form of this command.

Syntax

```
security-suite dos protect {add attack | remove attack}
no security-suite dos protect
```

Parameters

- **add/remove attack**—Specifies the attack type to add/remove. To add an attack is to provide protection against it; to remove the attack is to remove protection.

The possible attack types are:

- **stacheldraht**—Discards TCP packets with source TCP port 16660.
- **invasor-trojan**—Discards TCP packets with destination TCP port 2140 and source TCP port 1024.
- **back-orifice-trojan**—Discards UDP packets with destination UDP port 31337 and source UDP port 1024.

Default Configuration

No protection is configured.

Command Mode

Global Configuration mode

User Guidelines

For this command to work, `show security-suite configuration, on page 289` must be enabled globally.

Example

The following example protects the system from the Invasor Trojan DOS attack.

```
switchxxxxxx(config)# security-suite dos protect add invasor-trojan
```
security-suite dos syn-attack

To rate limit Denial of Service (DoS) SYN attacks, use the security-suite dos syn-attack Interface Configuration mode command. This provides partial blocking of SNY packets (up to the rate that the user specifies).

To disable rate limiting, use the no form of this command.

Syntax

security-suite dos syn-attack syn-rate {any | ip-address} {mask | prefix-length}
no security-suite dos syn-attack {any | ip-address} {mask | prefix-length}

Parameters

- syn-rate—Specifies the maximum number of connections per second. (Range: 199–1000)
- any | ip-address—Specifies the destination IP address. Use any to specify all IP addresses.
- mask—Specifies the network mask of the destination IP address.
- prefix-length—Specifies the number of bits that comprise the destination IP address prefix. The prefix length must be preceded by a forward slash (/).

Default Configuration

No rate limit is configured.

If ip-address is unspecified, the default is 255.255.255.255
If prefix-length is unspecified, the default is 32.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

For this command to work, show security-suite configuration, on page 289 must be enabled both globally and for interfaces. This command rate limits ingress TCP packets with "SYN=1", "ACK=0" and "FIN=0" for the specified destination IP addresses. SYN attack rate limiting is implemented after the security suite rules are applied to the packets. The ACL and QoS rules are not applied to those packets. Since the hardware rate limiting counts bytes, it is assumed that the size of “SYN” packets is short.

Example

The following example attempts to rate limit DoS SYN attacks on a port. It fails because security suite is enabled globally and not per interface.

switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10

To perform this command, DoS Prevention must be enabled in the per-interface mode.

Cisco Business Switches 350 Series CLI Guide
security-suite enable

To enable the security suite feature and setting, use the `security-suite enable` Global Configuration mode command. The security suite feature supports protection against various types of attacks. To restore the default configuration, use the `no` form of this command.

Syntax

```
security-suite enable [global-rules-only | interface-rules-only]
no security-suite enable
```

Parameters

- **global-rules-only**—(Optional) Specifies that device will support only global level (and not interface level) security suite commands. This setting saves space in the Ternary Content Addressable Memory (TCAM). If this keyword is not used, security-suite commands can be used both globally on per-interface.
- **interface-rules-only**—(Optional) Specifies that device will support only interface level security suite command (See details in user guidelines below). This mode cannot be enabled if an ACL is applied to any interface on device.
- **(none)** - If no keyword is used, security-suite commands can be used both globally and per-interface. This mode cannot be enabled if an ACL is applied to any interface on device.

Default Configuration

The security suite feature is disabled.

If neither `global-rules-only` or `interface-rules-only` are specified, the default is to enable security-suite globally and per interfaces.

Command Mode

Global Configuration mode

User Guidelines

Use this command to enable the ability to define security suite settings, and to determine the type of settings that can be enabled (only global level rules, only interface level rules or both types). When security-suite is enabled, the following commands can be used, depending on the mode set by user:

When this command is used, hardware resources are reserved. The number of resources reserved depends on the mode specified in command (global-rules-only, interface-rules-only or no mode (meaning both types)). Resources are released when the `no security-suite enable` command is entered.

MAC ACLs must be removed before the security-suite is enabled. The rules can be re-entered after the security-suite is enabled. If ACLs or policy maps are assigned on interfaces, per interface security-suite rules cannot be enabled.

Example 1—The following example enables the security suite feature and specifies that security suite commands are global commands only. When an attempt is made to configure security-suite on a port, it fails.
switchxxxxxx(config)# security-suite enable global-rules-only
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10
To perform this command, DoS Prevention must be enabled in the per-interface mode.

Example 2—The following example enables the security suite feature globally and on interfaces. The security-suite command succeeds on the port.

switchxxxxxx(config)# security-suite enable
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# security-suite dos syn-attack 199 any /10
switchxxxxxx(config-if)#
security-suite syn protection mode

To set the TCP SYN protection mode, use the `security-suite syn protection mode` Global Configuration mode command.

To set the TCP SYN protection mode to default, use the `no` form of this command.

Syntax

```
security-suite syn protection mode {disabled | report | block}
no security-suite syn protection mode
```

Parameters

- `disabled` — Feature is disabled
- `report` — Feature reports about TCP SYN traffic per port (including rate-limited SYSLOG message when an attack is identified)
- `block` — TCP SYN traffic from attacking ports destined to the local system is blocked, and a rate-limited SYSLOG message (one per minute) is generated

Default Configuration

The default mode is block.

Command Mode

Global Configuration mode

User Guidelines

On ports in which an ACL is defined (user-defined ACL etc.), this feature cannot block TCP SYN packets. In case the protection mode is block but SYN Traffic cannot be blocked, a relevant SYSLOG message will be created, e.g.: “port gi1/0/1 is under TCP SYN attack. TCP SYN traffic cannot be blocked on this port since the port is bound to an ACL.”

Example 1: The following example sets the TCP SYN protection feature to report TCP SYN attack on ports in case an attack is identified from these ports.

```
switchxxxxxx(config)# security-suite syn protection mode report
```

Example 2: The following example sets the TCP SYN protection feature to block TCP SYN attack on ports in case an attack is identified from these ports.

```
switchxxxxxx(config)# security-suite syn protection mode block
```
security-suite syn protection recovery

To set the time period for the SYN Protection feature to block an attacked interface, use the `security-suite syn protection period` Global Configuration mode command.

To set the time period to its default value, use the `no` form of this command.

Syntax

```
security-suite syn protection recovery timeout
no security-suite syn protection recovery
```

Parameters

- **timeout**—Defines the timeout (in seconds) by which an interface from which SYN packets are blocked gets unblocked. Note that if a SYN attack is still active on this interface it might become blocked again. (Range: 10-600)

Default Configuration

The default timeout is 60 seconds.

Command Mode

Global Configuration mode

User Guidelines

If the timeout is modified, the new value will be used only on interfaces which are not currently under attack.

Example

The following example sets the TCP SYN period to 100 seconds.

```
switchxxxxx(config)#  security-suite syn protection recovery 100
```
security-suite syn protection threshold

To set the threshold for the SYN protection feature, use the `security-suite syn protection threshold` Global Configuration mode command.

To set the threshold to its default value, use the `no` form of this command.

Syntax
```
security-suite syn protection threshold syn-packet-rate

no security-suite syn protection threshold
```

Parameters
- `syn-packet-rate`—defines the rate (number of packets per second) from each specific port that triggers identification of TCP SYN attack. (Range: 20-200)

Default Configuration
The default threshold is 80pps (packets per second).

Command Mode
Global Configuration mode

Example
The following example sets the TCP SYN protection threshold to 40 pps.
```
switchxxxxxx(config)# security-suite syn protection threshold 40
```
show security-suite configuration

To display the security-suite configuration, use the **show security-suite configuration** switchxxxxx> command.

Syntax

show security-suite configuration

Command Mode

User EXEC mode

Example

The following example displays the security-suite configuration.

```plaintext
switchxxxxxx# show security-suite configuration

Security suite is enabled (Per interface rules are enabled).

Denial Of Service Protect: stacheldraht, invasor-trojan, back-office-trojan.
Denial Of Service SYN-FIN Attack is enabled
Denial Of Service SYN Attack

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
<th>SYN Rate (pps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>176.16.23.0\24</td>
<td>100</td>
</tr>
</tbody>
</table>

Martian addresses filtering
Reserved addresses: enabled.
Configured addresses: 10.0.0.0/8, 192.168.0.0/16

SYN filtering

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
<th>TCP port</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/2</td>
<td>176.16.23.0\24</td>
<td>FTP</td>
</tr>
</tbody>
</table>

ICMP filtering

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/2</td>
<td>176.16.23.0\24</td>
</tr>
</tbody>
</table>

Fragmented packets filtering

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/2</td>
<td>176.16.23.0\24</td>
</tr>
</tbody>
</table>
```
show security-suite syn protection

To display the SYN Protection feature configuration and the operational status per interface-id, including the time of the last attack per interface, use the `show security-suite syn protection` switchxxxxxx> command.

Syntax

`show security-suite syn protection [interface-id]`

Parameters

- `interface-id`—(Optional) Specifies an interface-ID. The interface-ID can be one of the following types: Ethernet port or Port-Channel.

Command Mode

User EXEC mode

User Guidelines

Use the Interface-ID to display information on a specific interface.

Example

The following example displays the TCP SYN protection feature configuration and current status on all interfaces. In this example, port gi1/0/2 is attacked but since there is a user-ACL on this port, it cannot become blocked so its status is Reported and not Blocked and Reported.

```
switchxxxxxx# show security-suite syn protection
Protection Mode: Block
Threshold: 40 Packets Per Second
Period: 100 Seconds

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Current Status</th>
<th>Last Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012 Blocked and Reported</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012 Reported</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Attacked</td>
<td>19:58:22.289 PDT Feb 19 2012 Blocked and Reported</td>
</tr>
</tbody>
</table>
```
DHCP Relay Commands

This chapter contains the following sections:

- `ip dhcp relay enable (Global)`, on page 292
- `ip dhcp relay enable (Interface)`, on page 293
- `ip dhcp relay address (Global)`, on page 294
- `show ip dhcp relay`, on page 295
- `ip dhcp information option`, on page 296
- `ip dhcp information option numeric-token-format`, on page 297
- `ip dhcp information option circuit-id`, on page 298
- `ip dhcp information option remote-id`, on page 303
- `show ip dhcp information option tokens`, on page 307
- `show ip dhcp information option`, on page 310
ip dhcp relay enable (Global)

Use the **ip dhcp relay enable** Global Configuration mode command to enable the DHCP relay feature on the device. Use the **no** form of this command to disable the DHCP relay feature.

Syntax

```
ip dhcp relay enable
no ip dhcp relay enable
```

Default Configuration

DHCP relay feature is disabled.

Command Mode

Global Configuration mode

Example

The following example enables the DHCP relay feature on the device.

```
switchxxxxxx(config)# ip dhcp relay enable
```
ip dhcp relay enable (Interface)

Use the `ip dhcp relay enable` Interface Configuration mode command to enable the DHCP relay feature on an interface. Use the `no` form of this command to disable the DHCP relay agent feature on an interface.

Syntax

`ip dhcp relay enable`

`no ip dhcp relay enable`

Default Configuration

Disabled

Command Mode

Interface Configuration mode

User Guidelines

The operational status of DHCP Relay on an interface is active if one of the following conditions exist:

- DHCP Relay is globally enabled, and there is an IP address defined on the interface.

Or

- DHCP Relay is globally enabled, there is no IP address defined on the interface, the interface is a VLAN, and option 82 is enabled.

Example

The following example enables DHCP Relay on VLAN 21.

```
switchxxxxxx(config)# interface vlan 21
switchxxxxxx(config-if)# ip dhcp relay enable
```
ip dhcp relay address (Global)

Use the `ip dhcp relay address` Global Configuration mode command to define the DHCP servers available for the DHCP relay. Use the `no` form of this command to remove the server from the list.

Syntax

```plaintext
ip dhcp relay address ip-address
no ip dhcp relay address [ip-address]
```

Parameters

- `ip-address`—Specifies the DHCP server IP address. Up to 8 servers can be defined.

Default Configuration

No server is defined.

Command Mode

Global Configuration mode

User Guidelines

Use the `ip dhcp relay address` command to define a global DHCP Server IP address. To define a few DHCP Servers, use the command a few times.

To remove a DHCP Server, use the `no` form of the command with the `ip-address` argument.

The `no` form of the command without the `ip-address` argument deletes all global defined DHCP servers.

Example

The following example defines the DHCP server on the device.

```
switchxxxxxx(config)# ip dhcp relay address 176.16.1.1
```
show ip dhcp relay

Use the `show ip dhcp relay` EXEC mode command to display the DHCP relay information.

Syntax

`show ip dhcp relay`

Command Mode

User EXEC mode

Examples

Option 82 is disabled:

switchxxxxxx# `show ip dhcp relay`
DHCP relay is globally disabled
Option 82 is disabled
Maximum number of supported VLANs without IP Address: 0
Number of DHCP Relays enabled on VLANs without IP Address: 4
DHCP relay is enabled on Ports: gi1/0/1, po1-2
 Active:
 Inactive: gi1/0/1, po1-4
DHCP relay is enabled on VLANs: 1, 2, 4, 5
 Active:
 Inactive: 1, 2, 4, 5
Global Servers: 1.1.1.1, 2.2.2.2

Option 82 is enabled:

switchxxxxxx# `show ip dhcp relay`
DHCP relay is globally enabled
Option 82 is enabled
Maximum number of supported VLANs without IP Address is 4
Number of DHCP Relays enabled on VLANs without IP Address is 2
DHCP relay is enabled on Ports: gi1/0/1, po1-2
 Active: gi1/0/1
 Inactive: po1-2
DHCP relay is enabled on VLANs: 1, 2, 4, 5
 Active: 1, 2, 4, 5
 Inactive:
Global Servers: 1.1.1.1, 2.2.2.2
ip dhcp information option

Use the **ip dhcp information option** Global Configuration mode command to enable DHCP option-82 data insertion. Use the **no** form of this command to disable DHCP option-82 data insertion.

Syntax

```
ip dhcp information option
no ip dhcp information option
```

Default Configuration

DHCP option-82 data insertion is disabled.

Command Mode

Global Configuration mode

User Guidelines

DHCP option 82 would be enabled only if DHCP snooping or DHCP relay are enabled.

Example

```
switchxxxxxx(config)# ip dhcp information option
```
ip dhcp information option numeric-token-format

Use the `ip dhcp information option numeric-token-format` Global Configuration mode command to define the format of numeric tokens included in the Circuit-ID and Remote-ID sub-options payload template. Use the `no` form of this command to return to default format.

Syntax

```
ip dhcp information option numeric-token-format {hex|ascii}
no ip dhcp information option numeric-token-format
```

Parameters

- **hex** - Hexadecimal (Numeric value) format will be used in packet for numeric token included in the Circuit-ID and Remote-ID payload template.
- **ascii** - ASCII format will be used in packet for numeric token included in the Circuit-ID and Remote-ID payload template. If this option is selected, each individual digit in a numeric token will be represented by its value in the ASCII table.

Default Configuration

The default format used is the hexadecimal/numeric format.

Command Mode

Global Configuration mode.

User Guidelines

Use this command to configure the format of numeric token included in the Circuit-ID or Remote-ID sub-options payload templates commands: `ip dhcp information option circuit-id` and `ip dhcp information option remote-id`.

The following are the numeric tokens affected by this command:

- `$int-ifindex$
- `$int-portid$
- `$switch-moduleid$
- `$vlan-id$

Example

The following example configures the device to use the ASCII format for insertion of numeric-tokens:

```
switchxxxxxx(config)# ip dhcp information option numeric-token-format ascii
```
ip dhcp information option circuit-id

Use the `ip dhcp information option circuit-id` Global Configuration mode command to configure the template of DHCP option 82 Circuit-ID sub-option payload. Use the `no` form of this command to return to default template.

Syntax

```
ip dhcp information option circuit-id text
no ip dhcp information option circuit-id
```

Parameters

- `text` - Concatenation of free text and one or more tokens in the format of $tokenname$ (length 1-160).

Default Configuration

The default Circuit-ID payload template is

```
$vlan-id$$switch-moduleid$$int-portid$
```

Command Mode

Global Configuration mode

User Guidelines

Use this command to configure the template of the option 82 Circuit-ID sub-option payload, inserted by device. The payload section of the Circuit-ID sub option includes all bytes of sub option besides the first 4 bytes of the sub option which values are set by device as follows:

Circuit ID sub option Type (value = 1)
- Sub option total length (not including 1st byte and total length byte)
 - Circuit ID type (value=1); Note: if default sub option template is used - value of this field equals 0
 - Sub option payload length

The `text` field is a concatenation of free text and one or more tokens in the format of $tokenname$. Tokens must be entered in the exact format specified (see table below) or it will not be recognized as a token.

The `text` can begin or end with free text or a token. Tokens can be concatenated sequentially or separated by free text. If the free text includes a space character - the `text` parameter must be placed between quotation (e.g. "text1 text2").

The Circuit-ID payload template must include at least 1 token related to an interface parameter (token beginning with $int-xxx$). In addition - if the string does not include a VLAN related token - user will be asked to confirm setting.

The total length of the `text` field in the command cannot exceed 160 bytes. The byte count includes all bytes of the text parameter - including all free text and Tokens as written in the `text` field.

The combined length of the Circuit-ID payload Remote-ID payload cannot exceed 247 bytes. The payload byte count takes into account the count of free-text chars (1 byte each) and a predefined length reserved for each token (see in table below).
The following table details supported tokens, the device parameter they represent and the reserved and actual byte count per each token:

<table>
<thead>
<tr>
<th>Token Name</th>
<th>Description</th>
<th>Reserved Length</th>
<th>Actual Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>$int-ifindex$</td>
<td>Source interface ifIndex value</td>
<td>4 bytes</td>
<td>Hex Format - 2 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASCII format - 4 bytes</td>
</tr>
<tr>
<td>$int-portid$</td>
<td>Source interface sequential number on the specific module (in stack). For</td>
<td>2 bytes</td>
<td>Hex Format - 1 byte</td>
</tr>
<tr>
<td></td>
<td>LAG source interfaces - it is the LAG ID</td>
<td></td>
<td>ASCII format - 2 bytes</td>
</tr>
<tr>
<td>$int-name$</td>
<td>The full name of the source interface, as used in CLI commands</td>
<td>32 bytes</td>
<td>The actual number of bytes needed for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASCII representation of the interface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>full name</td>
</tr>
<tr>
<td>$int-abrvname$</td>
<td>The abbreviated name of the source interface, as used in CLI commands</td>
<td>8 bytes</td>
<td>The actual number of bytes needed for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASCII representation of the interface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>full name</td>
</tr>
<tr>
<td>$int-desc-16$</td>
<td>The description configured by user on source interface. If description is</td>
<td>16 bytes</td>
<td>The actual number of bytes needed for</td>
</tr>
<tr>
<td></td>
<td>more than 16 bytes - only the 1st 16 bytes are used</td>
<td></td>
<td>ASCII representation of the interface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>description (max 16 bytes)</td>
</tr>
<tr>
<td></td>
<td>If a description is not configured, the abbreviated interface name is used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$int-desc-32$</td>
<td>The description configured by user on source interface. If description is</td>
<td>32 bytes</td>
<td>The actual number of bytes needed for</td>
</tr>
<tr>
<td></td>
<td>more than 32 bytes - only the 1st 32 bytes are used</td>
<td></td>
<td>ASCII representation of the interface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>description (max 32 bytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DHCP Relay Commands

ip dhcp information option circuit-id
<table>
<thead>
<tr>
<th>Token Name</th>
<th>Description</th>
<th>Reserved Length</th>
<th>Actual Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>$int-desc-64$</td>
<td>The description configured by user on source interface.</td>
<td>64 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the interface description</td>
</tr>
<tr>
<td></td>
<td>If a description is not configured, the abbreviated interface name is used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$int-mac$</td>
<td>MAC address of the source interface (Hex value with no delimiter)</td>
<td>6 bytes</td>
<td>6 bytes</td>
</tr>
<tr>
<td>$switch-mac$</td>
<td>MAC address of the switch relaying/forwarding DHCP packet (Hex value with no delimiter)</td>
<td>6 bytes</td>
<td>6 bytes</td>
</tr>
<tr>
<td>$switch-hostname-16$</td>
<td>The hostname of the switch relaying/forwarding DHCP packet.</td>
<td>16 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the hostname (max 16 bytes)</td>
</tr>
<tr>
<td></td>
<td>If the hostname is more than 16 bytes - only the 1st 16 bytes are used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$switch-hostname-32$</td>
<td>The hostname of the switch relaying/forwarding DHCP packet.</td>
<td>32 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the hostname (max 32 bytes)</td>
</tr>
<tr>
<td></td>
<td>If the hostname is more than 32 bytes - only the 1st 32 bytes are used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$switch-hostname-58$</td>
<td>The hostname of the switch relaying/forwarding DHCP packet.</td>
<td>58 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the hostname</td>
</tr>
<tr>
<td>$switch-moduleid$</td>
<td>The unit ID of the source interface upon which the DHCP client request was received</td>
<td>2 bytes</td>
<td>Hex Format - 1 bytes ASCII format - 2 bytes</td>
</tr>
<tr>
<td>$vlan-id$</td>
<td>The Source VLAN ID (1-4094)</td>
<td>4 bytes</td>
<td>Hex Format - 2 bytes ASCII format - 4 bytes</td>
</tr>
</tbody>
</table>
The actual number of bytes needed for ASCII representation of the VLAN name (max 16)

vlan-name-16

Actual Length

The VLAN name assigned by user to the VLAN. If the name is more than 16 bytes - only the 1st 16 bytes are used

If a name is not configure for the VLAN, the value is taken from the relevant VLAN ifDescr MIB field

32 bytes

The VLAN name assigned by user to the VLAN. If a name is not configure for the VLAN, the value is taken from the relevant VLAN ifDescr MIB field

Notes:

- Source Interface or VLAN int table refers to the Interface or VLAN on which the DHCP client packet (to which the option 82 is added) was received on.
- Reserved (Byte) Length - The maximum length the token may “consume” in the packet. This value is used for calculation of the 247 byte limit (for all sub options payload combined). The reserved length does not change if numeric tokens are filled in as Hexadecimal or ASCII values.
- Actual (Byte) Length - The actual number of bytes the token will “consume” in packet itself. The actual byte length may change (for relevant tokens) if token is filled in as exadecimal or ASCII values.

Example

The following example configures the Circuit-ID payload template to a concatenation of free text and tokens representing interface name and VLAN name (up to 16 chars):

switchxxxxxx(config)# ip dhcp information option circuit-id aaa$int-name$bbb$vlan-name-16$ccc

The following example configures the Circuit-ID payload template to - where text parameter does not include a token related to an interface:

switchxxxxxx(config)# ip dhcp information option circuit-id aaa
Illegal Circuit-ID payload: Circuit-ID must include at least 1 interface related Token

The following example configures the Circuit-ID payload template to use a concatenation of free text and tokens - where template does not include a token related to a VLAN:

switchxxxxxx(config)# ip dhcp information option circuit-id aaa$int-name$bbb
Circuit-ID payload does not include a token reflecting DHCP client source VLAN. Continue? y/n(n) y

The following example configures the Circuit-ID payload template to use a concatenation of free text and tokens - resulting in a combined Circuit-ID and Remote-ID reserved payloads which exceed 247 bytes:
switchxxxxxx(config)# **ip dhcp information option circuit-id**

aaa$vlan-name-32$bbb$int-desc-64$ccc$switch-hostname-58$ddd

Illegal Circuit-ID payload: Circuit-ID and Remote-ID payload reserved byte count exceeds 247 bytes
ip dhcp information option remote-id

Use the `ip dhcp information option remote-id` Global Configuration mode command to configure the template of DHCP option 82 Remote-ID sub-option payload. Use the `no` form of this command to return to default template.

Syntax

```plaintext
ip dhcp information option remote-id text
no ip dhcp information option remote-id
```

Parameters

- `text` - concatenation of free text and one or more tokens in the format of `$tokenname$` (length 1-160).

Default Configuration

The default Remote-ID payload template is `$switch-mac$`

Command Mode

Global Configuration mode

User Guidelines

Use this command to configure the template of the option 82 Remote-ID sub-option payload, inserted by device. The payload section of the Remote-ID sub option includes all bytes of sub option besides the first 4 bytes of the sub option which values are set by device as follows:

Remote-ID sub option Type (value = 2)

- Sub option total length (not including 1st byte and total length byte) Remote-ID type (value= 1); Note: if default sub option template is used - value of this field equals 0. Sub option payload length

The `text` field is a concatenation of free text and one or more tokens in the format of `$tokenname$`. Tokens must be entered in the exact format specified (see table below) or it will not be recognized as a token

The `text` can begin or end with free text or a token. Tokens can be concatenated sequentially or separated by free text. If the free text includes a space character - the `text` parameter must be placed between quotation (e.g. "text1 text2")

The Remote-ID payload template may include 1 token, multiple tokens or no tokens at all.

The total length of the `text` field in the command cannot exceed 160 bytes. The byte count includes all bytes of the text parameter - including all free text and Tokens as written in the `text` field.

The combined length of the Circuit-ID payload Remote-ID payload cannot exceed 247 bytes. The payload byte count takes into account the count of free-text chars (1 byte each) and a predefined length reserved for each token (see in table below).

The following table details supported tokens, the device parameter they represent and the reserved and actual byte count per each token:
<table>
<thead>
<tr>
<th>Token Name</th>
<th>Description</th>
<th>Reserved Length</th>
<th>Actual Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>int-ifindex</td>
<td>Source interface ifIndex value</td>
<td>4 bytes</td>
<td>Hex Format - 2 bytes ASCII format - 4 bytes</td>
</tr>
<tr>
<td>int-portid</td>
<td>Source interface sequential number on the specific module (in stack). For LAG source interfaces - it is the LAG ID</td>
<td>2 bytes</td>
<td>Hex Format - 1 bytes ASCII format - 2 bytes</td>
</tr>
<tr>
<td>int-name</td>
<td>The full name of the source interface, as used in CLI commands</td>
<td>32 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the interface full name</td>
</tr>
<tr>
<td>int-abrvname</td>
<td>The abbreviated name of the source interface, as used in CLI commands</td>
<td>8 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the interface full name</td>
</tr>
<tr>
<td>int-desc-16</td>
<td>The description configured by user on source interface. If description is more than 16 bytes - only the 1st 16 bytes are used. If a description is not configured, the abbreviated interface name is used</td>
<td>16 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the interface description (max 16 bytes)</td>
</tr>
<tr>
<td>int-desc-32</td>
<td>The description configured by user on source interface. If description is more than 32 bytes - only the 1st 32 bytes are used. If a description is not configured, the abbreviated interface name is used</td>
<td>32 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the interface description (max 32 bytes)</td>
</tr>
<tr>
<td>int-desc-64</td>
<td>The description configured by user on source interface. If a description is not configured, the abbreviated interface name is used</td>
<td>64 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the interface description</td>
</tr>
<tr>
<td>Token Name</td>
<td>Description</td>
<td>Reserved Length</td>
<td>Actual Length</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>$int-mac$</td>
<td>MAC address of the source interface (Hex value with no delimiter)</td>
<td>6 bytes</td>
<td>6 bytes</td>
</tr>
<tr>
<td>$switch-mac$</td>
<td>MAC address of the switch relaying/forwarding DHCP packet (Hex value with no delimiter)</td>
<td>6 bytes</td>
<td>6 bytes</td>
</tr>
<tr>
<td>$switch-hostname-16$</td>
<td>The hostname of the switch relaying/forwarding DHCP packet. If the hostname is more than 16 bytes - only the 1st 16 bytes are used</td>
<td>16 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the hostname (max 16 bytes)</td>
</tr>
<tr>
<td>$switch-hostname-32$</td>
<td>The hostname of the switch relaying/forwarding DHCP packet. If the hostname is more than 32 bytes - only the 1st 32 bytes are used</td>
<td>32 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the hostname (max 32 bytes)</td>
</tr>
<tr>
<td>$switch-hostname-58$</td>
<td>The hostname of the switch relaying/forwarding DHCP packet. If a name is not configure for the VLAN, the value is taken from the relevant VLAN ifDescr MIB field</td>
<td>58 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the hostname</td>
</tr>
<tr>
<td>$switch-moduleid$</td>
<td>The unit ID of the source interface upon which the DHCP client request was received</td>
<td>2 bytes</td>
<td>Hex Format - 1 byte ASCII format - 2 bytes</td>
</tr>
<tr>
<td>$vlan-id$</td>
<td>The Source VLAN ID (1-4094)</td>
<td>4 bytes</td>
<td>Hex Format - 2 bytes ASCII format - 4 bytes</td>
</tr>
<tr>
<td>$vlan-name-16$</td>
<td>The VLAN name assigned by user to the VLAN. If the name is more than 16 bytes - only the 1st 16 bytes are used If a name is not configure for the VLAN, the value is taken from the relevant VLAN ifDescr MIB field</td>
<td>16 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the VLAN name (max 16)</td>
</tr>
</tbody>
</table>
Token Name

<table>
<thead>
<tr>
<th>Token Name</th>
<th>Description</th>
<th>Reserved Length</th>
<th>Actual Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-name-32</td>
<td>The VLAN name assigned by user to the VLAN. If a name is not configure for the VLAN, the value is taken from the relevant VLAN ifDescr MIB field</td>
<td>32 bytes</td>
<td>The actual number of bytes needed for ASCII representation of the VLAN name (max 32)</td>
</tr>
</tbody>
</table>

Notes:

- Source Interface or VLAN int table refers to the Interface or VLAN on which the DHCP client packet (to which the option 82 is added) was received on.

- Reserved (Byte) Length - The maximum length the token may “consume” in the packet. This value is used for calculation of the 247 byte limit (for all sub options payload combined). The reserved length does not change if numeric tokens are filled in as Hexadecimal or ASCII values.

- Actual (Byte) Length - The actual number of bytes the token will “consume” in packet itself. The actual byte length may change (for relevant tokens) if token is filled in as hexadecimal or ASCII values.

Example

The following example configures the device to use a Remote-ID which is a concatenation of free text and the full device hostname:

```
switchxxxxx(config)# ip dhcp information option remote-id aaa$switch-hostname-58$bbb
```
show ip dhcp information option tokens

Use the show ip dhcp information option tokens User EXEC mode command to display tokens which can be used when configuring the payloads of Circuit-ID and Remote-ID sub options (DHCP option 82):

Syntax

```
show ip dhcp information option tokens [brief]
```

Parameters

- **Brief** - Displays the name of the tokens without token information.

Default Configuration

Full token information is displayed

Command Mode

User EXEC mode

User Guidelines

Use this command to display the tokens that can be used as part of the text parameter in commands ip dhcp information option circuit-id or ip dhcp information option remote-id. The tokens represent various system info, which the user can include in either of the sub-options' payloads. This allows automatic update of value based on current system information and also based on relevant interfaces.

The tokens have meaningful and pre-determined names based on the information they represent. A $ symbol is placed before and after the Token name ($token-name$).

Tokens can be divided, in general, into 3 groups: Tokens which represent interface level information (format of $int-xxx$); Tokens which represent switch level information (format of $switch-xxx$), and tokens which represent VLAN related information (format of $vlan-xxx$).

Example

The following example displays all supported tokens and all the information related to each token:

```
switchxxxxxx# show ip dhcp information option tokens
Interface level Tokens - relates to the interface upon which the DHCP client packet was received:
  Token Name: $int-ifindex$
  Token value: ifIndex of the interface
  Token format: Hex (default) or ASCII
  Token reserved length: 4 bytes.
  Token actual payload length: 2(HEX)/4(ASCII) bytes.
  Token Name: $int-portid$
  Token value: interface number relative to the specific unit (standalone or stacking unit)
  Token format: Hex (default) or ASCII
  Token reserved length: 2 bytes
  Token actual payload length: 1(HEX)/2(ASCII) bytes
  Token Name: $int-name$
  Token value: The interface full name based as used in CLI
  Token format: ASCII
  Token reserved length: 32 bytes
```
Token actual payload length: Actual number of bytes (ASCII) inserted to sub-option
Token Name: $int-abrvname$
Token value: The interface abbreviated name as used in CLI
Token format: ASCII
Token reserved length: 8 bytes
Token actual payload length: Actual number of bytes (ASCII) inserted to sub-option
Token Name: $int-desc-16$
Token value: (up to) The first 16 bytes of the description user configured for the interface
Token format: ASCII
Token reserved length: 16 bytes
Token actual payload length: Actual number of bytes (ASCII) inserted to sub-option
Token Name: $int-desc-32$
Token value: (up to) The first 32 bytes of the description user configured for the interface
Token format: ASCII
Token reserved length: 32 bytes
Token actual payload length: Actual number of bytes (ASCII) inserted to sub-option
Token Name: $int-desc-64$
Token value: The full description user configured for the interface (even if more than 32 bytes)
Token format: ASCII
Token reserved length: 64 bytes
Token actual payload length: 64 bytes
Device level Tokens - relates to switch level information:
Token Name: $switch-mac$
Token value: Device base MAC address
Token format: HEX
Token reserved length: 6 bytes
Token actual payload length: 6 bytes
Token Name: $switch-hostname-16$
Token value: (Up to) The first 16 bytes of the hostname of the device
Token format: ASCII
Token reserved length: 16 bytes
Token actual payload length: 16 bytes
Token Name: $switch-hostname-32$
Token value: (Up to) The first 32 bytes of the hostname of the device
Token format: ASCII
Token reserved length: 32 bytes
Token actual payload length: 32 bytes
Token Name: $switch-hostname-58$
Token value: Device full hostname (even if more than 32 bytes)
Token format: ASCII
VLAN level Tokens - relates to the VLAN upon which the DHCP client packet was received:
Token Name: $vlan-id$
Token value: VLAN ID (1-4094)
Token format: Hex (default) or ASCII
Token reserved length: 2 bytes
Token actual payload length: 2 bytes
Token Name: $vlan-name-16$
Token value: VLAN ID (1-4094)
Token format: Hex (default) or ASCII
Token reserved length: 4 bytes
Token actual payload length: 4 bytes
Token Name: $vlan-name-16$
Token value: VLAN Name
Token format: ASCII
Token reserved length: 16 bytes
Token actual payload length: Actual number of bytes (ASCII) inserted to sub-option
Token Name: $vlan-name-32$
Token value: The full VLAN name (even if more than 16 bytes)
Token format: ASCII
Token reserved length: 32 bytes
Token actual payload length: Actual number of bytes (ASCII) inserted to sub-option

The following example displays only the names of the supported Tokens:

```
switchxxxxxx# show ip dhcp information option tokens brief
Interface level Tokens:
$int-ifindex$
$int-portid$
$int-name$
$int-abrvname$
$int-desc-16$
$int-desc-32$
$int-desc-64$
$int-mac$
Device level Tokens:
$switch-mac$
$switch-hostname-16$
$switch-hostname-32$
$switch-hostname-58$
$switch-moduleid$
VLAN level Tokens:
$vlan-id$
$vlan-name-16$
$vlan-name-32$
```
show ip dhcp information option

The **show ip dhcp information option** User EXEC mode command displays the DHCP Option 82 and sub option configuration.

Syntax

```
show ip dhcp information option [{interface interface-id} {vlan vlan}]
```

Parameters

- **interface interface-id** - Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel. Use this parameter together with the **vlan** parameter to display actual option 82 payload for a DHCP client message received on the specified interface and VLAN.
- **vlan vlan** - Specifies a VLAN ID. Use this parameter together with the **interface** parameter to display actual option 82 payload for a DHCP client message received on the specified interface and VLAN.

Default Configuration

If no parameter is entered the general settings of option 82 will be displayed.

Command Mode

User EXEC mode

Example

The following example displays global information for DHCP option 82, including sub options, when user did not change the settings of Option 82 sub-options.

```
switchxxxxxx# show ip dhcp information option
Relay agent Information option is Enabled
Numeric Token format: hex
Circuit-id payload template: (default)
Remote-id payload template: (default)
Total sub Options reserved payload: 14/247 bytes
```

The following example displays global information for DHCP option 82, including sub options, where user modified both Circuit-ID and Remote-ID sub-options.

```
switchxxxxxx# show ip dhcp information option
Relay agent Information option is Enabled
Numeric Token format: hex
Circuit-id payload template: aaa$int-name$bbb$vlan-name$ccc
Remote-id payload template: aaa$switch-hostname-58$bbb
Total sub Options reserved payload: 143/247 bytes
```

The following example displays specific interface and VLAN information for DHCP option 82, where user modified both Circuit-ID and Remote-ID sub-options.

```
switchxxxxxx# show ip dhcp information option interface te1/0/1{vlan}2
Relay agent Information option is Enabled
Numeric Token format: hex
Circuit-id payload template: aaa$int-name$bbb$vlan-name$ccc
Remote-id payload template: aaa$switch-hostname-58$bbb
Total sub Options reserved payload: 143/247 bytes
```
The following example displays specific interface and VLAN information for DHCP option 82, including sub options, when user modified only the Circuit-ID sub-option.

```bash
switchxxxxxx# show ip dhcp information option interface te1/0/10 vlan 13
Relay agent Information option is Enabled
Numeric Token format: hex
Circuit-id payload template: $int-portid$aaa$vlan-id$zzz
Remote-id payload template: (default)
Total sub Options reserved payload: 18/247 bytes
Interface te1/0/10 vlan 13:
Circuit-id header content: 010e012f
Circuit-id payload content: 313061616130337a7a7a
Circuit-id payload textual resolution: 10aaa13zzz //removed support 31-Jul-18//
Circuit-id Total Length: 16
Remote-id header content: 0211000f
Remote-id payload content: 000000122233
Remote-id payload textual resolution: 000000122233 //removed support 31-Jul-18//
Remote-id Total Length: 10
```

The following example displays specific interface and VLAN information for DHCP option 82, when user set Numeric Token format to ASCII and configured Circuit-ID sub-option.

```bash
switchxxxxxx# show ip dhcp information option interface te1/0/10 vlan 13
Relay agent Information option is Enabled
Numeric Token format: ascii
Circuit-id payload template: aaaint-portid$aaa$vlan-id$zzz
Remote-id payload template: aaaswitch-hostname-58$bbb
Total sub Options reserved payload: 137/247 bytes
Interface te1/0/10 vlan 13:
Circuit-id header content: 010e012f
Circuit-id payload content: 313061616130337a7a7a
Circuit-id payload textual resolution: 10aaa13zzz //removed support 31-Jul-18//
Circuit-id Total Length: 16
Remote-id header content: 0211000f
Remote-id payload content: 000000122233
Remote-id payload textual resolution: 000000122233 //removed support 31-Jul-18//
Remote-id Total Length: 10
```

The following example requested display is for specific interface and VLAN information for DHCP option 82, where $vlan-name-32$ is one of the tokens - but the specific VLAN was not created on device.

```bash
switchxxxxxx# show ip dhcp information option interface te1/0/1 vlan 2
Relay agent Information option is Enabled
Numeric Token format: hex
Circuit-id payload template: aaaint-name$bbb$vlan-name-32$ccc
Remote-id payload template: aaaswitch-hostname-58$bbb
Total sub Options reserved payload: 137/247 bytes
Interface te1/0/1 vlan 2:
Error - Cannot calculate Circuit-ID info - sub-option contains VLAN related Token which does not exist on device.
```
show ip dhcp information option
DHCP Server Commands

This chapter contains the following sections:

• address (DHCP Host), on page 314
• address (DHCP Network), on page 315
• auto-default-router, on page 316
• bootfile, on page 317
• clear ip dhcp binding, on page 318
• client-name, on page 319
• default-router, on page 320
• dns-server, on page 321
• domain-name, on page 322
• ip dhcp excluded-address, on page 323
• ip dhcp pool host, on page 324
• ip dhcp pool network, on page 325
• ip dhcp server, on page 326
• lease, on page 327
• netbios-name-server, on page 328
• netbios-node-type, on page 329
• next-server, on page 330
• next-server-name, on page 331
• option , on page 332
• show ip dhcp, on page 334
• show ip dhcp allocated, on page 335
• show ip dhcp binding, on page 336
• show ip dhcp declined, on page 338
• show ip dhcp excluded-addresses, on page 339
• show ip dhcp expired, on page 340
• show ip dhcp pool host, on page 341
• show ip dhcp pool network, on page 342
• show ip dhcp pre-allocated, on page 343
• show ip dhcp server statistics, on page 344
• time-server, on page 345
address (DHCP Host)

To manually bind an IP address to a DHCP client, use the **address** command in DHCP Pool Host Configuration mode. To remove the IP address binding to the client, use the **no** form of this command.

Syntax

```
address ip-address {mask | prefix-length} {client-identifier unique-identifier | hardware-address mac-address}
```

```
no address
```

Parameters

- **address**—Specifies the client IP address.
- **mask**—Specifies the client network mask.
- **prefix-length**—Specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the client network mask. The prefix length must be preceded by a forward slash (/).
- **unique-identifier**—Specifies the distinct client identification in dotted hexadecimal notation. Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. For example, 01b7.0813.8811.66.
- **mac-address**—Specifies the client MAC address.

Default Configuration

No address are bound.

Command Mode

DHCP Pool Host Configuration mode

User Guidelines

To classify the DHCP client, DHCP server uses either the client identifier passed in Option 61, if the **client-identifier** keyword is configured or the client MAC address, if the **hardware-address** keyword is configured.

Example

The following example manually binds an IP address to a DHCP client.

```
switchxxxxxx(config)# ip dhcp pool host aaaa
switchxxxxxx(config-dhcp)# address 10.12.1.99 255.255.255.0 client-identifier 01b7.0813.8811.66
switchxxxxxx(config-dhcp)# exit
switchxxxxxx(config)# ip dhcp pool host bbbb
switchxxxxxx(config-dhcp)# address 10.12.1.88 255.255.255.0 hardware-address 00:01:b7:08:13:88
switchxxxxxx(config-dhcp)# exit
switchxxxxxx(config)#
```
address (DHCP Network)

To configure the subnet number and mask for a DHCP address pool on a DHCP server, use the `address` command in DHCP Pool Network Configuration mode. To remove the subnet number and mask, use the `no` form of this command.

Syntax

```plaintext
address {network-number | low low-address high high-address} {mask | prefix-length}
no address
```

Parameters

- `network-number`—Specifies the IP address of the DHCP address pool.
- `mask`—Specifies the pool network mask.
- `prefix-length`—Specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the client network mask. The prefix length must be preceded by a forward slash (`/`).
- `low low-address`—Specifies the first IP address to use in the address range.
- `high high-address`—Specifies the last IP address to use in the address range.

Default Configuration

DHCP address pools are not configured.

If the low address is not specified, it defaults to the first IP address in the network.

If the high address is not specified, it defaults to the last IP address in the network.

Command Mode

DHCP Pool Network Configuration mode

Example

The following example configures the subnet number and mask for a DHCP address pool on a DHCP server.

```
switchxxxxxx(config-dhcp)# address 10.12.1.0 255.255.255.0
```
auto-default-router

To enable auto default router, use the **auto-default-router** command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To disable auto default router, use the **no** form of this command.

Syntax

`auto-default-router`

`no auto-default-router`

Command Mode

DHCP Pool Network Configuration mode

DHCP Pool Host Configuration mode

Default Configuration

Enabled.

User Guidelines

If the feature is enabled then the DHCP server returns an IP address defined on the input interface as a default router when an default router is not configured in the following case:

- Default router is not configurable.
- DHCP client is directly connected.
- IP Routing is enabled.
- Default router was required by the client.

Example

The following example disable auto default router sending.

```
switchxxxxxx(config-dhcp)# no auto-default-router
```
bootfile

To specify the default boot image file name for a DHCP client, use the bootfile command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To delete the boot image file name, use the no form of this command.

Syntax

bootfile filename

no bootfile

Parameters

- filename—Specifies the file name used as a boot image. (Length: 1–128 characters).

Command Mode

DHCP Pool Network Configuration mode
DHCP Pool Host Configuration mode

Example

The following example specifies boot_image_file as the default boot image file name for a DHCP client.

```
switchxxxxxx(config-dhcp)# bootfile boot_image_file
```
clear ip dhcp binding

To delete the dynamic address binding from the DHCP server database, use the clear ip dhcp binding command in Privileged EXEC mode.

Syntax

clear ip dhcp binding {address | *}

Parameters

- **address** — Specifies the binding address to delete from the DHCP database.
- ***** — Clears all dynamic bindings.

Command Mode

Privileged EXEC mode

User Guidelines

Typically, the address supplied denotes the client IP address. If the asterisk (*) character is specified as the address parameter, DHCP clears all dynamic bindings.

Use the no ip dhcp pool Global Configuration mode command to delete a manual binding.

Example

The following example deletes the address binding 10.12.1.99 from a DHCP server database:

```
switchxxxxxx# clear ip dhcp binding 10.12.1.99
```
client-name

To define the name of a DHCP client, use the `client-name` command in DHCP Pool Host Configuration mode. To remove the client name, use the `no` form of this command.

Syntax

```
client-name name
no client-name
```

Parameters

- `name`—Specifies the client name, using standard ASCII characters. The client name should not include the domain name. For example, the name Mars should not be specified as mars.yahoo.com. (Length: 1–32 characters).

Command Mode

DHCP Pool Host Configuration mode

Default Configuration

No client name is defined.

Example

The following example defines the string `client1` as the client name.

```
switchxxxxxx(config-dhcp)# client-name client1
```
default-router

To configure the default router list for a DHCP client, use the `default-router` command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the default router list, use the `no` form of this command.

Syntax

```
default-router ip-address [ip-address2 ... ip-address8]
no default-router
```

Parameters

- `ip-address [ip-address2 ... ip-address8]`—Specifies the IP addresses of default routers. Up to eight addresses can be specified in one command line.

Command Mode

- DHCP Pool Network Configuration mode
- DHCP Pool Host Configuration mode

Default Configuration

No default router is defined.

User Guidelines

The router IP address should be on the same subnet as the client subnet.

If the auto-default-router command is configured then the DHCP server returns an IP address defined on the input interface as a default router when an default router is not configured in the following case:

- Default router is not configurable.
- DHCP client is directly connected.
- IP Routing is enabled.
- Default router was required by the client.

Example

The following example specifies 10.12.1.99 as the default router IP address.

```
switchxxxxxx(config-dhcp)# default-router 10.12.1.99
```
To configure the Domain Name System (DNS) IP server list available to a DHCP client, use the `dns-server` command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the DNS server list, use the `no` form of this command.

Syntax
```
dns-server ip-address [ip-address2 ... ip-address8]
```
```
no dns-server
```

Parameters
- `ip-address [ip-address2 ... ip-address8]`—Specifies the IP addresses of DNS servers. Up to eight addresses can be specified in one command line.

Command Mode
- DHCP Pool Network Configuration mode
- DHCP Pool Host Configuration mode

Default Configuration
No DNS server is defined.

User Guidelines
If DNS IP servers are not configured for a DHCP client, the client cannot correlate host names to IP addresses.

Example
The following example specifies 10.12.1.99 as the client domain name server IP address.
```
switchxxxxxx(config-dhcp)# dns-server 10.12.1.99
```
domain-name

To specify the domain name for a DHCP client, use the **domain-name** command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the domain name, use the **no** form of this command.

Syntax

```
domain-name domain
no domain-name
```

Parameters

- **domain**—Specifies the DHCP client domain name string. (Length: 1–32 characters).

Command Mode

- DHCP Pool Network Configuration mode
- DHCP Pool Host Configuration mode

Default Configuration

No domain name is defined.

Example

The following example specifies yahoo.com as the DHCP client domain name string.

```
switchxxxxxx(config-dhcp)# domain-name yahoo.com
```
ip dhcp excluded-address

To specify IP addresses that a DHCP server must not assign to DHCP clients, use the `ip dhcp excluded-address` command in Global Configuration mode. To remove the excluded IP addresses, use the `no` form of this command.

Syntax

```
ip dhcp excluded-address low-address [high-address]
no ip dhcp excluded-address low-address [high-address]
```

Parameters

- `low-address`—Specifies the excluded IP address, or first IP address in an excluded address range.
- `high-address`—(Optional) Specifies the last IP address in the excluded address range.

Default Configuration

All IP pool addresses are assignable.

Command Mode

Global Configuration mode

User Guidelines

The DHCP server assumes that all pool addresses can be assigned to clients. Use this command to exclude a single IP address or a range of IP addresses.

Example

The following example configures an excluded IP address range from 172.16.1.100 through 172.16.1.199.

```
switchxxxxxx(config)# ip dhcp excluded-address 172.16.1.100 172.16.1.199
```
ip dhcp pool host

To configure a DHCP static address on a DHCP server and enter the DHCP Pool Host Configuration mode, use the `ip dhcp pool host` command in Global Configuration mode. To remove the address pool, use the `no` form of this command.

Syntax

```
ip dhcp pool host name
no ip dhcp pool host name
```

Parameters

- `name`—Specifies the DHCP address pool name. It can be either a symbolic string (such as Engineering) or an integer (such as 8). (Length: 1–32 characters).

Default Configuration

DHCP hosts are not configured.

Command Mode

Global Configuration mode

User Guidelines

During execution of this command, the configuration mode changes to the DHCP Pool Configuration mode. In this mode, the administrator can configure host parameters, such as the IP subnet number and default router list.

Example

The following example configures `station` as the DHCP address pool:

```
switchxxxxxx(config)# ip dhcp pool host station
switchxxxxxx(config-dhcp)#
```
ip dhcp pool network

To configure a DHCP address pool on a DHCP Server and enter DHCP Pool Network Configuration mode, use the `ip dhcp pool network` command in Global Configuration mode. To remove the address pool, use the `no` form of this command.

Syntax

`ip dhcp pool network name`

`no ip dhcp pool network name`

Parameters

- `name`—Specifies the DHCP address pool name. It can be either a symbolic string (such as 'engineering') or an integer (such as 8). (Length: 1–32 characters).

Default Configuration

DHCP address pools are not configured.

Command Mode

Global Configuration mode

User Guidelines

During execution of this command, the configuration mode changes to DHCP Pool Network Configuration mode. In this mode, the administrator can configure pool parameters, such as the IP subnet number and default router list.

Example

The following example configures Pool1 as the DHCP address pool.

```
switchxxxxxx(config)# ip dhcp pool network Pool1
switchxxxxxx(config-dhcp)#
```
ip dhcp server

To enable the DHCP server features on the device, use the `ip dhcp server` command in Global Configuration mode. To disable the DHCP server, use the `no` form of this command.

Syntax

`ip dhcp server`

`no ip dhcp server`

Default Configuration

The DHCP server is disabled.

Command Mode

Global Configuration mode

Example

The following example enables the DHCP server on the device:

```
switchxxxxxxx(config)# ip dhcp server
```
lease

To configure the time duration of the lease for an IP address that is assigned from a DHCP server to a DHCP client, use the **lease** command in DHCP Pool Network Configuration mode. To restore the default value, use the **no** form of this command.

Syntax

```
lease days [hours [minutes]] | infinite
no lease
```

Parameters

- **days**—Specifies the number of days in the lease.
- **hours**—(Optional) Specifies the number of hours in the lease. A **days** value must be supplied before configuring an **hours** value.
- **minutes**—(Optional) Specifies the number of minutes in the lease. A **days** value and an **hours** value must be supplied before configuring a **minutes** value.
- **infinite**—Specifies that the duration of the lease is unlimited.

Default Configuration

The default lease duration is 1 day.

Command Mode

DHCP Pool Network Configuration mode

Examples

The following example shows a 1-day lease.

```
switchxxxxx(config-dhcp)# lease 1
```

The following example shows a one-hour lease.

```
switchxxxxx(config-dhcp)# lease 0 1
```

The following example shows a one-minute lease.

```
switchxxxxx(config-dhcp)# lease 0 0 1
```

The following example shows an infinite (unlimited) lease.

```
switchxxxxx(config-dhcp)# lease infinite
```
netbios-name-server

To configure the NetBIOS Windows Internet Naming Service (WINS) server list that is available to Microsoft DHCP clients, use the netbios-name-server in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the NetBIOS name server list, use the no form of this command.

Syntax

```
netbios-name-server ip-address [ip-address2 ... ip-address8]
no netbios-name-server
```

Parameters

- `ip-address [ip-address2 ... ip-address8]`—Specifies the IP addresses of NetBIOS WINS name servers. Up to eight addresses can be specified in one command line.

Command Mode

DHCP Pool Network Configuration mode
DHCP Pool Host Configuration mode

Default Configuration

No bios server is defined.

Example

The following example specifies the IP address of a NetBIOS name server available to the DHCP client.

```
switchxxxxxx(config-dhcp)# netbios-name-server 10.12.1.90
```
netbios-node-type

To configure the NetBIOS node type for Microsoft DHCP clients, use the **netbios-node-type** command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To return to default, use the **no** form of this command.

Syntax

```
netbios-node-type {b-node | p-node | m-node | h-node}
```

```
no netbios-node-type
```

Parameters

- **b-node** — Specifies the Broadcast NetBIOS node type.
- **p-node** — Specifies the Peer-to-peer NetBIOS node type.
- **m-node** — Specifies the Mixed NetBIOS node type.
- **h-node** — Specifies the Hybrid NetBIOS node type.

Command Mode

DHCP Pool Network Configuration mode
DHCP Pool Host Configuration mode

Default Configuration

h-node (Hybrid NetBIOS node type).

Example

The following example specifies the client's NetBIOS type as mixed.

```
switchxxxxxx(config-dhcp)# netbios node-type m-node
```
To configure the next server (siaddr) in the boot process of a DHCP client, use the `next-server` command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the next server, use the `no` form of this command.

Syntax

```
next-server ip-address
no next-server
```

Parameters

- `ip-address`—Specifies the IP address of the next server in the boot process.

Default Configuration

If the `next-server` command is not used to configure a boot server list, the DHCP server uses inbound interface helper addresses as boot servers.

Command Mode

- DHCP Pool Network Configuration mode
- DHCP Pool Host Configuration mode

User Guidelines

The client will connect, using the SCP/TFTP protocol, to this server in order to download the configuration file.

Example

The following example specifies 10.12.1.99 as the IP address of the next server:

```
switchxxxxxx(config-dhcp)# next-server 10.12.1.99
```
next-server-name

To configure the next server name (sname) in the boot process of a DHCP client, use the next-server-name command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the boot server name, use the no form of this command.

Syntax

next-server-name name

no next-server-name

Parameters

• *name*—Specifies the name of the next server in the boot process. (Length: 1–64 characters).

Command Mode

DHCP Pool Network Configuration mode

DHCP Pool Host Configuration mode

Default Configuration

No next server name is defined.

User Guidelines

The client will connect, using the SCP/TFTP protocol, to this server in order to download the configuration file.

Example

The following example specifies www.bootserver.com as the name of the next server in the boot process of a DHCP client.

```
switchxxxxxx(config-dhcp)# next-server www.bootserver.com
```
option

To configure the DHCP server options, use the `option` command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the options, use the `no` form of this command.

Syntax

```
option code {boolean {false | true} | integer value | ascii string | hex {string | none} | ip {address} | ip-list {ip-address1 [ip-address2 ...]} } [description text]
```

```
no option code
```

Parameters

- **code**—Specifies the DHCP option code. The supported values are defined in the User Guidelines.
- **boolean {false | true}**—Specifies a boolean value. The values are coded by integer values of one octet: 0 = false and 1 = true.
- **integer value**—Specifies an integer value. The option size depends on the option code.
- **ascii string**—Specifies a network virtual terminal (NVT) ASCII character string. ASCII character strings that contain white spaces must be delimited by quotation marks. The ASCII value is truncated to the first 160 characters entered.
- **ip address**—Specifies an IP address.
- **ip-list {ip-address1 [ip-address2 ...]}**—Specifies up to 8 IP addresses.
- **hex string**—Specifies dotted hexadecimal data. The hexadecimal value is truncated to the first 320 characters entered. Each byte in hexadecimal character strings is two hexadecimal digits. Each byte can be separated by a period, colon, or white space.
- **hex none**—Specifies the zero-length hexadecimal string.
- **description text**—User description

Command Mode

DHCP Pool Network Configuration mode

DHCP Pool Host Configuration mode

User Guidelines

The `option` command enables defining any option that cannot be defined by other special CLI commands. A new definition of an option overrides the previous definition of this option.

The `boolean` keyword may be configured for the following options: 19, 20, 27, 29-31, 34, 36, and 39.

The `integer` keyword may be configured for the following options: 2, 13, 22-26, 35, 37-38, 132-134, and 211. The switch checks the value range and builds the value field of the size in accordance with the `option` definition.

The `ascii` keyword may be configured for the following options: 14, 17-18, 40, 64, 130, 209, and 210.

The `ip` keyword may be configured for the following options: 16, 28, 32, 128-129, 131, 135, and 136.
The **ip-list** keyword may be configured for the following options: 5, 7-11, 33, 41, 42, 45, 48, 49, 65, 68-76, and 150.

The **hex** keyword may be configured for any option in the range 1-254 except for the following: 1, 3-4, 6, 12, 15, 44, 46, 50-51, 53-54, 56, 66-67, 82, and 255. The switch does not validate the syntax of an option defined by this format.

Example 1. The following example configures DHCP option 19, which specifies whether the client should configure its IP layer for packet forwarding:

```
switchxxxxxx(config-dhcp)# option 19 boolean true description "IP Forwarding Enable/Disable Option"
```

Example 2. The following example configures DHCP option 2, which specifies the offset of the client in seconds from Coordinated Universal Time (UTC):

```
switchxxxxxx(config-dhcp)# option 2 integer 3600
```

Example 3. The following example configures DHCP option 72, which specifies the World Wide Web servers for DHCP clients. World Wide Web servers 172.16.3.252 and 172.16.3.253 are configured in the following example:

```
switchxxxxxx(config-dhcp)# option 72 ip-list 172.16.3.252 172.16.3.253
```
show ip dhcp

To display the DHCP configuration, use the **show ip dhcp** command in User EXEC mode.

Syntax

```
show ip dhcp
```

Command Mode

User EXEC mode

Example

The following example displays the DHCP configuration.

```
switchxxxxxx# show ip dhcp
DHCP server is enabled.
```
show ip dhcp allocated

To display the allocated address or all the allocated addresses on the DHCP server, use the `show ip dhcp allocated` command in User EXEC mode.

Syntax

`show ip dhcp allocated [ip-address]`

Parameters

- `ip-address` — (Optional) Specifies the IP address.

Command Mode

User EXEC mode

Example

The following example displays the output of various forms of this command:

```
switchxxxxxx# show ip dhcp allocated
DHCP server enabled
The number of allocated entries is 3
IP address     Hardware address Lease expiration    Type
--------------- --------------------- -------------------- --------
172.16.1.11    00a0.9802.32de Feb 01 1998 12:00 AM Dynamic
172.16.3.253    02c7.f800.0422 Infinite    Automatic
172.16.3.254    02c7.f800.0422 Infinite    Static
switchxxxxxx# show ip dhcp allocated 172.16.1.11
DHCP server enabled
The number of allocated entries is 2
IP address     Hardware address Lease expiration    Type
--------------- --------------------- -------------------- --------
172.16.1.11    00a0.9802.32de Feb 01 1998 12:00 AM Dynamic
switchxxxxxx# show ip dhcp allocated 172.16.3.254
DHCP server enabled
The number of allocated entries is 2
IP address     Hardware address Lease expiration    Type
--------------- --------------------- -------------------- --------
172.16.3.254    02c7.f800.0422 Infinite    Static
```

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The host IP address as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Hardware address</td>
<td>The MAC address or client identifier of the host as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Lease expiration</td>
<td>The lease expiration date of the host IP address.</td>
</tr>
<tr>
<td>Type</td>
<td>The manner in which the IP address was assigned to the host.</td>
</tr>
</tbody>
</table>
show ip dhcp binding

To display the specific address binding or all the address bindings on the DHCP server, use the `show ip dhcp binding` command in User EXEC mode.

Syntax

`show ip dhcp binding [ip-address]`

Parameters

- `ip-address`—(Optional) Specifies the IP address.

Command Mode

User EXEC mode

Examples

The following examples display the DHCP server binding address parameters.

```
switchxxxxxx# show ip dhcp binding
DHCP server enabled
The number of used (all types) entries is 6
The number of pre-allocated entries is 1
The number of allocated entries is 1
The number of expired entries is 1
The number of declined entries is 2
The number of static entries is 1
The number of dynamic entries is 2
The number of automatic entries is 1
IP address Client Identifier Lease Expiration Type State
------- ----------------- ------------- ------- ---------
1.16.1.11 00a0.9802.32de Feb 01 1998 dynamic allocated
1.16.3.23 02c7.f801.0422 12:00AM dynamic expired
1.16.3.24 02c7.f802.0422 dynamic declined
1.16.3.25 02c7.f803.0422 dynamic pre-allocated
1.16.3.26 02c7.f804.0422 dynamic declined
```

```
switchxxxxxx# show ip dhcp binding 1.16.1.11
DHCP server enabled
IP address Client Identifier Lease Expiration Type State
------- ----------------- --------------- ------- ---------
1.16.1.11 00a0.9802.32de Feb 01 1998 dynamic allocated
```

```
switchxxxxxx# show ip dhcp binding 1.16.3.24
IP address Client Identifier Lease Expiration Type State
------- ----------------- --------------- ------- ---------
1.16.3.24 02c7.f802.0422 12:00 AM dynamic declined
```

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The host IP address as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Client Identifier</td>
<td>The MAC address or client identifier of the host as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Lease expiration</td>
<td>The lease expiration date of the host IP address.</td>
</tr>
<tr>
<td>Type</td>
<td>The manner in which the IP address was assigned to the host.</td>
</tr>
<tr>
<td>State</td>
<td>The IP Address state.</td>
</tr>
</tbody>
</table>
show ip dhcp declined

To display the specific declined address or all of the declined addresses on the DHCP server, use the `show ip dhcp declined` command in User EXEC mode.

Syntax

`show ip dhcp declined [ip-address]`

Parameters

- `ip-address`—(Optional) Specifies the IP address.

Command Mode

User EXEC mode

Example

The following example displays the output of various forms of this command:

```
switchxxxxxx# show ip dhcp declined
DHCP server enabled
The number of declined entries is 2
IP address  Hardware address
172.16.1.11    00a0.9802.32de
172.16.3.254   02c7.f800.0422
switchxxxxxx# show ip dhcp declined 172.16.1.11
DHCP server enabled
The number of declined entries is 2
IP address  Hardware address
172.16.1.11    00a0.9802.32de
```

Cisco Business Switches 350 Series CLI Guide
show ip dhcp excluded-addresses

To display the excluded addresses, use the show ip dhcp excluded-addresses command in User EXEC mode.

Syntax
show ip dhcp excluded-addresses

Command Mode
User EXEC mode

Example
The following example displays excluded addresses.

switchxxxxxx# show ip dhcp excluded-addresses
The number of excluded addresses ranges is 2
Excluded addresses:
 10.1.1.212- 10.1.1.219, 10.1.2.212- 10.1.2.219
show ip dhcp expired

To display the specific expired address or all of the expired addresses on the DHCP server, use the `show ip dhcp expired` command in User EXEC mode.

Syntax

`show ip dhcp expired [ip-address]`

Parameters

- `ip-address`—(Optional) Specifies the IP.

Command Mode

User EXEC mode

Example

```
switchxxxxxx# show ip dhcp expired
DHCP server enabled
The number of expired entries is 1
IP address Hardware address
172.16.1.11 00a0.9802.32de
172.16.3.254 02c7.f800.0422
switchxxxxxx# show ip dhcp expired 172.16.1.11
DHCP server enabled
The number of expired entries is 1
IP address Hardware address
172.16.1.13 00a0.9802.32de
```
show ip dhcp pool host

To display the DHCP pool host configuration, use the `show ip dhcp pool host` command in User EXEC mode.

Syntax

`show ip dhcp pool host [address | name]`

Parameters

- `address`—(Optional) Specifies the client IP address.
- `name`—(Optional) Specifies the DHCP pool name. (Length: 1-32 characters)

Command Mode

User EXEC mode

Example 1. The following example displays the configuration of all DHCP host pools:

```
switchxxxxxx# show ip dhcp pool host
The number of host pools is 1
Name       IP Address   Hardware Address   Client Identifier
---------- ---------- ---------------- ----------------- 
station    172.16.1.11 01b7.0813.8811.66
```

Example 2. The following example displays the DHCP pool host configuration of the pool named station:

```
switchxxxxxx# show ip dhcp pool host station
Name       IP Address   Hardware Address   Client Identifier
---------- ---------- ---------------- ----------------- 
station    172.16.1.11 01b7.0813.8811.66
Mask: 255.255.0.0
Auto Default router: enabled
Default router: 172.16.1.1
Client name: client1
DNS server: 10.12.1.99
Domain name: yahoo.com
NetBIOS name server: 10.12.1.90
NetBIOS node type: h-node
Next server: 10.12.1.99
Next-server-name: 10.12.1.100
Bootfile: Bootfile
Time server 10.12.1.99
Options:
   Code Type Len Value Description
   --- ------- --- ---------------- --------------------------------
2   integer  4  3600
14  ascii  16 qq/aaaa/bbb.txt
19  boolean 1 false "IP Forwarding Enable/Disable Option"
21  ip  4  134.14.14.1
31  ip-list 8 1.1.1.1, 12.23.45.2
47  hex  5  02af00aa00
```
show ip dhcp pool network

To display the DHCP network configuration, use the **show ip dhcp pool network** command in User EXEC mode.

Syntax

`show ip dhcp pool network [name]`

Parameters

- **name**—(Optional) Specifies the DHCP pool name. (Length: 1-32 characters).

Command Mode

User EXEC mode

Example 1—The following example displays configuration of all DHCP network pools:

```
switchxxxxxx# show ip dhcp pool network
The number of network pools is 2
Name Address range mask Lease
------------------------------
marketing 10.1.1.17-10.1.1.178 255.255.255.0 0d:12h:0m
finance 10.1.2.8-10.1.2.178 255.255.255.0 0d:12h:0m
```

Example 2—The following example displays configuration of the DHCP network pool **marketing**:

```
switchxxxxxx# show ip dhcp pool network marketing
Name Address range mask Lease
------------------------------
marketing 10.1.1.17-10.1.1.178 255.255.255.0 0d:12h:0m
Statistics:
All-range Available Free Pre-allocated Allocated Expired Declined
----------------- -------------- --------- -------- ---------- --------
162 150 68 50 20 3 9
Auto Default router: enabled
Default router: 10.1.1.1
DNS server: 10.12.1.99
Domain name: yahoo.com
NetBIOS name server: 10.12.1.90
NetBIOS node type: h-node
Next server: 10.12.1.99
Next-server-name: 10.12.1.100
Bootfile: Bootfile
Time server 10.12.1.99
Options:
Code Type Len Value Description
--- ------- --- -------------------- --------------------------------
2 integer 4 3600
14 ascii 16 qg/aaa/bbb.txt
19 boolean 1 false "IP Forwarding Enable/Disable Option"
21 ip 4 134.14.14.1
31 ip-list 8 1.1.1.1, 12.23.45.2
47 hex 5 02af00aa00
show ip dhcp pre-allocated

To display the specific pre-allocated address or all the pre-allocated addresses on the DHCP server, use the `show ip dhcp pre-allocated` command in User EXEC mode.

**Syntax**

```
show ip dhcp pre-allocated [ip-address]
```

**Parameters**

- `ip-address`—(Optional) Specifies the IP.

**Command Mode**

User EXEC mode

**Examples**

```
switchxxxxxx# show ip dhcp pre-allocated
dhcp server enabled
The number of pre-allocated entries is 1
IP address Hardware address
172.16.1.11 00a0.9802.32de
172.16.3.254 02c7.f800.0422
switchxxxxxx# show ip dhcp pre-allocated 172.16.1.11
dhcp server enabled
The number of pre-allocated entries is 1
IP address Hardware address
172.16.1.15 00a0.9802.32de
```
show ip dhcp server statistics

To display DHCP server statistics, use the `show ip dhcp server statistics` command in User EXEC mode.

**Syntax**

`show ip dhcp server statistics`

**Command Mode**

User EXEC mode

**Example**

The following example displays DHCP server statistics

```
switchxxxxxx# show ip dhcp server statistics
DHCP server enabled
The number of network pools is 7
The number of excluded pools is 2
The number of used (all types) entries is 7
The number of pre-allocated entries is 1
The number of allocated entries is 3
The number of expired entries is 1
The number of declined entries is 2
The number of static entries is 1
The number of dynamic entries is 2
The number of automatic entries is 1
```
time-server

To specify the time servers list for a DHCP client, use the `time-server` command in DHCP Pool Network Configuration mode or in DHCP Pool Host Configuration mode. To remove the time servers list, use the `no` form of this command.

**Syntax**

```
time-server ip-address [ip-address2 ... ip-address8]
```

```
no time-server
```

**Parameters**

- `ip-address [ip-address2 ... ip-address8]`—Specifies the IP addresses of Time servers. Up to eight addresses can be specified in one command line.

**Command Mode**

DHCP Pool Network Configuration mode

DHCP Pool Host Configuration mode

**Default Configuration**

No time server is defined.

**User Guidelines**

The time server’s IP address should be on the same subnet as the client subnet.

**Example**

The following example specifies 10.12.1.99 as the time server IP address.

```
switchxxxxxx(config-dhcp)# time-server 10.12.1.99
```
DHCP Snooping Commands

This chapter contains the following sections:

- `ip dhcp snooping`, on page 348
- `ip dhcp snooping vlan`, on page 349
- `ip dhcp snooping trust`, on page 350
- `ip dhcp snooping information option allowed-untrusted`, on page 351
- `ip dhcp snooping verify`, on page 352
- `ip dhcp snooping database`, on page 353
- `ip dhcp snooping binding`, on page 354
- `clear ip dhcp snooping database`, on page 356
- `show ip dhcp snooping`, on page 357
- `show ip dhcp snooping binding`, on page 358
- `ip arp inspection`, on page 359
- `ip arp inspection vlan`, on page 360
- `ip arp inspection validate`, on page 361
- `ip arp inspection list create`, on page 362
- `ip mac`, on page 363
- `ip arp inspection list assign`, on page 364
- `ip arp inspection logging interval`, on page 365
- `show ip arp inspection`, on page 366
- `show ip arp inspection list`, on page 367
- `show ip arp inspection statistics`, on page 368
- `clear ip arp inspection statistics`, on page 369
ip dhcp snooping

Use the ip dhcp snooping Global Configuration mode command to enable Dynamic Host Configuration Protocol (DHCP) Snooping globally. Use the no form of this command to restore the default configuration.

Syntax
ip dhcp snooping
no ip dhcp snooping

Default Configuration
DHCP snooping is disabled.

Command Mode
Global Configuration mode

User Guidelines
For any DHCP Snooping configuration to take effect, DHCP Snooping must be enabled globally. DHCP Snooping on a VLAN is not active until DHCP Snooping on a VLAN is enabled.

Example
The following example enables DHCP Snooping on the device.

```
switchxxxxxx(config)# ip dhcp snooping
```
ip dhcp snooping vlan

Use the `ip dhcp snooping vlan` Global Configuration mode command to enable DHCP Snooping on a VLAN. Use the `no` form of this command to disable DHCP Snooping on a VLAN.

**Syntax**

```
ip dhcp snooping vlan vlan-id
no ip dhcp snooping vlan vlan-id
```

**Parameters**

- `vlan-id` — Specifies the VLAN ID.

**Default Configuration**

DHCP Snooping on a VLAN is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

DHCP Snooping must be enabled globally before enabling DHCP Snooping on a VLAN.

**Example**

The following example enables DHCP Snooping on VLAN 21.

```
switchxxxxxx(config)# ip dhcp snooping vlan 21
```
ip dhcp snooping trust

Use the `ip dhcp snooping trust` Interface Configuration (Ethernet, Port-channel) mode command to configure a port as trusted for DHCP snooping purposes. Use the `no` form of this command to restore the default configuration.

**Syntax**

- `ip dhcp snooping trust`
- `no ip dhcp snooping trust`

**Default Configuration**

The interface is untrusted.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

Configure as trusted the ports that are connected to a DHCP server or to other switches or routers. Configure the ports that are connected to DHCP clients as untrusted.

**Example**

The following example configures gi1/0/4 as trusted for DHCP Snooping.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# ip dhcp snooping trust
```
ip dhcp snooping information option allowed-untrusted

Use the `ip dhcp snooping information option allowed-untrusted` Global Configuration mode command to allow a device to accept DHCP packets with option-82 information from an untrusted port. Use the `no` form of this command to drop these packets from an untrusted port.

**Syntax**

```
ip dhcp snooping information option allowed-untrusted
no ip dhcp snooping information option allowed-untrusted
```

**Default Configuration**

DHCP packets with option-82 information from an untrusted port are discarded.

**Command Mode**

Global Configuration mode

**Example**

The following example allows a device to accept DHCP packets with option-82 information from an untrusted port.

```
switchxxxxx(config)# ip dhcp snooping information option allowed-untrusted
```
**ip dhcp snooping verify**

Use the `ip dhcp snooping verify` Global Configuration mode command to configure a device to verify that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address. Use the `no` form of this command to disable MAC address verification in a DHCP packet received on an untrusted port.

**Syntax**

- `ip dhcp snooping verify`
- `no ip dhcp snooping verify`

**Default Configuration**

The switch verifies that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address in the packet.

**Command Mode**

Global Configuration mode

**Example**

The following example configures a device to verify that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address.

```
switchxxxxxx(config)# ip dhcp snooping verify
```
ip dhcp snooping database

Use the **ip dhcp snooping database** Global Configuration mode command to enable the DHCP Snooping binding database file. Use the **no** form of this command to delete the DHCP Snooping binding database file.

**Syntax**

```
ip dhcp snooping database
no ip dhcp snooping database
```

**Default Configuration**

The DHCP Snooping binding database file is not defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

The DHCP Snooping binding database file resides on Flash. To ensure that the lease time in the database is accurate, the Simple Network Time Protocol (SNTP) must be enabled and configured. The device writes binding changes to the binding database file only if the device system clock is synchronized with SNTP.

**Example**

The following example enables the DHCP Snooping binding database file.

```
switchxxxxxx(config)# ip dhcp snooping database
```
**ip dhcp snooping binding**

Use the `ip dhcp snooping binding` Privileged EXEC mode command to configure the DHCP Snooping binding database and add dynamic binding entries to the database. Use the `no` form of this command to delete entries from the binding database.

**Syntax**

```
ip dhcp snooping binding mac-address vlan-id ip-address interface-id expiry {seconds | infinite}
no ip dhcp snooping binding mac-address vlan-id
```

**Parameters**

- `mac-address`—Specifies a MAC address.
- `vlan-id`—Specifies a VLAN number.
- `ip-address`—Specifies an IP address.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- `expiry`
  - `seconds`—Specifies the time interval, in seconds, after which the binding entry is no longer valid. (Range: 10–4294967294).
  - `infinite`—Specifies infinite lease time.

**Default Configuration**

No static binding exists.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the `ip dhcp snooping binding` command to add manually a dynamic entry to the DHCP database.

After entering this command, an entry is added to the DHCP Snooping database. If the DHCP Snooping binding file exists, the entry is also added to that file.

The entry would not be added to the configuration files. The entry would be displayed in the show commands as a “DHCP Snooping” entry. An entry added by this command can override the existed dynamic entry. The entry is displayed in the show commands as a DHCP Snooping entry.

Use the `no ip dhcp snooping binding` command to delete manually a dynamic entry from the DHCP database.

A dynamic temporary entries for which the IP address is 0.0.0.0 cannot be deleted.
Example

The following example adds a binding entry to the DHCP Snooping binding database.

```
switchxxxxxx# ip dhcp snooping binding 0060.704C.73FF 23 176.10.1.1 gi1/0/4 expiry 900
```
clear ip dhcp snooping database

Use the clear ip dhcp snooping database Privileged EXEC mode command to clear the DHCP Snooping binding database.

Syntax

clear ip dhcp snooping database

Command Mode

Privileged EXEC mode

Example

The following example clears the DHCP Snooping binding database.

switchxxxxxx# clear ip dhcp snooping database
show ip dhcp snooping

Use the `show ip dhcp snooping` EXEC mode command to display the DHCP snooping configuration for all interfaces or for a specific interface.

**Syntax**

```
show ip dhcp snooping [interface-id]
```

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Command Mode**

User EXEC mode

**Example**

The following example displays the DHCP snooping configuration.

```
switchxxxxxx# show ip dhcp snooping
DHCP snooping is Enabled
DHCP snooping is configured on following VLANs: 21
DHCP snooping database is Enabled
Relay agent Information option 82 is Enabled
Option 82 on untrusted port is allowed
Verification of hwaddr field is Enabled
DHCP snooping file update frequency is configured to: 6666 seconds

+-----------------+-----+
<table>
<thead>
<tr>
<th>Interface</th>
<th>Trusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Yes</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Yes</td>
</tr>
</tbody>
</table>
```


show ip dhcp snooping binding

Use the **show ip dhcp snooping binding** User EXEC mode command to display the DHCP Snooping binding database and configuration information for all interfaces or for a specific interface.

**Syntax**

```
show ip dhcp snooping binding [mac-address mac-address] [ip-address ip-address] [vlan vlan-id] [interface-id]
```

**Parameters**

- **mac-address** _mac-address_—Specifies a MAC address.
- **ip-address** _ip-address_—Specifies an IP address.
- **vlan vlan-id**—Specifies a VLAN ID.
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Command Mode**

User EXEC mode

**Example**

The following examples displays the DHCP snooping binding database and configuration information for all interfaces on a device:-

```
switchxxxxx# show ip dhcp snooping binding
Update frequency: 1200
Total number of binding: 2

<table>
<thead>
<tr>
<th>Mac Address</th>
<th>IP Address</th>
<th>Lease (sec)</th>
<th>Type</th>
<th>VLAN</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0060.704C.73FF</td>
<td>10.1.8.1</td>
<td>7983</td>
<td>snooping</td>
<td>3</td>
<td>gi1/0/1</td>
</tr>
<tr>
<td>0060.704C.7BC1</td>
<td>10.1.8.2</td>
<td>92332</td>
<td>snooping (s)</td>
<td>3</td>
<td>gi1/0/2</td>
</tr>
</tbody>
</table>
```
ip arp inspection

Use the **ip arp inspection** Global Configuration mode command globally to enable Address Resolution Protocol (ARP) inspection. Use the **no** form of this command to disable ARP inspection.

**Syntax**

```
ip arp inspection
no ip arp inspection
```

**Default Configuration**

ARP inspection is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

Note that if a port is configured as an untrusted port, then it should also be configured as an untrusted port for DHCP Snooping, or the IP-address-MAC-address binding for this port should be configured statically. Otherwise, hosts that are attached to this port cannot respond to ARPs.

**Example**

The following example enables ARP inspection on the device.

```
switchxxxxxx(config)# ip arp inspection
```
ip arp inspection vlan

Use the `ip arp inspection vlan` Global Configuration mode command to enable ARP inspection on a VLAN, based on the DHCP Snooping database. Use the `no` form of this command to disable ARP inspection on a VLAN.

**Syntax**

```
ip arp inspection vlan vlan-id
no ip arp inspection vlan vlan-id
```

**Parameters**

- `vlan-id`—Specifies the VLAN ID.

**Default Configuration**

DHCP Snooping based ARP inspection on a VLAN is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command enables ARP inspection on a VLAN based on the DHCP snooping database.

**Example**

The following example enables DHCP Snooping based ARP inspection on VLAN 23.

```
switchxxxxxx(config)# ip arp inspection vlan 23
```
**ip arp inspection validate**

Use the `ip arp inspection validate` Global Configuration mode command to perform specific checks for dynamic Address Resolution Protocol (ARP) inspection. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
ip arp inspection validate
no ip arp inspection validate
```

**Default Configuration**

ARP inspection validation is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

The following checks are performed:

- **Source MAC address**: Compares the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses.

- **Destination MAC address**: Compares the destination MAC address in the Ethernet header against the target MAC address in the ARP body. This check is performed for ARP responses.

- **IP addresses**: Compares the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses.

**Example**

The following example executes ARP inspection validation.

```
switchxxxxxx(config)# ip arp inspection validate
```
ip arp inspection list create

Use the `ip arp inspection list create` Global Configuration mode command to create a static ARP binding list and enters the ARP list configuration mode. Use the `no` form of this command to delete the list.

**Syntax**

```
ip arp inspection list create name
no ip arp inspection list create name
```

**Parameters**

- `name`—Specifies the static ARP binding list name. (Length: 1–32 characters).

**Default Configuration**

No static ARP binding list exists.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `ip arp inspection list assign` command to assign the list to a VLAN.

**Example**

The following example creates the static ARP binding list ‘servers’ and enters the ARP list configuration mode.

```
switchxxxxxx(config)# ip arp inspection list create servers
```
ip mac

Use the **ip mac** ARP-list Configuration mode command to create a static ARP binding. Use the **no** form of this command to delete a static ARP binding.

**Syntax**

```plaintext
ip ip-address mac mac-address
no ip ip-address mac mac-address
```

**Parameters**

- **ip-address** — Specifies the IP address to be entered to the list.
- **mac-address** — Specifies the MAC address associated with the IP address.

**Default Configuration**

No static ARP binding is defined.

**Command Mode**

ARP-list Configuration mode

**Example**

The following example creates a static ARP binding.

```
switchxxxxxx(config)# ip arp inspection list create servers
switchxxxxxx(config-arp-list)# ip 172.16.1.1 mac 0060.704C.7321
switchxxxxxx(config-arp-list)# ip 172.16.1.2 mac 0060.704C.7322
```
ip arp inspection list assign

Use the `ip arp inspection list assign` Global Configuration mode command to assign a static ARP binding list to a VLAN. Use the `no` form of this command to delete the assignment.

**Syntax**

```
ip arp inspection list assign vlan-id name
no ip arp inspection list assign vlan-id
```

**Parameters**

- `vlan-id`—Specifies the VLAN ID.
- `name`—Specifies the static ARP binding list name.

**Default Configuration**

No static ARP binding list assignment exists.

**Command Mode**

Global Configuration mode

**Example**

The following example assigns the static ARP binding list Servers to VLAN 37.

```
switchxxxxxx(config)# ip arp inspection list assign 37 servers
```
ip arp inspection logging interval

Use the `ip arp inspection logging interval` Global Configuration mode command to set the minimum time interval between successive ARP SYSLOG messages. Use the `no` form of this command to restore the default configuration.

**Syntax**

`ip arp inspection logging interval {seconds | infinite}`

`no ip arp inspection logging interval`

**Parameters**

- `seconds`—Specifies the minimum time interval between successive ARP SYSLOG messages. A 0 value means that a system message is immediately generated. (Range: 0–86400)
- `infinite`—Specifies that SYSLOG messages are not generated.

**Default Configuration**

The default minimum ARP SYSLOG message logging time interval is 5 seconds.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the minimum ARP SYSLOG message logging time interval to 60 seconds.

```
switchxxxxx(config)# ip arp inspection logging interval 60
```
show ip arp inspection

Use the **show ip arp inspection** EXEC mode command to display the ARP inspection configuration for all interfaces or for a specific interface.

**Syntax**

`show ip arp inspection [interface-id]`

**Parameters**

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Command Mode**

User EXEC mode

**Example**

The following example displays the ARP inspection configuration.

```
switchxxxxxx# show ip arp inspection
IP ARP inspection is Enabled
IP ARP inspection is configured on following VLANs: 1
Verification of packet header is Enabled
IP ARP inspection logging interval is: 222 seconds
Interface Trusted
---------------------- -----------
gi1/0/1 Yes
gi1/0/2 Yes
```
show ip arp inspection list

Use the **show ip arp inspection list** Privileged EXEC mode command to display the static ARP binding list.

**Syntax**

```plaintext
show ip arp inspection list
```

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the static ARP binding list.

```
switchxxxxxx# show ip arp inspection list
List name: servers
Assigned to VLANs: 1,2

<table>
<thead>
<tr>
<th>IP</th>
<th>ARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>0060.704c.7322</td>
</tr>
<tr>
<td>172.16.1.2</td>
<td>0060.704c.7322</td>
</tr>
</tbody>
</table>
```
show ip arp inspection statistics

Use the `show ip arp inspection statistics` EXEC command to display statistics for the following types of packets that have been processed by this feature: Forwarded, Dropped, IP/MAC Validation Failure.

**Syntax**

```
show ip arp inspection statistics [vlan vlan-id]
```

**Parameters**

- `vlan-id`—Specifies VLAN ID.

**Command Mode**

User EXEC mode

**User Guidelines**

Counters values are kept when disabling the ARP Inspection feature.

**Example**

```
switchxxxxxx# show ip arp inspection statistics
Vlan Forwarded Packets Dropped Packets IP/MAC Failures
---- ----------------- --------------- ---------------
 2 1500 100 80
```
clear ip arp inspection statistics

Use the clear ip arp inspection statistics Privileged EXEC mode command to clear statistics ARP Inspection statistics globally.

Syntax

clear ip arp inspection statistics [vlan vlan-id]

Parameters

• vlan-id—Specifies VLAN ID.

Command Mode

Privileged EXEC mode

Example

switchxxxxxx# clear ip arp inspection statistics
clear ip arp inspection statistics
DHCPv6 Commands

This chapter contains the following sections:

- clear ipv6 dhcp client, on page 372
- ipv6 address dhcp, on page 373
- ipv6 dhcp client information refresh, on page 376
- ipv6 dhcp client information refresh minimum, on page 377
- ipv6 dhcp duid-en, on page 378
- ipv6 dhcp relay destination (Global), on page 379
- ipv6 dhcp relay destination (Interface), on page 381
- show ipv6 dhcp, on page 383
- show ipv6 dhcp interface, on page 384
clear ipv6 dhcp client

To restart DHCP for an IPv6 client on an interface, use the clear ipv6 dhcp client command in Privileged EXEC mode.

Syntax

clear ipv6 dhcp client interface-id

Parameters

• interface-id—Interface identifier.

Command Mode

Privileged EXEC mode

User Guidelines

This command restarts DHCP for an IPv6 client on a specified interface after first releasing and unconfiguring previously-acquired prefixes and other configuration options (for example, Domain Name System [DNS] servers).

Example

The following example restarts the DHCP for IPv6 client on VLAN 100:

switchxxxxxx# clear ipv6 dhcp client vlan 100
ipv6 address dhcp

To enable DHCP for an IPv6 client process and acquire an IPv6 address on an interface, use the `ipv6 address dhcp` command in Interface Configuration mode. To remove the address from the interface, use the `no` form of this command.

**Syntax**

```
ipv6 address dhcp [rapid-commit]
no ipv6 address dhcp
```

**Parameters**

- `rapid-commit`—Allows the two-message exchange method for address assignment.

**Default Configuration**

No IPv6 addresses are acquired from the DHCPv6 server.

**Command Mode**

- Interface (VLAN) Configuration mode
- Interface (Ethernet, Port Channel, OOB) Configuration mode

**User Guidelines**

This command enables IPv6 on an interface (if it is not enabled) and starts the DHCP for IPv6 client process, if this process is not yet running and if an IPv6 interface is enabled on the interface. This command allows an interface to dynamically learn its IPv6 address by using DHCPv6 and enables the DHCPv6 Stateless service.

The `rapid-commit` keyword enables the use of the two-message exchange for address allocation and other configuration. If it is enabled, the client includes the rapid-commit option in a solicit message.

This command allows an interface to dynamically learn its IPv6 address by using DHCPv6.

The DHCPv6 stateless service allows to receive the configuration from a DHCP server, passed in the following options:

- Option 7: `OPTION_PREFERENCE` - The preference value for the server in this message
- Option 12: `OPTION_UNICAST` - The IP address to which the client should send messages delivered using unicast
- Option 23: `OPTION_DNS_SERVERS` - List of DNS Servers IPv6 Addresses
- Option 24: `OPTION_DOMAIN_LIST` - Domain Search List
- Option 31: `OPTION_SNTP_SERVERS` - List of SNTP Servers IPv6 Addresses
- Option 32: `OPTION_INFORMATION_REFRESH_TIME` - Information Refresh Time Option
- Option 41: `OPTION_NEW_POSIX_TIMEZONE` - New Timezone Posix String
- Option 59: `OPT_BOOTFILE_URL` - Configuration Server URL
Option 60: OPT_BOOTFILE_PARAM, the first parameter - Configuration File Path Name

The DHCPv6 client uses the following IAID format based on the interface-id on which it is running:

- Octet 1, bits 7-4: These bits are reserved and must be 0
- Octet 1, Bits 3-0: These bits contain the interface type:
  - 0—VLAN
  - 1—Ethernet port
  - 2—Port channel
  - 3—Tunnel
- Octets 2-4: The octets contain a value depending on the interface type in the network format:
  - VLAN

  Octet 2: Reserved, must be 0
  Octets 3-4: VLAN ID (1-4095)
    - Ethernet port

  Octet 2, bits 7-4: Slot number
  Octet 2, bits 3-0: Port Type:
    - 0—Ethernet
    - 1—Fast Ethernet
    - 2—Giga Ethernet
    - 3—2.5 Giga Ethernet
    - 4—5 Giga Ethernet
    - 5—10 Giga Ethernet
    - 6—12 Giga Ethernet
    - 7—13.6 Giga Ethernet
    - 8—16 Giga Ethernet
    - 9—20 Giga Ethernet
    - 10—40 Giga Ethernet
    - 11—100 Giga Ethernet

  Octet 3: Unit number
  Octet 4: Port number
    - Port channel

  Octets 2-3: Reserved, must be 0
  Octet 4: Port channel number
• Tunnel

Octets 2-3: Reserved, must be 0
Octet 4: Tunnel number

When IPv6 Forwarding is enabled only stateless information is required from a DHCPv6 server.
When IPv6 forwarding is changed from disabled to enabled, IPv6 addresses assigned by a DHCPv6 are removed.
When IPv6 forwarding is changed from enabled to disabled receiving IPv6 addresses from a DHCPv6 server is resumed.

The DHCPv6 client, server, and relay functions are mutually exclusive on an interface.

Example

The following example enables IPv6 on VLAN 100 and acquires an IPv6 address:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 address dhcp
switchxxxxxx(config-if)# exit
```
**ipv6 dhcp client information refresh**

To configure the refresh time for IPv6 client information refresh time on a specified interface if the DHCPv6 server reply does not include the Information Refresh Time, use the `ipv6 dhcp client information refresh` command in Interface Configuration mode. To return to the default value of the refresh time, use the `no` form of this command.

**Syntax**

```
ipv6 dhcp client information refresh seconds | infinite
no ipv6 dhcp client information refresh
```

**Parameters**

- `seconds`—The refresh time, in seconds. The value cannot be less than the minimal acceptable refresh time configured by the `ipv6 dhcp client information refresh` command. The maximum value that can be used is 4,294967,294 seconds (0xFFFFFFFF).
- `infinite`—Infinite refresh time.

**Default Configuration**

The default is 86,400 seconds (24 hours).

**Command Mode**

Interface Configuration mode

**User Guidelines**

The `ipv6 dhcp client information refresh` command specifies the information refresh time. If the server does not send an information refresh time option then a value configured by the command is used.

Use the `infinite` keyword, to prevent refresh, if the server does not send an information refresh time option.

**Example**

The following example configures an upper limit of 2 days:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp client information refresh 172800
switchxxxxxx(config-if)# exit
```
ipv6 dhcp client information refresh minimum

To configure the minimum acceptable refresh time on the specified interface, use the `ipv6 dhcp client information refresh minimum` command in Interface Configuration mode. To remove the configured refresh time, use the `no` form of this command.

**Syntax**

```
ipv6 dhcp client information refresh minimum seconds | infinite
no ipv6 dhcp client information refresh minimum
```

**Parameters**

- `seconds` — The refresh time, in seconds. The minimum value that can be used is 600 seconds. The maximum value that can be used is 4,294,967,294 seconds (0xFFFFFFFF).
- `infinite` — Infinite refresh time.

**Default Configuration**

The default is 86,400 seconds (24 hours).

**Command Mode**

Interface Configuration mode

**User Guidelines**

The `ipv6 dhcp client information refresh minimum` command specifies the minimum acceptable information refresh time. If the server sends an information refresh time option of less than the configured minimum refresh time, the configured minimum refresh time will be used instead.

This command may be configured in the following situations:

- In unstable environments where unexpected changes are likely to occur.
- For planned changes, including renumbering. An administrator can gradually decrease the time as the planned event nears.
- Limit the amount of time before new services or servers are available to the client, such as the addition of a new Simple Network Time Protocol (SNTP) server or a change of address of a Domain Name System (DNS) server.

If you configure the `infinite` keyword client never refreshes the information.

**Example**

The following example configures an upper limit of 2 days:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp client information refresh 172800
switchxxxxxx(config-if)# exit
```
**ipv6 dhcp duid-en**

To set the Vendor Based on Enterprise Number DHVPv6 Unique Identified (DUID-EN) format, use the `ipv6 dhcp duid-en` command in Global Configuration mode.

To return to the default value, use the `no` form of this command.

**Syntax**

```
ipv6 dhcp duid-en enterprise-number identifier
no ipv6 dhcp duid-en
```

**Parameters**

- **enterprise-number** — The vendor’s registered Private Enterprise number as maintained by IANA.
- **identifier** — The vendor-defined non-empty hex string (up to 64 hex characters). If the number of the character is not even ‘0’ is added at the right. Each 2 hex characters can be separated by a period or colon.

**Default Configuration**

DUID Based on Link-layer Address (DUID-LL) is used. The base MAC Address is used as a Link-layer Address.

**Command Mode**

Global Configuration mode

**User Guidelines**

By default, the DHCPv6 uses the DUID Based on Link-layer Address (see RFC3315) with the Base MAC Address as a Link-layer Address.

Use this command to change the DUID format to the Vendor Based on Enterprise Number.

**Example 1.** The following sets the DUID-EN format:

```
ipv6 dhcp duid-en 9 0CC084D303000912
```

**Example 2.** The following sets the DUID-EN format using colons as delimiter:

```
switchxxxxxx(config)# ipv6 dhcp duid-en 9 0C::C0:84:D3:03:00:09:12
```
ipv6 dhcp relay destination (Global)

To specify a globally-defined relay destination address to which client messages are forwarded, use the `ipv6 dhcp relay destination` command in Global Configuration mode. To remove a relay destination address, use the `no` form of this command.

**Syntax**

```
ipv6 dhcp relay destination {ipv6-address [interface-id]} | interface-id
no ipv6 dhcp relay destination [{ipv6-address [interface-id]} | interface-id]
```

**Parameters**

- `ipv6-address [interface-id]`—Relay destination IPv6 address in the form documented in RFC 4291 where the address is specified in hexadecimal using 16-bit values between colons. There are the following types of relay destination address:
  - Link-local Unicast address. A user must specify the `interface-id` argument for this kind of address
  - Global Unicast IPv6 address. If the `interface-id` argument is omitted then the Routing table is used.

- `interface-id`—Interface identifier that specifies the output interface for a destination. If this argument is configured, client messages are forwarded to the well-known link-local Multicast address `All_DHCP_Relay_Agents_and_Servers` (FF02::1:2) through the link to which the output interface is connected.

**Default Configuration**

There is no globally-defined relay destination.

**Command Mode**

Global Configuration mode

**User Guidelines**

The `ipv6 dhcp relay destination` command specifies a destination address to which client messages are forwarded. The address is used by all DHCPv6 relays running on the switch. Up to 100 addresses can be defined.

When a relay service is running on an interface, a DHCP for IPv6 message received on that interface will be forwarded to all configured relay destinations configured per interface and globally. Multiple destinations can be configured on one interface, and multiple output interfaces can be configured for one destination. Unspecified, loopback, and Multicast addresses are not acceptable as the relay destination.

Use the `no` form of the command with the `ipv6-address` and `interface-id` arguments to remove only the given globally-defined address with the given output interface.

Use the `no` form of the command with the `ipv6-address` argument to remove only the given globally-defined address for all output interfaces.

The `no` form of the command without the arguments removes all the globally-defined addresses.
**Example 1.** The following example sets the relay unicast link-local destination address per VLAN 200:

```
switchxxxxxx(config)# ipv6 dhcp relay destination FE80::1:2 vlan 200
```

**Example 2.** The following example sets that client messages are forwarded to VLAN 200:

```
switchxxxxxx(config)# ipv6 dhcp relay destination vlan 200
```

**Example 3.** The following example sets the unicast global relay destination address:

```
switchxxxxxx(config)# ipv6 dhcp relay destination 3002::1:2
```
ipv6 dhcp relay destination (Interface)

To specify a destination address to which client messages are forwarded and to enable DHCP for IPv6 relay service on the interface, use the `ipv6 dhcp relay destination` command in Interface Configuration mode. To remove a relay destination on the interface or to delete an output interface for a destination, use the `no` form of this command.

**Syntax**

```plaintext
ipv6 dhcp relay destination [{ipv6-address [interface-id]} | interface-id]
no ipv6 dhcp relay destination [{ipv6-address [interface-id]} | interface-id]
```

**Parameters**

- `ipv6-address [interface-id]`—Relay destination IPv6 address in the form documented in RFC 4291 where the address is specified in hexadecimal using 16-bit values between colons. There are the following types of relay destination address:
  - Link-local Unicast address. A user must specify the `interface-id` argument for this kind of address
  - Global Unicast IPv6 address. If the `interface-id` argument is omitted then the Routing table is used.

- `interface-id`—Interface identifier that specifies the output interface for a destination. If this argument is configured, client messages are forwarded to the well-known link-local Multicast address `All_DHCP_Relay_Agents_and_Servers` (FF02::1:2) through the link to which the output interface is connected.

**Default Configuration**

The relay function is disabled, and there is no relay destination on an interface.

**Command Mode**

Interface Configuration mode

**User Guidelines**

This command specifies a destination address to which client messages are forwarded, and it enables DHCP for IPv6 relay service on the interface. Up to 10 addresses can be defined per one interface and up to 100 addresses can be defined per switch.

DHCPv6 Relay inserts the Interface-id option if an IPv6 global address is not defined on the interface on which the relay is running. The Interface-id field of the option is the interface name (a value of the `ifName` field of the `ifTable`) on which the relay is running.

When relay service is running on an interface, a DHCP for IPv6 message received on that interface will be forwarded to all configured relay destinations configured per interface and globally.

The incoming DHCP for IPv6 message may have come from a client on that interface, or it may have been relayed by another relay agent.

The relay destination can be a Unicast address of a server or another relay agent, or it may be a Multicast address. There are two types of relay destination addresses:
- A link-local Unicast or Multicast IPv6 address, for which a user must specify an output interface
- A global Unicast IPv6 address. A user can optionally specify an output interface for this kind of address.

If no output interface is configured for a destination, the output interface is determined by routing tables. In this case, it is recommended that a Unicast or Multicast routing protocol be running on the router.

Multiple destinations can be configured on one interface, and multiple output interfaces can be configured for one destination. When the relay agent relays messages to a Multicast address, it sets the hop limit field in the IPv6 packet header to 32. Unspecified, loopback, and node-local Multicast addresses are not acceptable as the relay destination.

Note that it is not necessary to enable the relay function on an interface for it to accept and forward an incoming relay reply message from servers. By default, the relay function is disabled, and there is no relay destination on an interface.

Use the **no** form of the command with arguments to remove a specific address.

Use the **no** form of the command without arguments to remove all the defined addresses and to disable the relay on the interface.

**Example 1.** The following example sets the relay Unicast link-local destination address per VLAN 200 and enables the DHCPv6 Relay on VLAN 100 if it was not enabled:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp relay destination FE80::1:2 vlan 200
switchxxxxxx(config-if)# exit
```

**Example 2.** The following example sets the relay well known Multicast link-local destination address per VLAN 200 and enables the DHCPv6 Relay on VLAN 100 if it was not enabled:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp relay destination vlan 200
switchxxxxxx(config-if)# exit
```

**Example 3.** The following example sets the Unicast global relay destination address and enables the DHCPv6 Relay on VLAN 100 if it was not enabled:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp relay destination 3002::1:2
switchxxxxxx(config-if)# exit
```

**Example 4.** The following example enables DHCPv6 relay on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp relay destination
switchxxxxxx(config-if)# exit
```

**Example 5.** The following example disables DHCPv6 relay on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# no ipv6 dhcp relay destination
switchxxxxxx(config-if)# exit
```
show ipv6 dhcp

To display the Dynamic DHCP unique identifier (DUID) on a specified device, use the `show ipv6 dhcp` command in User EXEC mode. This information is relevant for DHCPv6 clients and DHCPv6 relays.

**Syntax**

show ipv6 dhcp

**Command Mode**

User EXEC mode

**User Guidelines**

This command uses the DUID, which is based on the link-layer address for both client and server identifiers. The device uses the MAC address from the lowest-numbered interface to form the DUID.

**Example 1.** The following is sample output from this command when the switch’s DUID format is vendor based on enterprise number:

```
switchxxxxxx# show ipv6 dhcp
The switch's DHCPv6 unique identifier (DUID) is 0002000000090CC084D303000912
 Format: 2
 Enterprise Number: 9
 Identifier: 0CC084D303000912
```

**Example 2.** The following is sample output from this command when the switch’s DUID format is the vendor-based on link-layer address:

```
switchxxxxxx# show ipv6 dhcp
The switch's DHCPv6 unique identifier (DUID) is 000300010024012607AA
 Format: 3
 Hardware type: 1
 MAC Address: 0024.0126.07AA
```

**Example 3.** The following is sample output from this command when the switch’s DUID format is vendor-based on link-layer address and DHCPv6 Relay is supported:

```
switchxxxxxx# show ipv6 dhcp
The switch's DHCPv6 unique identifier (DUID) is 000300010024012607AA
 Format: 3
 Hardware type: 1
 MAC Address: 0024.0126.07AA
 Relay Destinations:
```
show ipv6 dhcp interface

To display DHCP for IPv6 interface information, use the `show ipv6 dhcp interface` command in User EXEC mode.

**Syntax**

`show ipv6 dhcp interface [interface-id]`

**Parameters**

- `interface-id`—Interface identifier.

**Command Mode**

User EXEC mode

**User Guidelines**

If no interfaces are specified in the command, all interfaces on which DHCP for IPv6 (client or server) is enabled are displayed. If an interface is specified in the command, only information about the specified interface is displayed.

Note. This new output format is supported starting with the SW version supporting statefull configuration.

**Example**

The following is sample output from this command when DHCPv6 client is enabled:

```
switchxxxxxxx# show ipv6 dhcp interface
VLAN 100 is in client mode
 Configuration:
 Statefull Service is enabled (rapid-commit)
 Auto-Configuration is enabled
 Information Refresh Time: 86400 seconds
 Information Refresh Minimum Time: 600 seconds
 State:
 DHCP Operational mode is enabled
 Statefull Service is available
 DHCP server:
 Address: FE80::204:FCFF:FEA1:7439
 DUID: 000300010002FCA17400
 Preference: 20
 IPv6 Address Information:
 IA NA: IA ID 0x00040001, T1 120, T2 192
 IPv6 Address: 30e0::12:45:11
 preferred lifetime: 300, valid lifetime: 54333
 expires at Nov 08 2002 09:11 (54331 seconds)
 renew for address will be sent in 54301 seconds
 IPv6 Address: 3012::13:af:25
 preferred lifetime: 280, valid lifetime: 51111
 expires at Nov 08 2002 08:17 (51109 seconds)
 renew for address will be sent in 5101 seconds
 Stateless Information:
 Information Refresh Time: 86400 seconds
 expires at Nov 08 2002 08:17 (51109 seconds)
 DNS Servers: 1001::1, 2001::10
```
VLAN 105 is in client mode
Configuration:
  Statefull Service is enabled
  Auto-Configuration is disabled
  Information Refresh Time: 86400 seconds
  Information Refresh Minimum Time: 600 seconds
State:
  DHCP Operational mode is enabled
  Statefull Service is not available (IPv6 routing is enabled)
DHCP server:
  Address: FE80::204:FCFF:FEA1:7439
  DUID: 000300010002FCA17400
  Preference: 20
Stateless Information:
  Information Refresh Time: 86400 seconds
  expires at Nov 08 2002 08:17 (51109 seconds)
DNS Servers: 1001::1, 2001::10
DNS Domain Search List: company.com beta.org
SNTP Servers: 2004::1
POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
Configuration Server: config.company.com
Configuration Path Name: qqq/config/aaa_config.dat
Indirect Image Path Name: qqq/config/aaa_image_name.txt

VLAN 107 is in client mode
Configuration:
  Statefull Service is enabled
  Auto-Configuration is enabled
  Information Refresh Time: 86400 seconds
  Information Refresh Minimum Time: 600 seconds
State:
  DHCP Operational mode is enabled
  Statefull Service is not available (IPv6 routing is enabled)
DHCP server:
  Address: FE80::204:FCFF:FEA1:7439
  DUID: 000300010002FCA17400
  Preference: 20
Stateless Information:
  Information Refresh Time: 86400 seconds
  expires at Nov 08 2002 08:17 (51109 seconds)
DNS Servers: 1001::1, 2001::10
DNS Domain Search List: company.com beta.org
SNTP Servers: 2004::1
POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
Configuration Server: config.company.com
Configuration Path Name: qqq/config/aaa_config.dat
Indirect Image Path Name: qqq/config/aaa_image_name.txt

VLAN 110 is in client mode
Configuration:
  Statefull Service is enabled
  Auto-Configuration is disabled
  Information Refresh Time: 86400 seconds
  Information Refresh Minimum Time: 600 seconds
State:
  DHCP Operational mode is disabled (IPv6 is not enabled)

VLAN 1000 is in client mode
Configuration:
  Statefull Service is enabled
  Auto-Configuration is enabled
Information Refresh Time: 86400 seconds
Information Refresh Minimum Time: 600 seconds

State:
  DHCP Operational mode is disabled (Interface status is DOWN)
  DHCP server:
    Address: FE80::204:FCFF:FEA1:7439
    DUID: 000300010002FCA17400
    Preference: 20

Stateless Information:
  Information Refresh Time: 86400 seconds
  expires at Nov 08 2002 08:17 (51109 seconds)
  DNS Servers: 1001::1, 2001::10
  DNS Domain Search List: company.com beta.org
  SNTP Servers: 2004::1
  POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
  Configuration Server: config.company.com
  Configuration Path Name: qqq/config/aaa_config.dat
  Indirect Image Path Name: qqq/config/aaa_image_name.txt

VLAN 1010 is in relay mode
  DHCP Operational mode is enabled
  Relay source interface: VLAN 101
  Relay destinations:
    FE80::250:A2FF:FEBF:A056 via FastEthernet 1/0/10
DNS Client Commands

This chapter contains the following sections:

- clear host, on page 388
- ip domain lookup, on page 389
- ip domain name, on page 390
- ip domain polling-interval, on page 391
- ip domain retry, on page 392
- ip domain timeout, on page 393
- ip host, on page 394
- ip name-server, on page 395
- show hosts, on page 396
clear host

Use the **clear host** command in privileged EXEC mode to delete dynamic hostname-to-address mapping entries from the DNS client name-to-address cache.

**Syntax**

```
clear host [hostname | *]
```

**Parameters**

- **hostname**—Name of the host for which hostname-to-address mappings are to be deleted from the DNS client name-to-address cache.
- ****—Specifies that all the dynamic hostname-to-address mappings are to be deleted from the DNS client name-to-address cache.

**Default Configuration**

No hostname-to-address mapping entries are deleted from the DNS client name-to-address cache.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

To remove the dynamic entry that provides mapping information for a single hostname, use the `hostname` argument. To remove all the dynamic entries, use the `*` keyword.

To define a static hostname-to-address mappings in the DNS hostname cache, use the `ip host`, on page 394 command.

To delete a static hostname-to-address mappings in the DNS hostname cache, use the `no ip host`, on page 394 command.

**Example**

The following example deletes all dynamic entries from the DNS client name-to-address cache.

```
switchxxxxxx# clear host *
```
ip domain lookup

Use the **ip domain lookup** command in Global Configuration mode to enable the IP Domain Naming System (DNS)-based host name-to-address translation.

To disable the DNS, use the **no** form of this command.

**Syntax**

*ip domain lookup*

*no ip domain lookup*

**Default Configuration**

Enabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables DNS-based host name-to-address translation.

```
switchxxxxxx(config)# ip domain lookup
```
ip domain name

Use the **ip domain name** command in Global Configuration mode. to define a default domain name that the switch uses to complete unqualified hostnames (names without a dotted-decimal domain name).

To delete the static defined default domain name, use the **no** form of this command.

**Syntax**

```
ip domain name name
no ip domain name
```

**Parameters**

*name*—Default domain name used to complete unqualified host names. Do not include the initial period that separates an unqualified name from the domain name. Length: 1–158 characters. Maximum label length of each domain level is 63 characters.

**Default Configuration**

No default domain name is defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

Any IP hostname that does not contain a domain name (that is, any name without a dot) will have the dot and the default domain name appended to it before being added to the host table.

Domain names and host names are restricted to the ASCII letters A through Z (case-insensitive), the digits 0 through 9, the underscore and the hyphen. A period (.) is used to separate labels.

The maximum size of each domain level is 63 characters. The maximum name size is 158 bytes.

**Example**

The following example defines the default domain name as ‘www.website.com’.

```
switchxxxxxxx(config)# ip domain name website.com
```
ip domain polling-interval

Use the *ip domain polling-interval* command in Global Configuration mode to specify the polling interval. Use the *no* form of this command to return to the default behavior.

**Syntax**

- `ip domain polling-interval` *seconds*
- `no ip domain polling-interval`

**Parameters**

- *seconds*—Polling interval in seconds. The range is from (2*(R+1)*T) to 3600.

**Default Configuration**

The default value is 2 * (R+1) * T, where

- R is a value configured by the *ip domain retry* command.
- T is a value configured by the *ip domain timeout* command.

**Command Mode**

Global Configuration mode

**User Guidelines**

Some applications communicate with the given IP address continuously. DNS clients for such applications, which have not received resolution of the IP address or have not detected a DNS server using a fixed number of retransmissions, return an error to the application and continue to send DNS Request messages for the IP address using the polling interval.

**Example**

The following example shows how to configure the polling interval of 100 seconds:

```
switchxxxxxx(config)# ip domain polling-interval 100
```
ip domain retry

Use the **ip domain retry** command in Global Configuration mode to specify the number of times the device will send Domain Name System (DNS) queries when there is no replay.

To return to the default behavior, use the **no** form of this command.

**Syntax**

```
ip domain retry number
no ip domain retry
```

**Parameters**

- **number**—Number of times to retry sending a DNS query to the DNS server. The range is from 0 to 16.

**Default Configuration**

The default value is 1.

**Command Mode**

Global Configuration mode

**User Guidelines**

The number argument specifies how many times the DNS query will be sent to a DNS server until the switch decides that the DNS server does not exist.

**Example**

The following example shows how to configure the switch to send out 10 DNS queries before giving up:

```
switchxxxxxx(config)# ip domain retry 10
```
ip domain timeout

Use the `ip domain timeout` command in Global Configuration mode to specify the amount of time to wait for a response to a DNS query.

To return to the default behavior, use the `no` form of this command.

**Syntax**

`ip domain timeout` seconds

`no ip domain timeout`

**Parameters**

`seconds`—Time, in seconds, to wait for a response to a DNS query. The range is from 1 to 60.

**Default Configuration**

The default value is 2 seconds.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the command to change the default time out value. Use the `no` form of this command to return to the default time out value.

**Example**

The following example shows how to configure the switch to wait 50 seconds for a response to a DNS query:

```
switchxxxxxx(config)# ip domain timeout 50
```
ip host

Use the ip host Global Configuration mode command to define the static host name-to-address mapping in the DNS host name cache.

Use the no form of this command to remove the static host name-to-address mapping.

Syntax

ip host hostname address1 [address2...address8]
no ip host name ip host name [address1...address8]

Parameters

• hostname—Name of the host. (Length: 1–158 characters. Maximum label length of each domain level is 63 characters).

• address1—Associated host IP address (IPv4 or IPv6, if IPv6 stack is supported).

• address2...address8—Up to seven additional associated IP addresses, delimited by a single space (IPv4 or IPv6, if IPv6 stack is supported).

Default Configuration

No host is defined.

Command Mode

Global Configuration mode

User Guidelines

Host names are restricted to the ASCII letters A through Z (case-insensitive), the digits 0 through 9, the underscore and the hyphen. A period (.) is used to separate labels.

An IP application will receive the IP addresses in the following order:

1. IPv6 addresses in the order specified by the command.

2. IPv4 addresses in the order specified by the command.

Use the no format of the command with the address1...address8 argument to delete the specified addresses. The entry is deleted if all its addresses are deleted.

Example

The following example defines a static host name-to-address mapping in the host cache.

switchxxxxxx(config)# ip host accounting.website.com 176.10.23.1
**ip name-server**

Use the **ip name-server** command in Global Configuration mode to specify the address of one or more name servers to use for name and address resolution.

Use the **no** form of this command to remove the static specified addresses.

**Syntax**

```
ip name-server server1-address [server-address2...server-address8]
no ip name-server [server-address1...server-address8]
```

**Parameters**

- `server-address1` — IPv4 or IPv6 addresses of a single name server.
- `server-address2...server-address8` — IPv4 or IPv6 addresses of additional name servers.

**Default Configuration**

No name server IP addresses are defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

The preference of the servers is determined by the order in which they were entered.

Each **ip name-server** command replaces the configuration defined by the previous one (if one existed).

**Example**

The following example shows how to specify IPv4 hosts 172.16.1.111, 172.16.1.2, and IPv6 host 2001:0DB8::3 as the name servers:

```
switchxxxxxx(config)# ip name-server 172.16.1.111 172.16.1.2 2001:0DB8::3
```
show hosts

Use the show hosts command in privileged EXEC mode to display the default domain name, the style of name lookup service, a list of name server hosts, and the cached list of hostnames and addresses.

Syntax

show hosts [all | hostname]

Parameters

- all—The specified host name cache information is to be displayed for all configured DNS views. This is the default.
- hostname—The specified host name cache information displayed is to be limited to entries for a particular host name.

Command Mode

Privileged EXEC mode

Default Configuration

Default is all.

User Guidelines

This command displays the default domain name, a list of name server hosts, and the cached list of host names and addresses.

Example

The following is sample output with no parameters specified:

```
switchxxxxxx# show hosts
Name/address lookup is enabled
Domain Timeout: 3 seconds
Domain Retry: 4 times
Domain Polling Interval: 10 seconds
Default Domain Table
Source Interface Preference Domain
static website.com
dhcpv6 vlan 100 1 qqtca.com
dhcpv6 vlan 100 2 company.com
dhcpv6 vlan 1100 1 pptca.com
Name Server Table
Source Interface Preference IP Address
static 1 192.0.2.204
static 2 192.0.2.205
static 3 192.0.2.105
DHCPv6 vlan 100 1 2002:0:22AC::11:231A:0BB4
DHCPv4 vlan 1 1 192.1.122.20
DHCPv4 vlan 1 2 154.1.122.20
Cache Table
Flags: (static/dynamic, OK/Ne/??)
OK - Okay, Ne - Negative Cache, ?? - No Response
```
Host Flag Address;Age...in preference order
example1.company.com (dynamic, OK) 2002::130F::0A0::51BB4;1 112.0.2.10 176.16.8.8;123
124 173.0.2.30;39
example2.company.com (dynamic, ??)
example3.company.com (static, OK) 120.0.2.27
example4.company.com (dynamic, OK) 24 173.0.2.30;15
example5.company.com (dynamic, Ne); 12
show hosts
EEE Commands

This chapter contains the following sections:

- `eee enable (global)`, on page 400
- `eee enable (interface)`, on page 401
- `eee lldp enable`, on page 402
- `show eee`, on page 403
eee enable (global)

To enable the EEE mode globally, use the `eee enable` Global Configuration command. To disable the mode, use the `no` format of the command.

**Syntax**

`eee enable`

`no eee enable`

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Enabled

**Command Mode**

Global Configuration mode

**User Guidelines**

In order for EEE to work, the device at the other end of the link must also support EEE and have it enabled. In addition, for EEE to work properly, auto-negotiation must be enabled; however, if the port speed is negotiated as 1Giga, EEE always works regardless of whether the auto-negotiation status is enabled or disabled.

If auto-negotiation is not enabled on the port and its speed is less than 1 Giga, the EEE operational status is disabled.

**Example**

```
switchxxxxxx(config)# eee enable
```
**eee enable (interface)**

To enable the EEE mode on an Ethernet port, use the `eee enable` Interface Configuration command. To disable the mode, use the `no` format of the command.

**Syntax**

```
eee enable
no eee enable
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

EEE is enabled.

**Command Mode**

Interface (Ethernet) Configuration mode

**User Guidelines**

If auto-negotiation is not enabled on the port and its speed is 1 Giga, the EEE operational status is disabled.

**Example**

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# eee enable
```
**eee lldp enable**

To enable EEE support by LLDP on an Ethernet port, use the `eee lldp enable` Interface Configuration command. To disable the support, use the `no` format of the command.

**Syntax**

```
eee lldp enable
no eee lldp enable
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Enabled

**Command Mode**

Interface (Ethernet) Configuration mode

**User Guidelines**

Enabling EEE LLDP advertisement enables devices to choose and change system wake-up times in order to get the optimal energy saving mode.

**Example**

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# eee lldp enable
```
show eee

Use the show eee EXEC command to display EEE information.

**Syntax**

```
show eee [interface-id]
```

**Parameters**

- **interface-id** (Optional) Specify an Ethernet port.

**Defaults**

None

**Command Mode**

Privileged EXEC mode

**User Guidelines**

If the port is a 10G port, but the link speed is 1G, the EEE Remote status cannot be resolved (and displayed).

**Example 1** - The following displays brief Information about all ports.

```
switchxxxxxx# show eee
EEE globally enabled
EEE Administrate status is enabled on ports: gi1/0/1-2, gi1/0/4
EEE Operational status is enabled on ports: gi1/0/1-2, gi1/0/4
EEE LLDP Administrate status is enabled on ports: gi1/0/1-3
EEE LLDP Operational status is enabled on ports: gi1/0/1-2
```

**Example 2** - The following is the information displayed when a port is in the Not Present state; no information is displayed if the port supports EEE.

```
switchxxxxxx# show eee gi1/0/1
Port Status: notPresent
EEE Administrate status: enabled
EEE LLDP Administrate status: enabled
```

**Example 3** - The following is the information displayed when the port is in status DOWN.

```
switchxxxxxx# show eee gi1/0/1
Port Status: DOWN
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 Speed 10G: EEE not supported
EEE Administrate status: enabled
EEE LLDP Administrate status: enabled
```

**Example 4** - The following is the information displayed when the port is in status UP and does not support EEE.

```
switchxxxxxx# show eee gi1/0/2
Port Status: UP
EEE capabilities:
```
Example 5 - The following is the information displayed when the neighbor does not support EEE.

```
switchxxxxxx# show eee gi1/0/4
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Remote status: disabled
EEE Administrate status: enabled
EEE Operational status: disabled (neighbor does not support)
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled
```

Example 6 - The following is the information displayed when EEE is disabled on the port.

```
switchxxxxxx# show eee gi1/0/1
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Administrate status: disabled
EEE Operational status: disabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled
```

Example 7 - The following is the information displayed when EEE is running on the port, and EEE LLDP is disabled.

```
switchxxxxxx# show eee gi1/0/2
Port Status: UP
EEE capabilities:
 Speed 10M: EEE not supported
 Speed 100M: EEE supported
 Speed 1G: EEE supported
 Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: disabled
EEE LLDP Operational status: disabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Resolved Timer: 20 usec
Local Rx Timer: 20 usec
```

Example 8 - The following is the information displayed when EEE and EEE LLDP are running on the port.
switchxxxxx# show eee gi1/0/3
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: enabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Remote Rx Timer: 5 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec
Remote Tx Timer: 25 usec

Example 9 - The following is the information displayed when EEE is running on the port, EEE LLDP is enabled but not synchronized with the remote link partner.

switchxxxxx# show eee gi1/0/4
Port Status: up
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled
Resolved Tx Timer: 64
Local Tx Timer: 64
Resolved Rx Timer: 16
Local Rx Timer: 16

Example 10 - The following is the information displayed when EEE and EEE LLDP are running on the port.

switchxxxxx# show eee gi1/0/3
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1000Mbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: enabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Remote Rx Timer: 5 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec
Remote Tx Timer: 25 usec
show eee
Ethernet Configuration Commands

This chapter contains the following sections:

- interface, on page 408
- interface range, on page 409
- shutdown, on page 410
- operation time, on page 412
- description, on page 413
- speed, on page 414
- duplex, on page 415
- negotiation, on page 416
- flowcontrol, on page 417
- mdix, on page 418
- back-pressure, on page 419
- port jumbo-frame, on page 420
- link-flap prevention, on page 421
- clear counters, on page 422
- set interface active, on page 423
- errdisable recovery cause, on page 424
- errdisable recovery interval, on page 425
- errdisable recovery reset, on page 426
- show interfaces configuration, on page 427
- show interfaces status, on page 428
- show interfaces advertise, on page 429
- show interfaces description, on page 431
- show interfaces counters, on page 432
- show ports jumbo-frame, on page 434
- show link-flap prevention, on page 435
- show errdisable recovery, on page 436
- show errdisable interfaces, on page 437
- clear switchport monitor, on page 438
- show switchport monitor, on page 439
To enter Interface configuration mode in order to configure an interface, use the `interface` Global Configuration mode command.

**Syntax**

```
interface interface-id
```

**Parameters**

`interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, port-channel, VLAN, range, OOB, IP interface or tunnel.

**Command Mode**

Global Configuration mode

**Example 1**—For Ethernet ports:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)#
```

**Example 2**—For port channels (LAGs):

```
switchxxxxxx(config)# interface po1
switchxxxxxx(config-if)#
```
interface range

To execute a command on multiple ports at the same time, use the interface range command.

Syntax

interface range interface-id-list

Parameters

interface-id-list—Specify list of interface IDs. The interface ID can be one of the following types: Ethernet port, VLAN, or port-channel

Command Mode

Interface (Ethernet, Port Channel, VLAN) Configuration mode

User Guidelines

Commands under the interface range context are executed independently on each interface in the range. If the command returns an error on one of the interfaces, it does not stop the execution of the command on other interfaces.

Example

switchxxxxxx(config)# interface range gi1/0/1-4
switchxxxxxx(config-if-range)#
shutdown

To disable an interface, use the shutdown Interface Configuration mode command. To restart a disabled interface, use the no form of this command.

Syntax

    shutdown
    no shutdown

Parameters

This command has no arguments or keywords.

Default Configuration

The interface is enabled.

Command Mode

Interface Configuration mode

User Guidelines

The shutdown command set a value of ifAdminStatus (see RFC 2863) to DOWN. When ifAdminStatus is changed to DOWN, ifOperStatus will be also changed to DOWN.

The DOWN state of ifOperStatus means that the interface does not transmit/receive messages from/to higher levels. For example, if you shut down a VLAN, on which an IP interface is configured, bridging into the VLAN continues, but the switch cannot transmit and receive IP traffic on the VLAN.

Notes:

- If the switch shuts down an Ethernet port it additionally shuts down the port MAC sublayer too.
- If the switch shuts down a port channel it additionally shuts down all ports of the port channel too.

Example 1—The following example disables gi1/0/4 operations.

```plaintext
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# shutdown
```

Example 2—The following example restarts the disabled Ethernet port.

```plaintext
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# no shutdown
```

Example 3—The following example shuts down vlan 100.

```plaintext
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# shutdown
```

Example 4—The following example shuts down tunnel 1.
Example 5—The following example shuts down Port Channel 3.

```
switchxxxxx(config)# interface po3
switchxxxxx(config-if)# shutdown
switchxxxxx(config-if)#
```
operation time

To control the time that the port is up, use the operation time Interface (Ethernet, Port Channel) Configuration mode command. To cancel the time range for the port operation time, use the no form of this command.

Syntax

operation time time-range-name

no operation time

Parameters

- time-range-name—Specifies a time range the port operates (in up state). When the Time Range is not in effect, the port is shutdown. (Range: 1–32 characters)

Default Configuration

There is no time range configured on the port authorized state.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

It is recommended to disable spanning tree or to enable spanning-tree PortFast mode on 802.1x edge ports (ports in auto state that are connected to end stations), in order to proceed to the forwarding state immediately after successful authentication.

Example

The operation time command influences the port if the port status is up. This command defines the time frame during which the port stays up and at which time the port will be shutdown. While the port is in shutdown because of other reasons, this command has no effect.

The following example activates an operation time range (named "morning") on port gi1/0/1.

switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# operation_time morning
description

To add a description to an interface, use the `description` Interface (Ethernet, Port Channel) Configuration mode command. To remove the description, use the `no` form of this command.

**Syntax**

```
description string
no description
```

**Parameters**

- `string`—Specifies a comment or a description of the port to assist the user. (Length: 1–64 characters).

**Default Configuration**

The interface does not have a description.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example adds the description ‘SW#3’ to gi1/0/4.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# description SW#3
```
speed

To configure the speed of a given Ethernet interface when not using auto-negotiation, use the `speed` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

**Syntax**

```
speed {100 | 1000 | 2500 | 5000 | 10000}
```

```no
 speed
```

**Parameters**

- `100`—Forces 100 Mbps operation
- `1000`—Forces 1000 Mbps operation
- `2500`—Forces 2500 Mbps operation
- `5000`—Forces 5000 Mbps operation
- `10000`—Forces 10000 Mbps operation

**Default Configuration**

The port operates at its maximum speed capability.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

The `no speed` command in a port-channel context returns each port in the port-channel to its maximum capability.

**Example**

The following example configures the speed of gi1/0/4 to 100 Mbps operation.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# speed 100
```
**duplex**

To configure the full/half duplex operation of a given Ethernet interface when not using auto-negotiation, use the `duplex` Interface (Ethernet, Port Channel) Configuration mode command. To restore the default configuration, use the `no` form of this command.

**Syntax**

```plaintext
duplex {half | full}
no duplex
```

**Parameters**

- `half`—Forces half-duplex operation.
- `full`—Forces full-duplex operation.

**Default Configuration**

The interface operates in full duplex mode.

**Command Mode**

Interface (Ethernet) Configuration mode

**Example**

The following example configures gi1/0/1 to operate in full duplex mode.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# duplex full
```
To enable auto-negotiation operation for the speed and duplex parameters and master-slave mode of a given interface, use the **negotiation** Interface (Ethernet, Port Channel) Configuration mode command. To disable auto-negotiation, use the **no** form of this command.

**Syntax**

```plaintext
negotiation [capability [capability2... capability5]] [preferred {master | slave}]
no negotiation
```

**Parameters**

- **Capability**—(Optional) Specifies the capabilities to advertise. (Possible values: 10h, 10f, 100h,100f, 1000f, 2500f, 5000f, 10000f).
  - 10h—Advertise 10 half-duplex
  - 10f—Advertise 10 full-duplex
  - 100h—Advertise 100 half-duplex
  - 100f—Advertise 100 full-duplex
  - 1000f—Advertise 1000 full-duplex
  - 2500f—Advertise 2500 full-duplex
  - 5000f—Advertise 5000 full-duplex
  - 10000f—Advertise 10000 full-duplex

- **Preferred**—(Optional) Specifies the master-slave preference:
  - Master—Advertise master preference
  - Slave—Advertise slave preference

**Default Configuration**

If capability is unspecified, defaults to list of all the capabilities of the port and preferred slave mode.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example enables auto-negotiation on gi1/0/1.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# negotiation
```
To configure the Flow Control on a given interface, use the `flowcontrol` Interface (Ethernet, Port Channel) Configuration mode command. To disable Flow Control, use the `no` form of this command.

**Syntax**

```
flowcontrol /auto | on | off/
no flowcontrol
```

**Parameters**

- `auto`—Specifies auto-negotiation of Flow Control.
- `on`—Enables Flow Control.
- `off`—Disables Flow Control.

**Default Configuration**

Flow control is set to Disabled.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

Use the `negotiation` command to enable `flow control auto`.

**Example**

The following example enables Flow Control on port gi1/0/1

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# flowcontrol on
```
To enable cable crossover on a given interface, use the `mdix` Interface (Ethernet) Configuration mode command. To disable cable crossover, use the `no` form of this command.

**Syntax**

`mdix /on | auto/`

`no mdix`

**Parameters**

- **on**—Enables manual MDIX.
- **auto**—Enables automatic MDI/MDIX.

**Default Configuration**

The default setting is Auto.

**Command Mode**

Interface (Ethernet) Configuration mode

**Example**

The following example enables automatic crossover on port gi1/0/1.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# mdix auto
```
**back-pressure**

To enable back pressure on a specific interface, use the `back-pressure` Interface (Ethernet) Configuration mode command. To disable back pressure, use the `no` form of this command.

**Syntax**

```
back-pressure
no back-pressure
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Back pressure is disabled.

**Command Mode**

Interface (Ethernet) Configuration mode

**User Guidelines**

Back-pressure cannot be enabled when EEE is enabled.

**Example**

The following example enables back pressure on port gi1/0/1.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# back-pressure
```
port jumbo-frame

To enable jumbo frames on the device, use the `port jumbo-frame` Global Configuration mode command. To disable jumbo frames, use the `no` form of this command.

**Syntax**
```
port jumbo-frame
no port jumbo-frame
```

**Parameters**
This command has no arguments or keywords.

**Default Configuration**
Jumbo frames are disabled on the device.

**Command Mode**
Global Configuration mode

**User Guidelines**
This command takes effect only after resetting the device.

**Example**
The following example enables jumbo frames on the device.
```
switchxxxxx(config)# port jumbo-frame
```
link-flap prevention

To enable setting a physical interface to err-disable state due to excessive link flapping, use the `link-flap prevention` Global Configuration mode command. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
link-flap prevention {enable | disable}
no link-flap prevention
```

**Parameters**

- `enable`—Enables Link-flap Prevention.
- `disable`—Disables Link-flap Prevention.

**Default Configuration**

Link-flap prevention is enabled on the device.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command will shutdown Ethernet (Physical) interfaces if the interface experienced, for a duration of 10 seconds, 3 link flaps (link status changes) within each second.

**Example**

The following example enables link-flap prevention on the device.

```
switchxxxxxx(config)# link-flap prevention
```
clear counters

To clear counters on all or on a specific interface, use the `clear counters` Privileged EXEC mode command.

**Syntax**

`clear counters [interface-id]`

**Parameters**

`interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

**Default Configuration**

All counters are cleared.

**Command Mode**

Privileged EXEC mode

**Example**

The following example clears the statistics counters for gi1/0/1.

```
switchxxxxxx# clear counters gi1/0/1
```
set interface active

To reactivate an interface that was shut down, use the set interface active Privileged EXEC mode command.

Syntax
set interface active interface-id

Parameters
interface-id — Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

Command Mode
Privileged EXEC mode

User Guidelines
This command is used to activate interfaces that were configured to be active, but were shut down by the system.

Example
The following example reactivates gi1/0/1.

switchxxxxxx# set interface active gi1/0/1
errdisable recovery cause

To enable automatic re-activation of an interface after an Err-Disable shutdown, use the `errdisable recovery cause` Global Configuration mode command. To disable automatic re-activation, use the `no` form of this command.

**Syntax**

```
errdisable recovery cause {all | port-security | dot1x-src-address | acl-deny | stp-bpdu-guard | stp-loopback-guard | loopback-detection | udld | storm-control | link-flap }
```

```
no errdisable recovery cause {all | port-security | dot1x-src-address | acl-deny | stp-bpdu-guard | stp-loopback-guard | loopback-detection | udld | storm-control | link-flap }
```

**Parameters**

- **all**—Enables the error recovery mechanism for all reasons described below.
- **port-security**—Enables the error recovery mechanism for the port security Err-Disable state.
- **dot1x-src-address**—Enables the error recovery mechanism for the 802.1x Err-Disable state.
- **acl-deny**—Enables the error recovery mechanism for the ACL Deny Err-Disable state.
- **stp-bpdu-guard**—Enables the error recovery mechanism for the STP BPDU Guard Err-Disable state.
- **stp-loopback-guard**—Enables the error recovery mechanism for the STP Loopback Guard Err-Disable state.
- **loopback-detection**—Enables the error recovery mechanism for the Loopback Detection Err-Disable state.
- **udld**—Enables the error recovery mechanism for the UDLD Shutdown state.
- **storm-control**—Enables the error recovery mechanism for the Storm Control Shutdown state.
- **link-flap**—Enables the error recovery mechanism for the link-flap prevention Err-Disable state.

**Default Configuration**

Automatic re-activation is disabled, except for link-flap reason where automatic re-creation is enabled by default.

**Command Mode**

Global Configuration mode

**Example**

The following example enables automatic re-activation of an interface after all states.

```
switchxxxxxx(config)# errdisable recovery cause all
```
errdisable recovery interval

To set the error recovery timeout interval use the `errdisable recovery interval` Global Configuration mode command. To return to the default configuration, use the `no` form of this command.

**Syntax**

```
errdisable recovery interval seconds
no errdisable recovery interval
```

**Parameters**

- `seconds`—Specifies the error recovery timeout interval in seconds. (Range: 30–86400)

**Default Configuration**

The default error recovery timeout interval is 300 seconds.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the error recovery timeout interval to 10 minutes.

```
switchxxxxxx (config)# errdisable recovery interval 600
```
errdisable recovery reset

To reactivate one or more interfaces that were shut down by a given application, use the `errdisable recovery reset` Privileged EXEC mode command. A single interface, multiple interfaces or all interfaces can be specified.

**Syntax**

```
errdisable recovery reset {all | port-security | dot1x-src-address | acl-deny | stp-bpdu-guard | stp-loopback-guard | loopback-detection | udld | storm-control | link-flap | interface interface-id}
```

**Parameters**

- **all**: Reactivate all interfaces regardless of their state.
- **port-security**: Reactivate all interfaces in the Port Security Err-Disable state.
- **dot1x-src-address**: Reactivate all interfaces in the 802.1x Err-Disable state.
- **acl-deny**: Reactivate all interfaces in the ACL Deny Err-Disable state.
- **stp-bpdu-guard**: Reactivate all interfaces in the STP BPDU Guard Err-Disable state.
- **stp-loopback-guard**: Reactivate all interfaces in the STP Loopback Guard Err-Disable state.
- **loopback-detection**: Reactivate all interfaces in the Loopback Detection Err-Disable state.
- **udld**: Reactivate all interfaces in the UDLD Shutdown state.
- **storm-control**: Reactivate all interfaces in the Storm Control Shutdown state.
- **link-flap**: Reactivate all interfaces in the link-flap prevention Err-Disable state.
- **interface interface-id**: Reactivate interfaces that were configured to be active, but were shut down by the system.

**Command Mode**

Privileged EXEC mode

**Example 1**—The following example reactivates interface gi1/0/1:

```
switchxxxxxx# errdisable recovery reset interface gi1/0/1
```

**Example 2**—The following example reactivates all interfaces regardless their state:

```
switchxxxxxx# errdisable recovery reset all
```

**Example 3**—The following example enables all interfaces in the port security Err-Disable state

```
switchxxxxxx# errdisable recovery reset port-security
```
show interfaces configuration

To display the configuration for all configured interfaces or for a specific interface, use the show interfaces configuration Privileged EXEC mode command.

Syntax

show interfaces configuration [interface-id | detailed]

Parameters

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the configuration of all configured interfaces:

```
switchxxxxxx# show interfaces configuration

Flow Admin Back Mdix
Port Type Duplex Speed Neg control State Pressure Mode
------- ------- ------ ------ ------ -------- -------- --------
gi1/0/1 1G-Copper Full 1000 Enabled Off Up Disabled Off
gi1/0/2 1G-Copper Full 1000 Disabled Off Up Disabled Off
gi1/0/2 10G-Copper Full 10000 Disabled Off Up Disabled Off
gi1/0/3 10G-Copper Full 2500 Disabled Off Up Disabled Off
gi1/0/4 10G-Copper Full 5000 Disabled Off Up Disabled Off

Flow Admin
PO Type Speed Neg Control State
------- ------- ------ ------ -------- --------
P01 Disabled Off Up
```
show interfaces status

To display the status of all interfaces or of a specific interface, use the `show interfaces status` Privileged EXEC mode command.

**Syntax**

```
show interfaces status [interface-id | detailed]
```

**Parameters**

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

**Command Mode**

Privileged EXEC mode

**Default Configuration**

Display for all interfaces. If detailed is not used, only present ports are displayed.

**Example**

The following example displays the status of all configured interfaces.

```
switchxxxxxx# show interfaces status
Flow Link Back Mdix
Port Type Duplex Speed Neg ctrl State Pressure Mode ------ ------- -------- ---- ------ -------- ---- ------ -------- --
 gi1/0/1 1G-Copper Full 1000 Disabled Off Up Disabled Off
 gi1/0/2 1G-Copper -- -- -- -- Down -- --
 te1/0/1 10G-Copper -- 2500 -- -- Down -- --
Flow Link
PO Type Duplex Speed Neg control State
------ ------- -------- ---- ------ -------- ---- ------ -------- ----
 Po1 1G Full 10000 Disabled Off Up
*: The interface was suspended by the system.
```
show interfaces advertise

To display auto-negotiation advertisement information for all configured interfaces or for a specific interface, use the show interfaces advertise Privileged EXEC mode command.

**Syntax**

show interfaces advertise [interface-id | detailed]

**Parameters**

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

**Default Configuration**

Display for all interfaces. If detailed is not used, only present ports are displayed.

**Command Mode**

Privileged EXEC mode

**Examples**

The following examples display auto-negotiation information.

```
switchxxxxxx# show interfaces advertise

Operational Link Advertisement

1000f, 100f, 10f, 10h
1000f

Port: gi1/0/1
Type: 1G-Copper
Link state: Up
Auto Negotiation: enabled
Preference: Master

10G
--
yes

5G
--
yes

2.5G
--
yes

1G
--
yes

100f
--
yes

100h
--
yes

10f
--
yes

10h
--
yes

Oper Local link Advertisement
Oper Local link Advertisement
Remote Local link Advertisement
Priority Resolution
```

```
switchxxxxxx# show interfaces advertise gi1/0/1
Port: gi1/0/1
Type: 1G-Copper
Link state: Up
Auto Negotiation: enabled
Preference: Master

Admin Local link Advertisement
Oper Local link Advertisement
Remote Local link Advertisement
Priority Resolution
```

```
<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Neg</th>
<th>Preferred</th>
<th>Operational Link Advertisement</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>1G-Copper</td>
<td>Enable</td>
<td>Master</td>
<td>1000f, 100f, 10f, 10h</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>1G-Copper</td>
<td>Enable</td>
<td>Slave</td>
<td>1000f</td>
</tr>
<tr>
<td>tw1/03</td>
<td>2.5G-Copper</td>
<td>Enable</td>
<td>Slave</td>
<td>2500f, 1000f, 100f, 100h</td>
</tr>
<tr>
<td>te1/0/1</td>
<td>10G-Copper</td>
<td>Enable</td>
<td>Slave</td>
<td>10000f, 5000f, 2500f, 1000f</td>
</tr>
</tbody>
</table>
```
show interfaces advertise

Port: gi1/0/1
Type: 1G-Copper
Link state: Up
Auto negotiation: disabled.
show interfaces description

To display the description for all configured interfaces or for a specific interface, use the `show interfaces description` Privileged EXEC mode command.

Syntax

`show interfaces description [interface-id | detailed]`

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display description for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the description of all configured interfaces.

```
switchxxxxxx# show interfaces description

<table>
<thead>
<tr>
<th>Port</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Port that should be used for management only</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td></td>
</tr>
<tr>
<td>gi1/0/3</td>
<td></td>
</tr>
<tr>
<td>gi1/0/4</td>
<td></td>
</tr>
<tr>
<td>Po1</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Output</td>
</tr>
</tbody>
</table>
```
show interfaces counters

To display traffic seen by all the physical interfaces or by a specific interface, use the **show interfaces counters** Privileged EXEC mode command.

**Syntax**

```
show interfaces counters [interface-id | detailed]
```

**Parameters**

- **interface-id**  — (Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **detailed**  — (Optional) Displays information for non-present ports in addition to present ports.

**Default Configuration**

Display counters for all interfaces. If detailed is not used, only present ports are displayed.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays traffic seen by all the physical interfaces.

```
switchxxxxxx# show interfaces counters gi1/0/1
Port InUcastPkts InMcastPkts InBcastPkts InOctets
---------- ------------ ----------- ----------- ----------
gi1/0/1 0 0 0 0
Port OutUcastPkts OutMcastPkts OutBcastPkts OutOctets
---------- ----------- ----------- ----------- ----------
gi1/0/1 0 1 35 7051
FCS Errors: 0
Single Collision Frames: 0
Multiple Collision Frames: 0
SQE Test Errors: 0
Deferred Transmissions: 0
Late Collisions: 0
Excessive Collisions: 0
Carrier Sense Errors: 0
Oversize Packets: 0
Internal MAC Rx Errors: 0
Symbol Errors: 0
Received Pause Frames: 0
Transmitted Pause Frames: 0
```

The following table describes the fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InOctets</td>
<td>Number of received octets.</td>
</tr>
<tr>
<td>InUcastPkts</td>
<td>Number of received Unicast packets.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>InMcastPkts</td>
<td>Number of received Unicast packets.</td>
</tr>
<tr>
<td>InBcastPkts</td>
<td>Number of received broadcast packets.</td>
</tr>
<tr>
<td>OutOctets</td>
<td>Number of transmitted octets.</td>
</tr>
<tr>
<td>OutUcastPkts</td>
<td>Number of transmitted Unicast packets.</td>
</tr>
<tr>
<td>OutMcastPkts</td>
<td>Number of transmitted Unicast packets.</td>
</tr>
<tr>
<td>OutBcastPkts</td>
<td>Number of transmitted Broadcast packets.</td>
</tr>
<tr>
<td>FCS Errors</td>
<td>Number of frames received that are an integral number of octets in length but do not pass the FCS check.</td>
</tr>
<tr>
<td>Single Collision Frames</td>
<td>Number of frames that are involved in a single collision, and are subsequently transmitted successfully.</td>
</tr>
<tr>
<td>Multiple Collision Frames</td>
<td>Number of frames that are involved in more than one collision and are subsequently transmitted successfully.</td>
</tr>
<tr>
<td>SQE Test Errors</td>
<td>Number of times that the SQE TEST ERROR is received. The SQE TEST ERROR is set in accordance with the rules for verification of the SQE detection mechanism in the PLS Carrier Sense Function as described in IEEE Std. 802.3, 2000 Edition, section 7.2.4.6.</td>
</tr>
<tr>
<td>Deferred Transmissions</td>
<td>Number of frames for which the first transmission attempt is delayed because the medium is busy.</td>
</tr>
<tr>
<td>Late Collisions</td>
<td>Number of times that a collision is detected later than one slotTime into the transmission of a packet.</td>
</tr>
<tr>
<td>Excessive Collisions</td>
<td>Number of frames for which transmission fails due to excessive collisions.</td>
</tr>
<tr>
<td>Oversize Packets</td>
<td>Number of frames received that exceed the maximum permitted frame size.</td>
</tr>
<tr>
<td>Internal MAC Rx Errors</td>
<td>Number of frames for which reception fails due to an internal MAC sublayer receive error.</td>
</tr>
<tr>
<td>Received Pause Frames</td>
<td>Number of MAC Control frames received with an opcode indicating the PAUSE operation.</td>
</tr>
<tr>
<td>Transmitted Pause Frames</td>
<td>Number of MAC Control frames transmitted on this interface with an opcode indicating the PAUSE operation.</td>
</tr>
</tbody>
</table>
show ports jumbo-frame

To display whether jumbo frames are enabled on the device, use the `show ports jumbo-frame` Privileged EXEC mode command.

**Syntax**

```
show ports jumbo-frame
```

**Parameters**

This command has no arguments or keywords.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays whether jumbo frames are enabled on the device.

```
switchxxxxxx# show ports jumbo-frame
Jumbo frames are disabled
Jumbo frames will be enabled after reset
```
show link-flap prevention

To display whether link-flap prevention is enabled on the device, use the `show link-flap prevention` Privileged EXEC mode command.

**Syntax**

```
show link-flap prevention
```

**Parameters**

This command has no arguments or keywords.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays whether link-flap prevention is enabled on the device.

```
switchxxxxxx# show link-flap prevention
link-flap prevention is currently enabled on device
```
show errdisable recovery

To display the Err-Disable configuration of the device, use the `show errdisable recovery` Privileged EXEC mode command.

**Syntax**

`show errdisable recovery`

**Parameters**

This command has no arguments or keywords.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the Err-Disable configuration.

```
switchxxxxxx# show errdisable recovery
Timer interval: 300 Seconds
Reason Automatic Recovery
--
port-security Disable
dot1x-src-address Disable
acl-deny Enable
stp-bpdu-guard Disable
stp-loopback-guard Disable
loop-detection Disable
udld Disable
storm control Disable
link-flap Disable
```
show errdisable interfaces

To display the Err-Disable state of all interfaces or of a specific interface, use the `show errdisable interfaces` Privileged EXEC mode command.

**Syntax**

```
show errdisable interfaces [interface-id]
```

**Parameters**

- `interface`—(Optional) Port or port-channel number.

**Default Configuration**

Display for all interfaces.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the Err-Disable state of gi1/0/1.

```
switchxxxxxx# show errdisable interfaces

Interface Reason Time to recovery
 (sec)
---------------- ------------------ ---------------
 gi1/0/1 port-security 250
 gi1/0/5 acl-deny NA
```
clear switchport monitor

To clear monitored statistics on all or on a specific interface or interface list, use the clear switchport monitor Privileged EXEC mode command.

**Syntax**

clear switchport monitor [interface-id-list]

**Parameters**

interface-id-list—(Optional) Specifies a list of interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

**Default Configuration**

All monitored statistics are cleared.

**Command Mode**

Privileged EXEC mode

**Example**

The following example clears the monitored statistics for gi1/0/1.

switchxxxxxx# clear switchport monitor gi1/0/1
show switchport monitor

To display the monitored statistics gathered by a specific interface, use the `show switchport monitor` Privileged EXEC mode command.

**Syntax**

```
show switchport monitor interface-id [seconds | minutes | hours | days | weeks] [utilization | tx | rx | frames]
show switchport monitor interface-id {days | weeks}
show switchport monitor utilization [interface-id]
```

**Parameters**

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- **seconds**—last 20 samples, sampled every 15 seconds.
- **minutes**—last 60 samples, sampled every 60 seconds (every round minute according to system time).
- **hours**—last 24 samples, sampled every 60 minutes (every round hour according to system time).
- **days**—last 7 samples, sampled every 24 hours (midnight to midnight according to system time).
- **weeks**—last 12 samples, sampled every 7 days (midnight saturday to midnight saturday according to system time).
- **utilization**—shows per time frame the utilization calculated.
- **rx**—shows received counters statistics.
- **tx**—shows sent counters statistics.
- **frames**—show received counters statistics collected per packet size.

**Default Configuration**

Display monitored statistics for an interface or all interface in case of `show switchport monitor utilization` command.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

The `show switchport monitor utilization` is used to show a utilization summary per interface of the last time frame in each time frame (i.e. last minute, last hour, last day and last week).

The `show switchport monitor interface-id` is used to show monitored statistics samples collected per time frame and per counter types.
Example 1—The following example displays monitored statistics utilization seen by interface gi1/0/1.

```
switchxxxxxxx# show switchport monitor utilization gi1/0/1
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Minutes Rx/TX utilization</th>
<th>Hours Rx/TX utilization</th>
<th>Days Rx/TX utilization</th>
<th>Weeks Rx/TX utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 2—The following example displays monitored Tx statistics gathered in minutes time frame seen by interface gi1/0/1.

```
switchxxxxxxx# show switchport monitor gi1/0/1 minutes tx
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Unicast frames Sent</th>
<th>Broadcast frames Sent</th>
<th>Multicast frames Sent</th>
<th>Good Octet Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>04:22:00(~)</td>
<td>95%</td>
<td>80%</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td>04:23:00</td>
<td>90%</td>
<td>70%</td>
<td>60%</td>
<td>20%</td>
</tr>
<tr>
<td>(~) Not all samples are available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following table describes the fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time stamp of the current sample in system real time clock.</td>
</tr>
<tr>
<td></td>
<td>For seconds, minutes and hours format is: hh:mm:ss.</td>
</tr>
<tr>
<td></td>
<td>For days and weeks format is: &lt;day of week&gt; dd/mm/yy.</td>
</tr>
<tr>
<td>Good Octets Received</td>
<td>Number of received octets.</td>
</tr>
<tr>
<td>Good Unicast frames Received</td>
<td>Number of received Unicast packets.</td>
</tr>
<tr>
<td>Good Multicast frames Received</td>
<td>Number of received Unicast packets.</td>
</tr>
<tr>
<td>Good Broadcast frames Received</td>
<td>Number of received broadcast packets.</td>
</tr>
<tr>
<td>Good Octets Sent</td>
<td>Number of transmitted octets.</td>
</tr>
<tr>
<td>Good Unicast frames Sent</td>
<td>Number of transmitted Unicast packets.</td>
</tr>
<tr>
<td>Good Multicast frames Sent</td>
<td>Number of transmitted Unicast packets.</td>
</tr>
<tr>
<td>Good Broadcast frames Sent</td>
<td>Number of transmitted Broadcast packets.</td>
</tr>
<tr>
<td>Frames of 64 bytes</td>
<td>Number of received packets size of 64 bytes.</td>
</tr>
<tr>
<td>Frames of 65-127 bytes</td>
<td>Number of received packets size of 65-127 bytes.</td>
</tr>
<tr>
<td>Frames of 128-255 bytes</td>
<td>Number of received packets size of 128-255 bytes.</td>
</tr>
<tr>
<td>Frames of 256-511 bytes</td>
<td>Number of received packets size of 256-511 bytes.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Frames of 512-1023 bytes</td>
<td>Number of received packets size of 512-1023 bytes.</td>
</tr>
<tr>
<td>Frames of 1024-1518 bytes</td>
<td>Number of received packets size of 1024-1518 bytes.</td>
</tr>
<tr>
<td>Rx Error Frames Received</td>
<td>Number of frames received that are an integral number of octets in length but do not pass the FCS check.</td>
</tr>
<tr>
<td>Rx Utilization</td>
<td>Utilization in percentage for Received frames on the interface.</td>
</tr>
<tr>
<td>Tx Utilization</td>
<td>Utilization in percentage for Sent frames on the interface.</td>
</tr>
<tr>
<td>Rx/Tx Utilization</td>
<td>An average of the Rx Utilization and the Tx Utilization in percentage on the interface.</td>
</tr>
</tbody>
</table>
show switchport monitor
CBD Probe Commands

This chapter contains the following sections:

• cbd probe enable, on page 444
• cbd address, on page 445
• cbd organization name, on page 446
• cbd network name, on page 447
• cbd key, on page 448
• cbd connection enable, on page 449
• cbd reset, on page 450
• clear cbd probe database, on page 451
• show cbd, on page 452
**cbd probe enable**

To enable the Cisco Business Dashboard Probe operation on device, use the `cbd probe enable` command in Global Configuration mode. To disable the Cisco Business Dashboard Probe operation, use the `no` form of this command.

**Syntax**

cbd probe enable  
nocbd probe enable

**Default Configuration**

Cisco Business Dashboard Probe is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the command to enable the Cisco Business Dashboard Probe on the device.

**Example**

The following example enables the Cisco Business Dashboard Probe on the device:

```plaintext
switchxxxxxx(config)# cbd probe enable
This operation may take a few seconds....
```
cbd address

To configure the details of the Cisco Business Dashboard, use the **cbd address** command in Global Configuration mode. To remove the details of the Cisco Business Dashboard, use the **no** form of this command.

**Syntax**

```
cbd address {ip-address | hostname} [port port]
```

**Parameters**

- **ip-address** — Specifies the Cisco Business Dashboard IP address. This can be an IPv4 address.
- **hostname** — Specifies the Cisco Business Dashboard as a hostname (Range: 1–158 characters. Maximum label size of each part of the hostname: 63).
- **port** — Specifies the TCP port used to connect to Cisco Business Dashboard. (Range: 1-65535)

**Default Configuration**

No address is configured. CBD port default is 443.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the **cbd address** command to configure the Cisco Business Dashboard IP address and the TCP port to use to connect to the Cisco Business Dashboard. The **cbd connection enable** configuration must be removed prior to making changes to this parameter.

**Examples**

The following example configures the IPv4 address of the Cisco Business Dashboard to 1.1.1.1 and sets the TCP port to 8443.

```
switchxxxxxx(config)# cbd address 1.1.1.1 port 8443
```

In the following example configuration of the Cisco Business Dashboard IPv4 address fails because connection to Dashboard is enabled.

```
switchxxxxxx(config)# cbd address 1.1.1.1
Command failed!
```

Please disable connection to Cisco Business Dashboard before configuring this command, using command "no cbd connection enable". Only after configuring all Dashboard settings (Dashboard address, Key parameters, Organization and Network name) re-enable connection (command "cbd connection enable") to allow Probe connection to Cisco Business Dashboard.
**cbd organization name**

To configure the organization name of the Cisco Business Dashboard, use the **cbd organization name** command in Global Configuration mode. To remove Cisco Business Dashboard organization name configuration, use the **no** form of this command.

**Syntax**

```
cbd organization name organization-name
no cbd organization name
```

**Parameters**

`organization name organization-name`—Specifies the Organization name of the Cisco Business Dashboard Probe running on the device. Parameter can be specified as an alphanumeric string, including symbols and white-spaces (Range: 1–64).

**Default Configuration**

CBD Organization Name is not defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the **cbd organization name** command to configure the Cisco Business Dashboard organization name. The **cbd connection enable** configuration must be removed prior to making changes to this parameter.

**Example**

The following example configures the organization name of the Cisco Business Dashboard:

```
switchxxxxxx(config)# cbd organization name "my organization"
```
**cbd network name**

To configure the network name of the Cisco Business Dashboard, use the **cbd network name** command in Global Configuration mode. To remove Cisco Business Dashboard network name configuration, use the no form of this command.

**Syntax**

```
cbd network name network-name
```

no cbd network name

**Parameters**

- **network name network-name**—Specifies the site name of the Cisco Business Dashboard Probe running on the device. Network Name can be specified as an alphanumeric string, **including** symbols and white-spaces (Range: 1–64).

**Default Configuration**

CBD Network Name is not defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the **cbd network name** command to configure the Cisco Business Dashboard network name. The **cbd connection enable** configuration must be removed prior to making changes to this parameter.

**Example**

The following example configures the network name of the Cisco Business Dashboard.

```
switchxxxxxx(config)# cbd network name "my network"
```
**cbd key**

To configure the key ID and secret of the Cisco Business Dashboard, use the `cbd key` command in Global Configuration mode. To remove Cisco Business Dashboard key ID and secret configuration, use the `no` form of this command.

**Syntax**

```
cbd key id id-string secret secret-string
encrypted cbd key id id-string secret encrypted-secret-string
no cbd key
```

**Parameters**

- **id id-string** — Specifies the key ID to use for initial authentication between the Cisco Business Dashboard Probe running on the device and the Cisco Business Dashboard (a string of 24 hexadecimal digits).
- **secret secret-string** — Specifies the secret to use for authentication, can be specified as an alphanumeric string without white-spaces. The key can be up to 160 characters.
- **secret encrypted-secret-string** — Same as the `secret-string` parameter, but the secret is in encrypted form.

**Default Configuration**

CBD key ID and secret are not defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `cbd key` command to configure the Cisco Business Dashboard key ID and secret. The `cbd connection enable` configuration must be removed prior to making changes to this parameter.

**Example**

The following example configures the key ID and secret of the Cisco Business Dashboard used for initial authentication:

```
switchxxxxxx(config)# cbd key id 5cece9f21bb450005fb790b secret secretExample123
```
cbd connection enable

To configure the probe to connect with Cisco Business Dashboard, use the `cbd connection enable` command in Global Configuration mode. To disable probe connection to the Cisco Business Dashboard, use the `no` form of this command.

**Syntax**

```
cbd connection enable
no cbd connection enable
```

**Default Configuration**

Probe is not enabled for connection to Cisco Business Dashboard.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `cbd connection enable` command to enable the probe to connect to the Cisco Business Dashboard. The configuration of this command will trigger the Cisco Business Dashboard Probe to connect to the Cisco Business Dashboard if the CBD Probe is enabled.

The `cbd organization name`, `cbd network name`, `cbd address` and `cbd key` settings must be configured for the `cbd connection enable` command to succeed. Use the `no cbd connection enable` to disconnect the Probe from the Cisco Business Dashboard and to allow the user to change the Cisco Business Dashboard settings mentioned above.

**Examples**

The following example enables the probe to connect to the Cisco Business Dashboard:

```
switchxxxxxx(config)# cbd connection enable
```

In the following example the command fails because some of the Dashboard settings needed for connection were not configured:

```
switchxxxxxx(config)# cbd connection enable
Command failed. Please make sure all of the following dashboard parameters are configured:
 dashboard address, organization name, network name and key;
```
To reset Cisco Business Dashboard Probe connection to the Cisco Business Dashboard use the `cbd reset` command in Privileged EXEC mode.

**Syntax**

`cbd reset`

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the `cbd reset` command to reset the connection to the Cisco Business Dashboard. Applying the command will disconnect current connection with Dashboard, flush CBD probe cached data and then attempt to reconnect to the Cisco Business Dashboard.

The command will be executed only if the Probe Agent is enabled (command `cbd probe enable`, on page 444) and connection to Cisco Business Dashboard is also enabled (command `cbd connection enable`, on page 449).

**Examples**

The following example executes an attempt to reconnect using the configured key ID and secret:

```
switchxxxxxx# cbd reset
```

In the following example the reset command fails because Probe connection to Network Cisco Business Dashboard is not enabled:

```
switchxxxxxx# cbd reset
Operation failed because Probe connection to Cisco Business Dashboard is not enabled. Please enable connection to Cisco Business Dashboard using command "cbd connection enable".
```

In the following example the reset command fails because Probe agent is not enabled on device:

```
switchxxxxxx# cbd reset
Operation failed because Probe is not enabled
Please enable Probe using command "cbd probe enable".
```
clear cbd probe database

To clear the Cisco Business Dashboard Probe database use the `clear cbd probe database` command in Privileged EXEC mode.

**Syntax**

`clear cbd probe database`

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the `clear cbd probe database` to clear the Cisco Business Dashboard Probe database.

The command will be executed only if the Cisco Business Dashboard Probe Agent is disabled.

**Examples**

The following example clears the Cisco Business Dashboard Probe Database:

```
switchxxxxx# clear cbd probe database
```

In the following example, the clear command fails because the Cisco Business Dashboard Probe is enabled on the switch:

```
switchxxxxx# clear cbd probe database
Operation failed because Cisco Business Dashboard Probe is enabled on the switch. Please disable Probe on switch using command "no cbd probe enable".
```
show cbd

To display information about Cisco Business Dashboard Probe Configuration and status, use the `show cbd` command in Privileged EXEC mode.

**Syntax**

```
show cbd
```

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the `show cbd` command, to display information about the Cisco Business Dashboard Probe running on the device.

**Example**

The following example shows the output from the `show cbd` command:

```
switchxxxxxx# show cbd
Network Probe is enabled
Operational status: Active
Probe version: 1.1.2.20181019
Dashboard address: 1.1.1.1
Dashboard port: 443
Key ID: MyKey
Key Secret (encrypted): 8nPzy2hzuba9pG3iiC/q0451RynUn7kq94L9WQFpRM=
Organization name: ABC Company
Network name: my network
Dashboard status: connected
```

The following table describes the different Cisco Business Dashboard Probe setting and behavior and the relevant Administrative & Operational state display.

<table>
<thead>
<tr>
<th>Cisco Business Dashboard Probe Setting and Status</th>
<th>Administrative State indication</th>
<th>Operational State indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Business Dashboard Probe Disabled</td>
<td>Disabled</td>
<td>Inactive</td>
</tr>
<tr>
<td>Cisco Business Dashboard Probe Enabled and active</td>
<td>Enabled</td>
<td>Active</td>
</tr>
<tr>
<td>Cisco Business Dashboard Probe Enabled but is not active (indicates a failure)</td>
<td>Enabled</td>
<td>Fault</td>
</tr>
</tbody>
</table>
File System Commands

This chapter contains the following sections:

- File Specification, on page 454
- System Flash Files, on page 457
- Flash File System on Stack, on page 458
- boot config, on page 459
- boot localization, on page 461
- boot system, on page 462
- cd, on page 463
- copy, on page 464
- delete, on page 466
- dir, on page 467
- mkdir, on page 468
- more, on page 469
- pwd, on page 470
- reload, on page 471
- rename, on page 473
- rmdir, on page 475
- service mirror-configuration, on page 476
- show bootvar / show version, on page 477
- show mirror-configuration service, on page 480
- show reload, on page 481
- show running-config, on page 482
- show startup-config, on page 484
- write, on page 485
File Specification

The files may be located on:

- Network: TFTP servers and/or SCP servers - Network files
- Active FLASH - Flash files
- mass-storage connected to a USB port of Active - USB files. Only one mass-storage is supported.

**Note.** Although inside the switch supports the File System on FLASH of all stack units the File System CLI commands allow access only to flash files on Active unit. Needed file synchronizations between Active unit and other units is performed by the switch automatically.

Uniform Resource Locators (URLs) are used to specify the location of a file or a directory. The URL has the following syntax:

```
```

- `<username>` ::= string up to 70 characters
- `<password>` ::= = string up to 70 characters
- `<location>` ::= <ipv4-address> | <ipv6-address> | <dns-name>
- `<current-directory>` ::= [{usb | flash}]:[
- `<higher-directory>` ::= [{usb | flash}]:..
- `<file-path>` ::= [directories-path]/<filename>
- `<directories-path>` ::= <directory-name> | <directories-path>/<directory-name>

The maximum number of directories in `<directories-path>` is 16.

- `<directory-name>` ::= string up to 63 characters
- `<filename>` ::= string up to 63 characters

Filenames and directory names consist only of characters from the portable filename character set. The set includes the following characters:

```
• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• abcdefghijklmnopqrstuvwxyz
• <space>
• 0123456789._-
```

The last three characters are the <period>, <underscore>, and <hyphen> characters, respectively.

If an URL includes spaces it must be enclosed by the " characters.

For example:

"flash://aaa it/alpha/file 125"

The maximal length of URL is 160 characters.
The following File systems are supported on USB:

- **FAT32** — Full support.
- **NTFS** — Partially support: read only.

The switch supports the following predefined URL aliases:

- **active-image** — The predefined URL alias specifies the Active Image file. This file has the following permissions:
  - readable
  - executable

- **inactive-image** — The predefined URL alias specifies the Inactive Image file. This file has the following permissions:
  - readable
  - executable

- **running-config** — The predefined URL alias specifies the Running Configuration File.

- **startup-config** — The predefined URL alias specifies the Startup Configuration File. This file has the following permissions:
  - readable

- **localization**. The predefined URL alias specifies the Secondary Language Dictionary files. These files have the following permissions:
  - readable

- **logging**. The predefined URL alias specifies the Syslog file. This file has the following permissions:
  - readable

- **mirror-config**. The predefined URL alias specifies the Mirror Configuration file. This file has the following permissions:
  - readable

**Example 1.** The following example specifies a file on TFTP server using an IPv4 address:

`tftp://1.1.1.1/aaa/dat/file.txt`

**Example 2.** The following example specifies a file on TFTP server using an IPv6 address:

`tftp://3000:1:2::11/aaa/dat/file.txt`

**Example 3.** The following example specifies a file on TFTP server using a DNS name:

`tftp://files.export.com/aaa/dat/file.txt`

**Example 4.** The following example specifies a file on FLASH:

`flash://aaa/dat/file.txt`

**Example 5.** The following example specifies files using the current directory:

`./dat/file.txt`
`dat/file.txt`
Example 6. The following example specifies a file using the higher directory:

`../dat/file.txt`

Example 7. The following example specifies a file on mass-storage device connected to the USB port:

`usb://aaa/dat/file.txt`

Example 8. The following example specifies files on mass-storage device connected to the USB port using the current directory:

`usb:aaa/dat/file.txt`

`usb:./aaa/dat/file.txt`

Example 9. The following example specifies a file on mass-storage device connected to the USB port using the higher directory:

`usb:../aaa/dat/file.txt`
System Flash Files

The system files used by the switch are in the flash://system/ directory. A user cannot add, delete, and rename the system files and directories, a user cannot create new directories under the system directory.

The system files are divided to the following groups:

• Inner System files. The files are created by the switch itself. For example the Syslog file.

• Files installed/Uninstalled by user. This group includes the following files:
  
  Active and Inactive Images
  Startup Configuration
  Secondary Language Dictionary

Additionally, the following commands from previous versions can be used too:

Note. Reset to Factory Default removes all files from the FLASH except the following files:

• active-image
• inactive-image
• mirror-config
• localization

The flash://system/ directory contains the following directories:

• flash://system/images/—The directory contains the Active and Inactive Image files.
• flash://system/configuration/—The directory contains the Startup and Mirror Configuration files.
• flash://system/localization/—The directory contains the Secondary Language Dictionary files.
• flash://system/syslog/—The directory contains the Syslog file.
• flash://system/applications/—The directory contains inner system files managed by the switch applications.
Flash File System on Stack

The CLI commands provide access only to files located on Active unit FLASH. The switch performs automatically synchronization files between Active unit and Member units:

• The Standby unit’s Flash File system is fully synchronized with the Active unit’s Flash File System.
• For non-Standby Member units File system only the following files are synchronized:
  Active Image file
  Inactive Image file
  Secondary Language Dictionary files
  All other files and directories are deleted.
boot config

To install a file as Startup Configuration after reload, use the boot config command in Privileged EXEC mode. To uninstall the Startup configuration file, use the no form of this command.

Syntax

boot config startup-config-url
boot config running-config
boot config mirror-config
no boot config

Parameters

• startup-config-url—the url of a file. The predefined URLs cannot be configured.

Command Mode

Privileged EXEC mode

User Guidelines

Use the boot config startup-config-url command to install Startup Configuration from the startup-config-url file. The file must be a text file containing CLI commands. The command performs the following actions:

• Copies the file into the system directory flash://system/configuration/
• Converts the file format from the text format in the inner binary format.
• Installs the converted file as Startup Configuration. The previous Startup Configuration file is deleted.
• Installs Startup Configuration on Standby unit.

Use the boot config running-config command to install Startup Configuration from Running Configuration.

Use the boot config mirror-config command to install Startup Configuration from the Mirror Configuration file.

Use the no boot config command, to uninstall Startup Configuration. The uninstalled file is deleted.

Example 1. The following example installs Startup Configuration from a TFTP server:

switchxxxxxx# boot config tftp://1.1.1.1/confiration-files/config-v1.9.dat

Example 2. The following example installs Startup Configuration from FLASH:

switchxxxxxx# boot config flash://confiration-files/config-v1.9.dat

Example 3. The following example unsets the current Startup Configuration:

switchxxxxxx# no boot config

Example 4. The following example installs Startup Configuration from the Running Configuration file:
Example 5. The following example installs Startup Configuration from the Mirror Configuration file:

```
switchxxxxxx# boot config running-config
```

```
switchxxxxxx# boot config mirror-config
```
boot localization

To install a file as the Secondary Language Dictionary file, use the boot localization command in Privileged EXEC mode. To remove all the installed language files, use the no form of this command.

Syntax

boot localization dictionary-url

no boot localization

Parameters

- dictionary-url—the url of a file. The predefined URLs cannot be configured.

Default Configuration

Default language.

Command Mode

Privileged EXEC mode

User Guidelines

Use the boot localization dictionary-url command to install a Secondary Language Dictionary from the dictionary-url file. The command performs the following actions:

- Copies the file into the system directory flash://system/localization/
- Validates installed file format and if the file language is supported by the device. If the file does not have the correct format, or if the file language is not supported by the device, the file is not copied and the command will finish with an error.
- Replaces the relevant language file on device with the installed file. Update of language file does not change the active secondary language used by web GUI user.
- Installs Secondary Language Dictionary relevant file on all the all other stack units.

Use the no boot dictionary command, to uninstall Secondary Language Dictionary. The uninstalled files are deleted.

Example 1. The following example installs the Secondary Language Dictionary file from a TFTP server:

```
switchxxxxxx# boot localization tftp://196.1.1.1/web-dictionaries/germany-dictionary.lang
```

Example 2. The following example installs the Secondary Language Dictionary file from FLASH:

```
switchxxxxxx# boot localization flash://web-dictionaries/germany-dictionary.lang
```
boot system

To install the system (active) image that the switch loads at startup, use the **boot system** command in Privileged EXEC mode.

**Syntax**

```
boot system image-url
boot system inactive-image
```

**Parameters**

- **image-url** — The URL of a file. The predefined URLs cannot be configured.

**Default Configuration**

No default.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the **boot system image-url** command to install a new active image from the **image-url** file. The command performs the following actions:

- Copies the file into the system directory `flash://system/image/`
- Validates its format. If the file does not have the correct image format the file is deleted and the command is finished with an error.
- Installs the copied file as the active image that will be used be loaded at startup. The previous active image file is save as inactive image. The previous inactive image is deleted.
- Installs the new active image in all stack units.

Use the **boot system inactive-image** command to set the inactive image as active one and the active image as inactive one.

The command installs the inactive image as active in all stack units.

**Example 1.** The following example sets a new active image from a TFTP server:

```
switchxxxxxx# boot system tftp://145.21.2.3/image/image-v1-1.ros
```

**Example 2.** The following example sets a new active image from FLASH:

```
switchxxxxxx# boot system flash://images/image-v1-1.ros
```

**Example 3.** The following example sets the inactive image:

```
switchxxxxxx# boot system inactive-image
```
To change the current directory or file system, use the `cd` command in User EXEC mode.

Syntax

```plaintext
cd url
```

Parameters

- `url`—Specifies a directory on FLASH or on USB.

Default Configuration

The flash root directory (`flash://`)

Command Mode

User EXEC mode

User Guidelines

When a terminal session is started the current directory of the session is set to `flash://`. Use the `cd` command to change the current directory.

Example 1. The following example sets a new current directory on FLASH:

```plaintext
switchxxxxxx> pwd
flash://
switchxxxxxx> cd date/aaa
switchxxxxxx> pwd
flash://date/aaa
```

Example 2. The following example sets a new current directory on USB:

```plaintext
switchxxxxxx> pwd
flash://
switchxxxxxx> cd usb://
switchxxxxxx> pwd
usb://
```
copy

To copy any file from a source to a destination, use the copy command in Privileged EXEC mode.

Syntax

copy src-url dst-url

copy {running-config | startup-config} dst-url [exclude | include-encrypted | include-plaintext]

copy src-url running-config

copy running-config startup-config

copy tech-support cbd usb://<file-path>

Parameters

- **src-url** — The location URL of the source file to be copied. The predefined URL aliases can be configured.

- **dst-url** — The URL of the destination file or the directory to be copied. The predefined URL aliases cannot be configured.

- **exclude** — The file does not include sensitive data in the file being copied.

- **include-encrypted** — The file includes sensitive data in its encrypted form. This secure option is applied by default, if no secure option is configured.

- **include-plaintext** — The file includes sensitive data in its plaintext form.

- **tech-support cbd** — Indicates that the source is the Cisco Business Dashboard (CBD) tech support information. If this source is selected, the destination can only be USB. If specified filename does not include the ".zip" suffix, this suffix will be added automatically to copied filename (full path length up to 160 characters).

Command Mode

Privileged EXEC mode

User Guidelines

The following guidelines are relevant:

- You cannot copy one network file to another network file.

- **Localization** is not supported as a predefined src-url or dst-url.

- Use the copy src-url dst-url command to copy any file. If the dst-url argument defines an existed flash file the command fails if this file does not have the writable permission. If the dst-url argument defines a directory file then the file is copied into the directory with the same name. No file format validation or conversion is performed. If the src-url argument and dst-url arguments define flash files the dst-url file will have the permissions of the src-url file. If the src-url argument defines a non-flash file and the dst-url argument defines a flash files the dst-url file will have the following permissions:

  - readable
• writable

• Use the `copy src-url running-config` command to add a file to the Running Configuration file.

Example 1. The following example copies file file1 from the TFTP server 172.16.101.101 to the flash://aaaa/file1 file:

```bash
switchxxxxxx# copy tftp://172.16.101.101/file1 flash://aaa/file1
```

Example 2. The following example saves the Startup configuration file in the tftp://172.16.101.101/config.txt file:

```bash
switchxxxxxx# copy startup-config tftp://172.16.101.101/config.txt include-encrypted
```

Example 3. The following example copies the Running Configuration file to the Startup configuration:

```bash
switchxxxxxx# copy running-config startup-config
```

Example 4. The following example copies the Syslog file to a TFTP server:

```bash
switchxxxxxx# copy logging tftp://1.1.1.1/syslog.txt
```

Example 5. The following example copies a file from the mass-storage device connected to the USB port to Flash:

```bash
switchxxxxxx# copy usb://aaa/file1.txt flash://dir1/file2
```
delete

To delete a local file, use the `delete` command in Privileged EXEC mode.

**Syntax**

```plaintext
delete url
delete startup-config
```

**Parameters**

- `url` — Specifies the local URL of the local file to be deleted. The predefined and network URLs cannot be configured.
- `file-name` — Specifies the name of SNA user file to delete.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

The `delete url` command cannot delete a network file.

Use the `delete startup-config` command to delete the Startup Configuration file.

**Example 1.** The following example deletes the file called `backup/config` from FLASH:

```
switchxxxxxx# cd flash://backup/
switchxxxxxx# delete aaa.ttt
Delete flash://backup/aaa.ttt? [Y/N]Y
```

**Example 2.** The following example deletes the file called `aaa/config` from the mass-storage device connected to the USB port:

```
switchxxxxxx# delete usb://aaa/config
Delete usb://aaa/config? [Y/N]Y
```
**dir**

To display a list of files on a file system, use the **dir** command in User EXEC mode.

**Syntax**

dir [url]

**Parameters**

- **url**—Specifies the local URL of the directory to be displayed. The predefined and network URLs cannot be configured. If the argument is omitted the current directory is used.

**Command Mode**

User EXEC mode

**User Guidelines**

The command cannot be applied to a network directory.

Use the **dir** command without the argument to display the current directory.

**Examples**

The following example displays the **flash://mng/** directory:

switchxxxxxx> dir flash://mng/

Permissions

d=directory
r=readable
w=writable
x=executable
134560K of 520000K are free

Directory of flash://mng/

<table>
<thead>
<tr>
<th>Permission</th>
<th>File Size</th>
<th>Last Modified</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>drw-</td>
<td>4720148</td>
<td>Dec 12 2010 17:49:36</td>
<td>bin</td>
</tr>
<tr>
<td>-r-</td>
<td>60</td>
<td>Dec 12 2011 17:49:36</td>
<td>config-list</td>
</tr>
<tr>
<td>-r-</td>
<td>160</td>
<td>Feb 12 2011 17:49:36</td>
<td>image-list</td>
</tr>
<tr>
<td>-r-x</td>
<td>6520148</td>
<td>Nov 29 2010 7:12:30</td>
<td>imagel</td>
</tr>
<tr>
<td>-rw-</td>
<td>2014</td>
<td>Nov 20 2010 9:12:30</td>
<td>data</td>
</tr>
</tbody>
</table>
mkdir

To create a new directory, use the `mkdir` command in Privileged EXEC mode.

**Syntax**

```bash
mkdir url
```

**Parameters**

- `url`—Specifies the URL of the created directory. The predefined and network URLs cannot be configured.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

The `mkdir` command cannot be applied to a network directory.

The `mkdir` command cannot create a directory into the `flash://system/` directory.

All directories defined in the `url` argument except the created one must exist.

**Example 1.** The following example creates a directory on FLASH:

```
switchxxxxxx# mkdir flash://date/aaa/
```

**Example 2.** The following example creates a directory on the mass-storage device connected to the USB port:

```
switchxxxxxx# mkdir usb://newdir/
```
**more**

To display the contents of a file, use the `more` command in User EXEC mode.

**Syntax**

```
more url
```

**Parameters**

- `url`—Specifies the local URL or predefined file name of the file to display.

**Command Mode**

User EXEC mode

**Example**

The following example displays the running configuration file contents:

```
switchxxxxxx> more running-config
no spanning-tree
interface range gi/11-48
 speed 1000
 exit
no lldp run
line console
 exec-timeout 0
```
**pwd**

To show the current directory, use the **pwd** command in User EXEC mode.

**Syntax**

```
pwd [usb: I flash:]
```

**Parameters**

- **usb:**—Display the current directory on the USB driver.
- **flash:**—Display the current directory on the FLASH driver.

**Command Mode**

User EXEC mode

**User Guidelines**

Use the **pwd usb: I flash:** command to show the current directory on the specified driver.

Use the **pwd** command to show the current directory set by the recent **cd** command.

**Example**

The following example uses the **cd** command to change the current directory and then uses the **pwd** command to display that current directory:

```
switchxxxxxx> pwd
flash://
switchxxxxxx> cd date/aaa
switchxxxxxx> pwd
flash://date/aaa
```
**reload**

To reload the operating system, use the `reload` command in Privileged EXEC mode.

**Syntax**

```
reload [in [hh:mm | mmm] | at hh:mm [day month]] | cancel
```

**Parameters**

- **in hh:mm | mmm**—Schedules a reload of the image to take effect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days.
- **at hh:mm**—Schedules a reload of the image to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 hours.
- **day**—Number of the day in the range from 1 to 31.
- **month**—Month of the year. (Range: Jan–Dec)
- **cancel**—Cancels a scheduled reload.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the `reload` command to reload the switch.

Use the `reload {in hh:mm | mmm | at hh:mm [day month]}` command to specify scheduled switch reload.

The `at` keyword can be configured only if the system clock has been set on the switch.

When you specify the reload time using the `at` keyword, if you specify the month and day, the reload takes place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time), or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 days.

Use the `reload cancel` command to cancel the scheduled reload.

**Example 1.** The following example reloads the switch:

```
switchxxxxxx# reload
This command will reset the whole system and disconnect your current session. Do you want to continue? (Y/N) [Y]
```

**Example 2.** The following example reloads the image in 10 minutes:
switchxxxxxx# **reload in 10**
This command will reset the whole system and disconnect your current session. Reload is scheduled for 11:57:08 UTC Fri Apr 21 2012 (in 10 minutes). Do you want to continue? (Y/N) [Y]

**Example 3.** The following example reloads the image at 12:10 24 Aug:

switchxxxxxx# **reload at 12:10 24 Aug**
This command will reset the whole system and disconnect your current session. Reload is scheduled for 12:10:00 UTC Sun Aug 24 2014 (in 1 hours and 12 minutes). Do you want to continue? (Y/N) [N]

**Example 4.** The following example reloads the image at 13:00:

switchxxxxxx# **reload at 13:00 soft**
This command will reset the whole system and disconnect your current session. Reload is scheduled for 13:00:00 UTC Fri Apr 21 2012 (in 1 hour and 3 minutes). Do you want to continue? (Y/N) [Y]

**Example 5.** The following example cancels a reload.

switchxxxxxx# **reload cancel**
Reload cancelled.
rename

To rename a local file or directory, use the rename command in Privileged EXEC mode.

Syntax

rename url new-url

Parameters

• url—Specifies the URL of the file or directory to be renamed. The predefined and network URLs cannot be configured.

• new-url—Specifies the new URL of the renamed file or directory. The predefined and network URLs cannot be configured.

Command Mode

Privileged EXEC mode

User Guidelines

The url and new-url arguments must specify the same driver.

The command cannot rename a network file or network directory.

The command cannot rename a file or directory into the flash://system directory.

Example 1. The following example renames the flash://bin/text1.txt file to flash://archive/text1sav.txt:

switchxxxxxx# cd flash://archive
switchxxxxxx# rename flash://bin/text1.txt ./text1sav.txt

Example 2. The following example renames the flash://a/b directory to the flash://e/g/h directory:

switchxxxxxx# pwd
flash://a/b/c/d
switchxxxxxx> dir flash://a
Permissions
• d-directory
• r-readable
• w-writable
• x-executable
134560K of 520000K are free
Directory of flash://a
File Name     Permission  File Size    Last Modified
--------      ----------    ----------
b          drw-        472148    Dec 13 2010 15:49:36
switchxxxxxx> dir flash://e/g/h
Permissions
• d-directory
• r-readable
• w-writable
• x-executable
134560K of 520000K are free
Directory of flash://e/g/h
File Name     Permission  File Size    Last Modified
rename flash://a/b flash://e/g/h
pwd
flash://e/g/h/c/d
dir flash://a
Permissions
  • d-directory
  • r-readable
  • w-writable
  • x-executable
134560K of 520000K are free
Directory of flash://mng/
File Name       Permission File Size       Last Modified
-------------- ------------- -------------- ---------------
dir flash://e/g/h
Permissions
  • d-directory
  • r-readable
  • w-writable
  • x-executable
134560K of 520000K are free
Directory of flash://e/g/h
File Name       Permission File Size       Last Modified
-------------- ------------- -------------- ---------------
c  drw-    720148   Dec 12 2010 17:49:36
**rmdir**

To remove a local directory, use the **rmdir** command in Privileged EXEC mode.

**Syntax**

```
rmdir url
```

**Parameters**

- **url**—Specifies the URL of the file or directory to be deleted. The predefined and network URLs cannot be configured.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

- Only empty directory can be deleted.
- The command cannot remove a network directory.
- The command cannot remove a directory into the `flash://system` directory.

**Example 1.** The following example removes the directory called ‘backup/config/’ from FLASH:

```
switchxxxxxx# rmdir flash://backup/config/
Remove flash://backup/config? [Y/N]Y
```

**Example 2.** The following example removes the directory called ‘aaa/config’ from the mass-storage device connected to the USB port:

```
switchxxxxxx# rmdir usb://aaa/config/
Remove directory usb://aaa/config? [Y/N]Y
```
service mirror-configuration

Use the **service mirror-configuration** Global Configuration mode command to enable the mirror-configuration service. Use **no service mirror-configuration** command to disable the service.

**Syntax**

```
service mirror-configuration
no service mirror-configuration
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

The default configuration is mirror-configuration service enabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

The mirror-configuration service automatically keeps a copy of the last known stable configuration (startup configuration that has not been modified for 24H).

When this service is disabled, the mirror-configuration file is deleted.

**Example 1** - The following example disables the mirror-configuration service:

```
switchxxxxxx(config)# no service mirror-configuration
```

This operation will delete the mirror-config file if exists. Do you want to continue? (Y/N) [N]

**Example 2** - The following example enables the mirror-configuration service

```
switchxxxxxx(config)# service mirror-configuration
```

Service is enabled.
**show bootvar / show version**

To display the active system image file that was loaded by the device at startup, and to display the system image file that will be loaded after rebooting the switch, use the `show bootvar` or `show version` command in User EXEC mode.

**Syntax**

- `show bootvar`
- `show version`

**Parameters**

This command has no arguments or keywords.

**Command Mode**

User EXEC mode

**User Guidelines**

The `show bootvar` and `show version` commands have the same functionality.

**Example 1.** The following example gives an example of the command output after reload:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 23FA000012857D8855AABC7577AB5562
 Date: 04-Jul-2014
 Time: 15:03:07
Inactive-image: flash://system/images/image_v12-01.ros
 Version: 12.01
 MD5 Digest: 3FA000012857D8855AABC7577AB8999
 Date: 04-Feb-2001
 Time: 11:13:17
```

**Example 2.** This example continues the inactive one, after applying the `boot system tftp://1.1.1.1/image_v14-01.ros` command:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 63FA000012857D8855AABEA7451265456
 Date: 04-Jul-2014
 Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
 Version: 14.01
 MD5 Digest: 23FA000012857D8855AABC7577AB5562
 Date: 24-Jul-2014
 Time: 23:11:17
Active after reboot
```

**Example 3.** This example continues the inactive one, after a system reload:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v14-01.ros
```
Example 4. This example continues the inactive one, after applying the `boot system inactive-image` command:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v14-01.ros
 Version: 14.01
 MD5 Digest: 23FA000012857D8855AABC7577AB5562
 Date: 24-Jul-2014
 Time: 23:11:17
Inactive-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 63FA000012857D8855AABEA7451265456
 Date: 04-Jul-2014
 Time: 15:03:07
```

Example 5. This example continues the inactive one, after a system reload:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 63FA000012857D8855AABEA7451265456
 Date: 04-Jul-2014
 Time: 15:03:07
Inactive-image: flash://system/images/_image_v12-03.ros
 Version: 12.03
 MD5 Digest: 63FA000012857D8855AABEA7451265456
 Date: 04-Jul-2014
 Time: 15:03:07
```

Example 7. The following example gives an example of the command output after applying the `boot system` command two times:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 63FA000012857D8855AABEA7451265456
 Date: 04-Jul-2014
 Time: 15:03:07
Inactive-image: flash://system/images/image_v12-01.ros
 Version: 12.01
 MD5 Digest: 3FA000012857D8855AABC7577AB8999
 Date: 04-Feb-2001
 Time: 11:13:17
switchxxxxxx# boot system tftp://1.1.1.1/image_v14-01.ros
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
 Version: 12.03
 MD5 Digest: 63FA000012857D8855AABEA7451265456
 Date: 04-Jul-2014
 Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v12-01.ros
 Version: 14.01
```
Example 8. The following example gives an example of the command output after applying the `boot system tftp://1.1.1.1/image_v14-01.ros` command and the `boot system inactive-image` command:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```

```
switchxxxxxx# boot system tftp://1.1.1.1/image_v14-01.ros
switchxxxxxx#
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```

```
switchxxxxxx# boot system inactive-image
switchxxxxxx#
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```

```
Example 8. The following example gives an example of the command output after applying the `boot system tftp://1.1.1.1/image_v14-01.ros` command and the `boot system inactive-image` command:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```

```
switchxxxxxx# boot system tftp://1.1.1.1/image_v14-01.ros
switchxxxxxx#
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```

```
switchxxxxxx# boot system inactive-image
switchxxxxxx#
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```

```
Example 8. The following example gives an example of the command output after applying the `boot system tftp://1.1.1.1/image_v14-01.ros` command and the `boot system inactive-image` command:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```

```
switchxxxxxx# boot system inactive-image
switchxxxxxx#
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```

```
Example 8. The following example gives an example of the command output after applying the `boot system tftp://1.1.1.1/image_v14-01.ros` command and the `boot system inactive-image` command:

```
switchxxxxxx# show bootvar
Active-image: flash://system/images/image_v12-03.ros
Version: 12.03
MD5 Digest: 63FA000012857D8855AABEA7451265456
Date: 04-Jul-2014
Time: 15:03:07
Inactive after reboot
Inactive-image: flash://system/images/image_v14-01.ros
Version: 14.01
MD5 Digest: 23FA000012857D8855AABC7577AB5562
Date: 24-Jul-2014
Time: 23:11:17
Active after reboot
```
show mirror-configuration service

To display the mirror-configuration service status, use the **show mirror-configuration service** command in User EXEC mode.

Syntax

```
show mirror-configuration service
```

Command Mode

User EXEC mode

Example

The following example displays the status of the mirror-configuration service

```
switchxxxxxx# show mirror-configuration service
Mirror-configuration service is enabled
```
show reload

To display the reload status on the switch, use the show reload command in User EXEC mode.

Syntax

show reload

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

User Guidelines

You can use the show reload command to display a pending image reload.

Example 1. The following example displays information when scheduled reload has been configured:

```plaintext
switchxxxxxx> show reload
Image reload scheduled for 00:00:00 UTC Sat April 20 (in 3 hours and 12 minutes)
```

Example 2. The following example displays information when scheduled reload has not been configured:

```plaintext
switchxxxxxx> show reload
No scheduled reload
```
show running-config

To display the contents of the currently running configuration file, use the `show running-config` command in Privileged EXEC mode.

`show running-config [interface interface-id-list | detailed | brief]`

Parameters

- **interface** interface-id-list—Specifies a list of interface IDs. The interface IDs can be one of the following types: Ethernet port, port-channel or VLAN.
- **detailed**—Displays configuration with SSL and SSH keys and certificates.
- **brief**—Displays configuration without SSL and SSH keys and certificates.

Default Configuration

All interfaces are displayed. If the **detailed** or **brief** keyword is not specified, the **brief** keyword is applied.

Command Mode

Privileged EXEC mode

Example

The following example displays the running configuration file contents.

```
switchxxxxxx# show running-config
config-file-header
AA307-02
v1.2.5.76 / R750_NIK_1_2_584_002
CLI v1.0
file SSD indicator encrypted
@
ssd-control-start
ssd config
ssd file passphrase control unrestricted
no ssd file integrity control
ssd-control-end cb0a3f6b1f5a1af4e4430033719968c0
!
unit-type unit 1 network te uplink none
unit-type unit 2 network te uplink none
unit-type unit 3 network te uplink none
unit-type unit 4 network te uplink none
unit-type-control-end
!
no spanning-tree
interface range gi1/0/1-4
speed 1000
exit
no lldp run
interface vlan 1
ip address 1.1.1.1 255.0.0.0
exit
line console
exec-timeout 0
```
exit
switchxxxxx#
show startup-config

To display the Startup Configuration file contents, use the `show startup-config` command in Privileged EXEC mode.

Syntax

`show startup-config [interface interface-id-list]`

Parameters

- **interface** interface-id-list—Specifies a list of interface IDs. The interface IDs can be one of the following types: Ethernet port, port-channel or VLAN.

Command Mode

Privileged EXEC mode

Example

The following example displays the startup configuration file contents.

```
switchxxxxxx# show startup-config
config-file-header
AA307-02
v1.2.5.76 / R750_NIK_1_2_584_002
CLI v1.0
file SSD indicator encrypted
@
ssd-control-start
ssd config
ssd file passphrase control unrestricted
no ssd file integrity control
ssd-control-end cb0a3fdb1f3a1af4e4430033719968c0
!
no spanning-tree
interface range gi1/0/1-4
speed 1000
exit
no lldp run
interface vlan 1
ip address 1.1.1.1 255.0.0.0
exit
line console
exec-timeout 0
exit
switchxxxxxx#
```
To save the running configuration to the startup configuration file, use the `write` command in Privileged EXEC mode.

Syntax

```plaintext
write
write memory
```

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

User Guidelines

Use the `write` command or the `write memory` command to save the Running Configuration file into the Startup Configuration file.

Examples

The following example shows how to overwrite the startup-config file with the running-config file with the `write` command.

```
switchxxxxxx# write
Copy succeeded
```
write
GVRP Commands

This chapter contains the following sections:

- clear gvrp statistics, on page 488
- gvrp enable (Global), on page 489
- gvrp enable (Interface), on page 490
- gvrp registration-forbid, on page 491
- gvrp vlan-creation-forbid, on page 492
- show gvrp configuration, on page 493
- show gvrp error-statistics, on page 494
- show gvrp statistics, on page 495
clear gvrp statistics

To clear GVRP statistical information for all interfaces or for a specific interface, use the clear gvrp statistics Privileged EXEC mode command.

Syntax

```
clear gvrp statistics [interface-id]
```

Parameters

Interface-id—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All GVRP statistics are cleared.

Command Mode

Privileged EXEC mode

Example

The following example clears all GVRP statistical information on gi1/0/4.

```
switchxxxxx# clear gvrp statistics gi1/0/4
```
gvrp enable (Global)

To enable the Generic Attribute Registration Protocol (GARP) VLAN Registration Protocol (GVRP) globally, use the `gvrp enable` Global Configuration mode command. To disable GVRP on the device, use the `no` form of this command.

Syntax

- `gvrp enable`
- `no gvrp enable`

Parameters

This command has no arguments or keywords.

Default Configuration

GVRP is globally disabled.

Command Mode

Global Configuration mode

Example

The following example enables GVRP globally on the device.

```
switchxxxxx(config)# gvrp enable
```
gvrp enable (Interface)

To enable GVRP on an interface, use the `gvrp enable` Interface (Ethernet, Port Channel) Configuration mode command. To disable GVRP on an interface, use the `no` form of this command.

Syntax

gvrp enable
no gvrp enable

Parameters

This command has no arguments or keywords.

Default Configuration

GVRP is disabled on all interfaces.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

An access port does not dynamically join a VLAN because it is always a member of a single VLAN only. Membership in an untagged VLAN is propagated in the same way as in a tagged VLAN. That is, the PVID must be manually defined as the untagged VLAN ID.

Example

The following example enables GVRP on gi1/0/4.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# gvrp enable
```
gvrp registration-forbid

To deregister all dynamic VLANs on a port and prevent VLAN creation or registration on the port, use the **gvrp registration-forbid** Interface Configuration mode command. To allow dynamic registration of VLANs on a port, use the **no** form of this command.

Syntax

```
gvrp registration-forbid
no gvrp registration-forbid
```

Parameters

This command has no arguments or keywords.

Default Configuration

Dynamic registration of VLANs on the port is allowed.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example forbids dynamic registration of VLANs on gi1/0/2.

```
switchxxxxxx(config-if)# interface gi1/0/2
switchxxxxxx(config-if)# gvrp registration-forbid
```
gvrp vlan-creation-forbid

To disable dynamic VLAN creation or modification, use the `gvrp vlan-creation-forbid` Interface Configuration mode command. To enable dynamic VLAN creation or modification, use the `no` form of this command.

Syntax

gvrp vlan-creation-forbid

no gvrp vlan-creation-forbid

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example disables dynamic VLAN creation on gi1/0/3.

```
switchxxxxxx(config-if)# interface gi1/0/3
switchxxxxxx(config-if)# gvrp vlan-creation-forbid
```
show gvrp configuration

To display GVRP configuration information, including timer values, whether GVRP and dynamic VLAN creation are enabled, and which ports are running GVRP, use the `show gvrp configuration` EXEC mode command.

Syntax

`show gvrp configuration [interface-id | detailed]`

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

All GVRP statistics are displayed for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

User EXEC mode

Example

The following example displays GVRP configuration.

```
switchxxxxxx# show gvrp configuration
GVRP Feature is currently Enabled on the device.
Maximum VLANs: 4094
Port(s) GVRP-Status Regist- Dynamic Timers(ms)
  ration VLAN Creation Join Leave Leave All
---- ----------- -------- ------------- ---- ----- ----------
gi1/0/1 Enabled Forbidden Disabled 600 200 10000
```
show gvrp error-statistics

Use the `show gvrp error-statistics` EXEC mode command to display GVRP error statistics for all interfaces or for a specific interface.

Syntax

```
show gvrp error-statistics [interface-id]
```

Parameters

- `interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All GVRP error statistics are displayed.

Command Mode

User EXEC mode

Example

The following example displays GVRP error statistics.

```
switchxxxxxx# show gvrp error-statistics
GVRP Error Statistics:
----------------------
Legend:
INVPROT : Invalid Protocol Id
INVATYP : Invalid Attribute Type INVALEN : Invalid Attribute Length
INVAVAL : Invalid Attribute Value INVEVENT: Invalid Event
Port INVPROT INVATYP INVAVAL INVALEN INVEVENT
-------- ------- ------- ------- ------- --------
gi1/0/1 0 0 0 0 0
gi1/0/2 0 0 0 0 0
gi1/0/3 0 0 0 0 0
gi1/0/4 0 0 0 0 0
```
show gvrp statistics

To display GVRP statistics for all interfaces or for a specific interface, use the `show gvrp statistics` EXEC mode command.

Syntax

`show gvrp statistics [interface-id]`

Parameters

`interface-id`—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All GVRP statistics are displayed.

Command Mode

User EXEC mode

Example

The following example displays GVRP statistical information.

```
switchxxxxxx# show gvrp statistics
GVRP statistics:
----------------
Legend:
  rJE: Join Empty Received               rIn: Join In Received
  rEmp: Empty Received                   rLIn: Leave In Received
  rLE: Leave Empty Received              rLA: Leave All Received
  sJE: Join Empty Sent                   sIn: Join In Sent
  sEmp: Empty Sent                       sLIn: Leave In Sent
  sLE: Leave Empty Sent                  sLA: Leave All Sent

<table>
<thead>
<tr>
<th>Port</th>
<th>rJE</th>
<th>rIn</th>
<th>rEmp</th>
<th>rLIn</th>
<th>rLA</th>
<th>sJE</th>
<th>sIn</th>
<th>sEmp</th>
<th>sLIn</th>
<th>sLE</th>
<th>sLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>0</td>
</tr>
</tbody>
</table>
```
show gvrp statistics
Green Ethernet Commands

This chapter contains the following sections:

- green-ethernet energy-detect (global), on page 498
- green-ethernet energy-detect (interface), on page 499
- green-ethernet short-reach (global), on page 500
- green-ethernet short-reach (interface), on page 501
- green-ethernet power-meter reset, on page 502
- show green-ethernet, on page 503
green-ethernet energy-detect (global)

To enable Green-Ethernet Energy-Detect mode globally, use the `green-ethernet energy-detect` Global Configuration mode command. To disable this feature, use the `no` form of this command.

Syntax

`green-ethernet energy-detect`
`no green-ethernet energy-detect`

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# green-ethernet energy-detect
```
green-ethernet energy-detect (interface)

Use the `green-ethernet energy-detect` Interface configuration mode command to enable Green Ethernet-Energy-Detect mode on a port. Use the no form of this command, to disable it on a port.

Syntax

```
green-ethernet energy-detect
no green-ethernet energy-detect
```

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Energy-Detect only works on copper ports. When a port is enabled for auto selection, copper/fiber Energy-Detect cannot work.

It takes the PHY ~5 seconds to fall into sleep mode when the link is lost after normal operation.

Example

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# green-ethernet energy-detect
```
green-ethernet short-reach (global)

Use the `green-ethernet short-reach` Global Configuration mode command to enable Green-Ethernet Short-Reach mode globally. Use the `no` form of this command to disable it.

Syntax

```
green-ethernet short-reach
no green-ethernet short-reach
```

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled.

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# green-ethernet short-reach
```
green-ethernet short-reach (interface)

Use the green-ethernet short-reach Interface Configuration mode command to enable green-ethernet short-reach mode on a port. Use the no form of this command to disable it on a port.

Syntax

```plaintext
green-ethernet short-reach
no green-ethernet short-reach
```

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The VCT length check can be performed only on a copper port operating at a speed of 1000 Mbps. If the media is not copper or the link speed is not 1000, Mbps Short-Reach mode is not applied.

When the interface is set to enhanced mode, after the VCT length check has completed and set the power to low, an active monitoring for errors is done continuously. In the case of errors crossing a certain threshold, the PHY will be reverted to long reach.

Note that EEE cannot be enabled if the Short-Reach mode is enabled.

Example

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# green-ethernet short-reach
```
green-ethernet power-meter reset

Use the green-ethernet power meter reset Privileged EXEC mode command to reset the power save meter.

Syntax

```plaintext
green-ethernet power-meter reset
```

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# green-ethernet power-meter reset
```
show green-ethernet

To display green-ethernet configuration and information, use the `show green-ethernet` Privileged EXEC mode command.

Syntax

```plaintext
show green-ethernet [interface-id | detailed]
```

Parameters

- `interface-id`—(Optional) Specifies an Ethernet port
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If `detailed` is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

User Guidelines

The power savings displayed is relevant to the power saved by:

- Port LEDs
- Energy detect
- Short reach

The EEE power saving is dynamic by nature since it is based on port utilization and is therefore not taken into consideration.

The following describes the reasons for non-operation displayed by this command.

If there are several reasons, then only the highest priority reason is displayed.

<table>
<thead>
<tr>
<th>Energy-Detect Non-Operational Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Short-Reach Non-Operational Reasons

<table>
<thead>
<tr>
<th>Priority</th>
<th>Reason</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NP</td>
<td>Port is not present</td>
</tr>
<tr>
<td>2</td>
<td>LT</td>
<td>Link Type is not supported (fiber)</td>
</tr>
<tr>
<td>3</td>
<td>LS</td>
<td>Link Speed Is not Supported (10mbps, 100mbps)</td>
</tr>
<tr>
<td>4</td>
<td>LL</td>
<td>Link Length received from VCT test exceeds threshold</td>
</tr>
<tr>
<td>6</td>
<td>LD</td>
<td>Port Link is Down – NA</td>
</tr>
</tbody>
</table>

Example

```
switchxxxxxx# show green-ethernet
Energy-Detect mode: Enabled
Short-Reach mode: Disabled
Disable Port LEDs mode: Enabled
Power Savings: 24% (1.08W out of maximum 4.33W)
Cumulative Energy Saved: 33 [Watt*Hour]
* Estimated Annual Power saving: 300 [Watt*Hour]
* Annual estimate is based on the saving during the previous week
NA – information for previous week is not available
Short-Reach cable length threshold: 50m
<table>
<thead>
<tr>
<th>Port</th>
<th>Energy-Detect</th>
<th>Short-Reach</th>
<th>VCT Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin Op Reason</td>
<td>Admin Force Oper Reason</td>
<td>Length</td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>on</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>on</td>
<td>off</td>
<td>LU</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>on</td>
<td>off</td>
<td>LU</td>
</tr>
</tbody>
</table>
```
IGMP Commands

This chapter contains the following sections:

- clear ip igmp counters, on page 506
- ip igmp last-member-query-count, on page 507
- ip igmp last-member-query-interval, on page 508
- ip igmp query-interval, on page 509
- ip igmp query-max-response-time, on page 510
- ip igmp robustness, on page 511
- ip igmp version, on page 512
- show ip igmp counters, on page 513
- show ip igmp counters, on page 514
- show ip igmp groups, on page 515
- show ip igmp groups summary, on page 517
- show ip igmp interface, on page 518
clear ip igmp counters

To clear the Internet Group Management Protocol (IGMP) interface counters, use the `clear ip igmp counters` command in Privileged EXEC mode.

Syntax

`clear ip igmp counters [interface-id]`

Parameters

- `interface-id`—(Optional) Interface Identifier

Command Mode

Privileged EXEC mode

User Guidelines

Use the `clear ip igmp counters` command to clear the IGMP counters, which keep track of the number of joins and leaves received. If you omit the optional `interface-id` argument, the `clear ip igmp counters` command clears the counters on all interfaces.

Example

The following example clears the counters for VLAN 100:

```
switchxxxxxx# clear ip igmp counters vlan 100
```
ip igmp last-member-query-count

To configure the Internet Group Management Protocol (IGMP) last member query counter, use the `ip igmp last-member-query-count` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

Syntax

`ip igmp last-member-query-count count`

`no ip igmp last-member-query-count`

Parameters

- `count` — The number of times that group- or group-source-specific queries are sent upon receipt of a message indicating a leave. (Range: 1–7)

Default Configuration

A value of IGMP Robustness variable.

Command Mode

Interface Configuration mode

User Guidelines

Use the `ip igmp robustness` command to change the IGMP last member query counter.

Example

The following example changes a value of the IGMP last member query counter to 3:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip igmp last-member-query-count 3
switchxxxxxx(config-if)# exit
```
ip igmp last-member-query-interval

To configure the Internet Group Management Protocol (IGMP) last member query interval, use the `ip igmp last-member-query-interval` command in Interface Configuration mode. To restore the default IGMP query interval, use the `no` form of this command.

Syntax

```
ip igmp last-member-query-interval milliseconds
no ip igmp last-member-query-interval
```

Parameters

- `milliseconds`—Interval, in milliseconds, at which IGMP group-specific host query messages are sent on the interface. (Range: 100–25500).

Default Configuration

The default IGMP last member query interval is 1000 milliseconds.

Command Mode

Interface Configuration mode

User Guidelines

Use the `ip igmp last-member-query-interval` command to configure the IGMP last member query interval on an interface.

Example

The following example shows how to increase the the IGMP last member query interval to 1500 milliseconds:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ip igmp last-member-query-interval 1500
switchxxxxxx(config-if)# exit
```
ip igmp query-interval

To configure the frequency at which the IGMP querier sends Internet Group Management Protocol (IGMP) host-query messages from an interface, use the **ip igmp query-interval** command in Interface Configuration mode. To restore the default IGMP query interval, use the **no** form of this command.

Syntax

```
ip igmp query-interval seconds
no ip igmp query-interval
```

Parameters

- **seconds**—Frequency, in seconds, at which the switch sends IGMP query messages from the interface. The range is from 30 to 18000.

Default Configuration

The default IGMP query interval is 125 seconds.

Command Mode

Interface Configuration mode

User Guidelines

Use the **ip igmp query-interval** command to configure the frequency at which the IGMP querier sends IGMP host-query messages from an interface. The IGMP querier sends query-host messages to discover which multicast groups have members on the attached networks of the router.

The query interval must be bigger than the maximum query response time.

Example

The following example shows how to increase the frequency at which the IGMP querier sends IGMP host-query messages to 180 seconds:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ip igmp query-interval 180
switchxxxxxx(config-if)# exit
```
ip igmp query-max-response-time

To configure the maximum response time advertised in Internet Group Management Protocol (IGMP) queries, use the `ip igmp query-max-response-time` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

Syntax

```
ip igmp query-max-response-time seconds
no ip igmp query-max-response-time
```

Parameters

- `seconds`—Maximum response time, in seconds, advertised in IGMP queries. (Range: 5–20)

Default Configuration

10 seconds.

Command Mode

Interface Configuration mode

User Guidelines

This command controls the period during which the responder can respond to an IGMP query message before the router deletes the group.

This command controls how much time the hosts have to answer an IGMP query message before the router deletes their group. Configuring a value of fewer than 10 seconds enables the router to prune groups faster.

The maximum query response time must be less than the query interval.

Note. If the hosts do not respond fast enough, they might be pruned inadvertently. Therefore, the hosts must know to respond faster than 10 seconds (or the value you configure).

Example

The following example configures a maximum response time of 8 seconds:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ip igmp query-max-response-time 8
switchxxxxxx(config-if)# exit
```
ip igmp robustness

To configure the Internet Group Management Protocol (IGMP) robustness variable, use the **ip igmp robustness** command in Interface Configuration mode. To restore the default value, use the **no** form of this command.

Syntax

```
ip igmp robustness count
no ip igmp robustness
```

Parameters

- **count**—The number of expected packet loss on a link. Parameter range. (Range: 1–7).

Default Configuration

The default value is 2.

Command Mode

Interface Configuration mode

User Guidelines

Use the **ip igmp robustness** command to change the IGMP robustness variable.

Example

The following example changes a value of the IGMP robustness variable to 3:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip igmp robustness 3
switchxxxxxx(config-if)# exit
```
ip igmp version

To configure which version of Internet Group Management Protocol (IGMP) the router uses, use the `ip igmp version` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

Syntax

```
ip igmp version {1 | 2 | 3}
```

no ip igmp version

Parameters

- **1**—IGMP Version 1.
- **2**—IGMP Version 2.
- **3**—IGMP Version 3.

Default Configuration

3

Command Mode

Interface Configuration mode

User Guidelines

Use the command to change the default version of IGMP.

Example

The following example configures the router to use IGMP Version 2:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ip igmp version 2
switchxxxxxx(config-if)# exit
```
show ip igmp counters

To display the Internet Group Management Protocol (IGMP) traffic counters, use the **show ip igmp counters** command in User EXEC mode.

Syntax

```
show ip igmp counters [interface-id]
```

Parameters

- `interface-id`—(Optional) Interface Identifier.

Command Mode

User EXEC mode

User Guidelines

Use the **show ip igmp counters** command to check if the expected number of IGMP protocol messages have been received and sent.

If you omit the optional `interface-id` argument, the **show ip igmp counters** command displays counters of all interfaces.

Example

The following example displays the IGMP protocol messages received and sent:

```
switchxxxxxx# show ip igmp counters vlan 100
VLAN 100
Elapsed time since counters cleared:00:00:21
Failed received Joins: 0
Total IGMPv1 received messages: 0
Total IGMPv2 received messages: 10
Total IGMPv3 received messages: 0
Total invalid received messages: 0
General Sent Queries: 0
Specific Sent Queries: 0
```
show ip igmp counters

To display the Internet Group Management Protocol (IGMP) traffic counters, use the `show ip igmp counters` command in User EXEC mode.

Syntax

```
show ip igmp counters [interface-id]
```

Parameters

- `interface-id`—(Optional) Interface Identifier.

Command Mode

User EXEC mode

User Guidelines

Use the `show ip igmp counters` command to check if the expected number of IGMP protocol messages have been received and sent.

If you omit the optional `interface-id` argument, the `show ip igmp counters` command displays counters of all interfaces.

Example

The following example displays the IGMP protocol messages received and sent:

```
switchxxxxxx# show ip igmp counters vlan 100
VLAN 100
Elapsed time since counters cleared:00:00:21
Failed received Joins: 0
Total IGMPv1 received messages: 0
Total IGMPv2 received messages: 10
Total IGMPv3 received messages: 0
Total invalid received messages: 0
General Sent Queries: 0
Specific Sent Queries: 0
```
show ip igmp groups

To display the multicast groups that are directly connected to the router and that were learned through Internet Group Management Protocol (IGMP), use the **show ip igmp groups** command in User EXEC mode.

Syntax

show ip igmp groups [group-name | group-address | interface-id] [detail]

Parameters

- `group-name | group-address`—(Optional) IP address or name of the multicast group.
- `interface-id`—(Optional) Interface identifier.
- `detail`—(Optional) Displays detailed information about individual sources.

Command Mode

User EXEC mode

User Guidelines

Use the **show ip igmp groups [detail]** command to display all directly connected groups.

Use the **show ip igmp groups [group-name | group-address] [detail]** command to display one given directly connected group.

Use the **show ip igmp groups interface-id [detail]** command to display all groups directly connected to the given interface.

Example 1. The following is sample output from the **show ip igmp groups** command. It shows all of the groups joined by VLAN 100:

switchxxxxxx# show ip igmp groups vlan 100

IGMP Connected Group Membership
Expires: never - switch itself has joined the group
Group Address Interface Expires
224.1.1.1 VLAN 100 00:01:30
224.10.12.79 VLAN 100 never
225.1.1.1 VLAN 100 00:00:27

Example 2. The following is sample output from the **show ip igmp groups** command using the **detail** keyword:

switchxxxxxx# show ip igmp groups detail
Expires: zero value - INCLUDE state; non-zero value - EXCLUDE state
Interface: VLAN 100
Group: 225.1.1.1
Router mode: INCLUDE
Last reporter: 10.0.119.133
Group Timer Expires: 00:20:11
Group source list:
Source Address Expires
20.1.1.1 00:04:08
120.1.1.1 00:02:01
Group: 226.1.1.2
Router mode: EXCLUDE
Last reporter: 100.1.12.130
Group Timer Expiry: 00:22:12
Exclude Mode Expiry (Filter) Timer: 00:10:11
Group source list:
Source Address Expires
2.2.2.1 00:04:08
192.168.1.1 00:04:08
12.1.1.10 00:00:00
40.3.4.2 00:00:00
show ip igmp groups summary

To display the number of (*, G) and (S, G) membership reports present in the Internet Group Management Protocol (IGMP) cache, use the `show ip igmp groups summary` command in User EXEC mode.

Syntax

```
show ip igmp groups summary
```

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

User Guidelines

The `show ip igmp groups summary` command displays the number of directly connected multicast groups.

Example

The following is sample output from the `show ip igmp groups summary` command:

```
switchxxxxxx# show ip igmp groups summary
GMP Route Summary
No. of (*,G) routes = 5
No. of (S,G) routes = 0
Field Descriptions:
No. of (*,G) routes = 5—Displays the number of groups present in the IGMP cache.
No. of (S,G) routes = 0—Displays the number of include and exclude mode sources present in the IGMP cache.
```
show ip igmp interface

To display multicast-related information about an interface, use the `show ip igmp interface` command in User EXEC mode.

Syntax

`show ip igmp interface [interface-id]`

Parameters

- `interface-id`—(Optional) Interface identifier.

Command Mode

User EXEC mode

User Guidelines

If you omit the optional `interface-id` argument, the `show ip igmp interface` command displays information about all interfaces.

Example

The following is sample output from the `show ip igmp interface` command for Ethernet interface 2/1/1:

```
switchxxxxxx# show ip igmp interface vlan 100
VLAN 100 is up
Administrative IGMP Querier IP address is 1.1.1.1
Operational IGMP Querier IP address is 1.1.1.1
Current IGMP version is 3
Administrative IGMP robustness variable is 2 seconds
Operational IGMP robustness variable is 2 seconds
Administrative IGMP query interval is 125 seconds
Operational IGMP query interval is 125 seconds
Administrative IGMP max query response time is 10 seconds
Operational IGMP max query response time is 10 seconds
Administrative Last member query response interval is 1000 milliseconds
Operational Last member query response interval is 1000 milliseconds
```
IGMP Proxy Commands

This chapter contains the following sections:

- ip igmp-proxy, on page 520
- ip igmp-proxy downstream protected, on page 521
- ip igmp-proxy downstream protected interface, on page 522
- ip igmp-proxy ssm, on page 523
- show ip igmp-proxy interface, on page 524
ip igmp-proxy

To add downstream interfaces to an IGMP proxy tree, use the **ip igmp-proxy** command in Interface Configuration mode. To remove downstream from interfaces to an IGMP proxy tree, use the **no** form of this command.

Syntax

```plaintext
ip igmp-proxy upstream-interface-id
no ip igmp-proxy
```

Parameters

- **upstream-interface-id** — Upstream Interface identifier.

Default Configuration

The protocol is disabled on the interface.

Command Mode

Interface Configuration mode

User Guidelines

Use the **ip igmp-proxy** command to add downstream interfaces to an IGMP proxy tree. If the proxy tree does not exist it is created.

Use the **no** format of the command to remove the downstream interface. When the last downstream interface is removed from the proxy tree it is deleted too.

Example 1. The following example adds a downstream interface to an IGMP Proxy process with vlan 200 as its Upstream interface:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ip igmp-proxy vlan 200
switchxxxxxx(config-if)# exit
```

Example 2. The following example adds a range of downstream interfaces to an IGMP Proxy process with vlan 200 as its Upstream interface:

```
switchxxxxxx(config)# interface range vlan 100-105
switchxxxxxx(config-if)# ip igmp-proxy vlan 200
switchxxxxxx(config-if)# exit
```
ip igmp-proxy downstream protected

To disable forwarding of IP Multicast traffic from downstream interfaces, use the `ip igmp-proxy downstream protected` command in Global Configuration mode. To allow forwarding from downstream interfaces, use the `no` form of this command.

Syntax

```
ip igmp-proxy downstream protected
no ip igmp-proxy downstream protected
```

Parameters

This command has no arguments or keywords.

Default Configuration

Forwarding from downstream interfaces is allowed.

Command Mode

Global Configuration mode

User Guidelines

Use the `ip igmp-proxy downstream protected` command to block forwarding from downstream interfaces.

Example

The following example prohibits forwarding from downstream interfaces:

```
switchxxxxxx(config)# ip igmp-proxy downstream protected
```
ip igmp-proxy downstream protected interface

To disable or enable forwarding of IP Multicast traffic from a given downstream interface, use the `ip igmp-proxy downstream protected interface` command in Interface Configuration mode. To return to default, use the `no` form of this command.

Syntax

```
ip igmp-proxy downstream protected interface {enabled | disabled}
no ip igmp-proxy downstream protected interface
```

Parameters

- **enabled**—Downstream interface protection on the interface is enabled. IPv4 Multicast traffic arriving on the interface will not be forwarded.
- **disabled**—Downstream interface protection on the interface is disabled. IPv4 Multicast traffic arriving on the interface will be forwarded.

Default Configuration

Global downstream protection configuration (see the `ip igmp-proxy downstream protected` command)

Command Mode

Interface Configuration mode

User Guidelines

Use the `ip igmp-proxy downstream protected interface disabled` command to block forwarding from the given downstream interface.

Use the `ip igmp-proxy downstream protected interface enabled` command to allow forwarding from the given downstream interface.

The command can be configured only for a downstream interface. When a downstream interface is removed from the IGMP Proxy tree the configuration is removed too.

Example

The following example prohibits forwarding from downstream interface vlan 100:

```
switchxxxxxx(config)# interface vlan100
switchxxxxxx(config-if)# ip igmp-proxy downstream protected interface enabled
switchxxxxxx(config-if)# exit
```
ip igmp-proxy ssm

To define the Source Specific Multicast (SSM) range of IP Multicast addresses, use the `ip igmp-proxy ssm` command in Global Configuration mode. To disable the SSM range, use the `no` form of this command.

Syntax

```
ip igmp-proxy ssm {default | range access-list}
no ip igmp-proxy ssm
```

Parameters

- **default**—Defines the SSM range access list to 232.0.0.0/8 (see rfc4607).
- **range access-list**—Specifies the standard IP access list name defining the SSM range.

Default Configuration

The command is disabled.

Command Mode

Global Configuration mode

User Guidelines

A new `ip igmp-proxy ssm` command overrides the previous `ip igmp-proxy ssm` command. Use the `no ip igmp-proxy ssm` command to remove all defined ranges.

Example

The following example shows how to configure SSM service for the default IP address range and the IP address ranges defined by access list `list1`:

```
switchxxxxxx(config)# ip access-list list1 permit 224.2.151.0/24
switchxxxxxx(config)# ip access-list list1 deny 224.2.152.141
switchxxxxxx(config)# ip access-list list1 permit 224.2.152.0/24
switchxxxxxx(config)# ip igmp-proxy ssm range list1
```
show ip igmp-proxy interface

To display information about interfaces configured for IGMP Proxy, use the `show ip igmp-proxy interface` command in User EXEC mode or Privileged EXEC mode.

Syntax

```
show ip igmp-proxy interface [interface-id]
```

Parameters

- `interface-id`—(Optional) Display IGMP Proxy information about the interface.

Command Mode

User EXEC mode
Privileged EXEC mode

User Guidelines

The `show ip igmp-proxy interface` command is used to display all interfaces where the IGMP Proxy is enabled or to display the IGMP Proxy configuration for a given interface.

Example 1. The following example displays IGMP Proxy status on all interfaces where the IGMP Proxy is enabled:

```
switchxxxxxx# show ip igmp-proxy interface

* - the switch is the Querier on the interface
IP Forwarding is enabled
IP Multicast Routing is enabled
IGMP Proxy is enabled
Global Downdstream interfaces protection is disabled
SSM Access List Name:list1
Interface Type Interface Protection
  vlan 100 upstream
*vlan 102 downstream enabled
*vlan 110 downstream default
  vlan 113 downstream disabled
```

Example 2. The following is sample output from the `show ip igmp-proxy interface` command for given upstream interface:

```
switchxxxxxx# show ip igmp-proxy interface vlan 100

* - the switch is the Querier on the interface
IP Forwarding is enabled
IP Multicast Routing is enabled
IGMP Proxy is enabled
Global Downdstream interfaces protection is disabled
SSM Access List Name:
IP Multicast Traffic Discarding from Downdstream interfaces is disabled
vlan 100 is a Upstream interface
Downstream interfaces:
  *vlan 102, *vlan 110, vlan 113
Example 3. The following is sample output from the `show ip igmp-proxy interface` command for given downstream interface:

```
switchxxxxxx# show ip igmp-proxy interface vlan 102
IP Forwarding is enabled
IP Multicast Routing is enabled
IGMP Proxy is enabled
Global Downstream interfaces protection is disabled
vlan 102 is a Downstream interface
The switch is the Querier on vlan 102
Downstream Interface protection is enabled
SSM Access List Name: default
Upstream interface: vlan 100
```

Example 4. The following is sample output from the `show ip igmp-proxy interface` command for an interface on which IGMP Proxy is disabled:

```
switchxxxxxx# show ip igmp-proxy interface vlan 1
IP Forwarding is enabled
IP Multicast Routing is enabled
IGMP Proxy is disabled
```
show ip igmp-proxy interface
IGMP Snooping Commands

This chapter contains the following sections:

- ip igmp snooping (Global), on page 528
- ip igmp snooping vlan, on page 529
- ip igmp snooping vlan mrouter, on page 530
- ip igmp snooping vlan mrouter interface, on page 531
- ip igmp snooping vlan forbidden mrouter, on page 532
- ip igmp snooping vlan static, on page 533
- ip igmp snooping vlan multicast-tv, on page 534
- ip igmp snooping map cpe vlan, on page 535
- ip igmp snooping querier, on page 536
- ip igmp snooping vlan querier, on page 537
- ip igmp snooping vlan querier address, on page 538
- ip igmp snooping vlan querier election, on page 539
- ip igmp snooping vlan querier version, on page 540
- ip igmp snooping vlan immediate-leave, on page 541
- ip igmp snooping map cpe vlan, on page 542
- show ip igmp snooping groups, on page 543
- show ip igmp snooping interface, on page 544
- show ip igmp snooping mrouter, on page 545
- show ip igmp snooping multicast-tv, on page 546
ip igmp snooping (Global)

To enable Internet Group Management Protocol (IGMP) snooping, use the `ip igmp snooping` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

`ip igmp snooping`

`no ip igmp snooping`

**Default Configuration**

Disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables IGMP snooping.

```
switchxxxxxx(config)# ip igmp snooping
```
**ip igmp snooping vlan**

To enable IGMP snooping on a specific VLAN, use the `ip igmp snooping vlan` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

- `ip igmp snooping vlan vlan-id`
- `no ip igmp snooping vlan vlan-id`

**Parameters**

- `vlan-id` — Specifies the VLAN.

**Default Configuration**

Disabled

**Command Mode**

Global Configuration mode

**User Guidelines**

IGMP snooping can be enabled only on static VLANs.
IGMPv1, IGMPv2, and IGMPv3 Snooping are supported.

**Example**

```
switchxxxxxx(config)# ip igmp snooping vlan 2
```
ip igmp snooping vlan mrouter

To enable automatic learning of Multicast router ports on a VLAN, use the `ip igmp snooping vlan mrouter` command in Global Configuration mode. To remove the configuration, use the `no` form of this command.

Syntax

```
ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp
no ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp
```

Parameters

- `vlan-id`—Specifies the VLAN.

Default Configuration

Learning `pim-dvmrp` is enabled.

Command Mode

Global Configuration mode

User Guidelines

Multicast router ports are learned according to:

- Queries received on the port
- PIM/PIMv2 received on the port
- DVMRP received on the port
- MRDISC received on the port
- MOSPF received on the port

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ip igmp snooping vlan 1 mrouter learn pim-dvmrp
```
**ip igmp snooping vlan mrouter interface**

To define a port that is connected to a Multicast router port, use the `ip igmp snooping mrouter interface` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```
ip igmp snooping vlan vlan-id mrouter interface interface-list
no ip igmp snooping vlan vlan-id mrouter interface interface-list
```

**Parameters**

- `vlan-id` — Specifies the VLAN.
- `interface-list` — Specifies the list of interfaces. The interfaces can be one of the following types: Ethernet port or Port-channel.

**Default Configuration**

No ports defined

**Command Mode**

Global Configuration mode

**User Guidelines**

A port that is defined as a Multicast router port receives all IGMP packets (reports and queries) as well as all Multicast data. You can execute the command before the VLAN is created.

**Example**

```
switchxxxxxx(config)# ip igmp snooping vlan 1 mrouter interface gi1/0/1
```
ip igmp snooping vlan forbidden mrouter

To forbid a port from being defined as a Multicast router port by static configuration or by automatic learning, use the ip igmp snooping vlan forbidden mrouter command in Global Configuration mode. To return to the default, use the no form of this command.

Syntax

ip igmp snooping vlan vlan-id forbidden mrouter interface interface-list

no ip igmp snooping vlan vlan-id forbidden mrouter interface interface-list

Parameters

• vlan-id—Specifies the VLAN.
• interface-list—Specifies a list of interfaces. The interfaces can be of one of the following types: Ethernet port or Port-channel.

Default Configuration

No ports defined.

Command Mode

Global Configuration mode

User Guidelines

A port that is a forbidden mrouter port cannot be a Multicast router port (i.e. cannot be learned dynamically or assigned statically).

You can execute the command before the VLAN is created.

Example

switchxxxxxx(config)# ip igmp snooping vlan 1 forbidden mrouter interface gi1/0/1
**ip igmp snooping vlan static**

To register an IP-layer Multicast address to the bridge table, and to add static ports to the group defined by this address, use the `ip igmp snooping vlan static` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```
ip igmp snooping vlan vlan-id static ip-address [interface interface-list]
no ip igmp snooping vlan vlan-id static ip-address [interface interface-list]
```

**Parameter**

- `vlan-id`—Specifies the VLAN.
- `ip-address`—Specifies the IP Multicast address.
- `interface interface-list`—(Optional) Specifies a list of interfaces. The interfaces can be of one of the following types: Ethernet port or Port-channel.

**Default Configuration**

No Multicast addresses are defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

Static Multicast addresses can only be defined on static VLANs.

You can execute the command before the VLAN is created.

You can register an entry without specifying an interface.

Using the `no` command without a port-list removes the entry.

**Example**

```
switchxxxxxx(config)# ip igmp snooping vlan 1 static 239.2.2.2 interface gi1/0/1
```
**ip igmp snooping vlan multicast-tv**

To define the Multicast IP addresses that are associated with a Multicast TV VLAN, use the `ip igmp snooping vlan multicast-tv` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```
ip igmp snooping vlan vlan-id multicast-tv first-ip-multicast-address [last-ip-multicast-address | {count number}]
no ip igmp snooping vlan vlan-id multicast-tv first-ip-multicast-address [last-ip-multicast-address | {count number}]
```

**Parameters**

- `vlan-id`—Specifies the VLAN
- `first-ip-multicast-address`—The first Multicast IP address of the range
- `last-ip-multicast-address`—The last Multicast IP address of the range
- `count number`—(Optional) Configures multiple contiguous Multicast IP addresses. If not specified, the default is 1.

**Default Configuration**

No Multicast IP address is associated.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command to define the Multicast transmissions on a Multicast-TV VLAN. The configuration is only relevant for an Access port that is a member in the configured VLAN as a Multicast-TV VLAN.

If an IGMP message is received on such an Access port, it is associated with the Multicast-TV VLAN only if it is for one of the Multicast IP addresses that are associated with the Multicast-TV VLAN.

Up to 256 VLANs can be configured.

**Example**

```
switchxxxxxx(config)# ip igmp snooping vlan 1 multicast-tv 239.2.2.2 count 3
```
ip igmp snooping map cpe vlan

To map CPE VLANs to Multicast-TV VLANs, use the `ip igmp snooping map cpe vlan` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```vmlang
ip igmp snooping map cpe vlan cpe-vlan-id multicast-tv vlan vlan-id
no ip igmp snooping map cpe vlan vlan-id
```

**Parameters**

- `cpe-vlan-id`—Specifies the CPE VLAN ID.
- `vlan-id`—Specifies the Multicast-TV VLAN ID.

**Default Configuration**

No mapping exists.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command to associate the CPE VLAN with a Multicast-TV VLAN.

If an IGMP message is received on a customer port tagged with a CPE VLAN, and there is mapping from that CPE VLAN to a Multicast-TV VLAN, the IGMP message is associated with the Multicast-TV VLAN.

**Example**

The following example maps CPE VLAN 2 to Multicast-TV VLAN 31.

```sh
switchxxxxxxx(config)# ip igmp snooping map cpe vlan 2 multicast-tv vlan 31
```
ip igmp snooping querier

To enable globally the IGMP Snooping querier, use the `ip igmp snooping querier` command in Global Configuration mode. To disable the IGMP Snooping querier globally, use the `no` form of this command.

**Syntax**

- `ip igmp snooping querier`
- `no ip igmp snooping querier`

**Default Configuration**

Enabled

**Command Mode**

Global Configuration mode

**User Guidelines**

To run the IGMP Snooping querier on a VLAN, you have enable it globally and on the VLAN.

**Example**

The following example disables the IGMP Snooping querier globally:

```
switchxxxxxx(config)# no ip igmp snooping querier
```
**ip igmp snooping vlan querier**

To enable the IGMP Snooping querier on a specific VLAN, use the `ip igmp snooping vlan querier` command in Global Configuration mode. To disable the IGMP Snooping querier on the VLAN interface, use the `no` form of this command.

**Syntax**

`ip igmp snooping vlan vlan-id querier`

`no ip igmp snooping vlan vlan-id querier`

**Parameters**

- `vlan-id`—Specifies the VLAN.

**Default Configuration**

Disabled

**Command Mode**

Global Configuration mode

**User Guidelines**

The IGMP Snooping querier can be enabled on a VLAN only if IGMP Snooping is enabled for that VLAN.

**Example**

The following example enables the IGMP Snooping querier on VLAN 1:

```
switchxxxxxx(config)# ip igmp snooping vlan 1 querier
```
ip igmp snooping vlan querier address

To define the source IP address that the IGMP snooping querier uses, use the `ip igmp snooping vlan querier address` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

`ip igmp snooping vlan vlan-id querier address ip-address`
`no ip igmp snooping vlan vlan-id querier address`

**Parameters**

- `vlan-id`—Specifies the VLAN.
- `ip-address`—Source IP address.

**Default Configuration**

If an IP address is configured for the VLAN, it is used as the source address of the IGMP snooping querier. If there are multiple IP addresses, the minimum IP address defined on the VLAN is used.

**Command Mode**

Global Configuration mode

**User Guidelines**

If an IP address is not configured by this command, and no IP address is configured for the querier’s VLAN, the querier is disabled.

**Example**

```
switchxxxxxx(config)# ip igmp snooping vlan 1 querier address 10.5.234.205
```
ip igmp snooping vlan querier election

To enable IGMP Querier election mechanism of an IGMP Snooping querier on a specific VLAN, use the `ip igmp snooping vlan querier election` command in Global Configuration mode. To disable Querier election mechanism, use the `no` form of this command.

**Syntax**

```
ip igmp snooping vlan vlan-id querier election
no ip igmp snooping vlan vlan-id querier election
```

**Parameters**

- `vlan-id`—Specifies the VLAN.

**Default Configuration**

Enabled

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `no` form of the `ip igmp snooping vlan querier election` command to disable IGMP Querier election mechanism on a VLAN. If the IGMP Querier election mechanism is enabled, the IGMP Snooping querier supports the standard IGMP Querier election mechanism specified in RFC2236 and RFC3376. If IGMP Querier election mechanism is disabled, IGMP Snooping Querier delays sending General Query messages for 60 seconds from the time it was enabled. During this time, if the switch did not receive an IGMP query from another Querier - it starts sending General Query messages. Once the switch acts as a Querier, it will stop sending General Query messages if it detects another Querier on the VLAN. In this case, the switch will resume sending General Query messages if it does hear another Querier for Query Passive interval that equals to:

```
<Robustness>*<Query Interval> + 0.5*<Query Response Interval>.
```

It is recommended to disable IGMP Querier election mechanism if there is an IPM Multicast router on the VLAN.

**Example**

The following example disables IGMP Snooping Querier election on VLAN 1:

```
switchxxxxxx(config)# no ip igmp snooping vlan 1 querier election
```
ip igmp snooping vlan querier version

To configure the IGMP version of an IGMP Snooping querier on a specific VLAN, use the `ip igmp snooping vlan querier version` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```
ip igmp snooping vlan vlan-id querier version {2 | 3}
no ip igmp snooping vlan vlan-id querier version
```

**Parameters**

- `vlan-id`—Specifies the VLAN.
- `querier version 2`—Specifies that the IGMP version would be IGMPv2.
- `querier version 3`—Specifies that the IGMP version would be IGMPv3.

**Default Configuration**

IGMPv2.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the version of the IGMP Snooping Querier VLAN 1 to 3:

```
switchxxxxxx(config)# ip igmp snooping vlan 1 querier version 3
```
ip igmp snooping vlan immediate-leave

To enable the IGMP Snooping Immediate-Leave processing on a VLAN, use the `ip igmp snooping vlan immediate-leave` Global Configuration mode command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

`ip igmp snooping vlan vlan-id immediate-leave`

`no ip igmp snooping vlan vlan-id immediate-leave`

**Parameters**

- `vlan-id`—Specifies the VLAN ID value. (Range: 1–4094).

**Default Configuration**

Disabled

**Command Mode**

Global Configuration mode

**User Guidelines**

You can execute the command before the VLAN is created.

**Example**

The following example enables IGMP snooping immediate-leave feature on VLAN 1.

```
switchxxxxxx(config)# ip igmp snooping vlan 1 immediate-leave
```
ip igmp snooping map cpe vlan

To map CPE VLANs to Multicast-TV VLANs, use the `ip igmp snooping map cpe vlan` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```
ip igmp snooping map cpe vlan cpe-vlan-id multicast-tv vlan vlan-id
no ip igmp snooping map cpe vlan vlan-id
```

**Parameters**

- `cpe-vlan-id`—Specifies the CPE VLAN ID.
- `vlan-id`—Specifies the Multicast-TV VLAN ID.

**Default Configuration**

No mapping exists.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command to associate the CPE VLAN with a Multicast-TV VLAN.

If an IGMP message is received on a customer port tagged with a CPE VLAN, and there is mapping from that CPE VLAN to a Multicast-TV VLAN, the IGMP message is associated with the Multicast-TV VLAN.

**Example**

The following example maps CPE VLAN 2 to Multicast-TV VLAN 31.

```
switchxxxxxx(config)# ip igmp snooping map cpe vlan 2 multicast-tv vlan 31
```
show ip igmp snooping groups

To display the Multicast groups learned by the IGMP snooping, use the `show ip igmp snooping groups` command in User EXEC mode.

**Syntax**

```
show ip igmp snooping groups [vlan vlan-id] [address ip-multicast-address] [source ip-address]
```

**Parameters**

- **vlan vlan-id**—(Optional) Specifies the VLAN ID.
- **address ip-multicast-address**—(Optional) Specifies the IP multicast address.
- **source ip-address**—(Optional) Specifies the IP source address.

**Command Mode**

User EXEC mode

**User Guidelines**

To see all Multicast groups learned by IGMP snooping, use the `show ip igmp snooping groups` command without parameters.

Use the `show ip igmp snooping groups` command with parameters to see a needed subset of all Multicast groups learned by IGMP snooping.

**Example**

The following example shows sample output:

```
switchxxxxxx# show ip igmp snooping groups vlan 1
switchxxxxxx# show ip igmp snooping groups
```

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Include Ports</th>
<th>Exclude Ports</th>
<th>Comp-Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>239.255.255.250</td>
<td>*</td>
<td>gi1/0/1</td>
<td>v2</td>
<td></td>
</tr>
</tbody>
</table>
show ip igmp snooping interface

To display the IGMP snooping configuration for a specific VLAN, use the `show ip igmp snooping interface` command in User EXEC mode.

**Syntax**

```plaintext
show ip igmp snooping interface vlan-id
```

**Parameters**

- `vlan-id`—Specifies the VLAN ID.

**Command Mode**

User EXEC mode

**Example**

The following example displays the IGMP snooping configuration for VLAN 1000

```plaintext
switchxxxxxx# show ip igmp snooping interface 1000
IGMP Snooping is globally enabled
IGMP Snooping Querier is globally enabled
VLAN 1000
IGMP Snooping is enabled
IGMP snooping last immediate leave: enable
Automatic learning of Multicast router ports is enabled
IGMP Snooping Querier is enabled
IGMP Snooping Querier operation state: is not running
IGMP Snooping Querier version: 2
IGMP Snooping Querier election is enabled
IGMP Snooping Querier address: 194.12.10.166
IGMP snooping robustness: admin 2 oper 2
IGMP snooping query interval: admin 125 sec oper 125 sec
IGMP snooping query maximum response: admin 10 sec oper 10 sec
IGMP snooping last member query counter: admin 2 oper 2
IGMP snooping last member query interval: admin 1000 msec oper 500 msec
IGMP Snooping interface active Querier address: 194.12.100.100 (remote)
Groups that are in IGMP version 1 compatibility mode:
 231.2.2.3, 231.2.2.3
```
show ip igmp snooping mrouter

To display information on dynamically learned Multicast router interfaces for all VLANs or for a specific VLAN, use the show ip igmp snooping mrouter command in User EXEC mode.

Syntax

show ip igmp snooping mrouter [interface vlan-id]

Parameters

• interface vlan-id—(Optional) Specifies the VLAN ID.

Command Mode

User EXEC mode

Example

The following example displays information on dynamically learned Multicast router interfaces for VLAN 1000:

```
switchxxxxxx# show ip igmp snooping mrouter interface 1000

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Dynamic</th>
<th>Static</th>
<th>Forbidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>gi1/0/1</td>
<td>gi1/0/2</td>
<td>gi1/0/3-4</td>
</tr>
</tbody>
</table>
```

show ip igmp snooping multicast-tv

To display the IP addresses associated with Multicast TV VLANs, use the `show ip igmp snooping multicast-tv` EXEC mode command in User EXEC mode.

**Syntax**

`show ip igmp snooping multicast-tv [vlan vlan-id]`

**Parameters**

- `vlan vlan-id`—(Optional) Specifies the VLAN ID.

**Command Mode**

User EXEC mode

**Example**

The following example displays the IP addresses associated with all Multicast TV VLANs.

```
switchxxxxxx# show ip igmp snooping multicast-tv
VLAN First IP Address Last IP Address
---- ---------------- ---------------
1000 238.2.5.5 238.2.5.5
1000 239.255.0.0 239.255.1.1
1010 232.0.0.0 239.0.0.255
1010 239.0.1.2 239.255.4.5
```
IP Addressing Commands

This chapter contains the following sections:

- ip address, on page 548
- ip address dhcp, on page 550
- renew dhcp, on page 551
- ip default-gateway, on page 552
- show ip interface, on page 553
- arp, on page 554
- arp timeout (Global), on page 555
- ip arp proxy disable, on page 556
- ip proxy-arp, on page 557
- clear arp-cache, on page 558
- show arp, on page 559
- show arp configuration, on page 560
- interface ip, on page 561
- ip helper-address, on page 562
- show ip helper-address, on page 564
- show ip dhcp client interface, on page 565
ip address

Use the `ip address` Interface Configuration (Ethernet, VLAN, Port-channel) mode command to define an IP address for an interface. Use the `no` form of this command to remove an IP address definition.

**Syntax**

OOB port:

```
ip address ip-address \{mask | lprefix-length\} [default-gateway-ip-address]
```

```
o ip address
```

In-Band interfaces:

```
ip address ip-address \{mask | lprefix-length\}
```

```
o ip address [ip-address]
```

**Parameters**

- `ip-address`—Specifies the IP address.
- `mask`—Specifies the network mask of the IP address.
- `prefix-length`—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 8–30)
- `default-gateway-ip-address`—Specifies the default gateway IP address. The route is gotten a metric of 4 for an In-Band interface and 2 for OOB.

**Default Configuration**

No IP address is defined for interfaces.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the `ip address` command to define a static IP address on an interface.

In-Band interfaces

Multiple IP addresses are supported. A new defined IP address is added on the interface.

Defining a static IP address on an interface stops a DHCP client running on the interface and removes the IP address assigned by the DHCP client.

If a configured IP address overlaps another configured one a warning message is displayed. To change an existed IP address, delete the existed one and add the new one.

While no IP address is assigned either by DHCP client or manually the default IP address 192.168.1.254 is assigned on the Default VLAN.

OOB port
One IP address is supported. A new IP address defined on the OOB port overrides the previously defined IP address on the OOB port.

Defining a static IP address on the OOB port stops a DHCP client running on the OOB port and deletes an IP address assigned by the DHCP client.

While no IP address is assigned either by DHCP client or manually the default IP address 192.168.1.254 is assigned on the OOB port

**Example 1.** The following example configures VLAN 1 with IP address 131.108.1.27 and subnet mask 255.255.255.0.

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip address 131.108.1.27 255.255.255.0
```

**Example 2.** The following example configures 3 overlapped IP addresses.

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip address 1.1.1.1 255.0.0.0
switchxxxxxx(config)# exit
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# ip address 1.2.1.1 255.255.0.0
switchxxxxxx(config)# This IP address overlaps IP address 1.1.1.1/8 on vlan1, are you sure? [Y/N]Y
switchxxxxxx(config)# exit
switchxxxxxx(config)# interface vlan 3
switchxxxxxx(config-if)# ip address 1.3.1.1 255.255.0.0
switchxxxxxx(config)# This IP address overlaps IP address 1.1.1.1/8 on vlan1, are you sure? [Y/N]Y
switchxxxxxx(config)# exit
```

**Example 3.** The following example configures IP address on OOB:

```
switchxxxxxx(config)# interface oob
switchxxxxxx(config-if)# ip address 131.108.1.27 255.255.255.0 131.108.1.100
```
ip address dhcp

Use the **ip address dhcp** Interface Configuration (Ethernet, VLAN, Port-channel) mode command to acquire an IP address for an Ethernet interface from the Dynamic Host Configuration Protocol (DHCP) server. Use the **no** form of this command to release an acquired IP address.

**Syntax**

```
ip address dhcp
```

```
no ip address dhcp
```

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the **ip address dhcp** command to enable DHCP client on the interface.

The **ip address dhcp** command removes all the manually configured addresses on the interface.

The default route (Default Gateway) received in DHCP Router option (Option 3) is assigned a metric of 8 for an In-Band interface and 6 for OOB.

Use the **no** form of the command to disable DHCP client on interface.

**Example**

The following example acquires an IP address for VLAN 100 from DHCP.

```
switchxxxxxx(config)# interface vlan100
switchxxxxxx(config-if)# ip address dhcp
```
renew dhcp

Use the renew dhcp Privileged EXEC mode command to renew an IP address that was acquired from a DHCP server for a specific interface.

**Syntax**

renew dhcp interface-id [force-autoconfig]

**Parameters**

- interface-id—Specifies an interface.
- force-autoconfig - If the DHCP server holds a DHCP option 67 record for the assigned IP address, the record overwrites the existing device configuration.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the renew dhcp command to renew a DHCP address on an interface.

This command does not enable DHCP client on an interface and if DHCP client is not enabled on the interface, the command returns an error message.

**Example**

The following example renews an IP address on VLAN 19 that was acquired from a DHCP server:

```
switchxxxxxx# renew dhcp vlan 19
```
**ip default-gateway**

The **ip default-gateway** Global Configuration mode command defines a default gateway (device). Use the **no** form of this command to restore the default configuration.

**Syntax**

```
ip default-gateway ip-address
no ip default-gateway [ip-address]
```

**Parameters**

- **ip-address**—Specifies the default gateway IP address.

**Command Mode**

Global Configuration mode

**Default Configuration**

No default gateway is defined.

**User Guidelines**

Use the **ip default-gateway** command to define a default gateway (default route).

The **ip default-gateway** command adds the default route with metric of 4 for the gateway connected on an In-Band interface and 2 for the gateway connected on OOB.

Use the **no ip default-gateway ip-address** command to delete one default gateway.

Use the **no ip default-gateway** command to delete all default gateways.

**Example**

The following example defines default gateway 192.168.1.1.

```
switchxxxxxx(config)# ip default-gateway 192.168.1.1
```
show ip interface

Use the `show ip interface` EXEC mode command to display the usability status of configured IP interfaces.

**Syntax**

`show ip interface [interface-id]`

**Parameters**

- `interface-id`—Specifies an interface ID on which IP addresses are defined.

**Default Configuration**

All IP addresses.

**Command Mode**

User EXEC mode

**Example 1** - The following example displays all configured IP addresses and their types:

```
switchxxxxxx# show ip interface

IP Address I/F I/F Status Type Directed Redirect Status
------------ ------ ----------- ------- -------- --------- -----
10.5.230.232/24 vlan 1 UP/UP Static disable Enabled Valid
10.5.234.202/24 vlan 4 UP/DOWN Static disable Disabled Valid
10.5.240.200/24 oob UP/UP Static Valid
```

**Example 2** - The following example displays the IP addresses configured on the given L2 interfaces and their types:

```
switchxxxxxx# show ip interface vlan 1

IP Address I/F I/F Status Type Directed Redirect Status
------------ ------ ----------- ------- -------- --------- -----
10.5.230.232/24 vlan 1 UP/UP Static disable Enabled Valid
```
Use the `arp` Global Configuration mode command to add a permanent entry to the Address Resolution Protocol (ARP) cache. Use the `no` form of this command to remove an entry from the ARP cache.

**Syntax**

```
arp ip-address mac-address [interface-id]
no arp ip-address
```

**Parameters**

- `ip-address`—IP address or IP alias to map to the specified MAC address.
- `mac-address`—MAC address to map to the specified IP address or IP alias.
- `interface-id`—Address pair is added for specified interface.

**Command Mode**

Global Configuration mode

**Default Configuration**

No permanent entry is defined.

If no interface ID is entered, address pair is relevant to all interfaces.

**User Guidelines**

The software uses ARP cache entries to translate 32-bit IP addresses into 48-bit hardware (MAC) addresses. Because most hosts support dynamic address resolution, static ARP cache entries generally do not need to be specified.

**Example**

The following example adds IP address 198.133.219.232 and MAC address 00:00:0c:40:0f:bc to the ARP table.

```
switchxxxxxx(config)# arp 198.133.219.232 00:00:0c:40:0f:bc vlan100
```
arp timeout (Global)

Use the `arp timeout` Global Configuration mode command to set the time interval during which an entry remains in the ARP cache. Use the `no` form of this command to restore the default configuration.

**Syntax**

```plaintext
arp timeout seconds
no arp timeout
```

**Parameters**

- `seconds` — Specifies the time interval (in seconds) during which an entry remains in the ARP cache. (Range: 1–40000000).

**Default Configuration**

The default ARP timeout is 60000 seconds, if IP Routing is enabled, and 300 seconds if IP Routing is disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example configures the ARP timeout to 12000 seconds.

```plaintext
switchxxxxxx(config)# arp timeout 12000
```
ip arp proxy disable

Use the **ip arp proxy disable** Global Configuration mode command to globally disable proxy Address Resolution Protocol (ARP). Use the **no** form of this command to re-enable proxy ARP.

**Syntax**

- `ip arp proxy disable`
- `no ip arp proxy disable`

**Default**

Disabled by default.

**Command Mode**

Global Configuration mode

**User Guidelines**

- This command overrides any proxy ARP interface configuration.
- The command is supported only when IP Routing is enabled.

**Example**

The following example globally disables ARP proxy.

```
switchxxxxxx(config)# ip arp proxy disable
```
**ip proxy-arp**

Use the `ip proxy-arp` Interface Configuration mode command to enable an ARP proxy on specific interfaces. Use the `no` form of this command disable it.

**Syntax**

```
ip proxy-arp
no ip proxy-arp
```

**Default Configuration**

ARP Proxy is enabled.

**Command Mode**

Interface Configuration mode

**User Guidelines**

This configuration can be applied only if at least one IP address is defined on a specific interface. The command is supported only when IP Routing is enabled.

**Example**

The following example enables ARP proxy when the switch is in router mode.

```
switchxxxxxx(config-if)# ip proxy-arp
```
clear arp-cache

Use the `clear arp-cache` Privileged EXEC mode command to delete all dynamic entries from the ARP cache.

**Syntax**

```
clear arp-cache
```

**Command Mode**

Privileged EXEC mode

**Example**

The following example deletes all dynamic entries from the ARP cache.

```
switchxxxxxx# clear arp-cache
```
show arp

Use the `show arp` Privileged EXEC mode command to display entries in the ARP table.

Syntax

```
show arp [ip-address [ip-address] [mac-address [mac-address]] [interface-id]
```

Parameters

- `ip-address [ip-address]`—Specifies the IP address.
- `mac-address [mac-address]`—Specifies the MAC address.
- `interface-id`—Specifies an interface ID.

Command Mode

Privileged EXEC mode

User Guidelines

Since the associated interface of a MAC address can be aged out from the FDB table, the Interface field can be empty.

If an ARP entry is associated with an IP interface that is defined on a port or port-channel, the VLAN field is empty.

Example

The following example displays entries in the ARP table.

```
switchxxxxxx# show arp
ARP timeout: 80000 Seconds

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Interface</th>
<th>IP Address</th>
<th>HW Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>gi1/0/1</td>
<td>10.7.1.102</td>
<td>00:10:B5:04:DB:4B</td>
<td>Dynamic</td>
</tr>
<tr>
<td>VLAN</td>
<td>gi1/0/2</td>
<td>10.7.1.135</td>
<td>00:50:22:00:2A:A4</td>
<td>Static</td>
</tr>
<tr>
<td>VLAN</td>
<td>gi1/0/1</td>
<td>11.7.1.135</td>
<td>00:12:22:00:2A:A4</td>
<td>Dynamic</td>
</tr>
<tr>
<td>VLAN</td>
<td>gi1/0/2</td>
<td>12.10.1.13</td>
<td>00:11:55:04:DB:4B</td>
<td>Dynamic</td>
</tr>
</tbody>
</table>
```
show arp configuration

Use the show arp configuration privileged EXEC command to display the global and interface configuration of the ARP protocol.

Syntax

show arp configuration

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

switchxxxxx# show arp configuration
Global configuration:
  ARP Proxy: enabled
  ARP timeout: 80000 Seconds
Interface configuration:
VLAN 1:
  ARP Proxy: disabled
  ARP timeout: 60000 Seconds
VLAN 10:
  ARP Proxy: enabled
  ARP timeout: 70000 Seconds
VLAN 20:
  ARP Proxy: enabled
  ARP timeout: 80000 Second (Global)
**interface ip**

Use the **interface ip** Global Configuration mode command to enter the IP Interface Configuration mode.

**Syntax**

```
interface ip ip-address
```

**Parameters**

- **ip-address**—Specifies one of the IP addresses of the device.

**Command Mode**

Global Configuration mode

**Example**

The following example enters the IP interface configuration mode.

```
switchxxxxxx(config)# interface_ip 192.168.1.1
switchxxxxxx(config-ip)#
```
**ip helper-address**

Use the `ip helper-address` Global Configuration mode command to enable the forwarding of UDP Broadcast packets received on an interface to a specific (helper) address. Use the `no` form of this command to disable the forwarding of broadcast packets to a specific (helper) address.

**Syntax**

```
ip helper-address {ip-interface | all} address [udp-port-list]
no ip helper-address {ip-interface | all} address
```

**Parameters**

- `ip-interface`—Specifies the IP interface.
- `all`—Specifies all IP interfaces.
- `address`—Specifies the destination broadcast or host address to which to forward UDP broadcast packets. A value of 0.0.0.0 specifies that UDP broadcast packets are not forwarded to any host.
- `udp-port-list`—Specifies the destination UDP port number to which to forward Broadcast packets (Range: 1–59999). This can be a list of port numbers separated by spaces.

**Default Configuration**

Forwarding of UDP Broadcast packets received on an interface to a specific (helper) address is disabled. If `udp-port-list` is not specified, packets for the default services are forwarded to the helper address.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command forwards specific UDP Broadcast packets from one interface to another, by specifying a UDP port number to which UDP broadcast packets with that destination port number are forwarded. By default, if no UDP port number is specified, the device forwards UDP broadcast packets for the following six services:

- IEN-116 Name Service (port 42)
- DNS (port 53)
- NetBIOS Name Server (port 137)
- NetBIOS Datagram Server (port 138)
- TACACS Server (port 49)
- Time Service (port 37)

Many helper addresses may be defined. However, the total number of address-port pairs is limited to 128 for the device.
The setting of a helper address for a specific interface has precedence over the setting of a helper address for all the interfaces.

Forwarding of BOOTP/DHCP (ports 67, 68) cannot be enabled with this command. Use the DHCP relay commands to relay BOOTP/DHCP packets.

The *ip-interface* argument cannot be the OOB port.

**Example**

The following example enables the forwarding of UDP Broadcast packets received on all interfaces to the UDP ports of a destination IP address and UDP port 1 and 2.

```
switchxxxxxx(config)# ip helper-address all 172.16.9.9 49 53 1 2
```
show ip helper-address

Use the `show ip helper-address` Privileged EXEC mode command to display the IP helper addresses configuration on the system.

Syntax

```
show ip helper-address
```

Parameters

This command has no arguments or key words.

Command Mode

Privileged EXEC mode

User Guidelines

Example

The following example displays the IP helper addresses configuration on the system:

```
switchxxxxxx# show ip helper-address

UDP Ports

37, 42, 49, 53, 137, 138

Interface | Helper Address | UDP Ports
-------------|------------------|----------
192.168.1.1 | 172.16.8.8 | 37, 42, 49, 53, 137, 138
192.168.2.1 | 172.16.9.9 | 37, 49
```
show ip dhcp client interface

Use the `show ip dhcp client interface` command in User EXEC or Privileged EXEC mode to display DHCP client interface information.

**Syntax**

```
show ip dhcp client interface [interface-id]
```

**Parameters**

- `interface-id`—Interface identifier.

**Command Mode**

User EXEC mode

**User Guidelines**

If no interfaces are specified, all interfaces on which DHCP client is enabled are displayed. If an interface is specified, only information about the specified interface is displayed.

**Example**

The following is sample output of the `show ip dhcp client interface` command:

```
switchxxxxxx# show ip dhcp client interface
VLAN 100 is in client mode
Address: 170.10.100.100 Mask: 255.255.255.0 T1 120, T2 192
Default Gateway: 170.10.100.1
DNS Servers: 115.1.1.1, 87.12.34.20
DNS Domain Search List: company.com
Host Name: switch_floor7
Configuration Server Addresses: 192.1.1.1 202.1.1.1
Configuration Path Name: qqq/config/aaa_config.dat
Image Path Name: qqq/image/aaa_image.ros
POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
VLAN 1200 is in client mode
Address: 180.10.100.100 Mask: 255.255.255.0 T1 120, T2 192
Default Gateway: 180.10.100.1
DNS Servers: 115.1.1.1, 87.12.34.20
DNS Domain Search List: company.com
Host Name: switch_floor7
Configuration Server Addresses: configuration.company.com
Configuration Path Name: qqq/config/aaa_config.dat
Image Path Name: qqq/image/aaa_image.ros
POSIX Timezone string: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00
Option 43: 5A1N;K4;B3;IFE80::2E0:81FF:FE2D:3799;J6088
```
show ip dhcp client interface
IP Routing Protocol-Independent Commands

This chapter contains the following sections:

- accept-lifetime, on page 568
- directed-broadcast, on page 570
- ip policy route-map, on page 571
- ip redirects, on page 573
- ip route, on page 574
- ip routing, on page 576
- key-string, on page 577
- key (key chain), on page 578
- key chain, on page 580
- send-lifetime, on page 582
- show ip protocols, on page 584
- show ip route, on page 585
- show ip route summary, on page 589
- show key chain, on page 590
accept-lifetime

To set the time period during which the authentication key on a key chain is received as valid, use the `accept-lifetime` command in key chain key configuration mode. To revert to the default value, use the `no` form of this command.

Syntax

```
accept-lifetime start-time {infinite | end-time | duration seconds}
no accept-lifetime
```

Parameters

- **start-time**—Beginning time that the key specified by the key command is valid to be received. The syntax can be either of the following:
  - `hh:mm:ss Month date year`
  - `hh:mm:ss date Month year`
  - `hh`—hours (0-23)
  - `mm`—minutes (0-59)
  - `ss`—seconds (0-59)
  - `Month`—first three letters of the month
  - `date`—date (1-31)
  - `year`—year (four digits)

The default start time and the earliest acceptable date is January 1, 2000.

- **infinite**—Key is valid to be received from the `start-time` value on.

- **end-time**—Key is valid to be received from the `start-time` value until the `end-time` value. The syntax is the same as that for the `start-time` value. The `end-time` value must be after the `start-time` value. The default end time is an infinite time period.

- **duration seconds**—Length of time (in seconds) that the key is valid to be received. The range is from 1 to 2147483646.

**Default Configuration**

The default time period during which the authentication key is valid for authenticating incoming packets is set to `Forever`.

The definition of `Forever` is: the starting time is January 1, 2000, and the ending time is infinite.

**Command Mode**

Key Chain Key Configuration mode.
User Guidelines

The switch checks **Time-of-Date** again a value of the **start-time** argument **regardless if Time-of-Date** is not set by management or by SNTP because of the default value of Time-of-Date always is an passed time.

If validation of the value of the **start-time** argument was passed and the **end-time** argument is configured and its value is **infinite** the key is considered as actual **regardless if Time-of-Date** is not set by management or by SNTP.

If **Time-of-Date** is not set by management or by SNTP and if the **end-time** argument is configured with a value differing from **infinite** or the **duration** parameter is configured, the key is considered as expired.

If **Time-of-Date** is set by management or by SNTP, the switch checks **Time-of-Date** again a value of the **end-time** argument or of the **duration** parameter.

If the last key expires, authentication will be finished with error.

Example

The following example configures a key chain called keychain1. The key named string1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named string2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or discrepancies in the set time of the router. There is a 30-minute leeway on each side to handle time differences:

```plaintext
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# network 172.19.1.1
switchxxxxxx(config-rip)# exit
switchxxxxxx(config)# interface ip 172.19.1.1
switchxxxxxx(config-ip)# ip rip authentication mode md5
switchxxxxxx(config-ip)# ip rip authentication key-chain keychain1
switchxxxxxx(config-ip)# exit
switchxxxxxx(config)# key chain keychain1
switchxxxxxx(config-keychain)# key 1
switchxxxxxx(config-keychain-key)# key-string string1
switchxxxxxx(config-keychain-key)# accept-lifetime 13:30:00 Jan 25 2011 duration 7200
switchxxxxxx(config-keychain-key)# send-lifetime 14:00:00 Jan 25 2011 duration 3600
switchxxxxxx(config-keychain-key)# exit
switchxxxxxx(config)# key chain keychain1
switchxxxxxx(config-keychain)# key 2
switchxxxxxx(config-keychain-key)# key-string string2
switchxxxxxx(config-keychain-key)# accept-lifetime 14:30:00 Jan 25 2011 duration 7200
switchxxxxxx(config-keychain-key)# send-lifetime 15:00:00 Jan 25 2011 duration 3600
switchxxxxxx(config)# exit
```
Use the **directed-broadcast** IP Interface Configuration mode command to enable the translation of a directed broadcast to physical broadcasts. Use the **no** form of this command to disable this function.

**Syntax**

*directed-broadcast*

*no directed-broadcast*

**Default Configuration**

Translation of a directed broadcast to physical broadcasts is disabled. All IP directed broadcasts are dropped.

**Command Mode**

IP Configuration mode

**Example**

The following example enables the translation of a directed broadcast to physical broadcasts.

```
switchxxxxxx(config)# interface ip 192.168.1.1
switchxxxxxx(config-ip)# directed-broadcast
```
ip policy route-map

To enable policy routing on an interface and identify a route map, use the `ip policy route-map` command in Interface Configuration mode. To disable policy routing, use the `no` form of this command.

Syntax

```
ip policy route-map map-tag
no ip policy route-map
```

Parameters

- `map-tag` — Name of the route map to use for policy routing.

Default Configuration

No policy routing occurs on the interface.

Command Mode

Interface Configuration mode

User Guidelines

Use the `ip policy route-map` command to enable policy routing on an interface. The actual policy routing will take a place if an IP address is defined on the interface.

The IP packets matched to the route-map conditions specified by the route map with the `map-tag` name will take a route depended on the action of the matched ACL:

- `permit` — The route specified by the set command Policy routing.
- `deny` — The route specified by the IP Forwarding table (regular routing).
- Name of the route map to use for policy routing.

The IP packets that are not matched, will be forwarded using the obvious shortest path.

IP policy routing on a Layer 2 interface is performed only when IP interface is defined, its status is UP, and the next hop is reachable. If the IP policy routing is not applied then the matched IP packets will be forwarded using the obvious shortest path.

Note. Of course, like in the case of regular IP Routing Policy Based IP Router routes only MAC "tome" IP frames. IP policy routing cannot be configured on an interface together with the following features:

- VLAN ACL

Example

The following example shows how to configure policy routing:

```
switchxxxxxx(config)# ip access-list extended pr-acl1
switchxxxxxx(config-ip-al)# permit tcp any any 156.12.5.0 0.0.0.255 any
switchxxxxxx(config-ip-al)# exit
```
switchxxxx(config)# **ip access-list extended pr-acl2**
switchxxxx(config-ip-al)# **permit tcp any any 156.122.5.0 0.0.0.255 any**
switchxxxx(config-ip-al)# **exit**
switchxxxx(config)# **route-map pbr 10**
switchxxxx(config-route-map)# **match ip address access-list pr-acl1**
switchxxxx(config-route-map)# **set ip next-hop 56.1.1.1**
switchxxxx(config-route-map)# **exit**
switchxxxx(config)# **route-map pbr 20**
switchxxxx(config-route-map)# **match ip address access-list pr-acl2**
switchxxxx(config-route-map)# **set ip next-hop 50.1.1.1**
switchxxxx(config-route-map)# **exit**
switchxxxx(config)# **interface vlan 1**
switchxxxx(config-if)# **ip policy route-map pbr**
switchxxxx(config-if)# **exit**
Use the `ip redirects` command in IP Interface Configuration mode to enable the sending of ICMP redirect messages to re-send a packet through the same interface on which the packet was received. To disable the sending of redirect messages, use the `no` form of this command.

**Syntax**

- `ip redirects`
- `no ip redirects`

**Default Configuration**

The sending of ICMP redirect messages is enabled.

**Command Mode**

IP Configuration mode

**Example**

The following example disables the sending of ICMP redirect messages on IP interface 1.1.1.1 and re-enables the messages on IP interface 2.2.2.2:

```bash
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-ip)# no ip redirects
switchxxxxxx(config-ip)# exit
switchxxxxxx(config)# interface ip 2.2.2.2
switchxxxxxx(config-ip)# ip redirects
switchxxxxxx(config-ip)# exit
```
To establish static routes, use the `ip route` command in global configuration mode. To remove static routes, use the `no` form of this command.

**Syntax**

```
ip route prefix {mask | /prefix-length} {{ip-address [metric value]} | reject-route}
no ip route prefix {mask | /prefix-length} [ip-address]
```

**Parameters**

- `prefix`—IP route prefix for the destination.
- `mask`—Prefix mask for the destination.
- `/prefix-length`—Prefix mask for the destination. Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 0–32)
- `ip-address`—IP address of the next hop that can be used to reach that network.
- `metric value`—Metric of the route. The default metric is 4 for the Next Hop on an In-Band interface and 2 for the Next Hop on OOB. Range: 1–255.
- `reject-route`—Stopping routing to the destination network.

**Default Configuration**

No static routes are established.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `no ip route` command without the `ip-address` parameter to remove all static routes to the given subnet.

Use the `no ip route` command with the `ip-address` parameter to remove only one static route to the given subnet via the given next hop.

**Example 1**—The following example shows how to route packets for network 172.31.0.0 to a router at 172.31.6.6 using mask:

```
switchxxxxxx(config)# ip route 172.31.0.0 255.255.0.0 172.31.6.6 metric 2
```

**Example 2**—The following example shows how to route packets for network 172.31.0.0 to a router at 172.31.6.6 using prefix length:

```
switchxxxxxx(config)# ip route 172.31.0.0 /16 172.31.6.6 metric 2
```

**Example 3**—The following example shows how to reject packets for network 194.1.1.0:

```
switchxxxxxx(config)# ip route 194.1.1.0 255.255.255.0 reject-route
```

**Example 4**—The following example shows how to remove all static routes to network 194.1.1.0/24:
switch(config)# no ip route 194.1.1.0 /24

**Example 5**—The following example shows how to remove one static route to network 194.1.1.0/24 via 1.1.1.1:

switch(config)# no ip route 194.1.1.0 /24 1.1.1.1
ip routing

To enable IP routing, use the **ip routing** command in global configuration mode. To disable IP routing, use the **no** form of this command.

**Syntax**

```
ip routing
no ip routing
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

IP routing is enabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the command to enable IP Routing.  
The switch supports one IPv4 stack on in-band interfaces and the OOB port.  
The IP stack is always running on the OOB port as an IP host regardless whether IP routing is enabled.  
The switch blocks routing between in-band interfaces and the OOB interface.  
In the case when there are two best routes - one via an in-band and one via the OOB port, the switch will use the route via the OOB port.  
DHCP Relay and IP Helper cannot be enabled on the OOB port.  
Routing protocols cannot be enabled on the OOB port.  
The IP subnet defined on the OOB port is not redistributed to routing protocols running on in-band interfaces.

**Example**

The following example enables IP routing

```
switchxxxxxx(config)# ip routing
```
key-string

To specify the authentication string for a key, use the **key-string** command in key chain key configuration mode. To remove the authentication string, use the **no** form of this command.

**Syntax**

```
key-string text
no key-string
```

**Parameters**

- `text`—Specifies the authentication string. The string can contain from 1 to 16 characters.

**Default Configuration**

No key exists.

**Command Mode**

Key Chain Key Configuration mode

**Example**

The following example configures a key chain named chain1. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences:

```
switchxxxxxx(config)# key chain chain1
switchxxxxxx(config-keychain)# key 1
switchxxxxxx(config-keychain-key)# key-string key1
switchxxxxxx(config-keychain-key)# accept-lifetime 13:30:00 Jan 25 2011 duration 7200
switchxxxxxx(config-keychain-key)# send-lifetime 14:00:00 Jan 25 2011 duration 3600
switchxxxxxx(config-keychain-key)# exit
switchxxxxxx(config-keychain)# key 2
switchxxxxxx(config-keychain-key)# key-string key2
switchxxxxxx(config-keychain-key)# accept-lifetime 14:30:00 Jan 25 2011 duration 7200
switchxxxxxx(config-keychain-key)# send-lifetime 15:00:00 Jan 25 2011 duration 3600
switchxxxxxx(config-keychain-key)# exit
switchxxxxxx(config-keychain)# exit
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# network 172.19.1.1
switchxxxxxx(config-rip)# version 2
switchxxxxxx(config-rip)# exit
switchxxxxxx(config)# interface ip 172.19.1.1
switchxxxxxx(config-ip)# ip rip authentication key-chain chain1
switchxxxxxx(config-ip)# ip rip authentication mode md5
switchxxxxxx(config-ip)# exit
```
key (key chain)

To identify an authentication key on a key chain, use the key command in key-chain configuration mode. To remove the key from the key chain, use the no form of this command.

Syntax

```
key key-id
no key key-id
```

Parameters

- `key-id`—Identification number of an authentication key on a key chain. The range of keys is from 1 to 255. The key identification numbers need not be consecutive. The scope of a key identification number is the key chain where the key is defined.

Default Configuration

No key exists on the key chain.

Command Mode

Key-Chain Configuration mode

User Guidelines

It is useful to have multiple keys on a key chain so that the software can sequence through the keys as they become invalid after time, based on the `accept-lifetime` and `send-lifetime` key chain key command settings.

Each key has its own key identifier, which is stored locally. The combination of the key identifier and the interface associated with the message uniquely identifies the authentication algorithm and authentication key in use. Only one authentication packet is sent, regardless of the number of valid keys. The software starts looking at the lowest key identifier number and uses the first valid key.

If the last key expires, authentication will be finished with error.

To remove all keys, remove the key chain by using the no key chain command.

Example

The following example configures a key chain named chain1. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences:

```bash
switchxxxxxx(config)# key 1
switchxxxxxx(config)# key chain chain1
switchxxxxxx(config-keychain)# key 1
switchxxxxxx(config-keychain-key)# key-string key1
switchxxxxxx(config-keychain-key)# accept-lifetime 13:30:00 Jan 25 2011 duration 7200
switchxxxxxx(config-keychain-key)# send-lifetime 14:00:00 Jan 25 2011 duration 3600
switchxxxxxx(config-keychain-key)# exit
switchxxxxxx(config-keychain)# key 2
```
switchxxxxxx(config-keychain-key)# key-string key2
switchxxxxxx(config-keychain-key)# accept-lifetime 14:30:00 Jan 25 2011 duration 7200
switchxxxxxx(config-keychain-key)# send-lifetime 15:00:00 Jan 25 2011 duration 3600
switchxxxxxx(config-keychain-key)# exit
switchxxxxxx(config-keychain)# exit
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# network 172.19.1.1
exit
switchxxxxxx(config)# interface ip 172.19.1.1
switchxxxxxx(config-ip)# ip rip authentication mode md5
switchxxxxxx(config-ip)# ip rip authentication key-chain chain1
switchxxxxxx(config-ip)# exit
key chain

To enable authentication for routing protocols, identify a group of authentication keys by using the `key chain` command in global configuration mode. To remove the key chain, use the `no` form of this command.

Syntax

```
key chain name-of-chain
no key chain name-of-chain
```

Parameters

- **name-of-chain** — Name of a key chain. The chain-name may have from 1 to 32 characters. A key chain must have at least one key and can have up to 256 keys.

Default Configuration

No key chain exists.

Command Mode

Global Configuration mode

User Guidelines

You must configure a key chain with keys to enable authentication.

Although you can identify multiple key chains, we recommend using one key chain per interface per routing protocol. Upon specifying the key chain command, you enter `key-chain` configuration mode.

Example

The following example configures a key chain named chain1. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences:

```plaintext
switchxxxxxx(config)# key chain chain1
switchxxxxxx(config-keychain)# key 1
switchxxxxxx(config-keychain-key)# key-string key1
switchxxxxxx(config-keychain-key)# accept-lifetime 13:30:00 Jan 25 2011 duration 7200
switchxxxxxx(config-keychain-key)# send-lifetime 14:00:00 Jan 25 2011 duration 3600
switchxxxxxx(config-keychain-key)# exit
switchxxxxxx(config-keychain)# key 2
switchxxxxxx(config-keychain-key)# key-string key2
switchxxxxxx(config-keychain-key)# accept-lifetime 14:30:00 Jan 25 2011 duration 7200
switchxxxxxx(config-keychain-key)# send-lifetime 15:00:00 Jan 25 2011 duration 3600
switchxxxxxx(config-keychain-key)# exit
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# network 172.19.1.1
switchxxxxxx(config-rip)# exit
switchxxxxxx(config)# interface ip 172.19.1.1
switchxxxxxx(config-ip)# ip rip authentication mode md5
```
switchxxxxx(config-ip)# ip rip authentication key-chain chain1
switchxxxxx(config-ip)# exit
send-lifetime

To set the time period during which an authentication key on a key chain is valid to be sent, use the `send-lifetime` command in Key Chain Key configuration mode. To revert to the default value, use the `no` form of this command.

**Syntax**

```
send-lifetime start-time {infinite | end-time | duration seconds}
no send-lifetime
```

**Parameters**

- `start-time`—Beginning time that the key specified by the `key` command is valid to be received. The syntax can be either of the following:
  - `hh:mm:ss Month date year`
  - `hh:mm:ss date Month year`
  - `hh`—hours (0-23)
  - `mm`—minutes (0-59)
  - `ss`—seconds (0-59)
  - `Month`—first three letters of the month
  - `date`—date (1-31)
  - `year`—year (four digits)

The default start time and the earliest acceptable date is January 1, 2000.

- `infinite`—Key is valid to be received from the `start-time` value on.

- `end-time`—Key is valid to be received from the `start-time` value until the `end-time` value. The syntax is the same as that for the `start-time` value. The `end-time` value must be after the `start-time` value. The default end time is an infinite time period.

- `duration seconds`—Length of time (in seconds) that the key is valid to be received. The range is from 1 to 2147483646.

**Default Configuration**

The default time period during which the authentication key is valid for authenticating incoming packets is set to forever.

Forever (the starting time is January 1, 2000, and the ending time is infinite)

**Command Mode**

Key Chain Key Configuration mode
User Guidelines

Specify a start-time value and one of the following values: **infinite**, **end-time**, or **duration** seconds.

A key is considered as expired if Time-of-Date is not set by management or by SNTP.

If the last key expires, authentication will be finished with error.

Example

The following example configures a key chain called chain1. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or discrepancies in the set time of the router. There is a 30-minute leeway on each side to handle time differences:

```bash
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# network 172.19.1.1
switchxxxxxx(config-rip)# exit
switchxxxxxx(config)# interface ip 172.19.1.1
switchxxxxxx(config-ip)# ip rip authentication mode md5
switchxxxxxx(config-ip)# ip rip authentication key-chain chain1
switchxxxxxx(config)# key chain chain1
switchxxxxxx(config-keychain)# key 1
switchxxxxxx(config-keychain-key)# key-string key1
switchxxxxxx(config-keychain-key)# accept-lifetime 13:30:00 Jan 25 1996 duration 7200
switchxxxxxx(config-keychain-key)# send-lifetime 14:00:00 Jan 25 1996 duration 3600
switchxxxxxx(config-keychain-key)# exit
switchxxxxxx(config-keychain)# key 2
switchxxxxxx(config-keychain-key)# key-string key2
switchxxxxxx(config-keychain-key)# accept-lifetime 14:30:00 Jan 25 1996 duration 7200
switchxxxxxx(config-keychain-key)# send-lifetime 15:00:00 Jan 25 1996 duration 3600
switchxxxxxx(config-keychain-key)# exit
switchxxxxxx(config-keychain)# exit
```
show ip protocols

To display the parameters and current state of the active IP routing protocol processes, use the `show ip protocols` command in user EXEC or privileged EXEC mode.

**Syntax**

`show ip protocols [summary]`

**Parameters**

- `summary`—Displays the configured routing protocol process names.

**Command Mode**

User EXEC mode

Privileged EXEC mode

**User Guidelines**

The information displayed by the `show ip protocols` command is useful in debugging routing operations.

**Example 1.** The following is sample output from the `show ip protocols` command, showing active routing protocols:

```
switchxxxxxx# show ip protocols
IP Routing Protocol is "rip"
Interfaces IP Addresses
VLAN 1 12.1.1.1
VLAN 1 150.23.12.2
VLAN 11 1.1.1.1
```

**Example 2.** The following is sample output from the `show ip protocols` command with the `summary` keyword:

```
switchxxxxxx# show ipv6 protocols summary
IP Routing Protocol is "rip"
```
show ip route

To display the current state of the routing table, use the `show ip route` command in user EXEC or privileged EXEC mode.

**Syntax**

`show ip route [address ip-address {mask [longer-prefixes]}] [protocol | static | rejected | icmp | connected]`

**Parameters**

- **address ip-address**—IP address about which routing information should be displayed.
- **mask**—The value of the subnet mask.
- **longer-prefixes**—Specifies that only routes matching the IP address and mask pair should be displayed.
- **protocol**—The name of the origin of the protocol to be displayed. Use one of the following arguments:
  - **rip**—Displays routes added by RIP
  - **connected**—Displays connected routes.
  - **icmp**—Displays routes added by ICMP Direct.
  - **rejected**—Displays rejected routes.
  - **static**—Displays static routes.

**Command Mode**

User EXEC mode

Privileged EXEC mode

**User Guidelines**

Use this command without parameters to display the whole IPv6 Routing table.

Use this command with parameters to specify required routes.

**Example 1.** The following is sample output from the `show ip route` command when IP Routing is not enabled:

```
switchxxxxxx# show ip route
Maximum Parallel Paths: 1 (1 after reset) IP Forwarding: disabled
Codes: > - best, C - connected, S - static, I - ICMP
IP Routing Table - 5 entries
Code IP Route Distance/ Next Hop Last Time Outgoing Interface
---------- ------------------- ----------- ------------- ------------
S 10.10.0.0/16 1/2 10.119.254.244 00:02:22 vlan2
S> 10.10.0.0/16 1/1 10.120.254.244 00:02:22 vlan3
S> 10.16.2.0/24 1/1 10.119.254.244 00:02:22 vlan2
C> 10.119.0.0/16 0/1 0.0.0.0 vlan2
C> 10.120.0.0/16 0/1 0.0.0.0 vlan3
```
**Example 2.** The following is sample output from the `show ip route` command when IP Routing is enabled:

```
switchxxxxxx# show ip route
Maximum Parallel Paths: 1 (1 after reset)
Directed Broadcast Forwarding: disabled
Codes: > - best, C - connected, S - static
R - RIP
Policy Routing
VLAN 1
Route Map: BPR1
Status: Active
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.1
Next Hop Status: Active
ACL Name: ACLTCPTELNET
Next Hop: 2.2.2.2
Next Hop Status: Not Active (Unreachable)
ACL Name: ACL_AA
Next Hop: 3.3.3.3
Next Hop Status: Not Active (Not direct)
VLAN 100
Route Map: BPR_10
Status: Not Active (No IP interface on VLAN 100)
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.20
Next Hop Status: Active
VLAN 110
Route Map: BPR_20
Status: Not Active (VLAN 110 status is DOWN)
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.20
Next Hop Status: Active
VLAN 200
Route Map: BPR_A0
Status: Active
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.20
Next Hop Status: Active
IP Routing Table - 5 entries
Code IP Route Distance/ Next Hop Last Time Outgoing Interface
R> 10.7.10.0/24 120/5 10.119.254.244 00:02:22 vlan2
S> 10.175.0.0/16 1/1 10.119.254.240 00:02:22 vlan2
S> 10.180.0.0/16 1/1 10.119.254.240 00:02:42 vlan3
C> 10.119.0.0/16 0/1 0.0.0.0 vlan2
C> 10.120.0.0/16 0/1 0.0.0.0 vlan3
```

**Example 3.** In the following example, the logical AND operation is performed on the address 10.16.0.0 and the mask 255.255.0.0, resulting in 10.16.0.0. On each destination in the routing table the logical AND operation is also performed with the mask and the result is compared with 10.16.0.0. Any destinations that fall into that range are displayed in the output:

```
switchxxxxxx# show ip route 10.16.0.0 255.255.0.0 longer-prefix
Maximum Parallel Paths: 1 (1 after reset)
IP Forwarding: enabled Directed Broadcast Forwarding: disabled
Codes: > - best, C - connected, S - static
R - RIP
Policy Routing
VLAN 1
Route Map: BPR1
Status: Active
```
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.1
Next Hop Status: Active
ACL Name: ACLTCPTELNET
Next Hop: 2.2.2.2
Next Hop Status: Not Active (Unreachable)
ACL Name: ACL_AA
Next Hop: 3.3.3.3
Next Hop Status: Not Active (Not direct)
VLAN 100
Route Map: BPR_10
Status: Not Active (No IP interface on VLAN 100)
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.20
Next Hop Status: Active
VLAN 110
Route Map: BPR_20
Status: Not Active (VLAN 110 status is DOWN)
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.20
Next Hop Status: Active
VLAN 200
Route Map: BPR_A0
Status: Active
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.20
Next Hop Status: Active

IP Routing Table - 6 entries

<table>
<thead>
<tr>
<th>Code</th>
<th>IP Route Distance/</th>
<th>Next Hop Last Time Outgoing</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&gt;</td>
<td>10.16.2.0/24</td>
<td>00:02:22 vlan2</td>
<td></td>
</tr>
<tr>
<td>S&gt;</td>
<td>10.16.2.64/26</td>
<td>00:02:22 vlan1</td>
<td></td>
</tr>
<tr>
<td>S&gt;</td>
<td>10.16.2.128/26</td>
<td>00:02:22 vlan3</td>
<td></td>
</tr>
<tr>
<td>S&gt;</td>
<td>10.16.208.0/24</td>
<td>00:02:22 vlan2</td>
<td></td>
</tr>
<tr>
<td>S&gt;</td>
<td>10.16.223.0/24</td>
<td>00:02:22 vlan5</td>
<td></td>
</tr>
<tr>
<td>S&gt;</td>
<td>10.16.236.0/24</td>
<td>00:02:23 vlan</td>
<td></td>
</tr>
<tr>
<td>C&gt;</td>
<td>10.119.0.0/16</td>
<td>01 0.0.0.0 vlan2</td>
<td></td>
</tr>
<tr>
<td>C&gt;</td>
<td>10.120.0.0/16</td>
<td>01 0.0.0.0 vlan3</td>
<td></td>
</tr>
<tr>
<td>C&gt;</td>
<td>20.1.0.0/16</td>
<td>01 0.0.0.0 vlan5</td>
<td></td>
</tr>
<tr>
<td>C&gt;</td>
<td>30.19.0.0/16</td>
<td>01 0.0.0.0 vlan2</td>
<td></td>
</tr>
<tr>
<td>C&gt;</td>
<td>100.1.0.0/16</td>
<td>01 0.0.0.0 vlan1</td>
<td></td>
</tr>
<tr>
<td>C&gt;</td>
<td>110.9.0.0/16</td>
<td>01 0.0.0.0 vlan3</td>
<td></td>
</tr>
<tr>
<td>C&gt;</td>
<td>120.120.0.0/16</td>
<td>01 0.0.0.0 vlan2</td>
<td></td>
</tr>
</tbody>
</table>

**Example 4.** The following is sample output from the `show ip route` command when IP Routing is enabled and hardware forwarding is not active:

```plaintext
switchxxxxxxx# show ip route
Maximum Parallel Paths: 1 (1 after reset)
IP Forwarding: enabled (hardware forwarding is not active)
Directed Broadcast Forwarding: disabled
Codes: > - best, C - connected, S - static
Codes: > - best, C - connected, S - static
R - RIP
Policy Routin
VLAN 1
Route Map: BPR1
Status: Active
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.1
Next Hop Status: Active
ACL Name: ACLTCPTELNET
Next Hop: 2.2.2.2
```
Next Hop Status: Not Active (Unreachable)
ACL Name: ACL_AA
Next Hop: 3.3.3.3
Next Hop Status: Not Active (Not direct)
VLAN 100
Route Map: BPR_10
Status: Not Active (No IP interface on VLAN 100)
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.20
Next Hop Status: Active
VLAN 110
Route Map: BPR_20
Status: Not Active (VLAN 110 status is DOWN)
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.20
Next Hop Status: Active
VLAN 200
Route Map: BPR_A0
Status: Active
ACL Name: ACLTCPHTTP
Next Hop: 1.1.1.20
Next Hop Status: Active

IP Routing Table - 5 entries
Code IP Route Distance/ Next Hop Last Time Outgoing
Metric IP Address Updated Interface
------ ------------------- ----------- --------------- ------------- ------------
R> 10.7.10.0/24 120/5 10.119.254.244 00:02:22 vlan2
S> 10.175.0.0/16 1/1 10.119.254.240 00:02:22 vlan2
S> 10.180.0.0/16 1/1 10.119.254.240 00:02:42 vlan3
C> 10.119.0.0/16 0/1 0.0.0.0 vlan2
C> 10.120.0.0/16 0/1 0.0.0.0 vlan3
show ip route summary

Use the `show ip route summary` command in User EXEC or Privileged EXEC mode to display the current contents of the IP routing table in summary format.

**Syntax**

```
show ip route summary
```

**Command Mode**

- User EXEC mode
- Privileged EXEC mode

**User Guidelines**

**Example**

The following is sample output from the `show ip route summary` command:

```
switchxxxxxx# show ip route summary
IP Routing Table Summary - 90 entries
35 connected, 25 static, 12 RIP
Number of prefixes:
/16: 16, /18: 10, /22: 15, /24: 15, /28: 2, /30: 12
```
show key chain

To display authentication key information, use the show key chain command in Privileged EXEC mode.

Syntax

show key chain [name-of-chain]

Parameters

• **name-of-chain**—Name of the key chain to display, as named in the key chain command.

Default Configuration

Information about all key chains is displayed.

Command Mode

Privileged EXEC mode

Example 1. The following is sample output from the show key chain command when the current time of date is defined:

```bash
switchxxxxxx# show key chain
Current Time of Date is Feb 8 2011
Accept lifetime is configured to ignore
Key-chain trees:
key 1 -- text "chestnut"
 accept lifetime (always valid) - (always valid) [valid now]
 send lifetime (always valid) - (always valid) [valid now]
key 2 -- text "birch"
 accept lifetime (00:00:00 Dec 5 2010) - (23:59:59 Dec 5 2010)
 send lifetime (06:00:00 Dec 5 2010) - (18:00:00 Dec 5 2016)[valid now]
```

Example 2. The following is sample output from the show key chain command when the current time of date is not defined:

```bash
switchxxxxxx# show key chain
Current Time of Date is not defined
Accept lifetime is ignored
Key-chain trees:
key 1 -- text "chestnut"
 accept lifetime (always valid) - (always valid) [valid now]
 send lifetime (always valid) - (always valid) [valid now]
key 2 -- text "birch"
 accept lifetime (00:00:00 Dec 5 2010) - (23:59:59 Dec 5 2010)
 send lifetime (06:00:00 Dec 5 2010) - (18:00:00 Dec 5 2016)
```
IP System Management Commands

This chapter contains the following sections:

- ping, on page 592
- ssh, on page 594
- telnet, on page 596
- traceroute, on page 599
ping

Use the ping EXEC mode command to send ICMP echo request packets to another node on the network.

**Syntax**

```
ping [ip] {ipv4-address | hostname} [size packet_size] [count packet_count] [timeout time_out] [source source-address]
```

```
ping ipv6 {ipv6-address | hostname} [size packet_size] [count packet_count] [timeout time_out] [source source-address]
```

**Parameters**

- **ip**—Use IPv4 to check the network connectivity.
- **ipv6**—Use IPv6 to check the network connectivity.
- **ipv4-address**—IPv4 address to ping.
- **ipv6-address**—Unicast or Multicast IPv6 address to ping. When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified.
- **hostname**—Hostname to ping (Length: 1-158 characters. Maximum label size for each part of the host name: 58.)
- **size packet_size**—Number of bytes in the packet not including the VLAN tag. The default is 64 bytes. (IPv4:64–1518, IPv6: 68–1518)
- **count packet_count**—Number of packets to send, from 1 to 65535 packets. The default is 4 packets. If 0 is entered, it pings until stopped (0–65535).
- **timeout time_out**—Timeout in milliseconds to wait for each reply, from 50 to 65535 milliseconds. The default is 2000 milliseconds (50–65535).
- **source source-address**—Source address (Unicast IPv4 address or global Unicast IPv6 address).

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Press Esc to stop pinging. Following are sample results of the ping command:

- **Destination does not respond**—If the host does not respond, a “no answer from host” appears within 10 seconds.
- **Destination unreachable**—The gateway for this destination indicates that the destination is unreachable.
- **Network or host unreachable**—The switch found no corresponding entry in the route table.

When using the ping ipv6 command to check network connectivity of a directly attached host using its link local address, the egress interface may be specified in the IPv6Z format. If the egress interface is not specified, the default interface is selected.
When using the **ping ipv6** command with a Multicast address, the information displayed is taken from all received echo responses.

When the **source** keyword is configured and the source address is not an address of the switch, the command is halted with an error message and pings are not sent.

**Example 1** - Ping an IP address.

```
switchxxxxxx> ping ip 10.1.1.1
Pinging 10.1.1.1 with 64 bytes of data:
64 bytes from 10.1.1.1: icmp_seq=0. time=11 ms
64 bytes from 10.1.1.1: icmp_seq=1. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=2. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=3. time=7 ms
---10.1.1.1 PING Statistics---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 7/8/11
```

**Example 2** - Ping a site.

```
switchxxxxxx> ping ip yahoo.com
Pinging yahoo.com [66.218.71.198] with 64 bytes of data:
64 bytes from 66.218.71.198: icmp_seq=0. time=11 ms
64 bytes from 66.218.71.198: icmp_seq=1. time=8 ms
64 bytes from 66.218.71.198: icmp_seq=2. time=8 ms
64 bytes from 66.218.71.198: icmp_seq=3. time=7 ms
---10.1.1.1 PING Statistics---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 7/8/11
```

**Example 3** - Ping an IPv6 address.

```
switchxxxxxx> ping ipv6 3003::11
Pinging 3003::11 with 64 bytes of data:
64 bytes from 3003::11: icmp_seq=1. time=0 ms
64 bytes from 3003::11: icmp_seq=2. time=50 ms
64 bytes from 3003::11: icmp_seq=3. time=0 ms
64 bytes from 3003::11: icmp_seq=4. time=0 ms
---3003::11 PING Statistics---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/12/50
switchxxxxxx> ping ipv6 FF02::1
Pinging FF02::1 with 64 bytes of data:
64 bytes from FF02::1: icmp_seq=1. time=0 ms
64 bytes from FF02::1: icmp_seq=2. time=70 ms
64 bytes from FF02::1: icmp_seq=3. time=1050 ms
64 bytes from FF02::1: icmp_seq=4. time=70 ms
--- FF02::1 PING Statistics---
4 packets transmitted, 12 packets received
```
To start an encrypted session with a remote networking device, use the `ssh` command in user EXEC or privileged EXEC mode.

**Syntax**

```bash
ssh {ip-address | hostname} [port] [keyword...]
```

**Parameters**

- **ip-address**—Specifies the destination host IP address (IPv4 or IPv6).
- **hostname**—Hostname to ping (Length: 1-158 characters. Maximum label size for each part of the host name: 58.)
- **port**—Specifies the decimal TCP port number. The default port is the SSH port (22).
- **keyword**—Specifies the one or more keywords listed in the Keywords table in the User Guidelines.

**Keywords Table**

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/password password</code></td>
<td>Specifies the password to use when logging in on the remote networking device running the SSH server. If the keyword is not specified, the password configured by the <code>ip ssh-client password</code> command is used. If this keyword is specified the the <code>/user</code> keyword must be specified too.</td>
</tr>
<tr>
<td><code>/source-interface interface-id</code></td>
<td>Specifies the source interface which minimal IPv4/v6 address will be used as the source IPv4/v6 address. If the keyword is not specified, the source IPv4/IPv6 address configured by the <code>ip ssh-client source-interface</code> command is used.</td>
</tr>
<tr>
<td><code>/user user-name</code></td>
<td>Specifies the user name to use when logging in on the remote networking device running the SSH server. If the keyword is not specified, the user name configured by the <code>ip ssh-client username</code> command is used. If this keyword is specified the <code>/password</code> keyword must be specified too.</td>
</tr>
</tbody>
</table>

**Default Configuration**

The default port is the SSH port (22) on the host.

**Command Mode**

Privileged EXEC mode
**User Guidelines**

The `ssh` command enables the switch to make a secure, encrypted connection to another switch running an SSH server. This connection provides functionality that is similar to that of a Telnet connection except that the connection is encrypted. With authentication and encryption, the SSH client allows for a secure communication over an insecure network.

Only one SSH terminal connection can be active at the same time.

**Example 1.** The following example sets a secure session between the local device and the edge device HQedge.

```
switchxxxxxx> ssh HQedge
```

**Example 2.** The following example sets a secure session between the local device and the edge device 1.1.1.1. The user name is HQhost and the password is a password configured by the `ip ssh-client password` command.

```
switchxxxxxx> ssh 1.1.1.1 /user HQhost
```

**Example 3.** The following example sets a secure session between the local device and the edge device HQedge. The user name is HQhost and the password is ar3245ddd.

```
switchxxxxxx> ssh HQedge /user HQhost /password ar3245ddd
```

**Example 4.** The following example sets a lookback interface as a source interface:

```
switchxxxxxx> ssh HQedge /source-interface loopback1
```
The **telnet** EXEC mode command logs on to a host that supports Telnet.

**Syntax**

```
telnet {ip-address | hostname} [port] [keyword...]
```

**Parameters**

- **ip-address**—Specifies the destination host IP address (IPv4 or IPv6).
- **hostname**—Hostname to ping (Length: 1-158 characters. Maximum label size for each part of the host name: 58.)
- **port**—Specifies the decimal TCP port number or one of the keywords listed in the Ports table in the User Guidelines.
- **keyword**—Specifies the one or more keywords listed in the Keywords table in the User Guidelines.

**Default Configuration**

The default port is the Telnet port (23) on the host.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Telnet software supports special Telnet commands in the form of Telnet sequences that map generic terminal control functions to operating system-specific functions. To enter a Telnet sequence, press the escape sequence keys (Ctrl-shift-6) followed by a Telnet command character.

**Special Telnet Sequences**

<table>
<thead>
<tr>
<th>Telnet Sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-shift-6-b</td>
<td>Break</td>
</tr>
<tr>
<td>Ctrl-shift-6-c</td>
<td>Interrupt Process (IP)</td>
</tr>
<tr>
<td>Ctrl-shift-6-h</td>
<td>Erase Character (EC)</td>
</tr>
<tr>
<td>Ctrl-shift-6-o</td>
<td>Abort Output (AO)</td>
</tr>
<tr>
<td>Ctrl-shift-6-t</td>
<td>Are You There? (AYT)</td>
</tr>
<tr>
<td>Ctrl-shift-6-u</td>
<td>Erase Line (EL)</td>
</tr>
</tbody>
</table>

At any time during an active Telnet session, available Telnet commands can be listed by pressing the ?/help keys at the system prompt.

A sample of this list follows.
Several concurrent Telnet sessions can be opened, enabling switching between the sessions. To open a subsequent session, the current connection has to be suspended by pressing the escape sequence keys (Ctrl-shift-6) and x to return to the system command prompt. Then open a new connection with the telnet EXEC mode command.

This command lists concurrent Telnet connections to remote hosts that were opened by the current Telnet session to the local device. It does not list Telnet connections to remote hosts that were opened by other Telnet sessions.

### Keywords Table

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/echo</td>
<td>Enables local echo.</td>
</tr>
<tr>
<td>/quiet</td>
<td>Prevents onscreen display of all messages from the software.</td>
</tr>
<tr>
<td>/source-interface</td>
<td>Specifies the source interface.</td>
</tr>
<tr>
<td>/stream</td>
<td>Turns on stream processing, which enables a raw TCP stream with no Telnet control sequences. A stream connection does not process Telnet options and can be appropriate for connections to ports running UNIX-to-UNIX Copy Program (UUCP) and other non-Telnet protocols.</td>
</tr>
<tr>
<td>Ctrl-shift-6 x</td>
<td>Returns to the System Command Prompt.</td>
</tr>
</tbody>
</table>

### Ports Table

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
<td>179</td>
</tr>
<tr>
<td>chargen</td>
<td>Character generator</td>
<td>19</td>
</tr>
<tr>
<td>cmd</td>
<td>Remote commands</td>
<td>514</td>
</tr>
<tr>
<td>daytime</td>
<td>Daytime</td>
<td>13</td>
</tr>
<tr>
<td>discard</td>
<td>Discard</td>
<td>9</td>
</tr>
<tr>
<td>domain</td>
<td>Domain Name Service</td>
<td>53</td>
</tr>
<tr>
<td>echo</td>
<td>Echo</td>
<td>7</td>
</tr>
<tr>
<td>exec</td>
<td>Exec</td>
<td>512</td>
</tr>
<tr>
<td>Keyword</td>
<td>Description</td>
<td>Port Number</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>finger</td>
<td>Finger</td>
<td>79</td>
</tr>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
<td>21</td>
</tr>
<tr>
<td>ftp-data</td>
<td>FTP data connections</td>
<td>20</td>
</tr>
<tr>
<td>gopher</td>
<td>Gopher</td>
<td>70</td>
</tr>
<tr>
<td>hostname</td>
<td>NIC hostname server</td>
<td>101</td>
</tr>
<tr>
<td>ident</td>
<td>Ident Protocol</td>
<td>113</td>
</tr>
<tr>
<td>irc</td>
<td>Internet Relay Chat</td>
<td>194</td>
</tr>
<tr>
<td>klogin</td>
<td>Kerberos login</td>
<td>543</td>
</tr>
<tr>
<td>kshell</td>
<td>Kerberos shell</td>
<td>544</td>
</tr>
<tr>
<td>login</td>
<td>Login</td>
<td>513</td>
</tr>
<tr>
<td>lpd</td>
<td>Printer service</td>
<td>515</td>
</tr>
<tr>
<td>nntp</td>
<td>Network News Transport Protocol</td>
<td>119</td>
</tr>
<tr>
<td>pim-auto-rp</td>
<td>PIM Auto-RP</td>
<td>496</td>
</tr>
<tr>
<td>pop2</td>
<td>Post Office Protocol v2</td>
<td>109</td>
</tr>
<tr>
<td>pop3</td>
<td>Post Office Protocol v3</td>
<td>110</td>
</tr>
<tr>
<td>smtp</td>
<td>Simple Mail Transport Protocol</td>
<td>25</td>
</tr>
<tr>
<td>sunrpc</td>
<td>Sun Remote Procedure Call</td>
<td>111</td>
</tr>
<tr>
<td>syslog</td>
<td>Syslog</td>
<td>514</td>
</tr>
<tr>
<td>tacacs</td>
<td>TAC Access Control System</td>
<td>49</td>
</tr>
<tr>
<td>talk</td>
<td>Talk</td>
<td>517</td>
</tr>
<tr>
<td>telnet</td>
<td>Telnet</td>
<td>23</td>
</tr>
<tr>
<td>time</td>
<td>Time</td>
<td>37</td>
</tr>
<tr>
<td>uucp</td>
<td>Unix-to-Unix Copy Program</td>
<td>540</td>
</tr>
<tr>
<td>whois</td>
<td>Nickname</td>
<td>43</td>
</tr>
<tr>
<td>www</td>
<td>World Wide Web</td>
<td>80</td>
</tr>
</tbody>
</table>

**Example**

The following example displays logging into IP address 176.213.10.50 via Telnet.

```
switchxxxxxx> telnet 176.213.10.50
```
traceroute

To display the routes that packets will take when traveling to their destination, use the traceroute EXEC mode command.

Syntax

```
traceroute ip {ipv4-address | hostname} [size packet_size] [ttl max-ttl] [count packet_count] [timeout time_out] [source ip-address]
traceroute ipv6 {ipv6-address | hostname} [size packet_size] [ttl max-ttl] [count packet_count] [timeout time_out] [source ip-address]
```

Parameters

- **ip**—Use IPv4 to discover the route.
- **ipv6**—Use IPv6 to discover the route.
- **ipv4-address**—IPv4 address of the destination host.
- **ipv6-address**—IPv6 address of the destination host.
- **hostname**—Hostname to ping (Length: 1-158 characters. Maximum label size for each part of the host name: 58.)
- **size packet_size**—Number of bytes in the packet not including the VLAN tag. The default is 64 bytes. (IPv4:64-1518, IPv6: 68-1518)
- **ttl max-ttl**—The largest TTL value that can be used. The default is 30. The traceroute command terminates when the destination is reached or when this value is reached. (Range: 1–255)
- **count packet_count**—The number of probes to be sent at each TTL level. The default count is 3. (Range: 1–10)
- **timeout time_out**—The number of seconds to wait for a response to a probe packet. The default is 3 seconds. (Range: 1–60)
- **source ip-address**—One of the interface addresses of the device to use as a source address for the probes. The device selects the optimal source address by default. (Range: Valid IP address)

Command Mode

Privileged EXEC mode

User Guidelines

The traceroute command works by taking advantage of the error messages generated by routers when a datagram exceeds its time-to-live (TTL) value.

The traceroute command starts by sending probe datagrams with a TTL value of one. This causes the first router to discard the probe datagram and send back an error message. The traceroute command sends several probes at each TTL level and displays the round-trip time for each.
The **traceroute** command sends out one probe at a time. Each outgoing packet can result in one or two error messages. A "time exceeded" error message indicates that an intermediate router has seen and discarded the probe. A "destination unreachable" error message indicates that the destination node has received the probe and discarded it because it could not deliver the packet. If the timer goes off before a response comes in, the traceroute command prints an asterisk (*).

The **traceroute** command terminates when the destination responds, when the maximum TTL is exceeded, or when the user interrupts the trace with Esc.

The **traceroute ipv6** command is not relevant to IPv6 link local addresses.

### Example

```
switchxxxxxx> traceroute umaxp1.physics.lsa.umich.edu
Type Esc to abort.
Tracing the route to umaxp1.physics.lsa.umich.edu (141.211.101.64)
1 i2-gateway.stanford.edu (192.68.191.83) 0 msec 0 msec 0 msec
2 STAN.POS.calren2.NET (171.64.1.213) 0 msec 0 msec 0 msec
3 SUNV--STAN.POS.calren2.net (198.32.249.73) 1 msec 1 msec 1 msec
4 Abilene--QSV.POS.calren2.net (198.32.249.162) 1 msec 1 msec 1 msec
5 kscyn-g-avnkx5.abilene.ucaid.edu (198.32.8.103) 33 msec 35 msec 35 msec
6 iplng-kscynxk-abilene.ucaid.edu (198.32.8.80) 47 msec 45 msec 45 msec
7 so-0-2-021.aal1.mich.net (192.122.183.9) 56 msec 53 msec 54 msec
8 atm1-0x24.michnet8.mich.net (198.108.23.82) 56 msec 56 msec 57 msec
9 * * *
10 A-ARB3-LSA-NG.c-SEB.umnet.umich.edu(141.211.5.22)58 msec 58msec 58 msec
11 umaxp1.physics.lsa.umich.edu (141.211.101.64) 62 msec 63 msec 63 msec
Trace completed
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indicates the sequence number of the router in the path to the host.</td>
</tr>
<tr>
<td>i2-gateway.stanford.edu</td>
<td>Host name of this router.</td>
</tr>
<tr>
<td>192.68.191.83</td>
<td>IP address of this router.</td>
</tr>
<tr>
<td>1 msec 1 msec 1 msec</td>
<td>Round-trip time for each of the probes that are sent.</td>
</tr>
</tbody>
</table>

The following are characters that can appear in the traceroute command output:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output indicates that an access list is blocking traffic.</td>
</tr>
<tr>
<td>F</td>
<td>Fragmentation required and DF is set.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>R</td>
<td>Fragment reassembly time exceeded</td>
</tr>
<tr>
<td>S</td>
<td>Source route failed.</td>
</tr>
<tr>
<td>U</td>
<td>Port unreachable.</td>
</tr>
</tbody>
</table>
traceroute
IPv4 IPM Router Commands

This chapter contains the following sections:

• ip multicast-routing, on page 604
• ip multicast ttl-threshold, on page 605
• show ip mroute, on page 606
• show ip multicast, on page 608
ip multicast-routing

To enable IPv4 Multicast routing on all IP-enabled interfaces of the router and to enable Multicast forwarding, use the **ip multicast-routing** command in global configuration mode. To stop Multicast routing and forwarding, use the **no** form of this command.

**Syntax**

```plaintext
ip multicast-routing igmp-proxy
no ip multicast-routing
```

**Parameters**

- **igmp-proxy**—Enable Multicast routing using IGMP Proxy.

**Default Configuration**

Multicast routing is not enabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the **ip multicast-routing** command with parameter to specify the needed IP Multicast Routing Protocol. To forward IPv4 Multicast packets on an interface, IPv4 Multicast forwarding must be enabled globally and an IPMv4 Routing protocol must be enabled on the interface.

**Example**

The following example enables IP Multicast routing using IGMP Proxy:

```plaintext
switchxxxxx(config)# ip multicast-routing igmp-proxy
```
ip multicast ttl-threshold

To configure the time-to-live (TTL) threshold of packets being forwarded out an interface, use the `ip multicast ttl-threshold` command in Interface Configuration mode. To return to the default TTL threshold, use the `no` form of this command.

**Syntax**

```
ip multicast ttl-threshold ttl-value
no ip multicast ttl-threshold
```

**Parameters**

- `ttl-value`—Time-to-live value, in hops. It can be a value from 0 to 256.

**Default Configuration**

The default TTL value is 0.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Multicast packets with a TTL value less than the threshold will not be forwarded on the interface. The default value of 0 means all Multicast packets are forwarded on the interface.

A value of 256 means that no Multicast packets are forwarded on the interface.

You should configure the TTL threshold only on border routers. Conversely, routers on which you configure a TTL threshold value automatically become border routers.

**Example**

The following example sets the TTL threshold on a border router to 200:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ip multicast ttl-threshold 200
switchxxxxxx(config-if)# exit
```
show ip mroute

To display the contents of the Multicast routing (mroute) table, use the `show ip mroute` command in user EXEC or privileged EXEC mode.

**Syntax**

```
show ip mroute [group-address [source-address]] [summary]
```

**Parameters**

- `group-address`—Destination Multicast IP address.
- `source-address`—Source IP address.
- `summary`—Filters the output to display a one-line, abbreviated summary of each entry in the mroute table.

**Command Mode**

- User EXEC mode
- Privileged EXEC mode

**User Guidelines**

Use the `show ip mroute` command to display information about Mroute entries in the mroute table. The switch populates the Multicast routing table by creating (S, G) entries from (*, G) entries. The asterisk (*) refers to all source addresses, the “S” refers to a single source address, and the “G” is the destination Multicast group address. In creating (S, G) entries, the switch uses the best path to that destination group found in the Unicast routing table (that is, through Reverse Path Forwarding [RPF]).

**Examples**

Description of Significant fields in the examples below

**Timers:** Uptime/Expires—“Uptime” indicates per interface how long (in hours, minutes, and seconds) the entry has been in the IP Multicast routing table. “Expires” indicates per interface how long (in hours, minutes, and seconds) until the entry will be removed from the IP Multicast routing table.

`(*, 224.0.255.1) and (192.168.37.100/32, 224.0.255.1)`—Entry in the IP Multicast routing table. The entry consists of the IP address of the source router followed by the IP address of the Multicast group. An asterisk (*) in place of the source router indicates all sources.

Entries in the first format are referred to as (*, G) or “star comma G” entries. Entries in the second format are referred to as (S, G) or “S comma G” entries. (*, G) entries are used to build (S, G) entries.

**Incoming interface:**—Expected interface for a Multicast packet from the source. If the packet is not received on this interface, it is discarded.

**Outgoing Interface List (OIF):**—Interfaces through which packets will be forwarded.

**Example 1.** The following is sample output from the `show ip mroute` command with the summary keyword:

```
switchxxxxxx# show ip mroute summary
Timers: Uptime/Expires
```
Example 2. The following is sample output from the `show ip mroute` command:

```
switchxxxxxx# show ip mroute
Timers: Uptime/Expires
IP Multicast Routing Table
(*, 224.0.255.3), 5:29:15/00:03:01
 Incoming interface: vlan2
 Outgoing interface list:
 vlan100, 5:29:15/0:02:57
 (192.168.46.0/24, 224.0.255.3), 05:29:15/00:02:59
 Incoming interface: vlan2
 Outgoing interface list:
 vlan5, 05:29:15/00:02:57
```
show ip multicast

To display general information about IP Multicast configuration, use the `show ip multicast` command in user EXEC or privileged EXEC mode.

**Syntax**

`show ip multicast [interface interface-id]`

**Parameters**

- `interface`—Displays IP Multicast-related information about an interface configured for IP Multicast.
- `interface-id`—Interface identifier for which to display IP Multicast information.

**Command Mode**

User EXEC mode

Privileged EXEC mode

**User Guidelines**

Use the `show ip multicast` command without the `interface` keyword to display general information about the state of IP Multicast on the router.

Use the `show ip multicast` command with the `interface` keyword to display the IP Multicast information about the specified interface.

**Example 1.** The following is sample output from the `show ip multicast` command without the `interface` keyword when no IP Multicast Routing protocol is enabled:

```
switchxxxxxx# show ip multicast
IP Unicast Forwarding: enabled
IP Multicast Protocol: No
```

**Example 2.** The following is sample output from the `show ip multicast` command without the `interface` keyword when IGMP Proxy is enabled:

```
switchxxxxxx# show ip multicast
IP Unicast Forwarding: enabled
IP Multicast Protocol: IGMP Proxy
```

**Example 3.** The following is sample output from the `show ip multicast` command about the given interface. IGMP Proxy is enabled on the interface and the interface is an IGMP Proxy Upstream interface:

```
switchxxxxxx# show ip multicast interface vlan 200
IP Unicast Forwarding: enabled
IP Multicast Protocol: IGMP Proxy
vlan 200
TTL-threshold: 0
IGMP Protocol: IGMPv3
IGMP Proxy: Upstream
```
Example 4. The following is sample output from the `show ip multicast` command about the given interface. IGMP Proxy is enabled on the interface and the interface is an IGMP Proxy Downlink interface:

```
switchxxxxxx# show ip multicast interface vlan 100
IP Unicast Forwarding: enabled
IP Multicast Protocol: IGP Proxy
vlan 200
 TTL-threshold: 0
 IGMP Protocol: IGMPv3
 IGMP Proxy: DownStream (Upstream: vlan 200)
```

Example 5. The following is sample output from the `show ip multicast` command about the given interface. IGMP Proxy is disabled on the interface:

```
switchxxxxxx# show ip multicast interface vlan 100
IP Unicast Forwarding: enabled
IP Multicast Protocol: IGMP Proxy
vlan 200
 IP Status: enabled
 hop-threshold: 100
 IGMP Protocol: IGMPv3
 IGMP Proxy: disabled
```
show ip multicast
IPv6 Commands

This chapter contains the following sections:

• clear ipv6 neighbors, on page 612
• ipv6 address, on page 613
• ipv6 address anycast, on page 614
• ipv6 address autoconfig, on page 616
• ipv6 address eui-64, on page 617
• ipv6 address link-local, on page 619
• ipv6 default-gateway, on page 620
• ipv6 enable, on page 621
• ipv6 hop-limit, on page 622
• ipv6 icmp error-interval, on page 623
• ipv6 link-local default zone, on page 624
• ipv6 nd advertisement-interval, on page 625
• ipv6 nd dad attempts, on page 626
• ipv6 nd hop-limit, on page 628
• ipv6 nd managed-config-flag, on page 629
• ipv6 nd prefix, on page 630
• ipv6 nd ra interval, on page 633
• ipv6 nd ra lifetime, on page 634
• ipv6 nd ra suppress, on page 635
• ipv6 nd reachable-time, on page 636
• ipv6 nd router-preference, on page 637
• ipv6 redirects, on page 638
• ipv6 route, on page 639
• ipv6 unicast-routing, on page 641
• ipv6 unreachables, on page 642
• show ipv6 interface, on page 643
• show ipv6 link-local default zone, on page 649
• show ipv6 nd prefix, on page 650
• show ipv6 neighbors, on page 651
• show ipv6 route, on page 653
• show ipv6 route summary, on page 655
• show ipv6 static, on page 656
clear ipv6 neighbors

Use the `clear ipv6 neighbors` command in privileged EXEC mode to delete all entries in the IPv6 neighbor discovery cache, except static entries.

**Syntax**

```
clear ipv6 neighbors
```

**Command Mode**

Privileged EXEC mode

**User Guidelines**

**Example**

The following example deletes all entries, except static entries, in the neighbor discovery cache:

```
switchxxxxxx# clear ipv6 neighbors
```
ipv6 address

Use the `ipv6 address` command in Interface Configuration mode to configure a global unicast IPv6 address based on an IPv6 general prefix and enable IPv6 processing on an interface. To remove the address from the interface, use the `no` form of this command.

**Syntax**

`ipv6 address ipv6-address/prefix-length`

`no ipv6 address [ipv6-address/prefix-length]`

**Parameters**

- `ipv6-address`—Specifies the global unicast IPv6 address assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- `prefix-length`—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

**Default Configuration**

No IP address is defined for the interface.

**Command Mode**

Interface Configuration mode

**User Guidelines**

The `ipv6 address` command cannot be applied to define an IPv6 address on an ISATAP interface.

Using the `no IPv6 address` command without arguments removes all manually-configured IPv6 addresses from an interface, including link local manually configured addresses.

**Example**

The following example defines the IPv6 global address 2001:DB8:2222:7272::72 on vlan 100:

```
switchxxxxx(config)# interface vlan 100
switchxxxxx(config-if)# ipv6 address 2001:DB8:2222:7272::72/64
switchxxxxx(config-if)# exit
```
ipv6 address anycast

Use the `ipv6 address anycast` command in Interface Configuration mode to configure a global unicast IPv6 Anycast address and enable IPv6 processing on an interface. To remove the address from the interface, use the `no` form of this command.

**Syntax**

`ipv6 address ipv6-prefix/prefix-length anycast`

`no ipv6 address [ipv6-prefix/prefix-length]`

**Parameters**

- `ipv6-address`—Specifies the global unicast IPv6 address assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- `prefix-length`—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

**Default Configuration**

No IP address is defined for the interface.

**Command Mode**

Interface Configuration mode

**User Guidelines**

An Anycast address is an address that is assigned to a set of interfaces that typically belong to different nodes. A packet sent to an Anycast address is delivered to the closest interface—as defined by the routing protocols in use—identified by the Anycast address. Anycast addresses are syntactically indistinguishable from Unicast addresses because Anycast addresses are allocated from the Unicast address space. Nodes to which the Anycast address is assigned must be explicitly configured to recognize that the address is an Anycast address.

Anycast addresses can be used only by a router, not a host, and Anycast addresses must not be used as the source address of an IPv6 packet.

The subnet router Anycast address has a prefix concatenated by a series of zeros (the interface ID). The subnet router Anycast address can be used to reach a router on the link that is identified by the prefix in the subnet router Anycast address.

The `ipv6 address anycast` command cannot be applied to define an IPv6 address on an ISATAP interface.

**Example**

The following example enables IPv6 processing on the interface, assigns the prefix 2001:0DB8:1:1::/64 to the interface, and configures the IPv6 Anycast address 2001:0DB8:1:1:FFFF:FFFF:FFFF:FFE:
switchxxxxx(config)# interface vlan 1
switchxxxxx(config-if)# ipv6 address 2001:0DB8:1:1:FFFF:FFFF:FFFF:FFFE/64 anycast
switchxxxxx(config-if)# exit
**ipv6 address autoconfig**

Use the `ipv6 address autoconfig` command in Interface Configuration mode to enable automatic configuration of IPv6 addresses using stateless auto configuration on an interface and enable IPv6 processing on the interface. Addresses are configured depending on the prefixes received in Router Advertisement messages. To disable automatic configuration of IPv6 addresses and to remove the automatically configured address from the interface, use the `no` form of this command.

**Syntax**

```
ipv6 address autoconfig
no ipv6 address autoconfig
```

**Default Configuration**

Stateless Auto configuration is enabled.

**Command Mode**

Interface Configuration mode

**User Guidelines**

This command enables IPv6 on an interface (if it was disabled) and causes the switch to perform IPv6 stateless address auto-configuration to discover prefixes on the link and then to add the eui-64 based addresses to the interface.

Stateless auto configuration is applied only when IPv6 Forwarding is disabled.

When IPv6 forwarding is changed from disabled to enabled, and stateless auto configuration is enabled the switch stops stateless auto configuration and removes all stateless auto configured ipv6 addresses from all interfaces.

When IPv6 forwarding is changed from enabled to disabled and stateless auto configuration is enabled the switch resumes stateless auto configuration.

Additionally the `ipv6 address autoconfig` command enables on the interface the DHCPv6 Stateless client to receive DHCP stateless information and this information is received from a DHCPv6 server regardless whether IPv6 Forwarding is enabled or not.

**Example**

The following example assigns the IPv6 address automatically:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 address autoconfig
switchxxxxxx(config-if)# exit
```
ipv6 address eui-64

Use the `ipv6 address eui-64` command in Interface Configuration mode to configure a global unicast IPv6 address for an interface and enables IPv6 processing on the interface using an EUI-64 interface ID in the low order 64 bits of the address. To remove the address from the interface, use the `no` form of this command.

**Syntax**

```
ipv6 address ipv6-prefix/prefix-length eui-64
```

```
no ipv6 address [ipv6-prefix/prefix-length eui-64]
```

**Parameters**

- `ipv6-prefix` — Specifies the global unicast IPv6 address assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- `prefix-length` — The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

**Default Configuration**

No IP address is defined for the interface.

**Command Mode**

Interface Configuration mode

**User Guidelines**

If the value specified for the `prefix-length` argument is greater than 64 bits, the prefix bits have precedence over the interface ID.

The IPv6 address is built from `ipv6-prefix` and the EUI-64 Interface ID by the following way:

- The first `prefix-length` bits are taken from `ipv6-prefix`.

- If `prefix-length < 64` then

  The following `(64-prefixed-length)` bits are filled by 0s.
  - The last 64 bits are taken from the EUI-64 Interface ID.

- If `prefix-length` equals to 64 then the following 64 bits are taken from the EUI-64 Interface ID.

- If `prefix-length > 64` then the following `(128-prefix-length)` bits are taken from the last `(64-(prefix-length-64))` bits of the EUI-64 Interface ID.

If the switch detects another host using one of its IPv6 addresses, it adds the IPv6 address and displays an error message on the console.
Example

The following example enables IPv6 processing on VLAN 1, configures IPv6 global address 2001:0DB8:0:1::/64 and specifies an EUI-64 interface ID in the low order 64 bits of the address:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 address 2001:0DB8:0:1::/64 eui-64
switchxxxxxx(config-if)# exit
```
ipv6 address link-local

Use the `ipv6 address link-local` command in Interface Configuration mode to configure an IPv6 link local address for an interface and enable IPv6 processing on the interface. To remove the manually configured link local address from the interface, use the `no` form of this command.

**Syntax**

```
ipv6 address ipv6-prefix link-local

no ipv6 address [link-local]
```

**Parameters**

- `ipv6-address`—Specifies the IPv6 network assigned to the interface. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

**Default Configuration**

The default Link-local address is defined.

**Command Mode**

Interface Configuration mode

**User Guidelines**

The switch automatically generates a link local address for an interface when IPv6 processing is enabled on the interface, typically when an IPv6 address is configured on the interface. To manually specify a link local address to be used by an interface, use the `ipv6 address link-local` command.

The `ipv6 address link-local` command cannot be applied to define an IPv6 address on an ISATAP interface.

**Example**

The following example enables IPv6 processing on VLAN 1 and configures FE80::260:3EFF:FE11:6770 as the link local address for VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 address FE80::260:3EFF:FE11:6770 link-local
switchxxxxxx(config-if)# exit
```
ipv6 default-gateway

Use the `ipv6 default-gateway` Global Configuration mode command to define an IPv6 default gateway. To remove the IPv6 default gateway, use the `no` form of this command.

**Syntax**

```
ipv6 default-gateway {ipv6-address [outgoing-interface-id]} | interface-id
no ipv6 default-gateway [{ipv6-address [outgoing-interface-id]} | interface-id]
```

**Parameters**

- `ipv6-address` — Specifies the IPv6 address of an IPv6 router that can be used to reach a network.
- `outgoing-interface-id` — Outgoing Interface identifier.
- `interface-id` — Specifies the Interface Identifier of the outgoing interface that can be used to reach a network. This argument can be applied only to point-to-point interfaces (manual IPv6 over IPv4 tunnels).

**Default Configuration**

No default gateway is defined.

**Command Mode**

Global Configuration mode

**Example 1.** The following example defines a default gateway with a global IPv6 address:

```
switchxxxxxx(config)# ipv6 default-gateway 5::5
```

**Example 2.** The following example defines a default gateway with a link-local IPv6 address:

```
switchxxxxxx(config)# ipv6 default-gateway FE80::260:3EFF:FE11:6770%vlan1
```

**Example 3.** The following example defines a default gateway on manual tunnel 1:

```
switchxxxxxx(config)# ipv6 default-gateway tunnel1
```
**ipv6 enable**

Use the **ipv6 enable** command in Interface Configuration mode to enable IPv6 processing on an interface.
To disable IPv6 processing on an interface that has not been configured with an explicit IPv6 address, use the **no** form of this command.

**Syntax**

- `ipv6 enable`
- `no ipv6 enable`

**Default Configuration**

IPv6 interface is disabled.

**Command Mode**

Interface Configuration mode

**User Guidelines**

This command automatically configures an IPv6 link-local Unicast address on the interface while also enabling the interface for IPv6 processing. The **no ipv6 enable** command does not disable IPv6 processing on an interface that is configured with an explicit IPv6 address.

**Example**

The following example enables VLAN 1 for the IPv6 addressing mode.

```plaintext
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 enable
switchxxxxxx(config-if)# exit
```
ipv6 hop-limit

Use the `ipv6 hop-limit` command in Global Configuration mode to configure the maximum number of hops used in all IPv6 packets that are originated by the router.

To return the hop limit to its default value, use the `no` form of this command.

**Syntax**

```
ipv6 hop-limit value
no ipv6 hop-limit
```

**Parameters**

- `value`—Maximum number of hops. The acceptable range is from 1 to 255.

**Default Configuration**

The default is 64 hops.

**Command Mode**

Global Configuration mode

**Example**

The following example configures a maximum number of 15 hops for all IPv6 packets that are originated from the router:

```
switchxxxxxx(config)# ipv6 hop-limit 15
```
**ipv6 icmp error-interval**

Use the `ipv6 icmp error-interval` command in Global Configuration mode to configure the interval and bucket size for IPv6 ICMP error messages. To return the interval to its default setting, use the `no` form of this command.

**Syntax**

```
ipv6 icmp error-interval milliseconds [bucketsize]
no ipv6 icmp error-interval
```

**Parameters**

- `milliseconds` — Time interval between tokens being placed in the bucket. Each token represents a single ICMP error message. The acceptable range is from 0 to 2147483647. A value of 0 disables ICMP rate limiting.
- `bucketsize` — Maximum number of tokens stored in the bucket. The acceptable range is from 1 to 200.

**Default Configuration**

The default interval is 100ms and the default bucketsize is 10 i.e. 100 ICMP error messages per second.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command to limit the rate at which IPv6 ICMP error messages are sent. A token bucket algorithm is used with one token representing one IPv6 ICMP error message. Tokens are placed in the virtual bucket at a specified interval until the maximum number of tokens allowed in the bucket is reached.

The `milliseconds` argument specifies the time interval between tokens arriving in the bucket. The optional `bucketsize` argument is used to define the maximum number of tokens allowed in the bucket. Tokens are removed from the bucket when IPv6 ICMP error messages are sent, which means that if the `bucketsize` is set to 20, a rapid succession of 20 IPv6 ICMP error messages can be sent. When the bucket is empty of tokens, IPv6 ICMP error messages are not sent until a new token is placed in the bucket.

Average Packets Per Second = \((1000/\text{milliseconds}) \times \text{bucketsize}\).

To disable ICMP rate limiting, set the `milliseconds` argument to zero.

**Example**

The following example shows an interval of 50 milliseconds and a bucket size of 20 tokens being configured for IPv6 ICMP error messages:

```
switchxxxxxx(config)# ipv6 icmp error-interval 50 20
```
ipv6 link-local default zone

Use the `ipv6 link-local default zone` command to configure an interface to egress a link local packet without a specified interface or with the default zone 0.

Use the `no` form of this command to return the default link local interface to the default value.

**Syntax**

```
ipv6 link-local default zone interface-id
no ipv6 link-local default zone
```

**Parameters**

- `interface-id`—Specifies the interface that is used as the egress interface for packets sent without a specified IPv6Z interface identifier or with the default 0 identifier.

**Default**

By default, `link local default zone` is disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example defines VLAN 1 as a default zone:

```
switchxxxxxx(config)# ipv6 link-local default zone vlan1
```
ipv6 nd advertisement-interval

Use the `ipv6 nd advertisement-interval` in Interface Configuration mode to configure the advertisement interval option in router advertisements (RAs).

To reset the interval to the default value, use the `no` form of this command.

**Syntax**

```
ipv6 nd advertisement-interval
no ipv6 nd advertisement-interval
```

**Default Configuration**

Advertisement interval option is not sent.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the `ipv6 nd advertisement-interval` command to indicate to a visiting mobile node the interval at which that node may expect to receive RAs. The node may use this information in its movement detection algorithm.

**Example**

The following example enables the advertisement interval option to be sent in RAs:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd advertisement-interval
switchxxxxxx(config-if)# exit
```
ipv6 nd dad attempts

Use the `ipv6 nd dad attempts` command in Interface Configuration mode to configure the number of consecutive neighbor solicitation messages that are sent on an interface while duplicate address detection is performed on the Unicast IPv6 addresses of the interface.

To return the number of messages to the default value, use the `no` form of this command.

**Syntax**

`ipv6 nd dad attempts value`

`no ipv6 nd dad attempts`

**Parameters**

- **value**—The number of neighbor solicitation messages. The acceptable range is from 0 to 600. Configuring a value of 0 disables duplicate address detection processing on the specified interface; a value of 1 configures a single transmission without follow-up transmissions.

**Default Configuration**

1

**Command Mode**

Interface Configuration mode

**User Guidelines**

Duplicate address detection verifies the uniqueness of new Unicast IPv6 addresses before the addresses are assigned to interfaces (the new addresses remain in a tentative state while duplicate address detection is performed). Duplicate address detection uses neighbor solicitation messages to verify the uniqueness of Unicast IPv6 addresses.

The `DupAddrDetectTransmits` node configuration variable (as specified in RFC 4862, IPv6 Stateless Address Autoconfiguration) is used to automatically determine the number of consecutive neighbor solicitation messages that are sent on an interface, while duplicate address detection is performed on a tentative Unicast IPv6 address.

The interval between duplicate address detection, neighbor solicitation messages (the duplicate address detection timeout interval) is specified by the neighbor discovery-related variable RetransTimer (as specified in RFC 4861, Neighbor Discovery for IPv6), which is used to determine the time between retransmissions of neighbor solicitation messages to a neighbor when resolving the address or when probing the reachability of a neighbor. This is the same management variable used to specify the interval for neighbor solicitation messages during address resolution and neighbor unreachability detection.

Duplicate address detection is suspended on interfaces that are administratively down. While an interface is administratively down, the Unicast IPv6 addresses assigned to the interface are set to a pending state. Duplicate address detection is automatically restarted on an interface when the interface returns to being administratively up.

An interface returning to administratively up, restarts duplicate address detection for all of the Unicast IPv6 addresses on the interface. While duplicate address detection is performed on the link-local address of an
interface, the state for the other IPv6 addresses is still set to TENTATIVE. When duplicate address detection is completed on the link-local address, duplicate address detection is performed on the remaining IPv6 addresses.

When duplicate address detection identifies a duplicate address, the state of the address is set to DUPLICATE and the address is not used. If the duplicate address is the link-local address of the interface, the processing of IPv6 packets is disabled on the interface and an error SYSLOG message is issued.

If the duplicate address is a global address of the interface, the address is not used and an error SYSLOG message is issued.

All configuration commands associated with the duplicate address remain as configured while the state of the address is set to DUPLICATE.

If the link-local address for an interface changes, duplicate address detection is performed on the new link-local address and all of the other IPv6 address associated with the interface are regenerated (duplicate address detection is performed only on the new link-local address).

Note. Since DAD is not supported on NBMA interfaces the command is allowed but does not impact on an IPv6 tunnel interface of the ISATAP type it does not impact. The configuration is saved and will impacted when the interface type is changed on another type on which DAD is supported (for example, to the IPv6 manual tunnel).

Example

The following example configures five consecutive neighbor solicitation messages to be sent on VLAN 1 while duplicate address detection is being performed on the tentative Unicast IPv6 address of the interface. The example also disables duplicate address detection processing on VLAN 2.

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd dad attempts 5
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# ipv6 nd dad attempts 0
switchxxxxxx(config-if)# exit
```
ipv6 nd hop-limit

Use the `ipv6 nd hop-limit` command in Global Configuration mode to configure the maximum number of hops used in router advertisements.

To return the hop limit to its default value, use the `no` form of this command.

**Syntax**

ipv6 nd hop-limit `value`
no ipv6 nd hop-limit

**Parameters**

- `value`—Maximum number of hops. The acceptable range is from 1 to 255.

**Default Configuration**

The default value is defined by the `ipv6 hop-limit` command, or is set to 64 hops, if the command was not configured.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use this command if you want to change the default value. The default value is defined by the `ipv6 hop-limit` command.

**Example**

The following example configures a maximum number of 15 hops for router advertisements on VLAN 2:

```plaintext
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# ipv6 nd hop-limit 15
switchxxxxxx(config-if)# exit
```
ipv6 nd managed-config-flag

Use the `ipv6 nd managed-config-flag` command in Interface Configuration mode to set the “managed address configuration flag” in IPv6 router advertisements.

To clear the flag from IPv6 router advertisements, use the `no` form of this command.

**Syntax**

`ipv6 nd managed-config-flag`

`no ipv6 nd managed-config-flag`

**Default Configuration**

The “managed address configuration flag” flag is not set in IPv6 router advertisements.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Setting the Managed Address Configuration flag in IPv6 router advertisements indicates to attached hosts whether they should use stateful autoconfiguration to obtain addresses. If this flag is set, the attached hosts should use stateful autoconfiguration to obtain addresses, and if it is not set, the attached hosts should not use stateful autoconfiguration to obtain addresses.

Hosts may use stateful and stateless address autoconfiguration simultaneously.

**Example**

The following example configures the Managed Address Configuration flag in IPv6 router advertisements on VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd managed-config-flag
switchxxxxxx(config-if)# exit
```
Use the `ipv6 nd prefix` command in Interface Configuration mode to configure which IPv6 prefixes are included in IPv6 Neighbor Discovery (ND) router advertisements.

To remove the prefixes, use the `no` form of this command.

**Syntax**

```
ipv6 nd prefix {ipv6-prefix/prefix-length | default} [no-advertise | {valid-lifetime preferred-lifetime} [no-autoconfig] [off-link | no-onlink]]
```

```
no ipv6 nd prefix [ipv6-prefix/prefix-length | default]
```

**Parameters**

- **ipv6-prefix**—IPv6 network number to include in router advertisements. This argument must be in the form documented in RFC4293, where the address is specified in hexadecimal using 16-bit values between colons.

- **prefix-length**—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

- **default**—Default values used for automatic advertised prefixes configured as addresses on the interface using the `ipv6 address` command.

- **no-advertise**—Prefix is not advertised.

- **valid-lifetime**—Remaining length of time, in seconds, that this prefix will continue to be valid, i.e., time until invalidation. A value of 4,294,967,295 represents infinity. The address generated from an invalidated prefix should not appear as the destination or source address of a packet.

- **preferred-lifetime**—Remaining length of time, in seconds, that this prefix will continue to be preferred, i.e., time until deprecation. A value of 4,294,967,295 represents infinity. The address generated from a deprecated prefix should no longer be used as a source address in new communications, but packets received on such an interface are processed as expected. The `preferred-lifetime` must not be larger than the `valid-lifetime`.

- **no-autoconfig**—Indicates to hosts on the local link that the specified prefix cannot be used for IPv6 autoconfiguration. The prefix will be advertised with the A-bit clear.

- **off-link**—Configures the specified prefix as off-link. The prefix will be advertised with the L-bit clear. The prefix will not be inserted into the routing table as a connected prefix. If the prefix is already present in the routing table as a connected prefix (for example, because the prefix was also configured using the `ipv6 address` command), then it will be removed.

- **no-onlink**—Configures the specified prefix as not on-link. The prefix will be advertised with the L-bit clear.

**Default Configuration**

All prefixes configured on interfaces that originate IPv6 router advertisements are advertised with a valid lifetime of 2,592,000 seconds (30 days) and a preferred lifetime of 604,800 seconds (7 days).
Note that by default:

- All prefixes are inserted in the routing table as connected prefixes.
- All prefixes are advertised as on-link (for example, the L-bit is set in the advertisement)
- All prefixes are advertised as an auto-configuration prefix (for example, the A-bit is set in the advertisement)

**Command Mode**

Interface Configuration mode

**User Guidelines**

This command enables control over the individual parameters per prefix, including whether the prefix should be advertised.

Use the `ipv6 nd prefix ipv6-prefix/prefix-length` command to add the prefix to the Prefix table.

Use the `no ipv6 nd prefix ipv6-prefix/prefix-length` command to remove the prefix from the Prefix table.

Use the `no ipv6 nd prefix` command without the `ipv6-prefix/prefix-length` argument to remove all prefixes from the Prefix Table.

**Note.** The `no ipv6 nd prefix` command does not return the default values to the original default values.

The switch supports the following advertisement algorithm:

- Advertise all prefixes that are configured as addresses on the interface using the parameters defined by the `ipv6 nd prefix default` command (or the default value if the command has not been configured) except prefixes that are placed in the Prefix table (changed (configured) by the `ipv6 nd prefix` command).

Advertise all prefixes configured by the `ipv6 nd prefix` command without the `no-advertise` keyword.

**Default Keyword**

The `default` keyword can be used to set default values for automatic advertised prefixes configured as addresses on the interface using the `ipv6 address` command.

**Note.** These default values are not used as the default values in the `ipv6 nd prefix` command.

Use the `no ipv6 nd prefix default` command to return the default values to the original default values.

**On-Link**

When on-link is "on" (by default), the specified prefix is assigned to the link. Nodes sending traffic to such addresses that contain the specified prefix consider the destination to be locally reachable on the link. An on-link prefix is inserted into the routing table as a Connected prefix.

**Auto-configuration**

When auto-configuration is on (by default), it indicates to hosts on the local link that the specified prefix can be used for IPv6 auto-configuration.

The configuration options affect the L-bit and A-bit settings associated with the prefix in the IPv6 ND Router Advertisement, and presence of the prefix in the routing table, as follows:

- **Default** L=1 A=1, In the Routing Table
- **no-onlink** L=0 A=1, In the Routing Table
• **no-autoconfig** L=1 A=0, In the Routing Table

• **no-onlink no-autoconfig** L=0 A=0, In the Routing Table

• **off-link** L=0 A=1, Not in the Routing Table

• **off-link no-autoconfig** L=0 A=0, Not in the Routing Table

**Example 1.** The following example includes the IPv6 prefix 2001:0DB8::/35 in router advertisements sent out VLAN 1 with a valid lifetime of 1000 seconds and a preferred lifetime of 900 seconds. The prefix is inserted in the Routing table:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd prefix 2001:0DB8::/35 1000 900
switchxxxxxx(config-if)# exit
```

**Example 2.** The following example advertises the prefix with the L-bit clear:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 address 2001::1/64
switchxxxxxx(config-if)# ipv6 nd prefix 2001::/64 3600 3600 no-onlink
switchxxxxxx(config-if)# exit
```
ipv6 nd ra interval

Use the `ipv6 nd ra interval` command in Interface Configuration mode to configure the interval between IPv6 router advertisement (RA) transmissions on an interface.

To restore the default interval, use the `no` form of this command.

Syntax

ipv6 nd ra interval maximum-secs [minimum-secs]

no ipv6 nd ra interval

Parameters

- `maximum-secs` — Maximum interval between IPv6 RA transmissions in seconds. The range is from 4 to 1800.
- `minimum-secs` — Minimum interval between IPv6 RA transmissions in seconds. The range is from 3 to 1350.

Default Configuration

maximum-secs is 600 seconds.

minimum-secs is 0.33*maximum-secs, if the value .=> 3 seconds and is 3 seconds, if the value .< 3 seconds.

Command Mode

Interface Configuration mode

User Guidelines

The interval between transmissions should be less than or equal to the IPv6 router advertisement lifetime if you configure the route as a default router by using this command. To prevent synchronization with other IPv6 nodes, the actual interval used is randomly selected from a value between the minimum and maximum values.

The minimum RA interval may never be more than 75% of the maximum RA interval and never less than 3 seconds.

Example 1. The following example configures an IPv6 router advertisement interval of 201 seconds for VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd ra interval 201
switchxxxxxx(config-if)# exit
```

Example 2. The following examples shows a maximum RA interval of 200 seconds and a minimum RA interval of 50 seconds:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd ra interval 200 50
switchxxxxxx(config-if)# exit
```
ipv6 nd ra lifetime

Use the **ipv6 nd ra lifetime** command in Interface Configuration mode to configure the Router Lifetime value in IPv6 router advertisements on an interface.

To restore the default lifetime, use the **no** form of this command.

**Syntax**

**ipv6 nd ra lifetime** seconds

**no ipv6 nd ra lifetime**

**Parameters**

- **seconds**—Remaining length of time, in seconds, that this router will continue to be useful as a default router (Router Lifetime value). A value of zero indicates that it is no longer useful as a default router. The acceptable range is 0 or from <Maximum RA Interval> to 9000 seconds.

**Default Configuration**

The default lifetime value is 3*<Maximum RA Interval> seconds.

**Command Mode**

Interface Configuration mode

**User Guidelines**

The Router Lifetime value is included in all IPv6 router advertisements sent out the interface. The value indicates the usefulness of the router as a default router on this interface. Setting the value to 0 indicates that the router should not be considered a default router on this interface. The Router Lifetime value can be set to a non-zero value to indicate that it should be considered a default router on this interface. The non-zero value for the Router Lifetime value should not be less than the router advertisement interval.

**Example**

The following example configures an IPv6 router advertisement lifetime of 1801 seconds for VLAN 1:

```
switchxxxxxx(config)# interface vlan1
switchxxxxxx(config-if)# ipv6 nd ra lifetime 1801
switchxxxxxx(config-if)# exit
```
ipv6 nd ra suppress

Use the `ipv6 nd ra suppress` command in Interface Configuration mode to suppress IPv6 router advertisement transmissions on an interface. To re-enable the sending of IPv6 router advertisement transmissions on an interface, use the `no` form of this command.

**Syntax**

```
ipv6 nd ra suppress
no ipv6 nd ra suppress
```

**Default Configuration**

LAN interface - IPv6 router advertisements are automatically sent.
Point-to-Point interface - IPv6 router advertisements are suppressed.
NBMA interface - IPv6 router advertisements are suppressed.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the `no ipv6 nd ra suppress` command to enable the sending of IPv6 router advertisement transmissions on a Point-to-Point interface (for example, manual tunnel).

NBMA interface - IPv6 router advertisements are suppressed.

Use the `no ipv6 nd ra suppress` command to enable the sending of IPv6 router advertisement transmissions on a NBMA interface (for example, ISATAP tunnel).

**Example 1.** The following example suppresses IPv6 router advertisements on vlan 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd ra suppress
switchxxxxxx(config-if)# exit
```

**Example 2.** The following example enables the sending of IPv6 router advertisements on tunnel 1:

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# no ipv6 nd ra suppress
switchxxxxxx(config-if)# exit
```
ipv6 nd reachable-time

Use the `ipv6 nd reachable-time` command in Interface Configuration mode to configure the amount of time that a remote IPv6 node is considered reachable after some reachability confirmation event has occurred.

To restore the default time, use the `no` form of this command.

Syntax

```
ipv6 nd reachable-time milliseconds
no ipv6 nd reachable-time
```

Parameters

- `milliseconds`—Amount of time that a remote IPv6 node is considered reachable (in milliseconds). The acceptable range is from 0 to 3600000 milliseconds.

Default Configuration

0 milliseconds (unspecified) is advertised in router advertisements and the value 30000 (30 seconds) is used for the neighbor discovery activity of the router itself.

Command Mode

Interface Configuration mode

User Guidelines

The configured time enables the router to detect unavailable neighbors. Shorter configured times enable the router to detect unavailable neighbors more quickly; however, shorter times consume more IPv6 network bandwidth and processing resources in all IPv6 network devices. Very short configured times are not recommended in normal IPv6 operation.

The configured time is included in all router advertisements sent out of an interface so that nodes on the same link use the same time value. A value of 0 means indicates that the configured time is unspecified by this router.

Example

The following example configures an IPv6 reachable time of 1,700,000 milliseconds for VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd reachable-time 1700000
switchxxxxxx(config-if)# exit
```
ipv6 nd router-preference

Use the `ipv6 nd router-preference` command in Interface Configuration mode to configure a default router preference (DRP) for the router on a specific interface.

To return to the default DRP, use the `no` form of this command.

**Syntax**

```
ipv6 nd router-preference {high | medium | low}
no ipv6 nd router-preference
```

**Parameters**

- **high**—Preference for the router specified on an interface is high.
- **medium**—Preference for the router specified on an interface is medium.
- **low**—Preference for the router specified on an interface is low.

**Default Configuration**

Router advertisements (RAs) are sent with the medium preference.

**Command Mode**

Interface Configuration mode

**User Guidelines**

RA messages are sent with the DRP configured by the this command. If no DRP is configured, RAs are sent with a medium preference.

A DRP is useful when, for example, two routers on a link may provide equivalent, but not equal-cost, routing, and policy may dictate that hosts should prefer one of the routers.

**Example**

The following example configures a DRP of high for the router on VLAN 1:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 nd router-preference high
switchxxxxxx(config-if)# exit
```
ipv6 redirects

Use the `ipv6 redirects` command in Interface Configuration mode to enable the sending of ICMP IPv6 redirect messages to re-send a packet through the same interface on which the packet was received.

To disable the sending of redirect messages, use the `no` form of this command.

**Syntax**

`ipv6 redirects`

`no ipv6 redirects`

**Default Configuration**

The sending of ICMP IPv6 redirect messages is enabled.

**Command Mode**

Interface Configuration mode

**Example**

The following example disables the sending of ICMP IPv6 redirect messages on VLAN 100 and re-enables the messages on VLAN 2:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# no ipv6 redirects
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# ipv6 redirects
switchxxxxxx(config-if)# exit
```
ipv6 route

Use the ipv6 route command in Global Configuration mode to establish static IPv6 routes.
To remove a previously configured static route, use the no form of this command.

Syntax
ipv6 route ipv6-prefix/prefix-length {next-ipv6-address [outgoing-interface-id]} | interface-id [metric]
no ipv6 route ipv6-prefix/prefix-length [{next-ipv6-address [outgoing-interface-id]} | interface-id]

Parameters
• ipv6-prefix—IPv6 network that is the destination of the static route. Can also be a host name when static host routes are configured.
• prefix-length—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.
• next-ipv6-address—IPv6 address of the next hop that can be used to reach the specified network. If the next-ipv6-address argument is a link local address it must be defined in the zone format: IPv6 Zone Format: ::= IPv6-Link-Local-Address%Interface-ID. The interface-id argument must be coded without spaces.
• outgoing-interface-id—Outgoing Interface identifier.
• interface-id—Outgoing Interface identifier. This argument can be applied only to point-to-point interfaces (manual IPv6 over IPv4 tunnels).
• metric—Static route metric. Acceptable values are from 1 to 65535. The default value is 1.

Default Configuration
Static entries are not configured in the IPv6 neighbor discovery cache.

Command Mode
Global Configuration mode

User Guidelines
Use the ipv6 route ipv6-prefix/prefix-length interface-id [metric] command to define a static route, if the outgoing interface is a manual tunnel.
If the next-ipv6-address argument is a global IPv6 address that belongs to an on-link prefix you can omit the outgoing-interface-id argument and in this case the L2 interface on which this on-link prefix is defined will be used as the outgoing interface. If the outgoing-interface-id argument is configured it overrides this switch decision.
If the next-ipv6-address argument is a global IPv6 address that does not belong to any on-link prefix you must configure the outgoing-interface-id argument.
If the `next-ipv6-address` argument is a link-local IPv6 address and the `outgoing-interface-id` argument is omitted the zone of the `next-ipv6-address` argument will be used as the outgoing interface. If the `outgoing-interface-id` argument is configured it overrides this zone.

**Example 1.** The following example defines a static route with a global next hop:
```
switchxxxxxx(config)# ipv6 route 2001::/64 5::5 10
```

**Example 2.** The following example defines a static route with a link-local next hop:
```
switchxxxxxx(config)# ipv6 route 2001:DB8:2222::/48 FE80::260:3EFF:FE11:6770%vlan1 12
```

**Example 3.** The following example defines a static route on manual tunnel 1:
```
switchxxxxxx(config)# ipv6 route 2001:DB8:2222::/48 tunnel1
```

**Example 4.** The following example defines a static route on with the outgoing interface:
```
switchxxxxxx(config)# ipv6 route 2001::/64 5::5 vlan10 10
```
ipv6 unicast-routing

Use the **ipv6 unicast-routing** command in Global Configuration mode to enable the forwarding of IPv6 Unicast datagrams.

To disable the forwarding of IPv6 Unicast datagrams, use the **no** form of this command.

**Syntax**

```
ipv6 unicast-routing
no ipv6 unicast-routing
```

**Default Configuration**

IPv6 Unicast routing is disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables the forwarding of IPv6 Unicast datagrams:

```
switchxxxxxx(config)# ipv6 unicast-routing
```
**ipv6 unreachable**

Use the **ipv6 unreachable** command in Interface Configuration mode to enable the generation of Internet Control Message Protocol for IPv6 (ICMPv6) unreachable messages for any packets arriving on a specified interface.

To prevent the generation of unreachable messages, use the **no** form of this command.

**Syntax**

- **ipv6 unreachable**
- **no ipv6 unreachable**

**Default Configuration**

The sending of ICMP IPv6 unreachable messages is enabled.

**Command Mode**

Interface Configuration mode

**User Guidelines**

If the switch receives a Unicast packet destined for itself that uses a protocol it does not recognize, it sends an ICMPv6 unreachable message to the source.

If the switch receives a datagram that it cannot deliver to its ultimate destination because it knows of no route to the destination address, it replies to the originator of that datagram with an ICMP host unreachable message.

**Example**

The following example disables the generation of ICMPv6 unreachable messages, as appropriate, on an interface:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# no ipv6 unreachable
switchxxxxxx(config-if)# exit
```
show ipv6 interface

Use the `show ipv6 interface` command in user EXEC or privileged EXEC mode to display the usability status of interfaces configured for IPv6.

**Syntax**

```
show ipv6 interface [brief] | [[interface-id] [prefix]]
```

**Parameters**

- `brief`—Displays a brief summary of IPv6 status and configuration for each interface where IPv6 is defined.
- `interface-id`—Interface identifier about which to display information.
- `prefix`—Prefix generated from a local IPv6 prefix pool.

**Default Configuration**

Option `brief` - all IPv6 interfaces are displayed.

**Command Mode**

User EXEC mode
Privileged EXEC mode

**User Guidelines**

Use this command to validate the IPv6 status of an interface and its configured addresses. This command also displays the parameters that IPv6 uses for operation on this interface and any configured features.

If the interface’s hardware is usable, the interface is marked up.

If you specify an optional interface identifier, the command displays information only about that specific interface. For a specific interface, you can enter the prefix keyword to see the IPv6 neighbor discovery (ND) prefixes that are configured on the interface.

The keyword is supported only if IPv6 unicast routing is enabled.

**Example 1.** The `show ipv6 interface` command displays information about the specified interface:

```
switchxxxxxx# show ipv6 interface vlan 1
VLAN 1 is up/up
IPv6 is enabled, link-local address is FE80::0DB8:12AB:FA01
IPv6 Forwarding is enabled
Global unicast address(es):
IPv6 Global Address Type
2000:0DB8::2/64 (ANY) Manual
2000:0DB8::2/64 Manual
2000:1DB8::2011/64 Manual
Joined group address(es):
FF02::1
FF02::2
FF02::1:FF11:6770
```
MTU is 1500 bytes
ICMP error messages limited interval is 100ms; Bucket size is 10 tokens
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router maximum advertisement interval is 600 seconds
ND router minimum advertisement interval is 198 seconds (DEFAULT)
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Stateless autoconfiguration is enabled.
Stateless autoconfiguration is not available (IPv6 Forwarding is enabled).
MLD Version is 2
Field Descriptions:

• **vlan 1 is up/up**—Indicates the interface status: administrative/operational.

• **IPv6 is enabled, stalled, disabled (stalled and disabled are not shown in sample output)**—Indicates that IPv6 is enabled, stalled, or disabled on the interface. If IPv6 is enabled, the interface is marked Enabled. If duplicate address detection processing identified the link-local address of the interface as being a duplicate address, the processing of IPv6 packets is disabled on the interface and the interface is marked Stalled. If IPv6 is not enabled, the interface is marked Disabled.

• **link-local address**—Displays the link-local address assigned to the interface.

• **Global unicast address(es):**—Displays the global Unicast addresses assigned to the interface. The type is manual or autoconfig.

• **Joined group address(es):**—Indicates the Multicast groups to which this interface belongs.

• **MTU is 1500 bytes**—Maximum transmission unit of the interface.

• **ICMP error messages**—Specifies the minimum interval (in milliseconds) between error messages sent on this interface.

• **ICMP redirects**—State of ICMP IPv6 redirect messages on the interface (the sending of the messages is enabled or disabled).

• **ND DAD**—The state of duplicate address detection on the interface (enabled or disabled).

• **number of DAD attempts:**—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.

• **ND reachable time**—Displays the neighbor discovery reachable time (in milliseconds) assigned to this interface.

• **ND advertised reachable time**—Displays the neighbor discovery reachable time (in milliseconds) advertised on this interface.

• **ND advertised retransmit interval**—Displays the neighbor discovery retransmit interval (in milliseconds) advertised on this interface.

• **ND router advertisements**—Specifies the interval (in seconds) for neighbor discovery router advertisements sent on this interface and the amount of time before the advertisements expire.

• **ND advertised default router preference is Medium**—DRP for the router on a specific interface.
**Example 2.** The `show ipv6 interface` command displays information about the specified manual IPv6 tunnel:

```
switchxxxxxx# show ipv6 interface tunnel 2
Tunnel 2 is up/up
IPV6 is enabled, link-local address is FE80::0DB8:12AB:FA01
IPV6 Forwarding is enabled
Global unicast address(es):
IPv6 Global Address Type
2000:0DB8::2/64 (ANY) Manual
2000:0DB8::2/64 Manual
2000:1DB8::2011/64 Manual
Joined group address(es):
FF02::1
FF02::2
FF02::1:FF11:6770
MTU is 1500 bytes
ICMP error messages limited interval is 100ms; Bucket size is 10 tokens
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Hosts use stateless autoconfig for addresses.
Stateless autoconfiguration is disabled.
MLD Version is 2
Tunnel mode is manual
Tunnel Local IPv4 address : 10.10.10.1(auto)
Tunnel Remote IPv4 address : 10.1.1.1
Field Descriptions:

- **vlan 1 is up/up**—Indicates the interface status: administrative/operational.

- **IPV6 is enabled, stalled, disabled** (stalled and disabled are not shown in sample output)—Indicates that IPv6 is enabled, stalled, or disabled on the interface. If IPv6 is enabled, the interface is marked “enabled.” If duplicate address detection processing identified the link-local address of the interface as being a duplicate address, the processing of IPv6 packets is disabled on the interface and the interface is marked “stalled.” If IPv6 is not enabled, the interface is marked “disabled.”

- **link-local address**—Displays the link-local address assigned to the interface.

- **Global Unicast address(es):**—Displays the global Unicast addresses assigned to the interface. The type is manual or autoconfig.

- **Joined group address(es):**—Indicates the Multicast groups to which this interface belongs.

- **Maximum transmission unit of the interface.**

- **ICMP error messages**—Specifies the minimum interval (in milliseconds) between error messages sent on this interface.

- **ICMP redirects**—The state of Internet Control Message Protocol (ICMP) IPv6 redirect messages on the interface (the sending of the messages is enabled or disabled).

- **ND DAD**—The state of duplicate address detection on the interface (enabled or disabled).
• **number of DAD attempts**:—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.

• **ND reachable time**—Displays the neighbor discovery reachable time (in milliseconds) assigned to this interface.

• **ND advertised reachable time**—Displays the neighbor discovery reachable time (in milliseconds) advertised on this interface.

• **ND advertised retransmit interval**—Displays the neighbor discovery retransmit interval (in milliseconds) advertised on this interface.

• **ND router advertisements**—Specifies the interval (in seconds) for neighbor discovery router advertisements sent on this interface and the amount of time before the advertisements expire.

• **ND advertised default router preference is Medium**—The DRP for the router on a specific interface.

• **MLD Version**—The version of MLD

• **Tunnel mode**—Specifies the tunnel mode: manual

• **Tunnel Local IPv4 address**—Specifies the tunnel local IPv4 address and have one of the following formats:
 - ipv4-address
 - ipv4-address (auto)
 - ipv4-address (interface-id)

• **Tunnel Remote IPv4 address**—Specifies the tunnel remote IPv4 address

Example 3. The **show ipv6 interface** command displays information about the specified ISATAP tunnel:

click to view code
```
switchxxxxxx# show ipv6 interface tunnel 1
Tunnel 1 is up/up
IPv6 is enabled, link-local address is FE80::0DB8:12AB:FA01
ICMP redirects are disabled
Global unicast address(es):
  Ipv6 Global Address    Type
  2000::DB8::2/64 (ANY)   Manual
  2000::DB8::2/64         Manual
  2000::DB8::2011/64      Manual
Joined group address(es):
  FF02::1
  FF02::2
  FF02::1:FF11:6770
is 1500 bytes
ICMP error messages limited interval is 100ms; Bucket size is 10 tokens
ICMP redirects are enabled
ND DAD is disabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Stateless autoconfiguration is disabled.
MLD Version is 2
Tunnel mode is ISATAP
```
Tunnel Local IPv4 address: 10.10.10.1 (VLAN 1)
ISATAP Router DNS name is isatap

Field Descriptions:

- **ND DAD**—The state of duplicate address detection on the interface (enabled or disabled). **Note.** The state of duplicate address detection on an IPv6 tunnel interface of ISATAP type always is displayed as disabled regardless of a value of the number of DAD attempts parameter because DAD is not supported on NBMA interfaces. The switch will enable DAD automatically when the user change the type of the tunnel to manual if a the parameter value bigger than 0.

- **number of DAD attempts**—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.

- **vlan 1 is up/up**—Indicates the interface status: administrative/operational.

- **IPv6 is enabled, stalled, disabled (stalled and disabled are not shown in sample output)**—Indicates that IPv6 is enabled, stalled, or disabled on the interface. If IPv6 is enabled, the interface is marked “enabled.” If duplicate address detection processing identified the link-local address of the interface as being a duplicate address, the processing of IPv6 packets is disabled on the interface and the interface is marked “stalled.” If IPv6 is not enabled, the interface is marked “disabled.”

- **link-local address**—Displays the link-local address assigned to the interface.

- **Global Unicast address(es)**—Displays the global Unicast addresses assigned to the interface. The type is manual or autoconfig.

- **Joined group address(es)**—Indicates the Multicast groups to which this interface belongs.

- **—Maximum transmission unit of the interface.**

- **ICMP error messages**—Specifies the minimum interval (in milliseconds) between error messages sent on this interface.

- **ICMP redirects**—The state of Internet Control Message Protocol (ICMP) IPv6 redirect messages on the interface (the sending of the messages is enabled or disabled).

- **number of DAD attempts**—Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.

- **ND reachable time**—Displays the neighbor discovery reachable time (in milliseconds) assigned to this interface.

- **ND advertised reachable time**—Displays the neighbor discovery reachable time (in milliseconds) advertised on this interface.

- **ND advertised retransmit interval**—Displays the neighbor discovery retransmit interval (in milliseconds) advertised on this interface.

- **ND router advertise**—Specifies the interval (in seconds) for neighbor discovery router advertisements sent on this interface and the amount of time before the advertisements expire.

- **ND advertised default router preference is Medium**—The DRP for the router on a specific interface.

- **MLD Version**—The version of MLD

- **Tunnel mode**—Specifies the tunnel mode: isatap
• **Tunnel Local IPv4 address**—Specifies the tunnel local IPv4 address and have one of the following formats:
 • `ipv4-address`
 • `ipv4-address (auto)`
 • `ipv4-address (interface-id)`

• **Tunnel Remote IPv4 address**—Specifies the tunnel remote IPv4 address

• **ISATAP Router DNS name is**—The DNS name of the ISATAP Router

Example 4. The following command with the `brief` keyword displays information about all interfaces that IPv6 is defined on:

```
switchxxxxxx# show ipv6 interface brief
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>IPv6 Link Local</th>
<th>MLD State</th>
<th>Number of Global Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan 1</td>
<td>up/up enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
</tr>
<tr>
<td>vlan 2</td>
<td>up/up stalled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
</tr>
<tr>
<td>vlan 3</td>
<td>up/down enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
</tr>
<tr>
<td>vlan 4</td>
<td>down/down enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>2</td>
</tr>
<tr>
<td>vlan 5</td>
<td>up/up enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
</tr>
<tr>
<td>vlan 100</td>
<td>up/up enabled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
</tr>
<tr>
<td>vlan 1000</td>
<td>up/up stalled</td>
<td>FE80::0DB8:12AB:FA01</td>
<td>1</td>
</tr>
</tbody>
</table>

Example 5. This sample output shows the characteristics of VLAN 1 that has generated a prefix from a local IPv6 prefix pool:

```
switchxxxxxx# configure terminal
switchxxxxxx(config)# interface vlan1
switchxxxxxx(config-if)# ipv6 address 2001:0DB8:1::/64
switchxxxxxx(config-if)# ipv6 address 2001:0DB8:2::/64
switchxxxxxx(config-if)# ipv6 address 2001:0DB8:3::/64
switchxxxxxx(config-if)# ipv6 nd prefix 2001:0DB8:1::/64 no-advertise
switchxxxxxx(config-if)# ipv6 nd prefix 2001:0DB8:3::/64 2912000 564900 off-link
switchxxxxxx(config-if)# ipv6 nd prefix 2001:0DB8:5::/64 2912000 564900 off-link
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# exit
switchxxxxxx# show ipv6 interface
```

IPv6 Prefix Advertisements VLAN 1

<table>
<thead>
<tr>
<th>Codes</th>
<th>Prefix Flags</th>
<th>Valid Lifetime</th>
<th>Preferred Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>LA infinite</td>
<td>infinite</td>
<td>infinite</td>
</tr>
<tr>
<td>APR</td>
<td>LA infinite</td>
<td>infinite</td>
<td>infinite</td>
</tr>
<tr>
<td>AP</td>
<td>A infinite</td>
<td>infinite</td>
<td>infinite</td>
</tr>
<tr>
<td>PR</td>
<td>LA 2592000</td>
<td>604800</td>
<td>604800</td>
</tr>
<tr>
<td>P</td>
<td>A 2912000</td>
<td>564900</td>
<td>564900</td>
</tr>
</tbody>
</table>
show ipv6 link-local default zone

Use the `show ipv6 link-local default zone` command in user EXEC or privileged EXEC mode to display the IPv6 link local default zone.

Syntax

`show ipv6 link-local default zone`

Command Mode

User EXEC mode

Privileged EXEC mode

Example 1. The following example displays the default zone when it is defined:

```
switchxxxxxx# show ipv6 link-local default zone
Link Local Default Zone is VLAN 1
```

Example 2. The following example displays the default zone when it is not defined:

```
switchxxxxxx# show ipv6 link-local default zone
Link Local Default Zone is not defined
```
show ipv6 nd prefix

Use the `show ipv6 nd prefix` command in user EXEC or privileged EXEC mode to display IPv6 prefixes included in IPv6 Neighbor Discovery (ND) router advertisements.

Syntax

`show ipv6 nd prefix [interface-id]`

Parameters

- `interface-id`—Specified interface identifier on which prefixes are advertised.

Default Configuration

No prefixes are displayed.

Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

Use the `show ipv6 nd prefix` command with the `interface-id` argument to display prefixes advertised on a single interface.

Example

The following example displays IPv6 prefixes:

```
switchxxxxxx# show ipv6 nd prefix vlan
vlan 100
default
valid-lifetime 2,592,000 secs
preferred-lifetime 604,800 secs
on-link
auto-config
prefix 2001::1/64
valid-lifetime 3,600 secs
preferred-lifetime 2,700 secs
prefix 2001:2:12/64
no advertise
prefix 2002::1/64
valid-lifetime 3,600 secs
preferred-lifetime 2,700 secs
on-link
prefix 2011::1/64
valid-lifetime 3,600 secs
preferred-lifetime 2,700 secs
on-link
auto-config
```
show ipv6 neighbors

Use the `show ipv6 neighbors` command in User EXEC or Privileged EXEC mode to display IPv6 neighbor discovery (ND) cache information.

Syntax

```
show ipv6 neighbors [interface-id | ipv6-address | ipv6-hostname]
```

Parameters

- **interface-id**—Specifies the identifier of the interface from which IPv6 neighbor information is to be displayed.
- **ipv6-address**—Specifies the IPv6 address of the neighbor. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.
- **ipv6-hostname**—Specifies the IPv6 host name of the remote networking device.

Default Configuration

All IPv6 ND cache entries are listed.

Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

When the `interface-id` argument is not specified, cache information for all IPv6 neighbors is displayed. Specifying the `interface-id` argument displays only cache information about the specified interface.

Example 1. The following is sample output from the `show ipv6 neighbors` command when entered with an `interface-id`:

```
switchxxxxxx# show ipv6 neighbors vlan 1
IPv6 Address Age Link-layer Addr State Interface Router
2000:0:0:4::2 0 0003.a0d6.141e REACH VLAN1 Yes
3001:1::45a - 0002.7d1a.9472 REACH VLAN1 -
FE80::203:A0FF:FED6:141E 0 0003.a0d6.141e REACH VLAN1 No
```

Example 2. The following is sample output from the `show ipv6 neighbors` command when entered with an IPv6 address:

```
switchxxxxxx# show ipv6 neighbors 2000:0:0:4::2
IPv6 Address Age Link-layer Addr State Interface Router
2000:0:0:4::2 0 0003.a0d6.141e REACH VLAN1 Yes
```

Field Descriptions:

- **Total number of entries**—Number of entries (peers) in the cache.
- **IPv6 Address**—IPv6 address of neighbor or interface.
show ipv6 neighbors

- **Age**—Time (in minutes) since the address was confirmed to be reachable. A hyphen (-) indicates a static entry.

- **Link-layer Addr**—MAC address. If the address is unknown, a hyphen (-) is displayed.

- **Interface**—Interface which the neighbor is connected to.

- **Router**—Specifies if the neighbor is a Router. A hyphen (-) is displayed for static entries.
show ipv6 route

Use the show ipv6 route command in user EXEC or privileged EXEC mode to display the current contents of the IPv6 routing table.

Syntax

show ipv6 route [ipv6-address | ipv6-prefix/prefix-length | protocol | interface interface-id]

Parameters

- **ipv6-address**—Displays routing information for a specific IPv6 address. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- **ipv6-prefix**—Displays routing information for a specific IPv6 network. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.

- **prefix-length**—The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

- **protocol**—Displays routes for the specified routing protocol using any of these keywords: bgp, isis, ospf, or rip; or displays routes for the specified type of route using any of these keywords: connected, static, nd, or icmp.

- **interface interface-id**—Identifier of an interface.

Default Configuration

All IPv6 routing information for all active routing tables is displayed.

Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

This command provides output similar to the show ip route command, except that the information is IPv6-specific.

When the ipv6-address or ipv6-prefix/prefix-length argument is specified, a longest match lookup is performed from the routing table and only route information for that address or network is displayed. When the icmp, nd, connected, local, or static keywords are specified, only that type of route is displayed. When the interface-id argument are specified, only the specified interface-specific routes are displayed.

Example 1. The following is sample output from the show ipv6 route command when IPv6 Routing is not enabled and the command is entered without an IPv6 address or prefix specified:

```
switchxxxxxx# show ipv6 route
Codes: > - Best
```
S - Static, C - Connected(from ipv6 address), I - ICMP Redirect, ND - Router

Advertiment
(d/m): d - route’s distance, m - route’s metric
IPv6 Forwarding is disabled
IPv6 Routing Table - 4 entries
S> ::/0 [1/1]
 via:: fe80::77 VLAN 1
ND> ::/0 [3/2]
 via: fe80::200:ff:fe4a:dfa8 VLAN 1 Lifetime 1784 sec
C> 3002:11:11:1/64 [0/0]
 via:: VLAN 1
ND> 3004:11:11:1/64 [0/0]
 via:: VLAN 100 Lifetime 1784 sec

Example 2. The following is sample output from the show ipv6 route command when IPv6 Routing is enabled and the command is entered without an IPv6 address or prefix specified:

switchxxxxxx# show ipv6 route
Codes: > - Best
S - Static, C - Connected(from ipv6 address),
L - Local(on-link prefixes defined by the ipv6 nd prefix command with on-link keyword,
(d/m): d - route’s distance, m - route’s metric
IPv6 Forwarding is enabled (hardware forwarding is not active)
IPv6 Policy Routing
VLAN 1
 Route Map: BPR1
 Status: Active
 ACL Name: ACLTCPHTTP
 Next Hop: fe80::77
 Next Hop Status: Active
 ACL Name: ACLTCPTELNET
 Next Hop: 4001::27
 Next Hop Status: Not Active (Unreachable)
 ACL Name: ACL_AA
 Next Hop: 301a:23:24
 Next Hop Status: Not Active (Not direct)
VLAN 100
 Route Map: BPR_10
 Status: Not Active (No IP interface on VLAN 100)
 ACL Name: ACLTCPHTTP
 Next Hop: 4214::10
 Next Hop Status: Active
VLAN 110
 Route Map: BPR_20
 Status: Not Active (VLAN 110 status is DOWN)
 ACL Name: ACLTCPHTTP
 Next Hop: 3004:1241::73
 Next Hop Status: Active
VLAN 200
 Route Map: BPR_A0
 Status: Active
 ACL Name: ACLTCPHTTP
 Next Hop: 3004:1241::73
 Next Hop Status: Active
IPv6 Routing Table - 3 entries
S> 3000::/64 [1/1]
 via:: FE80::A8BB:CCFF:FE02:8B00 VLAN 100
C> 4001::/64 [0/0]
 via:: VLAN 100
L> 4002::/64 [0/0]
 via:: VLAN 100 Lifetime 9000 sec
show ipv6 route summary

Use the **show ipv6 route summary** command in User EXEC or Privileged EXEC mode to display the current contents of the IPv6 routing table in summary format.

Syntax

show ipv6 route summary

Command Mode

User EXEC mode

Privileged EXEC mode

Example

The following is sample output from the show ipv6 route summary command:

```
switchxxxxxx# show ipv6 route summary
IPv6 Routing Table Summary - 97 entries
37 local, 35 connected, 25 static
Number of prefixes:
/16: 1, /28: 10, /32: 5, /35: 25, /40: 1, /64: 9
/96: 5, /112: 1, /127: 4, /128: 36
```
show ipv6 static

Use the `show ipv6 static` command in user EXEC or privileged EXEC mode to display the current static routes of the IPv6 routing table.

Syntax

```
show ipv6 static [ipv6-address | ipv6-prefix/prefix-length] [interface interface-id][detail]
```

Parameters

- **ipv6-address**—Provides routing information for a specific IPv6 address. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.
- **ipv6-prefix**—Provides routing information for a specific IPv6 network. This argument must be in the form documented in RFC4293 where the address is specified in hexadecimal using 16-bit values between colons.
- **prefix-length**—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.
- **interface interface-id**—Identifier of an interface.
- **detail**—Specifies for invalid routes, the reason why the route is not valid.

Default Configuration

All IPv6 static routing information for all active routing tables is displayed.

Command Mode

User EXEC mode
Privileged EXEC mode

User Guidelines

When the `ipv6-address` or `ipv6-prefix/prefix-length` argument is specified, a longest match lookup is performed from the routing table and only route information for that address or network is displayed. Only the information matching the criteria specified in the command syntax is displayed. For example, when the `interface-id` argument is specified, only the specified interface-specific routes are displayed.

When the `detail` keyword is specified, the reason why the route is not valid is displayed for invalid direct or fully specified routes.

Example 1. The following is sample output from the `show ipv6 static` command without specified options:

```
switchxxxxxxx# show ipv6 static
IPv6 Static routes Code: * - installed in Forwarding Information Base (FIB)
IPv6 Static routes distance is 1
* 3000::/16, via outgoing interface tunnel1, metric 1
```
Example 2. The following is sample output from the `show ipv6 static` command when entered with the IPv6 prefix 2001:200::/35:

```
switchxxxxxx# show ipv6 static 2001:200::/35
IPv6 Static routes  Code: * - installed in Forwarding Information Base (FIB)
IPv6 Static routes distance is 1
  * 2001:200::/35, via outgoing interface VLAN100 nexthop 4000::1, metric 1
      2001:200::/35, via outgoing interface VLAN10 nexthop 9999::1, metric 1
```

Example 3. The following is sample output from the `show ipv6 static` command when entered with the interface VLAN1:

```
switchxxxxxx# show ipv6 static interface vlan 1
IPv6 Static routes  Code: * - installed in Forwarding Information Base (FIB)
IPv6 Static routes distance is 1
  * 5000::/16, via outgoing interface VLAN1 nexthop 4000::1, metric 1
```

Example 4. The following is sample output from the `show ipv6 static` command with the `detail` keyword:

```
switchxxxxxx# show ipv6 static detail
IPv6 Static routes  Code: * - installed in Forwarding Information Base (FIB)
IPv6 Static routes distance is 1
  * 3000::/16, via outgoing interface tunnel1, metric 1
      5000::/16, via outgoing interface tunnel2, metric 1
      5000::/16, via outgoing interface VLAN2 nexthop 2003::1, metric 1
          Interface is down
  * 5555::/16, via outgoing interface VLAN100 nexthop 4000::1, metric 1
      5555::/16, via outgoing interface VLAN10 nexthop 9999::1, metric 1
          Route does not fully resolve
  * 5555::/16, via outgoing interface VLAN12 nexthop 4001:AF00::1, metric 1
  * 6000::/16, via outgoing interface VLAN102 nexthop 2007::1, metric 1
```
IPv6 First Hop Security

This chapter contains the following sections:

- address-config, on page 662
- address-prefix-validation, on page 663
- clear ipv6 first hop security counters, on page 664
- clear ipv6 first hop security error counters, on page 665
- clear ipv6 neighbor binding prefix table, on page 666
- clear ipv6 neighbor binding table, on page 667
- device-role (IPv6 DHCP Guard), on page 668
- device-role (Neighbor Binding), on page 669
- device-role (RA Guard Policy), on page 671
- device-role (ND Inspection Policy), on page 672
- drop-unsecure, on page 674
- hop-limit, on page 675
- ipv6 dhcp guard, on page 677
- ipv6 dhcp guard attach-policy (port mode), on page 678
- ipv6 dhcp guard attach-policy (VLAN mode), on page 680
- ipv6 dhcp guard policy, on page 681
- ipv6 dhcp guard preference, on page 683
- ipv6 first hop security, on page 685
- ipv6 first hop security attach-policy (port mode), on page 686
- ipv6 first hop security attach-policy (VLAN mode), on page 688
- ipv6 first hop security logging packet drop, on page 689
- ipv6 first hop security policy, on page 690
- ipv6 nd inspection, on page 692
- ipv6 nd inspection attach-policy (port mode), on page 693
- ipv6 nd inspection attach-policy (VLAN mode), on page 695
- ipv6 nd inspection drop-unsecure, on page 696
- ipv6 nd inspection policy, on page 697
- ipv6 nd inspection sec-level minimum, on page 699
- ipv6 nd inspection validate source-mac, on page 700
- ipv6 nd raguard, on page 701
- ipv6 nd raguard attach-policy (port mode), on page 702
- ipv6 nd raguard attach-policy (VLAN mode), on page 704
IPv6 First Hop Security

- ipv6 nd raguard hop-limit, on page 705
- ipv6 nd raguard managed-config-flag, on page 707
- ipv6 nd raguard other-config-flag, on page 708
- ipv6 nd raguard policy, on page 709
- ipv6 nd raguard router-preference, on page 711
- ipv6 neighbor binding, on page 713
- ipv6 neighbor binding address-config, on page 714
- ipv6 neighbor binding address-prefix, on page 716
- ipv6 neighbor binding address-prefix-validation, on page 717
- ipv6 neighbor binding attach-policy (port mode), on page 718
- ipv6 neighbor binding attach-policy (VLAN mode), on page 720
- ipv6 neighbor binding lifetime, on page 721
- ipv6 neighbor binding max-entries, on page 722
- ipv6 neighbor binding policy, on page 723
- ipv6 neighbor binding static, on page 725
- ipv6 source guard, on page 726
- ipv6 source guard attach-policy (port mode), on page 727
- ipv6 source guard policy, on page 728
- logging binding, on page 729
- logging packet drop, on page 730
- managed-config-flag, on page 731
- match ra address, on page 732
- match ra prefixes, on page 733
- match reply, on page 734
- match server address, on page 736
- max-entries, on page 738
- other-config-flag, on page 740
- preference, on page 741
- router-preference, on page 742
- sec-level minimum, on page 743
- show ipv6 dhcp guard, on page 744
- show ipv6 dhcp guard policy, on page 745
- show ipv6 first hop security, on page 747
- show ipv6 first hop security active policies, on page 748
- show ipv6 first hop security attached policies, on page 750
- show ipv6 first hop security counters, on page 751
- show ipv6 first hop security error counters, on page 752
- show ipv6 first hop security policy, on page 753
- show ipv6 nd inspection, on page 755
- show ipv6 nd inspection policy, on page 756
- show ipv6 nd raguard, on page 758
- show ipv6 nd raguard policy, on page 759
- show ipv6 neighbor binding, on page 761
- show ipv6 neighbor binding policy, on page 762
- show ipv6 neighbor binding prefix table, on page 764
- show ipv6 neighbor binding table, on page 765
• show ipv6 source guard, on page 767
• show ipv6 source guard policy, on page 768
• trusted-port (IPv6 Source Guard), on page 769
• validate source-mac, on page 770
address-config

To specify allowed configuration methods of global IPv6 addresses within an IPv6 Neighbor Binding policy, use the address-config command in Neighbor Binding Policy Configuration mode. To return to the default, use the no form of this command.

Syntax

address-config [stateless | any] [dhcp]
no address-config

Parameters

• stateless—Only auto configuration for global IPv6 bound from NDP messages is allowed.

• any—All configuration methods for global IPv6 bound from NDP messages (stateless and manual) are allowed. If no keyword is defined the any keyword is applied.

• dhcp—Bound from DHCPv6 is allowed.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.
Policy attached to VLAN: global configuration.

Command Mode

Neighbor Binding Policy Configuration mode.

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

If no keyword is defined the address-config any command is applied.

Example

The following example shows how to change the global configuration to allow only DHCP address configuration method:

```
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# address-config dhcp
switchxxxxxx(config-nbr-binding)# exit
```
address-prefix-validation

To define the bound address prefix validation within an IPv6 Neighbor Binding policy, use the `address-prefix-validation` command in Neighbor Binding Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```plaintext
address-prefix-validation [enable | disable]
no address-prefix-validation
```

Parameters

- `enable` — Enables bound address prefix validation. If no keyword is configured, this keyword is applied by default.
- `disable` — Disables bound address prefix validation.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.
Policy attached to VLAN: global configured value.

Command Mode

Neighbor Binding Policy Configuration mode.

User Guidelines

When a policy containing this command is attached to a VLAN, it overrides the global configuration and is applied to all ports of the VLAN. When this command is used in a policy attached to a port, it overrides the global and the VLAN configurations.

Example

The following example shows how to define policy1 that changes the global bound address verification in Neighbor Binding:

```plaintext
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# address-prefix-validation enable
switchxxxxxx(config-nbr-binding)# exit
```
clear ipv6 first hop security counters

To clear IPv6 First Hop Security port counters, use the clear ipv6 first hop security counters command in privileged EXEC mode.

Syntax

clear ipv6 first hop security counters [interface interface-id]

Parameters

- interface interface-id—Clear IPv6 First Hop Security counters for the specified Ethernet port or port channel.

Command Mode

Privileged EXEC mode

User Guidelines

This command clears port counters about packets handled by IPv6 First Hop Security.
Use the interface keyword to clear all counters for the specific port.
Use the command without keyword to clear all counters.

Example

The following example clears IPv6 First Hop Security counters on port gi1/0/1

switchxxxxxx# clear ipv6 first hop security counters interface gi1/0/1
clear ipv6 first hop security error counters

To clear IPv6 First Hop Security global error counters, use the clear ipv6 first hop security error counters command in privileged EXEC mode.

Syntax

clear ipv6 first hop security error counters

Command Mode

Privileged EXEC mode

User Guidelines

This command clears global error counters.

Example

The following example clears IPv6 First Hop Security error counters:

```
switchxxxxxx# clear ipv6 first hop security error counters
```
clear ipv6 neighbor binding prefix table

To remove dynamic entries from the Neighbor Prefix table, use the clear ipv6 neighbor binding prefix table command in Privilege EXEC configuration mode.

Syntax

```
clear ipv6 neighbor binding prefix table [vlan vlan-id] [prefix-address/prefix-length]
```

Parameters

- **vlan-id**—Clear the dynamic prefixes that match the specified VLAN.
- **prefix-address/prefix-length**—Clear the specific dynamic prefix.

Command Mode

Privileged EXEC mode

User Guidelines

This command deletes the dynamic entries of the Neighbor Prefix table.

Use the `clear ipv6 neighbor binding prefix table vlan vlan-id prefix-address/prefix-length` command to delete one specific entry.

Use the `clear ipv6 neighbor binding prefix table vlan vlan-id` command to delete the dynamic entries that match the specified VLAN.

Use the `clear ipv6 neighbor binding prefix table` command to delete all dynamic entries.

Example 1. The following example clears all dynamic entries:

```
switchxxxxxx# clear ipv6 neighbor binding prefix table
```

Example 2. The following example clears all dynamic prefixes that match VLAN 100:

```
switchxxxxxx# clear ipv6 neighbor binding prefix table vlan 100
```

Example 3. The following example clears one specific prefix:

```
switchxxxxxx# clear ipv6 neighbor binding prefix table vlan 100 2002:11aa:0000:0001::/64
```
clear ipv6 neighbor binding table

To remove dynamic entries from the Neighbor Binding table, use the clear ipv6 neighbor binding table command in Privilege EXEC configuration mode.

Syntax

```
clear ipv6 neighbor binding table [vlan vlan-id] [interface interface-id] [ipv6 ipv6-address] [mac mac-address] [ndp | dhcp]
```

Parameters

- `vlan vlan-id`—Clear the dynamic entries that match the specified VLAN.
- `interface interface-id`—Clear the dynamic entries that match the specified port (Ethernet port or port channel).
- `ipv6 ipv6-address`—Clear the dynamic entries that match the specified IPv6 address.
- `mac mac-address`—Clear the dynamic entries that match the specified MAC address.
- `ndp`—Clear the dynamic entries that are bound from NDP messages.
- `dhcp`—Clear the dynamic entries that are bound from DHCPv6 messages.

Command Mode

Privileged EXEC mode

User Guidelines

This command deletes the dynamic entries of the Neighbor Binding table. The dynamic entries to be deleted can be specified by the `vlan-id` argument, the `interface-id` argument, IPv6 address, MAC address, or by type of message from which they were bound.

If the `ndp` keyword and the `dhcp` keyword is not defined, the entries are removed regardless their origin. If no keywords or arguments are entered, all dynamic entries are deleted. All keyword and argument combinations are allowed.

Example

The following example clears all dynamic entries that exist on VLAN 100 & port gi1/0/1:

```
switchxxxxxx# clear ipv6 neighbor binding table vlan 100 interface gi1/0/1
```
device-role (IPv6 DHCP Guard)

To specify the role of the device attached to the port within an IPv6 DHCP Guard policy, use the `device-role` command in IPv6 DHCPv6 Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
device-role {client | server}
no device-role
```

Parameters

- **client**—Sets the role of the device to DHCPv6 client.
- **server**—Sets the role of the device to DHCPv6 server.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.
Policy attached to VLAN: client.

Command Mode

DHCP Guard Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

IPv6 DHCP Guard discards the following DHCPv6 messages sent by DHCPv6 servers/relays and received on ports configured as client:

- ADVERTISE
- REPLY
- RECONFIGURE
- RELAY-REPL
- LEASEQUERY-REPLY

Example

The following example defines an IPv6 DHCP Guard policy named policy 1 and configures the port role as the server:

```
switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# device-role server
switchxxxxxx(config-dhcp-guard)# exit
```
device-role (Neighbor Binding)

To specify the role of the device attached to the port within an IPv6 Neighbor Binding policy, use the `device-role` command within IPv6 Neighbor Binding Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

device-role {perimeter | internal}

no device-role

Parameters

- **perimeter** — Specifies that the port is connected to devices not supporting IPv6 First Hop Security.
- **internal** — Specifies that the port is connected to devices supporting IPv6 First Hop Security.

Default Configuration

Policy attached to port or port channel: Value configured in the policy attached to the VLAN.

Policy attached to VLAN: Perimeter.

Command Mode

Neighbor Binding Policy Configuration mode.

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

NB Integrity supports the perimetrical model (see RFC 6620).

This model specifies two types of ports:

- **Perimeter Port** — Specifies ports connected to devices not supporting NB Integrity. NB Integrity establishes binding for neighbors connected to these ports. Source Guard does not function on these ports.

- **Internal Port** — The second type specifies ports connected to devices supporting IPv6 First Hop Security. NB Integrity does not establish binding for neighbors connected to these ports, but it does propagate the bindings established on perimeter ports.

A dynamic IPv6 address bound to a port is deleted when its role is changed from perimetrical to internal. A static IPv6 address is kept.

Example

The following example defines a Neighbor Binding policy named policy 1 and configures the port role as an internal port:
IPv6 First Hop Security

device-role (Neighbor Binding)

switchxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxx(config-nbr-binding)# device-role internal
switchxxxxx(config-nbr-binding)# exit
device-role (RA Guard Policy)

To specify the role of the device attached to the port within an IPv6 RA Guard policy, use the `device-role` command in RA Guard Policy Configuration mode. To returned to the default, use the `no` form of this command.

Syntax

device-role {host | router}

no device-role

Parameters

- **host**—Sets the role of the device to host.
- **router**—Sets the role of the device to router.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: host.

Command Mode

RA Guard Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

RA Guard discards input RA, CPA, and ICMPv6 Redirect messages received on ports configured as host.

Example

The following example defines an RA Guard policy named policy1 and configures the port role as **router**:

```
switchxxxxxx(config) # ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard) # device-role router
switchxxxxxx(config-ra-guard) # exit
```
device-role (ND Inspection Policy)

To specify the role of the device attached to the port within an IPv6 ND Inspection policy, use the `device-role` command in ND Inspection Policy Configuration mode. To disable this function, use the `no` form of this command.

Syntax

device-role \{host | router\}

```
no device-role
```

Parameters

- **host**—Sets the role of the device to host.
- **router**—Sets the role of the device to router.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: host.

Command Mode

ND inspection Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

ND Inspection performs egress filtering of NDP messages depending on a port role. The following table specifies the filtering rules.

<table>
<thead>
<tr>
<th>Message</th>
<th>Host</th>
<th>Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>Permit</td>
<td>Permit</td>
</tr>
<tr>
<td>RS</td>
<td>Deny</td>
<td>Permit</td>
</tr>
<tr>
<td>CPA</td>
<td>Permit</td>
<td>Permit</td>
</tr>
<tr>
<td>CPS</td>
<td>Deny</td>
<td>Permit</td>
</tr>
<tr>
<td>ICMP Redirect</td>
<td>Permit</td>
<td>Permit</td>
</tr>
</tbody>
</table>

Example

The following example defines an ND Inspection policy named policy 1 and configures the port role as router:
switchxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxx(config-nd-inspection)# device-role router
switchxxxxx(config-nd-inspection)# exit
drop-unsecure

To enable dropping messages with no or invalid options or an invalid signature within an IPv6 ND Inspection policy, use the drop-unsecure command in ND Inspection Policy Configuration mode. To return to the default, use the no form of this command.

Syntax

drop-unsecure [enable | disable]

no drop-unsecure

Parameters

- enable—Enables dropping messages with no or invalid options or an invalid signature. If no keyword is configured this keyword is applied by default.
- disable—Disables dropping messages with no or invalid options or an invalid signature.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.
Policy attached to VLAN: global configuration.

Command Mode

ND inspection Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Example

The following example defines an ND Inspection policy named policy1, places the switch in ND Inspection Policy Configuration mode, and enables the switch to drop messages with no or invalid options or an invalid signature:

switchxxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxxx(config-nd-inspection)# drop-unsecure
switchxxxxxxx(config-nd-inspection)# exit
hop-limit

To enable the verification of the advertised Cur Hop Limit value in RA messages within an IPv6 RA Guard policy, use the `hop-limit` command in RA Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
hop-limit {[maximum {value | disable}] [minimum {value | disable}]}  
no hop-limit [maximum] [minimum]
```

Parameters

- **maximum value** — Verifies that the hop-count limit is less than or equal to the `value` argument. Range 1-255. The value of the high boundary must be equal or greater than the value of the low boundary.

- **maximum disable** — Disables verification of the high boundary of the hop-count limit.

- **minimum value** — Verifies that the hop-count limit is greater than or equal to the `value` argument. Range 1-255.

- **minimum disable** — Disables verification of the lower boundary of the hop-count limit.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

RA Guard Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Use the `disable` keyword to disable verification regardless of the global or VLAN configuration.

Example 1 — The following example defines an RA Guard policy named `policy1`, places the switch in RA Guard Policy Configuration mode, and defines a minimum Cur Hop Limit value of 5:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard)# hop-limit minimum 5
switchxxxxxx(config-ra-guard)# exit
```

Example 2 — The following example defines an RA Guard policy named `policy1`, places the switch in RA Guard Policy Configuration mode, and disables validation of the Cur Hop Limit high boundary:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard)# hop-limit maximum disable
```
switchxxxxx(config-ra-guard)# exit
ipv6 dhcp guard

To enable the DHCPv6 guard feature on a VLAN, use the `ipv6 dhcp guard` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 dhcp guard
no ipv6 dhcp guard
```

Default Configuration

DHCPv6 Guard on a VLAN is disabled.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

DHCPv6 Guard blocks messages sent by DHCPv6 servers/relays to clients received on ports that are not configured as a DHCPv6 server. Client messages or messages sent by relay agents from clients to servers are not blocked.

DHCPv6 Guard validates received DHCPv6 messages based on a DHCPv6 Guard policy attached to the source port.

Example 1—The following example enables DHCPv6 Guard on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 dhcp guard
switchxxxxxx(config-if)# exit
```

Example 2—The following example enables DHCPv6 Guard on VLANs 100-107:

```
switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)# ipv6 dhcp guard
switchxxxxxx(config-if-range)# exit
```
ipv6 dhcp guard attach-policy (port mode)

To attach a DHCPv6 Guard policy to a specific port, use the `ipv6 dhcp guard attach-policy` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```plaintext
ipv6 dhcp guard attach-policy policy-name [vlan vlan-list]
no ipv6 dhcp guard attach-policy [policy-name]
```

Parameters

- `policy-name`—The DHCPv6 Guard policy name (up to 32 characters).
- `vlan vlan-list`— Specifies that the DHCPv6 Guard policy is to be attached to the VLAN(s) in `vlan-list`. If the `vlan` keyword is not configured, the policy is applied to all VLANs on the device on which DHCPv6 Guard is enabled.

Default Configuration

The DHCPv6 Guard default policy is applied.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use this command to attach a DHCPv6 Guard policy to a port.

Each time the command is used, it overrides the previous command within the same policy.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Multiple policies with the `vlan` keyword can be attached to the same port if they do not have common VLANs.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port on the VLAN on which the packet arrived are added to the set.
- The rules, configured in the policy attached to the VLAN are added to the set if they have not been added.
- The global rules are added to the set if they have not been added.

Use `no ipv6 dhcp guard attach-policy` to detach all user-defined DHCP Guard policies attached to the port.

Use `no ipv6 dhcp guard attach-policy policy-name` to detach the specific policy from the port.

Example 1—In the following example, the DHCPv6 Guard policy policy1 is attached to the gi1/0/1 port and the default policy port_default is detached:

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 dhcp guard attach-policy policy1
switchxxxxxx(config-if)# exit
```
Example 2—In the following example, the DHCPv6 Guard policy policy1 is attached to the gi1/0/1 port and applied to VLANs 1-10 and 12-20:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 dhcp guard attach-policy policy1 vlan 1-10,12-20
switchxxxxxx(config-if)# exit
```

Example 3—In the following example, the DHCPv6 Guard policy policy1 is attached to the gi1/0/1 port and applied to VLANs 1-10 and the DHCPv6 Guard policy policy2 is attached to the gi1/0/1 port and applied to VLANs 12-20:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 dhcp guard attach-policy policy1 vlan 1-10
switchxxxxxx(config-if)# ipv6 dhcp guard attach-policy policy2 vlan 12-20
switchxxxxxx(config-if)# exit
```

Example 4—In the following example DHCPv6 Guard detaches policy1 from the gi1/0/1 port:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# no ipv6 dhcp guard attach-policy policy1
switchxxxxxx(config-if)# exit
```
ipv6 dhcp guard attach-policy (VLAN mode)

To attach a DHCPv6 Guard policy to a specified VLAN, use the `ipv6 dhcp guard attach-policy` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`ipv6 dhcp guard attach-policy policy-name`

`no ipv6 dhcp guard attach-policy`

Parameters

- `policy-name`—The DHCPv6 Guard policy name (up to 32 characters).

Default Configuration

The DHCPv6 Guard default policy is applied.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to attach a DHCPv6 Guard policy to a VLAN.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Use the `no` form of the command to detach the current policy and to re-attach the default policy. The `no` form of the command has no effect if the default policy was attached.

Example

In the following example, the DHCPv6 Guard policy policy1 is attached to VLAN 100:

```
switchxxxxx(config)# interface vlan 100
switchxxxxx(config-if)# ipv6 dhcp guard attach-policy policy1
switchxxxxx(config-if)# exit
```
ipv6 dhcp guard policy

To define a DHCP Guard policy and place the switch in DHCPv6 Guard Policy Configuration mode, use the `ipv6 dhcp guard policy` command in Global Configuration mode. To remove the DHCPv6 guard policy, use the `no` form of this command.

Syntax

`ipv6 dhcp guard policy policy-name`

`no ipv6 dhcp guard policy policy-name`

Parameters

- `policy-name` — The DHCPv6 Guard policy name (up to 32 characters).

Default Configuration

No DHCPv6 Guard policy are configured

Command Mode

Global Configuration mode

User Guidelines

This command defines the DHCPv6 Guard policy name, and places the router in DHCPv6 Guard Policy Configuration mode.

Each policy of the same type (for example, DHCPv6 Guard policies) must have a unique name. Policies of different types can have the same policy name.

The switch supports two predefined, default DHCPv6 Guard policies named: "vlan_default" and "port_default":

```plaintext
ipv6 dhcp guard policy vlan_default
  exit
ipv6 dhcp guard policy port_default
  exit
```

The default policies are empty and cannot be removed, but can be changed. The `no ipv6 dhcp guard policy` does not remove the default policies, it only removes the policy configuration defined by the user.

You can define a policy using the `ipv6 dhcp guard policy` command multiple times.

Before an attached policy is removed, a request for confirmation is presented to the user, as shown in Example 3 below.

Example 1—The following example defines a DHCPv6 Guard policy named policy1, places the router in DHCPv6 Guard Policy Configuration mode, configures the port to drop unsecure messages and sets the device role as router:

```plaintext
switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# match server address list1
device-role server
exit
```
Example 2—The following example defines a DHCPv6 Guard named policy1 by multiple steps:

switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# match server address list1
switchxxxxxx(config-dhcp-guard)# exit
switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# device-role server
switchxxxxxx(config-dhcp-guard)# exit

Example 3—The following example removes an attached DHCPv6 Guard policy:

switchxxxxxx(config)# no ipv6 dhcp guard policy policy1
Policy policy1 is applied on the following ports:
 gi1/0/1, gi1/0/2
The policy will be detached and removed, are you sure [Y/N]Y
ipv6 dhcp guard preference

To globally enable verification of the preference in messages sent by DHCPv6 servers, use the `ipv6 dhcp guard preference` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 dhcp guard preference [maximum value] [minimum value]
```

```
no ipv6 dhcp guard preference [maximum] [minimum]
```

Parameters

- **maximum value**—Advertised preference value is lower than or equal to the `value` argument. Range 0-255. The value of the high boundary must be equal to or greater than the value of the low boundary.

- **minimum value**—Advertised preference value is greater than or equal to the `value` argument. Range 0-255.

Default Configuration

Verification is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables verification that the preference value in messages sent by DHCPv6 servers messages (see RFC3315) is greater than or less than the `value` argument.

Note. When DHCPv6 Guard receives a RELAY-REPL message, it takes it from the encapsulated message.

Configuring the `minimum value` keyword and argument specifies the minimum allowed value. The received DHCPv6 reply message with a preference value less than a value specified by the `value` argument is dropped.

Configuring the `maximum value` keyword and argument specifies the maximum allowed value. The received DHCPv6 reply message with a preference value greater than the value specified by the `value` argument is dropped.

Use `no ipv6 dhcp guard preference` to disable verification of the advertised preference value in DHCPv6 reply messages.

Use `no ipv6 dhcp guard preference maximum` to disable verification of the maximum boundary of the value of the advertised preference value in DHCPv6 messages.

Use the `no ipv6 dhcp guard preference minimum` command to disable verification of the minimum boundary of the value of the advertised preference value in DHCPv6 messages.

Example 1—The following example defines a global minimum preference value of 10 and a global maximum preference value of 102 using two commands:
ipv6 dhcp guard preference

```bash
switchxxxxxxx(config)# ipv6 dhcp guard preference minimum 10
switchxxxxxxx(config)# ipv6 dhcp guard preference maximum 102
```

Example 2—The following example defines a global minimum preference value of 10 and a global maximum preference value of 102 using a single command:

```bash
switchxxxxxxx(config)# ipv6 dhcp guard preference minimum 10 maximum 102
```
ipv6 first hop security

To globally enable IPv6 First Hop Security on a VLAN, use the `ipv6 first hop security` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

ipv6 first hop security
no ipv6 first hop security

Default Configuration

IPv6 First Hop Security on a VLAN is disabled.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the `ipv6 first hop security` command to enable IPv6 First Hop Security on a VLAN.

Example 1—The following example enables IPv6 First Hop Security on VLAN 100:
```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 first hop security
switchxxxxxx(config-if)# exit
```

Example 2—The following example enables IPv6 First Hop Security on VLANs 100-107:
```
switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)# ipv6 first hop security
switchxxxxxx(config-if-range)# exit
```
ipv6 first hop security attach-policy (port mode)

To attach an IPv6 First Hop Security policy to a specific port, use the `ipv6 first hop security attach-policy` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 first hop security attach-policy policy-name [vlan vlan-list]
```

```
no ipv6 first hop security attach-policy [policy-name]
```

Parameters

- `policy-name`—The IPv6 First Hop Security policy name (up to 32 characters).
- `vlan vlan-list`—Specifies that the IPv6 First Hop Security policy is to be attached to the VLAN(s) in `vlan-list`. If the `vlan` keyword is not configured, the policy is applied to all VLANs on the device on which IPv6 First Hop Security is enabled.

Default Configuration

The IPv6 First Hop Security default policy is applied.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use this command to attach an IPv6 First Hop Security policy to a port.

Each succeeding usage of this command overrides the previous usage of the command with the same policy.

Each time the command is used, it overrides the previous command within the same policy.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Multiple policies with the `vlan` keyword can be attached to the same port if they do not have common VLANs.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port on the VLAN on which the packet arrived are added to the set.
- The rules, configured in the policy attached to the VLAN are added to the set if they have not been added.
- The global rules are added to the set if they have not been added.

Use the `no ipv6 first hop security attach-policy` command to detach all user-defined policies attached to the port. The default policy is reattached.

Use the `no ipv6 first hop security attach-policy policy-name` command to detach the specific policy from the port.
Example 1—In the following example, the IPv6 First Hop Security policy policy1 is attached to the gi1/0/1 port:

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 first hop security attach-policy policy1
switchxxxxxx(config-if)# exit
```

Example 2—In the following example, the IPv6 First Hop Security policy policy1 is attached to the gi1/0/1 port and applied to VLANs 1-10 and 12-20:

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 first hop security attach-policy policy1 vlan 1-10,12-20
switchxxxxxx(config-if)# exit
```

Example 3—In the following example, the IPv6 First Hop Security policy policy1 is attached to the gi1/0/1 port and applied to VLANs 1-10 and the IPv6 First Hop Security policy policy2 is attached to the gi1/0/1 port and applied to VLANs 12-20:

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 first hop security attach-policy policy1 vlan 1-10
switchxxxxxx(config-if)# ipv6 first hop security attach-policy policy2 vlan 12-20
switchxxxxxx(config-if)# exit
```

Example 4—In the following example the IPv6 First Hop Security policy policy1 is detached from gi1/0/1 port:

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# no ipv6 first hop security attach-policy policy1
switchxxxxxx(config-if)# exit
```
ipv6 first hop security attach-policy (VLAN mode)

To attach an IPv6 First Hop Security policy to a specified VLAN, use the `ipv6 first hop security attach-policy` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`ipv6 first hop security attach-policy policy-name`

`no ipv6 first hop security attach-policy`

Parameters

- `policy-name`—The IPv6 First Hop Security policy name (up to 32 characters).

Default Configuration

The IPv6 First Hop Security default policy is applied.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to attach an IPv6 First Hop Security policy to a VLAN.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Use the `no` form of the command to return to detach the current policy and to reattach the default policy. The `no` form of the command does not have an effect if the default policy was attached.

Example

In the following example, the IPv6 First Hop Security policy policy1 is attached to VLAN 100:

```plaintext
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 first hop security attach-policy policy1
switchxxxxxx(config-if)# exit
```
ipv6 first hop security logging packet drop

To globally enable the logging of dropped packets by the IPv6 First Hop Security feature, use the `ipv6 first hop security logging packet drop` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

ipv6 first hop security logging packet drop

no ipv6 first hop security logging packet drop

Default Configuration

Logging is disabled.

Command Mode

Global Configuration mode

User Guidelines

Use this command to log packets that are dropped. If logging is enabled, the switch sends a rate-limited SYSLOG message every time it drops a message.

Example

The following example shows how to enable logging of dropped packets by the IPv6 first-hop security feature:

```
switchxxxxxx(config)# ipv6 first hop security logging packet drop
```
ipv6 first hop security policy

To define an IPv6 First Hop Security policy and place the switch in IPv6 First Hop Security Policy Configuration mode, use the \texttt{ipv6 first hop security policy} command in Global Configuration mode. To remove the IPv6 First Hop Security policy, use the \texttt{no} form of this command.

\textbf{Syntax}

\begin{verbatim}
ipv6 first hop security policy policy-name
no ipv6 first hop security policy policy-name
\end{verbatim}

\textbf{Parameters}

- \texttt{policy-name}—The IPv6 First Hop Security policy name (up to 32 characters).

\textbf{Default Configuration}

No IPv6 First Hop Security policy is configured

\textbf{Command Mode}

Global Configuration mode

\textbf{User Guidelines}

This command defines an IPv6 First Hop Security policy, and places the switch in IPv6 First Hop Security Policy Configuration mode. Each policy of the same type (for example, IPv6 First Hop Security policies) must have a unique name. Policies of different types can have the same policy name. The switch supports two predefined, empty, default IPv6 First Hop Security policies named: "vlan_default" and "port_default":

\begin{verbatim}
ipv6 first hop security policy vlan_default
 exit
ipv6 first hop security policy port_default
 exit
\end{verbatim}

These policies cannot be removed but they can be changed. The \texttt{no ipv6 first hop security policy} does not remove these policies, it only removes the policy configurations defined by the user.

You can define a policy using the \texttt{ipv6 first hop security policy} command multiple times.

If an attached policy is removed, it is detached automatically before removing.

\textbf{Examples}

\textbf{Example 1}—The following example defines the IPv6 First Hop Security policy named policy1, places the switch in IPv6 First Hop Security Policy Configuration mode, and enables logging of dropped packets:

\begin{verbatim}
switchxxxxx(config)# ipv6 first hop security policy policy1
switchxxxxx(config-ipv6-fhs)# logging packet drop
switchxxxxx(config)# exit
\end{verbatim}

\textbf{Example 2}—The following example removes an attached IPv6 First Hop Security policy:
ipv6 first hop security policy

switchxxxxx(config)# no ipv6 first hop security policy policy1
Policy policy1 is applied on the following ports:
gi1/0/1, gi1/0/2

The policy1 will be detached and removed, are you sure [Y/N]? Y
ipv6 nd inspection

To enable the IPv6 Neighbor Discovery (ND) Inspection feature on a VLAN, use the `ipv6 nd inspection` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

ipv6 nd inspection
no ipv6 nd inspection

Default Configuration

ND Inspection on a VLAN is disabled.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the command to enable ND Inspection on a VLAN. The IPv6 ND Inspection validates the Neighbor Discovery Protocol (NDP) messages using the ND Inspection policies and global ND Inspection configuration. The ND Inspection bridges NDP messages to all ports excluding the source port within the VLAN with the following exception: RS and CPS messages are not bridged to ports configured as host (see the `device-role` command). The ND inspection is performed after RA Guard.

Example 1—The following example enables ND Inspection on VLAN 100:

switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 nd inspection
switchxxxxxx(config-if)# exit

Example 2—The following example enables ND Inspection on VLANs 100-107:

switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)# ipv6 nd inspection
switchxxxxxx(config-if-range)# exit
ipv6 nd inspection attach-policy (port mode)

To attach an ND Inspection policy to a specific port, use the `ipv6 nd inspection attach-policy` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`ipv6 nd inspection attach-policy policy-name [vlan vlan-list]`

`no ipv6 nd inspection attach-policy [policy-name]`

Parameters

- `policy-name` — The ND Inspection policy name (up to 32 characters).
- `vlan vlan-list` — Specifies that the ND Inspection policy is to be attached to the VLAN(s) in `vlan-list`. If the `vlan` keyword is not configured, the policy is applied to all VLANs on the device on which ND Inspection is enabled.

Default Configuration

The ND Inspection default policy is applied.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the `ipv6 nd inspection attach-policy` command to attach an ND Inspection policy to a port. Each time the command is used, it overrides the previous command within the same policy. If a policy specified by the `policy-name` argument is not defined, the command is rejected. Multiple policies with the `vlan` keyword can be attached to the same port if they do not have common VLANs.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port on the VLAN on which the packet arrived are added to the set.
- The rules, configured in the policy attached to the VLAN are added to the set if they have not been added.
- The global rules are added to the set if they have not been added.

Use the `no ipv6 nd inspection attach-policy` command to detach all user-defined policies attached to the port.

Use the `no ipv6 nd inspection attach-policy policy-name` command to detach the specific policy from the port.

Example 1 — In the following example, the ND Inspection policy policy1 is attached to the gi1/0/1 port:
switchxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# ipv6 nd inspection attach-policy policy1
switchxxxxx(config-if)# exit

Example 2—In the following example, the ND Inspection policy policy1 is attached to the gi1/0/1 port and applied to VLANs 1-10 and 12-20:

switchxxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# ipv6 nd inspection attach-policy policy1 vlan 1-10,12-20
switchxxxxx(config-if)# exit

Example 3—In the following example, the ND Inspection policy policy1 is attached to the gi1/0/1 port and applied to VLANs 1-10 and the ND Inspection policy policy2 is attached to the gi1/0/1 port and applied to VLANs 12-20:

switchxxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# ipv6 nd inspection attach-policy policy1 vlan 1-10
switchxxxxx(config-if)# ipv6 nd inspection attach-policy policy2 vlan 12-20
switchxxxxx(config-if)# exit

Example 4—In the following example, ND Inspection detaches policy policy1 from the gi1/0/1 port:

switchxxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# no ipv6 nd inspection attach-policy policy1
switchxxxxx(config-if)# exit
ipv6 nd inspection attach-policy (VLAN mode)

To attach an ND Inspection policy to a specified VLAN, use the `ipv6 nd inspection attach-policy` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd inspection attach-policy policy-name
```

```
no ipv6 nd inspection attach-policy
```

Parameters

- `policy-name` — The ND Inspection policy name (up to 32 characters).

Default Configuration

The ND Inspection default policy is applied.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to attach a ND Inspection policy to a VLAN. If the policy specified by the `policy-name` argument is not defined, the command is rejected. Use the `no` form of the command to detach the current policy and to reattach the default policy. The `no` form of the command does not have an effect if the default policy was attached.

Example

In the following example, the ND Inspection policy policy1 is attached to VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 nd inspection attach-policy policy1
switchxxxxxx(config-if)# exit
```
ipv6 nd inspection drop-unsecure

To globally enable dropping messages with no CGA and RSA Signature options, use the `ipv6 nd inspection drop-unsecure` command in Global Configuration mode. To disable this function, use the `no` form of this command.

Syntax

ipv6 nd inspection drop-unsecure
no ipv6 nd inspection drop-unsecure

Default Configuration

All messages are bridged.

Command Mode

Global Configuration mode

User Guidelines

This command drops NDP messages if they do not contain CGA and RSA Signature options.

If this command is not configured, then the `sec-level minimum` command does not have an effect.

If this command is configured, then only the `sec-level minimum` command has an effect and all other configured ND Inspection policy commands are ignored.

Example

The following example enables the switch to drop messages with no or invalid options or an invalid signature:

```
switchxxxxx(config)# ipv6 nd inspection drop-unsecure
```
ipv6 nd inspection policy

To define an ND Inspection policy and place the switch in IPv6 ND Inspection Policy Configuration mode, use the `ipv6 nd inspection policy` command in Global Configuration mode. To remove the ND Inspection policy, use the `no` form of this command.

Syntax

```
ipv6 nd inspection policy policy-name
no ipv6 nd inspection policy policy-name
```

Parameters

- `policy-name` — The ND Inspection policy name (up to 32 characters).

Default Configuration

No ND Inspection policies are configured.

Command Mode

Global Configuration mode

User Guidelines

This command defines the ND Inspection policy name, and places the router in ND Inspection Policy Configuration mode. Each policy of the same type (for example, ND Inspection policies) must have a unique name. Policies of different types can have a same policy name.

The switch supports two predefined ND Inspection policies named: "vlan_default" and "port_default":

```
ipv6 nd inspection policy vlan_default
exit
ipv6 nd inspection policy port_default
exit
```

These policies cannot be removed, but they can be changed. The `no ipv6 nd inspection policy` does not remove these policies, it only removes the policy configuration defined by the user.

You can define a policy using the `ipv6 nd inspection policy` command multiple times.

If an attached policy is removed it is detached automatically before removing.

Example 1. The following example defines a ND Inspection policy named policy1, places the switch in ND Inspection Policy Configuration mode, and configures the port to drop unsecured messages and sets the device role as router:

```
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# drop-unsecure
switchxxxxxx(config-nd-inspection)# device-role router
switchxxxxxx(config-nd-inspection)# exit
```

Example 2. The following example defines an ND Inspection policy as policy1 by a few steps:

```
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# drop-unsecure
```
switchxxxxxx(config-nd-inspection)# exit
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# device-role router
switchxxxxxx(config-nd-inspection)# exit

Example 3. The following example removes an attached ND Inspection policy:

switchxxxxxx(config)# no ipv6 nd inspection policy policy1
Policy policy1 is applied on the following ports:
gi1/0/1, gi1/0/2

The policy will be detached and removed, are you sure [Y/N] Y
ipv6 nd inspection sec-level minimum

To globally specify the minimum security level value, use the `ipv6 nd inspection sec-level minimum` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd inspection sec-level minimum value
no ipv6 nd inspection sec-level minimum
```

Parameters

- `value`—Sets the minimum security level. Range: 0–7.

Default Configuration

All messages are bridged.

Command Mode

Global Configuration mode

User Guidelines

This command specifies the minimum security level parameter value when the drop-unsecured feature is configured.

This command has no effect if dropping of non secure messages is disabled.

Example

The following example enables the switch to specify 2 as the minimum CGA security level:

```
switchxxxxxx(config)# ipv6 nd inspection sec-level minimum 2
```
ipv6 nd inspection validate source-mac

To globally enable checking source MAC address against the link-layer address in the source/target link-layer option, use the `ipv6 nd inspection validate source-mac` command in Global Configuration mode. To disable this function, use the `no` form of this command.

Syntax

`ipv6 nd inspection validate source-mac`

`no ipv6 nd inspection validate source-mac`

Parameters

N/A

Default Configuration

This command is disabled by default.

Command Mode

Global Configuration mode

User Guidelines

When the switch receives an NDP message, which contains a link-layer address in the source/target link layer option, the source MAC address is checked against the link-layer address. Use this command to drop the packet if the link-layer address and the MAC addresses are different from each other.

Example

The following example enables the switch to drop an NDP message whose link-layer address in the source/target link-layer option does not match the MAC address:

```
switchxxxxxx(config)# ipv6 nd inspection validate source-mac
```
ipv6 nd raguard

To globally enable the Router Advertisements (RA) guard feature on a VLAN, use the `ipv6 nd raguard` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd raguard
no ipv6 nd raguard
```

Parameters

N/A

Default Configuration

RA Guard on a VLAN is disabled.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use the `ipv6 nd raguard` command, to enable IPv6 RA Guard on a VLAN. The RA Guard discards RA, CPA, and ICMP Redirect messages received on ports that are not configured as router (see the `device-role` command). The RA Guard validates received RA messages based on an RA Guard policy attached to the source port.

RA Guard is performed before ND inspection.

Example 1—The following example enables RA Guard on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 nd raguard
switchxxxxxx(config-if)# exit
```

Example 2—The following example enables RA Guard on VLANs 100-107:

```
switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)# ipv6 nd raguard
switchxxxxxx(config-if-range)# exit
```
ipv6 nd raguard attach-policy (port mode)

To attach an RA Guard policy to a specific port, use the `ipv6 nd raguard attach-policy` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd raguard attach-policy policy-name [vlan vlan-list]
nov6 nd raguard attach-policy [policy-name]
```

Parameters

- `policy-name` — The RA Guard policy name (up to 32 characters).
- `vlan vlan-list` — Specifies that the RA Guard policy is to be attached to the VLAN(s) in `vlan-list`. If the `vlan` keyword is not configured, the policy is applied to all VLANs on the device on which RA Guard policy is enabled.

Default Configuration

The RA Guard default policy is applied.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use this command to attach an RA Guard policy to a port. Each time the command is used, it overrides the previous command within the same policy. If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Multiple policies with the `vlan` keyword can be attached to the same port if they do not have common VLANs.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port on the VLAN on which the packet arrived are added to the set.
- The rules, configured in the policy attached to the VLAN are added to the set if they have not been added.
- The global rules are added to the set if they have not been added.

Use the `no ipv6 nd raguard attach-policy` command to detach all user-defined policies attached to the port.

Use the `no ipv6 nd raguard attach-policy policy-name` command to detach the specific policy from the port.

Example 1 — In the following example, the RA Guard policy policy1 is attached to the gi1/0/1 port:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 nd raguard attach-policy policy1
switchxxxxxx(config-if)# exit
```
Example 2—In the following example, the RA Guard policy policy1 is attached to the gi1/0/1 port and applied to VLANs 1-10 and 12-20:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 nd raguard attach-policy policy1 vlan 1-10,12-20
switchxxxxxx(config-if)# exit
```

Example 3—In the following example, the RA Guard policy policy1 is attached to the gi1/0/1 port and applied to VLANs 1-10 and the RA Guard policy policy2 is attached to the gi1/0/1 port and applied to VLANs 12-20:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 nd raguard attach-policy policy1 vlan 1-10
switchxxxxxx(config-if)# ipv6 nd raguard attach-policy policy2 vlan 12-20
switchxxxxxx(config-if)# exit
```

Example 4—In the following example RA Guard detaches policy policy1 from the gi1/0/1 port:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# no ipv6 nd raguard attach-policy policy1
switchxxxxxx(config-if)# exit
```
ipv6 nd raguard attach-policy (VLAN mode)

To attach an RA Guard policy to a specified VLAN, use the `ipv6 nd raguard attach-policy` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd raguard attach-policy policy-name
no ipv6 nd raguard attach-policy
```

Parameters

- `policy-name`—The RA Guard policy name (up to 32 characters).

Default Configuration

The RA Guard default policy is applied.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to attach an RA Guard policy to a VLAN.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Use the `no` form of the command to detach the current policy and to reattach the default policy. The `no` form of the command has no effect if the default policy was attached.

Example

In the following example, the RA Guard policy policy1 is attached to VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 nd raguard attach-policy policy1
switchxxxxxx(config-if)# exit
```
ipv6 nd raguard hop-limit

To globally enable verification of the advertised Cur Hop Limit value in RA messages, use the `ipv6 nd raguard hop-limit` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd raguard hop-limit {[maximum value] [minimum value]}
no ipv6 nd raguard hop-limit [maximum] [minimum]
```

Parameters

- **maximum value**—Verifies that the hop-count limit is lower than or equal to the `value` argument. Range 1-255. The value of the high boundary must be equal to or greater than the value of the low boundary.

- **minimum value**—Verifies that the hop-count limit is greater than or equal to the `value` argument. Range 1-255.

Default Configuration

No hop-count limit is verified.

Command Mode

Global Configuration mode

User Guidelines

This command enables verification that the advertised Cur Hop Limit value in an RA message (see RFC4861) is greater than or less than the value set by the `value` argument.

Configuring the `minimum value` keyword and argument can prevent an attacker from setting a low Cur Hop Limit value on the hosts to block them from generating traffic to remote destinations; that is, beyond their default router. If the advertised Cur Hop Limit value is unspecified (which is the same as setting a value of 0), the packet is dropped.

Configuring the `maximum value` keyword and argument enables verification that the advertised Cur Hop Limit value is less than or equal to the value set by the `value` argument. If the advertised Cur Hop Limit value is unspecified (which is the same as setting a value of 0), the packet is dropped.

Use the `no ipv6 nd raguard hop-limit maximum` command to disable verification of the maximum boundary of the advertised Cur Hop Limit value in an RA message.

Use the `no ipv6 nd raguard hop-limit minimum` command to disable verification of the minimum boundary of the advertised Cur Hop Limit value in an RA message.

Example 1—The following example defines a minimum Cur Hop Limit value of 3 and a maximum Cur Hop Limit value of 100 using two commands:

```
switchxxxxxx(config)# ipv6 nd raguard hop-limit minimum 3
switchxxxxxx(config)# ipv6 nd raguard hop-limit maximum 100
```
Example 2—The following example defines a minimum Cur Hop Limit value of 3 and a maximum Cur Hop Limit value of 100 using a single command:

```
switchxxxxxxx(config)# ipv6 nd raguard hop-limit minimum 3 maximum 100
```
ipv6 nd raguard managed-config-flag

To globally enable verification of the advertised Managed Address Configuration flag in RA messages, use the `ipv6 nd raguard managed-config-flag` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd raguard managed-config-flag {on | off}
no ipv6 nd raguard managed-config-flag
```

Parameters

- **on**—The value of the flag must be 1.
- **off**—The value of the flag must be 0.

Default Configuration

Verification is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables verification of the advertised Managed Address Configuration flag (or the M flag) in an RA message (see RFC4861). This flag could be set by an attacker to force hosts to obtain addresses through a DHCPv6 server that might not be trustworthy.

Example

The following example enables M flag verification that checks if the value of the flag is 0:

```
switchxxxxxx(config)# ipv6 nd raguard managed-config-flag off
```
ipv6 nd raguard other-config-flag

To globally enable verification of the advertised “Other Configuration” flag in RA messages, use the `ipv6 nd raguard other-config-flag` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 nd raguard other-config-flag {on | off}
no ipv6 nd raguard other-config-flag
```

Parameters

- **on** — The value of the flag must be 1.
- **off** — The value of the flag must be 0.

Default Configuration

Verification is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables verification of the advertised “Other Configuration” flag (or "O" flag) in an RA message (see RFC4861). This flag could be set by an attacker to force hosts to retrieve other configuration information through a DHCPv6 server that might not be trustworthy.

Example

The following example shows how the command enables O flag verification that checks if the value of the flag is 0:

```
switchxxxxxx(config)# ipv6 nd raguard other-config-flag off
```
ipv6 nd raguard policy

To define an RA Guard policy name and place the switch in IPv6 RA Guard Policy Configuration mode, use the `ipv6 nd raguard policy` command in Global Configuration mode. To remove the RA Guard policy, use the `no` form of this command.

Syntax

```
ipv6 nd raguard policy policy-name
no ipv6 nd raguard policy policy-name
```

Parameters

- `policy-name` — The RA Guard policy name (up to 32 characters).

Default Configuration

No RA Guard policy is configured

Command Mode

Global Configuration mode

User Guidelines

This command defines the RA Guard policy name, and places the switch in IPv6 RA Guard Policy Configuration mode.

Each policy of the same type (for example, RA Guard policies) must have a unique name. Policies of different types can have a same policy name.

The switch supports two predefined RA Guard policies, named: "vlan_default" and "port_default":

```
ipv6 nd raguard policy vlan_default
exit
ipv6 nd raguard policy port_default
exit
```

The policies cannot be removed, but they can be changed. The `no ipv6 nd raguard policy` does not remove these policies, it only removes the policy configuration defined by the user.

The `vlan_default` policy is attached by default to a VLAN, if no other policy is attached to the VLAN. The `port_default` policy is attached by default to a port, if no other policy is attached to the port.

You can define a policy using the `ipv6 nd raguard policy` command multiple times. If an attached policy is removed, it is detached automatically before removing.

Example 1 — The following example defines an RA Guard policy named policy1, places the router in RA Guard Policy Configuration mode, and disenable validation of the Other Configuration flag, and sets the device role as router:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard)# other-config-flag disable
```
Example 2—The following example defines an RA Guard named policy1 using multiple steps:

```
switchxxxxxxx(config-ra-guard)# device-role router
switchxxxxxxx(config-ra-guard)# exit
```

Example 3—The following example removes an attached RA Guard policy:

```
switchxxxxxxx(config)# no ipv6 nd raguard policy policy1
Policy policy1 is applied on the following ports:
gi1/0/1, gi1/0/2
The policy will be detached and removed, are you sure [Y/N]?Y
ipv6 nd raguard router-preference

To globally enable verification of the advertised Default Router Preference value in RA messages, use the `ipv6 nd raguard router-preference` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```
ipv6 nd raguard router-preference { [maximum value] [minimum value] }
no ipv6 nd raguard router-preference [maximum] [minimum]
```

**Parameters**

- **maximum value**—Specifies the maximum allowed Advertised Default Router Preference value. The following values are acceptable: low, medium and high (see RFC4191). The value of the high boundary must be equal to or greater than the value of the low boundary.

- **minimum value**—Specifies the minimum allowed Advertised Default Router Preference value. The following values are acceptable: low, medium and high (see RFC4191).

**Default Configuration**

Verification is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command enables verification of the advertised Default Router Preference value in RA messages (see RFC4191).

Configuring the `minimum value` keyword and argument specifies the minimum allowed value. Received RA messages with a Default Router Preference value less than the `value` argument are dropped.

Configuring the `maximum value` keyword and argument specifies the maximum allowed value. Received RA messages with a Default Router Preference value greater than the `value` argument are dropped.

Use the `no ipv6 nd raguard router-preference` command to disable verification of the advertised Default Router Preference value in RA messages.

Use the `no ipv6 nd raguard router-preference maximum` command to disable verification of the maximum boundary of the advertised Default Router Preference value in RA messages.

Use the `no ipv6 nd raguard router-preference minimum` command to disable verification of the advertised Default Router Preference value in RA messages.

**Example 1**—The following example defines that only a value of medium is acceptable using two commands:

```
switchxxxxxxx(config)# ipv6 nd raguard router-preference minimum medium
switchxxxxxxx(config)# ipv6 nd raguard router-preference maximum medium
```
Example 2—The following example defines that only a value of medium is acceptable using a single command:

```
switchxxxxxx(config)# ipv6 nd raguard router-preference minimum medium maximum medium
```
ipv6 neighbor binding

To globally enable the Neighbor Binding (NB) integrity feature on a VLAN, use the `ipv6 neighbor binding` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

ipv6 neighbor binding
no ipv6 neighbor binding

**Parameters**

N/A

**Default Configuration**

NB integrity on a VLAN is disabled.

**Command Mode**

Interface (VLAN) Configuration mode

**User Guidelines**

NB integrity establishes binding for neighbors connected to the perimetrical ports belonging to the VLANs on which the feature is enabled.

**Example 1**—The following example enables NB integrity on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 neighbor binding
switchxxxxxx(config-if)# exit
```

**Example 2**—The following example enables NB integrity on VLANs 100-107:

```
switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)# ipv6 neighbor binding
switchxxxxxx(config-if-range)# exit
```
ipv6 neighbor binding address-config

To specify allowed configuration methods of global IPv6 addresses, use the `ipv6 neighbor binding address-config` command in Global Configuration mode. To return to the default setting, use the `no` form of this command.

**Syntax**

```plaintext
ipv6 neighbor binding address-config [stateless | any] [dhcp]
no ipv6 neighbor binding address-config
```

**Parameters**

- **stateless**—Only auto configuration is allowed for global IPv6 bound from NDP messages.
- **any**—All configuration methods for global IPv6 bound from NDP messages (stateless and manual) are allowed. If no keyword is defined the `any` keyword is applied.
- **dhcp**—Binding from DHCPv6 is allowed.

**Default Configuration**

Any is the default parameter.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command defines allowed IPv6 address configuration methods for global IPv6 addresses.

The `stateless` and `any` keywords specify the following:

- Global IPv6 addresses are bound from NDP messages. If none of these keywords are configured, only link-local addresses are bound from NDP messages.
- How global IPv6 addresses, bound from NDP messages, are checked against the Neighbor Prefix table, if prefix validation is enabled:
  - `stateless`—IPv6 addresses are bound from NDP messages, and only global addresses belonging to learned prefixes with set A-flag or prefixes manually configured with the `autoconfig` keyword are allowed.
  - `any`—IPv6 addresses are bound from NDP messages and only global addresses belonging to prefixes in NPT are allowed.

Use the `dhcp` keyword, to allow binding from DHCPv6 message. IPv6 addresses bound from DHCPv6 messages are never verified against the Neighbor Prefix table. IPv6 addresses bound from DHCPv6 messages override IPv6 addresses bound from NDP messages.

**Note.** If the `dhcp` keyword is not configured, the switch will bind IPv6 addresses assigned by DHCPv6 from NDP messages, because a host must execute the DAD process for these addresses.

If no keyword is defined the `ipv6 neighbor binding address-config any` command is applied.
Example 1. The following example specifies that any global IPv6 address configuration method can be applied and there will be no binding from DHCPv6 messages:

switchxxxxxx(config)# ipv6 neighbor binding address-prefix-validation
switchxxxxxx(config)# ipv6 neighbor binding address-config any

Example 2. The following example specifies that any global IPv6 address binding from NDP and global IPv6 address binding from DHCPv6 messages can be applied:

switchxxxxxx(config)# ipv6 neighbor binding address-prefix-validation
switchxxxxxx(config)# ipv6 neighbor binding address-config any dhcp

Example 3. The following example specifies that only stateless global IPv6 address binding from NDP can be applied

switchxxxxxx(config)# ipv6 neighbor binding address-prefix-validation
switchxxxxxx(config)# ipv6 neighbor binding address-config stateless

Example 4. The following example specifies that only the stateless IPv6 address configuration and assignment by DHCPv6 methods can be applied and binding only from NDP messages is supported:

switchxxxxxx(config)# ipv6 neighbor binding address-prefix-validation
switchxxxxxx(config)# ipv6 neighbor binding address-config stateless dhcp

Example 5. The following example specifies that global IPv6 addresses can be assigned only by DHCPv6:

switchxxxxxx(config)# ipv6 neighbor binding address-config dhcp
ipv6 neighbor binding address-prefix

To define a static prefix for global IPv6 addresses bound from NDP messages, use the `ipv6 neighbor binding address-prefix` command in Global Configuration mode. To delete the prefix, use the `no` form of this command.

**Syntax**
```
ipv6 neighbor binding address-prefix vlan vlan-id ipv6-prefix/prefix-length [autoconfig]
```
```
no ipv6 neighbor binding address-prefix [vlan vlan-id] [ipv6-prefix/prefix-length]
```

**Parameters**
- `ipv6-prefix/prefix-length` — IPv6 prefix.
- `vlan vlan-id` — ID of the specified VLAN.
- `autoconfig` — The prefix can be used for stateless configuration.

**Default Configuration**
No static prefix

**Command Mode**
Global Configuration mode

**User Guidelines**
Use the `ipv6 neighbor binding address-prefix` command to add a static prefix to the Neighbor Prefix table.
Use the `no ipv6 neighbor binding address-prefix vlan vlan-id ipv6-prefix/prefix-length` command to remove one static entry from the Neighbor Prefix table.
Use the `no ipv6 neighbor binding address-prefix vlan vlan-id` command to remove all static entries from the Neighbor Prefix table defined on the given VLAN.
Use the `no ipv6 neighbor binding address-prefix` command to remove all static entries from the Neighbor Prefix table.

**Example 1.** The following example adds two static entries. The second one can be used for stateless configuration.
```
switchxxxxxx(config)# ipv6 neighbor binding address-prefix vlan 100 2001:0DB8:101::/64
switchxxxxxx(config)# ipv6 neighbor binding address-prefix vlan 100 2001:0DB8:100::/64 autoconfig
```

**Example 2.** The following example deletes a single static entry:
```
switchxxxxxx(config)# no ipv6 neighbor binding address-prefix vlan 100 2001:0DB8:101::/64
```

**Example 3.** The following example deletes all static entries defined on the specified VLAN:
```
switchxxxxxx(config)# no ipv6 neighbor binding address-prefix vlan 100
```

**Example 4.** The following example deletes all static entries:
```
switchxxxxxx(config)# no ipv6 neighbor binding address-prefix
```
ipv6 neighbor binding address-prefix-validation

To globally enable validation of a bound IPv6 address against the Neighbor Prefix table, use the `ipv6 neighbor binding address-prefix-validation` command in Global Configuration mode. To disable this feature, use the `no` form of this command.

**Syntax**

`ipv6 neighbor binding address-prefix-validation`

`no ipv6 neighbor binding address-prefix-validation`

**Parameters**

N/A

**Default Configuration**

The feature is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command enables bound address prefix validation. If the Neighbor Binding feature is enabled, the switch checks if a bound address belongs to one of the prefixes of the Neighbor Prefix table or to a manually-configured prefix list by the `ipv6 neighbor binding address-prefix` command in the Neighbor Binding configuration mode. If an address does not belong, it is not bound.

**Example**

The following example shows how to enable bound address validation against the Neighbor Prefix table:

```
switchxxxxxx(config)# ipv6 neighbor binding address-prefix-validation
```
**ipv6 neighbor binding attach-policy (port mode)**

To attach a Neighbor Binding policy to a specific port, use the `ipv6 neighbor binding attach-policy` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```
ipv6 neighbor binding attach-policy policy-name [vlan vlan-list]
no ipv6 neighbor binding attach-policy [policy-name]
```

**Parameters**

- `policy-name`—The Neighbor Binding policy name (up to 32 characters).
- `vlan vlan-list`—Specifies that the Neighbor Binding policy is to be attached to the VLAN(s) in `vlan-list`. If the `vlan` keyword is not configured, the policy is applied to all VLANs on the device on which Neighbor Binding policy is enabled.

**Default Configuration**

The Neighbor Binding default policy is applied.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

Use this command to attach a Neighbor Binding policy to a port.

Each time the command is used, it overrides the previous command within the same policy.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Multiple policies with the `vlan` keyword can be attached to the same port if they do not have common VLANs.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port on the VLAN on which the packet arrived are added to the set.
- The rules, configured in the policy attached to the VLAN are added to the set if they have not been added.
- The global rules are added to the set if they have not been added.

Use the `no ipv6 neighbor binding attach-policy` command to detach all user-defined policies attached to the port.

Use the `no ipv6 neighbor binding attach-policy policy-name` command to detach the specific policy from the port.

**Example 1**—In the following example, the Neighbor Binding policy policy1 is attached to the gi1/0/1 port:
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 neighbor binding attach-policy policy1
switchxxxxxx(config-if)# exit

Example 2—In the following example, the Neighbor Binding policy policy1 is attached to the gi1/0/1 port and applied to VLANs 1-10 and 12-20:

switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 neighbor binding attach-policy policy1 vlan 1-10,12-20
switchxxxxxx(config-if)# exit

Example 3—In the following example, the Neighbor Binding policy policy1 is attached to the gi1/0/1 port and applied to VLANs 1-10, and the Neighbor Binding policy policy2 is attached to the gi1/0/1 port and applied to VLANs 12-20:

switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 neighbor binding attach-policy policy1 vlan 1-10
switchxxxxxx(config-if)# ipv6 neighbor binding attach-policy policy2 vlan 12-20
switchxxxxxx(config-if)# exit

Example 4—In the following example, Neighbor Binding Integrity detaches policy policy1 detached to the gi1/0/1 port:

switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# no ipv6 neighbor binding attach-policy policy1
switchxxxxxx(config-if)# exit
ipv6 neighbor binding attach-policy (VLAN mode)

To attach a Neighbor Binding policy to a specific VLAN, use the `ipv6 neighbor binding attach-policy` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

Syntax

ipv6 neighbor binding attach-policy `policy-name`

no ipv6 neighbor binding attach-policy

Parameters

- `policy-name`—The Neighbor Binding policy name (up to 32 characters).

Default Configuration

The Neighbor Binding default policy is applied.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

Use this command to attach a Neighbor Binding policy to a VLAN.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

Use the `no` form of the command to return to detach the current policy and reattach the default policy. The `no` form of the command has no effect if the default policy was attached.

Example

In the following example, the Neighbor Binding policy `policy1` is attached to VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 neighbor binding attach-policy policy1
switchxxxxxx(config-if)# exit
```
ipv6 neighbor binding lifetime

To globally change the default of the Neighbor Binding table entry lifetime, use the `ipv6 neighbor binding lifetime` command in Global Configuration mode. To return to the default setting, use the `no` form of this command.

**Syntax**

`ipv6 neighbor binding lifetime value`

`no ipv6 neighbor binding lifetime`

**Parameters**

- `value`—The lifetime in minutes. The range is from 1 through 60 minutes.

**Default Configuration**

5 minutes

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `ipv6 neighbor binding lifetime` command to change the default lifetime.

**Example**

The following example changes the lifetime for binding entries to 10 minutes:

```
switchxxxxxx(config)# ipv6 neighbor binding lifetime 10
```
ipv6 neighbor binding max-entries

To globally specify the maximum number of dynamic entries that are allowed to be inserted in the Binding table cache, use the `ipv6 neighbor binding max-entries` command in Global Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

```
ipv6 neighbor binding max-entries { [vlan-limit number] [interface-limit number] [mac-limit number] }
no ipv6 neighbor binding max-entries [vlan-limit] [interface-limit] [mac-limit]
```

**Parameters**

- `vlan-limit number`—Specifies a neighbor binding limit per number of VLANs.
- `interface-limit number`—Specifies a neighbor binding limit per port.
- `mac-limit number`—Specifies a neighbor binding limit per MAC address.

**Default Configuration**

This command is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command is used to control the contents of the Binding table. This command specifies the maximum number of dynamic entries that can be inserted in the Binding table cache. After this limit is reached, new entries are refused, and a Neighbor Discovery Protocol (NDP) traffic source with a new entry is dropped.

If the maximum number of entries specified is lower than the current number of entries in the database, no entries are cleared, and the new threshold is reached after normal cache attrition.

**Example**

The following example shows how to specify globally the maximum number of entries that can be inserted into the cache per MAC:

```
switchxxxxxxx(config)# ipv6 neighbor binding max-entries mac-limit 2
```
ipv6 neighbor binding policy

To define a Neighbor Binding policy and place the switch in IPv6 Neighbor Binding Policy Configuration mode, use the `ipv6 neighbor binding policy` command in Global Configuration mode. To remove the Neighbor Binding policy, use the `no` form of this command.

**Syntax**

```
ipv6 neighbor binding policy policy-name
no ipv6 neighbor binding policy policy-name
```

**Parameters**

- `policy-name`—The Neighbor Binding policy name (up to 32 characters).

**Default Configuration**

No Neighbor Binding policy is configured.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command defines a Neighbor Binding policy name, and places the router in Neighbor Binding Policy Configuration mode so that additional commands can be added to the policy.

The switch supports two predefined Neighbor Binding policies, named: "vlan_default" and "port_default":

```
ipv6 neighbor binding policy vlan_default
exit
ipv6 neighbor binding policy port_default
exit
```

The policies cannot be removed, but they can be changed. The `no ipv6 neighbor binding policy` does not remove these policies, it only removes the policy configuration defined by the user.

You can define a policy using the `ipv6 neighbor binding policy` command multiple times.

If an attached policy is removed, it is detached automatically before removing.

**Example 1**—The following example defines a Neighbor Binding policy named policy1, places the router in Neighbor Binding Policy Configuration mode, enables logging, and defines the port as internal:

```
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# device-role internal
switchxxxxxx(config-nbr-binding)# logging binding
switchxxxxxx(config-nbr-binding)# exit
```

**Example 2**—The following example defines a Neighbor Binding policy named policy1 using multiple steps:
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# device-role internal
switchxxxxxx(config-nbr-binding)# exit
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
logging binding
switchxxxxxx(config-nbr-binding)# exit

Example 3—The following example remove an attached Neighbor Binding policy:

switchxxxxxx(config)# no ipv6 neighbor binding policy policy1
Policy policy1 is applied on the following ports:
g1/0/1, g1/0/2
The policy will be detached and removed, are you sure [Y/N]Y
ipv6 neighbor binding static

To add a static entry to the Neighbor Binding table, use the `ipv6 neighbor binding static` command in Global Configuration mode. To remove the static entry, use the `no` form of this command.

**Syntax**

```
ipv6 neighbor binding static ipv6 ipv6-address vlan vlan-id interface interface-id mac mac-address
no ipv6 neighbor binding static ipv6 ipv6-address vlan vlan-id
```

**Parameters**

- `ipv6 ipv6-address`—IPv6 address of the static entry.
- `vlan vlan-id`—ID of the specified VLAN.
- `interface interface-id`—Adds static entries to the specified port.
- `mac mac-address`—MAC address of the static entry.

**Default Configuration**

No static entry.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command is used to add static entries to the Neighbor Binding table. Static entries can be configured regardless the port role.

If the entry (dynamic or static) already exists, the new static entry overrides the existing one.

If the Neighbor Binding table overflows, the static entry is not added.

**Example**

The following example adds a static entry:

```
switchxxxxxx(config)# ipv6 neighbor binding static ipv6 2001:600::1 vlan 100 interface gi1/0/1 mac 00BB:CC01:F500
```
ipv6 source guard

To enable the IPv6 Source Guard feature on a VLAN, use the `ipv6 source guard` command in VLAN Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

ipv6 source guard

`no` ipv6 source guard

**Default Configuration**

Source Guard on a VLAN is disabled.

**Command Mode**

Interface (VLAN) Configuration mode

**User Guidelines**

IPv6 Source Guard blocks an IPv6 data message arriving on a port if its source IPv6 address is bound to another port, or it is unknown.

**Example 1**—The following example enables IPv6 Source Guard on VLAN 100:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 source guard
switchxxxxxx(config-if)# exit
```

**Example 2**—The following example enables IPv6 Source Guard on VLANs 100-107:

```
switchxxxxxx(config)# interface range vlan 100-107
switchxxxxxx(config-if-range)# ipv6 source guard
switchxxxxxx(config-if-range)# exit
```
ipv6 source guard attach-policy (port mode)

To attach an IPv6 Source Guard policy to a specific port, use the `ipv6 source guard attach-policy` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

**Syntax**

`ipv6 source guard attach-policy policy-name`

`no ipv6 source guard attach-policy`

**Parameters**

- `policy-name` — The IPv6 Source Guard policy name (up to 32 characters).

**Default Configuration**

The IPv6 Source Guard default policy is applied.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

Use this command to attach an IPv6 Source Guard policy to a port.

Each succeeding `ipv6 source guard attach-policy` command overrides the previous policy attachment on the same port.

IPv6 Source guard policies can be used to block forwarding IPv6 data messages with unknown source IPv6 addresses or with source IPv6 addresses bound to a port differing from the input one.

If a policy specified by the `policy-name` argument is not defined, the command is rejected.

The set of rules that is applied to an input packet is built in the following way:

- The rules, configured in the policy attached to the port.
- The global rules are added to the set if they have not been added.

Use the `no ipv6 source guard attach-policy` command to detach the user defined policy attached to the port and to reattach the default policy with name "port_default".

**Example 1**—In the following example, the IPv6 Source Guard policy policy1 is attached to the gi1/0/1 port:

```
switchxxxxxxx(config)# interface gi1/0/1
switchxxxxxxx(config-if)# ipv6 source guard attach-policy policy1
switchxxxxxxx(config-if)# exit
```

**Example 2**—In the following example IPv6 Source Guard detaches policy1 from the gi1/0/1 port:

```
switchxxxxxxx(config)# interface gi1/0/1
switchxxxxxxx(config-if)# no ipv6 source guard attach-policy
switchxxxxxxx(config-if)# exit
```
ipv6 source guard policy

To define an IPv6 Source Guard policy name and place the user in IPv6 Source Guard Configuration, use the **ipv6 source guard policy** command in Global Configuration mode. To remove the IPv6 Source Guard policy name, use the **no** form of this command.

**Syntax**

```
ipv6 source guard policy policy-name
no ipv6 source guard policy policy-name
```

**Parameters**

- `policy-name` — The IPv6 Source Guard policy name (up to 32 characters).

**Default Configuration**

No IPv6 Source Guard policies are configured.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command defines the IPv6 Source Guard policy name, and places the router in IPv6 Source Guard Policy Configuration mode.

Each policy of the same type (for example, IPv6 Source Guard policies) must have a unique name. Policies of different types can have the same policy name.

The switch supports one predefined IPv6 Source Guard policy named: "port_default":

```
ipv6 source guard policy port_default
exit
```

The policy cannot be removed, but it can be changed. The **no ipv6 source guard policy** does not remove the policy, it only removes any policy configurations defined by the user.

If an attached policy is removed, it is detached automatically before removing.

**Example 1** — The following example defines the IPv6 Source Guard policy named policy1, places the router in IPv6 Source Guard Policy Configuration mode, and configures the port as trusted:

```
switchxxxxxx(config)# ipv6 source guard policy policy1
switchxxxxxx(config-ipv6-srcguard)# trusted-port
switchxxxxxx(config)# exit
```

**Example 2** — The following example removes the attached IPv6 Source Guard policy:

```
switchxxxxxx(config)# no ipv6 source guard policy policy1
Policy policy1 is applied on the following ports:
gi1/0/1, gi1/0/2

The policy will be detached and removed, are you sure [Y/N]Y
logging binding

To enable the logging of Binding table main events within an IPv6 Neighbor Binding policy, use the `logging binding` command in Neighbor Binding Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
logging binding [enable | disable]
no logging binding
```

Parameters

- **enable**—Enables logging of Binding table main events. If no keyword is configured, this keyword is applied by default.
- **disable**—Disables logging of Binding table main events.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.
Policy attached to VLAN: global configuration.

Command Mode

Neighbor Binding Policy Configuration mode.

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Example

The following example enables logging of Binding table main events within the IPv6 Neighbor Binding policy named policy1:

```
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# logging binding enable
switchxxxxxx(config-nbr-binding)# exit
```
logging packet drop

To enable the logging of dropped packets within an IPv6 First Hop Security policy, use the logging packet drop command in IPv6 First Hop Security Policy Configuration mode. To return to the default, use the no form of this command.

Syntax

logging packet drop [enable | disable]

no logging packet drop

Parameters

- **enable**—Enables logging of dropped packets. If no keyword is configured, this keyword is applied by default.

- **disable**—Disables logging of dropped packets.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

IPv6 First Hop Security Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Example

The following example enables logging of dropped messages with the IPv6 First Hop Security Policy named policy1:

```
switchxxxxxx(config)# ipv6 first hop security policy policy1
switchxxxxxx(config-ipv6-fhs)# logging packet drop
switchxxxxxx(config-ipv6-fhs)# exit
```
managed-config-flag

To enable verification of the advertised Managed Address Configuration flag within an IPv6 RA Guard policy, use the `managed-config-flag` command in RA Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```shell
managed-config-flag {on | off | disable}
no managed-config-flag
```

Parameters

- **on**—The value of the flag must be 1.
- **off**—The value of the flag must be 0.
- **disable**—The value of the flag is not validated.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

RA Guard Policy Configuration mode

Example

The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, and enables M flag verification that checks if the value of the flag is 0:

```shell
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard)# managed-config-flag off
switchxxxxxx(config-ra-guard)# exit
```
match ra address

To enable verification of the router’s IPv6 address in received RA messages within an IPv6 RA Guard policy, use the **match ra address** command in RA Guard Policy Configuration mode. To return to the default, use the **no** form of this command.

Syntax

```
match ra address {prefix-list ipv6-prefix-list-name} | disable
```

no match ra address

Parameters

- **prefix-list ipv6-prefix-list-name** — The IPv6 prefix list to be matched.
- **disable** — Disables verification of the router’s IPv6 address.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: router’s addresses are not verified.

Command Mode

RA Guard Policy Configuration mode

User Guidelines

This command enables verification of the router’s IPv6 address in received RA messages by a configured prefix list. If the router’s source IPv6 address does not match the prefix list or if the prefix list is not configured, the RA message is dropped.

Use the **disable** keyword to disable verification of the router’s IPv6 address regardless of the VLAN configuration.

Example

The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, matches the router addresses to the prefix list named list1, and defines the prefix list named list1 authorizing the router with link-local address FE80::A8BB:CCFF:FE01:F700 only:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ration-guard)# match ra address prefix-list list1
switchxxxxxx(config-ration-guard)# exit
switchxxxxxx(config)# ipv6 prefix-list list1 permit FE80::A8BB:CCFF:FE01:F700/128
```
match ra prefixes

To enable verification of the advertised prefixes in received RA messages within an IPv6 RA Guard policy, use the `match ra prefixes` command in RA Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`match ra prefixes {prefix-list ipv6-prefix-list-name} | disable`

`no match ra prefixes`

Parameters

- `prefix-list ipv6-prefix-list-name` — The IPv6 prefix list to be matched.
- `disable` — Disables verification of the advertised prefixes in received RA messages.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: advertised prefixes are not verified.

Command Mode

RA Guard Policy Configuration mode

User Guidelines

This command enables verification of the advertised prefixes in received RA messages by a configured prefix list. If an advertised prefix does not match the prefix list, or if the prefix list is not configured, the RA message is dropped.

Use the `disable` keyword to disable verification of the advertised prefixes in received RA messages in both global or the VLAN configuration.

Example

The following example defines an RA Guard policy named policy1, places the switch in RA Guard configuration mode, matches the prefixes to the prefix list named list1, and the 2001:101::/64 prefixes and denies 2001:100::/64 prefixes:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-ra-guard)# match ra prefixes prefix-list list1
switchxxxxxx(config-ra-guard)# exit
switchxxxxxx(config)# ipv6 prefix-list list1 deny 2001:0DB8:101::/64
switchxxxxxx(config)# ipv6 prefix-list list1 permit 2001:0DB8:100::/64
```
match reply

To enable verification of the assigned IPv6 addresses in messages sent by DHCPv6 servers/relays to a configured prefix list within a DHCPv6 Guard policy, use the `match reply` command in DHCPv6 Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
match reply [prefix-list ipv6-prefix-list-name] | disable
```

```
no match reply
```

Parameters

- `ipv6-prefix-list-name` — The IPv6 prefix list to be matched.
- `disable` — Disables verification of the advertised prefixes in replies.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: advertised prefixes are not verified.

Command Mode

DHCP Guard Policy Configuration mode

User Guidelines

IPv6 DHCP Guard verifies the assigned IPv6 addresses to the configure prefix list passed in the IA_NA and IA_TA options of the following DHCPv6 messages sent by DHCPv6 servers/relays:

- ADVERTISE
- REPLY
- RELAY-REPL

Note 1. Assigned addresses are not verified if a value of the Status Code option (if it presents) differs from the following ones:

- Success
- UseMulticast

Note 2. In RELAY-REPL messages DHCPv6 Guard validates the message encapsulated in the DHCP-relay-message option.

Use the `disable` keyword to disable verification of the assigned IPv6 addresses in replies.

Example

The following example defines a DHCPv6 Guard policy named policy1, places the switch in DHCPv6 Guard policy configuration mode, matches the assigned addresses to the prefix list named list1: all assigned IPv6
addresses must belong to 2001:0DB8:100:200/64 or to 2001:0DB8:100::/48. The "ge 128" parameter must be configured for each prefix of the prefix-list with prefix length less than 128.

switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# match reply prefix-list list1
switchxxxxxx(config-dhcp-guard)# exit
switchxxxxxx(config)# ipv6 prefix-list list1 deny 2001:0DB8:100:200/64 ge 128
switchxxxxxx(config)# ipv6 prefix-list list1 permit 2001:0DB8:100::/48 ge 128
match server address

To enable verification of the source IPv6 address in messages sent by DHCPv6 servers or DHCPv6 Relays to a configured prefix list within a DHCPv6 Guard policy, use the `match server address` command in DHCPv6 Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
match server address \{prefix-list ipv6-prefix-list-name\} | disable
```

```
no match server address
```

Parameters

- **prefix-list ipv6-prefix-list-name**—The IPv6 prefix list to be matched.
- **disable**—Disables verification of the DHCP server's and relay's IPv6 address.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: server's addresses are not verified.

Command Mode

DHCP Guard Policy Configuration mode

User Guidelines

This command enables verification of the source IPv6 address in messages sent by DHCPv6 servers and DHCPv6 Relays to a configured prefix list. If the source IPv6 address does not match the configured prefix list, or if the prefix list is not configured, the DHCPv6 reply is dropped.

IPv6 DHCP Guard verifies the source IPv6 address in the following DHCPv6 messages sent by DHCPv6 servers/relays:

- ADVERTISE
- REPLY
- RECONFIGURE
- RELAY-REPL
- LEASEQUERY-REPLY

Use the `disable` keyword to disable verification of the DHCP server's and relay's IPv6 address.

Example

The following example defines a DHCPv6 Guard policy named policy1, places the switch in DHCPv6 Guard Policy Configuration mode, matches the server or relay addresses to the prefix list named list1, and defines the prefix list named list1 authorizing the server with link-local address FE80::A8BB:CCFF:FE01:F700 only:
switchxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxx(config-dhcp-guard)# match server address prefix-list list1
switchxxxxx(config-dhcp-guard)# exit
switchxxxxx(config)# ipv6 prefix-list list1 permit FE80::A8BB:CCFF:FE01:F700/128
max-entries

To define the maximum number of dynamic entries that can be inserted in the Binding table cache within an IPv6 Neighbor Binding policy, use the `max-entries` command in Neighbor Binding Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
max-entries {{[vlan-limit {number | disable}] [interface-limit {number | disable}] [mac-limit {number | disable}]}}
no max-entries [vlan-limit] [interface-limit] [mac-limit]
```

Parameters

- **vlan-limit** *number*—Specifies a neighbor binding limit per VLANs. The parameter is ignored in a policy attached to port.
- **vlan-limit** *disable*—Disables a neighbor binding limit per VLANs.
- **interface-limit** *number*—Specifies a neighbor binding limit per port.
- **interface-limit** *disable*—Disables a neighbor binding limit per port.
- **mac-limit** *number*—Specifies a neighbor binding limit per MAC address.
- **mac-limit** *disable*—Disables a neighbor binding limit per MAC address.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.
Policy attached to VLAN: global configuration.

Command Mode

Neighbor Binding Policy Configuration mode.

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Example 1—The following example defines an Neighbor Binding policy named policy1, places the router in Neighbor Binding Policy Configuration mode, and limits the number of IPv6 addresses allowed on the port to 25:

```
switchxxxxxx(config)# ipv6 neighbor binding policy policy1
switchxxxxxx(config-nbr-binding)# max-entries interface-limit 25
switchxxxxxx(config)# exit
```

Example 2—The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, and disables limit per MAC:
switchxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxx(config-ra-guard)# max-entries mac-limit disable
switchxxxxx(config-ra-guard)# exit
other-config-flag

To enable the verification of the advertised the Other Configuration flag in RA messages within an IPv6 RA Guard policy, use the `other-config-flag` command in RA Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

other-config-flag {on | off | disable}

no other-config-flag

Parameters

- **on**—The value of the flag must be 1.
- **off**—The value of the flag must be 0.
- **disable**—The value of the flag is not validated.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN. Policy attached to VLAN: global configuration.

Command Mode

RA Guard Policy Configuration mode

User Guidelines

Use the `disable` keyword to disable flag validation in both global or VLAN configuration.

Example

The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, and enables O flag verification that checks if the value of the flag is 0:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1
switchxxxxxx(config-nd-rguard)# other-config-flag off
switchxxxxxx(config-nd-rguard)# exit
```
To enable verification of the preference in messages sent by DHCPv6 servers within a DHCPv6 Guard policy, use the `preference` command in DHCPv6 Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
preference {[maximum {value | disable}] [minimum {value | disable}]}
no preference [maximum] [minimum]
```

Parameters

- **maximum value**—Advertised preference value is lower or equal than that set by the value argument. Range 0-255. A value of the high boundary must be equal to or greater than a value of the low boundary.
- **maximum disable**—Disables verification of the high boundary of the advertised preference value.
- **minimum value**—Advertised preference value is greater than or equal to the value argument. Range 0-255.
- **minimum disable**—Disables verification of the lower boundary of the advertised preference value.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.
Policy attached to VLAN: global configuration.

Command Mode

DHCP Guard Policy Configuration mode

User Guidelines

Use the `disable` keyword to disable verification in both global or VLAN configuration.

Example

The following example defines a DHCPv6 Guard policy named policy1, places the switch in DHCPv6 Guard Policy Configuration mode, and defines a minimum preference value of 10:

```
switchxxxxxx(config)# ipv6 dhcp guard policy policy1
switchxxxxxx(config-dhcp-guard)# preference minimum 10
switchxxxxxx(config-dhcp-guard)# exit
```
router-preference

To enable verification of advertised Default Router Preference value in RA messages within an IPv6 RA Guard policy, use the `router-preference` command in RA Guard Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
router-preference [maximum {value | disable}] [minimum {value | disable}]

no router-preference [maximum] [minimum]
```

Parameters

- **maximum value** — Specifies the maximum allowed Advertised Default Router Preference value. The following values are acceptable: **low**, **medium** and **high** (see RFC4191). A value of the high boundary must be equal to or greater than a value of the low boundary.

- **maximum disable** — Disables verification of the high boundary of Advertised Default Router Preference.

- **minimum value** — Specifies the minimum allowed Advertised Default Router Preference value. The following values are acceptable: **low**, **medium** and **high** (see RFC4191).

- **minimum disable** — Disables verification of the low boundary of Advertised Default Router Preference.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.

Policy attached to VLAN: global configuration.

Command Mode

RA Guard Policy Configuration mode

Example

The following example defines an RA Guard policy named policy1, places the switch in RA Guard Policy Configuration mode, and defines a minimum Default Router Preference value of medium:

```
switchxxxxxx(config)# ipv6 nd raguard policy policy1  
switchxxxxxx(config-ra-guard)# router-preference minimum medium  
switchxxxxxx(config-ra-guard)# exit
```
sec-level minimum

To specify the minimum security level value within an IPv6 ND Inspection policy, use the `sec-level minimum` command in ND Inspection policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```plaintext
sec-level minimum value | disable
no sec-level minimum
```

Parameters

- `value`—Sets the minimum security level, which is a value from 0 through 7.
- `disable`—Disables verification of security level parameter

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.
Policy attached to VLAN: global configuration.

Command Mode

ND inspection Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

This command has no effect if dropping of unsecured messages is disabled.

Example

The following example defines an NDP Inspection policy named policy1, places the switch in ND Inspection Policy Configuration mode, and specifies 2 as the minimum CGA security level:

```plaintext
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# sec-level minimum 2
switchxxxxxx(config-nd-inspection)# exit
```
show ipv6 dhcp guard

To display DHCPv6 Guard global configuration, use the `show ipv6 dhcp guard` command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 dhcp guard
```

Command Mode

Privileged EXEC mode

User Guidelines

The `show ipv6 dhcp guard` command displays DHCPv6 Guard global configuration.

Example

The following example gives an example of the output of the `show ipv6 dhcp guard` command:

```
switchxxxxxx# show ipv6 dhcp guard
IPv6 DHCP Guard is enabled on VLANs:1-4,6,7,100-120
Default Preference
    minimum: 10
    maximum: 100
```
show ipv6 dhcp guard policy

To display DHCPv6 guard policies on all ports configured with the DHCPv6 guard feature, use the `show ipv6 dhcp guard policy` command in privileged EXEC mode.

Syntax

```
show ipv6 dhcp guard policy [policy-name | active]
```

Parameters

- `policy-name` — Displays the DHCPv6 guard policy with the given name.
- `active` — Displays the attached DHCPv6 guard policies.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays the options configured for the policy on all ports configured with the DHCPv6 guard feature.

Example 1 — The following example displays the Policy Configuration for a policy named policy1:

```
switchxxxxxx# show ipv6 dhcp guard policy policy1
DHCPv6 Guard Policy: policy1
  device-role: server
  preference
    minimum: 1
    maximum: 200
  server address prefix list: list1
  reply prefix list name: list10
Attached to VLANs: 1-100,111-4094
Attached to ports:

+----------------+-----------+-----------------+-----------+-----------------+-----------+
| Ports          | VLANs     | 1-58,68-4094    | 1-4094    | 1-4094          |
| gi1/0/1-2      |           |                 |           |                 |
| gi1/0/3-4      |           |                 |           |                 |
| Po1-4          |           |                 |           |                 |
+----------------+-----------+-----------------+-----------+-----------------+-----------+
```

Example 2 — The following example displays the attached policies:

```
switchxxxxxx# show ipv6 dhcp guard policy active
Attached to VLAN:
  Policy Name   VLANs
  policy2       200-300
  vlan-default  1-199,301-4094
Attached to ports:
```
<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy1</td>
<td>gi1/0/1-2</td>
<td>1-100</td>
</tr>
<tr>
<td>port-default</td>
<td>gi1/0/1-2</td>
<td>101-4094</td>
</tr>
<tr>
<td></td>
<td>gi1/0/3-4</td>
<td>1-1094</td>
</tr>
</tbody>
</table>

Example 3—The following example displays the user defined policies:

```
switchxxxxxx# show ipv6 dhcp guard policy
policy1
policy2
```
show ipv6 first hop security

To display all IPv6 First Hop Security global configuration, use the `show ipv6 first hop security` command in Privilege EXEC configuration mode.

Syntax

`show ipv6 first hop security`

Command Mode

Privileged EXEC mode

User Guidelines

This command displays all IPv6 First Hop Security global configuration.

Example

The following example gives an example of the `show ipv6 first hop security` command:

```
switchxxxxxx# show ipv6 first hop security
IPv6 First Hop Security is enabled on VLANs:1-4,6,7,100-120
Logging Packet Drop: enabled
```
show ipv6 first hop security active policies

To display information about the policies applied to the port and to the VLAN, use the **show ipv6 first hop security active policies** command in privileged EXEC mode.

Syntax

```
show ipv6 first hop security active policies interface interface-id vlan vlan-id
```

Parameters

- **interface interface-id**—Port Identifier (Ethernet port or port channel).
- **vlan vlan-id**—VLAN Identifier.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays policies applied to frames arriving on given port and belonging to the given VLAN. The policies are calculated automatically by using the policies attached to the port, VLAN, and the global configuration.

Example

The following example displays the active attached policies on gi1/0/1 and VLAN 100:

```
switchxxxxxx# show ipv6 first hop security active policies interface gi1/0/1 vlan 100
IPv6 First Hop Security is enabled on VLANs: 1-4, 6, 7, 100-120
IPv6 DHCP Guard is enabled on VLANs: 1-4
IPv6 ND Inspection is enabled on VLANs: 1-4, 6, 7, 100-120
IPv6 Neighbor Binding Integrity is enabled on VLANs: 1-4, 6, 7, 100-120
IPv6 RA Guard is enabled on VLANs: 1-4, 6, 7, 100-120
IPv6 Source Guard is enabled on VLANs: 1-3, 7, 100-112
gi1/0/1, VLAN 100
IPv6 First Hop Security Policy:
  logging packet drop: enabled (from global configuration)
  DHCPv6 Guard Policy:
    device-role: server (from policy1 attached to the port)
    reply prefix list name: list10 (from policy2 attached to the VLAN)
    server address prefix list name: list22 (from policy2 attached to the VLAN)
    preference
      minimum: 1 (from policy2 attached to the VLAN)
      maximum: 200 (from policy2 attached to the VLAN)
  ND Inspection Policy:
    device-role: host (default)
    drop-unsecure: enabled (from policy2 attached to the VLAN)
    sec-level minimum: 3 (from policy1 attached to the port)
    validate source-mac: enabled (from global configuration)
  Neighbor Binding Policy: policy1
    device-role: perimeter (default)
    logging binding: enabled (from policy1 attached to the port)
    address-prefix-validation: enabled (from policy2 attached to the VLAN)
    address-config: any (default)
    maximum entries
```
VLAN: unlimited (from global configuration)
Port: 1 (from policy1 attached to the port)
MAC: 2 (from policy2 attached to the VLAN)
RA Guard Policy:
device-role: router (from policy1 attached to the port)
hop-limit:
 minimum: 10 (from policy2 attached to the VLAN)
 maximum: 20 (from global configuration)
manage-config-flag: on (from policy2 attached to the VLAN)
ra address verification:: disabled (default)
ra prefixes prefix list name: list1 (from policy2 attached to the VLAN)
other-flag: disabled (default)
router-preference:
 minimum: medium (from policy2 attached to the VLAN)
 maximum: medium (from policy2 attached to the VLAN)
IPv6 Source Guard Policy:
trusted port: enabled (from policy1 attached to the port)
show ipv6 first hop security attached policies

To display information about the policies attached to the port and to the VLAN, use the `show ipv6 first hop security attached policies` command in privileged EXEC mode.

Syntax

```
show ipv6 first hop security attached policies interface interface-id vlan vlan-id
```

Parameters

- `interface interface-id`—Port Identifier (Ethernet port or port channel).
- `vlan vlan-id`—VLAN Identifier.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays policies of all IPv6 First Hop Security attached to a VLAN specified by the `vlan-id` argument and displays all policies attached to a port and to VLAN specified by the `interface-id` and `vlan-id` arguments.

Examples

The following example displays the attached policy on gi1/0/1 and VLAN 100:

```
switchxxxxxx# show ipv6 first hop security attached policies interface gi1/0/1 vlan 100
Attached to VLAN 100
  RA Guard Policy: policy1
  Neighbor Bind Policy: policy2
Attached to port gi1/0/1 and VLAN 100
  IPv6 First Hop Security Policy: FHSpolicy
  ND Inspection Policy: policy1
  RA Guard Policy: policy3
  Neighbor Bind Policy: policy3
  IPv6 Source Guard Policy: policy4
```
show ipv6 first hop security counters

To display information about the packets counted by the port counter, use the `show ipv6 first hop security counters` command in privileged EXEC mode.

Syntax

`show ipv6 first hop security counters interface interface-id`

Parameters

- `interface interface-id`—Displays counters for specified Ethernet port or port channel.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays packets handled by the switch that are being counted in port counters. The switch counts packets captured per port and records whether the packet was received, bridged, or dropped. If a packet is dropped, the reason for the drop and the feature that caused the drop are both also provided.

Examples

The following examples displays information about packets counted on port gi1/0/1:

```bash
switchxxxxxx# show ipv6 first hop security counters interface gi1/0/1
Received messages on gi1/0/1:
  Protocol  Protocol message
  NDP      RA[63]  RS[0]  NA[13]  NS[0]  REDIR[0]
Dropped messages on gi1/0/1:
  Protocol  Protocol message
  NDP      RA[2]  RS[0]  NA[0]  NS[0]  REDIR[0]
Dropped reasons on gi1/0/1:
  Feature  Number  Reason
  DHCP Guard  2  Server message on client port
  DHCP Guard  1  Unauthorized assigned address
  DHCP Guard  1  Unauthorized server source address
  DHCP Guard  0  Unauthorized server preference
  RA guard   1  Router message on host port
  RA guard   1  Unauthorized source address
  RA guard   0  Unauthorized advertise prefix
  RA guard   0  Unauthorized router preference
  RA guard   0  Unauthorized other config flag
  RA guard   0  Unauthorized managed config flag
  RA guard   0  Unauthorized cur hop limit
  ND Inspection  0  Invalid source MAC
  ND Inspection  0  Unsecure message
  ND Inspection  0  Unauthorized sec level
  Source guard  0  NoBinding
  NB Integrity  0  Illegal ICMPv6 message
  NB Integrity  0  Illegal DHCPv6 message
```
show ipv6 first hop security error counters

To display global error counters, use the `show ipv6 first hop security error counters` command in privileged EXEC mode.

Syntax

`show ipv6 first hop security error counters`

Command Mode

Privileged EXEC mode

User Guidelines

This command displays global error counters.

Example 1—The following examples displays global error counters:

```
switchxxxxxx# show ipv6 first hop security error counters
Neighbor Binding Table Overflow counter: 0
Neighbor Prefix Table Overflow counter: 0
TCAM Overflow counter: 0
```
show ipv6 first hop security policy

To display IPv6 First Hop Security policies on all ports configured with the IPv6 First Hop Security feature, use the `show ipv6 first hop security policy` command in privileged EXEC mode.

Syntax

`show ipv6 first hop security policy [policy-name | active]`

Parameters

- `policy-name`—Displays the IPv6 First Hop policy with the given name.
- `active`—Displays the attached IPv6 First Hop Security policies.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays the options configured for the policy on all ports configured with the IPv6 First Hop feature.

Example 1—The following example displays the Policy Configuration for a policy named policy1:

```
switchxxxxxx# show ipv6 first hop security policy policy1
IPv6D First Hop Security Policy: policy1
  logging packet drop: enabled
  Attached to VLANs: 1-100,111-4094
  Attached to ports:
<table>
<thead>
<tr>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1-2</td>
<td>1-58,68-4094</td>
</tr>
<tr>
<td>gi1/0/3-4</td>
<td>1-4094</td>
</tr>
<tr>
<td>Po1-4</td>
<td>1-4094</td>
</tr>
</tbody>
</table>
```

Example 2—The following example displays the attached policies:

```
switchxxxxxx# show ipv6 first hop security policy active
Attached to VLAN:
  Policy Name  VLANs
  policy2      200-300
  vlan-default 1-199,301-4094
  Attached to ports:
<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy1</td>
<td>gi1/0/1-2</td>
<td>1-100</td>
</tr>
<tr>
<td>port-default</td>
<td>gi1/0/1-2</td>
<td>101-4094</td>
</tr>
<tr>
<td></td>
<td>gi1/0/3-4</td>
<td>1-1094</td>
</tr>
</tbody>
</table>
```
Example 3—The following example displays the user defined policies:

```
switchxxxxxx# show ipv6 first hop security policy
policy1
policy2
```
show ipv6 nd inspection

To display ND Inspection global configuration, use the **show ipv6 nd inspection** command in Privilege EXEC configuration mode.

Syntax

show ipv6 nd inspection

Command Mode

Privileged EXEC mode

User Guidelines

This command displays ND Inspection global configuration.

Example

The following example gives an example of the **show ipv6 nd snooping** command output:

```
switchxxxxxx# show ipv6 nd snooping
IPV6 ND Inspection is enabled on VLANs:1-4,6,7,100-120
unsecure drop: enabled
sec-level minimum value: 2
source mac validation: disabled
```
show ipv6 nd inspection policy

To display an IPv6 ND Inspection policy on all ports configured with the ND Inspection feature, use the `show ipv6 nd inspection policy` command in privileged EXEC mode.

Syntax

```
show ipv6 nd inspection policy [policy-name | active]
```

Parameters

- **policy-name**—Displays the ND Inspection policy with the given name.
- **active**—Displays the attached ND Inspection policies.

Command Mode

Privileged EXEC mode

Examples

Example 1—The following example displays the policy configuration for a policy named policy1:

```
switchxxxxxx# show ipv6 nd inspection policy policy1
ND Inspection Policy: policy1
   device-role: router
drop-unsecure: enabled
   Attached to VLANs: 1-100,111-4094
   Attached to ports:
<table>
<thead>
<tr>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1-2</td>
<td>1-58</td>
</tr>
<tr>
<td>gi1/0/3-4</td>
<td>68-4094</td>
</tr>
<tr>
<td>Po1</td>
<td>1-4094</td>
</tr>
</tbody>
</table>
```

Example 2—The following example displays the attached policies:

```
switchxxxxxx# show ipv6 nd inspection policy active
Attached to VLANs:
   Policy Name  VLANs
   vlan-default 1-4094
   Attached to ports:
<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy1</td>
<td>gi1/0/1-2</td>
<td>1-100</td>
</tr>
<tr>
<td></td>
<td>gi1/0/3-4</td>
<td>101-4094</td>
</tr>
<tr>
<td>port-default</td>
<td>gi1/0/1-2</td>
<td>1-1094</td>
</tr>
<tr>
<td></td>
<td>gi1/0/3-4</td>
<td></td>
</tr>
</tbody>
</table>
```

Example 3—The following example displays the user defined policies:
switchxxxx#
show ipv6 nd inspection policy
policy1
policy2
show ipv6 nd raguard

To display RA Guard global configuration, use the `show ipv6 nd raguard` command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 nd raguard
```

Command Mode

Privileged EXEC mode

Example

The following example gives an example of the `show ipv6 nd raguard` command output:

```
switchxxxxxx# show ipv6 nd raguard
IPv6 RA Guard is enabled on VLANs:1-4,6,7,100-120
"Managed address configuration" flag (M-flag): off
"Other configuration" flag (O-flag): disabled
Hop Limit:
  minimum: 10
  maximum: 100
Default Router Preference:
  minimum: 1
  maximum: 1
```
show ipv6 nd raguard policy

To display a router advertisements (RAs) guard policy on all ports configured with the RA guard feature, use the `show ipv6 nd raguard policy` command in privileged EXEC mode.

Syntax

```
show ipv6 nd raguard policy [policy-name | active]
```

Parameters

- **policy-name**—Displays the RA guard policy with the given name.
- **active**—Displays the attached user defined RA guard policies.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays the options configured for the policy on all ports configured with the RA guard feature.

Example 1

The following example displays the policy configuration for a policy named policy1:

```
switchxxxxxx# show ipv6 nd raguard policy policy1
RA Guard Policy: policy1
  device-role: router
  router address prefix list name: list1
  prefixes prefix list name: list2
  Attached to VLANs: 1-100,111-4094
  Attached to ports:

<table>
<thead>
<tr>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1-2</td>
<td>1-58,68-4094</td>
</tr>
<tr>
<td>gi1/0/3-4</td>
<td>1-4094</td>
</tr>
<tr>
<td>Po1-4</td>
<td>1-4094</td>
</tr>
</tbody>
</table>
```

Example 2

The following example displays the attached policies:

```
switchxxxxxx# show ipv6 nd raguard policy active
Attached to VLANs:
  Policy Name  VLANs
  vlan-default  1-4094
Attached to ports:

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-default</td>
<td>gi1/0/1-4</td>
<td>1-4094</td>
</tr>
</tbody>
</table>
```

Example 3

The following example displays the user defined policies:
switchxxxxx# show ipv6 nd raguard policy
policy1
policy2
show ipv6 neighbor binding

To display Neighbor Binding global configuration, use the `show ipv6 neighbor binding` command in Privilege EXEC configuration mode.

Syntax

show ipv6 neighbor binding

Command Mode

Privileged EXEC mode

User Guidelines

This displays Neighbor Binding global configuration.

Example

The following example gives an example of the `show ipv6 neighbor binding` command output:

```
switchxxxxxx# show ipv6 neighbor binding
Neighbor Binding Integrity is enabled on VLANs:1-4,6-7,100-120
Binding logging: disabled
Binding lifetime: 56 minutes
Address Configuration method: dhcp
Binding address prefix validation: disabled
Maximum entries
  VLAN: unlimited
  Port: 1
  MAC: 1
```
show ipv6 neighbor binding policy

To display Neighbor Binding policies, use the `show ipv6 neighbor binding policy` command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 neighbor binding policy [policy-name | active]
```

Parameters

- **policy-name**—Neighbor Binding policy name.
- **active**—Displays the attached Neighbor Binding policies.

Command Mode

Privileged EXEC mode

User Guidelines

This command either displays all policies or a specific one.

Examples

Example 1—The following example displays the policy configuration for a policy named policy1:

```
switchxxxxxx# show ipv6 neighbor binding policy policy1
Neighbor Binding Policy: policy1
  address configuration method: dhcp
  binding address prefix validation: disabled
  device-role: perimeter
  binding logging: disabled
  max-entries
  VLAN: unlimited
  Port: 10
  MAC: 2
  Attached to VLANs: 1-100,111-4094
  Attached to ports:
<table>
<thead>
<tr>
<th>Ports</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1-2</td>
<td>1-58,68-4094</td>
</tr>
<tr>
<td>gi1/0/3-4</td>
<td>1-4094</td>
</tr>
<tr>
<td>Po1-4</td>
<td>1-4094</td>
</tr>
</tbody>
</table>
```

Example 2—The following example displays the attached policies:

```
switchxxxxxx# show ipv6 neighbor binding policy active
Attached to VLAN:
  Policy Name  |  VLANs       |
  |-------------|-------------|
  policy2      | 200-300     |
  vlan-default | 1-199,301-4094 |
Attached to ports:
```

IPv6 First Hop Security
Example 3—The following example displays the user defined policies:

```
switchxxxxxx# show ipv6 neighbor binding policy
policy1
policy2
```
show ipv6 neighbor binding prefix table

To display contents of the Neighbor Prefix table, use the `show ipv6 neighbor binding prefix table` command in Privilege EXEC configuration mode.

Syntax

`show ipv6 neighbor binding prefix table [vlan vlan-id]`

Parameters

- `vlan vlan-id`—Displays the prefixes that match the specified VLAN.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays the Neighbor Prefix table. The display output can be limited to the specified VLAN. If no VLAN is configured, all prefixes are displayed.

Example

The following example displays the learned prefixes:

```
switchxxxxxxx# show ipv6 neighbor binding prefix table
Flags: A - the prefix can be used for autoconfig (stateless configuration)
Neighbor Prefix Table has 4 entries
VLAN  Prefix       Type   Flags Remaining Lifetime
    7  2004:1::/64  static   A          1230
    7  2006:1::/64  dynamic         1230
    7  2008:1::/64  static                  
1027 2002:1::/64  dynamic   A          230
```
show ipv6 neighbor binding table

To display contents of the Binding table, use the show ipv6 neighbor binding table command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 neighbor binding table [vlan vlan-id] [interface interface-id] [ipv6 ipv6-address] [mac mac-address]
```

Parameters

- **vlan vlan-id**—Displays the Binding table entries that match the specified VLAN.
- **interface interface-id**—Displays the Binding table entries that match the specified port (Ethernet port or port channel).
- **ipv6 ipv6-address**—Displays the Binding table entries that match the specified IPv6 address.
- **mac mac-address**—Displays the Binding table entries that match the specified MAC address.

Command Mode

Privileged EXEC mode

User Guidelines

This displays the contents of the Binding table. The display output can be specified by the specified VLAN, port, IPv6 address, or MAC address. If no keywords or arguments are entered, all Binding table contents are displayed.

Any keyword and argument combinations are allowed.

Example

The following example displays the contents of the Binding table:

```
switchxxxxxx# show ipv6 neighbor binding table
Binding Table has 4 entries

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IPv6 address</th>
<th>Inter</th>
<th>MAC address</th>
<th>Origin</th>
<th>State</th>
<th>Expir Time</th>
<th>TCAM Ovrfl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NDP NDP</td>
<td>VALID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2001:300::1</td>
<td>gi1/0/1</td>
<td>AABCCDFF0</td>
<td>NDP NDP</td>
<td>VALID</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2001:600::1</td>
<td>gi1/0/1</td>
<td>AABCCDFF0</td>
<td>NDP NDP</td>
<td>VALID</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2001:100::2</td>
<td>gi1/0/2</td>
<td>AABCCDFF0</td>
<td>NDP NDP</td>
<td>VALID</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>2001:200::3</td>
<td>gi1/0/2</td>
<td>AABCCDFF0</td>
<td>NDP NDP</td>
<td>VALID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Field Descriptions:

- **VLAN**—VLAN the host belongs to.
• **IPv6 address**—IPv6 address of the host.

• **Inter**—port the host is connected on.

• **MAC address**—MAC address of the host.

• **Origin**—Protocol that has added the IPv6 address:
 - **Static**—The static IPv6 address manually defined by the `ipv6 neighbor binding static` command.
 - **NDP**—The IPv6 address learnt from the NDP protocol messages.
 - **DHCP**—The IPv6 address learnt from the DHCPv6 protocol messages.

• **State**—Entry’s state:
 - **TENT**—The new host IPv6 address is under validation. Since its lifetime is less than 1sec its expiration time is not displayed.
 - **VALID**—The host IPv6 address was bound.

• **Expir. Time**—Left time in seconds until the entry will be removed, if it is not confirmed.

• **TCAM Ovrlt**—Entries marked by ‘*’ have not been added to TCAM because TCAM overflow.
show ipv6 source guard

To display IPv6 Source Guard global configuration, use the `show ipv6 source guard` command in Privilege EXEC configuration mode.

Syntax

`show ipv6 source guard`

Parameters

N/A

Command Mode

Privileged EXEC mode

User Guidelines

This displays IPv6 Source Guard global configuration.

Example

The following example gives an example of the `show ipv6 source guard` command output:

```
switchxxxxxx# show ipv6 source guard
IPv6 Source Guard is enabled on VLANs:1-4,6,7,100-120
```
show ipv6 source guard policy

To display IPv6 Source Guard policies, use the `show ipv6 source guard policy` command in Privilege EXEC configuration mode.

Syntax

```
show ipv6 source guard policy [policy-name | active]
```

Parameters

- `policy-name`—IPv6 Source Guard policy name.
- `active`—Displays the attached IPv6 Source Guard policies.

Command Mode

Privileged EXEC mode

User Guidelines

This command displays all configured IPv6 Source Guard policies, the given one or all attached IPv6 Source Guard policies.

Example 1—The following example displays the policy configuration for a policy named policy1:

```
switchxxxxxx# show ipv6 source guard policy policy1
Neighbor Binding Policy: policy1
  trusted port: disabled
  Attached to ports:
    Ports
    gi1/0/1-2
    gi1/0/4
    Po1-4
```

Example 2—The following example displays the attached policies:

```
switchxxxxxx# show ipv6 source guard policy active
Attached to VLAN:
Attached to ports:

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy1</td>
<td>gi1/0/1-2</td>
</tr>
<tr>
<td>port-default</td>
<td>gi1/0/1-2</td>
</tr>
<tr>
<td></td>
<td>gi1/0/3</td>
</tr>
</tbody>
</table>
```

Example 3—The following example displays the user defined policies:

```
switchxxxxxx# show ipv6 source guard policy
policy1
policy2
```
trusted-port (IPv6 Source Guard)

To configure a port as trusted port within an IPv6 Source Guard policy, use the trusted-port command in IPv6 Source Guard Policy Configuration mode. To return to the default, use the no form of this command.

Syntax
trusted-port
no trusted-port

Default Configuration
not trusted.

Command Mode
IPv6 Source Guard Policy Configuration mode

User Guidelines
IPv6 data messages bridged from trusted ports are not validated by IPv6 Source Guard.

Example
The following example defines a policy that defines a port as trusted:

```
switchxxxxxx(config)# ipv6 ipv6 source guard policy policy1
switchxxxxxx(config-ipv6-srguard)# trusted-port
switchxxxxxx(config-ipv6-srcguard)# exit
```
validate source-mac

To enable checking the MAC addresses against the link-layer address within an IPv6 ND Inspection policy, use the `validate source-mac` command in ND Inspection Policy Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
validate source-mac [enable | disable]
no validate source-mac
```

Parameters

- **enable**—Enables validation of the MAC address against the link-layer address. If no keyword is configured, this keyword is applied by default.
- **disable**—Disables validation of MAC address against the link-layer address.

Default Configuration

Policy attached to port or port channel: the value configured in the policy attached to the VLAN.
Policy attached to VLAN: global configuration.

Command Mode

ND inspection Policy Configuration mode

User Guidelines

If this command is part of a policy attached to a VLAN, it is applied to all the ports in the VLAN. If it is defined in a policy attached to a port in the VLAN, this value overrides the value in the policy attached to the VLAN.

Example

The following example enables the router to drop an NDP message whose link-layer address does not match the MAC address:

```
switchxxxxxx(config)# ipv6 nd inspection policy policy1
switchxxxxxx(config-nd-inspection)# validate source-mac
switchxxxxxx(config-nd-inspection)# exit
```
IPv6 IPM Router Commands

This chapter contains the following sections:

- ipv6 multicast-routing, on page 772
- ipv6 multicast-routing, on page 773
- show ipv6 mroute, on page 774
- show ipv6 multicast, on page 776
ipv6 multicast-routing

To enable IPv6 Multicast routing on all IPv6-enabled interfaces of the router and to enable Multicast forwarding, use the `ipv6 multicast-routing` command in global configuration mode. To stop Multicast routing and forwarding, use the `no` form of this command.

Syntax

```
ipv6 multicast-routing mld-proxy
no ipv6 multicast-routing
```

Parameters

- `mld-proxy`—Enable Multicast routing using MLD Proxy.

Default Configuration

Multicast routing is not enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `ipv6 multicast-routing` command with parameter to specify the needed IPv6 Multicast Routing Protocol.

To forward IPv6 Multicast packets on an interface, IPv6 Multicast forwarding must be enabled globally and an IPMv6 Routing protocol must be enabled on the interface.

Example

The following example enables IPv6 Multicast routing using MLD Proxy:

```
switchxxxxxx(config)# ipv6 multicast-routing mld-proxy
```
ipv6 multicast-routing

To enable IPv6 Multicast routing on all IPv6-enabled interfaces of the router and to enable Multicast forwarding, use the `ipv6 multicast-routing` command in global configuration mode. To stop Multicast routing and forwarding, use the `no` form of this command.

Syntax

```
ipv6 multicast-routing mld-proxy
no ipv6 multicast-routing
```

Parameters

- `mld-proxy`—Enable Multicast routing using MLD Proxy.

Default Configuration

Multicast routing is not enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the `ipv6 multicast-routing` command with parameter to specify the needed IPv6 Multicast Routing Protocol.

To forward IPv6 Multicast packets on an interface, IPv6 Multicast forwarding must be enabled globally and an IPMv6 Routing protocol must be enabled on the interface.

Example

The following example enables IPv6 Multicast routing using MLD Proxy:

```
switchxxxxxxx(config)# ipv6 multicast-routing mld-proxy
```
show ipv6 mroute

To display the contents of the Multicast routing (mroute) table, use the **show ipv6 mroute** command in user EXEC or privileged EXEC mode.

Syntax

```
show ipv6 mroute [group-address [source-address]] [summary]
```

Parameters

- **group-address**—Destination Multicast IPv6 address.
- **source-address**—Source IPv6 address.
- **summary**—Filters the output to display a one-line, abbreviated summary of each entry in the mroute table.

Command Mode

User EXEC mode

Privileged EXEC mode

User Guidelines

Use the **show ip mroute** command to display information about Mroute entries in the mroute table. The switch populates the Multicast routing table by creating (S, G) entries from (*, G) entries. The asterisk (*) refers to all source addresses, the “S” refers to a single source address, and the “G” is the destination Multicast group address. In creating (S, G) entries, the switch uses the best path to that destination group found in the Unicast routing table (that is, through Reverse Path Forwarding [RPF]).

Examples

Description of Significant fields in the examples below

Timers: Uptime/Expires—“Uptime” indicates per interface how long (in hours, minutes, and seconds) the entry has been in the IPv6 Multicast routing table. “Expires” indicates per interface how long (in hours, minutes, and seconds) until the entry will be removed from the IPv6 Multicast routing table.

(*, FF07::1) and (FF07::1/128, FF07::1)—Entry in the IPv6 Multicast routing table. The entry consists of the IP address of the source router followed by the IP address of the Multicast group. An asterisk (*) in place of the source router indicates all sources.

Entries in the first format are referred to as (*, G) or “star comma G” entries. Entries in the second format are referred to as (S, G) or “S comma G” entries. (*, G) entries are used to build (S, G) entries.

Incoming interface: —Expected interface for a Multicast packet from the source. If the packet is not received on this interface, it is discarded.

Outgoing Interface List (OIF):—Interfaces through which packets will be forwarded.

Example 1. The following is sample output from the **show ipv6 mroute** command with the summary keyword:
switchxxxxxx# show ip mroute summary
Timers: Uptime/Expires
IPv6 Multicast Routing Table
(2001:0DB8:999::99, FF07::5), 00:04:55/00:02:36, OIF count:1
(2001:0DB8:999::99, FF07::1), 00:02:46/00:00:12, OIF count:1

Example 2. The following is sample output from the show ipv6 mroute command:

switchxxxxxx# show ip mroute
Timers: Uptime/Expires
IPv6 Multicast Routing Table
(*, FF07::1), 00:04:45/00:02:47, RP 2001:0DB8:6::6
 Incoming interface: vlan5
 Outgoing interface list:
 vlan40, 00:04:45/00:02:47
(2001:0DB8:999::99, FF07::1), 00:02:06/00:01:23
 Incoming interface: vlan5
 Outgoing interface list:
 vlan40, 00:02:06/00:03:27
show ipv6 multicast

To display general information about IPv6 Multicast configuration, use the `show ipv6 multicast` command in user EXEC or privileged EXEC mode.

Syntax

```
show ipv6 multicast [interface [interface-id]]
```

Parameters

- `interface`—Displays IPv6 Multicast-related information about interfaces configured for IPv6 Multicast.
- `interface-id`—Interface identifier for which to display IPv6 Multicast information.

Command Mode

User EXEC mode
Privileged EXEC mode

User Guidelines

Use the `show ipv6 multicast` command without the `interface` keyword to display general information about the state of IPv6 Multicast on the router.

Use the `show ipv6 multicast` command with the `interface` keyword to display the IPv6 Multicast information about the specified interface.

Example 1. The following is sample output from the `show ipv6 multicast` command without the `interface` keyword when no IPv6 Multicast Routing protocol is enabled:

```
switchxxxxxx# show ipv6 multicast
IPv6 Unicast Forwarding: enabled
IPv6 Multicast Protocol: No
```

Example 2. The following is sample output from the `show ipv6 multicast` command without the `interface` keyword when MLD Proxy is enabled:

```
switchxxxxxx# show ipv6 multicast
IPv6 Unicast Forwarding: enabled
IPv6 Multicast Protocol: MLD Proxy
```

Example 3. The following is sample output from the `show ipv6 multicast` command about the given interface. MLD Proxy is enabled on the interface and the interface is an MLD Proxy Upstream interface:

```
switchxxxxxx# show ipv6 multicast interface vlan 200
IPv6 Unicast Forwarding: enabled
IPv6 Multicast Protocol: MLD Proxy
vlan 200
IPv6 Status: enabled
hop-threshold: 0
MLD Protocol: MLDv2
MLD Proxy: Upstream
```
Example 4. The following is sample output from the `show ipv6 multicast` command about the given interface. MLD Proxy is enabled on the interface and the interface is an MLD Proxy Downlink interface:

```
switchxxxxxx# show ipv6 multicast interface vlan 100
IPv6 Unicast Forwarding: enabled
IPv6 Multicast Protocol: PIM
vlan 200
   IPv6 Status: enabled
   hop-threshold: 0
   MLD Protocol: MLDv2
   MLD Proxy: DownStream (Upstream: vlan 200)
```

Example 5. The following is sample output from the `show ipv6 multicast` command about the given interface. MLD Proxy is disabled on the interface:

```
switchxxxxxx# show ipv6 multicast interface vlan 100
IPv6 Unicast Forwarding: enabled
IPv6 Multicast Protocol: MLD Proxy
vlan 200
   IPv6 Status: enabled
   hop-threshold: 100
   MLD Protocol: MLDv2
   MLD Proxy: disabled
```
show ipv6 multicast
IPv6 Prefix List

This chapter contains the following sections:

- clear ipv6 prefix-list, on page 780
- ipv6 prefix-list, on page 781
- show ipv6 prefix-list, on page 785
clear ipv6 prefix-list

Use the \texttt{clear ipv6 prefix-list} command in privileged EXEC mode to reset the hit count of the IPv6 prefix list entries.

\textbf{Syntax}

\texttt{clear ipv6 prefix-list [prefix-list-name [ipv6-prefix/prefix-length]]}

\textbf{Parameters}

- \texttt{prefix-list-name} — The name of the prefix list from which the hit count is to be cleared.
- \texttt{ipv6-prefix} — The IPv6 network from which the hit count is to be cleared. This argument must be in the form documented in RFC 4293 where the address is specified in hexadecimal using 16-bit values between colons.
- \texttt{prefix-length} — The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

\textbf{Default Configuration}

The hit count is automatically cleared for all IPv6 prefix lists.

\textbf{Command Mode}

Privileged EXEC mode

\textbf{User Guidelines}

The hit count is a value indicating the number of matches to a specific prefix list entry.

\textbf{Example}

The following example clears the hit count from the prefix list entries for the prefix list named first_list that match the network mask 2001:0DB8::/35:

\begin{verbatim}
switchxxxxxx# clear ipv6 prefix-list first_list 2001:0DB8::/35
\end{verbatim}
ipv6 prefix-list

Use the `ipv6 prefix-list` command in Global Configuration mode to create an entry in an IPv6 prefix list. To delete the entry, use the `no` form of this command.

Syntax

```
ipv6 prefix-list list-name [seq number] {deny|permit} ipv6-prefix/prefix-length [ge ge-length] [le le-length] | description text

no ipv6 prefix-list list-name [seq number]
```

Parameters

- `list-name`—Name of the prefix list. The name may contain up to 32 characters.
- `seq seq-number`—Sequence number of the prefix list entry being configured. This is an integer value from 1 to 4294967294.
- `deny`—Denies networks that matches the condition.
- `permit`—Permits networks that matches the condition.
- `ipv6-prefix`—IPv6 network assigned to the specified prefix list. This argument must be in the form documented in RFC 4293 where the address is specified in hexadecimal—using 16-bit values between colons.
- `prefix-length`—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value from 0 to 128. The zero `prefix-length` may be used only with the zero `ipv6-prefix` (::).
- `description text`—Text that can be up to 80 characters in length.
- `ge ge-value`—Specifies a prefix length greater than or equal to the `prefix-length` argument. It is the lowest value of a range of the length (the “from” portion of the length range).
- `le le-value`—Specifies a prefix length less than or equal to the `prefix-length` argument. It is the highest value of a range of the length (the “to” portion of the length range).

Default Configuration

No prefix list is created.

Command Mode

Global Configuration mode

User Guidelines

This command without the `seq` keyword adds the new entry after the last entry of the prefix list with the sequence number equals to the last number plus 5. For example, if the last configured sequence number is 43, the new entry will have the sequence number of 48. If the list is empty, the first prefix-list entry is assigned the number 5 and subsequent prefix list entries increment by 5.
This command with the seq keyword puts the new entry into the place specified by the parameter, if an entry with the number exists it is replaced by the new one.

This command without the seq keyword removes the prefix list.

The no version of this command with the seq keyword removes the specified entry.

The sequence number of a prefix list entry determines the order of the entries in the list. The router compares network addresses to the prefix list entries. The router begins the comparison at the top of the prefix list, with the entry having the lowest sequence number.

If multiple entries of a prefix list match a prefix, the entry with the lowest sequence number is considered the real match. Once a match or deny occurs, the router does not go through the rest of the prefix list. For efficiency, you might want to put the most common permits or denies near the top of the list, using the seq-number argument.

IPv6 prefix lists are used to specify certain prefixes or a range of prefixes that must be matched before a permit or deny statement can be applied. Two operand keywords can be used to designate a range of prefix lengths to be matched. A prefix length of less than, or equal to, a value is configured with the le keyword. A prefix length greater than, or equal to, a value is specified using the ge keyword. The ge and le keywords can be used to specify the range of the prefix length to be matched in more detail than the usual ipv6-prefix/prefix-length argument.

For a candidate prefix to match against a prefix list entry the following conditions must exist:

• The candidate prefix must match the specified prefix list and prefix length entry

• The value of the optional le keyword specifies the range of allowed prefix lengths from 0 up to the value of the le-length argument, and including, this value.

 The value of the optional ge keyword specifies the range of allowed prefix lengths from the value of the ge-length argument up to, and including, 128.

Note that the first condition must match before the other conditions take effect.

An exact match is assumed when the ge or le keywords are not specified. If only one keyword operand is specified then the condition for that keyword is applied, and the other condition is not applied. The prefix-length value must be less than the ge value. The ge value must be less than, or equal to, the le value. The le value must be less than or equal to 128.

Every IPv6 prefix list, including prefix lists that do not have permit and deny condition statements, has an implicit deny any any statement as its last match condition.

Formal Specification

Checked prefix is cP and checked prefix length is cL.

Function PrefixIsEqual(P1, P2, L) compares the first L bits of two addresses P1 and P2 and returns TRUE if they are equal.

Case 1. A prefix-list entry is:

• P - prefix address
• L - prefix length
• ge - is not defined
• le - is not defined
The prefix cP/cL matches the prefix-list entry if \(\text{PrefixIsEqual}(cP, P, L) \) \&\& \(cL = L \).

Case 2. An prefix-list entry is:
- \(P \) - prefix address
- \(L \) - prefix length
- \(\ge \) - is defined
- \(\le \) - is not defined

The prefix cP/cL matches the prefix-list entry if \(\text{PrefixIsEqual}(cP, P, L) \) \&\& \(cL \geq \ge \).

Case 3. An prefix-list entry is:
- \(P \) - prefix address
- \(L \) - prefix length
- \(\ge \) - is not defined
- \(\le \) - is defined

The prefix cP/cL matches the prefix-list entry if \(\text{PrefixIsEqual}(cP, P, L) \) \&\& \(cL \leq \le \).

Case 4. An prefix-list entry is:
- \(P \) - prefix address
- \(L \) - prefix length
- \(\ge \) - is defined
- \(\le \) - is defined

The prefix cP/cL matches the prefix-list entry if \(\text{PrefixIsEqual}(cP, P, L) \) \&\& \(\ge \leq \).

Example 1. The following example denies all routes with a prefix of ::/0:
```
switchxxxxxx(config)# ipv6 prefix-list abc deny ::/0
```

Example 2. The following example permits the prefix 2002::/16:
```
switchxxxxxx(config)# ipv6 prefix-list abc permit 2002::/16
```

Example 3. The following example shows how to specify a group of prefixes to accept any prefixes from prefix 5F00::/48 up to and including prefix 5F00::/64:
```
switchxxxxxx(config)# ipv6 prefix-list abc permit 5F00::/48 le 64
```

Example 4. The following example denies prefix lengths greater than 64 bits in routes that have the prefix 2001:0DB8::/64:
```
switchxxxxxx(config)# ipv6 prefix-list abc permit 2001:0DB8::/64 le 128
```

Example 5. The following example permits mask lengths from 32 to 64 bits in all address space:
```
switchxxxxxx(config)# ipv6 prefix-list abc permit ::/0 ge 32 le 64
```

Example 6. The following example denies mask lengths greater than 32 bits in all address space:
```
switchxxxxxx(config)# ipv6 prefix-list abc deny ::/0 ge 32
```

Example 7. The following example denies all routes with a prefix of 2002::/128:
Example 8. The following example permits all routes with a prefix of ::/0:

```bash
switchxxxxxx(config)# ipv6 prefix-list abc permit ::/0
```
show ipv6 prefix-list

Use the show ipv6 prefix-list command in user EXEC or privileged EXEC mode to display information about an IPv6 prefix list or IPv6 prefix list entries.

Syntax

show ipv6 prefix-list [detail [list-name] | summary [list-name]]
show ipv6 prefix-list list-name ipv6-prefix/prefix-length [longer | first-match]
show ipv6 prefix-list list-name seq seq-num

Parameters

- **detail | summary**—Displays detailed or summarized information about all IPv6 prefix lists.
- **list-name**—Name of a specific IPv6 prefix list.
- **ipv6-prefix**—All prefix list entries for the specified IPv6 network. This argument must be in the form documented in RFC 4293 where the address is specified in hexadecimal using 16-bit values between colons.
- **prefix-length**—Length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.
- **longer**—Displays all entries of an IPv6 prefix list that are more specific than the given ipv6-prefix/prefix-length values.
- **first-match**—Displays the entry of an IPv6 prefix list that matches the given ipv6-prefix/prefix-length values.
- **seq seq-num**—Sequence number of the IPv6 prefix list entry.

Command Mode

User EXEC mode
Privileged EXEC mode

User Guidelines

If the **detail** and **summary** keywords are omitted, the **detail** option is applied.

If the **longer** and **first-match** keywords are omitted, all entries of the specified prefix list that matches the given network/length are displayed.

Example 1. The following example shows the output of this command with the **detail** keyword:

```
switchxxxxxx# ipv6 prefix-list detail
ipv6 prefix-list 6to4:
   count: 1, range entries: 0
   seq 5 permit 2002::/16 (hit count: 313)
ipv6 prefix-list aggregate:
   count: 3, range entries: 2
```
Field Descriptions

- **count**—Number of entries in the list.
- **range entries**—Number of entries with matching range.
- **seq**—Entry number in the list.
- **permit, deny**—Granting status.
- **description**—Comment.
- **hit count**—Number of matches for the prefix entry.

Example 2. The following example shows the output of the `show ipv6 prefix-list` command with the `summary` keyword:

```
switchxxxxxx# show ipv6 prefix-list summary
ipv6 prefix-list 6to4:
  count: 1, range entries: 0
ipv6 prefix-list aggregate:
  count: 2, range entries: 2
```

Example 3. The following example shows the output of the `show ipv6 prefix-list` command with the `seq` keyword:

```
switchxxxxxx# show ipv6 prefix-list bgp-in seq 15
  seq 15 deny ::/1 (hit count: 0)
```
iSCI QoS Commands

This chapter contains the following sections:

- iscsi enable, on page 788
- iscsi flow, on page 789
- iscsi qos, on page 791
- show iscsi, on page 792
iscsi enable

To enable applying the quality of service profile to Internet Small Computer System Interface (iSCSI) flows, use the `iscsi enable` command in Global Configuration mode. To restore the default configuration, use the `no` form of the command.

Syntax

```plaintext
iscsi enable
no iscsi enable
```

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

Use the `iscsi enable` command to enable the iSCSI QoS.

If an ACL is bounded on an interface and a frame matches both to the iSCLI and the ACL rules then only the iSCSI rules are applied to this frame.

Example

The following example enables iSCSI QoS globally:

```
switchxxxxxx(config)# iscsi enable
```
iscsi flow

To define an iSCSI flow, use the `iscsi flow` command in Global Configuration mode. To remove the iSCSI flow, use the `no` form of the command.

Syntax

```
iscsi flow default | {tcp-port [ip-address]}
no iscsi flow [default | {tcp-port [ip-address]}]
```

Parameters

- `default`—Restores the default IPv4 flows.
- `tcp-port`—Specifies the TCP port number on which iSCSI targets listen to requests. (Range: 1–65535)
- `ip-address`—Specifies the IPv4 address on which iSCSI targets listen to requests.

Default Configuration

Two iSCSI IPv4 flows with well-known TCP ports 3260 and 860.

Command Mode

Global Configuration mode

User Guidelines

Each `iscsi flow` command defines an iSCSI flow including the following two sub-flows:

- From initiator to target sub-flow—The sub-flow is classified by the Destination TCP port defined by the `tcp-port` argument and by the configured Destination IP address, if the `ip-address` argument is configured.
- From target to initiator sub-flow—The sub-flow is classified by the Source TCP port defined by the `tcp-port` argument and by the configured Source IP address, if the `ip-address` argument is configured.

Up to 8 iSCSI flows are supported.

Use the `iscsi flow default` command, to restore the iSCSI default configuration.

For the same TCP port you can use either the `iscsi flow tcp-port` command or a few `iscsi flow tcp-port ip-address` commands with different IP addresses.

Use the `no iscsi flow tcp-port ip-address` command, to delete the iSCSI flows defined by the `iscsi target port tcp-port ip-address` command.

Use the `no iscsi flow tcp-port` command, to delete the iSCSI flows defined by the `iscsi flow tcp-port` command.

To delete a default iSCSI flow, use the `no iscsi flow tcp-port` command.

To delete all default iSCSI flows, use the `no iscsi flow default` command.

To delete all iSCSI flows (including the default ones), use the `no iscsi flow` command.
Example

The following example defines four pair of iSCSI flows:

```plaintext
switchxxxxxx(config)# no iscsi flow default
switchxxxxxx(config)# iscsi flow 1200
switchxxxxxx(config)# iscsi flow 1201 1.1.1.1
switchxxxxxx(config)# iscsi flow 1201 1.1.1.10
switchxxxxxx(config)# iscsi flow 1201 101.12.21.410
```
iscsi qos

To define the quality of service profile applying to iSCSI flows, use the `iscsi qos` command in Global Configuration mode. To restore the default configuration, use the `no` form of the command.

Syntax

```
iscsi qos {[vpt vpt] [dscp dscp] [queue queue]}
```

no iscsi qos

Parameters

- **vpt vpt**—Specifies a value of the VLAN Priority Tag (VPT) that iSCSI tagged frames are assigned (Range: 0–7).
- **dscp dscp**—Specifies the Differentiated Services Code Point (DSCP) that iSCSI frames are assigned. (Range: 0–63).
- **queue queue**—Specify the outgoing queue that iSCSI frames are sent (Range: 1–8).

Default Configuration

- VPT is not changed.
- DSCP is not changed.
- Queue—7

Command Mode

Global Configuration mode

User Guidelines

Use the `iscsi qos` command, to change the default quality of service profile applying to iSCSI flows.

Note. At least one parameter is mandatory

Example

The following example configures the default quality of service profile applying to iSCSI flows:

```
switchxxxxxxx(config)# iscsi qos vpt 6 queue 8
```
show iscsi

To display the iSCSI configuration, use the `show iscsi` command in User EXEC mode.

Syntax

```plaintext
show iscsi
```

Parameters

This command has no arguments or keywords

Default Configuration

This command has no default settings.

Command Mode

User EXEC mode

Example

This example shows how to display the iSCSI configuration:

```plaintext
switchxxxxxx> show iscsi
iSCSI is enabled
iSCSI vpt is not changed
iSCSI DSCP is 18
iSCSI Queue is 7 (default)
iSCSI Flows:
  TCP    Target IP
  Port   Address
  -------  ---------------
   860    0.0.0.0         default
   3260   0.0.0.0         default
   9876   0.0.0.0
   20002  192.111.220.110
   20002  192.1.3.230
   25555  0.0.0.0
```
IPv6 Tunnel Commands

This chapter contains the following sections:

- interface tunnel, on page 794
- tunnel destination, on page 795
- tunnel isatap solicitation-interval, on page 796
- tunnel isatap robustness, on page 797
- show ipv6 tunnel, on page 798
interface tunnel

To enter into the Interface Configuration (Tunnel) mode, use the `interface tunnel` command in Global Configuration mode.

Syntax

`interface tunnel number`

Parameters

- `number`—Specifies the tunnel number.

Command Mode

Global Configuration mode

Example

The following example enters the Interface Configuration (Tunnel) mode.

```
switchxxxxxx(config)# interface tunnel 1
switchxxxxxx(config-if)# tunnel source auto
switchxxxxxx(config-if)# exit
```
tunnel destination

To specify the destination IPv4 address for the manual tunnel interface, use the `tunnel destination` command in Interface (Tunnel) Configuration mode. To remove the destination IPv4 address, use the `no` form of this command.

Syntax

```
tunnel destination {host-name | ip-address}
```

no tunnel destination

Parameters

- `host-name`—DNS name of the remote host.
- `ip-address`—IPv4 address of the remote host.

Default Configuration

No tunnel interface destination is specified.

Command Mode

Interface (Tunnel) Configuration mode

User Guidelines

You cannot configure two tunnels to use the same encapsulation mode with exactly the same source and destination address.

Example

The following example shows how to configure the tunnel destination address for Manual IPv6 tunnel:

```plaintext
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip address 10.0.0.1 255.255.255.0
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# interface tunnel1
switchxxxxxx(config-if)# ipv6 address 3ffe:b00:c18:1::3/127
switchxxxxxx(config-if)# tunnel source vlan1
switchxxxxxx(config-if)# tunnel destination 192.168.30.1
switchxxxxxx(config-if)# tunnel mode ipv6ip
switchxxxxxx(config-if)# exit
```
tunnel isatap solicitation-interval

To set the time interval between unsolicited router solicitation messages, use the `tunnel isatap solicitation-interval` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

tunnel isatap solicitation-interval `seconds`
	no tunnel isatap solicitation-interval

Parameters

- `seconds`—Specifies the time interval in seconds between ISATAP router solicitation messages. (Range: 10–3600).

Default Configuration

The default time interval between ISATAP router solicitation messages is 10 seconds.

Command Mode

Global Configuration mode

User Guidelines

This command determines the interval between unsolicited router solicitation messages sent to discovery an ISATAP router.

Example

The following example sets the time interval between ISATAP router solicitation messages to 30 seconds.

```
switchxxxxxx(config)# tunnel isatap solicitation-interval 30
```
tunnel isatap robustness

To configure the number of router solicitation refresh messages that the device sends, use the `tunnel isatap robustness` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
tunnel isatap robustness number
no tunnel isatap robustness
```

Parameters

- `number`—Specifies the number router solicitation refresh messages that the device sends. (Range: 1–20).

Default Configuration

The default number of router solicitation refresh messages that the device sends is 3.

Command Mode

Global Configuration mode

User Guidelines

The router solicitation interval (when there is an active ISATAP router) is the minimum-router-lifetime that is received from the ISATAP router, divided by (Robustness + 1).

Example

The following example sets the number of router solicitation refresh messages that the device sends to 5.

```
switchxxxxxx(config)# tunnel isatap robustness 5
```
show ipv6 tunnel

To display information on IPv6 tunnels, use the `show ipv6 tunnel` command in User EXEC mode.

Syntax

`show ipv6 tunnel [all]`

Parameters

- `all`—(Optional) The switch displays all parameters of the tunnel. If the keyword is not configured only the tunnel parameters corresponding to its type are displayed.

Command Mode

User EXEC mode

Example 1. The following example displays information on the ISATAP tunnel, when the all keyword is not configured:

```
switchxxxxxx# show ipv6 tunnel
Tunnel 1
  Tunnel type : Manual
  Tunnel status : UP
  Tunnel Local address type : VLAN 100
  Tunnel Local Ipv4 address : 192.1.3.4
  Tunnel Remote Ipv4 address : 192.3.4.5
Tunnel 2
  Tunnel type : ISATAP
  Tunnel status : UP
  Tunnel Local address type : auto
  Tunnel Local Ipv4 address : 192.1.3.4
  Router DNS name : ISATAP
  Router IPv4 addresses
    1.1.1.1 Detected
    100.1.1.1 Detected
    14.1.100.1 Not Detected
  Router Solicitation interval : 10 seconds
  Robustness : 2
Tunnel 3
  Tunnel type : 6to4
  Tunnel status : UP
  Tunnel Local address type : auto
  Tunnel Local Ipv4 address : 192.1.3.4
```

Example 2. The following example displays information when the all keyword is configured:

```
switchxxxxxx# show ipv6 tunnel all
Tunnel 1
  Tunnel type : Manual
  Tunnel status : UP
  Tunnel Local address type : VLAN 100
  Tunnel Local Ipv4 address : 192.1.3.4
  Manual parameters
    Tunnel Remote Ipv4 address : 192.3.4.5
  ISATAP Parameters
    Router DNS name : ISATAP
```
Router Solicitation interval : 10 seconds
Robustness : 2

Tunnel 2
Tunnel type : Manual
Tunnel status : DOWN
Tunnel Local address type : auto
Manual parameters
 Tunnel Remote Ipv4 address : 0.0.0.0
ISATAP Parameters
 Tunnel Local Ipv4 address : 0.0.0.0
 Router DNS name : ISATAP
 Router Solicitation interval : 10 seconds
Robustness : 2

Tunnel 3
Tunnel type : ISATAP
Tunnel status : UP
Tunnel Local address type : auto
Manual parameters
 Tunnel Remote Ipv4 address : 0.0.0.0
ISATAP Parameters
 Tunnel Local Ipv4 address : 192.1.3.4
 Router DNS name : ISATAP
 Router IPv4 addresses
 1.1.1.1 Detected
 100.1.1.1 Detected
 14.1.100.1 Not Detected
 Router Solicitation interval : 10 seconds
Robustness : 2
show ipv6 tunnel
Line Commands

This chapter contains the following sections:

- autobaud, on page 802
- exec-timeout, on page 803
- line, on page 804
- speed, on page 805
- show line, on page 806
To configure the line for automatic baud rate detection (autobaud), use the `autobaud` command in Line Configuration mode.

Use the `no` form of this command to disable automatic baud rate detection.

Syntax

- `autobaud`
- `no autobaud`

Parameters

This command has no arguments or keywords.

Default Configuration

Automatic baud rate detection is enabled.

Command Mode

Line Configuration Mode

User Guidelines

When this command is enabled, it is activated as follows: connect the console to the device and press the `Enter` key twice. The device detects the baud rate automatically.

Note that if characters other than Enter are typed, wrong speed might be detected.

Example

The following example enables autobaud.

```
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# autobaud
```
exec-timeout

To set the session idle time interval, during which the system waits for user input before automatic logoff, use the `exec-timeout` Line Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
exec-timeout minutes [seconds]
no exec-timeout
```

Parameters

- **minutes**—Specifies the number of minutes. (Range: 0-65535)
- **seconds**—(Optional) Specifies the number of seconds. (Range: 0-59)

Default Configuration

The default idle time interval is 10 minutes.

Command Mode

Line Configuration Mode

Example

The following example sets the telnet session idle time interval before automatic logoff to 20 minutes and 10 seconds.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)# exec-timeout 20 10
```
To identify a specific line for configuration and enter the Line Configuration command mode, use the `line` command in Global Configuration mode command.

Syntax

```
line /console | telnet | ssh/
```

Parameters

- `console`—Enters the terminal line mode.
- `telnet`—Configures the device as a virtual terminal for remote access (Telnet).
- `ssh`—Configures the device as a virtual terminal for secured remote access (SSH).

Command Mode

Global Configuration mode

Example

The following example configures the device as a virtual terminal for remote (Telnet) access.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)#
```
speed

To set the line baud rate, use the **speed** command in Line Configuration mode.
To restore the default configuration, use the **no** form of this command.

Syntax

`speed bps`

`no speed`

Parameters

`bps`—Specifies the baud rate in bits per second (bps). Possible values are 9600, 19200, 38400, 57600, and 115200.

Default Configuration

The default speed is 115200 bps.

Command Mode

Line Configuration Mode

User Guidelines

The configured speed is only applied when **autobaud** is disabled. This configuration applies to the current session only.

Example

The following example configures the line baud rate as 9600 bits per second.

```
switchxxxxxx(config-line)# speed 9600
```
To display line parameters, use the `show line` Privileged EXEC mode command.

Syntax

```
show line [console | telnet | ssh]
```

Parameters

- `console`—(Optional) Displays the console configuration.
- `telnet`—(Optional) Displays the Telnet configuration.
- `ssh`—(Optional) Displays the SSH configuration.

Default Configuration

If the line is not specified, all line configuration parameters are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the line configuration.

```
switchxxxxxx# show line
Console configuration:
Interactive timeout: Disabled
History: 10
Baudrate: 9600
Databits: 8
Parity: none
Stopbits: 1
Telnet configuration:
Telnet is enabled.
Interactive timeout: 10 minutes 10 seconds
History: 10
SSH configuration:
SSH is enabled.
Interactive timeout: 10 minutes 10 seconds
History: 10
```
LACP Commands

This chapter contains the following sections:

- lACP port-priority, on page 808
- lACP system-priority, on page 809
- lACP timeout, on page 810
- show lACP, on page 811
- show lACP port-channel, on page 813
lacp port-priority

To set the physical port priority, use the `lacp port-priority` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

`lacp port-priority value`

`no lacp port-priority`

Parameters

`value`—Specifies the port priority. (Range: 1–65535)

Default Configuration

The default port priority is 1.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example sets the priority of gi1/0/6.

```
switchxxxxxx(config)# interface gi1/0/6
switchxxxxxx(config-if)# lacp port-priority 247
```
lacp system-priority

To set the system priority, use the `lacp system-priority` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lacp system-priority value
no lacp system-priority
```

Parameters

- **value**—Specifies the system priority value. (Range: 1–65535)

Default Configuration

The default system priority is 1.

Command Mode

Global Configuration mode

Example

The following example sets the system priority to 120.

```
switchxxxxxx(config)#  lacp system-priority 120
```
lACP Commands

lACP timeout

To assign an administrative LACP timeout to an interface, use the `lacp timeout` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lacp timeout /long | short/
no lacp timeout
```

Parameters

- `long`—Specifies the long timeout value.
- `short`—Specifies the short timeout value.

Default Configuration

The default port timeout value is Long.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example assigns a long administrative LACP timeout to gi1/0/6.

```
switchxxxxxx(config)# interface gi1/0/6
switchxxxxxx(config-if)# lacp timeout long
```
show lacp

To display LACP information for all Ethernet ports or for a specific Ethernet port, use the `show lacp` Privileged EXEC mode command.

Syntax

```
show lacp interface-id [parameters | statistics | protocol-state]
```

Parameters

- `interface-id`—Specify an interface ID. The interface ID must be an Ethernet port.
- `parameters`—(Optional) Displays parameters only.
- `statistics`—(Optional) Displays statistics only.
- `protocol-state`—(Optional) Displays protocol state only.

Command Mode

Privileged EXEC mode

Example

The following example displays LACP information for gi1/0/1.

```
switchxxxxxx# show lacp ethernet gi1/0/1
Port gi1/0/1 LACP parameters:

<table>
<thead>
<tr>
<th>Actor</th>
<th></th>
<th>Partner:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>00:00:12:34:56:78</td>
</tr>
<tr>
<td>system priority:</td>
<td>1</td>
<td>00:00:12:34:56:78</td>
</tr>
<tr>
<td>system mac addr:</td>
<td>00:00:12:34:56:78</td>
<td></td>
</tr>
<tr>
<td>port Admin key:</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>port Oper key:</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>port Oper number:</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>port Admin priority:</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>port Oper priority:</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>port Admin timeout:</td>
<td>LONG</td>
<td>LONG</td>
</tr>
<tr>
<td>port Oper timeout:</td>
<td>LONG</td>
<td>LONG</td>
</tr>
<tr>
<td>LACP Activity:</td>
<td>ACTIVE</td>
<td>AGGREGATABLE</td>
</tr>
<tr>
<td>Aggregation:</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>synchronization:</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>collecting:</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>distributing:</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>expired:</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>
```
show lacp

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>system priority</td>
<td>0</td>
</tr>
<tr>
<td>system mac addr</td>
<td>00:00:00:00:00:00</td>
</tr>
<tr>
<td>port Admin key</td>
<td>0</td>
</tr>
<tr>
<td>port Oper key</td>
<td>0</td>
</tr>
<tr>
<td>port Admin priority</td>
<td>0</td>
</tr>
<tr>
<td>port Oper priority</td>
<td>0</td>
</tr>
<tr>
<td>port Admin timeout</td>
<td>LONG</td>
</tr>
<tr>
<td>port Oper timeout</td>
<td>LONG</td>
</tr>
<tr>
<td>LACP Activity</td>
<td>PASSIVE</td>
</tr>
<tr>
<td>Aggregation</td>
<td>AGGREGATABLE</td>
</tr>
<tr>
<td>synchronization</td>
<td>FALSE</td>
</tr>
<tr>
<td>collecting</td>
<td>FALSE</td>
</tr>
<tr>
<td>distributing</td>
<td>FALSE</td>
</tr>
<tr>
<td>expired</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

Port gi1/0/1 LACP Statistics:
- LACP PDUs sent: 2
- LACP PDUs received: 2

Port gi1/0/1 LACP Protocol State:

<table>
<thead>
<tr>
<th>State Machines</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive FSM</td>
<td>Port Disabled State</td>
</tr>
<tr>
<td>Mux FSM</td>
<td>Detached State</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Variables</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEGIN</td>
<td>FALSE</td>
</tr>
<tr>
<td>LACP_Enabled</td>
<td>TRUE</td>
</tr>
<tr>
<td>Ready_N</td>
<td>FALSE</td>
</tr>
<tr>
<td>Selected</td>
<td>UNSELECTED</td>
</tr>
<tr>
<td>Portmoved</td>
<td>FALSE</td>
</tr>
<tr>
<td>NNT</td>
<td>FALSE</td>
</tr>
<tr>
<td>Port_enabled</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timer counters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>periodic tx timer</td>
<td>0</td>
</tr>
<tr>
<td>current while timer</td>
<td>0</td>
</tr>
<tr>
<td>wait while timer</td>
<td>0</td>
</tr>
</tbody>
</table>
show lacp port-channel

To display LACP information for a port-channel, use the `show lacp port-channel` Privileged EXEC mode command.

Syntax

```
show lacp port-channel [port_channel_number]
```

Parameters

- `port_channel_number`—(Optional) Specifies the port-channel number.

Command Mode

Privileged EXEC mode

Example

The following example displays LACP information about port-channel 1.

```
switchxxxxxx# show lacp port-channel 1
Port-Channel 1: Port Type 1000 Ethernet

<table>
<thead>
<tr>
<th>Actor</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System Priority:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAC Address: 000285:0E1C00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admin Key: 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oper Key: 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partner</td>
<td>System Priority:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAC Address: 00:00:00:00:00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oper Key: 14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
show lacp port-channel
LLDP Commands

This chapter contains the following sections:

- clear lldp statistics, on page 816
- clear lldp table, on page 817
- lldp chassis-id, on page 818
- lldp hold-multiplier, on page 819
- lldp lldpdu, on page 820
- lldp management-address, on page 821
- lldp med, on page 822
- lldp med notifications topology-change, on page 823
- lldp med fast-start repeat-count, on page 824
- lldp med location, on page 825
- lldp med network-policy (global), on page 826
- lldp med network-policy (interface), on page 828
- lldp med network-policy voice auto, on page 829
- lldp notifications, on page 830
- lldp notifications interval, on page 831
- lldp optional-tlv, on page 832
- lldp optional-tlv 802.1, on page 833
- lldp run, on page 834
- lldp receive, on page 835
- lldp reinit, on page 836
- lldp timer, on page 837
- lldp transmit, on page 838
- lldp tx-delay, on page 839
- show lldp configuration, on page 840
- show lldp local, on page 842
- show lldp local tlvs-overloading, on page 844
- show lldp med configuration, on page 845
- show lldp neighbors, on page 846
- show lldp statistics, on page 850
clear lldp statistics

Use the **clear lldp statistics** command in Privileged EXEC mode to clear LLDP statistics on device.

Syntax

clear lldp statistics [global | interface-id]

Parameters

- **global**—(Optional) clears only the global LLDP table statistics.
- **interface-id**—(Optional) Clears the counters only for specified port ID

Default Configuration

Clears all LLDP statistics - global statistics and all interface counters.

Command Mode

Privileged EXEC mode

User Guidelines

Use the command **clear lldp statistics** without parameters to clear all LLDP statistics on device. This clears both global LLDP table statistics and all the interface counters.

Use the **clear lldp statistics global** to clear only the global LLDP table statistics.

Use the **clear lldp statistics interface-id** command to clear the counters of the given interface.

Examples

The following example clears lldp counter from interface gi1/0/1

```
switchxxxxxx# clear lldp statistics gi1/0/1
```
clear lldp table

To clear the neighbors table for all ports or for a specific port, use the `clear lldp table` command in Privileged EXEC mode.

Syntax

```
clear lldp table [interface-id]
```

Parameters

`interface-id`—(Optional) Specifies a port ID.

Default Configuration

If no interface is specified, the default is to clear the LLDP table for all ports.

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# clear lldp table gi1/0/1
```
lldp chassis-id

To configure the source of the chassis ID of the port, use the **lldp chassis-id** Global Configuration mode command. To restore the chassis ID source to default, use the **no** form of this command.

Syntax

```
lldp chassis-id /mac-address | host-name/
no lldp chassis-id
```

Parameters

- **mac-address** — Specifies the chassis ID to use the device MAC address.
- **host-name** — Specifies the chassis ID to use the device configured host name.

Default Configuration

MAC address.

Command Mode

Global Configuration mode

User Guidelines

The host name should be configured to be a unique value.

If the chassis ID configured to be used in LLDP packets is empty, LLDP uses the default chassis ID (specified above).

Example

The following example configures the chassis ID to be the MAC address.

```
switchxxxxxx(config)# lldp chassis-id mac-address
```
lldp hold-multiplier

To specify how long the receiving device holds a LLDP packet before discarding it, use the `lldp hold-multiplier` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

`lldp hold-multiplier number`

`no lldp hold-multiplier`

Parameters

`hold-multiplier number`—Specifies the LLDP packet hold time interval as a multiple of the LLDP timer value (range: 2-10).

Default Configuration

The default LLDP hold multiplier is 4.

Command Mode

Global Configuration mode

User Guidelines

The actual Time-To-Live (TTL) value of LLDP frames is calculated by the following formula:

\[
TTL = \min(65535, \text{LLDP-Timer} \times \text{LLDP-hold-multiplier})
\]

For example, if the value of the LLDP timer is 30 seconds, and the value of the LLDP hold multiplier is 4, then the value 120 is encoded in the TTL field of the LLDP header.

Example

The following example sets the LLDP packet hold time interval to 90 seconds.

```
switchxxxxxx(config)# lldp timer 30
switchxxxxxx(config)# lldp hold-multiplier 3
```
lldp lldpdu

To define LLDP packet handling when LLDP is globally disabled, use the `lldp lldpdu` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lldp lldpdu {filtering | flooding}
no lldp lldpdu
```

Parameters

- `filtering` — Specifies that when LLDP is globally disabled, LLDP packets are filtered (deleted).
- `flooding` — Specifies that when LLDP is globally disabled, LLDP packets are flooded (forwarded to all interfaces).

Default Configuration

LLDP packets are filtered when LLDP is globally disabled.

Command Mode

Global Configuration mode

User Guidelines

If the STP mode is MSTP, the LLDP packet handling mode cannot be set to `flooding` and vice versa.

If LLDP is globally disabled, and the LLDP packet handling mode is `flooding`, LLDP packets are treated as data packets with the following exceptions:

- VLAN ingress rules are not applied to LLDP packets. The LLDP packets are trapped on all ports for which the STP state is Forwarding.
- Default `deny-all` rules are not applied to LLDP packets.
- VLAN egress rules are not applied to LLDP packets. The LLDP packets are flooded to all ports for which the STP state is Forwarding.
- LLDP packets are sent as untagged.

Example

The following example sets the LLDP packet handling mode to Flooding when LLDP is globally disabled.

```
switchxxxxxx(config)# lldp lldpdu flooding
```
lldp management-address

To specify the management address advertised by an interface, use the `lldp management-address` Interface (Ethernet) Configuration mode command. To stop advertising management address information, use the `no` form of this command.

Syntax

`lldp management-address {ip-address | none | automatic [interface-id]}`

`no lldp management-address`

Parameters

- `ip-address`—Specifies the static management address to advertise.
- `none`—Specifies that no address is advertised.
- `automatic`—Specifies that the software automatically selects a management address to advertise from all the IP addresses of the product. In case of multiple IP addresses, the software selects the lowest IP address among the dynamic IP addresses. If there are no dynamic addresses, the software selects the lowest IP address among the static IP addresses.
- `automatic interface-id`—Specifies that the software automatically selects a management address to advertise from the IP addresses that are configured on the interface ID. In case of multiple IP addresses, the software selects the lowest IP address among the dynamic IP addresses of the interface. If there are no dynamic addresses, the software selects the lowest IP address among the static IP addresses of the interface. The interface ID can be one of the following types: Ethernet port, port-channel or VLAN. Note that if the port or port-channel are members in a VLAN that has an IP address, that address is not included because the address is associated with the VLAN.

Default Configuration

No IP address is advertised.

The default advertisement is `automatic`.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Each port can advertise one IP address.

Example

The following example sets the LLDP management address advertisement mode to `automatic` on gi1/0/2.

```
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# lldp management-address automatic
```
lldp med

To enable or disable LLDP Media Endpoint Discovery (MED) on a port, use the `lldp med` Interface (Ethernet) Configuration mode command. To return to the default state, use the `no` form of this command.

Syntax

```
lldp med { enable [ tlv … tlv4 ] | disable }
no lldp med
```

Parameters

- `enable`—Enable LLDP MED
- `tlv`—Specifies the TLV that should be included. Available TLVs are: Network-Policy, Location, and POE-PSE, Inventory. The Capabilities TLV is always included if LLDP-MED is enabled.
- `disable`—Disable LLDP MED on the port

Default Configuration

Enabled with network-policy TLV

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example enables LLDP MED with the `location` TLV on gi1/0/3.

```
switchxxxxxx(config)# interface gi1/0/3
switchxxxxxx(config-if)# lldp med enable location
```
lldp med notifications topology-change

To enable sending LLDP MED topology change notifications on a port, use the `lldp med notifications topology-change` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```plaintext
lldp med notifications topology-change {enable | disable}
no lldp med notifications topology-change
```

Parameters

- **enable**—Enables sending LLDP MED topology change notifications.
- **disable**—Disables sending LLDP MED topology change notifications.

Default Configuration

Disable is the default.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example enables sending LLDP MED topology change notifications on gi1/0/2.

```plaintext
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# lldp med notifications topology-change enable
```
lldp med fast-start repeat-count

When a port comes up, LLDP can send packets more quickly than usual using its fast-start mechanism. To configure the number of packets that is sent during the activation of the fast start mechanism, use the `lldp med fast-start repeat-count` Global Configuration mode command. To return to default, use the `no` form of this command.

Syntax

```
lldp med fast-start repeat-count number

no lldp med fast-start repeat-count
```

Parameters

- `repeat-count number`—Specifies the number of times the fast start LLDPDU is being sent during the activation of the fast start mechanism. The range is 1-10.

Default Configuration

3

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# lldp med fast-start repeat-count 4
```
lldp med location

To configure the location information for the LLDP Media Endpoint Discovery (MED) for a port, use the **lldp med location** Interface (Ethernet) Configuration mode command. To delete location information for a port, use the **no** form of this command.

Syntax

```
lldp med location {coordinate data} | {civic-address data} | {ecs-elin data}
no lldp med location /coordinate | civic-address | ecs-elin/
```

Parameters

- **coordinate data**—Specifies the location data as coordinates in hexadecimal format.
- **civic-address data**—Specifies the location data as a civic address in hexadecimal format.
- **ecs-elin data**—Specifies the location data as an Emergency Call Service Emergency Location Identification Number (ECSELIN) in hexadecimal format.
- **data**—Specifies the location data in the format defined in ANSI/TIA 1057: dotted hexadecimal data. Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. (Length: coordinate: 16 bytes. Civic-address: 6-160 bytes. Ecs-elin: 10-25 bytes)

Default Configuration

The location is not configured.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example configures the LLDP MED location information on gi1/0/2 as a civic address.

```
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# lldp med location civic-address 616263646566
```
lldp med network-policy (global)

To define a LLDP MED network policy, use the `lldp med network-policy` Global Configuration mode command.

The `lldp med network-policy` command creates the network policy, which is attached to a port by `lldp med network-policy (interface)`, on page 828.

The network policy defines how LLDP packets are constructed.

To remove LLDP MED network policy, use the `no` form of this command.

Syntax

```
lldp med network-policy number application [vlan vlan-id] [vlan-type {tagged | untagged}] [up priority] [dscp value]
no lldp med network-policy number
```

Parameters

- `number`—Network policy sequential number. The range is 1-32.
- `application`—The name or the number of the primary function of the application defined for this network policy. Available application names are:
 - voice
 - voice-signaling
 - guest-voice
 - guest-voice-signaling
 - softphone-voice
 - video-conferencing
 - streaming-video
 - video-signaling
- `vlan vlan-id`—(Optional) VLAN identifier for the application.
- `vlan-type`—(Optional) Specifies if the application is using a tagged or an untagged VLAN.
- `up priority`—(Optional) User Priority (Layer 2 priority) to be used for the specified application.
- `dscp value`—(Optional) DSCP value to be used for the specified application.

Default Configuration

No network policy is defined.

Command Mode

Global Configuration mode
User Guidelines

Use the `lldp med network-policy` Interface Configuration command to attach a network policy to a port.

Up to 32 network policies can be defined.

Example

This example creates a network policy for the voice-signal application and attaches it to port 1. LLDP packets sent on port 1 will contain the information defined in the network policy.

```bash
switchxxxxxx(config)# lldp med network-policy 1 voice-signaling vlan 1 vlan-type untagged up 1 dscp 2
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# lldp med network-policy add 1
```
lldp med network-policy (interface)

To attach or remove an LLDP MED network policy on a port, use the `lldp med network-policy` Interface (Ethernet) Configuration mode command. Network policies are created in `lldp med network-policy (global)`, on page 826.

To remove all the LLDP MED network policies from the port, use the `no` form of this command.

Syntax

`lldp med network-policy {add | remove} number`

`no lldp med network-policy number`

Parameters

- `add/remove number`—Attaches/removes the specified network policy to the interface.
- `number`—Specifies the network policy sequential number. The range is 1-32

Default Configuration

No network policy is attached to the interface.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

For each port, only one network policy per application (voice, voice-signaling, etc.) can be defined.

Example

This example creates a network policy for the voice-signally application and attaches it to port 1. LLDP packets sent on port 1 will contain the information defined in the network policy.

```
switchxxxxxx(config)# lldp med network-policy 1 voice-signaling vlan 1 vlan-type untagged
   up 1 dscp 2
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# lldp med network-policy add 1
```
lldp med network-policy voice auto

A network policy for voice LLDP packets can be created by using the lldp med network-policy (global), on page 826. The lldp med network-policy voice auto Global Configuration mode is simpler in that it uses the configuration of the Voice application to create the network policy instead of the user having to manually configure it.

This command generates an LLDP MED network policy for voice, if the voice VLAN operation mode is auto voice VLAN. The voice VLAN, 802.1p priority, and the DSCP of the voice VLAN are used in the policy.

To disable this mode, use the no form of this command.

The network policy is attached automatically to the voice VLAN.

Syntax

lldp med network-policy voice auto

no lldp med network-policy voice auto

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Global Configuration mode

User Guidelines

In Auto mode, the Voice VLAN feature determines on which interfaces to advertise the network policy TLV with application type voice, and controls the parameters of that TLV.

To enable the auto generation of a network policy based on the auto voice VLAN, there must be no manually pre-configured network policies for the voice application

In Auto mode, you cannot manually define a network policy for the voice application using the lldp med network-policy (global), on page 826 command.

Example

switchxxxxxx(config)# lldp med network-policy voice auto
lldp notifications

To enable/disable sending LLDP notifications on an interface, use the lldp notifications Interface (Ethernet) Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

lldp notifications {enable | disable}
no lldp notifications

Parameters

- **enable**—Enables sending LLDP notifications.
- **disable**—Disables sending LLDP notifications.

Default Configuration

Disabled.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example enables sending LLDP notifications on gi1/0/1.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# lldp notifications enable
```
lldp notifications interval

To configure the maximum transmission rate of LLDP notifications, use the `lldp notifications interval` Global Configuration mode command. To return to the default, use the `no` form of this command.

Syntax
```
lldp notifications interval seconds
no lldp notifications interval
```

Parameters
- `interval seconds`—The device does not send more than a single notification in the indicated period (range: 5–3600).

Default Configuration
5 seconds

Command Mode
Global Configuration mode

Example
```
switchxxxxx(config)# lldp notifications interval 10
```
lldp optional-tlv

To specify which optional TLVs are transmitted, use the `lldp optional-tlv` Interface (Ethernet) Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
lldp optional-tlv [tlv1 [tlv2 ... tlv5 | none]
```

Parameters

- **tlv**—Specifies the TLVs to be included. Available optional TLVs are: port-desc, sys-name, sys-desc, sys-cap, 802.3-mac-phy, 802.3-lag, 802.3-max-frame-size, Power-via-MDI, 4-wirePower-via-MDI.
- **none**—(Optional) Clear all optional TLVs from the interface.

If the 802.1 protocol is selected, see the command below.

Default Configuration

The following TLV are transmitted:

- sys-name
- sys-cap

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example specifies that the port description TLV is transmitted on gi1/0/2.

```
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# lldp optional-tlv port-desc
```
lldp optional-tlv 802.1

To specify whether to transmit the 802.1 TLV, use the **lldp optional-tlv 802.1** Interface (Ethernet) Configuration mode command. To revert to the default setting, use the **no** form of this command.

Syntax

```plaintext
lldp optional-tlv 802.1 pvid {enable | disable} - The PVID is advertised or not advertised.
no lldp optional-tlv 802.1 pvid - The PVID advertise state is returned to default.
lldp optional-tlv 802.1 ppvid add ppvid - The Protocol Port VLAN ID (PPVID) is advertised. The PPVID is the PVID that is used depending on the packet’s protocol.
lldp optional-tlv 802.1 ppvid remove ppvid - The PPVID is not advertised.
lldp optional-tlv 802.1 vlan add vlan-id - This vlan-id is advertised.
lldp optional-tlv 802.1 vlan remove vlan-id - This vlan-id is not advertised.
lldp optional-tlv 802.1 protocol add {stp | rstp | mstp | pause | 802.1x | lacp | gvrp} - The protocols selected are advertised.
lldp optional-tlv 802.1 protocol remove {stp | rstp | mstp | pause | 802.1x | lacp | gvrp} - The protocols selected are not advertised.
```

Parameters

- **lldp optional-tlv 802.1 pvid {enable | disable}**—Advertises or stop advertizes the PVID of the port.
- **lldp optional-tlv 802.1 ppvid add/remove ppvid**—Adds/removes PPVID for advertising. (range: 0–4094). PPVID = 0 indicates that the port is not capable of supporting port and protocol VLANs and/or the port is not enabled with any protocol VLANs.
- **add/remove vlan-id**—Adds/removes VLAN for advertising (range: 1–4094).
- **add/remove {stp | rstp | mstp | pause | 802.1x | lacp | gvrp}**—Add specifies to advertise the specified protocols; remove specifies not to advertise the specified protocol.

Default Configuration

The following 802.1 TLV is transmitted:

Command Mode

Interface (Ethernet) Configuration mode

Example

```plaintext
switchxxxxxx(config)# lldp optional-tlv 802.1 protocol add stp
```
lldp run

To enable LLDP, use the **lldp run** Global Configuration mode command. To disable LLDP, use the no form of this command.

Syntax

```
lldp run
no lldp run
```

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# lldp run
```
lldp receive

To enable receiving LLDP on an interface, use the `lldp receive` Interface (Ethernet) Configuration mode command. To stop receiving LLDP on an Interface (Ethernet) Configuration mode interface, use the `no` form of this command.

Syntax

`lldp receive`

`no lldp receive`

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

LLDP manages LAG ports individually. LLDP data received through LAG ports is stored individually per port.

LLDP operation on a port is not dependent on the STP state of a port. I.e. LLDP frames are received on blocked ports.

If a port is controlled by 802.1x, LLDP operates only if the port is authorized.

Example

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# lldp receive
```
lldp reinit

To specify the minimum time an LLDP port waits before reinitializing LLDP transmission, use the `lldp reinit` Global Configuration mode command. To revert to the default setting, use the `no` form of this command.

Syntax

`lldp reinit seconds`

`no lldp reinit`

Parameters

- `reinit seconds`—Specifies the minimum time in seconds an LLDP port waits before reinitializing LLDP transmission. (Range: 1–10)

Default Configuration

2 seconds

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# lldp reinit 4
```
lldp timer

To specify how often the software sends LLDP updates, use the **lldp timer** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

```
lldp timer seconds
no lldp timer
```

Parameters

timer *seconds*—Specifies, in seconds, how often the software sends LLDP updates (range: 5-32768 seconds).

Default Configuration

30 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the interval for sending LLDP updates to 60 seconds.

```
switchxxxxxx(config)# lldp timer 60
```
lldp transmit

To enable transmitting LLDP on an interface use the lldp transmit Interface (Ethernet) Configuration mode command. Use the no form of this command to stop transmitting LLDP on an interface.

Syntax

lldp transmit

no lldp transmit

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled

Command Mode

Interface (Ethernet) Configuration mode

switchxxxxxx(config-if)#

User Guidelines

LLDP manages LAG ports individually. LLDP sends separate advertisements on each port in a LAG.

LLDP operation on a port is not dependent on the STP state of a port. I.e. LLDP frames are sent on blocked ports.

If a port is controlled by 802.1x, LLDP operates only if the port is authorized.

Example

switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# lldp transmit
lldp tx-delay

To set the delay between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB, use the lldp tx-delay Global Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

 lldp tx-delay seconds
 no lldp tx-delay

Parameters

 tx-delay seconds—Specifies the delay in seconds between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB (range: 1-8192 seconds).

Default Configuration

The default LLDP frame transmission delay is 2 seconds.

Command Mode

Global Configuration mode

User Guidelines

It is recommended that the tx-delay be less than 25% of the LLDP timer interval.

Example

The following example sets the LLDP transmission delay to 10 seconds.

 switchxxxxxx(config)# lldp tx-delay 10
show lldp configuration

To display the LLDP configuration for all ports or for a specific port, use the `show lldp configuration` Privileged EXEC mode command.

Syntax

`show lldp configuration [interface-id | detailed]`

Parameters

- `interface-id`—(Optional) Specifies the port ID.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

Display for all ports. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example 1 - Display LLDP configuration for all ports.

```
switchxxxxxx# show lldp configuration
State: Enabled
Timer: 30 Seconds
Hold multiplier: 4
Reinit delay: 2 Seconds
Tx delay: 2 Seconds
Notifications interval: 5 seconds
LLDP packets handling: Filtering
Port State Optional TLVs Address Notifications
-------- ----- -------------- ----------- ------------
gi1/0/1 RX, TX PD, SN, SD, SC , 4W 172.16.1.1 Disabled
```

Example 2 - Display LLDP configuration for port 1.

```
switchxxxxxx# show lldp configuration gi1/0/1
State: Enabled
Timer: 30 Seconds
Hold multiplier: 4
Reinit delay: 2 Seconds
Tx delay: 2 Seconds
Notifications interval: 5 seconds
LLDP packets handling: Filtering
Chassis ID: mac-address
Port State Optional TLVs Address Notifications
---- ---------- -------------- ----------- -----------
gi1/0/1 RX, TX D, SN, SD, SC automatic Disabled
802.3 optional TLVs: 802.3-mac-phy, 802.3-lag, 802.3-max-frame-size
802.1 optional TLVs
PVID: Enabled
PPVIDs: 0, 1, 92
```
VLANs: 1, 92
Protocols: 802.1x

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>The time interval between LLDP updates.</td>
</tr>
<tr>
<td>Hold multiplier</td>
<td>The amount of time (as a multiple of the timer interval) that the receiving device holds a LLDP packet before discarding it.</td>
</tr>
<tr>
<td>Reinit timer</td>
<td>The minimum time interval an LLDP port waits before re-initializing an LLDP transmission.</td>
</tr>
<tr>
<td>Tx delay</td>
<td>The delay between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB.</td>
</tr>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>State</td>
<td>The port’s LLDP state.</td>
</tr>
<tr>
<td>Optional TLVs</td>
<td>Optional TLVs that are advertised. Possible values are: PD - Port description, SN - System name, SD - System description, SC - System capabilities, 4W - 4 wire spare pair capability</td>
</tr>
<tr>
<td>Address</td>
<td>The management address that is advertised.</td>
</tr>
<tr>
<td>Notifications</td>
<td>Indicates whether LLDP notifications are enabled or disabled.</td>
</tr>
<tr>
<td>PVID</td>
<td>Port VLAN ID advertised.</td>
</tr>
<tr>
<td>PPVID</td>
<td>Protocol Port VLAN ID advertised.</td>
</tr>
<tr>
<td>Protocols</td>
<td>Protocols advertised.</td>
</tr>
</tbody>
</table>
show lldp local

To display the LLDP information that is advertised from a specific port, use the `show lldp local` Privileged EXEC mode command.

Syntax

`show lldp local interface-id`

Parameters

- **Interface-id**—(Optional) Specifies a port ID.

Default Configuration

If no port ID is entered, the command displays information for all ports.

Command Mode

Privileged EXEC mode

Example

The following examples display LLDP information that is advertised from gi1/0/1 and 2.

```
switchxxxxx# show lldp local gi1/0/1
Device ID: 0060.704C.73FF
Port ID: gi1/0/1
Capabilities: Bridge
System Name: ts-7800-1
System description:
Port description:
Management address: 172.16.1.8
802.3 MACPHY Configuration/Status
Auto-negotiation support: Supported
Auto-negotiation status: Enabled
Auto-negotiation advertised capabilities: 100BASE-TX full duplex, 1000BASE-T full duplex
Operational MAU type: 1000BaseTFD
802.3 Link Aggregation
Aggregation Capability: Capable of being aggregated
Aggregation Status: Not currently in aggregation
Aggregation Port ID: 1
802.3 Maximum Frame Size: 1522
Power Type: Type 1 PSE
Power Source: Primary Power Source
Power Priority: Unknown
PSE Allocated Power Value: 30
4-Pair POE supported: Yes
Spare Pair Detection/Classification required: Yes
PD Spare Pair Desired State: Enabled
802.3 EEE
Local Tx: 30 usec
Local Rx: 25 usec
Remote Tx Echo: 30 usec
Remote Rx Echo: 25 usec
802.1 PVID: 1
802.1 PPVID: 2 supported, enabled
802.1 VLAN: 2 (VLAN2)
```
802.1 Protocol: 88 08 00 01 (PAUSE)
LLDP-MED capabilities: Network Policy, Location Identification
LLDP-MED Device type: Network Connectivity
LLDP-MED Network policy
Application type: Voice
Flags: Tagged VLAN
VLAN ID: 2
Layer 2 priority: 0
DSCP: 0
LLDP-MED Power over Ethernet
Device Type: Power Sourcing Entity
Power source: Primary Power Source
Power priority: High
Power value: 9.6 Watts
LLDP-MED Location
Hardware Revision: B1
Firmware Revision: A1
Software Revision: 3.8
Serial number: 7978399
Manufacturer name: Manufacturer
Model name: Model 1
Asset ID: Asset 123
switchxxxxxx# show lldp local gi1/0/2
LLDP is disabled.
show lldp local tlvs-overloading

When an LLDP packet contains too much information for one packet, this is called overloading. To display the status of TLVs overloading of the LLDP on all ports or on a specific port, use the **show lldp local tlvs-overloading** EXEC mode command.

Syntax

```
show lldp local tlvs-overloading [interface-id]
```

Parameters

- `interface-id`—(Optional) Specifies a port ID.

Default Configuration

If no port ID is entered, the command displays information for all ports.

Command Mode

User EXEC mode

User Guidelines

The command calculates the overloading status of the current LLDP configuration, and not for the last LLDP packet that was sent.

Example

```
switchxxxxxx# show lldp local tlvs-overloading gi1/0/1

<table>
<thead>
<tr>
<th>TLVs Group</th>
<th>Bytes</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>31</td>
<td>Transmitted</td>
</tr>
<tr>
<td>LLDP-MED Capabilities</td>
<td>9</td>
<td>Transmitted</td>
</tr>
<tr>
<td>LLDP-MED Location</td>
<td>200</td>
<td>Transmitted</td>
</tr>
<tr>
<td>802.1</td>
<td>1360</td>
<td>Overloading</td>
</tr>
</tbody>
</table>

Total: 1600 bytes
Left: 100 bytes
```
show lldp med configuration

To display the LLDP Media Endpoint Discovery (MED) configuration for all ports or for a specific port, use the `show lldp med configuration` Privileged EXEC mode command.

Syntax

`show lldp med configuration [interface-id | detailed]`

Parameters

- `interface-id` — (Optional) Specifies the port ID.
- `detailed` — (Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

If no port ID is entered, the command displays information for all ports. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example 1 - The following example displays the LLDP MED configuration for all interfaces.

```
switchxxxxxx# show lldp med configuration
Fast Start Repeat Count: 4.
lldp med network-policy voice: manual
Network policy 1
-------------------
Application type: voiceSignaling
VLAN ID: 1 untagged
Layer 2 priority: 0
DSCP: 0
Port Capabilities Network Policy Location Notifications Inventory
------ -------------- -------------- ---------- ------------- --------
gi1/0/1 Yes Yes Yes Enabled Yes
 gi1/0/2 Yes Yes No Enabled No
 gi1/0/3 No No No Enabled No
```

Example 2 - The following example displays the LLDP MED configuration for gi1/0/1.

```
switchxxxxxx# show lldp med configuration gi1/0/1
Port Capabilities Network Policy Location Notifications Inventory
------ -------------- -------------- ---------- ------------- --------
gi1/0/1 Yes Yes Yes Enabled Yes
Network policies:
Location:
show lldp neighbors

To display information about neighboring devices discovered using LLDP, use the `show lldp neighbors` Privileged EXEC mode command. The information can be displayed for all ports or for a specific port.

**Syntax**

`show lldp neighbors [interface-id]`

**Parameters**

`interface-id`—(Optional) Specifies a port ID.

**Default Configuration**

If no port ID is entered, the command displays information for all ports.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

A TLV value that cannot be displayed as an ASCII string is displayed as an hexadecimal string.

**Example 1** - The following example displays information about neighboring devices discovered using LLDP on all ports on which LLDP is enabled and who are up.

Location information, if it exists, is also displayed.

```
switchxxxxxx# show lldp neighbors
System capability legend:
B - Bridge; R - Router; W - Wlan Access Point; T - telephone;
D - DOCSIS Cable Device; H - Host; r - Repeater;
TP - Two Ports MAC Relay; S - S-VLAN; C - C-VLAN; O - Other
Port Device ID Port ID System Name Capabilities TTL
----- --------------- -------- ---------- ----------- ----
gi1/0/1 00:00:00:11:11:11 gi1/0/1 ts-7800-2 B 90
gi1/0/1 00:00:00:11:11:11 gi1/0/1 ts-7800-2 B 90
gi1/0/2 00:00:26:08:13:24 gi1/0/3 ts-7900-1 W, R 90
gi1/0/3 00:00:26:08:13:24 gi1/0/2 ts-7900-2 W 90
```

**Example 2** - The following example displays information about neighboring devices discovered using LLDP on port 1.

```
switchxxxxxx# show lldp neighbors gi1/0/1
Device ID: 00:00:00:11:11:11
Port ID: gi1/0/1
System Name: ts-7800-2
Capabilities: B
System description:
Port description:
Management address: 172.16.1.1
Time To Live: 90 seconds
802.3 MAC/PHY Configuration/Status
Auto-negotiation support: Supported.
Auto-negotiation status: Enabled.
Auto-negotiation Advertised Capabilities: 100BASE-TX full duplex, 1000BASE-T full duplex.
```
Operational MAU type: 1000BaseTFD
802.3 Power via MDI
MDI Power support Port Class: PD
PSE MDI Power Support: Not Supported
PSE MDI Power State: Not Enabled
PSE power pair control ability: Not supported.
PSE Power Pair: Signal
PSE Power class: 1
Power Type: Type 1 PSE
Power Source: Primary Power Source
Power Priority: Unknown
PD Requested Power Value: 30
4-Pair PSE supported: Yes
PD Spare Pair Detection/Classification required: Yes
PD Spare Pair Desired State: Enabled
PD Spare Pair Operational State: Enabled
802.3 Link Aggregation
Aggregation capability: Capable of being aggregated
Aggregation status: Not currently in aggregation
Aggregation port ID: 1
802.3 Maximum Frame Size: 1522
802.3 EEE
Remote Tx: 25 usec
Remote Rx: 30 usec
Local Tx Echo: 30 usec
Local Rx Echo: 25 usec
802.1 PVID: 1
802.1 PPVID: 2 supported, enabled
802.1 VLAN: 2 (VLAN2)
802.1 Protocol: 88 8E 01
LLDP-MED capabilities: Network Policy.
LLDP-MED Device type: Endpoint class 2.
LLDP-MED Network policy
Application type: Voice
Flags: Unknown policy
VLAN ID: 0
Layer 2 priority: 0
DSCP: 0
LLDP-MED Power over Ethernet
Device Type: Power Device
Power source: Primary power
Power priority: High
Power value: 9.6 Watts
Hardware revision: 2.1
Firmware revision: 2.3
Software revision: 2.7.1
Serial number: LM759846587
Manufacturer name: VP
Model name: TR12
Asset ID: 9
LLDP-MED Location

The following table describes significant LLDP fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP MED</td>
<td></td>
</tr>
<tr>
<td>LLDP MED - Network Policy</td>
<td></td>
</tr>
<tr>
<td>LLDP MED - Power Over Ethernet</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>LLDP MED - Location</strong></td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Device ID</td>
<td>The neighbor device’s configured ID (name) or MAC address.</td>
</tr>
<tr>
<td>Port ID</td>
<td>The neighbor device’s port ID.</td>
</tr>
<tr>
<td>System name</td>
<td>The neighbor device’s administratively assigned name.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>The capabilities discovered on the neighbor device. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>• B - Bridge</td>
</tr>
<tr>
<td></td>
<td>• R - Router</td>
</tr>
<tr>
<td></td>
<td>• W - WLAN Access Point</td>
</tr>
<tr>
<td></td>
<td>• T - Telephone</td>
</tr>
<tr>
<td></td>
<td>• D - DOCSIS cable device</td>
</tr>
<tr>
<td></td>
<td>• H - Host</td>
</tr>
<tr>
<td></td>
<td>• r - Repeater</td>
</tr>
<tr>
<td></td>
<td>• O - Other</td>
</tr>
<tr>
<td>System description</td>
<td>The neighbor device’s system description.</td>
</tr>
<tr>
<td>Port description</td>
<td>The neighbor device’s port description.</td>
</tr>
<tr>
<td>Management address</td>
<td>The neighbor device’s management address.</td>
</tr>
<tr>
<td>Auto-negotiation support</td>
<td>The auto-negotiation support status on the port. (supported or not supported)</td>
</tr>
<tr>
<td>Auto-negotiation status</td>
<td>The active status of auto-negotiation on the port. (enabled or disabled)</td>
</tr>
<tr>
<td>Auto-negotiation Advertised Capabilities</td>
<td>The port speed/duplex/flow-control capabilities advertised by the auto-negotiation.</td>
</tr>
<tr>
<td>Operational MAU type</td>
<td>The port MAU type.</td>
</tr>
<tr>
<td>Power Source</td>
<td>The power source utilized by a PSE or PD device. A PSE device advertises its power capability. The possible values are: Primary power source, Backup power source, Unknown Power source, PSE and local power source, Local Only power source and PSE only power source.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>The sender's LLDP-MED capabilities.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Device type</td>
<td>The device type. Indicates whether the sender is a Network Connectivity Device or Endpoint Device, and if an Endpoint, to which Endpoint Class it belongs.</td>
</tr>
<tr>
<td>Application type</td>
<td>The primary function of the application defined for this network policy.</td>
</tr>
<tr>
<td>Flags</td>
<td>Flags. The possible values are:</td>
</tr>
<tr>
<td></td>
<td>Unknown policy: Policy is required by the device, but is currently unknown.</td>
</tr>
<tr>
<td></td>
<td>Tagged VLAN: The specified application type is using a tagged VLAN.</td>
</tr>
<tr>
<td></td>
<td>Untagged VLAN: The specified application type is using an Untagged VLAN.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The VLAN identifier for the application.</td>
</tr>
<tr>
<td>Layer 2 priority</td>
<td>The Layer 2 priority used for the specified application.</td>
</tr>
<tr>
<td>DSCP</td>
<td>The DSCP value used for the specified application.</td>
</tr>
<tr>
<td>Power type</td>
<td>The device power type. The possible values are: Power Sourcing Entity (PSE) or Power Device (PD).</td>
</tr>
<tr>
<td>Power Source</td>
<td>The power source utilized by a PSE or PD device. A PSE device advertises its power capability. The possible values are: Primary power source and Backup power source. A PD device advertises its power source. The possible values are: Primary power, Local power, Primary and Local power.</td>
</tr>
<tr>
<td>Power priority</td>
<td>The PD device priority. A PSE device advertises the power priority configured for the port. A PD device advertises the power priority configured for the device. The possible values are: Critical, High and Low.</td>
</tr>
<tr>
<td>Power value</td>
<td>The total power in watts required by a PD device from a PSE device, or the total power a PSE device is capable of sourcing over a maximum length cable based on its current configuration.</td>
</tr>
<tr>
<td>Coordinates, Civic address, ECS ELIN.</td>
<td>The location information raw data.</td>
</tr>
</tbody>
</table>
show lldp statistics

To display LLDP statistics on all ports or a specific port, use the show lldp statistics EXEC mode command.

Syntax

show lldp statistics [interface-id | detailed]

Parameters

- **interface-id**—(Optional) Specifies the port ID.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

If no port ID is entered, the command displays information for all ports. If detailed is not used, only present ports are displayed.

Command Mode

User EXEC mode

Example

```
switchxxxxxx# show lldp statistics
Tables Last Change Time: 14-Oct-2010 32:08:18
Tables Inserts: 26
Tables Deletes: 2
Tables Dropped: 0
Tables Ageouts: 1

TX Frames	RX Frame
Port | Total | Total | Discarded Errors | Discarded | RX TLVs | RX Ageouts | Total |
----- | ----- | ------ | ----------------- | --------- | ------- | ---------- | ----- |
gi1/0/1 | 730 | 850 | 0 | 0 | 0 | 0 | 0 |
gi1/0/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
gi1/0/3 | 730 | 0 | 0 | 0 | 0 | 0 | 0 |
gi1/0/4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

The following table describes significant LLDP fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP MED</td>
<td></td>
</tr>
<tr>
<td>LLDP MED - Power Over Ethernet</td>
<td></td>
</tr>
<tr>
<td>LLDP MED - Location</td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Device ID</td>
<td>The neighbor device’s configured ID (name) or MAC address.</td>
</tr>
<tr>
<td>Port ID</td>
<td>The neighbor device’s port ID.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>System name</td>
<td>The neighbor device’s administratively assigned name.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>The capabilities discovered on the neighbor device. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>• B - Bridge</td>
</tr>
<tr>
<td></td>
<td>• R - Router</td>
</tr>
<tr>
<td></td>
<td>• W - WLAN Access Point</td>
</tr>
<tr>
<td></td>
<td>• T - Telephone</td>
</tr>
<tr>
<td></td>
<td>• D - DOCSIS cable device</td>
</tr>
<tr>
<td></td>
<td>• H - Host</td>
</tr>
<tr>
<td></td>
<td>• r - Repeater</td>
</tr>
<tr>
<td></td>
<td>• O - Other</td>
</tr>
<tr>
<td>System description</td>
<td>The neighbor device’s system description.</td>
</tr>
<tr>
<td>Port description</td>
<td>The neighbor device’s port description.</td>
</tr>
<tr>
<td>Management address</td>
<td>The neighbor device’s management address.</td>
</tr>
<tr>
<td>Auto-negotiation support</td>
<td>The auto-negotiation support status on the port.</td>
</tr>
<tr>
<td></td>
<td>(Supported or Not Supported)</td>
</tr>
<tr>
<td>Auto-negotiation status</td>
<td>The active status of auto-negotiation on the port.</td>
</tr>
<tr>
<td></td>
<td>(Enabled or Disabled)</td>
</tr>
<tr>
<td>Auto-negotiation Advertised Capabilities</td>
<td>The port speed/duplex/flow-control capabilities advertised by the auto-negotiation.</td>
</tr>
<tr>
<td>Operational MAU type</td>
<td>The port MAU type.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>The sender's LLDP-MED capabilities.</td>
</tr>
<tr>
<td>Device type</td>
<td>The device type. Indicates whether the sender is a Network Connectivity Device or Endpoint Device, and if an Endpoint, to which Endpoint Class it belongs.</td>
</tr>
</tbody>
</table>

**LLDP MED - Network Policy**

| Application type      | The primary function of the application defined for this network policy.    |
### Flags
Flag. The possible values are:
- **Unknown policy**: Policy is required by the device, but is currently unknown.
- **Tagged VLAN**: The specified application type is using a Tagged VLAN.
- **Untagged VLAN**: The specified application type is using an Untagged VLAN.

### VLAN ID
The VLAN identifier for the application.

### Layer 2 priority
The Layer 2 priority used for the specified application.

### DSCP
The DSCP value used for the specified application.

### Power type
The device power type. The possible values are: Power Sourcing Entity (PSE) or Power Device (PD).

### Power Source
The power source utilized by a PSE or PD device. A PSE device advertises its power capability. The possible values are: Primary power source and Backup power source. A PD device advertises its power source. The possible values are: Primary power, Local power, Primary and Local power.

### Power priority
The PD device priority. A PSE device advertises the power priority configured for the port. A PD device advertises the power priority configured for the device. The possible values are: Critical, High and Low.

### Power value
The total power in watts required by a PD device from a PSE device, or the total power a PSE device is capable of sourcing over a maximum length cable based on its current configuration.

### Coordinates, Civic address, ECS ELIN.
The location information raw data.
Loopback Detection Commands

This chapter contains the following sections:

- loopback-detection enable (Global), on page 854
- loopback-detection enable (Interface), on page 855
- loopback-detection interval, on page 856
- show loopback-detection, on page 857
loopback-detection enable (Global)

To enable the Loopback Detection (LBD) feature globally, use the loopback-detection enable Global Configuration mode command. To disable the Loopback Detection feature, use the no form of this command.

Syntax

loopback-detection enable
no loopback-detection enable

Parameters

This command has no arguments or keywords.

Default Configuration

Loopback Detection is disabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables the Loopback Detection feature globally. Use the loopback-detection enable Interface Configuration mode command to enable Loopback Detection on an interface.

Example

The following example enables the Loopback Detection feature on the device.

switchxxxxxx(config)# loopback-detection enable
**loopback-detection enable (Interface)**

To enable the Loopback Detection (LBD) feature on an interface, use the `loopback-detection enable` Interface (Ethernet, Port Channel) Configuration mode command. To disable the Loopback Detection feature on the interface, use the `no` form of this command.

**Syntax**

```
loopback-detection enable
no loopback-detection enable
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

Loopback Detection is enabled on an interface.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

This command enables Loopback Detection on an interface. Use the `loopback-detection enable` Global Configuration command to enable Loopback Detection globally.

**Example**

The following example enables the Loopback Detection feature on port gi1/0/4.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# loopback-detection enable
```
loopback-detection interval

To set the time interval between LBD packets, use the `loopback-detection interval` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

**Syntax**

`loopback-detection interval seconds`
`no loopback-detection interval`

**Parameters**

- `seconds`—Specifies the time interval in seconds between LBD packets. (Range: 10–60 seconds)

**Default Configuration**

The default time interval between LBD packets is 30 seconds.

**Command Mode**

Global Configuration mode

**Example**

The following example sets the time interval between LBD packets to 45 seconds.

```
switchxxxxxx(config)# loopback-detection interval 45
```
**show loopback-detection**

To display information about Loopback Detection, use the **show loopback-detection** Privileged EXEC mode command.

**Syntax**

`show loopback-detection [interface-id | detailed]`

**Parameters**

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **detailed**—(Optional) Displays information for non-present ports in addition to present ports. If this is not set, the default is to display all present ports.

**Default Configuration**

All ports are displayed. If detailed is not used, only present ports are displayed.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Operational status of Active indicates the following conditions are meet:

- Loopback is globally enabled.
- Loopback is enabled on the interface.
- Interface operational state of the interface is up.
- Interface STP state is Forwarding or STP state is disabled.

Operational status of LoopDetected indicates that the interface entered errDisabled state.

Operational status of Inactive indicates that loopback detection is not actively attempting to detect loops, i.e. the Active status conditions are not meet.

**Example**

The following example displays information about the status of Loopback Detection.

```
Console# show loopback-detection
Loopback detection: Enabled
LBD packets interval: 30 Seconds
```
<table>
<thead>
<tr>
<th>Interface</th>
<th>Loopback Detection</th>
<th>Loopback Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>Active</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>LoopDetected</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Enabled</td>
<td>Inactive</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Disabled</td>
<td>Inactive</td>
</tr>
</tbody>
</table>
Macro Commands

This chapter contains the following sections:

- macro name, on page 860
- macro, on page 863
- macro description, on page 865
- macro global, on page 867
- macro global description, on page 869
- show parser macro, on page 870
Use the macro name Global Configuration mode command to define a macro. There are two types of macros that can be defined:

- Global macros define a group of CLI commands that can be run at any time.
  Smartport macros are associated with Smartport types. For each Smartport macro there must be an anti macro (a macro whose name is concatenated with no_). The anti macro reverses the action of the macro.

If a macro with this name already exists, it overrides the previously-defined one.
Use the no form of this command to delete the macro definition.

**Syntax**

`macro name macro-name`

`no macro name [macro-name]`

**Parameters**

- `macro-name`—Name of the macro. Macro names are case sensitive.

**Command Mode**

Global Configuration mode

**User Guidelines**

A macro is a script that contains CLI commands and is assigned a name by the user. It can contain up to 3000 characters and 200 lines.

**Keywords**

Macros may contain keywords (parameters). The following describes these keywords:

- A macro can contain up to three keywords.
- All matching occurrences of the keyword are replaced by the corresponding value specified in the macro command.
- Keyword matching is case-sensitive
  Applying a macro with keywords does not change the state of the original macro definition.

**User Feedback**

The behavior of a macro command requiring user feedback is the same as if the command is entered from terminal: it sends its prompt to the terminal and accepts the user reply.

**Creating a Macro**

Use the following guidelines to create a macro:

- Use `macro name` to create the macro with the specified name.
• Enter one macro command per line.

• Use the @ character to end the macro.

• Use the # character at the beginning of a line to enter a comment in the macro.

In addition, # is used to identify certain preprocessor commands that can only be used within a macro. There are two possible preprocessor commands:

#macro key description - Each macro can be configured with up to 3 keyword/description pairs. The keywords and descriptions are displayed in the GUI pages when the macro is displayed.

The syntax for this preprocessor command is as follows:

#macro key description $keyword1 description1 $keyword2 description2 $keyword3 description3

A keyword must be prefixed with '$'.

#macro keywords - This instruction enables the device to display the keywords as part of the CLI help. It accepts up to 3 keywords. The command creates a CLI help string with the keywords for the macro. The help string will be displayed if help on the macro is requested from the macro and macro global commands. The GUI also uses the keywords specified in the command as the parameter names for the macro. See Example 2 and 3 below for a description of how this command is used in the CLI.

The syntax for this preprocessor command is as follows:

#macro keywords $keyword1 $keyword2 $keyword3

where $keywordn is the name of the keyword.

Editing a Macro

Macros cannot be edited. Modify a macro by creating a new macro with the same name as the existing macro. The newer macro overwrites the existing macro.

The exceptions to this are the built-in macros and corresponding anti-macros for the Smartport feature. You cannot override a Smartport macro.

Scope of Macro

It is important to consider the scope of any user-defined macro. Because of the potential hazards of applying unintended configurations, do not change configuration modes within the macro by using commands such as exit, end, or interface interface-id. With a few exceptions, there are other ways of executing macros in the various configuration modes. Macros may be executed in Privileged Exec mode, Global Configuration mode, and Interface Configuration mode (when the interface is NOT a VLAN.)

Example 1 - The following example shows how to create a macro that configures the duplex mode of a port.

switchxxxxxx(config)# macro name dup
Enter macro commands one per line. End with the character ‘@’.
#macro description duplex full negotiation @

Example 2 - The following example shows how to create a macro with the parameters: DUPLEX and SPEED. When the macro is run, the values of DUPLEX and SPEED must be provided by the user. The #macro keywords command enables the user to receive help for the macro as shown in Example 3.
switchxxxxxx(config)# macro name duplex
Enter macro commands one per line. End with the character '@'.
duplex $DUPLEX
no negotiation
speed $SPEED
#macro keywords $DUPLEX $SPEED
@

Example 3 - The following example shows how to display the keywords using the help character ?
(as defined by the #macro keywords command above) and then run the macro on the port. The
#macro keywords command entered in the macro definition enables the user to receive help for the
macro, as shown after the words e.g. below.

switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# macro apply duplex ?
   WORD <1-32> Keyword to replace with value e.g. $DUPLEX, $SPEED
   <cr>
switchxxxxxx(config-if)# macro apply duplex $DUPLEX ?
   WORD<1-32> First parameter value
   <cr>
switchxxxxxx(config-if)# macro apply duplex $DUPLEX full $SPEED ?
   WORD<1-32> Second parameter value
switchxxxxxx(config-if)# macro apply duplex $DUPLEX full $SPEED 100
Use the `macro apply/trace` Interface Configuration command to either:

- Apply a macro to an interface without displaying the actions being performed
- Apply a macro to the interface while displaying the actions being performed

### Syntax

```
macro {apply | trace} macro-name [parameter-name1 value] [parameter-name2 value] [parameter-name3 value]
```

### Parameters

- `apply`—Apply a macro to the specific interface.
- `trace`—Apply and trace a macro to the specific interface.
- `macro-name`—Name of the macro.
- `parameter-name value`—For each parameter defined in the macro, specify its name and value. You can enter up to three parameter-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the parameter name in the macro are replaced with the corresponding value.

### Default Configuration

The command has no default setting.

### Command Mode

Interface (Ethernet, Port Channel) Configuration mode

### User Guidelines

The `macro apply` command hides the commands of the macro from the user while it is being run. The `macro trace` command displays the commands along with any errors which are generated by them as they are executed. This is used to debug the macro and find syntax or configuration errors.

When you run a macro, if a line in it fails because of a syntax or configuration error, the macro continues to apply the remaining commands to the interface.

If you apply a macro that contains parameters in its commands, the command fails if you do not provide the values for the parameters. You can use the `macro apply` macro-name with a `?` to display the help string for the macro keywords (if you have defined these with the `#macro keywords` preprocessor command).

Parameter (keyword) matching is case sensitive. All matching occurrences of the parameter are replaced with the provided value. Any full match of a keyword, even if it is part of a large string, is considered a match and replaced by the corresponding value.

When you apply a macro to an interface, the switch automatically generates a macro description command with the macro name. As a result, the macro name is appended to the macro history of the interface. The `show parser macro` command displays the macro history of an interface.
A macro applied to an interface range behaves the same way as a macro applied to a single interface. When a macro is applied to an interface range, it is applied sequentially to each interface within the range. If a macro command fails on one interface, it is nonetheless attempted to be applied and may fail or succeed on the remaining interfaces.

**Example 1** - The following is an example of a macro being applied to an interface with the trace option.

```
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# macro trace dup $DUPLEX full $SPEED 100
 Applying command... 'duplex full'
 Applying command... 'speed 100'
switchxxxxxx(config-if)#
```

**Example 2** - The following is an example of a macro being applied without the trace option.

```
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# macro apply dup $DUPLEX full $SPEED 100
switchxxxxxx(config-if)#
```

**Example 3** - The following is an example of an incorrect macro being applied.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# macro trace dup
Applying command...'duplex full'
Applying command...'speed auto'
% bad parameter value
switchxxxxxx(config-if)#
```
**macro description**

Use the `macro description` Interface Configuration mode command to append a description, for example, a macro name, to the macro history of an interface. Use the `no` form of this command to clear the macro history of an interface. When the macro is applied to an interface, the switch automatically generates a macro description command with the macro name. As a result, the name of the macro is appended to the macro history of the interface.

**Syntax**

```
macro description text
no macro description
```

**Parameters**

- `text`—Description text. The text can contain up to 160 characters. The text must be double quoted if it contains multiple words.

**Default Configuration**

The command has no default setting.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

When multiple macros are applied on a single interface, the description text is a concatenation of texts from a number of previously-applied macros.

**Example**

```sh
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# macro apply dup
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# interface gi1/0/3
switchxxxxxx(config-if)# macro apply duplex $DUPLEX full $SPEED 100
switchxxxxxx(config-if)# macro description dup
switchxxxxxx(config-if)# macro description duplex
switchxxxxxx(config-if)# end
switchxxxxxx(config)# exit
switchxxxxxx# show parser macro description
Global Macro(s):
Interface Macro Description(s)
----------------- -------------------------------
gi1/0/2 dup
gi1/0/3 duplex | dup | duplex
----------------- -------------------------------
switchxxxxxx# configure
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# no macro description
switchxxxxxx(config-if)# end
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# exit
switchxxxxxx# show parser macro description
```
<table>
<thead>
<tr>
<th>Interface</th>
<th>Macro Description(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/3</td>
<td>duplex</td>
</tr>
</tbody>
</table>

Global Macro(s):
macro global

Use the **macro global** Global Configuration command to apply a macro to a switch (with or without the trace option).

**Syntax**

```
macro global [apply | trace] macro-name [parameter-name1 value] [parameter-name2 value] [parameter-name3 value]
```

**Parameters**

- **apply**—Apply a macro to the switch.
- **trace**—Apply and trace a macro to the switch.
- **macro-name**—Specify the name of the macro.
- **parameter-name value**—Specify the parameter values required for the switch. You can enter up to three parameter-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the parameters are replaced with the corresponding value.

**Default Configuration**
The command has no default setting.

**Command Mode**
Global Configuration mode.

**User Guidelines**
If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the switch.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a large string, is considered a match and replaced by the corresponding value.

If you apply a macro that contains keywords in its commands, the command fails if you do not specify the proper values for the keywords when you apply the macro. You can use this command with a "?" to display the help string for the macro keywords. You define the keywords in the help string using the preprocessor command `#macro keywords` when you define a macro.

When you apply a macro in Global Configuration mode, the switch automatically generates a global macro description command with the macro name. As a result, the macro name is appended to the global macro history.

**Example**
The following is an example of a macro being defined and then applied to the switch with the trace option.

```
switchxxxxxx(config)# macro name console-timeout
Enter macro commands one per line. End with the character ‘@’.
```
line console
close-timeout $timeout-interval
@ switchxxxxxx(config)# macro global trace console-timeout $timeout-interval 100
  Applying command: ‘line console’
  Applying command: ‘exec-timeout 100’
**macro global description**

Use the **macro global description** Global Configuration command to enter a description which is used to indicate which macros have been applied to the switch. Use the **no** form of this command to remove the description.

**Syntax**

```
macro global description text
no macro global description
```

**Parameters**

- **text**—Description text. The text can contain up to 160 characters.

**Default Configuration**

The command has no default setting.

**Command Mode**

Global Configuration mode

**User Guidelines**

When multiple global macros are applied to a switch, the global description text is a concatenation of texts from a number of previously applied macros.

**Examples**

```
switchxxxxxx(config)# macro global description "set console timeout interval"
```
show parser macro

Use the show parser macro User EXEC mode command to display the parameters for all configured macros or for one macro on the switch.

Syntax

```
show parser macro [{ brief | description [interface interface-id | detailed] | name macro-name }]
```

Parameters

- **brief**—Display the name of all macros.
- **description [interface interface-id]**—Display the macro descriptions for all interfaces or if an interface is specified, display the macro descriptions for that interface.
- **name macro-name**—Display information about a single macro identified by the macro name.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

Display description of all macros on present ports.

If the **detailed** keyword is not used, only present ports are displayed.

Command Mode

User EXEC mode

**Example 1** - This is a partial output example from the `show parser macro` command.

```
switchxxxxxx# show parser macro
Total number of macros = 6
--
Macro name : company-global
Macro type : default global
Enable dynamic port error recovery for link state
failures
--
Macro name : company-desktop
Macro type : default interface
macro keywords $AVID
Basic interface - Enable data VLAN only
Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access
```

**Example 2** - This is an example of output from the `show parser macro name` command.

```
switchxxxxxx# show parser macro standard-switch10
Macro name : standard-switch10
Macro type : customizable
macro description standard-switch10
Trust QoS settings on VOIP packets
auto qos voip trust
Allow port channels to be automatically formed
channel-protocol pagp
```
Example 3 - This is an example of output from the `show parser macro brief` command.

```plaintext
switchxxxxxx# show parser macro brief
default global : company-global
default interface: company-desktop
default interface: company-phone
default interface: company-switch
default interface: company-router
customizable : snmp
```

Example 4 - This is an example of output from the `show parser macro description` command.

```plaintext
switchxxxxxx# show parser macro description
Global Macro(s): company-global
```

Example 5 - This is an example of output from the `show parser macro description interface` command.

```plaintext
switchxxxxxx# show parser macro description interface gi1/0/2
Interface Macro Description
--
gi1/0/2 this is test macro
--
```
<table>
<thead>
<tr>
<th>Macro Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show parser macro</code></td>
</tr>
</tbody>
</table>
Management ACL Commands

This chapter contains the following sections:

- deny (Management), on page 874
- permit (Management), on page 875
- management access-list, on page 876
- management access-class, on page 877
- show management access-list, on page 878
- show management access-class, on page 879
deny (Management)

To set permit rules (ACEs) for the management access list (ACL), use the deny Management Access-list Configuration mode command.

**Syntax**

```
deny [interface-id] [service service]
deny ip-source {ipv4-address | ipv6-address/ipv6-prefix-length} [mask {mask | prefix-length}] [interface-id] [service service]
```

**Parameters**

- **interface-id**—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN
- **service service**—(Optional) Specifies the service type. Possible values are: Telnet, SSH, HTTP, HTTPS and SNMP.
- **ipv4-address**—Specifies the source IPv4 address.
- **ipv6-address/ipv6-prefix-length**—Specifies the source IPv6 address and source IPv6 address prefix length. The prefix length must be preceded by a forward slash (/). The parameter is optional.
- **mask mask**—Specifies the source IPv4 address network mask. The parameter is relevant only to IPv4 addresses.
- **mask prefix-length**—Specifies the number of bits that comprise the source IPv4 address prefix. The prefix length must be preceded by a forward slash (/). The parameter is relevant only to IPv4 addresses. (Range: 0–32)

**Default Configuration**

No rules are configured.

**Command Mode**

Management Access-list Configuration mode

**User Guidelines**

Rules with ethernet, VLAN, and port-channel parameters are valid only if an IP address is defined on the appropriate interface.

**Example**

The following example denies all ports in the ACL called mlist.

```
switchxxxxxx(config)# management-access-list mlist
switchxxxxxx(config-macl)# deny
```
**permit (Management)**

To set permit rules (ACEs) for the management access list (ACL), use the **permit** Management Access-list Configuration mode command.

**Syntax**

```plaintext
permit [interface-id] [service service]
permit ip-source {ipv4-address | ipv6-address/ipv6-prefix-length} /mask {mask | prefix-length} [interface-id] [service service]
```

**Parameters**

- **interface-id** — (Optional) Specify an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN
- **service service** — (Optional) Specifies the service type. Possible values are: Telnet, SSH, HTTP, HTTPS and SNMP.
- **ipv4-address** — Specifies the source IPv4 address.
- **ipv6-address/ipv6-prefix-length** — Specifies the source IPv6 address and source IPv6 address prefix length. The prefix length must be preceded by a forward slash (/). The parameter is optional.
- **mask mask** — Specifies the source IPv4 address network mask. This parameter is relevant only to IPv4 addresses.
- **mask prefix-length** — Specifies the number of bits that comprise the source IPv4 address prefix. The prefix length must be preceded by a forward slash (/). This parameter is relevant only to IPv4 addresses. (Range: 0–32)

**Default Configuration**

No rules are configured.

**Command Mode**

Management Access-list Configuration mode

**User Guidelines**

Rules with Ethernet, VLAN, and port-channel parameters are valid only if an IP address is defined on the appropriate interface.

**Example**

The following example permits all ports in the ACL called **mlist**

```plaintext
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# permit
```
To configure a management access list (ACL) and enter the Management Access-list Configuration mode, use the `management access-list` Global Configuration mode command. To delete an ACL, use the `no` form of this command.

**Syntax**

```
management access-list name
no management access-list name
```

**Parameters**

- `name`—Specifies the ACL name. (Length: 1–32 characters)

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command to configure a management access list. This command enters the Management Access-list Configuration mode, where the denied or permitted access conditions are defined with the `deny` and `permit` commands.

If no match criteria are defined, the default value is `deny`.

When re-entering the access-list context, the new rules are entered at the end of the access list.

Use the `management access-class`, on page 877 command to select the active access list.

The active management list cannot be updated or removed.

For IPv6 management traffic that is tunneled in IPv4 packets, the management ACL is applied first on the external IPv4 header (rules with the service field are ignored), and then again on the inner IPv6 header.

**Example 1** - The following example creates a management access list called `mlist`, configures management gi1/0/1 and gi1/0/9, and makes the new access list the active list.

```bash
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# permit gi1/0/1
switchxxxxxx(config-macl)# permit gi1/0/9
switchxxxxxx(config-macl)# exit
```

**Example 2** - The following example creates a management access list called ‘mlist’, configures all interfaces to be management interfaces except gi1/0/1 and gi1/0/9, and makes the new access list the active list.

```bash
switchxxxxxx(config)# management access-list mlist
switchxxxxxx(config-macl)# deny gi1/0/1
switchxxxxxx(config-macl)# deny gi1/0/9
switchxxxxxx(config-macl)# permit
switchxxxxxx(config-macl)# exit
```
management access-class

To restrict management connections by defining the active management access list (ACL), use the management access-class Global Configuration mode command. To disable management connection restrictions, use the no form of this command.

Syntax

management access-class {console-only | name}

no management access-class

Parameters

- **console-only**—Specifies that the device can be managed only from the console.
- **name**—Specifies the ACL name to be used. (Length: 1–32 characters)

Default Configuration

The default configuration is no management connection restrictions.

Command Mode

Global Configuration mode

Example

The following example defines an access list called mlist as the active management access list.

```
switchxxxxxx(config)# management access-class mlist
```
show management access-list

To display management access lists (ACLs), use the `show management access-list` Privileged EXEC mode command.

**Syntax**

```
show management access-list [name]
```

**Parameters**

- **name**—(Optional) Specifies the name of a management access list to be displayed. (Length: 1–32 characters)

**Default Configuration**

All management ACLs are displayed.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the `mlist` management ACL.

```
switchxxxxxx# show management access-list mlist
m1
 --
 deny service telnet
 permit gi1/0/1 service telnet
! (Note: all other access implicitly denied)
console(config-macl)#
```
**show management access-class**

To display information about the active management access list (ACLs), use the `show management access-class` Privileged EXEC mode command.

**Syntax**

```
show management access-class
```

**Parameters**

This command has no arguments or keywords.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the active management ACL information.

```
switchxxxxxx# show management access-class
Management access-class is enabled, using access list mlist
```
show management access-class
MLD Commands

This chapter contains the following sections:

• clear ipv6 mld counters, on page 882
• ipv6 mld last-member-query-count, on page 883
• ipv6 mld last-member-query-interval, on page 884
• ipv6 mld query-interval, on page 885
• ipv6 mld query-max-response-time, on page 886
• ipv6 mld robustness, on page 887
• ipv6 mld version, on page 888
• show ipv6 mld counters, on page 889
• show ipv6 mld groups, on page 890
• show ipv6 mld groups summary, on page 892
• show ipv6 mld interface, on page 893
clear ipv6 mld counters

To clear the Multicast Listener Discovery (MLD) interface counters, use the `clear ipv6 mld counters` command in Privileged EXEC mode.

**Syntax**

```
clear ipv6 mld counters [interface-id]
```

**Parameters**

- `interface-id`—(Optional) Interface Identifier.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the `clear ipv6 mld counters` command to clear the MLD counters, which keep track of the number of joins and leaves received. If you omit the optional `interface-id` argument, the `clear ipv6 mld counters` command clears the counters on all interfaces.

**Example**

The following example clears the counters for VLAN 100:

```
switchxxxxxx# clear ipv6 mld counters vlan 100
```
**ipv6 mld last-member-query-count**

To configure the Multicast Listener Discovery (MLD) last member query counter, use the `ipv6 mld last-member-query-count` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

**Syntax**

`ipv6 mld last-member-query-count count`

`no ipv6 mld last-member-query-count`

**Parameters**

*count*—The number of times that group- or group-source-specific queries are sent upon receipt of a message indicating a leave. (Range: 1–7)

**Default Configuration**

A value of MLD Robustness variable.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the `ipv6 mld robustness` command to change the MLD last member query counter.

**Example**

The following example changes a value of the MLD last member query counter to 3:

```
switchxxxxxx(config)# interface vlan 1
ipv6 mld last-member-query-count 3
exit
```
**ipv6 mld last-member-query-interval**

To configure the Multicast Listener Discovery (MLD) last member query interval, use the `ipv6 mld last-member-query-interval` command in Interface Configuration mode. To restore the default MLD query interval, use the `no` form of this command.

**Syntax**

```
ipv6 mld last-member-query-interval milliseconds
no ipv6 mld last-member-query-interval
```

**Parameters**

- `milliseconds`—Interval, in milliseconds, at which MLD group-specific host query messages are sent on the interface. (Range: 100–25500).

**Default Configuration**

The default MLD last member query interval is 1000 milliseconds.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the `ipv6 mld last-member-query-interval` command to configure the MLD last member query interval on an interface.

**Example**

The following example shows how to increase the MLD last member query interval to 1500 milliseconds:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 mld last-member-query-interval 1500
switchxxxxxx(config-if)# exit
```
**ipv6 mld query-interval**

To configure the frequency at which the switch sends Multicast Listener Discovery (MLD) host-query messages, use the `ipv6 mld query-interval` command in Interface Configuration mode. To return to the default frequency, use the `no` form of this command.

**Syntax**

```
ipv6 mld query-interval seconds
```

```
no ipv6 mld query-interval
```

**Parameters**

- `seconds`—Frequency, in seconds, at which the switch sends MLD query messages from the interface. The range is from 30 to 18000.

**Default Configuration**

The default MLD query interval is 125 seconds.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the `ipv6 mld query-interval` command to configure the frequency at which the MLD querier sends MLD host-query messages from an interface. The MLD querier sends query-host messages to discover which multicast groups have members on the attached networks of the router. The query interval must be bigger than the maximum query response time.

**Example**

The following example shows how to increase the frequency at which the MLD querier sends MLD host-query messages to 180 seconds:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 mld query-interval 180
switchxxxxxx(config-if)# exit
```
ipv6 mld query-max-response-time

To configure the maximum response time advertised in Multicast Listener Discovery (MLD) queries, use the `ipv6 mld query-max-response-time` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

**Syntax**

```
ipv6 mld query-max-response-time seconds
no ipv6 mld query-max-response-time
```

**Parameters**

- `seconds`—Maximum response time, in seconds, advertised in MLD queries. (Range: 5–20)

**Default Configuration**

10 seconds.

**Command Mode**

Interface Configuration mode

**User Guidelines**

This command controls the period during which the responder can respond to an MLD query message before the router deletes the group.

This command controls how much time the hosts have to answer an MLD query message before the router deletes their group. Configuring a value of fewer than 10 seconds enables the router to prune groups faster.

The maximum query response time must be less than the query interval.

**Note.** If the hosts do not respond fast enough, they might be pruned inadvertently. Therefore, the hosts must know to respond faster than 10 seconds (or the value you configure).

**Example**

The following example configures a maximum response time of 8 seconds:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 mld query-max-response-time 8
switchxxxxxx(config-if)# exit
```
To configure the Multicast Listener Discovery (MLD) robustness variable, use the **ipv6 mld robustness** command in Interface Configuration mode. To restore the default value, use the **no** form of this command.

**Syntax**

```
ipv6 mld robustness count
no ipv6 mld robustness
```

**Parameters**

- **count**—The number of expected packet loss on a link. Parameter range. (Range: 1–7).

**Default Configuration**

The default value is 2.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the **ipv6 mld robustness** command to change the MLD robustness variable.

**Example**

The following example changes a value of the MLD robustness variable to 3:

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ipv6 mld robustness 3
switchxxxxxx(config-if)# exit
```
ipv6 mld version

To configure which version of Multicast Listener Discovery Protocol (MLD) the router uses, use the `ipv6 mld version` command in Interface Configuration mode. To restore the default value, use the `no` form of this command.

**Syntax**

`ipv6 mld version {1 | 2}`

`no ipv6 mld version`

**Parameters**

- `1`—MLD Version 1.

**Default Configuration**

`1`

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the command to change the default version of MLD.

**Example**

The following example configures the router to use MLD Version 1:

```
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 mld version 1
switchxxxxxx(config-if)# exit
```
show ipv6 mld counters

To display the Multicast Listener Discovery (MLD) traffic counters, use the `show ipv6 mld counters` command in User EXEC mode.

**Syntax**

```
show ipv6 mld counters [interface-id]
```

**Parameters**

- `interface-id`—(Optional) Interface Identifier.

**Command Mode**

User EXEC mode

**User Guidelines**

Use the `show ipv6 mld counters` command to check if the expected number of MLD protocol messages have been received and sent.

If you omit the optional `interface-id` argument, the `show ipv6 mld counters` command displays counters of all interfaces.

**Example**

The following example displays the MLD protocol messages received and sent:

```
switchxxxxxx# show ipv6 mld counters vlan 100
VLAN 100
Elapsed time since counters cleared:00:00:21
Failed received Joins: 0
Total MLDv1 received messages: 10
Total MLDv2 received messages: 0
Total invalid received messages: 0
General Sent Queries: 0
Specific Sent Queries: 0
```
**show ipv6 mld groups**

To display the multicast groups that are directly connected to the router and that were learned through Multicast Listener Discovery (MLD), use the **show ipv6 mld groups** command in User EXEC mode.

**Syntax**

```
show ipv6 mld groups [link-local | group-name | group-address | interface-id] [detail]
```

**Parameters**

- **link-local**—(Optional) Displays the link-local groups.
- **group-name | group-address**—(Optional) IPv6 address or name of the multicast group.
- **interface-id**—(Optional) Interface identifier.
- **detail**—(Optional) Displays detailed information about individual sources.

**Command Mode**

User EXEC mode

**User Guidelines**

Use the **show ipv6 mld groups** command to display all directly connected groups.

Use the **show ipv6 mld groups link-local** command to display all directly connected link-local groups.

Use the **show ipv6 mld groups group-name | group-address** command to display one given directly connected group.

Use the **show ipv6 mld groups interface-id** command to display all groups directly connected to the given interface.

**Example 1.** The following is sample output from the **show ipv6 mld groups** command. It shows all of the groups joined by VLAN 100:

```
switchxxxxxx# show ipv6 mld groups vlan 100
MLD Connected Group Membership
Expires: never - switch itself has joined the group
Group Address Interface Expires
FF02::2 VLAN 100 never
FF02::1:FF00:1 VLAN 00:10:27
FF02::1:FFAF:2C39 VLAN 100 00:09:11
FF06:7777::1 VLAN 100 00:00:26
```

**Example 2.** The following is sample output from the **show ipv6 mld groups** command using the **detail** keyword:

```
switchxxxxxx# show ipv6 mld groups detail
Expires: zero value - INCLUDE state; non-zero value - EXCLUDE state
Interface: VLAN 100
Group: FF33::1:1:1
Router mode: INCLUDE
```
Last reporter: 2009:5::12:1
Group Timer Expires: 00:20:11
Group source list:
Source Address Expires
2004:4::6 00:00:11
2004:4::16 00:08:11
Group: FF33::1:1:2
Router mode: EXCLUDE
Last reporter: 2008:5::2A:10
Group Timer Expires: 00:20:11
Exclude Mode Expiry (Filter) Timer: 00:10:11
Group source list:
Source Address Expires
2004:5::1 00:04:08
2004:3::1 00:04:08
2004:7::10 00:00:00
2004:50::1 00:00:00
**show ipv6 mld groups summary**

To display the number of (*, G) and (S, G) membership reports present in the Multicast Listener Discovery (MLD) cache, use the `show ipv6 mld groups summary` command in User EXEC mode.

**Syntax**

```
show ipv6 mld groups summary
```

**Parameters**

This command has no arguments or keywords.

**Command Mode**

User EXEC mode

**User Guidelines**

The `show ipv6 mld groups summary` command displays the number of directly connected multicast groups (including link-local groups).

**Example**

The following is sample output from the `show ipv6 mld groups summary` command:

```
switchxxxxxx# show ipv6 mld groups summary
MLD Route Summary
 No. of (*,G) routes = 5
 No. of (S,G) routes = 0

Field Descriptions:
 No. of (*,G) routes = 5—Displays the number of groups present in the MLD cache.
 No. of (S,G) routes = 0—Displays the number of include and exclude mode sources present in the MLD cache.
```
show ipv6 mld interface

To display multicast-related information about an interface, use the `show ipv6 mld interface` command in User EXEC mode.

**Syntax**

`show ipv6 mld interface [interface-id]`

**Parameters**

- `interface-id`—Interface identifier.

**Command Mode**

User EXEC mode

**User Guidelines**

If you omit the optional `interface-id` argument, the `show ipv6 mld interface` command displays information about all interfaces.

**Example**

The following is sample output from the `show ipv6 mld interface` command for Ethernet interface 2/1/1:

```
switchxxxxxx# show ipv6 mld interface vlan 100
VLAN 100 is up
Administrative MLD Querier IPv6 address is FE80::260:3EFF:FE86:5649
Operational MLD Querier IPv6 address is FE80::260:3EFF:FE86:5649
Current MLD version is 3
Administrative MLD robustness variable is 2 seconds
Operational MLD robustness variable is 2 seconds
Administrative MLD query interval is 125 seconds
Operational MLD query interval is 125 seconds
Administrative MLD max query response time is 10 seconds
Operational MLD max query response time is 10 seconds
Administrative Last member query response interval is 1000 milliseconds
Operational Last member query response interval is 1000 milliseconds
```
show ipv6 mld interface
MLD Proxy

This chapter contains the following sections:

- ipv6 mld-proxy ssm, on page 896
- ipv6 mld-proxy, on page 897
- ipv6 mld-proxy downstream protected, on page 898
- ipv6 mld-proxy downstream protected interface, on page 899
- show ipv6 mld-proxy interface, on page 900
**ipv6 mld-proxy ssm**

To define the Source Specific Multicast (SSM) range of IP Multicast addresses, use the `ipv6 mld-proxy ssm` command in Global Configuration mode. To disable the SSM range, use the `no` form of this command.

**Syntax**

```
ipv6 mld-proxy ssm [default | range access-list]
```

no ipv6 mld-proxy ssm

**Parameters**

- `default`—Defines the SSM range access list to FF3x::/32 (see rfc4607).
- `range access-list`—Specifies the standard IPv6 access list name defining the SSM range.

**Default Configuration**

The command is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

A new `ipv6 mld-proxy ssm` command overrides the previous `ipv6 mld-proxy ssm` command.

Use the `no ipv6 mld-proxy ssm` command to remove all defined ranges.

**Example**

The following example shows how to configure SSM service for the default IPv6 address range and the IPv6 address ranges defined by access lists `list1`:

```
switchxxxxxx(config)# ipv6 access-list list1 permit FF7E:1220:2001:DB8::/64
switchxxxxxx(config)# ipv6 access-list list1 deny FF7E:1220:2001:DB1::1
switchxxxxxx(config)# ipv6 access-list list1 permit FF7E:1220:2001:DB1::/64
switchxxxxxx(config)# ipv6 pim mld-proxy range list1
```
ipv6 mld-proxy

To add downstream interfaces to a MLD proxy tree, use the `ip mld-proxy` command in Interface Configuration mode. To remove downstream from interfaces to a MLD proxy tree, use the `no` form of this command.

**Syntax**

`ipv6 mld-proxy`  `upstream-interface-id`

`no ipv6 mld-proxy`

**Parameters**

- `upstream-interface-id`—Upstream Interface identifier.

**Default Configuration**

The protocol is disabled on the interface.

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the `ipv6 mld-proxy` command to add a downstream interface to a MLD proxy tree. If the proxy tree does not exist it is created.

Use the `no` format of the command to remove the downstream interface. When the last downstream interface is removed from the proxy tree it is deleted too.

**Example 1.** The following example adds a downstream interface to a MLD Proxy process with vlan 200 as its Upstream interface:

```bash
switchxxxxxx(config)# interface vlan 100
switchxxxxxx(config-if)# ipv6 mld-proxy vlan 200
switchxxxxxx(config-if)# exit
```

**Example 2.** The following example adds a range of downstream interfaces to an IGMP Proxy process with vlan 200 as its Upstream interface:

```bash
switchxxxxxx(config)# interface range vlan 100-105
switchxxxxxx(config-if)# ipv6 mld-proxy vlan 200
switchxxxxxx(config-if)# exit
```
ipv6 mld-proxy downstream protected

To disable forwarding of IPv6 Multicast traffic from downstream interfaces, use the `ipv6 mld-proxy downstream protected` command in Global Configuration mode. To allow forwarding from downstream interfaces, use the `no` form of this command.

Syntax

ipv6 mld-proxy downstream protected

no ipv6 mld-proxy downstream protected

Parameters

This command has no arguments or keywords.

Default Configuration

Forwarding from downstream interfaces is allowed.

Command Mode

Global Configuration mode

User Guidelines

Use the `ipv6 mld-proxy downstream protected` command to block forwarding from downstream interfaces.

Example

The following example prohibits forwarding from downstream interfaces:

```
switchxxxxxx(config)# ipv6 mld-proxy downstream protected
```
**ipv6 mld-proxy downstream protected interface**

To disable or enable forwarding of IPv6 Multicast traffic from a given downstream interface, use the `ipv6 mld-proxy downstream protected interface` command in Interface Configuration mode. To return to default, use the `no` form of this command.

**Syntax**

```
ipv6 mld-proxy downstream protected interface {enabled | disabled}
no ipv6 mld-proxy downstream protected interface
```

**Parameters**

- **enabled**—Downstream interface protection on the interface is enabled. IPv6 Multicast traffic arriving on the interface will not be forwarded.

- **disabled**—Downstream interface protection on the interface is disabled. IPv6 Multicast traffic arriving on the interface will be forwarded.

**Default Configuration**

Global downstream protection configuration (see the `ipv6 mld-proxy downstream protected` command)

**Command Mode**

Interface Configuration mode

**User Guidelines**

Use the `ipv6 mld-proxy downstream protected interface disabled` command to block forwarding from the given downstream interface.

Use the `ipv6 mld-proxy downstream protected interface enabled` command to allow forwarding from the given downstream interface.

The command can be configured only for a downstream interface. When a downstream interface is removed from the MLD Proxy tree the configuration is removed too.

**Example**

The following example prohibits forwarding from downstream interface vlan 100:

```
switchxxxxxx(config)# interface vlan100
switchxxxxxx(config-if)# ipv6 mld-proxy downstream protected interface enabled
switchxxxxxx(config-if)# exit
```
show ipv6 mld-proxy interface

To display information about interfaces configured for MLD Proxy, use the `show ipv6 mld-proxy interface` command in User EXEC mode or Privileged EXEC mode.

**Syntax**

```
show ipv6 mld-proxy interface [interface-id]
```

**Parameters**

- `interface-id`—(Optional) Display MLD Proxy information about the interface.

**Command Mode**

User EXEC mode
Privileged EXEC mode

**User Guidelines**

The `show ipv6 mld-proxy interface` command is used to display all interfaces where the MLD Proxy is enabled or to display the MLD Proxy configuration for a given interface.

**Example 1.** The following example displays MLD Proxy status on all interfaces where the MLD Proxy is enabled:

```
switchxxxxxx# show ip mld-proxy interface
* - the switch is the Querier on the interface
IPv6 Forwarding is enabled
IPv6 Multicast Routing is enabled
MLD Proxy is enabled
Global Downstream interfaces protection is disabled
SSM Access List Name: list1
Interface Type Discarding IPv6 Multicast
 vlan 100 upstream
 *vlan 102 downstream enabled
 *vlan 110 downstream default
 vlan 113 downstream disabled
```

**Example 2.** The following is sample output from the `show ipv6 mld-proxy interface` command for given upstream interface:

```
switchxxxxxx# show ipv6 mld-proxy interface vlan 100
* - the switch is the Querier on the interface
IPv6 Forwarding is enabled
IPv6 Multicast Routing is enabled
MLD Proxy is enabled
Global Downstream interfaces protection is disabled
SSM Access List Name:
 vlan 100 is a Upstream interface
Downstream interfaces:
 *vlan 102, *vlan 110, vlan 113
Example 3. The following is sample output from the `show ipv6 mld-proxy interface` command for given downstream interface:

```
switchxxxxxx# show ipv6 mld-proxy interface vlan 102
IPv6 Forwarding is enabled
IPv6 Multicast Routing is enabled
MLD Proxy is enabled
Global Downdstream interfaces protection is disabled
SSM Access List Name: default
vlan 102 is a Downstream interface
The switch is the Querier on vlan 102
Upstream interface: vlan 100
```

Example 4. The following is sample output from the `show ipv6 mld-proxy interface` command for an interface on which IGMP Proxy is disabled:

```
switchxxxxxx# show ipv6 mld-proxy interface vlan 1
IPv6 Forwarding is enabled
IPv6 Multicast Routing is enabled
MLD Proxy is disabled
```
show ipv6 mld-proxy interface
MLD Snooping Commands

This chapter contains the following sections:

- ipv6 mld snooping (Global), on page 904
- ipv6 mld snooping vlan, on page 905
- ipv6 mld snooping querier, on page 906
- ipv6 mld snooping vlan querier, on page 907
- ipv6 mld snooping vlan querier election, on page 908
- ipv6 mld snooping vlan querier version, on page 909
- ipv6 mld snooping vlan mrouter , on page 910
- ipv6 mld snooping vlan mrouter interface, on page 911
- ipv6 mld snooping vlan forbidden mrouter, on page 912
- ipv6 mld snooping vlan static, on page 913
- ipv6 mld snooping vlan immediate-leave, on page 914
- show ipv6 mld snooping groups, on page 915
- show ipv6 mld snooping interface, on page 917
- show ipv6 mld snooping mrouter, on page 918
ipv6 mld snooping (Global)

To enable IPv6 Multicast Listener Discovery (MLD) snooping, use the `ipv6 mld snooping` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping
no ipv6 mld snooping
```

Default Configuration

IPv6 MLD snooping is disabled.

Command Mode

Global Configuration mode

Example

The following example enables IPv6 MLD snooping.

```
switchxxxxxx(config)# ipv6 mld snooping
```
ipv6 mld snooping vlan

To enable MLD snooping on a specific VLAN, use the `ipv6 mld snooping vlan` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

`ipv6 mld snooping vlan vlan-id`

`no ipv6 mld snooping vlan vlan-id`

Parameters

- `vlan-id`—Specifies the VLAN.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

MLD snooping can only be enabled on static VLANs. MLDv1 and MLDv2 are supported.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 2
```
ipv6 mld snooping querier

To enable globally the MLD Snooping querier, use the `ipv6 mld snooping querier` command in Global Configuration mode. To disable the MLD Snooping querier globally, use the `no` form of this command.

Syntax

ipv6 mld snooping querier

no ipv6 mld snooping querier

Default Configuration

Enabled

Command Mode

Global Configuration mode

User Guidelines

To run the MLD Snooping querier on a VLAN, you have enable it globally and on the VLAN.

Example

The following example disables the MLD Snooping querier globally:

```
switchxxxxxx(config)# no ipv6 mld snooping querier
```
ipv6 mld snooping vlan querier

To enable the Internet MLD Snooping querier on a specific VLAN, use the `ipv6 mld snooping vlan querier` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id querier
no ipv6 mld snooping vlan vlan-id querier
```

Parameters

- `vlan-id` — Specifies the VLAN.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

The MLD Snooping querier can be enabled on a VLAN only if MLD Snooping is enabled for that VLAN.

Example

The following example enables the MLD Snooping querier on VLAN 1:

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 querier
```
ipv6 mld snooping vlan querier election

To enable MLD Querier election mechanism of an MLD Snooping querier on a specific VLAN, use the `ipv6 mld snooping vlan querier election` command in Global Configuration mode. To disable Querier election mechanism, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id querier election
no ipv6 mld snooping vlan vlan-id querier election
```

Parameters

- `vlan-id`—Specifies the VLAN.

Default Configuration

Enabled

Command Mode

Global Configuration mode

User Guidelines

Use the `no` form of the `ipv6 mld snooping vlan querier election` command to disable MLD Querier election mechanism on a VLAN.

If the MLD Querier election mechanism is enabled, the MLD Snooping querier supports the standard MLD Querier election mechanism specified in RFC2710 and RFC3810.

If MLD Querier election mechanism is disabled, MLD Snooping Querier delays sending General Query messages for 60 seconds from the time it was enabled. During this time, if the switch did not receive an IGMP query from another Querier - it starts sending General Query messages. Once the switch acts as a Querier, it will stop sending General Query messages if it detects another Querier on the VLAN. In this case, the switch will resume sending General Query messages if it does hear another Querier for Query Passive interval that equals to

\(<\text{Robustness}>*<\text{Query Interval}> + 0.5*<\text{Query Response Interval}>\).

It is recommended to disable MLD Querier election mechanism if there is an IPMv6 Multicast router on the VLAN.

Example

The following example disables MLD Snooping Querier election on VLAN 1:

```
switchxxxxxx(config)# no ipv6 mld snooping vlan 1 querier election
```
ipv6 mld snooping vlan querier version

To configure the IGMP version of an IGMP querier on a specific VLAN, use the `ipv6 mld snooping vlan querier version` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id querier version {1 | 2}
no ipv6 mld snooping vlan vlan-id querier version
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `querier version {1 | 2}`—Specifies the MLD version.

Default Configuration

MLDv1.

Command Mode

Global Configuration mode

Example

The following example sets the version of the MLD Snooping Querier VLAN 1 to 2:

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 querier version 2
```
ipv6 mld snooping vlan mrouter

To enable automatic learning of Multicast router ports, use the `ipv6 mld snooping vlan mrouter` command in Global Configuration mode. To remove the configuration, use the `no` form of this command.

Syntax

```bash
ipv6 mld snooping vlan vlan-id mrouter learn pim-dvmrp
no ipv6 mld snooping vlan vlan-id mrouter learn pim-dvmrp
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `pim-dvmrp`—Learn Multicast router port by PIM, DVMRP and MLD messages.

Default Configuration

Learning `pim-dvmrp` is enabled.

Command Mode

Global Configuration mode

User Guidelines

You can execute the command before the VLAN is created.

Example

```bash
switchxxxxxx(config)# ipv6 mld snooping vlan 1 mrouter learn pim-dvmrp
```
ipv6 mld snooping vlan mrouter interface

To define a port that is connected to a Multicast router port, use the `ipv6 mld snooping mrouter interface` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id mrouter interface interface-list
no ipv6 mld snooping vlan vlan-id mrouter interface interface-list
```

Parameters

- `vlan-id` — Specifies the VLAN.
- `interface-list` — Specifies a list of interfaces. The interfaces can be from one of the following types: port or port-channel.

Default Configuration

No ports defined

Command Mode

Global Configuration mode

User Guidelines

A port that is defined as a Multicast router port receives all MLD packets (reports and queries) as well as all Multicast data.

You can execute the command before the VLAN is created and for a range of ports as shown in the example.

Example

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# ipv6 mld snooping vlan 1 mrouter interface gi1/0/1-4
```
ipv6 mld snooping vlan forbidden mrouter

To forbid a port from being defined as a Multicast router port by static configuration or by automatic learning, use the `ipv6 mld snooping vlan forbidden mrouter` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping  vlan  vlan-id  forbidden  mrouter  interface  interface-list
no ipv6 mld snooping  vlan  vlan-id  forbidden  mrouter  interface  interface-list
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `interface-list`—Specifies list of interfaces. The interfaces can be of one of the following types: Ethernet port or Port-channel.

Default Configuration

No forbidden ports by default

Command Mode

Global Configuration mode

User Guidelines

A port that is forbidden to be defined as a Multicast router port (mrouter port) cannot be learned dynamically or assigned statically.

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 forbidden mrouter interface gi1/0/1
```
ipv6 mld snooping vlan static

To register a IPv6-layer Multicast address to the bridge table, and to add statically ports to the group, use the `ipv6 mld snooping vlan static` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
ipv6 mld snooping vlan vlan-id static ipv6-address [interface interface-list]
no ipv6 mld snooping vlan vlan-id static ipv6-address [interface interface-list]
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `ipv6-address`—Specifies the IP multicast address
- `interface interface-list`—(Optional) Specifies list of interfaces. The interfaces can be from one of the following types: Ethernet port or Port-channel.

Default Configuration

No Multicast addresses are defined.

Command Mode

Global Configuration mode

User Guidelines

Static multicast addresses can only be defined on static VLANs.

You can execute the command before the VLAN is created.

You can register an entry without specifying an interface.

Using the `no` command without a port-list removes the entry.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 static FF12::3 gi1/0/1
```
ipv6 mld snooping vlan immediate-leave

To enable MLD Snooping Immediate-Leave processing on a VLAN, use the `ipv6 mld snooping vlan immediate-leave` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```plaintext
ipv6 mld snooping vlan vlan-id immediate-leave
no ipv6 mld snooping vlan vlan-id immediate-leave
```

Parameters

`vlan-id`—Specifies the VLAN ID value. (Range: 1–4094)

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

When an MLD Leave Group message is received from a host, the system removes the host port from the table entry. After it relays the MLD queries from the Multicast router, it deletes entries periodically if it does not receive any MLD membership reports from the Multicast clients.

MLD snooping Immediate-Leave processing allows the switch to remove an interface that sends a leave message from the forwarding table without first sending out MAC-based general queries to the interface.

You can execute the command before the VLAN is created.

Example

```
switchxxxxxx(config)# ipv6 mld snooping vlan 1 immediate-leave
```
show ipv6 mld snooping groups

To display the multicast groups learned by the MLD snooping, use the `show ipv6 mld snooping groups` EXEC mode command in User EXEC mode.

Syntax

`show ipv6 mld snooping groups [vlan vlan-id] [address ipv6-multicast-address] [source ipv6-address]`

Parameters

- `vlan vlan-id`—(Optional) Specifies the VLAN ID.
- `address ipv6-multicast-address`—(Optional) Specifies the IPv6 multicast address.
- `source ipv6-address`—(Optional) Specifies the IPv6 source address.

Command Mode

User EXEC mode

Default Configuration

Display information for all VLANs and addresses defined on them.

User Guidelines

The Include list contains the ports which are in a forwarding state for this group according to the snooping database. In general, the Exclude list contains the ports which have issued an explicit Exclude for that specific source in a multicast group.

The Reporters That Are Forbidden Statically list contains the list of ports which have asked to receive a multicast flow but were defined as forbidden for that multicast group in a multicast bridge.

Note: Under certain circumstances, the Exclude list may not contain accurate information; for example, in the case when two Exclude reports were received on the same port for the same group but for different sources, the port will not be in the Exclude list but rather in the Include list.

Example

The following example shows the output for `show ipv6 mld snooping groups`.

```
switchxxxxxx# show ipv6 mld snooping groups

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Include Ports</th>
<th>Exclude Ports</th>
<th>Compatibility Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FE80::201:C9FF:FE40:8001</td>
<td></td>
<td>gi1/0/1</td>
<td>gi1/0/2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>FE80::201:C9FF:FE40:8002</td>
<td></td>
<td>gi1/0/2</td>
<td>gi1/0/3</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>FE80::201:C9FF:FE40:8003</td>
<td></td>
<td>gi1/0/4</td>
<td>gi1/0/1</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>FE80::201:C9FF:FE40:8004</td>
<td></td>
<td>gi1/0/10-11</td>
<td>gi1/0/10-11</td>
<td>2</td>
</tr>
</tbody>
</table>

MLD Reporters that are forbidden statically:
```

Cisco Business Switches 350 Series CLI Guide
show ipv6 mld snooping groups

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FF12::3</td>
<td>FE80::201:C9FF:FE40:8001</td>
<td>gi1/0/3</td>
</tr>
<tr>
<td>19</td>
<td>FF12::8</td>
<td>FE80::201:C9FF:FE40:8001</td>
<td>gi1/0/4</td>
</tr>
</tbody>
</table>
show ipv6 mld snooping interface

To display the IPv6 MLD snooping configuration for a specific VLAN, use the `show ipv6 mld snooping interface` EXEC mode command in User EXEC mode.

Syntax

```
show ipv6 mld snooping interface vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN ID.

Default Configuration

Display information for all VLANs.

Command Mode

User EXEC mode

Example

The following example displays the MLD snooping configuration for VLAN 1000.

```
switchxxxxxx# show ipv6 mld snooping interface 1000
MLD Snooping is globally enabled
MLD Snooping Querier is globally enabled
VLAN 1000
  MLD Snooping is enabled
  MLD snooping last immediate leave: enable
  Automatic learning of multicast router ports is enabled
  MLD Snooping Querier is enabled
  MLD Snooping Querier operation state: is running
  MLD Snooping Querier version: 2
  MLD Snooping Querier election is enabled
  MLD snooping robustness: admin 2 oper 2
  MLD snooping query interval: admin 125 sec oper 125 sec
  MLD snooping query maximum response: admin 10 sec oper 10 sec
  MLD snooping last member query counter: admin 2 oper 2
  MLD snooping last member query interval: admin 1000 msec oper 500 msec
  Groups that are in MLD version 1 compatibility mode:
    FF12::3, FF12::8
```
show ipv6 mld snooping mrouter

To display information on dynamically learned Multicast router interfaces for all VLANs or for a specific VLAN, use the `show ipv6 mld snooping mrouter` EXEC mode command in User EXEC mode.

Syntax

`show ipv6 mld snooping mrouter [interface vlan-id]`

Parameters

- `interface vlan-id`—(Optional) Specifies the VLAN ID.

Default Configuration

Display information for all VLANs.

Command Mode

User EXEC mode

Example

The following example displays information on dynamically learned Multicast router interfaces for VLAN 1000:

```
switchxxxxxx# show ipv6 mld snooping mrouter interface 1000
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Dynamic</th>
<th>Static</th>
<th>Forbidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>gi1/0/1</td>
<td>gi1/0/2</td>
<td>gi1/0/3-4</td>
</tr>
</tbody>
</table>

Forbidden

gi1/0/3-4
SNMP Commands

This chapter contains the following sections:

- snmp-server community, on page 920
- snmp-server community-group, on page 922
- snmp-server server, on page 924
- snmp-server source-interface, on page 925
- snmp-server source-interface-ipv6, on page 926
- snmp-server view, on page 927
- snmp-server group, on page 929
- show snmp views, on page 931
- show snmp groups, on page 932
- snmp-server user, on page 934
- show snmp users, on page 936
- snmp-server filter, on page 938
- show snmp filters, on page 939
- snmp-server host, on page 940
- snmp-server engineID local, on page 942
- snmp-server engineID remote, on page 944
- show snmp engineID, on page 945
- snmp-server enable traps, on page 946
- snmp-server trap authentication, on page 947
- snmp-server contact, on page 948
- snmp-server location, on page 949
- snmp-server set, on page 950
- snmp trap link-status, on page 951
- show snmp, on page 952
snmp-server community

To set the community access string (password) that permits access to SNMP commands (v1 and v2), use the `snmp-server community` Global Configuration mode command. This is used for SNMP commands, such as GETs and SETs.

This command configures both SNMP v1 and v2.

To remove the specified community string, use the `no` form of this command.

Syntax

```
snmp-server community community-string [ro | rw | su] [ip-address | ipv6-address] [mask mask | prefix prefix-length] [view view-name] [type {router | oob}]
no snmp-server community community-string [ip-address] [type {router | oob}]
```

Parameters

- **community-string**—Define the password that permits access to the SNMP protocol. (Range: 1–20 characters).
- **ro**—(Optional) Specifies read-only access (default)
- **rw**—(Optional) Specifies read-write access
- **su**—(Optional) Specifies SNMP administrator access
- **ip-address**—(Optional) Management station IP address. The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address.
- **mask**—(Optional) Specifies the mask of the IPv4 address. This is not a network mask, but rather a mask that defines which bits of the packet’s source address are compared to the configured IP address. If unspecified, it defaults to 255.255.255.255. The command returns an error if the mask is specified without an IPv4 address.
- **prefix-length**—(Optional) Specifies the number of bits that comprise the IPv4 address prefix. If unspecified, it defaults to 32. The command returns an error if the prefix-length is specified without an IPv4 address.
- **view view-name**—(Optional) Specifies the name of a view configured using the command `snmp-server view`, on page 927 (no specific order of the command configurations is imposed on the user). The view defines the objects available to the community. It is not relevant for `su`, which has access to the whole MIB. If unspecified, all the objects, except the community-table and SNMPv3 user and access tables, are available. (Range: 1–30 characters)
- **type router**—(Optional) Indicates whether the IP address is on the out-of-band or in-band network.

Default Configuration

No community is defined

Command Mode

Global Configuration mode
User Guidelines

The logical key of the command is the pair (community, ip-address). If ip-address is omitted, the key is (community, All-IPs). This means that there cannot be two commands with the same community, ip address pair.

The view-name is used to restrict the access rights of a community string. When a view-name is specified, the software:

- Generates an internal security-name.
- Maps the internal security-name for SNMPv1 and SNMPv2 security models to an internal group-name.
- Maps the internal group-name for SNMPv1 and SNMPv2 security models to view-name (read-view and notify-view always, and for rw for write-view also).

Example

Defines a password for administrator access to the management station at IP address 1.1.1.121 and mask 255.0.0.0.

```
switchxxxxxx(config)# snmp-server community abcd su 1.1.1.121 mask 255.0.0.0
```
snmp-server community-group

To configure access rights to a user group, use `snmp-server community-group`. The group must exist in order to be able to specify the access rights. This command configures both SNMP v1 and v2.

Syntax

```
snmp-server community-group community-string group-name [ip-address | ipv6-address] [mask mask | prefix prefix-length] [type {router | oob}]
```

Parameters

- **community-string** — Define the password that permits access to the SNMP protocol. (Range: 1–20 characters).
- **group-name** — This is the name of a group configured using `snmp-server group`, on page 929 with v1 or v2 (no specific order of the two command configurations is imposed on the user). The group defines the objects available to the community. (Range: 1–30 characters)
- **ip-address** — (Optional) Management station IP address. The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address.
- **mask** — (Optional) Specifies the mask of the IPv4 address. This is not a network mask, but rather a mask that defines which bits of the packet’s source address are compared to the configured IP address. If unspecified, it defaults to 255.255.255.255. The command returns an error if the mask is specified without an IPv4 address.
- **prefix-length** — (Optional) Specifies the number of bits that comprise the IPv4 address prefix. If unspecified, it defaults to 32. The command returns an error if the prefix-length is specified without an IPv4 address.
- **type router** — (Optional) Indicates whether the IP address is on the out-of-band or in-band network.

Default Configuration

No community is defined

Command Mode

Global Configuration mode

User Guidelines

The `group-name` is used to restrict the access rights of a community string. When a group-name is specified, the software:

- Generates an internal security-name.
- Maps the internal security-name for SNMPv1 and SNMPv2 security models to the group-name.
Example

Defines a password *tom* for the group *abcd* that enables this group to access the management station 1.1.1.121 with prefix 8.

```
snmp-server community-group tom abcd 1.1.1.122 prefix 8
```
snmp-server server

To enable the device to be configured by the SNMP protocol, use the `snmp-server server` Global Configuration mode command. To disable this function, use the `no` form of this command.

Syntax

- `snmp-server server`
- `no snmp-server server`

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# snmp-server server
```
snmp-server source-interface

To specify the interface from which a Simple Network Management Protocol (SNMP) trap originates the informs or traps, use the `snmp-server source-interface` command in Global Configuration mode. To returned to the default, use the `no` form of this command.

Syntax

```
snmp-server source-interface {traps | informs} interface-id
no snmp-server source-interface [traps | informs]
```

Parameters

- `traps`—Specifies the SNMP traps interface.
- `informs`—Specifies the SNMP informs.
- `interface-id`—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

If no parameters are specified in `no snmp-server source-interface`, the default is both traps and informs.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to send an SNMP trap or inform.

Use the `no snmp-server source-interface traps` command to remove the source interface for SNMP traps.

Use the `no snmp-server source-interface informs` command to remove the source interface for SNMP informs.

Use the `no snmp-server source-interface` command to remove the source interface for SNMP traps and informs.

Example

The following example configures the VLAN 10 as the source interface for traps.

```
switchxxxxxx(config)# snmp-server source-interface traps vlan 100
```
snmp-server source-interface-ipv6

To specify the interface from which a Simple Network Management Protocol (SNMP) trap originates the informs or traps, use the `snmp-server source-interface` command in Global Configuration mode. To returned to the default, use the `no` form of this command.

Syntax

```plaintext
snmp-server source-interface-ipv6 {traps | informs} interface-id
no snmp-server source-interface-ipv6 [traps | informs]
```

Parameters

- **traps**—Specifies the SNMP traps interface.
- **informs**—Specifies the SNMP traps informs.
- **interface-id**—Specifies the source interface.

Default Configuration

The IPv6 source address is the IPv6 address of the outgoing interface and selected in accordance with RFC6724. If no parameters are specified in `no snmp-server source-interface`, the default is both traps and informs.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the IPv6 address defined on the interfaces is selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the minimal IPv6 address defined on the source interface with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to send an SNMP trap or inform.

Use the `no snmp-server source-interface-ipv6 traps` command to remove the source IPv6 interface for SNMP traps.

Use the `no snmp-server source-interface-ipv6 informs` command to remove the source IPv6 interface for SNMP informs.

Use the `no snmp-server source-interface-ipv6` command to remove the source IPv6 interface for SNMP traps and informs.

Example

The following example configures the VLAN 10 as the source interface.

```plaintext
switchxxxxxx(config)# snmp-server source-interface-ipv6 traps vlan 100
```
snmp-server view

To create or update an SNMP view, use the `snmp-server view` Global Configuration mode command. To remove an SNMP view, use the `no` form of this command.

Syntax

```
snmp-server view view-name oid-tree {included | excluded}/
no snmp-server view view-name [oid-tree]
```

Parameters

- `view-name`—Specifies the name for the view that is being created or updated. (Length: 1–30 characters)
- `included`—Specifies that the view type is included.
- `excluded`—Specifies that the view type is excluded.
- `oid-tree`—(Optional) Specifies the ASN.1 subtree object identifier to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as `System` and, optionally, a sequence of numbers. Replace a single sub-identifier with the asterisk (*) wildcard to specify a subtree family; for example 1.3.*.4. This parameter depends on the MIB being specified.

Default Configuration

The following views are created by default:

- `Default`—Contains all MIBs except for those that configure the SNMP parameters themselves.
- `DefaultSuper`—Contains all MIBs.

Command Mode

Global Configuration mode

User Guidelines

This command can be entered multiple times for the same view.

The command’s logical key is the pair (view-name, oid-tree). Therefore there cannot be two commands with the same view-name and oid-tree.

The number of views is limited to 64.

Default and DefaultSuper views are reserved for internal software use and cannot be deleted or modified.

Example

The following example creates a view that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interface group (this format is specified on the parameters specified in ifEntry).
switchxxxxxx(config)# snmp-server view user-view system included
switchxxxxxx(config)# snmp-server view user-view system.7 excluded
switchxxxxxx(config)# snmp-server view user-view ifEntry.*.1 included
snmp-server group

To configure an SNMP group, use the `snmp-server group` Global Configuration mode command. Groups are used to map SNMP users to SNMP views. To remove an SNMP group, use the `no` form of this command.

Syntax

```
snmp-server group groupname {v1 | v2 | v3 /noauth | auth | priv} [notify notifyview] [read readview] [write writeview]

no snmp-server group groupname {v1 | v2 | v3 /noauth | auth | priv}
```

Parameters

- **group groupname**—Specifies the group name. (Length: 1–30 characters)
- **v1**—Specifies the SNMP Version 1 security model.
- **v2**—Specifies the SNMP Version 2 security model.
- **v3**— Specifies the SNMP Version 3 security model.
- **noauth**—Specifies that no packet authentication will be performed. Applicable only to the SNMP version 3 security model.
- **auth**—Specifies that packet authentication without encryption will be performed. Applicable only to the SNMP version 3 security model.
- **priv**—Specifies that packet authentication with encryption will be performed. Applicable only to the SNMP version 3 security model. Note that creation of SNMPv3 users with both authentication and privacy must be done in the GUI. All other users may be created in the CLI.
- **notify notifyview**—(Optional) Specifies the view name that enables generating informs or a traps. An inform is a trap that requires acknowledgment. Applicable only to the SNMP version 3 security model. (Length: 1–32 characters)
- **read readview**—(Optional) Specifies the view name that enables viewing only. (Length: 1–32 characters)
- **write writeview**—(Optional) Specifies the view name that enables configuring the agent. (Length: 1–32 characters)

Default Configuration

No group entry exists.

If `notifyview` is not specified, the notify view is not defined.

If `readview` is not specified, all objects except for the community-table and SNMPv3 user and access tables are available for retrieval.

If `writeview` is not specified, the write view is not defined.

Command Mode

Global Configuration mode
User Guidelines

The group defined in this command is used in the `snmp-server user`, on page 934 command to map users to the group. These users are then automatically mapped to the views defined in this command.

The command logical key is `(groupname, snmp-version, security-level)`. For snmp-version v1/v2 the security-level is always `noauth`.

Example

The following example attaches a group called `user-group` to SNMPv3, assigns the encrypted security level to the group, and limits the access rights of a view called `user-view` to read-only. User `tom` is then assigned to `user-group`. So that user `tom` has the rights assigned in `user-view`.

```
switchxxxxxx(config)# snmp-server group user-group v3 priv read user-view
switchxxxxxx(config)# snmp-server user tom user-group v3
```
show snmp views

To display SNMP views, use the **show snmp views** Privileged EXEC mode command.

Syntax

```
show snmp views [viewname]
```

Parameters

viewname—(Optional) Specifies the view name. (Length: 1–30 characters)

Default Configuration

If `viewname` is not specified, all views are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the configured SNMP views.

```
switchxxxxxx# show snmp views

<table>
<thead>
<tr>
<th>Name</th>
<th>OID Tree</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>iso</td>
<td>Included</td>
</tr>
<tr>
<td>Default</td>
<td>snmpNotificationMIB</td>
<td>Excluded</td>
</tr>
<tr>
<td>DefaultSuper</td>
<td>iso</td>
<td>Included</td>
</tr>
</tbody>
</table>
```

show snmp groups

To display the configured SNMP groups, use the `show snmp groups` Privileged EXEC mode command.

Syntax

`show snmp groups [groupname]`

Parameters

- **groupname**—(Optional) Specifies the group name. (Length: 1–30 characters)

Default Configuration

Display all groups.

Command Mode

Privileged EXEC mode

Example

The following example displays the configured SNMP groups:

```
switchxxxxxx# show snmp groups
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Security</th>
<th>Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-group</td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>managers-group</td>
<td>V2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>no_auth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>no_auth</td>
<td></td>
</tr>
</tbody>
</table>

The following table describes significant fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Group name.</td>
</tr>
<tr>
<td>Security</td>
<td>Model</td>
</tr>
<tr>
<td></td>
<td>SNMP model in use (v1, v2 or v3).</td>
</tr>
<tr>
<td>Security</td>
<td>Level</td>
</tr>
<tr>
<td></td>
<td>Packet security. Applicable to SNMP v3 security only</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Views</td>
<td>View name enabling viewing the agent contents. If unspecified, all objects except the community-table and SNMPv3 user and access tables are available.</td>
</tr>
<tr>
<td>Write</td>
<td>View name enabling data entry and managing the agent contents.</td>
</tr>
<tr>
<td>Notify</td>
<td>View name enabling specifying an inform or a trap.</td>
</tr>
</tbody>
</table>
To configure a new SNMP user, use the `snmp-server user` Global Configuration mode command. To remove a user, use the `no` form of the command. To enter the authentication and privacy passwords in encrypted form (see SSD), use the `encrypted` form of this command.

Syntax

```
snmp-server user username groupname {v1 | v2c | [remote host] v3[auth { sha | sha224 | sha256 | sha384 | sha512} auth-password [priv priv-password]]}
```

```
encrypted snmp-server user username groupname {v1 | v2c | [remote host] v3[auth { sha | sha224 | sha256 | sha384 | sha512} encrypted-auth-password [priv encrypted-priv-password]]}
```

```
no snmp-server user username {v1 | v2c | [remote host] v3}
```

Parameters

- **username**—Define the name of the user on the host that connects to the agent. (Range: Up to 20 characters).
- **groupname**—The name of the group to which the user belongs. The group should be configured using the command `snmp-server group`, on page 929 with v1 or v2c parameters (no specific order of the 2 command configurations is imposed on the user). (Range: Up to 30 characters)
- v1—Specifies that the user is a v1 user.
- v2c—Specifies that the user is a v2c user.
- v3—Specifies that the user is a v3 user.
- remote host—(Optional) IP address (IPv4, IPv6 or IPv6z) or host name of the remote SNMP host.
- auth—(Optional) Specifies which authentication level is to be used.
 - Sha—(Optional) Specifies the HMAC-SHA-96 authentication level.
 - Sha224—(Optional) Specifies the HMAC-SHA-224-128 authentication level.
 - Sha256—(Optional) Specifies the HMAC-SHA-256-192 authentication level.
 - Sha384—(Optional) Specifies the HMAC-SHA-384-256 authentication level.
 - Sha512—(Optional) Specifies the HMAC-SHA-512-384 authentication level.
- auth-password—(Optional) Specifies the authentication password. Range: Up to 32 characters.
- encrypted-auth-password—(Optional) Specifies the authentication password in encrypted format.
- priv priv-password—(Optional) specifies private (priv) encryption and the privacy password (Range: Up to 32 characters). The encryption algorithm used is Advanced Encryption Standard (AES) privacy algorithm in Cipher Feedback Mode (CFB) using 128 bits encryption keys).
- encrypted-priv-password—(Optional) Specifies the privacy password in encrypted format.
Default Configuration

No group entry exists.

Command Mode

Global Configuration mode

User Guidelines

For SNMP v1 and v2, this command performs the same actions as `snmp-server community-group`, except that `snmp-server community-group` configures both v1 and v2 at the same time. With this command, you must perform it once for v1 and once for v2.

A local SNMP EngineID must be defined in order to add SNMPv3 users to the device. For remote hosts users a remote SNMP EngineID is also required.

Changing or removing the value of `snmpEngineID` deletes the SNMPv3 users’ database.

The logical key of the command is `username`.

Configuring a remote host is required in order to send informs to that host, because an inform is a trap that requires acknowledgment. A configured remote host is also able to manage the device (besides getting the informs).

To configure a remote user, specify the IP address for the remote SNMP agent of the device where the user resides. Also, before you configure remote users for a particular agent, configure the SNMP engine ID, using the `snmp-server engineID remote`, on page 944 command. The remote agent's SNMP engine ID is needed when computing the authentication and privacy digests from the password. If the remote engine ID is not configured first, the configuration command fails.

Since the same group may be defined several times, each time with different version or different access level (noauth, auth or auth & priv), when defining a user it is not sufficient to specify the group name, rather you must specify group name, version and access level for complete determination of how to handle packets from this user.

Example

This example assigns user `tom` to group `abcd` using SNMP v1 and v2c. User `jerry` is assigned to group `efgh` using SNMP v3.

```
switchxxxxxxx(config)# snmp-server user tom acbd v1
switchxxxxxxx(config)# snmp-server user tom acbd v2c
switchxxxxxxx(config)# snmp-server user jerry efgh v3 auth sha pass1234
```
show snmp users

To display the configured SNMP users, use the `show snmp users` Privileged EXEC mode command.

Syntax

```
show snmp users [username]
```

Parameters

`username`—(Optional) Specifies the user name. (Length: 1–30 characters)

Default Configuration

Display all users.

Command Mode

Privileged EXEC mode

Example

The following examples displays the configured SNMP users:

```
switchxxxxxx# show snmp users
User name : u1rem
  Group name : group1
  Authentication Method : None
  Privacy Method : None
  Remote : 11223344556677
  Auth Password :
  Priv Password :
User name : qqq
  Group name : www
  Authentication Method : SHA256
  Privacy Method : None
  Remote :
  Auth Password : helloworld1234567890987665
  Priv Password :
User name : hello
  Group name : world
  Authentication Method : SHA256
  Privacy Method : AES-128
  Remote :
  Auth Password (encrypted) : Z/tc3UF5j0YfkmXm8xeMvc10Q6Lq4GOACGGYLrdAgOE6XQKTC
    qMrngWuHraR1zj
  Priv Password (encrypted) : kN1ZHzSLo6WwzlkuZVzhLOo1gISwaaNf7Vq6yLBpJdS4N68tL
    1tbT85z2H4c4Q4o
User name : u1noAuth
  Group name : group1
  Authentication Method : None
  Privacy Method : None
  Remote :
  Auth Password (encrypted) :
  Priv Password (encrypted) :
User name : u1OnlyAuth
  Group name : group1
  Authentication Method : SHA1
```
Privacy Method : None
Remote :
Auth Password (encrypted): 8nPzy2hzuba9pG3iiC/q0451RynUn7kq94L9WORFrRMs-
Priv Password (encrypted):
snmp-server filter

To create or update an SNMP server notification filter, use the `snmp-server filter` Global Configuration mode command. To remove a notification filter, use the `no` form of this command.

Syntax

```
[global-configuration]
snmp-server filter  filter-name  oid-tree  [included | excluded]
no  snmp-server filter  filter-name  [oid-tree]
```

Parameters

- `filter-name`—Specifies the label for the filter record that is being updated or created. The name is used to reference the filter in other commands. (Length: 1–30 characters)
- `oid-tree`—Specifies the ASN.1 subtree object identifier to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as System. Replace a single sub-identifier with the asterisk (*) wildcard to specify a subtree family; for example, 1.3.*.4.
- `included`—Specifies that the filter type is included.
- `excluded`—Specifies that the filter type is excluded.

Default Configuration

No view entry exists.

Command Mode

Global Configuration mode

User Guidelines

This command can be entered multiple times for the same filter. If an object identifier is included in two or more lines, later lines take precedence. The command's logical key is the pair (filter-name, oid-tree).

Example

The following example creates a filter that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interfaces group (this format depends on the parameters defined in ifEntry).

```
switchxxxxxx(config)# snmp-server filter  f1 system included
switchxxxxxx(config)# snmp-server filter  f2 system.7 excluded
switchxxxxxx(config)# snmp-server filter  f3 ifEntry.*.1 included
```
show snmp filters

To display the defined SNMP filters, use the **show snmp filters** Privileged EXEC mode command.

Syntax

```
show snmp filters [filtername]
```

Parameters

* filtername—Specifies the filter name. (Length: 1–30 characters)

Default Configuration

If filtername is not defined, all filters are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays the configured SNMP filters.

```
switchxxxxxx# show snmp filters user-filter

<table>
<thead>
<tr>
<th>Name</th>
<th>OID Tree</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-filter</td>
<td>1.3.6.1.2.1.1.1</td>
<td>Included</td>
</tr>
<tr>
<td>user-filter</td>
<td>1.3.6.1.2.1.1.7</td>
<td>Excluded</td>
</tr>
<tr>
<td>user-filter</td>
<td>1.3.6.1.2.1.2.2.1.*.1</td>
<td>Included</td>
</tr>
</tbody>
</table>
```
To configure the host for SNMP notifications: (traps/informs), use the `snmp-server host` Global Configuration mode command. To remove the specified host, use the `no` form of this command.

Syntax

```
snmp-server host [host-ip | hostname] [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [filter filtername] [timeout seconds] [retries retries]

no snmp-server host [ip-address | hostname] [traps | informs] [version {1 | 2c | 3}]
```

Parameters

- **host-ip**—IP address of the host (the targeted recipient). The default is all IP addresses. This can be an IPv4 address, IPv6 or IPv6z address.
- **hostname**—Hostname of the host (the targeted recipient). (Range: 1–158 characters. Maximum label size of each part of the host name: 63)
- **trap**—(Optional) Sends SNMP traps to this host (default).
- **informs**—(Optional) Sends SNMP informs to this host. An inform is a trap that requires acknowledgement. Not applicable to SNMPv1.
- **version 1**—(Optional) SNMPv1 traps are used.
- **version 2c**—(Optional) SNMPv2 traps or informs are used
- **version 3**—(Optional) SNMPv2 traps or informs are used
- Authentication options are available for SNMP v3 only. The following options are available:
 - **noauth**—(Optional) Specifies no authentication of a packet.
 - **auth**—(Optional) Specifies authentication of a packet without encryption.
 - **priv**—(Optional) Specifies authentication of a packet with encryption.
- **community-string**—Password-like community string sent with the notification operation. (Range: 1–20 characters). For v1 and v2, any community string can be entered here. For v3, the community string must match the user name defined in snmp-server user (ISCLI) command for v3.
- **udp-port port**—(Optional) UDP port of the host to use. The default is 162. (Range: 1–65535)
- **filter filtername**—(Optional) Filter for this host. If unspecified, nothing is filtered. The filter is defined using `snmp-server filter` (no specific order of commands is imposed on the user). (Range: Up to 30 characters)
- **timeout seconds**—(Optional) (For informs only) Number of seconds to wait for an acknowledgment before resending informs. The default is 15 seconds. (Range: 1–300)
- **retries retries**—(Optional) (For informs only) Maximum number of times to resend an inform request, when a response is not received for a generated message. The default is 3. (Range: 0–255)
Default Configuration

Version: SNMP V1
Type of notification: Traps
udp-port: 162
If informs are specified, the default for retries: 3
Timeout: 15

Command Mode

Global Configuration mode

User Guidelines

The logical key of the command is the list (ip-address/hostname, traps/informs, version).

When configuring SNMP v1 or v2 notifications recipient, the software automatically generates a notification view for that recipient for all MIBs.

For SNMPv3 the software does not automatically create a user or a notify view.

, use the commands snmp-server user (ISCLI) and snmp-server group to create a user or a group.

Example

The following defines a host at the IP address displayed.

```sh
switchxxxxxx(config)# snmp-server host 1.1.1.121 abc
```
snmp-server engineID local

To specify the SNMP engineID on the local device for SNMP v3, use the `snmp-server engineID local` Global Configuration mode command. To remove this engine ID, use the `no` form of this command.

Syntax

```
snmp-server engineID local {engineid-string | default}

no snmp-server engineID local
```

Parameters

- **engineid-string**—Specifies a concatenated hexadecimal character string identifying the engine ID. Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. If an odd number of hexadecimal digits are entered, the system automatically prefixes the digit 0 to the string. (Length: 5–32 characters, 9–64 hexadecimal digits)

- **default**—Specifies that the engine ID is created automatically based on the device MAC address.

Default Configuration

The default engine ID is defined per standard as:

- First 4 octets: First bit = 1, the rest is the allocated IANA Enterprise number.
- Fifth octet: Set to 3 to indicate the MAC address that follows.
- Last 6 octets: The device MAC address.

Command Mode

Global Configuration mode

User Guidelines

To use SNMPv3, an engine ID must be specified for the device. Any ID can be specified or the default string, which is generated using the device MAC address, can be used.

As the engineID should be unique within an administrative domain, the following guidelines are recommended:

- Configure a non-default EngineID, and verify that it is unique within the administrative domain.
- Changing or removing the value of `snmpEngineID` deletes the SNMPv3 users database.
- The SNMP EngineID cannot be all 0x0 or all 0xF or 0x00000001.

Example

The following example enables SNMPv3 on the device and sets the device local engine ID to the default value.

```
switchxxxxxx(config)# snmp-server engineid local default
```

The engine-id must be unique within your administrative domain.
Do you wish to continue? [Y/N] Y
The SNMPv3 database will be erased. Do you wish to continue? [Y/N] Y
snmp-server engineID remote

To specify the SNMP engine ID of a remote SNMP device, use the `snmp-server engineID remote` Global Configuration mode command. To remove the configured engine ID, use the `no` form of this command.

Syntax

```
snmp-server engineID remote ip-address engineid-string
no snmp-server engineID remote ip-address
```

Parameters

- **ip-address** — IPv4, IPv6 or IPv6z address of the remote device.
- **engineid-string** — The character string that identifies the engine ID. The engine ID is a concatenated hexadecimal string. Each byte in hexadecimal character strings is two hexadecimal digits. Each byte can be separated by a period or colon. If the user enters an odd number of hexadecimal digits, the system automatically prefixes the hexadecimal string with a zero. (Range: engineid-string 5–32 characters. 9–64 hexadecimal digits)

Default Configuration

The remote engineID is not configured by default.

Command Mode

Global Configuration mode

User Guidelines

A remote engine ID is required when an SNMP version 3 inform is configured. The remote engine ID is used to compute the security digest for authenticating and encrypting packets sent to a user on the remote host.

Example

```
switchxxxxxx(config)# snmp-server engineID remote 1.1.1.1 11:AB:01:CD:23:44
```
show snmp engineID

To display the local SNMP engine ID, use the `show snmp engineID` Privileged EXEC mode command.

Syntax

`show snmp engineID`

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

The following example displays the SNMP engine ID.

```
switchxxxxxx# show snmp engineID
Local SNMP engineID: 08009009020C0B099C075878
IP address Remote SNMP engineID
----------------- -------------------------
172.16.1.1 08009009020C0B099C075879
```
snmp-server enable traps

To enable the device to send SNMP traps, use the `snmp-server enable traps` Global Configuration mode command. To disable all SNMP traps, use the `no` form of the command.

Syntax

```
snmp-server enable traps
no snmp-server enable traps
```

Default Configuration

SNMP traps are enabled.

Command Mode

Global Configuration mode

User Guidelines

If `no snmp-server enable traps` has been entered, you can enable failure traps by using `snmp-server trap authentication`, on page 947 as shown in the example.

Example

The following example enables SNMP traps except for SNMP failure traps.

```
switchxxxxxx(config)# snmp-server enable traps
switchxxxxxx(config)# no snmp-server trap authentication
```
snmp-server trap authentication

To enable the device to send SNMP traps when authentication fails, use the `snmp-server trap authentication` Global Configuration mode command. To disable SNMP failed authentication traps, use the `no` form of this command.

Syntax

`snmp-server trap authentication`

`no snmp-server trap authentication`

Parameters

This command has no arguments or keywords.

Default Configuration

SNMP failed authentication traps are enabled.

Command Mode

Global Configuration mode

Example

The following example disables all SNMP traps and enables only failed authentication traps.

```
switchxxxxxx(config)# no snmp-server enable traps
switchxxxxxx(config)# snmp-server trap authentication
```
snmp-server contact

To set the value of the system contact (sysContact) string, use the `snmp-server contact` Global Configuration mode command. To remove the system contact information, use the `no` form of the command.

Syntax

```plaintext
snmp-server contact text
no snmp-server contact
```

Parameters

- `text`—Specifies system contact information. (Length: 1–160 characters)

Default Configuration

None

Command Mode

Global Configuration mode

Example

The following example sets the system contact information to Technical_Support.

```
switchxxxxxx(config)# snmp-server contact Technical_Support
```
snmp-server location

To set the value of the system location string, use the `snmp-server location` Global Configuration mode command. To remove the location string, use the `no` form of this command.

Syntax

`snmp-server location text`

`no snmp-server location`

Parameters

`text`—Specifies the system location information. (Length: 1–160 characters)

Default Configuration

None

Command Mode

Global Configuration mode

Example

The following example sets the device location to New_York.

```
switchxxxxxx(config)# snmp-server location New_York
```
To define SNMP MIB commands in the configuration file if a MIB performs an action for which there is no corresponding CLI command, use the `snmp-server set` Global Configuration mode command.

Syntax

```
snmp-server set variable-name name value [name2 value2...]
```

Parameters

- **variable-name**—Specifies an SNMP MIB variable name, which must be a valid string.
- **name value**—Specifies a list of names and value pairs. Each name and value must be a valid string. In the case of scalar MIBs, there is only a single name-value pair. In the case of an entry in a table, there is at least one name-value pair, followed by one or more fields.

Command Mode

Global Configuration mode

User Guidelines

Although the CLI can set any required configuration, there might be a situation where an SNMP user sets a MIB variable that does not have an equivalent CLI command.

Example

The following example configures the scalar MIB sysName with the value TechSupp.

```
switchxxxxxx(config)# snmp-server set sysName sysname TechSupp
```
snmp trap link-status

To enable link-status generation of SNMP traps, use the `snmp trap link-status` Interface Configuration mode command. To disable generation of link-status SNMP traps, use the `no` form of this command.

Syntax

```
snmp trap link-status
no snmp trap link-status
```

Parameters

This command has no arguments or keywords.

Default Configuration

Generation of SNMP link-status traps is enabled.

Command Mode

Interface Configuration mode

Example

The following example disables generation of SNMP link-status traps.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# # no snmp trap link-status
```
show snmp

To display the SNMP status, use the **show snmp** Privileged EXEC mode command.

Syntax

`show snmp`

Parameters

This command has no arguments or keywords

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays the SNMP communications status.

```
switchxxxxxx# show snmp
SNMP is enabled
SNMP traps Source IPv4 interface: vlan 1
SNMP informs Source IPv4 interface: vlan 11
SNMP traps Source IPv6 interface: vlan 10
SNMP informs Source IPv6 interface:

<table>
<thead>
<tr>
<th>Community-String</th>
<th>Community-Access</th>
<th>View name</th>
<th>IP Address</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>read only</td>
<td>user-view</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>private</td>
<td>read write</td>
<td>Default</td>
<td>172.16.1.1</td>
<td>10</td>
</tr>
<tr>
<td>private</td>
<td>su</td>
<td>DefaultSuper</td>
<td>172.16.1.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Community-string</th>
<th>Group name</th>
<th>IP Address</th>
<th>Mask</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>user-group</td>
<td>All</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traps are enabled.
Authentication trap is enabled.
Version 1,2 notifications

<table>
<thead>
<tr>
<th>Target Address</th>
<th>Type</th>
<th>Community</th>
<th>Version</th>
<th>UDP Port</th>
<th>Filter Name</th>
<th>TO Sec</th>
<th>Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.122.173.42</td>
<td>Trap</td>
<td>public</td>
<td>2</td>
<td>162</td>
<td></td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>192.122.173.42</td>
<td>Inform</td>
<td>public</td>
<td>2</td>
<td>162</td>
<td></td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

Version 3 notifications
```
The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-string</td>
<td>The community access string permitting access to SNMP.</td>
</tr>
<tr>
<td>Community-access</td>
<td>The permitted access type—read-only, read-write, super access.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The management station IP Address.</td>
</tr>
<tr>
<td>Target Address</td>
<td>The IP address of the targeted recipient.</td>
</tr>
<tr>
<td>Version</td>
<td>The SNMP version for the sent trap.</td>
</tr>
</tbody>
</table>

System Contact: Robert
System Location: Marketing
show snmp
PHY Commands

This chapter contains the following sections:

- test cable-diagnostics tdr, on page 956
- show cable-diagnostics tdr, on page 957
- show cable-diagnostics cable-length, on page 958
- show fiber-ports optical-transceiver, on page 959
test cable-diagnostics tdr

To use Time Domain Reflectometry (TDR) technology to diagnose the quality and characteristics of a copper cable attached to a port, use the test cable-diagnostics tdr Privileged EXEC mode command.

Syntax

test cable-diagnostics tdr interface interface-id

Parameters

interface-id—(Optional) Specifies an Ethernet port ID.

Command Mode

Privileged EXEC mode

User Guidelines

This command does not work on fiber ports (if they exist on the device). The port to be tested should be shut down during the test, unless it is a combination port with fiber port active. In this case, it does not need to be shut down, because the test does not work on fiber ports.

The maximum length of cable for the TDR test is 120 meters.

Example 1 - Test the copper cables attached to port gi1/0/1 (a copper port).

switchxxxxxx# test cable-diagnostics tdr interface gi1/0/1
Cable is open at 64 meters

Example 2 - Test the copper cables attached to port 2 (a combo port with fiber active).

switchxxxxxx# test cable-diagnostics tdr interface gi1/0/2
Fiber ports are not supported
show cable-diagnostics tdr

To display information on the last Time Domain Reflectometry (TDR) test performed on all copper ports or on a specific copper port, use the `show cable-diagnostics tdr` Privileged EXEC mode command.

Syntax

```
show cable-diagnostics tdr [interface interface-id]
```

Parameters

- `interface-id`—(Optional) Specify an Ethernet port ID.

Command Mode

Privileged EXEC mode

User Guidelines

The maximum length of cable for the TDR test is 120 meters.

Example

The following example displays information on the last TDR test performed on all copper ports.

```
switchxxxxxx# show cable-diagnostics tdr

<table>
<thead>
<tr>
<th>Port</th>
<th>Result</th>
<th>Length [meters]</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Short</td>
<td>50</td>
<td>13:32:00 23 July 2010</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Test has not been performed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Open</td>
<td>64</td>
<td>13:32:00 23 July 2010</td>
</tr>
</tbody>
</table>
```
show cable-diagnostics cable-length

To display the estimated copper cable length attached to all ports or to a specific port, use the `show cable-diagnostics cable-length` Privileged EXEC mode command.

Syntax

`show cable-diagnostics cable-length [interface interface-id]`

Parameters

- `interface-id` — (Optional) Specify an Ethernet port ID.

Command Mode

Privileged EXEC mode

User Guidelines

The port must be active. The cable length results are not available if link is running at 100Mbps. The cable length results provided with this command may be effected if Green Ethernet Short Reach feature is enabled on the interface.

Example

The following example displays the estimated copper cable length attached to all ports.

```
switchxxxxxx# show cable-diagnostics cable-length

<table>
<thead>
<tr>
<th>Port</th>
<th>Length [meters]</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>&lt; 50</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Copper not active</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>110-140</td>
</tr>
</tbody>
</table>
```
show fiber-ports optical-transceiver

To display the optical transceiver diagnostics, use the `show fiber-ports optical-transceiver` Privileged EXEC mode command.

Syntax

`show fiber-ports optical-transceiver [interface interface-id]`

Parameters

- `interface-id`—(Optional) Specify an Ethernet port ID.

Default Configuration

All ports are displayed. If detailed is not used, only present ports are displayed.

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show fiber-ports optical-transceiver
              Port     Temp  Voltage Current  Output  Input  LOS                  
              [C]     [Volt] [mA]     [mA]      [mWatt] [mWatt]                  
---------- ------ ------- ------- ------- ------- ------- 
  gi1/0/1   Copper          28 3.32 7.26 3.53 3.68 No
  gi1/0/2   Copper          29 3.33 6.50 3.53 3.71 No
  gi1/0/3   Copper          28 3.32 7.26 3.53 3.68 No
  gi1/0/4   Copper          29 3.33 6.50 3.53 3.71 No
```

Temp - Internally measured transceiver temperature
Voltage - Internally measured supply voltage
Current - Measured TX bias current
Output Power - Measured TX output power in milliWatts
Input Power - Measured RX received power in milliWatts
LOS - Loss of signal
N/A - Not Available, N/S - Not Supported, W - Warning, E - Error
show fiber-ports optical-transceiver
PnP Commands

This chapter contains the following sections:

- pnp device, on page 962
- pnp discovery timeout, on page 963
- pnp enable, on page 964
- pnp reconnect interval, on page 965
- pnp resume, on page 966
- pnp transport, on page 967
- pnp watchdog timeout, on page 969
- show pnp, on page 970
pnp device

To define the device username and the password, use the `pnp device` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
pnp device username  username password  password
encrypted pnp device username  username password  encrypted-password
no pnp device
```

Parameters

- `username`—Specifies device user name (range: 1-64 characters).
- `password`—Specifies device password (range: 1-64 characters).
- `encrypted-password`—Specifies encrypted device password.

Default Configuration

N/A

Command Mode

Global Configuration mode

User Guidelines

Use the `pnp device` command to configure a username and a password used in each PnP message sent by the PnP agent to a PnP server.

Example

The following example configures device name and password:

```
switchxxxxxx(config)# pnp device username sjohn password Tan123
```
pnp discovery timeout

To define the PnP agent discovery timeout in seconds and the exponential factor, use the `pnp discovery timeout` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
pnp discovery timeout timeout exponential-factor max-timeout
no pnp discovery timeout
```

Parameters

- `timeout`—Specifies the time to wait, in seconds, before attempting to discovery after a discovery is failed. The range is from 1 to 2000000.
- `exponential-factor`—Exponential factor value is the value that triggers the discovery attempt exponentially. The range is from 1 to 9.
- `max-timeout`—Specifies the maximum value of the timeout. The range is from 1 to 2000000.

Default Configuration

- `timeout`—60 seconds
- `exponential-factor`—3
- `max-timeout`—540 seconds

Command Mode

Global Configuration mode

User Guidelines

Use the `pnp discovery timeout` command to configure a discovery timeout in seconds and an exponential factor. The following formula is used to calculate the next timeout using the previous one:

```
next-timeout = (previous-timeout*exponential-factor < max-timeout) ?
previous-timeout*exponential-factor : max-timeout;
```

Example

The following example configures the discovery timeout and factor:

```
switchxxxxxx(config)# pnp discovery timeout 100 2 800
```
pnp enable

To enable the PnP agent, use the `pnp enable` command in Global Configuration mode. To disable the PnP agent, use the `no` form of this command.

Syntax

```
pnp enable
no pnp enable
```

Default Configuration

PnP agent is enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the command to enable the PnP agent.

Example

The following example disables the PnP agent:

```
switchxxxxxx(config)# no pnp enable
```
pnp reconnect interval

To define the PnP agent interval between sequential PnP sessions, use the `pnp reconnect interval` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

`pnp reconnect interval timeout`

`no pnp reconnect interval`

Parameters

- `timeout`—Specifies the interval in seconds time before attempting to reconnect the session after a connection is lost. The range is from 1 to 2000000. The default is 30

Default Configuration

30 seconds

Command Mode

Global Configuration mode

User Guidelines

Use the `pnp reconnect interval` command to configure an interval between PnP sessions.

Example

The following example configures PnP session interval:

```
switchxxxxxx(config)# pnp interval reconnect interval 100
```
To resume the PnP agent, use the `pnp resume` command in Global Configuration mode.

Syntax

```
pnp resume
```

Default Configuration

PnP agent is enabled

Command Mode

Global Configuration mode

User Guidelines

Use the `pnp resume` command, to take out immediately the PnP agent from a waiting state:

- From the Discovery Waiting state to the Discovery state OR
- From the PnP Session Waiting state to the PnP Session state

Example

The following example resumes the PnP Server discovery:

```
switchxxxxxx(config)# pnp resume
```
pnp transport

To define the PnP transport, use the **pnp transport** command in Global Configuration mode. To restore the default configuration, use the **no** form of this command.

Syntax

```
pnp transport {http | https} ip-address [port port-number]
no pnp transport
```

Parameters

- **http | https**—Specifies the transport protocol.
- **ip-address**—Specifies the IPv4 address or IPv6 address, or DNS name of the PnP server.
- **port-number**—Specifies the TCP port of the PnP server. If the parameter is not defined then the following default value is applied:
 - **HTTP**—80
 - **HTTPS**—443

Default Configuration

- DHCP Option 43
- DNS:
 - PnP Server IP Address—pnpserver
 - Protocol—HTTP
 - Port—80
- Cisco Cloud (Default):
 - PnP Server IP Address—devicehelper.cisco.com
 - Protocol—HTTPS
 - Port—443

Command Mode

Global Configuration mode

User Guidelines

Use the **pnp transport** command to configure a transport protocol on which the PnP protocol is running.

Example

The following example configures the PnP transport:
switchxxxxxx(config)# pnp transport http 145.1.3.4
pnp watchdog timeout

To define the PnP agent watchdog timeout, use the `pnp watchdog timeout` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
pnp watchdog timeout timeout
no pnp watchdog timeout
```

Parameters

- `timeout`—Specifies the time to wait a reply from a PnP or File server. The range is from 1 to 180.

Default Configuration

60 seconds

Command Mode

Global Configuration mode

User Guidelines

Use the `pnp watchdog timeout` command to configure a watchdog timeout in seconds.

Example

The following example configures the watchdog timeout:

```
switchxxxxxx(config)# pnp watchdog timeout 120
```
show pnp

To display the PnP agent information, use the show pnp command in Privileged EXEC mode.

Syntax

show pnp

Command Mode

Privileged EXEC mode

User Guidelines

Use the command to display information of the PnP agent.

Example 1. The following example displays PnP agent information when the PnP agent is disabled:

```
switchxxxxxx# show pnp
Administrative status: disabled
Operational status:
PnP Agent state:
Transport protocol: HTTP
Source Ip address:
TCP port: 80 (default)
Username:
Password’s MD5 digest:
Discovery
  Timeout: 60 seconds (default)
  Exponential Factor: 3 (default)
  Maximum Timeout: 540 seconds
PnP Session Reconnection Interval:
  Current:
  >Default: 60 sec
  Manual Configuration:
  PnP:
PnP Watchdog Timeout: 60 seconds
```

Example 2. The following example displays PnP agent information when the PnP agent is not ready:

```
switchxxxxxx# show pnp
Administrative status: enabled
Operational status: notReady (No PnP Server IP Address)
PnP Agent state:
Transport protocol: HTTP (from DHCP Option 43)
Server IP address:
Source Ip address:
TCP port: 80 (default)
Username:atre1234c (from DHCP Option 43)
Password’s MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery
  Timeout: 60 seconds (default)
  Exponential Factor: 3 (default)
  Maximum Timeout: 540 seconds
PnP Session Reconnection Interval:
  Current:
  >Default: 60 sec
  Manual Configuration:
  PnP:
PnP Watchdog Timeout: 60 seconds
```
Example 3. The following example displays PnP agent information when the PnP agent is enabled in the PnP Session state:

```
switchxxxxxx# show pnp
Administrative status: enabled
Operational status: ready
PnP Agent state: PnP Session
Transport protocol: HTTP (from DHCP Option 43)
Server IP address: 176.1.1.1 (from DHCP Option 43)
Source Ip address: 
TCP port: 80 (default)
Username:atre1234c (from DHCP Option 43)
Password's MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery Timeout: 60 seconds (default)
Discovery Exponential Factor: 3 (default)
Discovery Maximum Timeout: 540 seconds
PnP Session Interval Timeout: 60 (default)
PnP Watchdog Timeout: 60 seconds
```

Example 4. The following example displays PnP agent information when the PnP agent is enabled in the PnP Session state and the PnP server was changed:

```
switchxxxxxx# show pnp
Administrative status: enabled
Operational status: ready
PnP Agent state: PnP Session
Transport protocol: HTTP (from DHCP Option 43)
Server IP address: 176.1.1.1 (from DHCP Option 43)
Next session: 167.21.3.4 (from DHCP Option 43)
Source Ip address: 
TCP port: 80 (default)
Username:atre1234c (from DHCP Option 43)
Password's MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery Timeout: 60 seconds (default)
Discovery Exponential Factor: 3 (default)
Discovery Maximum Timeout: 540 seconds
PnP Session Interval Timeout: 60 (default)
PnP Watchdog Timeout: 60 seconds
```

Example 5. The following example displays PnP agent information when the PnP agent is enabled in the PnP Session Waiting state:

```
switchxxxxxx# show pnp
Administrative status: enabled
Operational status: ready
PnP Agent state: PnP Session Waiting
Transport protocol: HTTPS
Server IP address: 176.1.1.1
Source Ip address: 120.10.10.10
TCP port: 180
Username:atre1234c (from DHCP Option 43)
Password's MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery Timeout: 60 seconds (default)
Discovery Exponential Factor: 3 (default)
Discovery Maximum Timeout: 540 seconds
PnP Session Interval Timeout: 180 seconds (from PnP Backoff message)
Timer Remainder: 150 seconds
PnP Watchdog Timeout: 60 seconds
```

Example 6. The following example displays PnP agent information when the PnP agent is in state Discovery:

```
switchxxxxxx# show pnp
Administrative status: enabled
Operational status: ready
```
Example 7. The following example displays PnP agent information when the PnP agent is in state Discovery Waiting:

```
switchxxxxxx# show pnp
Administrative status: enabled
Operational status: ready
PnP Agent state: PnP Session
Transport protocol: HTTP (from DHCP Option 43)
Server IP address: 176.1.1.1 (from DHCP Option 43);
Next session: 167.21.3.4 (from DHCP Option 43)
Source IP address:
TCP port: 80 (default)
Username: atre1234c (from DHCP Option 43)
Password’s MD5 digest: 1238af77aaca17568f1298cced165fec (from DHCP Option 43)
Discovery Timeout: 60 seconds (default)
Discovery Exponential Factor: 3 (default)
Discovery Maximum Timeout: 540 seconds
PnP Session Interval Timeout: 60 (default)
PnP Watchdog Timeout: 60 seconds
```
PoE Commands

This chapter contains the following sections:

- power inline, on page 974
- power inline inrush test disable, on page 975
- power inline legacy support disable, on page 976
- power inline powered-device, on page 977
- power inline priority, on page 978
- power inline usage-threshold, on page 979
- power inline traps enable, on page 980
- power inline limit, on page 981
- power inline limit-mode, on page 982
- power inline four-pair forced, on page 983
- show power inline, on page 984
- show power inline savings, on page 989
- clear power inline counters, on page 990
- clear power inline monitor consumption, on page 991
- show power inline monitor consumption, on page 992
power inline

To configure the inline power administrative mode on an interface, use the `power inline` Interface Configuration mode command.

Syntax

```
power inline auto [time-range time-range-name]
power inline never
```

Parameters

- **auto**—Turns on the device discovery protocol and applies power to the device.
- **never**—Turns off the device discovery protocol and stops supplying power to the device.
- **time-range-name**—Specifies a time range. When the time range is not in effect the power is not supplied the attached device. If a time range is not specified, there is no time range bounded to the port. (Range: 1–32 characters)

Default Configuration

The default configuration is set to auto.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The `never` parameter cannot be used with a time range.

Example

The following example turns on the device discovery protocol on port 4.
```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# power inline auto
```
power inline inrush test disable

To disable the inrush test (a hardware test that checks input surge current for PoE devices), use the **power inline inrush test disable** Global Configuration mode command. To enable the inrush test, use the **no** form of this command.

Syntax

```
power inline inrush test disable
no power inline inrush test disable
```

Default Configuration

Inrush test is enabled.

Command Mode

Global Configuration mode

Example

The following example disable inrush test.

```
switchxxxxxx(config)# power inline inrush test disable
```
power inline legacy support disable

To disable the legacy PDs support, use the `power inline legacy support disable` Global Configuration mode command. To enable the legacy support, use the no form of this command.

Syntax

```
power inline legacy support disable
no power inline legacy support disable
```

Default Configuration

Legacy support is enabled.

Command Mode

Global Configuration mode

Example

The following example disables legacy PDs support.

```
switchxxxxxx(config)# power legacy support disable
```
power inline powered-device

To add a description of the device type, use the `power inline powered-device` Interface Configuration mode command. To remove the description, use the `no` form of this command.

Syntax

`power inline powered-device pd-type`

`no power inline powered-device`

Parameters

`pd-type`—Enters a comment or a description to assist in recognizing the type of the device attached to this interface. (Length: 1–24 characters)

Default Configuration

There is no description.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example adds the description ‘ip phone’ to the device connected to port 4.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# power inline powered-device ip_phone
```
power inline priority

To configure the interface inline power management priority, use the **power inline priority** Interface Configuration (Ethernet) mode command. To restore the default configuration, use the **no** form of this command.

Syntax

```
power inline priority {critical | high | low}
no power inline priority
```

Parameters

- **critical**—Specifies that the device operation is critical.
- **high**—Specifies that the device operation is high priority.
- **low**—Specifies that the device operation is low priority.

Default Configuration

The default configuration is set to low priority.

Command Mode

Interface (Ethernet) Configuration mode

Example

The following example sets the inline power management priority of port gi1/0/4 to High.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# power inline priority high
```
power inline usage-threshold

To configure the threshold for initiating inline power usage alarms, use the **power inline usage-threshold** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

```
power inline usage-threshold percent
no power inline usage-threshold
```

Parameters

- **percent**—Specifies the threshold in percent to compare to the measured power. (Range: 1–99)

Default Configuration

The default threshold is 95 percent.

Command Mode

Global Configuration mode

Example

The following example configures the threshold for initiating inline power usage alarms to 90 percent.

```
switchxxxxx(config)# power inline usage-threshold 90
```
power inline traps enable

To enable inline power traps, use the **power inline traps enable** Global Configuration mode command. To disable traps, use the **no** form of this command.

Syntax

```plaintext
power inline traps enable
no power inline traps enable
```

Default Configuration

Inline power traps are disabled.

Command Mode

Global Configuration mode

Example

The following example enables inline power traps.

```
switchxxxxxx(config)# power inline traps enable
```
power inline limit

To configure the power limit per port on an interface, use the `power inline limit` Interface Configuration mode command. To return to default, use the `no` form of the command.

Syntax

```
power inline limit power
no power inline limit
```

Parameters

`power`—States the port power consumption limit in Milliwatts, Range is 0-60000.

Default Configuration

The default value is 30W.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The operational power limit is the minimum of the configured power limit value and the maximum power capability on port. For example, if the configured value is higher than 15.4W on a PoE port, the operational power limit is 15.4W.

Example

The following example sets inline power on a port.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# power inline limit 2222
```
power inline limit-mode

To set the power limit mode of the system, use the **power inline limit-mode** Global Configuration mode command. To return to default, use the **no** form of this command.

Syntax

```
power inline limit-mode /class | port
no power inline limit-mode
```

Parameters

- **class**—The power limit of a port is based on the class of the PD (Power Device) as detected during the classification process
- **port**—The power limit of a port is fixed regardless of the class of the discovered PD.

Default Configuration

The default value is class

Command Mode

Global Configuration mode

User Guidelines

Changing the PoE limit mode of the system will turn the power OFF and ON for all PoE ports.

Example

The following example sets the power limit to class.

```
switchxxxxxx(config)# power inline limit-mode class
"Changing the PoE limit mode of the system will turn the power OFF and ON for all PoE ports. Are you sure? (y/n)"
```
power inline four-pair forced

To configure the inline power to enabled the spare pair, use the `power inline four-wire forced` Interface Configuration mode command.

Syntax

```
power inline four-pair forced
no power inline four-pair forced
```

Parameters

Default Configuration

The default configuration is set to no four-pair forced.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

This command should only be used for ports that are connected to devices that do not support the CDP/LLDP protocol or the new 4-wire power via MDI TLV (like UPOE splitter).

The command is used to force the spare pair to supply power, this allows the usage of 60 Watts PoE.

CDP/LLDP will reflect power allocated of 60W regardless of power requested.

This force command overrides any port mode or port limit configuration.

Example

The following example force the spare pair in port 4.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# power inline four-pair forced
```
show power inline

To display information about the inline power for all interfaces or for a specific interface, use the show power inline privileged EXEC mode command.

Syntax

```
show power inline [interface-id | module unit-id]
```

Parameters

- `interface-id` — Specifies an interface ID. The interface ID must be an Ethernet port.
- `module unit-id` — Specifies the unit ID of the stack member.

Default Configuration

Show information for all ports.

Command Mode

Privileged EXEC mode

User Guidelines

In a stack, only devices which support PoE are displayed.

Example 1 — The following example displays information about the inline power for all ports (port power based).

```
switchxxxxxx(config)# show power inline
Port limit mode: Enabled
Usage threshold: 95%
Trap: Enabled
Legacy Mode: Disabled
Inrush test: Enabled
Class Error Detection: Enabled

PSE chipset  HW Revision
-------------  ---------------
PD69208-0x4BC2
PD69204-0x4AC2
TPS3288-0x40c4

Unit  Module  Nominal Power (w)  Consumed Power (w)  Temp (c)  SW Version  PSE chipset  HW Revision
-----  -------  ---------------  -----------------  -------  ------------  -------------  -------------------
1      48P     320              120 (37.5%)       30      1.222.3      PD69208 - 0x4BC2
                        PD69204 - 0x4AC2
2      24P     240              0 (0%)           50      1.222.3      PD69208*-0x4AC2
3      24P     120              0 (0%)           50      4.0.10.0      TPS3288 - 0x40c4
```
Example 2—The following example displays information about the inline power for a specific port.

```
switchxxxxxx(config)# show power inline gi1/0/1
```

```
Interface | Admin | Oper | Power | Class | Device              | Priority |
----------|-------|------|-------|-------|---------------------|----------
| gi1/0/1  | Auto  | On   | 15.4(30) | 3     | IP Phone Model A   | Critical |
```

Port status: Port is on - Valid PD resistor signature detected

Port standard: 802.3AT

Admin power limit: 30.0 watts

Time range:

Link partner standard: 802.3AF

Operational power limit: 30 watts

Negotiated power: 18 watts (LLDP)

Spare pair: Enabled (forced)

Current (mA): 81

Voltage(V): 50.8

verload Counter: 5

Short Counter: 0

Denied Counter: 2

Absent Counter: 0

Invalid Signature Counter: 0

The following table describes the fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Inline power sourcing equipment operational status.</td>
</tr>
<tr>
<td>Nominal Power</td>
<td>Inline power sourcing equipment nominal power in Watts.</td>
</tr>
<tr>
<td>Consumed Power</td>
<td>Measured usage power in Watts.</td>
</tr>
<tr>
<td>Usage Threshold</td>
<td>Usage threshold expressed in percent for comparing the measured power and initiating an alarm if threshold is exceeded.</td>
</tr>
<tr>
<td>Traps</td>
<td>Indicates if inline power traps are enabled.</td>
</tr>
<tr>
<td>Port</td>
<td>Ethernet port number.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>device</td>
<td>Description of the device type.</td>
</tr>
<tr>
<td>State</td>
<td>Indicates if the port is enabled to provide power. The possible values are Auto or Never.</td>
</tr>
<tr>
<td>Priority</td>
<td>Port inline power management priority. The possible values are Critical, High or Low.</td>
</tr>
<tr>
<td>Status</td>
<td>Power operational state. The possible values are On, Off, Test-Fail, Testing, Searching or Fault.</td>
</tr>
<tr>
<td>Class</td>
<td>Power consumption classification of the device.</td>
</tr>
<tr>
<td>Overload Counter</td>
<td>Counts the number of overload conditions detected.</td>
</tr>
<tr>
<td>Short Counter</td>
<td>Counts the number of short conditions detected.</td>
</tr>
<tr>
<td>Denied Counter</td>
<td>Counts the number of times power was denied.</td>
</tr>
<tr>
<td>Absent Counter</td>
<td>Counts the number of times power was removed because device dropout was detected.</td>
</tr>
<tr>
<td>Invalid Signature Counter</td>
<td>Counts the number of times an invalid signature of a device was detected.</td>
</tr>
<tr>
<td>Inrush Test</td>
<td>Displays whether the inrush test is enabled or disabled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port limit mode</td>
<td>Enabled for port limit and Disable for class limit.</td>
</tr>
<tr>
<td>Legacy Mode</td>
<td>Enabled of Disabled legacy device support.</td>
</tr>
<tr>
<td>Inrush Test</td>
<td>Displays whether the inrush test is enabled or disabled.</td>
</tr>
<tr>
<td>SW version</td>
<td>The POE firmware version.</td>
</tr>
<tr>
<td>HW Version</td>
<td>The POE hardware version</td>
</tr>
<tr>
<td>Usage Threshold</td>
<td>Usage threshold expressed in percent for comparing the measured power and initiating an alarm if threshold is exceeded.</td>
</tr>
<tr>
<td>Traps</td>
<td>Indicates if inline power traps are enabled.</td>
</tr>
<tr>
<td>Module</td>
<td>The module name.</td>
</tr>
<tr>
<td>Available Power</td>
<td>Inline power sourcing equipment nominal power in Watts.</td>
</tr>
<tr>
<td>Consumed Power</td>
<td>Measured usage power in Watts.</td>
</tr>
<tr>
<td>Temp</td>
<td>Show the POE device temperature.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Interface</td>
<td>Ethernet port number.</td>
</tr>
<tr>
<td>Admin</td>
<td>Indicates if the port is enabled to provide power. The possible values are Auto or Never.</td>
</tr>
<tr>
<td>Oper</td>
<td>Power operational state. The possible values are On, Off, Test-Fail, Testing, Searching or Fault.</td>
</tr>
<tr>
<td>Power</td>
<td>Power consumed in watts, any allocated Power will appear in parens ().</td>
</tr>
<tr>
<td>Class</td>
<td>Power consumption classification of the device (0-4).</td>
</tr>
<tr>
<td>Device</td>
<td>Description of the device type set by the user.</td>
</tr>
<tr>
<td>Priority</td>
<td>Port inline power management priority. The possible values are Critical, High or Low.</td>
</tr>
<tr>
<td>Port status</td>
<td>The port status on/off with detailed reason (see bellow for details).</td>
</tr>
<tr>
<td>Port standard</td>
<td>802.3AF/802.3AT/60W POE.</td>
</tr>
<tr>
<td>Admin power limit</td>
<td>Port limit in watts used when the Port limit mode is Enabled.</td>
</tr>
<tr>
<td>Time Range</td>
<td>The name of the time range associated with the interface.</td>
</tr>
<tr>
<td>Link partner standard</td>
<td>802.3AF/802.3AT/60W POE.</td>
</tr>
<tr>
<td>Operational Power Limit</td>
<td>Port actual power limit in watts.</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>Port current in Milli-Ampere.</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>Port voltage in volts.</td>
</tr>
<tr>
<td>Overload Counter</td>
<td>Counts the number of overload conditions detected.</td>
</tr>
<tr>
<td>Short Counter</td>
<td>Counts the number of short conditions detected.</td>
</tr>
<tr>
<td>Denied Counter</td>
<td>Counts the number of times power was denied.</td>
</tr>
<tr>
<td>Absent Counter</td>
<td>Counts the number of times power was removed because device dropout was detected.</td>
</tr>
<tr>
<td>Invalid Signature Counter</td>
<td>Counts the number of times an invalid signature of a device was detected.</td>
</tr>
</tbody>
</table>

Following is a list of port status values:
- Port is on - Valid capacitor/resistor detected.
- Port is on - Valid resistor/capacitor detected.
- Port is on - 4 pairs.
- Port is on - Forced 4 pairs.
Port is off - Main supply voltage is high.
Port is off - Main supply voltage is low.
Port is off - Hardware pin disables all ports.
Port is off - Non-existing port number.
Port is yet undefined.
Port is off - Internal hardware fault.
Port is off - User setting.
Port is off - Detection is in process.
Port is off - Non-802-3af powered device.
Port is off - Overload & Underload states.
Port is off - Underload state.
Port is off - Overload state.
Port is off - Power budget exceeded.
Port is off - Internal hardware fault.
Port is off - Voltage injection into the port.
Port is off - Improper Capacitor Detection results.
Port is off - Discharged load.
Port is on - Detection regardless (Force On).
Undefined error during Force On.
Supply voltage higher than settings.
Supply voltage lower than settings.
Disable_PDU flag raised during Force On.
Port is forced on, then disabled.
Port is off - Out of power budget while in Force On.
Communication error with PoE devices after Force On.
Port is off - Short condition.
Port is off - Over temperature at the port.
Port is off - Device is too hot.
Unknown device port status.
ForcePowerErrorShortCircuit.
ForcePowerErrorChannelOverTemperature.
ForcePowerErrorChipOverTemperature.
PowerManagement - Static Calculated power is bigger than power limit.
PowerManagement - Static OVL PD class report (user predefined power value).
Static Calculated power (power limit during Force On).
Static OVL PD class report (user predefined power value during Force On).
High power port is ON - High power device was detected.
Chip Over Power - Sum of square currents exceeded SumPowerLimit.
Port is off - Class Error - Illegal class.
show power inline savings

To display information about the device inline power saving, use the `show power inline savings` privileged EXEC mode command.

Syntax

```
show power inline savings
```

Command Mode
Privileged EXEC mode

User Guidelines
Use the `show power inline savings` command to display the total power saved by using the PoE time range feature which shuts down PoE to ports in specific times.

Example 1—The following example displays PoE power saving on device.

```
switchxxxxxx(config)# show power inline savings
Current Power Savings: 45W
Cumulative Energy Saved: 180 [Watt*Hour]
* Estimated Annual Power saving: 1800 [Watt*Hour]
* Annual estimate is based on the saving during the previous week
NA - information for previous week is not available
```
clear power inline counters

To clear power inline interface counters, use the `clear power inline counters` Privileged EXEC mode command.

Syntax

`clear power inline counters [interface-id]`

Parameters

interface-id—(Optional) Specifies an interface ID. The interface ID must be an Ethernet port type. If interface ID is not specified - counters for all interfaces are cleared.

Default Configuration

All interface counters are cleared.

Command Mode

Privileged EXEC mode

User Guidelines

The `clear power inline counters` command is used to reset power inline interface counters: Overload, Short, Denied, Absent and Invalid Signature.

The following example clears the power inline counters for gi1/0/2.

```
switchxxxxxx# clear power inline counters gi1/0/2
```
clear power inline monitor consumption

To clear power inline consumption monitor info on all or on a specific interface or interface list, use the `clear power inline monitor consumption` Privileged EXEC mode command.

Syntax

```
clear power inline monitor consumption [interface-id-list]
```

Parameters

- `interface-id-list`—(Optional) Specifies a list of interface ID. The interface ID must be an Ethernet port type. If interface ID is not specified - consumption information for all interfaces is cleared.

Default Configuration

All monitored interface info are cleared.

Command Mode

Privileged EXEC mode

Example

The following example clears the monitored statistics for gi1/0/1.

```
switchxxxxxx# clear power inline monitor consumption gi1/0/1
```
show power inline monitor consumption

To display the average monitored power consumption info, use the `show power inline monitor consumption` Privileged EXEC mode command.

Syntax

```
show power inline monitor consumption {interface interface-id | Unit unit-id} {minutes|hours | days |weeks}
```

Parameters

- **interface interface-id** — Specifies an interface ID. The interface ID must be an Ethernet port.
- **Unit unit-id** - Total PoE consumption info for specified unit ID will be displayed.
- **minutes** — Average minute consumption. Displays the last 60 samples, sampled every 60 seconds (every round minute according to system time).
- **hours** — Average hour consumption. Displays the last 24 samples, sampled every 60 minutes (every round hour according to system time).
- **days** — Average daily consumption. Displays the last 7 samples, sampled every 24 hours (midnight to midnight according to system time).
- **weeks** — Average Weekly Consumption. Displays the last 52 samples, sampled every 7 days (midnight Saturday to midnight Saturday according to system time).

Default Configuration

This command has no default settings.

Command Mode

Privileged EXEC mode.

User Guidelines

The `show power inline monitor` is used to show average power consumption for specified time frame.

Note: only **days** and **weeks** samples are persisted after reload.

Example 1:

The following example displays the average hourly power consumption for the past day gathered for interface gi1/0/1.

```
switchxxxxxxx# show power inline monitor consumption gi1/0/1 hours
```
Example 1:

The following example displays the average weekly power consumption for the past 52 weeks gathered for unit 1.

```
switchxxxxxx# show power inline monitor consumption unit 1 weeks
```

<table>
<thead>
<tr>
<th>Sample Time</th>
<th>Consumption (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:00:00</td>
<td>7.1</td>
</tr>
<tr>
<td>02:00:00</td>
<td>7.1</td>
</tr>
<tr>
<td>01:00:00 (~)</td>
<td>8.5</td>
</tr>
<tr>
<td>00:00:00</td>
<td>9.0</td>
</tr>
</tbody>
</table>

(~) Not all samples are available.

* time stamp represents end of sampling period

Example 2:

```
switchxxxxxx# show power inline monitor consumption unit 1 weeks
```

<table>
<thead>
<tr>
<th>Sample Time</th>
<th>Consumption (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun 15/11/2015 00:00:00</td>
<td>55.1</td>
</tr>
<tr>
<td>Sun 22/11/2015 00:00:00</td>
<td>75.2</td>
</tr>
<tr>
<td>Sun 29/11/2015 00:00:00 (~)</td>
<td>45.3</td>
</tr>
</tbody>
</table>

unit 1

(~) Not all samples are available.

* time stamp represents end of sampling period
show power inline monitor consumption
Port Channel Commands

This chapter contains the following sections:

- channel-group, on page 996
- port-channel load-balance, on page 997
- show interfaces port-channel, on page 998
channel-group

To associate a port with a port-channel, use the **channel-group** Interface (Ethernet) Configuration mode command. To remove a port from a port-channel, use the **no** form of this command.

Syntax

```plaintext
channel-group port-channel mode {on | auto}
no channel-group
```

Parameters

- **port-channel**—Specifies the port channel number for the current port to join.
- **mode**—Specifies the mode of joining the port channel. The possible values are:
 - **on**—Forces the port to join a channel without an LACP operation.
 - **auto**—Forces the port to join a channel as a result of an LACP operation.

Default Configuration

The port is not assigned to a port-channel.

Command Mode

Interface (Ethernet) Configuration mode

Default mode is **on**.

User Guidelines

LACP starts to manage port joining.

When the **auto** mode is configured and there are not received LACP messages on all port-candidates then one of candidates is joined. When the first LACP message is received the port is disjoined and LACP starts to manage port joining.

Example

The following example forces port gi1/0/1 to join port-channel 1 without an LACP operation.

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# channel-group 1 mode on
```
port-channel load-balance

To configure the load balancing policy of the port channeling, use the `port-channel load-balance` Global Configuration mode command. To reset to default, use the `no` form of this command.

Syntax

```
port-channel load-balance /src-dst-mac | src-dst-mac-ip/
no port-channel load-balance
```

Parameters

- `src-dst-mac`—Port channel load balancing is based on the source and destination MAC addresses.
- `src-dst-mac-ip`—Port channel load balancing is based on the source and destination of MAC and IP addresses.

Default Configuration

`src-dst-mac`

Command Mode

Global Configuration mode

Example

```
switchxxxxx(config)# port-channel load-balance src-dst-mac
```
show interfaces port-channel

To display port-channel information for all port channels or for a specific port channel, use the `show interfaces port-channel` Privileged EXEC mode command.

Syntax

`show interfaces port-channel [interface-id]`

Parameters

interface-id—(Optional) Specify an interface ID. The interface ID must be a port channel.

Command Mode

Privileged EXEC mode

Examples

The following example displays information on all port-channels.

```
switchxxxxxx# show interfaces port-channel
Load balancing: src-dst-mac.
Gathering information...
Channel Ports
------- -----
Po1     Active: 1, Inactive: gi1/0/2-3
Po2     Active: 5 Inactive: gi1/0/4
```
QoS Commands

This chapter contains the following sections:

- qos, on page 1001
- qos advanced-mode trust, on page 1002
- show qos, on page 1003
- class-map, on page 1004
- show class-map, on page 1006
- match, on page 1007
- policy-map, on page 1008
- class, on page 1009
- show policy-map, on page 1010
- trust, on page 1011
- set, on page 1012
- redirect, on page 1013
- mirror, on page 1014
- police, on page 1015
- service-policy, on page 1017
- qos aggregate-policer, on page 1019
- show qos aggregate-policer, on page 1021
- police aggregate, on page 1022
- wrr-queue cos-map, on page 1023
- wrr-queue bandwidth, on page 1024
- priority-queue out num-of-queues, on page 1025
- traffic-shape, on page 1026
- traffic-shape queue, on page 1027
- qos wrr-queue wrtd, on page 1028
- show qos wrr-queue wrtd, on page 1029
- show qos interface, on page 1030
- qos map policed-dscp, on page 1033
- qos map dscp-queue, on page 1034
- qos trust (Global), on page 1035
- qos trust (Interface), on page 1036
- qos cos, on page 1037
- qos dscp-mutation, on page 1038
- show qos map, on page 1039
- clear qos statistics, on page 1041
- qos statistics policer, on page 1042
- qos statistics aggregate-policer, on page 1043
- clear queue statistics, on page 1044
- show queue statistics, on page 1045
- show qos statistics, on page 1046
qos

Use the `qos` Global Configuration mode command to enable QoS on the device and set its mode. Use the `no` form of this command to disable QoS on the device.

Syntax

```
qos [basic | {advanced [ports-not-trusted | ports-trusted]}]
no qos
```

Parameters

- **basic**—QoS basic mode. If no option is specified, the QoS mode defaults to the basic mode.
- **advanced**—Specifies the QoS advanced mode, which enables the full range of QoS configuration.
- **ports-not-trusted**—Relevant for advanced mode only. Indicates that packets, which are not classified by policy map rules to a QoS action, are mapped to egress queue 0. This is the default setting in advanced mode.
- **ports-trusted**—Relevant for advanced mode only. Indicates that packets, which are not classified by policy map rules to a QoS action, are mapped to an egress queue based on the packet's fields. Use the `qos advanced-mode trust, on page 1002` command to specify the trust mode.

Default Configuration

QoS basic mode

Command Mode

Global Configuration mode

Example 1—The following example disables QoS on the device.

```
switchxxxxxx(config)# no qos
```

Example 2—The following example enables QoS advanced mode on the device with the `ports-not-trusted` option.

```
switchxxxxxx(config)# qos advanced
```
qos advanced-mode trust

Use the **qos advanced-mode trust** Global Configuration mode command to configure the trust mode in advanced mode. Use the **no** form of this command to return to default.

Syntax

```
qos advanced-mode trust {cos | dscp | cos-dscp}
no qos advanced-mode trust
```

Parameters

- **cos**—Classifies ingress packets with the packet CoS values. For untagged packets, the port default CoS is used.
- **dscp**—Classifies ingress packets with the packet DSCP values.
- **cos-dscp**—Classifies ingress packets with the packet DSCP values for IP packets. For other packet types, use the packet CoS values.

Default Configuration

```
cos-dscp
```

Command Mode

Global Configuration mode

User Guidelines

The configuration is relevant for advanced mode in the following cases:

- **ports-not-trusted mode**: For packets that are classified to the QoS action trust.
- **ports-trusted mode**: For packets that are not classified to any QoS action or classified to the QoS action trust.

Example

The following example sets **cos** as the trust mode for QoS on the device.

```
switchxxxxxx(config)# qos advanced-mode trust cos
```
show qos

Use the `show qos` Privileged EXEC mode command to display the QoS information for the device. The trust mode is displayed for the QoS basic mode.

Syntax

```
show qos
```

Default Configuration

Disabled Command Mode

Command Mode

Privileged EXEC mode

User Guidelines

Trust mode is displayed if QoS is enabled in basic mode.

Examples

```
switchxxxxx(config)# show qos
Qos: Disabled
switchxxxxx(config)# show qos
Qos: Basic mode
Basic trust: dscp
switchxxxxx(config)# show qos
Qos: Advanced mode
Advanced mode trust type: cos
Advanced mode ports state: Trusted
```
class-map

Use the **class-map** Global Configuration mode command to create or modify a class map and enter the Class-map Configuration mode (only possible when QoS is in the advanced mode). Use the **no** form of this command to delete a class map.

Syntax

```plaintext
class-map class-map-name [match-all | match-any]

no class-map class-map-name
```

Parameters

- **class-map-name** — Specifies the class map name. (Length: 1–32 characters)
- **match-all** — Performs a logical AND of all the criteria of the ACLs belonging to this class map. All match criteria in this class map must be matched. If neither **match-all** nor **match-any** is specified, the **match-all** parameter is selected by default.
- **match-any** — Performs a logical OR of the criteria of the ACLs belonging to this class map. Only a single match criteria in this class map must be matched.

Default Configuration

No class map.

Command Mode

Global Configuration mode

User Guidelines

The **class-map** command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally-named service policy applied on a per-interface basis.

A class map consists of one or more ACLs. It defines a traffic flow by determining which packets match some or all of the criteria specified in the ACLs.

All class map commands are only available when QoS is in advanced mode.

The **class-map** enters Class-map Configuration mode. In this mode, up to two **match** commands can be entered to configure the criteria for this class. Each **match** specifies an ACL.

When using a few **match** commands, each must point to a different type of ACL, such as: one IP ACL, one IPv6 ACL, and one MAC ACL. The classification is by first match, therefore, the order of the ACLs is important.

Error messages are generated in the following cases:

- There is more than one **match**, on page 1007 command in a **match-all** class map

 There is a repetitive classification field in the participating ACLs.

After entering the Class-map Configuration mode, the following configuration commands are available:
• **exit**: Exits the Class-map Configuration mode.
• **match, on page 1007**: Configures classification criteria.
• **no**: Removes a match statement from a class map.

Example

The following example creates a class map called Class1 and configures it to check that packets match all classification criteria in the ACL specified.

```
switchxxxxx(config)# class-map class1 match-all
switchxxxxx(config-cmap)# match access-group acl-name
```
show class-map

The `show class-map` Privileged EXEC mode mode command displays all class maps when QoS is in advanced mode.

Syntax

`show class-map [class-map-name]`

Parameters

`class-map-name`—Specifies the name of the class map to be displayed. (Length: 1–32 characters)

Command Mode

Privileged EXEC mode

Example

The following example displays the class map for Class1.

```plaintext
switchxxxxxx(config)# show class-map
Class Map matchAny class1
    Match access-group mac
```
match

Use the **match** Class-map Configuration mode command to bind the ACLs that belong to the class-map being configured. Use the **no** form of this command to delete the ACLs.

Syntax

```
match access-group acl-name
no match access-group acl-name
```

Parameters

`acl-name`—Specifies the MAC, IP ACL name, or IPv6 ACL name. (Length: 1–32 characters)

Default Configuration

No match criterion is supported.

User Guidelines

This command is available only when the device is in QoS advanced mode.

Command Mode

Class-map Configuration mode.

Example

The following example defines a class map called Class1. Class1 contains an ACL called `enterprise`. Only traffic matching all criteria in `enterprise` belong to the class map.

```
switchxxxxxx(config)# class-map class1
switchxxxxxx(config-cmap)# match access-group enterprise
```
policy-map

Use the **policy-map** Global Configuration mode command to create a policy map and enter the Policy-map Configuration mode. Use the **no** form of this command to delete a policy map.

Syntax

```
policy-map  policy-map-name
no policy-map policy-map-name
```

Parameters

```
policy-map-name — Specifies the policy map name. (Length: 1–32 characters)
```

Command Mode

Global Configuration mode

User Guidelines

This command is only available when QoS is in advanced mode.

Use the **policy-map** Global Configuration mode command to specify the name of the policy map to be created, added to, or modified before configuring policies for classes whose match criteria are defined in a class map. A policy map contains one or more class maps and an action that is taken if the packet matches the class map. Policy maps may be bound to ports/port-channels. Policy map is applied on the ingress path.

The match criteria is for a class map. Only one policy map per interface is supported. The same policy map can be applied to multiple interfaces and directions.

Example

The following example creates a policy map called Policy1 and enters the Policy-map Configuration mode.

```
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)#
```
class

Use the class Policy-map Configuration mode command after the policy-map, on page 1008 command to attach ACLs to a policy-map. Use the no form of this command to detach a class map from a policy map.

Syntax

class class-map-name [access-group acl-name]

no class class-map-name

Parameters

- class-map-name—Specifies the name of an existing class map. If the class map does not exist, a new class map is created under the specified name. (Length: 1–32 characters)

- access-group acl-name—Specifies the name of an IP, IPv6, or MAC Access Control List (ACL). (Length: 1–32 characters)

Default Configuration

No class map is defined for the policy map.

Command Mode

Policy-map Configuration mode.

User Guidelines

This command is only available when QoS is in advanced mode.

This is the same as creating a class map and then binding it to the policy map.

You can specify an existing class map in this command, or you can use the access-group parameter to create a new class map.

After the policy-map is defined, use the service-policy, on page 1017 command to attach it to a port/port-channel.

Example

The following example defines a traffic classification (class map) called class1 containing an ACL called enterprise. The class is in a policy map called policy1. The policy-map policy1 now contains the ACL enterprise.

```
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class class1 access-group enterprise
```
show policy-map

Use the show policy-map Privileged EXEC mode command to display all policy maps or a specific policy map.

This command is only available when QoS is in advanced mode.

Syntax

show policy-map [policy-map-name]

Parameters

policy-map-name—Specifies the policy map name. (Length: 1–32 characters)

Default Configuration

All policy-maps are displayed.

Command Mode

Privileged EXEC mode

Example

The following example displays all policy maps.

```
switchxxxxxx(config)#  show policy-map
Policy Map policy1
  class class1
    set dscp 7
Policy Map policy2
  class class 2
  police 96000 4800 exceed-action drop
  class class2
    redirect gi1/0/2
  class class 3
  police 96000 4800 exceed-action policed-dscp-transmit peak 128000 9600 violate-action policed-dscp-transmit
```
trust

Use the **trust** Policy-map Class Configuration mode command to configure the trust state. Use the **no** form of this command to return to the default trust state.

Syntax

```
trust
no trust
```

Default Configuration

The default state is according to the mode selected in the `qos` command (advanced mode). The type of trust is determined in `qos advanced-mode trust`.

Command Mode

Policy-map Class Configuration mode.

User Guidelines

This command is relevant only when QoS is in advanced, ports-not-trusted mode. Trust indicates that traffic is sent to the queue according to the packet’s QoS parameters (UP or DSCP).

Use this command to distinguish the QoS trust behavior for certain traffic from others. For example, incoming traffic with certain DSCP values can be trusted. A class map can be configured to match and trust the DSCP values in the incoming traffic.

Example

The following example creates an ACL, places it into a class map, places the class map into a policy map and configures the trust state.

```
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-ip-al)# permit ip any any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# class-map c1
switchxxxxxx(config-cmap)# match access-group ip1
switchxxxxxx(config-cmap)# exit
switchxxxxxx(config)# policy-map p1
switchxxxxxx(config-pmap)# class c1
switchxxxxxx(config-pmap-c)# trust
```
set

Use the `set` Policy-map Class Configuration mode. command to select the value that QoS uses as the DSCP value, the egress queue or to set user priority values.

Syntax

```
set {dscp new-dscp | queue queue-id | cos new-cos}
no set
```

Parameters

- `dscp new-dscp`—Specifies the new DSCP value for the classified traffic. (Range: 0–63)
- `queue queue-id`—Specifies the egress queue. (Range: 1-8)
- `cos new-cos`—Specifies the new user priority to be marked in the packet. (Range: 0–7)

Command Mode

Policy-map Class Configuration mode.

User Guidelines

This command is only available when QoS is in advanced mode.

The `set`, on page 1012 and `trust`, on page 1011 commands are mutually exclusive within the same policy map.

To return to the Configuration mode, use the `exit` command. To return to the Privileged EXEC mode, use the `end` command.

The `queue` keyword is not supported into egress policies.

Example

The following example creates an ACL, places it into a class map, places the class map into a policy map and sets the DSCP value in the packet to 56 for classes in the policy map called p1.

```
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-ip-al)# permit ip any any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# class-map c1
switchxxxxxx(config-cmap)# match access-group ip1
switchxxxxxx(config-cmap)# exit
switchxxxxxx(config)# policy-map p1
switchxxxxxx(config-pmap)# class c1
switchxxxxxx(config-pmap-c)# set dscp 56
```
redirect

Use the `redirect` Policy-map Class Configuration mode command to redirect a traffic flow to a given Ethernet port or port channel.

Syntax

```
redirect interface-id
no redirect
```

Parameters

- `interface-id`—Specifies an Ethernet port or port channel to which the flow is redirected.

Command Mode

Policy-map Class Configuration mode.

User Guidelines

Use the `redirect` command to redirect a frame into the VLAN the frame was assigned to.

This command is only available when QoS is in advanced mode.

Example

The following example creates an ACL, places it into a class map, places the class map into a policy map and redirects the flow to Ethernet port gi1/0/2:

```
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-ip-al)# permit ip any any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# class-map cl
switchxxxxxx(config-cmap)# match access-group ip1
switchxxxxxx(config-cmap)# exit
switchxxxxxx(config)# policy-map p1
switchxxxxxx(config-pmap)# class cl
switchxxxxxx(config-pmap-c)# redirect gi1/0/2
switchxxxxxx(config-pmap-c)# exit
switchxxxxxx(config-pmap-c)# exit
switchxxxxxx(config)#
```
mirror

Use the **mirror** Policy-map Class Configuration mode command to mirror a traffic flow to an analyzer Ethernet port.

Syntax

```
mirror session_number
no mirror
```

Parameters

- `session_number`—Specify the session number identified with the SPAN or RSPAN session. Only a value of 1 is allowed.

Command Mode

Policy-map Class Configuration mode.

User Guidelines

This command is only available when QoS is in advanced mode.

A frame is mirrored in the same format if it matches to one of the class ACLs regardless the command of this ACL: permit or deny.

Only one source session from VLAN and flow mirroring is supported.

Example

The following example creates an ACL, places it into a class map, places the class map into a policy map and mirrors the flow to an analyzer Ethernet port defined by session 2:

```
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-ip-al)# permit ip any any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# class-map c1
switchxxxxxx(config-cmap)# match access-group ip1
switchxxxxxx(config-cmap)# exit
switchxxxxxx(config)# policy-map p1
switchxxxxxx(config-pmap)# class c1
switchxxxxxx(config-pmap-c)# mirror 2
switchxxxxxx(config-pmap-c)# exit
switchxxxxxx(config-pmap)# exit
switchxxxxxx(config)#
```
police

Use the police Policy-map Class Configuration mode. command to define the policer for classified traffic. This defines another group of actions for the policy map (per class map). Use the no form of this command to remove a policer.

Syntax

police committed-rate-kbps committed-burst-byte [exceed-action action] [peak peak-rate-kbps peak-burst-byte [violate-action action]]

no police

Parameters

- **committed-rate-kbps** — Specifies the average traffic rate (CIR) in kbits per second (bps). (Range: 3–maximal port speed)
- **committed-burst-byte** — Specifies the normal burst size (CBS) in bytes. (Range: 3000–19173960)
- **exceed-action** — Specifies the action taken when the committed rate is exceeded and the peak rate is not exceeded. If the keyword is not configured then the following action is applied:
 - drop, if **peak** the keyword is not configured.
 - policed-dscp-transmit, if **peak** the keyword is configured.
- **peak** — Specifies the Two-rate Three-color policer. If the peak rate is exceeded the packet is dropped.
- **peak-rate-kbps** — Specifies the average traffic rate (CIR) in kbits per second (bps). (Range: 3–maximal port speed)
- **peak-burst-byte** — Specifies the peak burst size (PBS) in bytes. (Range: 3000–19173960)
- **violate-action** — Specifies the action taken when the peak rate is exceeded. If the keyword is not configured then the **drop** action is applied.
- **action** — Specifies the taken action. The possible values are:
 - drop — Drops the packet.
 - policed-dscp-transmit — Remarks the packet DSCP of IP traffic. The DSCP remarking is configured by the qos map policed-dscp command with the violation keyword for the violation action and without this keyword for the exceed action. DSCP remarking will have effect only if the mode is trust dscp.

Default Usage

No policer

Command Mode

Policy-map Class Configuration mode.
User Guidelines

This command is used after the policy-map, on page 1008 and class, on page 1009 commands.

This command is only available when QoS is in advanced mode.

Policing uses a token bucket algorithm.

Example 1. The following example defines a policer for classified traffic. When the traffic rate exceeds 124,000 kbps and the normal burst size exceeds 9600 bytes, the packet is dropped. The class is called class1 and is in a policy map called policy1.

switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class cls1
switchxxxxxx(config-pmap-c)# police 124000 9600 exceed-action drop

Example 2. The following example defines a Two-rate Three-color policer for classified traffic. When the committed traffic rate exceeds 124,000 kbps and the committed burst size exceeds 9600 bytes, the packet is marked. When the peak traffic rate exceeds 200,000 kbps and the peak burst size exceeds 19200 bytes, the packet is marked. The class is called class1 and is in a policy map called policy1.

switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class cls1
switchxxxxxx(config-pmap-c)# police 124000 9600 exceed-action policed-dscp-transmit peak 200000 19200 violate-action policed-dscp-transmit
service-policy

Use the `service-policy` Interface (Ethernet, Port Channel) Configuration mode command to bind a policy map to an interface. Use the `no` form of this command to detach a policy map from an interface.

Syntax

```
service-policy  {input | output} policy-map-name [default-action {permit-any | deny-any}]
no service-policy input | output
service-policy  {input | output} policy-map-name
```

Parameters

- **input**—Specifies an ingress policy.
- **output**—Specifies an egress policy.
- **policy-map-name**—Specifies the policy map name to apply to the input interface. (Length: 1–32 characters)
- **default-action**—Specifies the default action. If the keyword is not configured then the `deny-any` default action is applied.
- **deny-any**—Deny all the packets (which were ingress of the port) that do not meet the rules in a policy.
- **permit-any**—Forward all the packets (which were ingress of the port) that do not meet the rules in a policy.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Default

Policy map is not bound.

User Guidelines

This command is only available in QoS advanced mode.

Only one policy map per interface per direction is supported.

The `service-policy output` command fails if the bound policy contains actions not supported by egress policies.

A policy map cannot be bound as input and output at the same time.

Example

The following example attaches a policy map called Policy1 to the input interface.

```
switchxxxxx(config-if)# service-policy input policy1
```

The following example attaches a policy map called Policy1 to the input interface and forwards all packets that do not meet the rules of the policy.
switchxxxxx(config-if)# service-policy input policy1 permit-any

The following example attaches a policy map called Policy2 to the output interface.
switchxxxxx(config-if)# service-policy output policy2
qos aggregate-policer

Use the **qos aggregate-policer** Global Configuration mode command to define the policer parameters that can be applied to multiple traffic classes. Use the **no** form of this command to remove an existing aggregate policer.

Syntax

```
qos aggregate-policer aggregate-policer-name committed-rate-kbps committed-burst-byte [exceed-action action] [peak peak-rate-kbps peak-burst-byte [violate-action action]]
```

```
no qos aggregate-policer aggregate-policer-name
```

Parameters

- **aggregate-policer-name**—Specifies the aggregate policer name. (Length: 1–32 characters)
- **committed-rate-kbps**—Specifies the average traffic rate (CIR) in kbits per second (bps). (Range: 3–57982058)
- **committed-burst-byte**—Specifies the normal burst size (CBS) in bytes. (Range: 3000–19173960)
- **exceed-action**—Specifies the action taken when the committed rate is exceeded and the peak rate is not exceeded. If the keyword is not configured then the following action is applied:
 - **drop**, if **peak** the keyword is not configured.
 - **policed-dscp-transmit**, if **peak** the keyword is configured.
- **peak**—Specifies the Two-rate Three-color policer. If the peak rate is exceeded the packet is dropped.
- **peak-rate-kbps**—Specifies the average traffic rate (CIR) in kbits per second (bps). (Range: 3–57982058)
- **peak-burst-byte**—Specifies the peak burst size (PBS) in bytes. (Range: 3000–19173960)
- **violate-action**—Specifies the action taken when the peak rate is exceeded. If the keyword is not configured then the **drop** action is applied.
- **action**—Specifies the taken action. The possible values are:
 - **drop**—Drops the packet.
 - **policed-dscp-transmit**—Remarks the packet DSCP of IP traffic. The DSCP remarking is configured by the **qos map policed-dscp** command with the **violation** keyword for the violation action and without this keyword for the exceed action. DSCP remarking will have effect only if the mode is trust dscp.

Default Configuration

No aggregate policer is defined.

Command Mode

Global Configuration mode
User Guidelines

This command is only available when QoS is in advanced mode.

Use the `qos aggregate-policer` command to define a policer that aggregates traffic from multiple class maps. Aggregate policers cannot aggregate traffic from multiple devices. If the aggregate policer is applied to more than one device, the traffic on each device is counted separately and is limited per device.

Traffic from two different ports on the same device can be aggregated for policing purposes.

An aggregate policer can be applied to multiple classes in the same policy map.

An aggregate policer cannot be deleted if it is being used in a policy map. The `no police aggregate` Policy-map Class Configuration mode command must first be used to delete the aggregate policer from all policy maps before using the `no qos aggregate-policer` command.

Policing uses a token bucket algorithm. CIR represents the speed with which the token is added to the bucket. CBS represents the depth of the bucket.

Example 1. The following example defines the parameters of a policer called `policer1` that can be applied to multiple classes in the same policy map. When the average traffic rate exceeds 124,000 kbps or the normal burst size exceeds 9600 bytes, the packet is dropped.

```
switchxxxxxx(config)# qos aggregate-policer policer1 124000 9600 exceed-action drop
```

Example 2. The following example defines the parameters of a Two-rate Three-color policer called `policer2` that can be applied to multiple classes in the same policy map. When the average traffic rate exceeds 124,000 kbps or the normal burst size exceeds 9600 bytes, the packet is remarked. When the average traffic rate exceeds 200,000 kbps or the normal burst size exceeds 9600 bytes, the packet is dropped.

```
switchxxxxxx(config)# qos aggregate-policer policer2 124000 9600 exceed-action policed-dscp-transmit peak 200000 19200 violate-action policed-dscp-transmit
```
show qos aggregate-policer

Use the `show qos aggregate-policer` Privileged EXEC mode command to display aggregate policers. This command is only available in QoS advanced mode.

Syntax

```
show qos aggregate-policer [aggregate-policer-name]
```

Parameters

- `aggregate-policer-name`—Specifies the aggregate policer name. (Length: 1–32 characters)

Default Configuration

All policers are displayed.

Command Mode

Privileged EXEC mode

Example 1. The following example displays the parameters of the aggregate policer called Policer1.

```
switchxxxxxx# show qos aggregate-policer policer1
aggregate-policer policer1 96000 4800 exceed-action drop
not used by any policy map.
```

Example 2. The following example displays the parameters of the aggregate Two-rate Three-color policer called Policer1.

```
switchxxxxxx# show qos aggregate-policer policer1
aggregate-policer policer1 124000 9600 exceed-action policed-dscp-transmit peak 200000 19200 violate-action policed-dscp-transmit
not used by any policy map.
```
police aggregate

Use the **police aggregate** Policy-map Class Configuration mode. command to apply an aggregate policer to multiple class maps within the same policy map. Use the **no** form of this command to remove an existing aggregate policer from a policy map.

This command is only available in QoS advanced mode.

Syntax

police aggregate aggregate-policer-name

no police aggregate aggregate-policer-name

Parameters

aggregate-policer-name—Specifies the aggregate policer name. (Length: 1–32 characters)

Command Mode

Policy-map Class Configuration mode.

User Guidelines

An aggregate policer can be applied to multiple classes in the same policy map. An aggregate policer cannot be applied across multiple policy maps or interfaces.

Use the **exit** command to return to the Configuration mode. Use the **end** command to return to the Privileged EXEC mode.

Example

The following example applies the aggregate policer called Policer1 to a class called class1 in a policy map called policy1 and class2 in policy map policy2.

```
switchxxxxxx(config)# qos aggregate-policer policer1 124000 9600 exceed-action drop
switchxxxxxx(config)# policy-map policy1
switchxxxxxx(config-pmap)# class class1
switchxxxxxx(config-pmap-c)# police aggregate policer1
switchxxxxxx(config-pmap-c)# exit
switchxxxxxx(config-pmap)# exit
switchxxxxxx(config)# policy-map policy2
switchxxxxxx(config-pmap)# class class2
switchxxxxxx(config-pmap-c)# police aggregate policer1
```
wrr-queue cos-map

Use the `wrr-queue cos-map` Global Configuration mode command to map Class of Service (CoS) values to a specific egress queue. Use the `no` form of this command to restore the default configuration.

Syntax

```plaintext
wrr-queue cos-map queue-id cos0... cos7
no wrr-queue cos-map [queue-id]
```

Parameters

- `queue-id`—Specifies the queue number to which the CoS values are mapped.
- `cos0... cos7`—Specifies up to 8 CoS values to map to the specified queue number. (Range: 0–7)

Default Configuration

The default CoS value mapping to 8 queues is as follows:
- CoS value 0 is mapped to queue 1.
- CoS value 1 is mapped to queue 2.
- CoS value 2 is mapped to queue 3.
- CoS value 3 is mapped to queue 6.
- CoS value 4 is mapped to queue 5.
- CoS value 5 is mapped to queue 8.
- CoS value 6 is mapped to queue 8.
- CoS value 7 is mapped to queue 7

Command Mode

Global Configuration mode

User Guidelines

Use this command to distribute traffic to different queues.

Example

The following example maps CoS value 4 and 6 to queue 2.

```
switchxxxxxx(config)# wrr-queue cos-map 2 4 6
```
wrr-queue bandwidth

Use the **wrr-queue bandwidth** Global Configuration mode command to assign Weighted Round Robin (WRR) weights to egress queues. The weight ratio determines the frequency at which the packet scheduler removes packets from each queue. Use the **no** form of this command to restore the default configuration.

Syntax

```
wrr-queue bandwidth weight1 weight2... weighting
no wrr-queue bandwidth
```

Parameters

- **weight1 weight1... weighting** the ratio of bandwidth assigned by the WRR packet scheduler to the packet queues. See explanation in the User Guidelines. Separate each value by a space. (Range for each weight: 0–255)

Default Configuration

wrr is disabled by default.

Command Mode

Global Configuration mode

User Guidelines

The ratio for each queue is defined as the queue weight divided by the sum of all queue weights (the normalized weight). This sets the bandwidth allocation of each queue.

A weight of 0 indicates that no bandwidth is allocated for the same queue, and the shared bandwidth is divided among the remaining queues. It is not recommended to set the weight of a queue to a 0 as it might stop transmission of control-protocols packets generated by the device.

All queues participate in the WRR, excluding the expedite queues, whose corresponding weight is not used in the ratio calculation.

Example

The following assigns WRR values to the queues.

```
switchxxxxxxx(config)# priority-queue out num-of-queues 0
switchxxxxxxx(config)# wrr-queue bandwidth 6 6 6 6 6 6 6
```
priority-queue out num-of-queues

Use the `priority-queue out num-of-queues` Global Configuration mode command to configure the number of expedite queues. Use the `no` form of this command to restore the default configuration.

Syntax

```
priority-queue out num-of-queues number-of-queues
no priority-queue out num-of-queues
```

Parameters

- `number-of-queues`—Specifies the number of expedite (strict priority) queues. Expedite queues are assigned to the queues with the higher indexes. (Range: 0–8 . There must be either 0 wrq queues or more than one.

 If `number-of-queues` = 0, all queues are assured forwarding (according to wrq weights) If the `number-of-queues` = 8 , all the queues are expedited (strict priority queues).

Default Configuration

All queues are expedite queues.

Command Mode

Global Configuration mode

User Guidelines

An expedite queue is a strict priority queue, which is serviced until empty before the other lower priority queues are serviced.

The weighted round robin (WRR) weight ratios are affected by the number of expedited queues, because there are fewer queues participating in WRR. This indicates that the corresponding weight in the `wrr-queue bandwidth` Interface Configuration mode command is ignored (not used in the ratio calculation).

Example

The following example configures the number of expedite queues as 2.

```
switchxxxxxx(config)# priority-queue out num-of-queues 2
```
traffic-shape

Use the traffic-shape interface (Ethernet, Port Channel) Configuration mode command to configure the egress port shaper. Use the no form of this command to disable the shaper.

Syntax
traffic-shape committed-rate [committed-burst]
no traffic-shape

Parameters
• committed-rate—Specifies the maximum average traffic rate (CIR) in kbits per second (kbps). (Range: GE: 64kbps–maximum port speed ,10GE: 64Kbps–maximum port speed))
• committed-burst—Specifies the maximum permitted excess burst size (CBS) in bytes. (Range: 4096 - 16670940 bytes)

Default Configuration
The shaper is disabled.

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

User Guidelines
The egress port shaper controls the traffic transmit rate (Tx rate) on a port.

Example
The following example sets a traffic shaper on gi1/0/1 when the average traffic rate exceeds 64 kbps or the normal burst size exceeds 4096 bytes.

switchxxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# traffic-shape 64 4096
traffic-shape queue

Use the `traffic-shape queue` Interface (Ethernet, Port Channel) Configuration mode command to configure the egress queue shaper. Use the `no` form of this command to disable the shaper.

Syntax

```
traffic-shape queue queue-id committed-rate [committed-burst]
no traffic-shape queue queue-id
```

Parameters

- `queue-id` — Specifies the queue number to which the shaper is assigned. (Range: 1-8).
 - `committed-rate` — Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 64 kbps–maximum port speed)
 - `committed-burst` — Specifies the excess burst size (CBS) in bytes. (Range: 4096 - 16670940 bytes)

Default Configuration

The shaper is disabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The egress port shaper controls the traffic transmit rate (Tx rate) on a queue on a port.

Example

The following example sets a shaper on queue 1 on gi1/0/1 when the average traffic rate exceeds 124000 kbps or the normal burst size exceeds 9600 bytes.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# traffic-shape queue 1 64 4096
```
qos wrr-queue wrtd

Use the qos wrr-queue wrtd Global Configuration mode command to enable Weighted Random Tail Drop (WRTD). Use the no form of this command to disable WRTD.

Syntax
qos wrr-queue wrtd
no qos wrr-queue wrtd

Default
Disabled

Command Mode
Global Configuration mode

User Guidelines
The command is effective after reset.

Example
switchxxxxxx(config)# qos wrr-queue wrtd
This setting will take effect only after copying running configuration to startup configuration and resetting the device
switchxxxxxx(config)#
show qos wrr-queue wrtd

Use the \texttt{show qos wrr-queue wrtd} Privileged EXEC mode command to display the Weighted Random Tail Drop (WRTD) configuration.

\textbf{Syntax}

\texttt{show qos wrr-queue wrtd}

\textbf{Command Mode}

Privileged EXEC mode

\textbf{Example}

\texttt{switchxxxxx(config)# show qos wrr-queue wrtd}

Weighted Random Tail Drop is disabled
Weighted Random Tail Drop will be enabled after reset
show qos interface

Use the **show qos interface** Privileged EXEC mode command to display Quality of Service (QoS) information on the interface.

Syntax

```
show qos interface [buffers | queueing | policers | shapers] [interface-id]
```

Parameters

- **buffers**—Displays the buffer settings for the interface's queues. For GE ports, displays the queue depth for each of the queues.
- **queueing**—Displays the queue's strategy (WRR or EF), the weight for WRR queues, the CoS to queue map and the EF priority.
- **policers**—Displays all the policers configured for this interface, their settings, and the number of policers currently unused (on a VLAN).
- **shapers**—Displays the shaper of the specified interface and the shaper for the queue on the specified interface.
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, or Port-channel.

Command Mode

Privileged EXEC mode

User Guidelines

If no parameter is specified with the **show qos interface** command, the port QoS mode (DSCP trusted, CoS trusted, untrusted, and so on), default CoS value, DSCP-to-DSCP- map (if any) attached to the port, and policy map (if any) attached to the interface are displayed. If a specific interface is not specified, the information for all interfaces is displayed.

In case of Policers, Shapers and Rate Limit - only the ports which are not in the default configuration will be showed.

Example 1—The following is an example of the output from the **show qos interface** command.

```
switchxxxxxx(config)# show qos interface gi1/0/1
Ethernet gi1/0/0/1
Default CoS: 0
Trust mode: disabled
Ingress Policy applied: AV1
Egress Policy applied: AV2
Default ACE ingress action: deny-all
Default ACE egress action: deny-all
```

Example 2—The following is an example of the output from the **show qos interface queueing** command for 4 queues.

```
switchxxxxxx(config)# show qos interface queueing gi1/0/1
Ethernet gi1/0/0/1
```
wrr bandwidth weights and EF priority:

<table>
<thead>
<tr>
<th>qid-weights</th>
<th>Ef - Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - N/A</td>
<td>ena- 1</td>
</tr>
<tr>
<td>2 - N/A</td>
<td>ena- 2</td>
</tr>
<tr>
<td>3 - N/A</td>
<td>ena- 3</td>
</tr>
<tr>
<td>4 - N/A</td>
<td>ena- 4</td>
</tr>
</tbody>
</table>

Cos-queue map:

<table>
<thead>
<tr>
<th>cos-qid</th>
<th>0 - 1</th>
<th>1 - 1</th>
<th>2 - 2</th>
<th>3 - 3</th>
<th>4 - 3</th>
<th>5 - 4</th>
<th>6 - 4</th>
<th>7 - 4</th>
</tr>
</thead>
</table>

Example 3 — The following an example of the output from the `show qos interface buffers` command for 8 queues.

```
switchxxxxxx(config)# show qos interface buffers gi1/0/1

Gi1/0/1
Notify Q depth:
buffers gi1/0/1
Ethernet gi1/0/1
qid thresh0 thresh1 thresh2
1       100   100   80
2       100   100   80
3       100   100   80
4       100   100   80
5       100   100   80
6       100   100   80
7       100   100   80
8       100   100   80
```

Example 4 — This is an example of the output from the `show qos interface shapers` command.

```
switchxxxxxx(config)# show qos interface shapers gi1/0/1

Gi1/0/1
Port shaper: enable
Committed rate: 64 kbps
Committed burst: 9600 bytes

<table>
<thead>
<tr>
<th>QID</th>
<th>Status</th>
<th>Target</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enable</td>
<td>Committed</td>
<td>Committed</td>
</tr>
<tr>
<td>2</td>
<td>Disable</td>
<td>Rate [kbps]</td>
<td>Burst [bytes]</td>
</tr>
<tr>
<td>3</td>
<td>Enable</td>
<td>64</td>
<td>17000</td>
</tr>
<tr>
<td>4</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>Enable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>Enable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
```

Example 5 — This is an example of the output from `show qos interface policer`.

```
switchxxxxxx(config)# show qos interface policer gi1/0/1

Ethernet gi1/0/1
Ingress Policers:
Class map: A
Policer type: aggregate
Committed rate: 19 kbps
```
Commited burst: 9600 bytes
Exceed-action: policed-dscp-transmit
Class map: B
Policer type: single
Committed rate: 19 kbps
Committed burst: 9600 bytes
Peak rate: 26 kbps
Peak burst: 9600 bytes
Exceed-action: policed-dscp-transmit
Violate-action: drop
Class map: C
Policer type: none
Egress Policers:
Class map: D
qos map policed-dscp

Use the `qos map policed-dscp` Global Configuration mode command to configure the policed-DSCP map for remarking purposes. Use the `no` form of this command to restore the default configuration.

Syntax

```
qos map policed-dscp [violation] dscp-list to dscp-mark-down
no qos map policed-dscp [violation][dscp-list]
```

Parameters

- **violation**—Specifies the DSCP remapping in the violate action. If the keyword is not configured, the command specifies the DSCP remapping in the exceed action.
- **dscp-list**—Specifies up to 8 DSCP values, separated by spaces. (Range: 0–63)
- **dscp-mark-down**—Specifies the DSCP value to mark down. (Range: 0–63)

Default Configuration

The default map is the Null map, which means that each incoming DSCP value is mapped to the same DSCP value.

Command Mode

Global Configuration mode

User Guidelines

The original DSCP value and policed-DSCP value must be mapped to the same queue in order to prevent reordering.

Example

The following example marks incoming DSCP value 3 as DSCP value 5 on the policed-DSCP map.

```
switchxxxxxxx(config)# qos map policed-dscp 3 to 5
```
qos map dscp-queue

Use the `qos map dscp-queue` Global Configuration mode command to configure the DSCP to queue map. Use the `no` form of this command to restore the default configuration.

Syntax

`qos map dscp-queue dscp-list to queue-id`

`no qos map dscp-queue [dscp-list]`

Parameters

- `dscp-list`—Specifies up to 8 DSCP values, separated by spaces. (Range: 0–63)
- `queue-id`—Specifies the queue number to which the DSCP values are mapped.

Default Configuration

The default map for 8 queues is as follows.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue-ID</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Command Mode

Global Configuration mode

Example

The following example maps DSCP values 33, 40 and 41 to queue 1.

```
switchxxxxxx(config)# qos map dscp-queue 33 40 41 to 1
```
qos trust (Global)

Use the qos trust Global Configuration mode command to configure the system to the basic mode and trust state. Use the no form of this command to return to the default configuration.

Syntax

qos trust {cos | dscp | cos-dscp}
no qos trust

Parameters

- **cos**—Specifies that ingress packets are classified with packet CoS values. Untagged packets are classified with the default port CoS value.
- **dscp**—Specifies that ingress packets are classified with packet DSCP values.
- **cos-dscp**—Specifies that ingress packets are classified with packet DSCP values, if they are IP packets and by CoS value if non IP.

Default Configuration
dscp

Command Mode

Global Configuration mode

User Guidelines

This command can be used only in QoS basic mode.

Packets entering a QoS domain are classified at its edge. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the domain.

Use this command to specify whether the port is trusted and which fields of the packet to use to classify traffic.

When the system is configured with trust DSCP, the traffic is mapped to the queue by the DSCP-queue map.

When the system is configured with trust CoS, the traffic is mapped to the queue by the CoS-queue map.

For an inter-QoS domain boundary, configure the port to the DSCP-trusted state and apply the DSCP-to-DSCP-mutation map if the DSCP values are different in the QoS domains.

Example

The following example configures the system to the DSCP trust state.

switchxxxxxx(config)# qos trust dscp
qos trust (Interface)

Use the qos trust Interface (Ethernet, Port Channel) Configuration mode command to enable port trust state while the system is in the basic QoS mode. Use the no form of this command to disable the trust state on each port.

Syntax

qos trust
no qos trust

Default Configuration

Each port is enabled while the system is in basic mode.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example configures gi1/0/1 to the default trust state.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# qos trust
```
Use the `qos cos` Interface (Ethernet, Port Channel) Configuration mode command to define the default CoS value of a port. Use the `no` form of this command to restore the default configuration.

Syntax

`qos cos default-cos`

`no qos cos`

Parameters

- `default-cos`—Specifies the default CoS value (VPT value) of the port. If the port is trusted and the packet is untagged, then the default CoS value become the CoS value. (Range: 0–7)

Default Configuration

The default CoS value of a port is 0.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the default CoS value to assign a CoS value to all untagged packets entering the interface.

Example

The following example defines the port `gi1/0/1` default CoS value as 3.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# qos cos 3
```
Use the **qos dscp-mutation** Global Configuration mode command to apply the DSCP Mutation map to system DSCP trusted ports. Use the **no** form of this command to restore the trusted port with no DSCP mutation.

Syntax

```
qos dscp-mutation
no qos dscp-mutation
```

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

Apply the DSCP-to-DSCP-mutation map to a port at the boundary of a Quality of Service (QoS) administrative domain. If two QoS domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition of another domain. Apply the map to ingress and to DSCP-trusted ports only. Applying this map to a port causes IP packets to be rewritten with newly mapped DSCP values at the ingress ports. If applying the DSCP mutation map to an untrusted port, to class of service (CoS), or to an IP-precedence trusted port.

Global trust mode must be DSCP or CoS-DSCP. In advanced CoS mode, ports must be trusted.

Example

The following example applies the DSCP Mutation map to system DSCP trusted ports.

```
switchxxxxxx(config)# qos dscp-mutation
```
show qos map

Use the show qos map Privileged EXEC mode command to display the various types of QoS mapping.

Syntax

show qos map [dscp-queue | dscp-dp | dscp-mutation | policed-dscp | policed-cos]

Parameters

- **dscp-queue**—Displays the DSCP to queue map.
- **dscp-dp**—Displays the DSCP to Drop Precedence map.
- **policed-dscp**—Displays the DSCP to DSCP remark table.
- **dscp-mutation**—Displays the DSCP-DSCP mutation table.

Default Configuration

Display all maps.

Command Mode

Privileged EXEC mode

Example 1. The following example displays the QoS mapping information:

```
switchxxxxxx(config)# show qos map dscp-queue
Dscp-queue map:
  d1 : d2 0 1 2 3 4 5 6 7 8 9
  ----------------------------------------
  0 : 01 01 01 01 01 01 01 01 01 01
  1 : 01 01 01 01 01 01 02 02 02 02
  2 : 02 02 02 02 02 02 02 02 02 02
  3 : 02 02 03 03 03 03 03 03 03 03
  4 : 03 03 03 03 03 03 03 03 03 03
  5 : 04 04 04 04 04 04 04 04 04 04
  6 : 04 04 04 04
```

Example 2. The following example displays the dscp remapping information:

```
switchxxxxxx(config)# show qos map policed-dscp
Policed-dscp map (exceed):
  d1 : d2 0 1 2 3 4 5 6 7 8 9
  ----------------------------------------
  0 : 00 01 02 03 04 05 06 07 08 09
  1 : 10 11 12 13 14 15 16 17 18 19
  2 : 20 21 22 23 24 25 26 27 28 29
  3 : 30 31 32 33 34 35 36 37 38 39
  4 : 40 41 42 43 44 45 46 47 48 49
  5 : 50 51 52 53 54 55 56 57 58 59
  6 : 21 21 21
Policed-dscp map (violate):
  d1 : d2 0 1 2 3 4 5 6 7 8 9
  ----------------------------------------
  0 : 00 01 02 03 04 05 06 07 08 09
  1 : 10 11 12 13 14 15 16 17 18 19
```
show qos map
clear qos statistics

Use the **clear qos statistics** Privileged EXEC mode command to clear the QoS statistics counters.

Syntax

```plaintext
clear qos statistics
```

Command Mode

Privileged EXEC mode

Example

The following example clears the QoS statistics counters.

```plaintext
switchxxxxxx(config)# clear qos statistics
```
qos statistics policer

Use the **qos statistics policer** Interface (Ethernet, Port Channel) Configuration mode mode command to enable counting in-profile and out-of-profile. Use the **no** form of this command to disable counting.

This command is relevant only when policers are defined.

Syntax

`qos statistics policer policy-map-name class-map-name`

`no qos statistics policer policy-map-name class-map-name`

Parameters

- **policy-map-name**—Specifies the policy map name. (Length: 1–32 characters)
- **class-map-name**—Specifies the class map name. (Length: 1–32 characters)

Default Configuration

Counting in-profile and out-of-profile is disabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example enables counting in-profile and out-of-profile on the interface.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# qos statistics policer policy1 class1
```
qos statistics aggregate-policer

Use the qos statistics aggregate-policer Global Configuration mode command to enable counting in-profile and out-of-profile. Use the no form of this command to disable counting.

Syntax
qos statistics aggregate-policer aggregate-policer-name
no qos statistics aggregate-policer aggregate-policer-name

Parameters
aggregate-policer-name—Specifies the aggregate policer name. (Length: 1–32 characters)

Default Configuration
Counting in-profile and out-of-profile is disabled.

Command Mode
Global Configuration mode

Example
The following example enables counting in-profile and out-of-profile on the interface.
switchxxxxx(config)# qos statistics aggregate-policer policer1
clear queue statistics

Use the clear queue statistics Privileged EXEC mode command to clear the queue statistics.

Syntax

clear queue statistics [interface-id]

Parameters

• interface-id—Specifies an Ethernet port which queue statistics are cleared.

Command Mode

Privileged EXEC mode

User Guidelines

Use the clear queue statistics interface-id command to clear the queue statistics of the given port.
Use the clear queue statistics command to clear the queue statistics of all ports.

Example

The following example clears queue statistics of Ethernet port gi1/0/2:

switchxxxxxx# clear queue statistics gi1/0/2
show queue statistics

Use the **show queue statistics** Privileged EXEC mode command to display the queue statistics.

Syntax

show queue statistics [interface-id]

Parameters

- **interface-id**—Specifies an Ethernet port which queue statistics are displayed.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

User Guidelines

Use the **show queue statistics interface-id** command to display the queue statistics of the given port.

Use the **show queue statistics** command to display the queue statistics of all ports.

Example

The following example displays queue statistics of Ethernet port gi1/0/2:

```
switchxxxxxx# show queue statistics gi1/0/2
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Queue</th>
<th>Tx Pkts</th>
<th>Tx Bytes</th>
<th>Tail Dropped Pkts</th>
<th>Tail Dropped Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/2</td>
<td>1</td>
<td>2700221</td>
<td>0</td>
<td>44543278</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>4</td>
<td>1850</td>
<td>257369</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>5</td>
<td>233017</td>
<td>50313150</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>10234</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show qos statistics

Use the show qos statistics Privileged EXEC mode command to display Quality of Service statistical information.

Syntax

show qos statistics

Command Mode

Privileged EXEC mode

User Guidelines

Use the show qos statistics command to display QoS statistics.

Up to 16 sets of counters can be enabled for policers. The counters can be enabled in the creation of the policers.

Example

The following example displays Quality of Service statistical information.

```
switchxxxxxx# show qos statistics
Policers
---------

<table>
<thead>
<tr>
<th>Interface</th>
<th>Policy</th>
<th>Class</th>
<th>In-Profile</th>
<th>Peak</th>
<th>Violate</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Policy1</td>
<td>Class1</td>
<td>756457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>Policy1</td>
<td>Class2</td>
<td>8759</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Policy1</td>
<td>Class1</td>
<td>75457</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Policy1</td>
<td>Class2</td>
<td>5326</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aggregate Policers
-------------------

<table>
<thead>
<tr>
<th>Name</th>
<th>In-Profile</th>
<th>Peak</th>
<th>Violate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policer</td>
<td>756457</td>
<td>5427</td>
<td>12</td>
</tr>
</tbody>
</table>
```
RADIUS Commands

This chapter contains the following sections:

- radius-server host, on page 1048
- radius-server key, on page 1050
- radius-server retransmit, on page 1051
- radius-server host source-interface, on page 1052
- radius-server host source-interface-ipv6, on page 1053
- radius-server timeout, on page 1054
- radius-server deadtime, on page 1055
- show radius-servers, on page 1056
- show radius-servers key, on page 1057
radius-server host

Use the `radius-server host` Global Configuration mode command to configure a RADIUS server host. Use the `no` form of the command to delete the specified RADIUS server host.

Syntax

```
radius-server host {ip-address | hostname} [auth-port auth-port-number] [acct-port acct-port-number] [timeout timeout] [retransmit retries] [deadtime deadtime] [key key-string] [priority priority] [usage {login | dot1.x | all}]
```

```
encrypted radius-server host {ip-address | hostname} [auth-port auth-port-number] [acct-port acct-port-number] [timeout timeout] [retransmit retries] [deadtime deadtime] [key encrypted-key-string] [priority priority] [usage {login | dot1.x | all}]
```

```
no radius-server host {ip-address | hostname}
```

Parameters

- `ip-address`—Specifies the RADIUS server host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.

- `hostname`—Specifies the RADIUS server host name. Translation to IPv4 addresses only is supported. (Length: 1–158 characters. Maximum label length of each part of the hostname: 63 characters)

- `auth-port auth-port-number`—Specifies the port number for authentication requests. If the port number is set to 0, the host is not used for authentication. (Range: 0–65535)

- `acct-port acct-port-number`—Port number for accounting requests. The host is not used for accountings if set to 0. If unspecified, the port number defaults to 1813.

- `timeout timeout`—Specifies the timeout value in seconds. (Range: 1–30)

- `retransmit retries`—Specifies the number of retry retransmissions (Range: 1–15)

- `deadtime deadtime`—Specifies the length of time in minutes during which a RADIUS server is skipped over by transaction requests. (Range: 0–2000)

- `key key-string`—Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must match the encryption used on the RADIUS daemon. To specify an empty string, enter "". (Length: 0–128 characters). If this parameter is omitted, the globally-configured radius key will be used.

- `key encrypted-key-string`—Same as key-string, but the key is in encrypted format.

- `priority priority`—Specifies the order in which servers are used, where 0 has the highest priority. (Range: 0–65535)

- `usage {login | dot1.x | all}`—Specifies the RADIUS server usage type. The possible values are:
 - `login`—Specifies that the RADIUS server is used for user login parameters authentication.
 - `dot1.x`—Specifies that the RADIUS server is used for 802.1x port authentication.
 - `all`—Specifies that the RADIUS server is used for user login authentication and 802.1x port authentication.
Default Configuration

The default authentication port number is 1812.
If `timeout` is not specified, the global value (set in the `radius-server timeout` command) is used.
If `retransmit` is not specified, the global value (set in the `radius-server retransmit` command) is used.
If `key-string` is not specified, the global value (set in the `radius-server key` command) is used.
If the `usage` keyword is not specified, the `all` argument is applied.

Command Mode

Global Configuration mode

User Guidelines

To specify multiple hosts, this command is used for each host.

Example

The following example specifies a RADIUS server host with IP address 192.168.10.1, authentication request port number 20, and a 20-second timeout period.

```sh
switchxxxxxx(config)# radius-server host 192.168.10.1 auth-port 20 timeout 20
```
radius-server key

Use the radius-server key Global Configuration mode command to set the authentication key for RADIUS communications between the device and the RADIUS daemon. Use the no form of this command to restore the default configuration.

Syntax

radius-server key [key-string]
encrypted radius-server key [encrypted-key-string]
no radius-server key

Parameters

- key-string—Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must match the encryption used on the RADIUS daemon. (Range: 0–128 characters)

- encrypted-key-string—Same as the key-string parameter, but the key is in encrypted form.

Default Configuration

The key-string is an empty string.

Command Mode

Global Configuration mode

Example

The following example defines the authentication key for all RADIUS communications between the device and the RADIUS daemon.

switchxxxxxx(config)# radius-server key enterprise-server
radius-server retransmit

Use the **radius-server retransmit** Global Configuration mode command to specify the number of times the software searches the list of RADIUS server hosts. Use the no form of this command to restore the default configuration.

Syntax

```
radius-server retransmit retries
no radius-server retransmit
```

Parameters

- **retransmit retries**—Specifies the number of retry retransmissions (Range: 1–15).

Default Configuration

The software searches the list of RADIUS server hosts 3 times.

Command Mode

Global Configuration mode

Example

The following example configures the number of times the software searches all RADIUS server hosts as 5.

```
switchxxxxx(config)# radius-server retransmit 5
```
radius-server host source-interface

Use the `radius-server host source-interface` Global Configuration mode command to specify the source interface whose IPv4 address will be used as the Source IPv4 address for communication with IPv4 RADIUS servers. Use the `no` form of this command to restore the default configuration.

Syntax

```
radius-server host source-interface interface-id
no radius-server host source-interface
```

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 RADIUS server.

OOB cannot be defined as a source interface.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# radius-server host source-interface vlan 100
```
radius-server host source-interface-ipv6

Use the `radius-server host source-interface-ipv6` Global Configuration mode command to specify the source interface whose IPv6 address will be used as the source IPv6 address for communication with IPv6 RADIUS servers. Use the `no` form of this command to restore the default configuration.

Syntax

```
radius-server host source-interface-ipv6 interface-id
no radius-server host source-interface-ipv6
```

Parameters

- `interface-id`—Specifies the source interface.

Default Configuration

The IPv6 source address is the IPv6 address defined on the outgoing interface and selected in accordance with RFC6724.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the source IPv6 address is an IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the source IPv6 address is the minimal IPv6 address defined on the source interface and matched to the scope of the destination IPv6 address is applied.

If there is no available source IPv6 address, a SYSLOG message is issued when attempting to communicate with an IPv6 RADIUS server.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# radius-server host source-interface-ipv6 vlan 100
```
radius-server timeout

Use the radius-server timeout Global Configuration mode command to set how long the device waits for a server host to reply. Use the no form of this command to restore the default configuration.

Syntax

radius-server timeout timeout-seconds
no radius-server timeout

Parameters

• timeout timeout-seconds—Specifies the timeout value in seconds. (Range: 1–30).

Default Configuration

The default timeout value is 3 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the timeout interval on all RADIUS servers to 5 seconds.

switchxxxxxx(config)# radius-server timeout 5
radius-server deadtime

Use the `radius-server deadtime` Global Configuration mode command to configure how long unavailable RADIUS servers are skipped over by transaction requests. This improves RADIUS response time when servers are unavailable. Use the `no` form of this command to restore the default configuration.

Syntax

```
radius-server deadtime  deadtime
no radius-server deadtime
```

Parameters

- **deadtime**—Specifies the time interval in minutes during which a RADIUS server is skipped over by transaction requests. (Range: 0–2000).

Default Configuration

The default deadtime interval is 0.

Command Mode

Global Configuration mode

Example

The following example sets all RADIUS server deadtimes to 10 minutes.

```
switchxxxxxx(config)# radius-server deadtime 10
```
show radius-servers

Use the **show radius-servers** Privileged EXEC mode command to display the RADIUS server settings.

Syntax

```
show radius-servers
```

Command Mode

Privileged EXEC mode

Example

The following example displays RADIUS server settings:

```
switchxxxxxx# show radius-servers
IP address  Port  Port  Time  Dead  Deadtime  Priority Usage
----------  ----  ----  ----  ----  ----------  ---------  ------  ------
172.16.1.1  1812  1813  125  Global  Global  Dead  1  All
172.16.1.2  1812  1813  102  8  Global  Up  2  All
```

Global values

TimeOut: 3
Retransmit: 3
Deadtime: 0
Source IPv4 interface: vlan 120
Source IPv6 interface: vlan 10
show radius-servers key

Use the **show radius-servers key** Privileged EXEC mode command to display the RADIUS server key settings.

Syntax

```
show radius-servers key
```

Command Mode

Privileged EXEC mode

Example

The following example displays RADIUS server key settings.

```
switchxxxxxx# show radius-servers key

<table>
<thead>
<tr>
<th>IP address</th>
<th>Key (Encrypted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>1238af77aaca17568f1298cced165fec</td>
</tr>
<tr>
<td>172.16.1.2</td>
<td>1238af77aaca17568f12988601fcabed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Global key (Encrypted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1238af77aaca17568f1298bc5476ddad</td>
</tr>
</tbody>
</table>
```
show radius-servers key
Radius Server Commands

This chapter contains the following sections:

- allowed-time-range, on page 1060
- clear radius server accounting, on page 1061
- clear radius server rejected users, on page 1062
- clear radius server statistics, on page 1063
- clear radius server unknown nas, on page 1064
- privilege-level, on page 1065
- radius server accounting-port, on page 1066
- radius server authentication-port, on page 1067
- radius server enable, on page 1068
- radius server group, on page 1069
- radius server nas secret, on page 1070
- radius server traps accounting, on page 1072
- radius server traps authentication success, on page 1073
- radius server user, on page 1074
- show radius server accounting, on page 1075
- show radius server configuration, on page 1077
- show radius server group, on page 1078
- show radius server rejected users, on page 1079
- show radius server statistics, on page 1081
- show radius server nas secret, on page 1083
- show radius server user, on page 1084
- show radius server unknown nas, on page 1085
- vlan, on page 1086
allowed-time-range

To define the time user can connect, use the `allowed-time-range` command in Radius Server Group Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

`allowed-time-range time-range-name`

`no allowed-time-range`

Parameters

- **time-range-name**—Specifies the time range name configured by the time range command.

Command Mode

Radius Server Group Configuration mode

User Guidelines

Use the `allowed-time-range` command, to define the time users can connect.

Use the `no` form of the command, to return to the default.

Example

The following example assigns an periodical time interval:

```
switchxxxxxx(config)# time-range connection-time
switchxxxxxx(config-time-range)# periodic mon 12:00 to wed 12:00
switchxxxxxx(config-time-range)# exit
switchxxxxxx(config)# radius server group developers
switchxxxxxx(config-radser-group)# allowed-time-range connection-time
switchxxxxxx(config-radser-group)# exit
switchxxxxxx(config)#
```
clear radius server accounting

To clear the Radius Accounting cache, use the `clear radius server accounting` command in Privileged EXEC mode.

Syntax

`clear radius server accounting`

Command Mode

Privileged EXEC mode

User Guidelines

Use the `clear radius server accounting` command, to clear the Radius Accounting cache.

Example

The following example clears the Radius Accounting cache:

```
switchxxxxxx(config)# clear radius server accounting
```
clear radius server rejected users

To clear the Radius Rejected Users cache, use the **clear radius server rejected users** command in Privileged EXEC mode.

Syntax

clear radius server rejected users

Command Mode

Privileged EXEC mode

User Guidelines

Use the **clear radius server rejected users** command, to clear the Radius Rejected Users cache.

Example

The following example clears the Radius Rejected Users cache:

```
switchxxxxx(config)# clear radius server rejected users
```
clear radius server statistics

To clear the Radius server counters, use the **clear radius server statistics** command in Privileged EXEC mode.

Syntax

```
clear radius server statistics [ip-address]
```

Parameters

- `ip-address`—Specifies the RADIUS client host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.

Command Mode

Privileged EXEC mode

User Guidelines

Use the `clear radius server statistics` command without parameter to clear the all counters.

Use the `clear radius server statistics` command with parameter to clear the counters of a given NAS.

Example

The following example clears the Radius server counters:

```
switchxxxxxx(config)# clear radius server statistics
```

Radius Server Commands

[50x677]clear radius server statistics

[144x655]TocleartheRadiusservercounters,usethe**clear radius server statistics**commandinPrivilegedEXEXEC
mode.

Syntax

```
clear radius server statistics [ip-address]
```

Parameters

- `ip-address`—Specifies the RADIUS client host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.

Command Mode

Privileged EXEC mode

User Guidelines

Use the **clear radius server statistics** command without parameter to clear the all counters.

Use the **clear radius server statistics** command with parameter to clear the counters of a given NAS.

Example

The following example clears the Radius server counters:

```
switchxxxxxx(config)# clear radius server statistics
```
clear radius server unknown nas

To clear the Radius Unknown NAS cache, use the `clear radius server unknown nas` command in Privileged EXEC mode.

Syntax

clear radius server unknown nas

Command Mode

Privileged EXEC mode

User Guidelines

Use the `clear radius server unknown nas` command, to clear the Radius Unknown NAS cache.

Example

The following example clears the Radius Unknown NAS cache:

```
switchxxxxxx(config)# clear radius server unknown nas
```
privilege-level

To define the user privilege level, use the `privilege-level` command in Radius Server Group Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
privilege-level level
no privilege-level
```

Parameters

- `level` — Specifies the user privilege level. (Range: 1-15)

Default Configuration

```
1
```

Command Mode

Radius Server Group Configuration mode

User Guidelines

Use the `privilege-level` command, to define the privilege level of users of the given group.

Use the `no` form of the command, to return to the default.

A value of privilege level is passed to a Radius client in the Access-Accept message in the Vendor-Specific(26) attribute. The attribute is only passed to login users.

Example

The following example specified privilege level 15 for users of the developers group:

```
switchxxxxxx(config)# radius server group developers
switchxxxxxx(config-radser-group)# privilege-level 15
switchxxxxxx(config-radser-group)# exit
switchxxxxxx(config)#
```
radius server accounting-port

To define the accounting UDP port used for accounting requests, use the **radius server accounting-port** command in Global Configuration mode. To restore the default configuration, use the **no** form of this command.

Syntax

```
radius server accounting-port udp-port
no radius server accounting-port
```

Parameters

- *udp-port*—Specifies the UDP port number for accounting requests. (Range: 1–59999)

Default Configuration

1813

Command Mode

Global Configuration mode

User Guidelines

Use the **radius server accounting-port** command, to define an UDP port for accounting requests.

Use the **no radius server accounting-port** command, to restore the default UDP accounting port.

Example

The following example defines port 2083 as an accounting UDP port:

```
switchxxxxxx(config)# accounting-port 2083
```
radius server authentication-port

To define the authentication UDP port used for authentication requests, use the `radius server authentication-port` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
radius server authentication-port udp-port
no radius server authentication-port
```

Parameters

- `udp-port`—Specifies the UDP port number for authentication requests. (Range: 1–59999)

Default Configuration

1812

Command Mode

Global Configuration mode

User Guidelines

Use the `radius server authentication-port` command, to define an UDP port for authentication requests.

Use the `no radius server authentication-port` command, to restore the default UDP authentication port.

Example

The following example defines port 2083 as an authentication UDP port:

```
switchxxxxxx(config)# authentication-port 2083
```
radius server enable

To enable Embedded Radius server, use the `radius server enable` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

radius server enable

no radius server enable

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

Use the `radius server enable` command, to enable Embedded Radius server.

Use the `no radius server enable` command, to disable Embedded Radius server.

Example

The following example enables Embedded Radius server:

```
switchxxxxxx(config)# radius server enable
```
radius server group

To enter into Radius Server Group Configuration mode and create this group if it does not exist, use the radius server group command in Global Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

radius server group group-name

no radius server group [group-name]

Parameters

• group-name—Specifies a name of the group. (Length: 1–32 characters)

Default Configuration

The group does not exist.

Command Mode

Global Configuration mode

User Guidelines

Use the radius server group command, to enter into the Radius Server Group Configuration mode. If this group does not exist it is created automatically.

Use the no radius server group group-name command, to delete one group.

Use the no radius server group command, to delete all groups.

A group cannot be deleted, if there is a user referencing to this group.

The Radius server supports up to 50 groups.

Example

The following example creates group developers, if it does not exist, and enters into its context:

switchxxxxxx(config)# radius server group developers
switchxxxxxx(config-radser-group)#
radius server nas secret

To create a secret key, use the radius server nas secret key command in Global Configuration mode. To delete the key, use the no form of this command.

Syntax

radius server nas secret key {default | ip-address}
radius server nas secret ip-address
encrypted radius server nas secret key encrypted-key {default | ip-address}
no radius server nas secret /default | ip-address

Parameters

- **key**—Specifies the authentication and encryption key for communications between the device and users of the given group. (Range: 0–128 characters)
- **encrypted-key**—Same as the key-string parameter, but the key is in encrypted form.
- **default**—Specifies the default secret key that will be applied to communicate with NASs that do not have a private key.
- **ip-address**—Specifies the RADIUS client host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.

Default Configuration

The secret key does not exist.

Command Mode

Global Configuration mode

User Guidelines

Use the radius server nas secret key key default command, to defines a key that will be applied to communicate with NASs that do not have a private key.

Use the radius server nas secret key key ip-address command, to defines a key that will be applied to communicate with the specified NAS.

Use the radius server nas secret ip-address command, to defines that the default secret key will be applied to communicate with the specified NAS.

If a NAS is not defined by this command all messages received from this NAS will be dropped.

The Radius server supports up to 50 NASs.

Use the no radius server nas secret default command, to delete the default key.

Use the no radius server nas secret ip-address command, to remove the given NAS and its secret key.

Use the no radius server nas secret command, to delete all NASs and all secret keys.
Example 1. The following example defines a default secret key:

```
switchxxxxx(config)# radius server nas secret key qrBut56$#qw default
```

Example 2. The following example defines a default secret key:

```
switchxxxxx(config)# radius server nas secret key qrBut56$#qw default
```

Example 3. The following example defines a NAS using the default secret key:

```
switchxxxxx(config)# radius server nas secret 10.05.10.1
```
radius server traps accounting

To enable sending accounting traps, use the `radius server traps accounting` command in Global Configuration mode. To disable the traps, use the `no` form of this command.

Syntax

```
radius server traps accounting
no radius server traps accounting
```

Default Configuration

Accounting traps are disabled.

Command Mode

Global Configuration mode

User Guidelines

A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending accounting traps:

```
switchxxxxxx(config)# radius server traps accounting
```
radius server traps authentication success

To enable sending traps when a user is successfully authorized, use the `radius server traps authentication success` command in Global Configuration mode. To disable the traps, use the `no` form of this command.

Syntax

`radius server traps authentication success`

`no radius server traps authentication success`

Default Configuration

Success traps are disabled.

Command Mode

Global Configuration mode

User Guidelines

A rate limit is applied to the traps: not more than one trap of this type can be sent in 10 seconds.

Example

The following example enables sending traps when a user is successfully authorized:

```
switchxxxxx(config)# radius server traps authentication success
```
radius server user

To create a user, use the `radius server user` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
radius server user username user-name group group-name password unencrypted-password
no radius server user /username user-name | group group-name]
```

Parameters

- `user-name` — Specifies the user name. (Length: 1–32 characters)
- `group-name` — Specifies the user group name. (Length: 1–32 characters)
- `unencrypted-password` — Specifies the user password. (Length: 1–64 characters)

Default Configuration

The user does not exist.

The Radius server supports up to 1024 users.

Command Mode

Global Configuration mode

User Guidelines

Use the `radius server user` command, to create a new user.

Use the `no radius server user username` user-name command to delete one user.

Use the `no radius server user group` group-name command to delete users of the given group.

Use the `no radius server user` command to delete all users.

Example

The following example creates a new user with name bob of group developer with password Aerv#136dSsT:

```
switchxxxxxx(config)# radius server user username bob group developers password Aerv#136dSsT
```
show radius server accounting

To display user accounting information, use the `show radius server accounting` command in Privileged EXEC mode.

Syntax

```
show radius server accounting [username user-name]
```

Parameters

- `username user-name`—Specifies the user name. (Length: 1–32 characters)

Command Mode

Privileged EXEC mode

User Guidelines

The Radius server saves the last 1024 accounting logs in a cycle file on FLASH.

Use the `show radius server accounting username user-name` command, to display accounting information of one user.

Use the `show radius server accounting` command, to display accounting information of all users.

Example 1. The following example displays accounting information of all users:

```
switchxxxxxx# show radius server accounting
29-Jun-14, 16:00, Stop
  User: Bob
  Accounting Session Time: 6 hours, 15 minutes
  Authenticated by: local
  NAS Address: 10.23.1.3
  User Address: 160.134.7.8
  Termination Reason: User Request
29-Jun-14, 12:04, Start
  User: Alisa
  Authenticated by: Radius
  NAS Address: 10.23.1.3
  User Address: 00:12:cf:00:1c:25
  NAS Port: 10
29-Jun-14, 12:04, Stop
  User: Alisa
  Accounting Session Time: 2 days, 2 hours, 10 minutes
  Authenticated by: Radius
  NAS Address: 10.23.1.3
  User Address: 00:12:cf:00:1c:25
  Termination Reason: User Request
*20-Feb-2008, 9:20, Date and Time were updated to 29-Jun-14, 11:00
20-Feb-2014, 9:05, Start
  User: Bob
  Authenticated by: local
  NAS Address: 10.23.1.3
  User Address: 160.134.7.8
*20-Feb-2008, 9:00, Reboot
```

Example 2. The following example displays accounting information of one user Bob:

```
```
show radius server accounting username Bob:
29-Jun-14, 16:00, Stop
 User: Bob
 Accounting Session Time: 6 hours, 15 minutes
 Authenticated by: Radius
 NAS Address: 10.23.1.3
 User Address: 160.134.7.8
 Termination Reason: User Request
*20-Feb-2008, 9:20, Date and Time were updated to 29-Jun-14, 11:00
20-Feb-2014, 9:05, Start
 User: Bob
 Authenticated by: Radius
 NAS Address: 10.23.1.3
 User Address: 160.134.7.8
*20-Feb-2008, 9:00, Reboot
show radius server configuration

To display Radius Server global configuration, use the `show radius server configuration` command in Privileged EXEC mode.

Syntax

`show radius server configuration`

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show radius server configuration` command, to display Radius server global configuration.

Example

The following example displays radius server global configuration:

```
switchxxxxxx# show radius server configuration
Radius Server Status: Enabled
Authentication UDP port: 1812 (default)
Accounting UDP port: 1813 (default)
Authentication failure traps are enabled
Authentication success traps are enabled
Accounting traps are enabled
```
show radius server group

To display a Radius Server group configuration, use the show radius server group command in Privileged EXEC mode.

Syntax

show radius server group [group-name]

Parameters

- group-name—Specifies a name of the group. (Length: 1–32 characters)

Command Mode

Privileged EXEC mode

User Guidelines

Use the show radius server group group-name command, to display one group.

Use the show radius server group command, to display all groups.

Example

The following example displays radius server groups.

switchxxxxxx# show radius server group
Group gr1
 VLAN: 124
 Privilege Level: 15
 Time Range: ConnectionTime
 Group Users: develop, designers
Group gr2
 Privilege Level: 1 (default)
 Group Users: bob
show radius server rejected users

To display rejected users, use the `show radius server rejected users` command in Privileged EXEC mode.

Syntax

`show radius server rejected users [username user-name]`

Parameters

- `user-name`—Specifies the user name. (Length: 1–32 characters)

Command Mode

Privileged EXEC mode

User Guidelines

The Radius server saves the last 1024 rejected authentication requests in a cycle file on FLASH.

The Radius server saves the last 1024 accounting logs in a cycle file on FLASH.

Use the `show radius server rejected users user-name` command, to display one rejected user.

Use the `show radius server rejected users` command, to display all rejected users.

Example 1. The following example displays all rejected users:

```
switchxxxxxx# show radius server rejected users
30-Jun-14 16:44
User Name: Jack
User Type: Login
NAS Address: 10.1.1.1
User Address: 10.23.4.3
Reason: Unknown user
30-Jun-14 16:04
User Name: Bob
User Type: Login
NAS Address: 10.1.1.1
User Address: 10.23.4.3
Reason: Illegal password
*20-Feb-2008, 9:20, Date and Time were updated to 29-Jun-14, 11:00
20-Feb-08 16:24
User Name: Robert
User Type: 802.1x
NAS Address: 10.1.1.1
NAS Port: 2
User Address: 00:67:67:96:ac:21
Reason: Not Supported EAP method
20-Feb-08 14:14
User Name: Alisa
User Type: 802.1x
NAS Address: 10.1.1.1
NAS Port: 2
User Address: 00:67:67:96:ac:21
Reason: Not allowed at this time
*20-Feb-2008, 9:00, Reboot
```
Example 2. The following example displays one rejected user Bob:

```
switchxxxxx# show radius server rejected users 30-Jun-14 16:04
   User Name: Bob
   User Type: Login
   NAS Address: 10.1.1.1
   User Address: 10.23.4.3
   Reason: Illegal password
*20-Feb-2008, 9:20, Date and Time were updated to 29-Jun-14, 11:00
*20-Feb-2008, 9:00, Reboot
```
show radius server statistics

To display the Radius server counters, use the `show radius server statistics` command in User EXEC mode.

Syntax

```
show radius server statistics [ip-address]
```

Parameters

- `ip-address` — Specifies the RADIUS client host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.

Command Mode

User EXEC mode

User Guidelines

- Use the `show radius server statistics` command to display the Radius server counters defined in RFC4669 and RFC4671.
- Use the `show radius server statistics` command without parameter to display the global counters.
- Use the `show radius server statistics` command with parameter to display the counters of the given NAS.

Example 1. The following example displays the Radius server global counters:

```
switchxxxxxx# show radius server statistics
Number of incoming packets on the authentication port: 120
Number of incoming Access-Requests from unknown addresses: 0
Number of duplicate incoming Access-Requests: 3
Number of sent Access-Accepts: 100
Number of sent Access-Rejects: 17
Number of sent Access-Challenges: 0
Number of incoming malformed Access-Requests: 0
Number of incoming Authentication-Requests with Bad Authenticator: 0
Number of incoming Authentication packets with other mistakes: 0
Number of incoming Authentication packets of unknown type: 0
Number of incoming packets on the accounting port: 80
Number of incoming Accounting-Requests from unknown addresses: 12
Number of incoming Accounting-Requests from unknown addresses: 0
Number of incoming duplicate Accounting-Requests: 0
Number of sent Accounting-Responses: 0
Number of incoming malformed Accounting-Requests: 0
Number of incoming Accounting-Requests with Bad Authenticator: 0
Number of incoming Accounting packets with other mistakes: 0
Number of incoming not recorded Accounting-Requests: 0
Number of incoming Accounting packets of unknown type: 0
```

Example 2. The following example displays the Radius server counters of the given SNA: secret keys:

```
switchxxxxxx# show radius server statistics 1.1.1.1
NAS: 1.1.1.1
Number of incoming packets on the authentication port: 120
Number of duplicate incoming Access-Requests: 3
Number of sent Access-Accepts: 100
```
Number of sent Access-Rejects: 17
Number of sent Access-Challenges: 0
Number of incoming malformed Access-Requests: 0
Number of incoming Authentication-Requests with Bad Authenticator: 0
Number of incoming Authentication packets with other mistakes: 0
Number of incoming Authentication packets of unknown type: 0
Number of incoming packets on the accounting port: 80
Number of incoming Accounting-Requests from unknown addresses: 0
Number of incoming duplicate Accounting-Requests: 0
Number of sent Accounting-Responses: 0
Number of incoming malformed Accounting-Requests: 0
Number of incoming Accounting-Requests with Bad Authenticator: 0
Number of incoming Accounting packets with other mistakes: 0
Number of incoming not recorded Accounting-Requests: 0
Number of incoming Accounting packets of unknown type: 0
show radius server nas secret

To display secret keys, use the **show radius server nas secret** command in Privileged EXEC mode.

Syntax

```
show radius server nas secret [default | ip-address]
```

Parameters

- **default**—Specifies the default secret key that will be applied to communicate with NASs that do not have a private key.
- **ip-address**—Specifies the RADIUS client host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.

Command Mode

Privileged EXEC mode

User Guidelines

Use the **show radius server nas secret default** command, to display the default secret key.

Use the **show radius server nas secret** ip-address command, to display the given NAS secret key.

Use the **show radius server nas secret** command, to display all secret keys.

Example 1. The following example displays all secret keys:

```
switchxxxxxx# show radius server nas secret
Default Secret Key’s MD5:1238af77aaca17568f1298cced1255cc
NAS Address Secret Key’s MD5
----------------------------------
10.1.35.3 1238af77aaca17568f1298cced165fec
10.2.37.6 default
3000:1231:1230:9cab:1384 1238af77aaca17568f12988601fcbed
3001:ab11::9cda:0981 1238af77aaca17568f1298bc5476ddad
```

Example 2. The following example displays the default secret key:

```
switchxxxxxx# show radius server nas secret default
Default Secret Key’s MD5:1238af77aaca17568f1298cced1255cc
```

Example 3. The following example displays the secret key of one given NAS:

```
switchxxxxxx# show radius server nas secret 10.1.35.3
NAS ID Secret Key’s MD5
-------------------------
10.1.35.3 1238af77aaca17568f1298cced165fec
```
show radius server user

To display a Radius Server user configuration, use the `show radius server user` command in Privileged EXEC mode.

Syntax

```
show radius server user [username user-name] | [group group-name]
```

Parameters

- `user-name`—Specifies the user name. (Length: 1–32 characters)
- `group-name`—Specifies a name of the group. (Length: 1–32 characters)

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show radius server user username user-name` command, to display one user.

Use the `show radius server user group group-name` command, to display all users of the given group.

Use the `show radius server user` command, to display all users.

Examples

The following example displays one user bob:

```
switchxxxxxx# show radius server user username bob
User bob
  Group: developers
  Password’s MD5: 1238af77aaca17568f1298cced1255cc
```
show radius server unknown nas

To display unknown NASes, use the `show radius server unknown nas` command in Privileged EXEC mode.

Syntax

`show radius server unknown nas`

Command Mode

Privileged EXEC mode

User Guidelines

The Radius server saves the last 100 unknown NASes in a cycle cache.

Example

The following example displays Radius requests received from unknown NASes:

```
switchxxxxxx# show radius server unknown nas
30-Jun-14 16:44 NAS Address: 10.1.1.1
30-Jun-14 16:04 NAS Address: 10.1.1.1
*20-Feb-08, 9:20, Date and Time were updated to 29-Jun-14, 11:00
20-Feb-08 16:24 NAS Address: 10.1.1.1
20-Feb-08 14:14 NAS Address: 10.1.1.1
*20-Feb-08, 9:00, Reboot
```
vlan

To define Radius Assigned VLAN, use the `vlan` command in Radius Server Group Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
vlan {id vlan-id | name vlan-name}
no vlan
```

Parameters

- **vlan-id**—Specifies a VLAN ID. (Range: 1-4094)
- **vlan-name**—Specifies a name of the VLAN. (Length: 1–32 characters)

Default Configuration

No Radius Assigned VLAN.

Command Mode

Radius Server Group Configuration mode

User Guidelines

Use the `vlan` command, to assign the VLAN to a radius client. This Radius Assigned VLAN is passed to a Radius client in the Access-Accept message in the following attributes:

- Tunnel-Type(64)
- Tunnel-Medium-Type(65)
- Tunnel-Private-Group-ID(81)

If a VLAN is not assigned these attributes are not included in the Access-Accept message.

Use the `no` form of the command, to delete VLAN assignment.

Example

The following example assigns VLAN 100 to users of the developers group and VLAN with name management of users of the managers group:

```
switchxxxxxx(config)# radius server group developers
switchxxxxxx(config-radser-group)# vlan id 100
switchxxxxxx(config-radser-group)# exit
switchxxxxxx(config)# radius server group managers
switchxxxxxx(config-radser-group)# vlan name management
switchxxxxxx(config-radser-group)# exit
switchxxxxxx(config)#
```
Rate Limit and Storm Commands

This chapter contains the following sections:

- clear storm-control counters, on page 1088
- rate-limit (Ethernet), on page 1089
- rate-limit vlan, on page 1090
- storm-control, on page 1091
- show rate-limit interface, on page 1093
- show rate-limit vlan, on page 1094
- show storm-control interface, on page 1095
clear storm-control counters

To clear storm control counters, use the `clear storm-control counters` command in Privileged EXEC mode.

Syntax

clear storm-control counters [broadcast | multicast | unicast] [interface interface-id]

Parameters

- **broadcast**—(Optional) Clear Broadcast storm control counters.
- **multicast**—(Optional) Clear Multicast storm control counters.
- **unicast**—(Optional) Clear Unicast Unknown storm control counters.
- **interface interface-id**—(Optional) Clear storm control counters for the specified Ethernet port.

Command Mode

Privileged EXEC mode

User Guidelines

The switch clears the port counter of a given traffic type when storm control for this traffic type on this port is enabled.

Use this command to clear the storm control counters when storm control is running.

Use the `clear storm-control counters` command to clear all the storm control counters of all Ethernet ports.

Use the `clear storm-control counters interface interface-id` command to clear all the storm control counters of a given port.

Use the `clear storm-control counters broadcast | multicast | unicast` command to clear all storm control counters of a given traffic type of all Ethernet ports.

Use the `clear storm-control counters broadcast | multicast | unicast interface interface-id` command to clear one storm control counter of a given traffic type and of a given port.

Example 1. The following example clears all storm control counters of all ports:

```
switchxxxxxx# clear storm-control counters
```

Example 2. The following example clears all storm control counters of port gi1/0/1:

```
switchxxxxxx# clear storm-control counters interface gi1/0/1
```

Example 3. The following example clears broadcast storm control counter of all ports:

```
switchxxxxxx# clear storm-control counters broadcast
```

Example 4. The following example clears multicast storm control counter of port gi1/0/1:

```
switchxxxxxx# clear storm-control counters multicast interface gi1/0/1
```
rate-limit (Ethernet)

To limit the incoming traffic rate on a port, use the `rate-limit` command in Interface (Ethernet) Configuration mode. To disable the rate limit, use the `no` form of this command.

Syntax

```
rate-limit committed-rate-kbps [burst committed-burst-bytes]
no rate-limit
```

Parameters

- `committed-rate-kbps`—Specifies the maximum number of kilobits per second of ingress traffic on a port. The range is 3–maximal port speed.

Default Configuration

Rate limiting is disabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

The Rate Limit does not calculate traffic controlled by Storm control. The real allowed rate will be sum of the rate specified by the command and the rates specified by the Storm control commands for particular traffic types.

Example

The following example limits the incoming traffic rate on gi1/0/1 to 150,000 kbps.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# rate-limit 150000
```
rate-limit vlan

To limit the incoming traffic rate for a VLAN in, use the `rate-limit vlan` command in Global Configuration mode. To disable the rate limit, use the `no` form of this command.

Syntax

```
rate-limit vlan vlan-id committed-rate committed-burst-bytes
no rate-limit vlan vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN ID.
- `committed-rate`—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 3-57982058)
- `committed-burst`—Specifies the maximum burst size (CBS) in bytes. (Range: 3000–19173960).

Default Configuration

Rate limiting is disabled.

Command Mode

Global Configuration mode

User Guidelines

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

Traffic policing in a policy map takes precedence over VLAN rate limiting. If a packet is subject to traffic policing in a policy map and is associated with a VLAN that is rate limited, the packet is counted only in the traffic policing of the policy map.

VLAN Rate limiting is calculated separately for each unit in a stack.

It does not work in conjunction with IP Source Guard.

Example

The following example limits the rate on VLAN 11 to 150000 kbps and the committed burst size to 9600 bytes.

```
switchxxxxxxx(config)# rate-limit vlan 11 150000 9600
```
storm-control

To enable broadcast, multicast, or unicast storm control on a port, use the `storm-control` command in Interface (Ethernet) Configuration mode. To return to default, use the `no` form of this command.

Syntax

```plaintext
storm-control broadcast {level level | kbps kbps} [trap] [shutdown]
no storm-control broadcast

storm-control multicast [registered | unregistered] {level level | kbps kbps} [trap] [shutdown]
no storm-control multicast

storm-control unicast {level level | kbps kbps} [trap] [shutdown]
no storm-control unicast
no storm-control
```

Parameters

- **broadcast**—Enables broadcast storm control on the port.
- **multicast [registered | unregistered]**—Enables either all multicast, only registered multicast, or only unregistered multicast storm control on the port.
- **unicast**—Enables unicast unknown storm control on the port.
- **level level**—Suppression level in percentage. Block the flooding of storm packets when the value specified for level is reached. (Range 1-100)
- **kbps kbps**—Maximum of kilobits per second of Broadcast traffic on a port. (Range 1 – 10000000)
- **trap**—(Optional) Sends a trap when a storm occurs on a port. If the keyword is not specified the trap is not sent.
- **shutdown**—(Optional) Shut down a port when a storm occurs on the port. If the keyword is not specified extra traffic is discarded.

Default Configuration

Storm control is disabled.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

The rate limit on a port does not calculate traffic controlled by storm control on this port.

Use the `no storm-control` command to disable storm control of all traffic type on the port.
Example

The following example enables broadcast, multicast, and unicast unknown storm control on port gi1/0/1 and multicast unregistered and unicast unknown on port gi1/0/2:

Enable group 1 for registered and unregistered multicast traffic on interface gi1/0/1. Extra traffic is discarded.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# storm-control broadcast kbps 10000
switchxxxxxx(config-if)# storm-control multicast level 20 trap
switchxxxxxx(config-if)# storm-control unicast level 5 trap shutdown
switchxxxxxx(config-if)# exit
```

```
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# storm-control multicast unregistered level 5 trap shutdown
switchxxxxxx(config-if)# storm-control unicast level 5 trap
switchxxxxxx(config-if)# exit
```
show rate-limit interface

To display rate limit configuration on an interface, use the `show rate-limit interface` command in Privileged EXEC mode.

Syntax

`show rate-limit interface [interface-id]`

Parameters

- `interface-id`—(Optional) Specifies an Ethernet port. If the argument is not configured rate limit configuration of all Ethernet ports is displayed.

Command Mode

Privileged EXEC mode

Examples

The following is an example of the output from the `show rate-limit interface`:

```
switchxxxxx> show rate-limit interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>Rate Limit (kbps)</th>
<th>Burst (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>80000</td>
<td>512</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>100000</td>
<td>1024</td>
</tr>
</tbody>
</table>
```
show rate-limit vlan

To display rate limit configuration on a VLAN, use the `show rate-limit vlan` command in Privileged EXEC mode.

Syntax

```bash
show rate-limit vlan [vlan-id]
```

Parameters

- **vlan-id**—(Optional) Specifies a VLAN ID. If the argument is not configured, rate limit configuration of all VLANs is displayed.

Default Configuration

N/A

Command Mode

Privileged EXEC mode

Examples

The following is an example of the output from the `show rate-limit vlan`:

```
switchxxxxx> show rate-limit vlan 1075

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Rate Limit (kbps)</th>
<th>Burst (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1075</td>
<td>100000</td>
<td>1024</td>
</tr>
</tbody>
</table>
```
show storm-control interface

To display storm control information of an interface, use the `show storm-control interface` command in Privileged EXEC mode.

Syntax

`show storm-control interface [interface-id]`

Parameters

- `interface-id`—(Optional) Specifies an Ethernet port. If the argument is not configured storm control information of all Ethernet ports is displayed.

Command Mode

Privileged EXEC mode

Examples

The following is an example of the output from the `show storm-control interface`:

```
switchxxxxxx> show storm-control interface
        gi1/0/1
        Broadcast
        Rate: 5%
        Action: Shutdown
        Passed Counter (Bytes): 124997
        Dropped Counter (Bytes): 10
        Last drop time: 27-Jan-2014, 09:00:01
        Multicast
        Rate: 1000 kbps
        Action: Drop, Trap
        Passed Counter (Bytes):112876
        Dropped Counter (Bytes):1272
        Last drop time: 20-Jan-2014, 11:00:01
        Unicast
        Rate: 10%
        Action: drop
        Passed Counter (Bytes): 27653
        Dropped Counter (Bytes):1
        Last drop time: 27-Feb-2014, 09:00:01
        gi1/0/2
        Broadcast
        Rate: 5%
        Action: Shutdown
        Passed Counter (Bytes): 124997
        Dropped Counter (Bytes): 0
        Last drop time:
        Multicast Unregistered
        Rate: 5%
        Action: Shutdown
        Traffic Type: Broadcast
        Passed Counter (Bytes): 124997
        Dropped Counter (Bytes): 3
        Last drop time: 26-Jan-2014, 10:00:01
```
show storm-control interface
RIP Commands

This chapter contains the following sections:

- clear rip statistics, on page 1098
- default-information originate, on page 1099
- default-metric, on page 1100
- ip rip authentication key-chain, on page 1101
- ip rip authentication mode, on page 1102
- ip rip authentication-key, on page 1103
- ip rip default-information originate, on page 1104
- ip rip distribute-list in, on page 1105
- ip rip distribute-list out, on page 1106
- ip rip offset, on page 1107
- ip rip passive-interface, on page 1108
- ip rip distribute-list in, on page 1109
- ip rip distribute-list out, on page 1110
- ip rip offset, on page 1111
- ip rip passive-interface, on page 1112
- ip rip shutdown, on page 1113
- network, on page 1114
- passive-interface (RIP), on page 1115
- redistribute (RIP), on page 1116
- router rip, on page 1118
- show ip rip database, on page 1119
- show ip rip peers, on page 1121
- shutdown, on page 1122
clear rip statistics

The **clear rip statistics** Privileged EXEC mode command clears statistics counters of all interfaces and all peers.

Syntax

clear rip statistics

Parameters

N/A

Command Mode

Privileged EXEC mode

Example

The following example shows how to clear all counters:

```
switchxxxxxx# clear rip statistics
```
default-information originate

To generate a default route into Routing Information Protocol (RIP), use the `default-information originate` command in Router Configuration mode. To disable this feature, use the `no` form of this command.

Syntax

default-information originate

no default-information originate

Default Configuration

Default route is not generated by RIP.

Command Mode

Router RIP Configuration mode

User Guidelines

Use the command to enable generation of a default route.

Example 1 - The following example shows how to originate a default route:

```
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# default-information originate
switchxxxxxx(config-rip)# exit
```
default-metric

The **default-metric** Router RIP configuration mode command sets the default metric value when RIP advertises routes derived by other protocols (for example, by static configuration). The **no** format of the command sets the default value.

Syntax

`default-metric [metric-value]`

no default-metric

Parameters

- **metric-value**—Default metric value. Range 1-15.

Default Configuration

`metric-value`—1.

Command Mode

Router RIP Configuration mode

Example

The following example shows how to set the default metric to 2:

```
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# default-metric 2
switchxxxxxx(config-rip)# exit
```
ip rip authentication key-chain

The **ip rip authentication key-chain** IP Interface Configuration mode command specifies the set of keys that can be used for and specifies the type of authentication. The **no** format of the command returns to default.

Syntax

```plaintext
ip rip authentication key-chain name-of-chain

no ip rip authentication key-chain
```

Parameters

- `name-of-chain` — Specifies the name of key set. The name-change parameter points to list of keys specified by the `key chain` CLI command.

Default Configuration

No defined key chain.

Command Mode

IP Configuration mode

User Guidelines

Use the **ip rip authentication key-chain** IP Interface Configuration mode command to define a key chain name. Only one key chain may be defined per an IP interface. Each the **ip rip authentication key-chain** command overrides the previous definition.

In order to have a smooth rollover of keys in a key chain, a key should be configured with a lifetime that starts several minutes before the lifetime of the previous key expires.

Example

The following example shows how to define a chain name:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config)# ip rip authentication key-chain alpha
switchxxxxxx(config)# exit
```
ip rip authentication mode

The **ip rip authentication mode** IP Interface Configuration mode command enables authentication. The **no** format of the command returns to default.

Syntax

```
ip rip authentication mode {text | md5}
no ip rip authentication mode
```

Parameters

- **text**—Specifies the clear text authentication.
- **md5**—Specifies the MD5 authentication.

Default Configuration

No authentication.

Command Mode

IP Configuration mode

User Guidelines

If you enable the MD5 authentication, you must configure a key chain name with the **ip rip authentication key-chain** interface command. If a key chain is not defined for the IP interface or there is not a valid key then RIP packets are not sent on the IP interface and received IP interface packets are dropped.

If you enable the clear text authentication, you must configure a password with the **ip rip authentication-key** interface command. If a password is not defined for the IP interface then RIP packets are not sent on the IP interface and received IP interface packets are dropped.

Example

The following example shows how to set the md5 mode:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# ip rip authentication mode md5
switchxxxxxx(config-route-map)# exit
```
ip rip authentication-key

To assign a password to be used by neighboring routers that are using the RIP clear text authentication, use the **ip rip authentication-key** command in interface configuration mode. To remove the RIP password, use the **no** form of this command.

Syntax

ip rip authentication-key **password**

no ip rip authentication-key

Parameters

- **password**—Any continuous string of characters that can be entered from the keyboard up to 16 characters in length.

Default Configuration

No password is specified.

Command Mode

IP Configuration mode

User Guidelines

The password created by this command is used as a "key" that is inserted directly into the RIP header when the switch software originates routing protocol packets. A separate password can be assigned to each subnetwork. All neighboring routers on the same subnetwork must have the same password to be able to exchange RIP information.

Only one password may be defined per IP interface. Each **ip rip authentication-key** command overrides the previous definition.

Example

The following example shows how to define a password:

switchxxxxxx(config)# interface ip 1.1.1.1

switchxxxxxx(config-route-map)# ip rip authentication mode text

switchxxxxxx(config-route-map)# ip rip authentication-key alph$$12

switchxxxxxx(config-route-map)# exit
ip rip default-information originate

The **ip rip default-information originate** IP Interface generates a metric for a default route in RIP. The **no** format of the command disables the feature.

Syntax

```
ip rip default-information originate {disable | metric}
```

no ip rip default-information originate

Parameters ranges

- **disable**—Do not send the default route.
- **metric**—Default route metric value. Range: 1-15.

Default Configuration

The RIP behavior is specified by the **default-information originate** command.

Command Mode

IP Configuration mode

User Guidelines

Use the command to override the RIP behavior specified by the **default-information originate** command on a given IP interface.

Example

The following example shows how to enable sending of default route with metric 3:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# ip rip default-information originate 3
switchxxxxxx(config-route-map)# exit
```
ip rip distribute-list in

The `ip rip distribute-list in` command enables filtering of routes in incoming RIP update messages. The `no` format of the command disables the filtering.

Syntax

```
ip rip distribute-list access access-list-name in
no ip rip distribute-list in
```

Parameters

- `access-list-name`—Standard IP access list name, up to 32 characters. The list defines which routes in incoming RIP update messages are accepted and which are suppressed.

Default Configuration

No filtering

Command Mode

IP Configuration mode

User Guidelines

Each network from a received RIP update message is evaluated by the access list and accepted only if it is permitted by the list. See the `ip access-list (IP standard)` and `ip prefix-list` commands for details.

Example

The following example shows how to define input filtering:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# ip rip distribute-list access 5 in
switchxxxxxx(config-route-map)# exit
```
ip rip distribute-list out

The **ip rip distribute-list out** IP configuration mode command enables filtering of routes in outgoing RIP update messages. The **no** format of the command disables the filtering.

Syntax

`ip rip distribute-list access access-list-name out`

`no ip rip distribute-list out`

Parameters

- **access-list-name**—Standard IP access list name, up to 32 characters. The list defines which routes in outgoing RIP update messages are to be sent and which are to be suppressed.

Default Configuration

No filtering

Command Mode

IP Configuration mode

User Guidelines

Each network from the IP Forwarding table is evaluated by the list and it is included in the RIP update message only if it is permitted by the list. See the **ip access-list (IP standard)** and **ip prefix-list** commands.

Example

The following example shows how to define outgoing filtering:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# ip rip distribute-list access 5 out
switchxxxxxx(config-route-map)# exit
```
ip rip offset

The **ip rip offset** IP configuration mode command defines a metric added to incoming routes. The **no** format of the command returns to default.

Syntax

`ip rip offset offset`

no ip rip offset

Parameters

- **offset**—Specifies the offset to be applied to received routes. Range: 1-15.

Default Configuration

offset—1.

Command Mode

IP Configuration mode

User Guidelines

Example

The following example shows how to set offset to 2:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# ip rip offset 2
switchxxxxxx(config-route-map)# exit
```
ip rip passive-interface

The **ip rip passive-interface** IP Interface Configuration mode command disables sending RIP packets on an IP interface. The **no** format of the command re-enables the sending RIP packets.

Syntax

ip rip passive-interface
no ip rip passive-interface

Default Configuration

RIP messages are sent.

Command Mode

IP Configuration mode

User Guidelines

Use the **ip rip passive-interface** command to stop sending RIP messages on the giving IP interface. To stop RIP messages being sent on all interfaces, use the **passive-interface** command.

Note. The **no ip rip passive-interface** command does not override the **passive-interface** command.

Example

The following example shows how to stop the sending of RIP messages:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# ip rip passive-interface
switchxxxxxx(config-route-map)# exit
```
ip rip distribute-list in

The `ip rip distribute-list in` IP configuration mode command enables filtering of routes in incoming RIP update messages. The `no` format of the command disables the filtering.

Syntax

```
ip rip distribute-list access access-list-name in
no ip rip distribute-list in
```

Parameters

- `access-list-name`—Standard IP access list name, up to 32 characters. The list defines which routes in incoming RIP update messages are to be accepted and which are to be suppressed.

Default Configuration

No filtering

Command Mode

IP Configuration mode

User Guidelines

Each network from a received RIP update message is evaluated by the access list and it is accepted only if it is permitted by the list. See the `ip access-list (IP standard)` and `ip prefix-list` commands for details.

Example

The following example shows how to define input filtering:

```
switchxxxxx(config)# interface ip 1.1.1.1
switchxxxxx(config-route-map)# ip rip distribute-list access 5 in
switchxxxxx(config-route-map)# exit
```
ip rip distribute-list out

The `ip rip distribute-list out` IP configuration mode command enables filtering of routes in outgoing RIP update messages. The `no` format of the command disables the filtering.

Syntax

```
ip rip distribute-list access access-list-name out
no ip rip distribute-list out
```

Parameters

- `access-list-name`—Standard IP access list name, up to 32 characters. The list defines which routes in outgoing RIP update messages are to be sent and which are to be suppressed.

Default Configuration

No filtering

Command Mode

IP Configuration mode

User Guidelines

Each network from the IP Forwarding table is evaluated by the list and it is included in the RIP update message only if it is permitted by the list. See the `ip access-list (IP standard)` and `ip prefix-list` commands.

Example

The following example shows how to define outgoing filtering:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# ip rip distribute-list access 5 out
switchxxxxxx(config-route-map)# exit
```
ip rip offset

The `ip rip offset` IP configuration mode command defines a metric added to incoming routes. The `no` format of the command returns to default.

Syntax

`ip rip offset offset`

`no ip rip offset`

Parameters

- `offset`—Specifies the offset to be applied to received routes. Range: 1-15.

Default Configuration

`offset`—1.

Command Mode

IP Configuration mode

User Guidelines

Example

The following example shows how to set offset to 2:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# ip rip offset 2
switchxxxxxx(config-route-map)# exit
```
ip rip passive-interface

The `ip rip passive-interface` IP Interface Configuration mode command disables sending RIP packets on an IP interface. The `no` format of the command re-enables the sending RIP packets.

Syntax

`ip rip passive-interface`
`no ip rip passive-interface`

Default Configuration

RIP messages are sent.

Command Mode

IP Configuration mode

User Guidelines

Use the `ip rip passive-interface` command to stop sending RIP messages on the giving IP interface. To stop RIP messages being sent on all interfaces, use the `passive-interface` command.

Note. The `no ip rip passive-interface` command does not override the `passive-interface` command.

Example

The following example shows how to stop the sending of RIP messages:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# ip rip passive-interface
switchxxxxxx(config-route-map)# exit
```
ip rip shutdown

The **ip rip shutdown** IP Interface configuration mode command changes the RIP interface state from **enabled** to **disabled**. The **no** format of the command returns the state to a value of **enabled**.

Syntax

ip rip shutdown

no ip rip shutdown

Default Configuration

Enabled

Command Mode

IP Configuration mode

User Guidelines

Use the **ip rip shutdown** CLI command to disable RIP on an IP interface without removing its configuration. The **ip rip shutdown** CLI command may be applied only to RIP interfaces created by the **network** CLI command. The **ip rip shutdown** CLI command does not remove the RIP interface configuration.

Example

The following example shows how to disable RIP on the 1.1.1.1 IP interface:

```
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# ip rip shutdown
switchxxxxxx(config-route-map)# exit
```
The network Router RIP configuration mode command enables RIP on the given IP interfaces. The no format of the command disables RIP on the given IP interfaces and removes its interface configuration.

Syntax

```plaintext
network ip-address [shutdown]
no network ip-address
```

Parameters

- **ip-address**—An IP address of a switch IP interface.
- **shutdown**—RIP is enabled on the interface in the shutdown state.

Command Mode

Router RIP Configuration mode

User Guidelines

RIP can be defined only on manually-configured IP interfaces, meaning that RIP cannot be defined on an IP address defined by DHCP or on a default IP address.

Use the `network` CLI command with the `shutdown` keyword to create RIP on an interface if you are going to change the default values of RIP configuration and the use the `no ip rip shutdown` CLI command.

Use the `no network` CLI command to remove RIP on an IP interface and remove its interface configuration.

Example 1. The following example shows how to enable RIP on IP interface 1.1.1.1 with the default interface configuration:

```plaintext
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# network 1.1.1.1
switchxxxxxx(config-rip)# exit
```

Example 2. The following example enables RIP on 1.1.1.1 in the shutdown state, configures metric and starts RIP:

```plaintext
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# network 1.1.1.1 shutdown
switchxxxxxx(config-rip)# exit
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config)# ip rip offset 2
switchxxxxxx(config)# no ip rip shutdown
switchxxxxxx(config)# exit
```
passive-interface (RIP)

To disable sending routing updates on all RIP IP interfaces, use the `passive-interface` command in Router RIP Configuration mode. To re-enable the sending of RIP routing updates, use the `no` form of this command.

Syntax

```
passive-interface
no passive-interface
```

Default Configuration

Routing updates are sent on all IP RIP interfaces.

Command Mode

Router RIP Configuration mode

User Guidelines

After using the `passive-interface` command, you can then configure individual interfaces where adjacencies are desired using the `no ip rip passive-interface` command.

Example

The following example sets all IP interfaces as passive and then excludes the IP interface 1.1.1.1:

```
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# passive-interface
switchxxxxxx(config-rip)# network 1.1.1.1
switchxxxxxx(config-rip)# network 2.2.2.2
switchxxxxxx(config-rip)# network 3.3.3.3
switchxxxxxx(config-rip)# exit
switchxxxxxx(config)# interface ip 1.1.1.1
switchxxxxxx(config-route-map)# no ip rip passive-interface
switchxxxxxx(config-route-map)# exit
```
redistribute (RIP)

To redistribute routes from one routing domain into a RIP routing domain, use the `redistribute` command in the Router RIP configuration mode. To disable redistribution, use the `no` form of this command.

Syntax

```
redistribute protocol [metric {metric-value | transparent}]
no redistribute protocol
```

Parameters

- **protocol**—Source protocol from which routes are being redistributed. It can be one of the following keywords: `connected` or `static`.

- **metric transparent**—Causes RIP to use the source protocol metric for redistributed routes as the RIP metric. Only routes with metric less than 16 are redistributed.

- **metric metric-value**—Specifies the metric assigned to the redistributed routes. The value supersedes the metric value specified using the `default-metric` command.

Default Configuration

Route redistribution is disabled

Command Mode

Router RIP Configuration mode

User Guidelines

Routes distributed to the source protocol are never redistributed by it

The `connected` keyword is used to redistribute to RIP routes that correspond to defined IP interfaces on which RIP is not enabled. By default, the RIP Routing Table includes only routes that correspond only to IP interfaces on which it is enabled.

The `static` keyword is used to redistribute to RIP static routes. By default, static routes are not redistributed to RIP.

If the metric value is set by the route map (by the `set metric` command) then the value will supersede the metric value specified by the `metric-value` argument.

If the `metric` keyword is not defined, then the metric is specified by the `default-metric` CLI command is assigned to the redistributed routes. If metric value set by the route map is equal or bigger than 16 the route is not redistributed.

Changing or disabling any keyword will not affect the state of other keywords.

Removing options that you have configured for the `redistribute` command requires careful use of the `no` form of the `redistribute` command to ensure that you obtain the result that you are expecting.

Example 1. The following example enables redistribution of static routes by RIP with transparent metric:
Example 2. The following example enables redistribution of static routes by RIP with transparent metric and then changes the metric to default:

```
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# redistribute static metric transparent
switchxxxxxx(config-rip)# exit
```

Example 3. The following example enables redistribution of static routes by RIP with default metric and then changes the metric to transparent:

```
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# redistribute static metric transparent
switchxxxxxx(config-rip)# exit
```

Example 4. The following example enables redistribution of static routes by RIP with transparent metric. The second redistribute command does not affect:

```
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# redistribute static metric transparent
switchxxxxxx(config-rip)# redistribute static
switchxxxxxx(config-rip)# exit
```

Example 5. The following example disables redistribution of static routes by RIP:

```
switchxxxxxx(config)# router rip
switchxxxxxx(config-rip)# no redistribute static
switchxxxxxx(config-rip)# exit
```
router rip

The router rip Global Configuration mode command specifies the Router RIP mode and enables it if it was disabled. The no format of the command disables RIP globally and removes its configuration.

Syntax

router rip
no router rip

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

RIP supports the following global states:

- disabled
- enabled
- shutdown

If a value of the RIP global state is disabled (default value), RIP is not operational and cannot be configured. When this state is set, the RIP configuration is removed. The state may be set by the no router rip CLI command from any RIP global state.

If a value of the RIP global state is shutdown, RIP is not operational, but can be configured. When the state is set the RIP configuration is not changed. The state may be set by the shutdown CLI command from the enabled RIP global state.

If the value of the RIP global state is enabled, RIP is operational, and can be configured. The state can be set by the router rip CLI command from the disabled RIP global state and by the no shutdown CLI command from the shutdown RIP global state.

Example

The following example shows how to enable RIP globally:

router rip
show ip rip database

The `show ip rip database` Privileged EXEC mode command displays information about the RIP Database.

Syntax

`show ip rip database [all | brief | ip-address]`

Parameters

• `all`—Provides the full RIP database information about all RIP interfaces. The option is assumed if the parameter is omitted.

• `brief`—Provides a summary view of the RIP database information.

• `ip-address`—Provides the full RIP database information about the given IP Address.

Command Mode

Privileged EXEC mode

Example 1—The following example shows the full RIP database information about all RIP interfaces is displayed:

```
switchxxxxxx# show ip rip database
RIP is enabled
RIP Administrative state is UP
Default metric value is 1
Redistributing is enabled from
Connected:
  Metric is default-metric
Static:
  Metric is transparent
IP Interface: 1.1.1.1
  Administrative State is enabled
  IP Interface Offset is 10
  Default Originate Metric is 12
  Authentication Type is text
  Password is afGRwitew%3
  IN Filtering Type is Access List
  Access List Name is 10
  OUT Filtering Type is Access List
  Access List Name is List12
IP Interface: 2.2.2.2
  Administrative State is enabled
  IP Interface Offset is 2
  No Default Originate Metric
  Authentication Type is MD5
  Key Chain Name is chain1
  IN Filtering Type is Access List
  Access List Name is 10
  OUT Filtering Type is Access List
  Access List Name is 12
IP Interface: 3.3.3.3
  Administrative State is enabled
  IP Interface Offset is 1
  IP Interface is passive
```
Example 2—The following example shows the full RIP database information about a given IP address is displayed:

```
switchxxxxxx# show ip rip database 1.1.1.1
RIP is enabled
RIP Administrative state is UP
Default Originate Metric: on passive only
Default metric value is 1
Redistributing is enabled from
Connected
Metric is default-metric
Static
Metric is transparent
IP Interface: 1.1.1.1
Administrative State is enabled
IP Interface Offset is 10
Default Originate Metric is 12
Authentication Type is text
Password is afGRwitew%3
IN Filtering Type is Access List
Access List Name is 10
OUT Filtering Type is Access List
Access List Name is List12
```

Example 3—The following example shows the brief RIP database information about all RIP interfaces is displayed:

```
switchxxxxxx# show ip rip database brief
RIP is enabled
RIP Administrative state is UP
Default Originate Metric: route-map is condition
Default metric value is 1
Redistributing is enabled from
Connected
Metric is default-metric
Static
Metric is transparent

<table>
<thead>
<tr>
<th>IP Interface</th>
<th>Admin Offset</th>
<th>Passive</th>
<th>Default Auth.</th>
<th>IN Filt.</th>
<th>OUT Filt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.100.100.100</td>
<td>enabled</td>
<td>10</td>
<td>No</td>
<td>Text</td>
<td>Access</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>enabled</td>
<td>2</td>
<td>No</td>
<td>MD5</td>
<td>Access</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>enabled</td>
<td>1</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.4.4</td>
<td>shutdown</td>
<td>1</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Example 4—The following example shows the output when RIP is disabled:

```
switchxxxxxx# show ip rip database
RIP is disabled
```
show ip rip peers

The **show ip rip peers** Privileged EXEC mode command displays information about RIP Peers.

Syntax

```
show ip rip peers
```

Command Mode

Privileged EXEC mode

Example

```
switchxxxxxx# show ip rip peers
RIP is enabled
Static redistributing is enabled with Default metric
Default redistributing metric is 1
Address Last Received Received
 Update Bad Packets Bad Route
------------ --------- ---------- ---------
1.1.12 00:10:17 - 1
2.2.2.3 00:10:01 - -
```
shutdown

The `shutdown` Router RIP configuration mode command sets the RIP global state to `shutdown`. The `no` format of the command sets the RIP global state to `enabled`.

Syntax

`shutdown`

`no shutdown`

Default Configuration

Enabled

Command Mode

Router RIP Configuration mode

User Guidelines

Use the `shutdown` CLI command to stop RIP globally without removing its configuration.

Example

The following example shows how to shutdown RIP globally:

```
routing rip
    shutdown
    exit
```
RMON commands

This chapter contains the following sections:

- rmon alarm, on page 1124
- show rmon alarm-table, on page 1126
- show rmon alarm, on page 1127
- rmon event, on page 1129
- show rmon events, on page 1130
- show rmon log, on page 1131
- rmon table-size, on page 1132
- show rmon statistics, on page 1133
- rmon collection stats, on page 1136
- show rmon collection stats, on page 1137
- show rmon history, on page 1138
To configure alarm conditions, use the `rmon alarm` Global Configuration mode command. To remove an alarm, use the `no` form of this command.

Syntax

```
rmon alarm index mib-object-id interval rising-threshold falling-threshold rising-event falling-event [type /absolute | delta] /startup [rising | rising-falling | falling] /owner name
```

Parameters

- **index**—Specifies the alarm index. (Range: 1–65535)
- **mib-object-id**—Specifies the object identifier of the variable to be sampled. (Valid OID)
- **interval**—Specifies the interval in seconds during which the data is sampled and compared with rising and falling thresholds. (Range: 1–2147483647)
- **rising-threshold**—Specifies the rising threshold value. (Range: 0–2147483647)
- **falling-threshold**—Specifies the falling threshold value. (Range: 0–2147483647)
- **rising-event**—Specifies the index of the event triggered when a rising threshold is crossed. (Range: 0–65535)
- **falling-event**—Specifies the index of the event triggered when a falling threshold is crossed. (Range: 0–65535)
- **type {absolute | delta]**—(Optional) Specifies the method used for sampling the selected variable and calculating the value to be compared against the thresholds. The possible values are:
 - **absolute**—Specifies that the selected variable value is compared directly with the thresholds at the end of the sampling interval.
 - **delta**—Specifies that the selected variable value of the last sample is subtracted from the current value, and the difference is compared with the thresholds.
- **startup [rising | rising-falling | falling]**—(Optional) Specifies the alarm that may be sent when this entry becomes valid. The possible values are:
 - **rising**—Specifies that if the first sample (after this entry becomes valid) is greater than or equal to **rising-threshold**, a single rising alarm is generated.
 - **rising-falling**—Specifies that if the first sample (after this entry becomes valid) is greater than or equal to **rising-threshold**, a single rising alarm is generated. If the first sample (after this entry becomes valid) is less than or equal to **falling-threshold**, a single falling alarm is generated.
 - **falling**—Specifies that if the first sample (after this entry becomes valid) is less than or equal to **falling-threshold**, a single falling alarm is generated.
- **owner name**—(Optional) Specifies the name of the person who configured this alarm. (Valid string)
Default Configuration

The default method type is **absolute**.
The default **startup** direction is **rising-falling**.
If the owner **name** is not specified, it defaults to an empty string.

Command Mode

Global Configuration mode

Example

The following example configures an alarm with index 1000, MIB object ID D-Link, sampling interval 360000 seconds (100 hours), rising threshold value 1000000, falling threshold value 1000000, rising threshold event index 10, falling threshold event index 10, absolute method type and rising-falling alarm.

```
switchxxxxxx(config)# rmon alarm 1000 1.3.6.1.2.1.2.2.1.10.1 360000 1000000 1000000 10 20
```
show rmon alarm-table

To display a summary of the alarm table, use the `show rmon alarm-table` Privileged EXEC mode command.

Syntax

`show rmon alarm-table`

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

The following example displays the alarm table.

```
switchxxxxxx# show rmon alarm-table
```

<table>
<thead>
<tr>
<th>Index</th>
<th>OID</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3.6.1.2.1.2.2.1.10.1</td>
<td>CLI</td>
</tr>
<tr>
<td>2</td>
<td>1.3.6.1.2.1.2.2.1.10.1</td>
<td>Manager</td>
</tr>
<tr>
<td>3</td>
<td>1.3.6.1.2.1.2.2.1.10.9</td>
<td>CLI</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index that uniquely identifies the entry.</td>
</tr>
<tr>
<td>OID</td>
<td>Monitored variable OID.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this entry.</td>
</tr>
</tbody>
</table>
show rmon alarm

To display alarm configuration, use the `show rmon alarm` Privileged EXEC mode command.

Syntax

```
show rmon alarm number
```

Parameters

- `alarm number`—Specifies the alarm index. (Range: 1–65535)

Command Mode

Privileged EXEC mode

Example

The following example displays RMON 1 alarms.

```
switchxxxxxx# show rmon alarm 1
Forwarding 0

--------
 OID: 1.3.6.1.2.1.2.2.1.10.1
 Last sample Value: 878128
 Interval: 30
 Sample Type: delta
 Startup Alarm: rising
 Rising Threshold: 870000
 Falling Threshold: 78
 Rising Event: 1
 Falling Event: 1
 Owner: CLI
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>Alarm index.</td>
</tr>
<tr>
<td>OID</td>
<td>Monitored variable OID.</td>
</tr>
<tr>
<td>Last Sample Value</td>
<td>Value of the statistic during the last sampling period.</td>
</tr>
<tr>
<td></td>
<td>For example, if the sample type is <code>delta</code>, this value is the difference</td>
</tr>
<tr>
<td></td>
<td>between the samples at the beginning and end of the period. If the sample</td>
</tr>
<tr>
<td></td>
<td>type is <code>absolute</code>, this value is the sampled value at the end of the period.</td>
</tr>
<tr>
<td>Interval</td>
<td>Interval in seconds over which the data is sampled and compared with the</td>
</tr>
<tr>
<td></td>
<td>rising and falling thresholds.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
Sample Type | Method of sampling the variable and calculating the value compared against the thresholds. If the value is **absolute**, the variable value is compared directly with the thresholds at the end of the sampling interval. If the value is **delta**, the variable value at the last sample is subtracted from the current value, and the difference is compared with the thresholds.

Startup Alarm | Alarm that is sent when this entry is first set. If the first sample is greater than or equal to the rising threshold, and startup alarm is equal to rising or rising-falling, then a single rising alarm is generated. If the first sample is less than or equal to the falling threshold, and startup alarm is equal falling or rising-falling, then a single falling alarm is generated.

Rising Threshold | Sampled statistic rising threshold. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval is less than this threshold, a single event is generated.

Falling Threshold | Sampled statistic falling threshold. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval is greater than this threshold, a single event is generated.

Rising Event | Event index used when a rising threshold is crossed.

Falling Event | Event index used when a falling threshold is crossed.

Owner | Entity that configured this entry.
rmon event

To configure an event, use the **rmon event** Global Configuration mode command. To remove an event, use the **no** form of this command.

Syntax

```
rmon event index {none | log | trap | log-trap} [community text] [description text] [owner name]
no rmon event index
```

Parameters

- **index**—Specifies the event index. (Range: 1–65535)
- **none**—Specifies that no notification is generated by the device for this event.
- **log**—Specifies that a notification entry is generated in the log table by the device for this event.
- **trap**—Specifies that an SNMP trap is sent to one or more management stations by the device for this event.
- **log-trap**— Specifies that an entry is generated in the log table and an SNMP trap is sent to one or more management stations by the device for this event.
- **community text**—(Optional) Specifies the SNMP community (password) used when an SNMP trap is sent. (Octet string; length: 0–127 characters). Note this must be a community used in the definition of an SNMP host using the "snmp-server host" command.
- **description text**—(Optional) Specifies a comment describing this event. (Length: 0–127 characters)
- **owner name**—(Optional) Specifies the name of the person who configured this event. (Valid string)

Default Configuration

If the owner name is not specified, it defaults to an empty string.

Command Mode

Global Configuration mode

Example

The following example configures an event identified as index 10, for which the device generates a notification in the log table.

```
switchxxxxxx(config)# rmon event 10 log
```
show rmon events

To display the RMON event table, use the `show rmon events` Privileged EXEC mode command.

Syntax

`show rmon events`

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

The following example displays the RMON event table.

```
switchxxxxxx# show rmon events

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Type</th>
<th>Community</th>
<th>Owner</th>
<th>Last time sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Errors High</td>
<td>Log</td>
<td>router</td>
<td>CLI</td>
<td>Jan 18 2006 23:58:17</td>
</tr>
<tr>
<td>2</td>
<td>Broadcast</td>
<td>Trap</td>
<td>Manager</td>
<td></td>
<td>Jan 18 2006 23:59:48</td>
</tr>
</tbody>
</table>
```

The following table describes significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Unique index that identifies this event.</td>
</tr>
<tr>
<td>Description</td>
<td>Comment describing this event.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of notification that the device generates about this event. Can have the following values: <code>none</code>, <code>log</code>, <code>trap</code>, <code>log-trap</code>. In the case of log, an entry is made in the log table for each event. In the case of trap, an SNMP trap is sent to one or more management stations.</td>
</tr>
<tr>
<td>Community</td>
<td>If an SNMP trap is to be sent, it is sent with the SNMP community string specified by this octet string.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this event.</td>
</tr>
<tr>
<td>Last time sent</td>
<td>The time this entry last generated an event. If this entry has not generated any events, this value is zero.</td>
</tr>
</tbody>
</table>
show rmon log

To display the RMON log table, use the `show rmon log` Privileged EXEC mode command.

Syntax

```
show rmon log [event]
```

Parameters

- `event`—(Optional) Specifies the event index. (Range: 0–65535)

Command Mode

Privileged EXEC mode

Example

The following example displays event 1 in the RMON log table.

```
switchxxxxxx# show rmon log 1
Maximum table size: 500 (800 after reset)

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MIB Var.:</td>
<td>Jan 18 2006 23:48:19</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.2.1.2.2.1.10.53,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delta, Rising, Actual Val:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800, Thres.Set: 100, Interval (sec):1</td>
<td></td>
</tr>
</tbody>
</table>
```

RMON commands

show rmon log
rmon table-size

To configure the maximum size of RMON tables, use the **rmon table-size** Global Configuration mode command. To return to the default size, use the no form of this command.

Syntax

```
rmon table-size /history entries | log entries
no rmon table-size /history | log/
```

Parameters

- **history entries**—Specifications the maximum number of history table entries. (Range: 20–32767)
- **log entries**—Specifications the maximum number of log table entries. (Range: 20–32767)

Default Configuration

The default history table size is 270 entries.
The default log table size is 200 entries.

Command Mode

Global Configuration mode

User Guidelines

The configured table size takes effect after the device is rebooted.

Example

The following example configures the maximum size of RMON history tables to 100 entries.

```
switchxxxxxx(config)# rmon table-size history 100
```
show rmon statistics

To display RMON Ethernet statistics, use the `show rmon statistics` Privileged EXEC mode command.

Syntax

`show rmon statistics {interface-id}`

Parameters

`interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

Privileged EXEC mode

Example

The following example displays RMON Ethernet statistics for port gi1/0/1.

```
switchxxxxxx#  show rmon statistics gi1/0/1
Port gi1/0/1
Dropped: 0
Octets: 0          Packets: 0
Broadcast: 0       Multicast: 0
CRC Align Errors: 0 Collisions: 0
Undersize Pkts: 0  Oversize Pkts: 0
Fragments: 0       Jabbers: 0
64 Octets: 0       65 to 127 Octets: 1
128 to 255 Octets: 1 256 to 511 Octets: 1
512 to 1023 Octets: 0 1024 to max Octets: 0
```

The following table describes the significant fields displayed.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped</td>
<td>Total number of events in which packets were dropped by the probe due to lack of resources. Note that this number is not necessarily the number of packets dropped. It is the number of times this condition was detected.</td>
</tr>
<tr>
<td>Octets</td>
<td>Total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets</td>
<td>Total number of packets (including bad packets, broadcast packets, and multicast packets) received.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Total number of good packets received and directed to the broadcast address. This does not include multicast packets.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Multicast</td>
<td>Total number of good packets received and directed to a multicast address. This number does not include packets directed to the broadcast address.</td>
</tr>
<tr>
<td>CRC Align Errors</td>
<td>Total number of packets received with a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but with either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Collisions</td>
<td>Best estimate of the total number of collisions on this Ethernet segment.</td>
</tr>
<tr>
<td>Undersize Pkts</td>
<td>Total number of packets received, less than 64 octets long (excluding framing bits, but including FCS octets) and otherwise well formed.</td>
</tr>
<tr>
<td>Oversize Pkts</td>
<td>Total number of packets received, longer than 1518 octets (excluding framing bits, but including FCS octets) and otherwise well formed.</td>
</tr>
<tr>
<td>Fragments</td>
<td>Total number of packets received, less than 64 octets in length (excluding framing bits but including FCS octets) and either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Jabbers</td>
<td>Total number of packets received, longer than 1518 octets (excluding framing bits, but including FCS octets), and either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>64 Octets</td>
<td>Total number of packets (including bad packets) received that are 64 octets in length (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>65 to 127 Octets</td>
<td>Total number of packets (including bad packets) received that are between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>128 to 255 Octets</td>
<td>Total number of packets (including bad packets) received that are between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>256 to 511 Octets</td>
<td>Total number of packets (including bad packets) received that are between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>512 to 1023 Octets</td>
<td>Total number of packets (including bad packets) received that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>1024 to max</td>
<td>Total number of packets (including bad packets) received that were between 1024 octets and the maximum frame size in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
</tbody>
</table>
rmon collection stats

To enable RMON MIB collecting history statistics (in groups) on an interface, use the `rmon collection stats` Interface Configuration mode command. To remove a specified RMON history group of statistics, use the `no` form of this command.

Syntax

```plaintext
rmon collection stats index [owner ownername] [buckets bucket-number] [interval seconds]

no rmon collection stats index
```

Parameters

- **index**—The requested group of statistics index. (Range: 1–65535)
- **owner ownername**—(Optional) Records the name of the owner of the RMON group of statistics. If unspecified, the name is an empty string. (Range: Valid string)
- **buckets bucket-number**—(Optional) A value associated with the number of buckets specified for the RMON collection history group of statistics. If unspecified, defaults to 50. (Range: 1–50)
- **interval seconds**—(Optional) The number of seconds in each polling cycle. If unspecified, defaults to 1800 (Range: 1–3600).

Command Mode

Interface Configuration mode.
show rmon collection stats

To display the requested RMON history group statistics, use the show rmon collection stats Privileged EXEC mode command.

Syntax
show rmon collection stats [interface-id]

Parameters
interface-id—(Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
Privileged EXEC mode

Example
The following example displays all RMON history group statistics.

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Interval</th>
<th>Requested Samples</th>
<th>Granted Samples</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gi1/0/1</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>CLI</td>
</tr>
<tr>
<td>2</td>
<td>gi1/0/1</td>
<td>1800</td>
<td>50</td>
<td>50</td>
<td>Manager</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index that uniquely identifies the entry.</td>
</tr>
<tr>
<td>Interface</td>
<td>The sampled Ethernet interface.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval in seconds between samples.</td>
</tr>
<tr>
<td>Requested Samples</td>
<td>The requested number of samples to be saved.</td>
</tr>
<tr>
<td>Granted Samples</td>
<td>The granted number of samples to be saved.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this entry.</td>
</tr>
</tbody>
</table>
show rmon history

To display RMON Ethernet history statistics, use the show rmon history Privileged EXEC mode command.

Syntax

```
show rmon history index [throughput | errors | other] [period seconds]
```

Parameters

- **index**—Specifies the set of samples to display. (Range: 1–65535)
- **throughput**—Displays throughput counters.
- **errors**—Displays error counters.
- **other**—Displays drop and collision counters.
- **period seconds**—(Optional) Specifies the period of time in seconds to display. (Range: 1–2147483647)

Command Mode

Privileged EXEC mode

Example

The following examples display RMON Ethernet history statistics for index 1:

```
switchxxxxxx# show rmon history 1 throughput

Sample Set: 1
Interface: gi1/0/1
Requested samples: 50

Owner: CLI
Interval: 1800
Granted samples: 50

Maximum table size: 500

<table>
<thead>
<tr>
<th>Time</th>
<th>Octets</th>
<th>Packets</th>
<th>Broadcast</th>
<th>Multicast</th>
<th>Util</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 18 2005</td>
<td>303595962</td>
<td>357568</td>
<td>3289</td>
<td>7287</td>
<td>19%</td>
</tr>
<tr>
<td>21:57:00</td>
<td>287696304</td>
<td>275686</td>
<td>2789</td>
<td>5878</td>
<td>20%</td>
</tr>
<tr>
<td>Jan 18 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:57:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

switchxxxxxx# show rmon history 1 errors

Sample Set: 1
Interface: gi1/0/1
Requested samples: 50

Owner: Me
Interval: 1800
Granted samples: 50

Maximum table size: 500 (800 after reset)
```
The following table describes significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Date and Time the entry is recorded.</td>
</tr>
<tr>
<td>Octets</td>
<td>Total number of octets of data (including those in bad packets and excluding framing bits but including FCS octets) received on the network.</td>
</tr>
<tr>
<td>Packets</td>
<td>Number of packets (including bad packets) received during this sampling interval.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Number of good packets received during this sampling interval that were directed to the broadcast address.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Number of good packets received during this sampling interval that were directed to a multicast address. This number does not include packets addressed to the broadcast address.</td>
</tr>
<tr>
<td>Utilization</td>
<td>Best estimate of the mean physical layer network utilization on this interface during this sampling interval, in hundredths of a percent.</td>
</tr>
<tr>
<td>CRC Align</td>
<td>Number of packets received during this sampling interval that had a length (excluding framing bits but including FCS octets) between 64 and 1518 octets, inclusive, but had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Undersize</td>
<td>Number of packets received during this sampling interval that were less than 64 octets long (excluding framing bits but including FCS octets) and were otherwise well formed.</td>
</tr>
<tr>
<td>Oversize</td>
<td>Number of packets received during this sampling interval that were longer than 1518 octets (excluding framing bits but including FCS octets) but were otherwise well formed.</td>
</tr>
<tr>
<td>Fragments</td>
<td>Total number of packets received during this sampling interval that were less than 64 octets in length (excluding framing bits but including FCS octets) and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error), or a bad FCS with a non-integral number of octets (Alignment Error). It is normal for etherHistoryFragments to increment because it counts both runts (which are normal occurrences due to collisions) and noise hits.</td>
</tr>
<tr>
<td>Jabbers</td>
<td>Number of packets received during this sampling interval that were longer than 1518 octets (excluding framing bits but including FCS octets), and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Dropped</td>
<td>Total number of events in which packets were dropped by the probe due to lack of resources during this sampling interval. This number is not necessarily the number of packets dropped, it is the number of times this condition has been detected.</td>
</tr>
<tr>
<td>Collisions</td>
<td>Best estimate of the total number of collisions on this Ethernet segment during this sampling interval.</td>
</tr>
</tbody>
</table>
Router Resources Commands

This chapter contains the following sections:

- show system resources, on page 1142
- set router hardware-routing active, on page 1144
- show router hardware-routing status, on page 1145
- system resources, on page 1146
show system resources

To display the currently used and max allowed entries for IP Entries, policy based routes and VLAN mapping, use the `show system resources` command in User EXEC mode.

Syntax

show system resources

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

User Guidelines

Use the `show system resources` command to display the currently used and the maximum allowed IP Entries, policy based routes and VLAN mapping entries.

The count of the "in use" entries in command output is calculated as follows:

"policy routes" entries - a single entry is consume per each created policy map

- "vlan mapping" entries - 8 entries are reserved for system use, and in addition:
 - A single entry is consumed for each VLAN mapping entry applied to an interface

- "IP entries" entries - the ip entry count can include different type of entries. The following table details the number of ip entries consume per each entry type:

<table>
<thead>
<tr>
<th>Logical Entity</th>
<th>Number of IP entries consumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP host/Neighbor</td>
<td>1 entry per neighbor</td>
</tr>
<tr>
<td>IPv4 interface</td>
<td>2 entries per interface</td>
</tr>
<tr>
<td>IPv4 (Remote) Route</td>
<td>1 entries per route</td>
</tr>
<tr>
<td>IPv4 Multicast Group</td>
<td>2 entries per group</td>
</tr>
<tr>
<td>IPv6 host/Neighbor</td>
<td>4 entries per neighbor</td>
</tr>
<tr>
<td>IPv6 interface</td>
<td>8 entries per interface</td>
</tr>
<tr>
<td>IPv6 On Link Prefix</td>
<td>4 entries per Prefix</td>
</tr>
<tr>
<td>IPv6 (Remote) Route</td>
<td>4 entries per route</td>
</tr>
<tr>
<td>IPv6 Multicast Group</td>
<td>8 entries per group</td>
</tr>
</tbody>
</table>
Example

In the following example, per each type, the in use and max entries are displayed:

```
switchxxxxxx# show system resources

<table>
<thead>
<tr>
<th>Type</th>
<th>In-Use</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Entries</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>IPv4 policy Routes</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>IPv6 policy Routes</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>VLAN Mapping Entries</td>
<td>48</td>
<td>64</td>
</tr>
</tbody>
</table>
```
set router hardware-routing active

To start the process of re-activating hardware based routing on the device, use the `set router hardware-routing active` Privileged EXEC mode command.

Syntax

```
set router hardware-routing active
```

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

User Guidelines

Hardware based routing is supported automatically on device once IPv4 or IPv6 route is enabled. However, hardware based routing is de-activated automatically by the software in cases where device hardware resources cannot support the amount of IPv4 and/or IPv6 entries.

- IPv4 entries - IPv4 interfaces/addresses and routes as well as IPv4 Multicast entries;
- IPv6 entries - IPv6 interfaces/addresses and routes as well as IPv6 Multicast entries;

Once Hardware based routing is de-activated by the system the user needs to apply the `set router hardware-routing active` command to re-activate hardware based routing on device. It is recommended to adjust the number of IPv4 and/or IPv6 entries on device to match the device hardware capabilities.

Once command is applied, the device begins to update all existing IP entries to device hardware tables. If process succeeds - hardware based routing will be re-activated. If process fails (for example device hardware resource are still not sufficient to support current device IP entries), hardware routing status will remain in-active.

Syslog messages will indicate to user the start of the hardware table update process and the success or failure of such update.

Example 1. The following example the process of reactivating hardware based routing is applied.

```
switchxxxxxx# set router hardware-routing active
This operation may take a few moments...
```

Example 2. In the following example, command is applied, but hardware based routing is already active on the device.

```
switchxxxxxx# set router hardware-routing active
Hardware based routing already active
```
show router hardware-routing status

To display the status of hardware based routing, use the `show router hardware-routing status` command in User EXEC mode.

Syntax

`show router hardware-routing status`

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

Example 1. In the following example, the hardware routing status is displayed as inactive:

```
switchxxxxxx# show system router resources
Hardware routing status: inactive
```

Example 2. In the following example, the hardware routing status is displayed as "in activation" (this will usually indicate that hardware table updated is in process following the activation of command `set router hardware-routing active`, on page 1144):

```
switchxxxxxx# show system router resources
Hardware routing status: in activation
```
system resources

To configure hardware resource allocation for policy based routing and/or VLAN mapping, use the `system resources` command in Global Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
system resources [policy-ip-routes max-number] [policy-ipv6-routes max-number] [vlan-mapping-entries max-number]
```

no system resources

Parameters

- **policy-ip-routes** max-number — (Optional) The maximum number of IPv4 policy routes that can be configured. (range: 0-32)
- **policy-ipv6-routes** max-number — (Optional) The maximum number of IPv6 policy routes that can be configured. (range: 12-32)
- **vlan-mapping-entries** max-number — (Optional) The maximum number of VLAN Mappings entries that can be configure. (range: 0-228)

Default Configuration

- policy-ip-routes — 12.
- policy-ipv6-routes — 12.
- vlan-mapping-entries — 0.

Command Mode

Global Configuration mode

User Guidelines

Use the `system resources` command to enter new settings for the maximum supported number of policy based routes and/or VLAN mapping entries. After entering the command, the current setting will be displayed, and the user will be required to confirm saving the new setting to the startup-configuration, following which system needs to be rebooted to apply changes.

When this command is included in a configuration file that is downloaded to the device, if it is downloaded to the running configuration file, the command will be rejected. If it is downloaded to the startup configuration file, the device will not reboot automatically. The new settings will be used after the device is rebooted manually.

Allocating additional resources for policy based routes and/or VLAN mapping entries, means that there are less resources to be used by IP type entries.

Out of the entries allocated for VLAN Mapping - 8 entries are reserved for system use, and cannot be used for user based VLAN Mapping configuration.

Data Validation:
If the new policy based route and/or VLAN mapping values cannot be supported by device (due to relevant resource being used by other applications), the command is rejected and a message is displayed to the user.

If the new max-number parameter is lower than the actual number of entries currently in-use settings, a confirmation message is displayed to the user (before the save confirmation message).

Use the **no system resources** command to restore the default settings.

Example 1

The following example defines the supported number of entries for IPv4 policy based routes, IPv6 policy based routes and/or VLAN mapping.

```
switchxxxxxx(config)# system resources policy-ip-routes 20 policy-ipv6-routes 32 vlan-mapping-entries 100
```

<table>
<thead>
<tr>
<th>In-Use</th>
<th>Reserved (Current)</th>
<th>Reserved (New)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPV4 policy Routes</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>IPV6 policy Routes</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>VLAN Mapping Entries</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

Setting the new configuration of entries requires saving the running-configuration file to startup-configuration file and rebooting the system, do you want to continue? [Y/N] [N] Y

Example 2

In the following example, the configured entries are less than the entries which are currently in use by the device. Using this configuration means that the system may not have enough resources for the running again in the existing network:

```
switchxxxxxx(config)# system resources policy-ip-routes 8 policy-ipv6-routes 8 vlan-mapping-routes 16
```

<table>
<thead>
<tr>
<th>In-Use</th>
<th>Reserved (Current)</th>
<th>Reserved (New)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPV4 policy Routes</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>IPV6 policy Routes</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>VLAN Mapping Entries</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

1) In one or more of the parameters, the new max entry configuration is less than the entries which are currently in use by the system, do you want to continue?
2) Setting the new configuration of entries requires saving the running-configuration file to startup-configuration file and rebooting the system.

Do you want to continue? (Y/N) [N] Y
Route Map Commands

This chapter contains the following sections:

- match ip address (Policy Routing), on page 1150
- match ipv6 address (Policy Routing), on page 1151
- route-map (Policy Routing), on page 1152
- set ip next-hop, on page 1154
- set ipv6 next-hop, on page 1155
- show route-map, on page 1156
match ip address (Policy Routing)

To match IP packets to perform IP policy routing, use the `match ip address` command in Route Map Configuration Mode. To move the `match ip address` entry, use the `no` form of this command.

Syntax

```
match ip address access-list extended-access-list-name
```

`no match ip address access-list`

Parameters

- `access-list extended-access-list-name`—Specifies an extended IP ACL.

Default Configuration

No the command is configured.

Command Mode

Route Map Configuration Mode

User Guidelines

The `match ip address` command allows you to policy route IP packets based on criteria that can be matched with an extended IP access list; for example, a protocol, protocol service, and source or destination IP address. The ACL list specified by the `extended-access-list-name` argument cannot contain the following keywords:

- `time-range`
- `disable-port`
- `log-input`

Example

The example below gives how IPv4 Policy Base Routing is configured:

```
switchxxxxxx(config)# ip access-list extended acl1
switchxxxxxx(config-ip-al)# permit ip 176.212.0.0 00.255.255 any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# route-map pbr
switchxxxxxx(config-route-map)# match ip address access-list acl1
switchxxxxxx(config-route-map)# set ip next-hop 173.23.13.20
switchxxxxxx(config-route-map)# exit
```
match ipv6 address (Policy Routing)

To match IPv6 packets to perform IPv6 policy routing, use the `match ipv6 address` command in Route Map Configuration Mode. To move the `match ipv6 address` entry, use the `no` form of this command.

Syntax

```
match ipv6 address access-list extended-access-list-name
```

do match ipv6 address access-list

Parameters

- `access-list extended-access-list-name`—Specifies an extended IPv6 access list.

Default Configuration

No the command is configured.

Command Mode

Route Map Configuration Mode

User Guidelines

The `match ipv6 address` command allows you to policy route IPv6 packets based on criteria that can be matched with an extended access list; for example, a protocol, protocol service, and source or destination IPv6 address.

The ACL list specified by the `extended-access-list-name` argument cannot contain the following keywords:

- `time-range`
- `disable-port`
- `log-input`

Example

The example below gives how IPv4 Policy Base Routing is configured:

```
switchxxxxxx(config)# ipv6 access-list acl1
switchxxxxxx(config-ip-al)# permit ipv6 3211:1297:: ::/32 any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# route-map pbr
switchxxxxxx(config-route-map)# match ipv6 address access-list acl1
switchxxxxxx(config-route-map)# set ipv6 next-hop 3003:17ac::20
switchxxxxxx(config-route-map)# exit
switchxxxxxx(config-ip-al)# exit
```
route-map (Policy Routing)

To define the conditions for policy routing, use the `route-map` command in Global Configuration mode and the `match` and `set` commands in Route Map Configuration Mode. To delete an entry, use the `no` form of this command.

Syntax

```plaintext
route-map map-tag [sequence-number]
no route-map map-tag [sequence-number]
```

Parameters

- `map-tag`—A meaningful name for the route map. The redistribute router configuration command uses this name to reference this route map. Multiple route maps may share the same map tag name.

- `sequence-number`—Positive integer number that indicates the position a new route map will have in the list of route maps already configured with the same name. If the parameter is used with the `no` form of this command, the position of the route map should be deleted. If the parameter is omitted in the `route-map` command then a value of 10 is applied. If the parameter is omitted in the `no` format then all route maps sharing same map tag name are deleted.

Default Configuration

Conditions for policy routing is not configured.

Command Mode

Global Configuration mode

User Guidelines

Use the `route-map` command to enter route-map configuration mode. The purpose of the `route-map` command is to define policy routing.

The `match` commands specify the conditions under which policy routing occurs and the `set` commands specify the routing actions to perform if the criteria enforced by the match commands are met:

- If a routed packet matches to an ACL with the permit action the packet is forwarded by the `set` command (policy based routing).
- If a routed packet matches to an ACL with the deny action the frame is forwarded by the Forwarding table (regular routing).

A route map can have several sections configured by separate `route-map` commands with the same map tag. When a routed packet is checked by a route map the first section which criteria is forced is applied. If there is no matched section the obvious shortest path using the Forwarding Table is applied.

Example 1. The following example gives an example of a route map with one section. TCP packet sent to subnet 156.12.5.0/24 are passed to the next hop 56.1.1.1.
Example 2. The following example gives an example of a route map with two sections. TCP packet sent to subnet 156.12.5.0/24 are passed to the next hop 56.1.1.1 and CP packet sent to subnet 156.122.5.0/24 are passed to the next hop 50.1.1.1.

```
switchxxxxxx(config)# ip access-list extended pr-acl1
switchxxxxxx(config-ip-al)# permit tcp any any 156.12.5.0 0.0.0.255 any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# route-map pbr
switchxxxxxx(config-route-map)# match ip address access-list pr-acl1
switchxxxxxx(config-route-map)# set ip next-hop 56.1.1.1
switchxxxxxx(config-route-map)# exit
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip policy route-map pbr
switchxxxxxx(config-if)# exit
```

```
switchxxxxxx(config)# ip access-list extended pr-acl2
switchxxxxxx(config-ip-al)# permit tcp any any 156.122.5.0 0.0.0.255 any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# route-map pbr 10
switchxxxxxx(config-route-map)# match ip address access-list pr-acl1
switchxxxxxx(config-route-map)# set ip next-hop 50.1.1.1
switchxxxxxx(config-route-map)# exit
switchxxxxxx(config)# route-map pbr 20
switchxxxxxx(config-route-map)# match ip address access-list pr-acl2
switchxxxxxx(config-route-map)# set ip next-hop 50.1.1.1
switchxxxxxx(config-route-map)# exit
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip policy route-map pbr
switchxxxxxx(config-if)# exit
```
set ip next-hop

To specify the IP address of the next hop policy routing, use the set ip next-hop command in Route Map Configuration Mode. To delete an entry, use the no form of this command.

Syntax

```
set ip next-hop next-hop
no set ip next-hop
```

Parameters

- `next-hop`—IPv4 address of the next hop router.

Default Configuration

This command is disabled by default.

Command Mode

Route Map Configuration Mode

User Guidelines

Use the set ip next-hop command to set the IP address of the next hop policy routing.

Example

In the following example sets IP address 192.168.30.1 as the next hop IP address:

```
switchxxxxxx(config)# route-map bpr
switchxxxxxx(config-route-map)# match ip address access-list acl
switchxxxxxx(config-route-map)# set ip next-hop 192.168.30.1
switchxxxxxx(config-route-map)# exit
```
set ipv6 next-hop

To specify the IPv6 address of the next hop policy routing, use the set ipv6 next-hop command in Route Map Configuration Mode. To delete an entry, use the no form of this command.

Syntax

```
set ipv6 next-hop next-hop
no set ipv6 next-hop
```

Parameters

- `next-hop`—IPv6 address of the next hop router or outgoing interface ID for a point-to-point outgoing interfaces.

Default Configuration

This command is disabled by default.

Command Mode

Route Map Configuration Mode

User Guidelines

Use the set ip next-hop command to set the IPv6 address of the next hop policy routing.

Examples

Example 1. In the following example sets IPv76 address 3003:17ac::20 as the next hop IPv6 address:

```
switchxxxxxxx(config)# route-map pbr
switchxxxxxxx(config-route-map)# match ipv6 address access-list acl1
switchxxxxxxx(config-route-map)# set ipv6 next-hop 3003:17ac::20
switchxxxxxxx(config-route-map)# exit
switchxxxxxxx(config-ip-al)# exit
```

Example 2. In the following example sets interface tunnel1 as the next hop:

```
switchxxxxxxx(config)# interface tunnel 1
switchxxxxxxx(config-if)# tunnel source 132.1.1.1
switchxxxxxxx(config-if)# tunnel destination 192.168.30.1
switchxxxxxxx(config-if)# tunnel mode ipv6ip
switchxxxxxxx(config-if)# exit
switchxxxxxxx(config)# route-map bpr
switchxxxxxxx(config-route-map)# match ipv6 address access-list acl
switchxxxxxxx(config-route-map)# set ipv6 next-hop tunnel 1
switchxxxxxxx(config-route-map)# exit
```
show route-map

To display route maps, use the show route-map command in Privileged EXEC mode.

Syntax

show route-map [map-name]

Parameters

- **map-name**—Name of a specific route map.

Default Configuration

Command Mode

Privileged EXEC mode

User Guidelines

Use the show route-map map-name command, to display one given route map.

Use the show route-map command, to display all configured route maps.

Example

The following is sample output from the show route-map command:

```
switchxxxxxx# show route-map
route-map POLICY-ROUTING, permit, sequence 10
 Match clauses:
  ip address access-lists: acl1
 Set clauses:
  ip next-hop: 192.12.34.5
route-map POLICY-ROUTING, permit, sequence 20
 Match clauses:
  ip address access-lists: acl2
 Set clauses:
  ip next-hop: 192.122.23.15
route-map POLICY-ROUTING-IPv6, permit, sequence 10
 Match clauses:
  ipv6 address access-lists: acl3
 Set clauses:
  ipv6 next-hop: 3003:17ac::20
route-map POLICY-ROUTING-IPv6, permit, sequence 20
 Match clauses:
  ipv6 address access-lists: acl4
 Set clauses:
  interface next-hop: tunnel 1
```
RSA and Certificate Commands

This chapter contains the following sections:

- crypto key generate dsa, on page 1158
- crypto key generate rsa, on page 1159
- crypto key import, on page 1160
- show crypto key, on page 1162
- crypto certificate generate, on page 1163
- crypto certificate request, on page 1165
- crypto certificate import, on page 1167
- show crypto certificate, on page 1171
crypto key generate dsa

The **crypto key generate dsa** Global Configuration mode command generates a DSA key pair for SSH Public-Key authentication.

Syntax

crypto key generate dsa

Default Configuration
The application creates a default key automatically.

Command Mode
Global Configuration mode

User Guidelines
The size of the created DSA key is 1024 bits.

- DSA keys are generated in pairs - one public DSA key and one private DSA key.
- If the device already has DSA keys default or user defined, a warning is displayed with a prompt to replace the existing keys with new keys.
- Erasing the startup configuration or returning to factory defaults automatically deletes the default keys and they are recreated during device initialization.
- This command is not saved in the Running configuration file. However, the keys generated by this command are saved to the Running Configuration file.

Example
The following example generates a DSA key pair.

```
switchxxxxxx(config)# crypto key generate dsa
The SSH service is generating a private DSA key. This may take a few minutes, depending on the key size.
............
```
crypto key generate rsa

The **crypto key generate rsa** Global Configuration mode command generates RSA key pairs for SSH Public-Key Authentication.

Syntax

crypto key generate rsa

Default Configuration
The application creates a default key automatically.

Command Mode
Global Configuration mode

User Guidelines
The size of the created RSA key is 2048 bits
RSA keys are generated in pairs - one public RSA key and one private RSA key.
If the device already has RSA keys default or user defined, a warning is displayed with a prompt to replace the existing keys with new keys.
Erasing the startup configuration or returning to factory defaults automatically deletes the default keys and they are recreated during device initialization.
This command is not saved in the Running configuration file. However, the keys generated by this command are saved to the Running Configuration file.

Example
The following example generates RSA key pairs where a RSA key already exists.

```
switchxxxxx(config)# crypto key generate rsa
Replace Existing RSA Key [y/n]? N
switchxxxxx(config)#
```
The **crypto key import** Global Configuration mode command imports the DSA/RSA key pair. Use the no form of the command to remove the user key and generate a new default in its place.

Syntax

crypto key import {dsa| rsa}
encrypted crypto key import {dsa| rsa}
no crypto key {dsa| rsa}

Default Configuration

DSA and RSA key pairs do not exist.

Command Mode

Global Configuration mode

User Guidelines

The imported key must follow the format defined in RFC 4716

DSA key size for import is between 512 bits and 1024 bits

RSA key size for import is between 1024 bits and 2048 bits

DSA/RSA keys are imported in pairs - one public DSA/RSA key and one private DSA/RSA key.

If the device already has DSA/RSA key keys, a warning is displayed with a prompt to replace the existing keys with new keys.

This command is saved in the Running Configuration file.

When using the **encrypted** key-word, the private key is imported in its encrypted form.

Example

```bash
switchxxxxxx(config)# encrypted crypto key import rsa
---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----
switchxxxxxx(config)# encrypted crypto key import rsa
---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----
Comment: RSA Private Key
...
```

Cisco Business Switches 350 Series CLI Guide
RSA and Certificate Commands

crypto key import

RfMN8CsV+9jQKQP7zaGc8Ju+d72jvSwppSr032HY+IpzZ4ujkK+/X5oawZL5NnkaEQTQKXRSL55s405NP0jS/pC9hg7GaVjoY2mQ7HDpSUBeTIDT1v0wC2kskA9C6aF7/Axj2dXLweQd51lxk7m0/m0NaiJ8nK6y33LcUKjXjxNNjK9n99zRfpKNMFUbrf2enWKteDfjtjQ==
----- BEGIN SSH2 PRIVATE KEY -----
Comment: RSA Public Key
AAAAB3NzaC1yc2EAAAABwAAAEAvRHsKry6NKMkymb+yWEp9042vupLvYVq3ngt1sB9JH0cdK/2nw71CqguylmLeX8/5KMXYsk/3aBEvaoJQ82+r/nRf0y3HTy4Wp9zVS1VC8jLD+77t0aHejzfUhr0FRhWwClnVYwr+nmrYDp56FADMC2hVA85KZRsye9IfxT7otE=
----- END SSH2 PUBLIC KEY -----

--- END SSH2 PUBLIC KEY ---

Cisco Business Switches 350 Series CLI Guide
show crypto key

The **show crypto key** Privileged EXEC mode command displays the device’s SSH private and public keys for both default and user-defined keys.

Syntax

```
show crypto key [mypubkey] [dsa | rsa]
```

Parameters

- **mypubkey**—Displays only the public key.
- **rsa**—Displays the RSA key.
- **dsa**—Displays the DSA key.

Command Mode

Privileged EXEC mode

User Guidelines

See **Keys and Certificates** for information on how to display and copy this key pair.

Example

The following example displays the SSH public DSA keys on the device.

```
switchxxxxxx# show crypto key mypubkey dsa
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1yc2EAAAABIwAAAIEAzN31fu56KSEOZdrGVFIJHpAs8G8NDIkB
dqZ2q0QplKChLFwOXsk9tTVKaHZQ5jJbXn81Q2polaFLJIIH3B1cc96D7IFF
VkbPMBRbx24DpuWmFVVLU1Qy5nCKdDCui5KKVD6zj3gpuhLhM0or7AjAAu5e
BrIi2TuwVWJuak5M098=
---- END SSH2 PUBLIC KEY ----
```
crypto certificate generate

The **crypto certificate generate** Global Configuration mode command generates a self-signed certificate for HTTPS.

Syntax

```plaintext
crypto certificate number generate [key-generate [length]] [cn common-name] [ou organization-unit] [or organization] [loc location] [st state] [cu country] [duration days]
```

Parameters

- **number** — Specifies the certificate number. (Range: 1–2)
- **key-generate rsa length** — Regenerates SSL RSA key and specifies the key length. (Supported lengths: 2048 (bits) or 3092 (bits))

The following elements can be associated with the key. When the key is displayed, they are also displayed.

- **cn common-name** — Specifies the fully qualified device URL or IP address. (Length: 1–64 characters). If unspecified, defaults to the lowest IP address of the device (when the certificate is generated).
- **ou organization-unit** — Specifies the organization-unit or department name. (Length: 1–64 characters)
- **or organization** — Specifies the organization name. (Length: 1–64 characters)
- **loc location** — Specifies the location or city name. (Length: 1–64 characters)
- **st state** — Specifies the state or province name. (Length: 1–64 characters)
- **cu country** — Specifies the country name. (Length: 2 characters)
- **duration days** — Specifies the number of days a certification is valid. (Range: 30–1095)

Default Configuration

If the **key-generate** parameter is not used the certificate is generated using the existing key.

The default SSL’s RSA key length is 2048.

The default SSL’s EC key length is 256.

If **cn common-name** is not specified, it defaults to the device’s lowest static IPv6 address (when the certificate is generated), or to the device’s lowest static IPv4 address if there is no static IPv6 address, or to 0.0.0.0 if there is no static IP address.

If **duration days** is not specified, it defaults to 730 days.

Command Mode

Global Configuration mode

User Guidelines

If the specific certificate key does not exist, you must use the parameter **key-generate**.

If both certificates 1 and 2 have been generated, use the **ip https certificate** command to activate one of them.
See **Keys and Certificates** for information on how to display and copy this key pair.

Erasing the startup configuration or returning to factory defaults automatically deletes the default keys and they are recreated during device initialization.

Example

The following example generates a self-signed certificate for HTTPS whose key length is 2048 bytes.

```
switchxxxxxx(config)# crypto certificate 1 generate key-generate 2048
```
crypto certificate request

The **crypto certificate request** Privileged EXEC mode command generates and displays a certificate request for HTTPS.

Syntax

```
crypto certificate number request [cn common-name] [ou organization-unit] [or organization] [loc location] [st state] [cu country]
```

Parameters

- **number**—Specifies the certificate number. (Range: 1–2)
- **cn common-name**—Specifies the fully qualified device URL or IP address. (Length: 1–64 characters). If unspecified, defaults to the lowest IP address of the device (when the certificate is generated).
- **ou organization-unit**—Specify the organization-unit or department name. (Length: 1–64 characters)
- **or organization**—Specify the organization name. (Length: 1–64 characters)
- **loc location**—Specify the location or city name. (Length: 1–64 characters)
- **st state**—Specify the state or province name. (Length: 1–64 characters)
- **cu country**—Specify the country name. (Length: 2 characters)

Default Configuration

If **cn common-name** is not specified, it defaults to the device’s lowest static IPv6 address (when the certificate is generated), or to the device’s lowest static IPv4 address if there is no static IPv6 address, or to 0.0.0.0 if there is no static IP address.

Command Mode

Privileged EXEC mode

User Guidelines

Use this command to export a certificate request to a Certification Authority. The certificate request is generated in Base64-encoded X.509 format.

Before generating a certificate request, first generate a self-signed certificate using the **crypto certificate generate** command to generate the keys. The certificate fields must be re-entered.

After receiving the certificate from the Certification Authority, use the **crypto certificate import** command to import the certificate into the device. This certificate replaces the self-signed certificate.

Example

The following example displays the certificate request for HTTPS.

```
switchxxxxxx# crypto certificate 1 request
-----BEGIN CERTIFICATE REQUEST-----
```

Cisco Business Switches 350 Series CLI Guide

1165
crypto certificate request

MIwTCCASoCAQAwYjELMAkGA1UEBhMUUEBhMCUFAxCzAJBgNVBAYTAlNMQswCQYDVQQHR
EwRDEMKKoGA1UExMDGk1MQw0CgYDVQQLEwNNkbGQxQzAEJBgNVBAMTAmxkMRMw
DgKoZIhveMwQfMgFgQsMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQ
HdKL08s3110dh/F0MV/MLb5z5p+3nUeRbHBp/AgVf+6m+1nbqTDekb2ymCu6K
xKvEBVLF9P2Im7Vj9Bb4jnxkVWX/wzDLV2rasySNFmHlQx1+8Ib33GyCm
/oW93b5OFwzwEs59P5f+sPYPY+8wmm8nt8IDAQARoB8wHwJYKoZIhveMwQfMg
MRdjEyMwqI7CCAgICAICAgIMA0GCSqGSIb3DQEBAUA4GBAAGb8UgI7x7rB05m+2
m5Z3Fiw18ARSPXwhVdJexFjbmvcaacqPG8pI1RV6LkxryGF2bVU3jKEipcZa
g+uNpyTkD3ZU72p8Z/f87F0n3

-----END CERTIFICATE REQUEST-----

--- RSA and Certificate Commands ---

Cisco Business Switches 350 Series CLI Guide
The **crypto certificate import** Global Configuration mode command imports a certificate signed by a Certification Authority for HTTPS. In addition, the relevant key-pair can also be imported.

Use the no form of the command to delete the user-defined keys and certificate.

Syntax

```
crypto certificate number import
encrypted crypto certificate number import
no crypto certificate number
```

Parameters

- **number**—Specifies the certificate number. (Range: 1–2).

Command Mode

Global Configuration mode

User Guidelines

Certificate needs to be imported from PEM encoding/file extension

To end the session (return to the command line to enter the next command), enter a blank line.

The imported certificate must be based on a certificate request created by the **crypto certificate request** command.

If only the certificate is imported, and the public key found in the certificate does not match the device's SSL key, the command fails. If both the public key and the certificate are imported, and the public key found in the certificate does not match the imported key, the command fails.

This command is saved in the Running configuration file.

When using the encrypted form of the command, only the private key must be in encrypted format.

Example 1 - The following example imports a certificate signed by the Certification Authority for HTTPS.

```
switchxxxxxx(config)# crypto certificate 1 import
```

```
-----BEGIN CERTIFICATE-----
MIIBkzCB/QIBADBUMQswCQYDVQQGEwIgIDEKMAgGA1UECBMBIDEKMAgGA1UEBwMB
IDEVMBMGA1UEAxMmMTAuNS4yMzQuMjA5MQowCAYDVQQKEwEwMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDK+beogIcke73sBSL7c2DMZrY
OQg9XM1AxfOakJLN4xP+BNGZWwfkJKjUDBpZn52LxdDu1kRP/h0+TZF0vF38
7mIDqtnoFiNLsWxKVRM5LzakaOL/halpYxp7zEWAi5iDBzSw5sO41vUBSN7saGjFA
6t4Sw2rrnDy83bwQWOIADAQBoA0wDQYJKoZIhvcNAQEEEBAqDgYEAuqYQknJst6hI
XPDeve78od3lyc30m7KE/AmTV0Pjfyuy/RuxRwKWd/1GrK12rzLz+a5Oh7
K1ft/lc3zhYXlvih45ASW3G3TRv2VWkywa89rFFXu5hkxqgReTVWqpuS+gXrIqjW
WZd0n1fXhMacolfignnEmweIzmrqX8s=-
-----END CERTIFICATE-----
```
Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

Example 2: The following example imports a certificate signed by the Certification Authority for HTTPS, and the RSA key-pair.

```
switchxxxxxx(config)# crypto certificate import
Please paste the input now, add a period (.) on a separate line after the input, and press Enter.

-----BEGIN RSA PRIVATE KEY-----
ACnrqImEGlXkwBuUUIAO9nhG9JGn8k7f/MAuGVPvq5tvFDF77uQ5CFp49JWqwu07cVXh
2W0brh3gj3b69vuLUIJUj3qpl1kXPfMK8qR3NS3Jz1inYAWJHHRkBEZMlsaK6+tu/VxevKKG
HGBvVHx+hlvB1ygyvqM6+6qrgA51c4nN/8a6Njjo/20AgYpNMMKz2wAwt+GU0AgL0b/C
H1OoqzqCg5m7t/VQHPSOS4dU+nWLv1YCBlF7/MHoAaG+N+y2WwqSpOpDvDAE1Y7gqs
M06cFYs52/1x7FDSPwKEBk4/V81lq3/MGE657x37M8yTJFL1yVawGXMNuUsn6U7hJW
kDwO6C/4wMgP4tlLivYwynaP0fA+j/PavOAcdsK75o79NMIm3HCvXHWzmgq2sA3CA8Y5
WuOoa3pH2O5a+4?swmNzT5S0k4e43k7dRaaedGK1jqPgLHuS7XUn07x3k1CUTs3fshb1+X1
B3u4EeqnYMe5yv0b1vn7F80t+d5juHuRwzEaAf1kfa3a41vJJa+2AMLcBhpI31krYo
A8Lk6UMQoU1QmqNHfY+rYXhPQosP01sPfPKTBt6p3j9XMw1YRXVSpn5+e1YFhve5jyAe
UeOnVz9RNCruxjA7JS8lJApf5lQ1lrJLb/mv7+8pgcCS9HCQqMsrsNOF0FpScbNUv54
ZX4j9mD1Tj2nhkoQF1wU2bFyKRSysK70sL5u70rTgrFRsUr79gOlfzhMsuvsoDSn6S5kC
qft7Y2neBSR0z0DqgHLLRZwjmxxjmeDxyFQGM6p4-
-----END RSA PRIVATE KEY-----

-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBAMVuFgfJYlBzU2mbm8601D044DzH12MXY4A3KLP2SUud1TIXqS4aME8Dlt5fSbZ
Cy94Q35BinhAobKCC96Vr5ue22rzOGDVDk1j219uKQOovoBFYNNbZhc7a+7043WFM+hQF0X
TbnRbD1MVZJZgb1c9IzGkxy121Xmcly0/nwsXDAqe/
-----END RSA PUBLIC KEY-----

-----BEGIN CERTIFICATE-----
MIIBkzCB/QIBADBUMQswCQYDVQQGEwIgIDEKMAgGA1UECBMBIDEKMAgGA1UEBxMB
IDEVMBMGA1UEAxMMMTAuNS4yMzQuMjA5MQowCAYDVQQKEwEgMQowCAYDVQQLEwEg
7miDqTonoFNlaWkvrWM5SMPLk0a/4hlxPy7EWT5I1bShw5s041v0bSN7oa9fJA
6t4S2w3rmdy8JbwjWQIDQABwBoAAdwQYrUkHlZlHvzZlQZ5kA0b7lD+4wXnMoQ
7t+Dh42hu8LmD/nGK3D7s1m1j9Zwm6+5E9tOY9w3sWvMf5l2Zr10F79/TZ3m5u
2em3vJy9Oz3tDFBSghj2XZNc0CQYuUppfFEmYJYrdgKGYyBAQDo3tD+sUQ3DlGkD5Gyw
aL1Oaav5YJ1WkpDfPfcbn5Mv2MUb5PaCOpQXWV3MCyQBG4H4a6UDN6aOUBAlHq7tj+RrW0w
DXpJb8mMK47b5H4Dw5E7yETQgQKNe107gri2ybcLweb0h+SF+XrUK4G1m8k8YHzN
Xodoj5e6QYkWw2rs0Jnca2zspGzDrzj0zDTL8hYkFw4jNa4vci1chhDEF7H7nDlQLj
FkPFNvK8MhYim1dapaG+Rwc0m31Kl2EoPNxP5FEE3v1mCeyj1pPeeeS8mcBDc2vBNinuP
-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

Example 3 - Import certificate with encrypted key

```
switchxxxxxx(config)# encrypted crypto certificate import
```

-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

Certificate imported successfully.

Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=

Example 3 - Import certificate with encrypted key

```
switchxxxxxx(config)# encrypted crypto certificate import
```

-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----
RSA and Certificate Commands

Example 2 - Import certificate with encrypted key

encrypted crypto certificate 1 import

-----BEGIN RSA ENCRYPTED PRIVATE KEY-----
CZM927oxkb41g+U5oYQxGhMK7OEzTmfs1FlDolmfoq0DHZN4r14t4KgqcSjSWPQeYS2B+4PW
Qmy4TTF4Wqvcly+W1VPF1jWPbrdCnxIS13RWucNekrm9u52uhfDFA9w9f8xSfRJWuAq8q
zzFzRMdHmFtey9AL0a2alwpjH0bPJ1McDMdHT94ugkF30euyen19sGN610631vubuy0hWNa
J0szrvt3q6gbCkJ0zqM5ESLagxLNVQ4HbPtuz+nLygWb5V5SI8D8rkejB9MeacyCv5sLr
+yaA2RbdPmgq017Fmnc21xvQcCQCCx4CjBglF1wYtDyDm+m2H5v8y6sT3y7fZC9/5/5n
Vf8jptLTMgVF9U1q9wbA9HA7K42XE3R5r1do0euZwXQukrHXkifD7ZHrE7udOmT1p9
W3pgTJzbttjyVMJmS/+choc6oLNF6q60TEN78EdfaHmM6utMF0leKuzizenQZ==
----- END RSA PRIVATE KEY ----- 

-----BEGIN RSA PUBLIC KEY-----
MG1AogeABMoCak+b9hTgrzEwjd55FoWwV8s5k45P5pvvtlve5r1zp7zkiL6mvCCXK6j9c
kr+TMRX63b9t5RqwGwPeDhw3s9q5qakInnze17j2A++wmcShuI1BhpFNFY/gmENIgq9f
puukoncTOVbznv730Xvv6w6umHToe0+Q8be7WwVAgMAABEA=
----- END RSA PUBLIC KEY ----- 

-----BEGIN CERTIFICATE-----
MIICHDCCAYUCEFCcI4/dh1sUtHWxOzbzngnWdyQYJKoZIhvcNAQEBBQAwMzElMAg
A1UEBhMCbCAxJABgNVAgkTASADCgkMBQGCCsGAQUFBwMBIC54
IDMQgA1UEqzMDMXYwSJMwIDAQoAMIIBAeMB0jBAAwAAYgIBAg==
-----END CERTIFICATE-----

Certificate imported successfully.

Issued by : C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

Example 3 - Import certificate with encrypted key

encrypted crypto certificate 1 import

-----BEGIN RSA ENCRYPTED PRIVATE KEY-----
CZM927oxkb41g+U5oYQxGhMK7OEzTmfs1FlDolmfoq0DHZN4r14t4KgqcSjSWPQeYS2B+4PW
Qmy4TTF4Wqvcly+W1VPF1jWPbrdCnxIS13RWucNekrm9u52uhfDFA9w9f8xSfRJWuAq8q
zzFzRMdHmFtey9AL0a2alwpjH0bPJ1McDMdHT94ugkF30euyen19sGN610631vubuy0hWNa
J0szrvt3q6gbCkJ0zqM5ESLagxLNVQ4HbPtuz+nLygWb5V5SI8D8rkejB9MeacyCv5sLr
+yaA2RbdPmgq017Fmnc21xvQcCQCCx4CjBglF1wYtDyDm+m2H5v8y6sT3y7fZC9/5/5n
Vf8jptLTMgVF9U1q9wbA9HA7K42XE3R5r1do0euZwXQukrHXkifD7ZHrE7udOmT1p9
W3pgTJzbttjyVMJmS/+choc6oLNF6q60TEN78EdfaHmM6utMF0leKuzizenQZ==
----- END RSA PRIVATE KEY ----- 

-----BEGIN RSA PUBLIC KEY-----
MG1AogeABMoCak+b9hTgrzEwjd55FoWwV8s5k45P5pvvtlve5r1zp7zkiL6mvCCXK6j9c
kr+TMRX63b9t5RqwGwPeDhw3s9q5qakInnze17j2A++wmcShuI1BhpFNFY/gmENIgq9f
puukoncTOVbznv730Xvv6w6umHToe0+Q8be7WwVAgMAABEA=
----- END RSA PUBLIC KEY ----- 

-----BEGIN CERTIFICATE-----
MIICHDCCAYUCEFCcI4/dh1sUtHWxOzbzngnWdyQYJKoZIhvcNAQEBBQAwMzElMAg
A1UEBhMCbCAxJABgNVAgkTASADCgkMBQGCCsGAQUFBwMBIC54
IDMQgA1UEqzMDMXYwSJMwIDAQoAMIIBAeMB0jBAAwAAYgIBAg==
-----END CERTIFICATE-----

Certificate imported successfully.

Issued by : C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

Cisco Business Switches 350 Series CLI Guide

1169

RSA and Certificate Commands

Example 2 - Import certificate with encrypted key

-----BEGIN RSA ENCRYPTED PRIVATE KEY-----
CZM927oxkb41g+U5oYQxGhMK7OEzTmfs1FlDolmfoq0DHZN4r14t4KgqcSjSWPQeYS2B+4PW
Qmy4TTF4Wqvcly+W1VPF1jWPbrdCnxIS13RWucNekrm9u52uhfDFA9w9f8xSfRJWuAq8q
zzFzRMdHmFtey9AL0a2alwpjH0bPJ1McDMdHT94ugkF30euyen19sGN610631vubuy0hWNa
J0szrvt3q6gbCkJ0zqM5ESLagxLNVQ4HbPtuz+nLygWb5V5SI8D8rkejB9MeacyCv5sLr
+yaA2RbdPmgq017Fmnc21xvQcCQCCx4CjBglF1wYtDyDm+m2H5v8y6sT3y7fZC9/5/5n
Vf8jptLTMgVF9U1q9wbA9HA7K42XE3R5r1do0euZwXQukrHXkifD7ZHrE7udOmT1p9
W3pgTJzbttjyVMJmS/+choc6oLNF6q60TEN78EdfaHmM6utMF0leKuzizenQZ==
----- END RSA PRIVATE KEY ----- 

-----BEGIN RSA PUBLIC KEY-----
MG1AogeABMoCak+b9hTgrzEwjd55FoWwV8s5k45P5pvvtlve5r1zp7zkiL6mvCCXK6j9c
kr+TMRX63b9t5RqwGwPeDhw3s9q5qakInnze17j2A++wmcShuI1BhpFNFY/gmENIgq9f
puukoncTOVbznv730Xvv6w6umHToe0+Q8be7WwVAgMAABEA=
----- END RSA PUBLIC KEY ----- 

-----BEGIN CERTIFICATE-----
MIICHDCCAYUCEFCcI4/dh1sUtHWxOzbzngnWdyQYJKoZIhvcNAQEBBQAwMzElMAg
A1UEBhMCbCAxJABgNVAgkTASADCgkMBQGCCsGAQUFBwMBIC54
IDMQgA1UEqzMDMXYwSJMwIDAQoAMIIBAeMB0jBAAwAAYgIBAg==
-----END CERTIFICATE-----

Certificate imported successfully.

Issued by : C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
SHA1 Finger print: DC789788 DC88A988 127897BC BB789788

Example 3 - Import certificate with encrypted key

-----BEGIN RSA ENCRYPTED PRIVATE KEY-----
IDEQMA4GA1UEAxMhMC4wLjAuMDEKMAgGA1UEChMBIDEKMAgGA1UECzMBIDCBnznANBgkqhkiG9w0BAQEFADBjOAwggAygjBor5v2FOcVMR5a5N3PwMBsBEyZniTIWm5G2/V7mvXOuTMgvq88IJeTon1ySSv5Mx9frdv2310DA1tZ24MfDJerlCRqoifPFWHuFb4D76bAKwe6L0UGkU0Vj+CYQ2Iar1+6666RyehO8E2/FvPdu7G/qHqVQcxM5475Bjt7thBUAxeEAAATANBkgkhiG9w0BAQFAQBBqBoknTzas7HniIHNPeCYzC02rd7C+tzQOeLe4CpEvV1OC0QGPa72pz+m/zvoKmAC5WJqngQMNWh8rNdvrfa5yEdkB/761PpeKkUtgyPHfTzffS03jB0PnPQcqbxCfh9QSNa4ENSXqC5pND02RHXFxwS1XJGrhMDoNGziBY5DJJw==
-------END CERTIFICATE-------

Certificate imported successfully.
Issued by: C= , ST= , L= , CN=0.0.0.0, O= , OU=
Valid From: Jan 24 18:41:24 2011 GMT
Valid to: Jan 24 18:41:24 2012 GMT
Subject: C=US , ST= , L= , CN=router.gm.com, O= General Motors, OU=
SHA1 Finger print: DC789788 DC88A988 127897BC BB789788
**show crypto certificate**

The `show crypto certificate` Privileged EXEC mode command displays the device SSL certificates and key-pair for both default and user defined keys.

**Syntax**

`show crypto certificate [mycertificate] [number]`

**Parameters**

- `number`—Specifies the certificate number. (Range: 1,2)
- `mycertificate`—Specifies that only the certificate will be displayed

**Default Configuration**

displays both keys.

**Command Mode**

Privileged EXEC mode

**Examples**

The following example displays SSL certificate #1 present on the device and the key-pair.

```
switchxxxxxxx# show crypto certificate 1
Certificate 1:
Certificate Source: Default
-----BEGIN CERTIFICATE-----
"...
-----END CERTIFICATE-----
-----BEGIN RSA PRIVATE KEY-----
"...
-----END RSA PRIVATE KEY-----
-----BEGIN RSA PUBLIC KEY-----
"...
-----END RSA PUBLIC KEY-----
```

Cisco Business Switches 350 Series CLI Guide
Smartport Commands

This chapter contains the following sections:

- macro auto (Global), on page 1174
- macro auto built-in parameters, on page 1176
- macro auto persistent, on page 1177
- macro auto processing cdp, on page 1178
- macro auto processing lldp, on page 1179
- macro auto processing type, on page 1180
- macro auto resume, on page 1181
- macro auto smartport (Interface), on page 1182
- macro auto smartport type, on page 1183
- macro auto trunk refresh, on page 1185
- macro auto user smartport macro, on page 1186
- show macro auto ports, on page 1188
- show macro auto processing, on page 1190
- show macro auto smart-macros, on page 1191
- smartport storm-control, on page 1193
**macro auto (Global)**

The macro auto Global Configuration mode command sets the Auto Smartports administrative global state. The no format of the command returns to the default.

**Syntax**

```
macro auto {enabled | disabled | controlled}
no macro auto
```

**Parameters**

- **enabled**—Auto Smartport administrative global and operational states are enabled.
- **disabled**—Auto Smartport administrative global and operational states are disabled.
- **controlled**—Auto Smartport administrative global and operational states are enabled when Auto Voice VLAN is in operation.

**Default Configuration**

Administrative state is Disabled

**Command Mode**

Global Configuration mode

**User Guidelines**

Regardless of the status of Auto Smartport, you can always manually apply a Smartport macro to its associated Smartport type. A Smartport macro is either a built-in macro or a user-defined macro. You can define and apply a macro using the CLI commands presented in the Macro Commands section.

If the Auto Smartport Administrative state is controlled, the Auto Smartport Operational state is managed by the Voice VLAN manager and is set as follows:

- Auto Smartport Operational state is disabled when the OUI Voice VLAN is enabled.
- Auto Smartport Operational state is enabled when the Auto Voice VLAN is enabled.

A user cannot enable Auto Smartport globally if the OUI Voice VLAN is enabled.

**Example**

This example shows an attempt to enable the Auto Smartport feature globally in the controlled mode. This is not possible because the OUI voice feature is enabled. The voice VLAN state is then disabled, after which Auto Smartports can be enabled. The appropriate VLANs are automatically enabled because the ports are configured for Auto Smartports on these VLANs.

```
switchxxxxxx(config)# macro auto controlled
switchxxxxxx(config)# macro auto enabled
Auto smartports cannot be enabled because OUI voice is enabled.
switchxxxxxx(config)# voice vlan state disabled
switchxxxxxx(config)# macro auto enabled
```
switchxxxxxx(config)#
10-Apr-2011 16:11:31 %LINK-I-Up: Vlan 20
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 5
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 6
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 7
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 8
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 9
10-Apr-2011 16:11:33 %LINK-I-Up: Vlan 10
The macro auto built-in parameters Global Configuration mode command replaces the default Auto Smartport values of built-in Smartport macros. The no format of the command returns to the default values.

### Syntax

macro auto built-in parameters smartport-type [parameter-name value [parameter-name value
[parameter-name value]]]

no macro auto built-in parameters smartport-type

### Parameters

- **smartport-type**—Smartport type (range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

- **parameter-name value**—Specifies the parameter name and its value. These are the parameters of the built-in or user-defined macro defined in the macro auto user smartport macro command

### Default Configuration

The default value of parameter $native_vlan of the built-in Smartport macros is 1.

For other parameters, the default value is the parameter’s default value. For instance, if the parameter is the native VLAN, the default value is the default native VLAN.

### Command Mode

Global Configuration mode

### User Guidelines

By default, each Smartport type is associated with a pair of built-in macros: a macro that applies the configuration and the anti macro (no macro) to remove the configuration. The Smartport types are the same as the name of the corresponding built-in Smartport macros, with the anti macro prefixed with no_.

The value of the parameter $voice_vlan cannot be changed by this command.

### Example

To change the parameters of a built-in macro:

```
switchxxxxx(config)# macro auto built-in parameters switch $native_vlan 2
```
**macro auto persistent**

The **macro auto persistent** Interface Configuration mode command sets the interface as a Smartport persistent interface. The **no** format of the command returns it to default.

**Syntax**

```
macro auto persistent
no macro auto persistent
```

**Parameters**

This command has no parameters or keywords.

**Default Configuration**

Persistent is set.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

A Smartport’s persistent interface retains its dynamic configuration in the following cases: link down/up, the attaching device ages out, and reboot. Note that for persistence and the Smartport configuration to be effective across reboot, the Running Configuration file must be saved to the Startup Configuration file.

**Example**

The example establishes two port ranges and makes one persistent and the other not.

```
switchxxxxxx(config)# interface range gi1/0/1-2
switchxxxxxx(config-if-range)# macro auto persistent
switchxxxxxx(config-if-range)# exit
switchxxxxxx(config)# interface range gi1/0/3-4
switchxxxxxx(config-if-range)# no macro auto persistent
```
**macro auto processing cdp**

The macro auto processing cdp Global Configuration mode command enables using CDP capability information to identify the type of an attached device.

When Auto Smartport is enabled on an interface and this command is run, the switch automatically applies the corresponding Smartport type to the interface based on the CDP capabilities advertised by the attaching device(s).

The no format of the command disables the feature.

**Syntax**

macro auto processing cdp

no macro auto processing cdp

**Parameters**

This command has no parameters or keywords.

**Default Configuration**

Enabled

**Command Mode**

Global Configuration mode

**Example**

To enable CDP globally:

```
switchxxxxxx(config)# macro auto processing cdp
```
macro auto processing lldp

The macro auto processing lldp Global Configuration mode command enables using the LLDP capability information to identify the type of an attached device.

When Auto Smartport is enabled on an interface and this command is run, the switch automatically applies the corresponding Smartport type to the interface based on the LLDP capabilities advertised by the attaching device(s).

The no format of the command disables the feature.

Syntax

macro auto processing lldp

no macro auto processing lldp

Parameters

This command has no parameters or keywords.

Default Configuration

Enabled

Command Mode

Global Configuration mode

Example

To enable LLDP globally:

switchxxxxxx(config)# macro auto processing lldp
macro auto processing type

The **macro auto processing type** Global Configuration mode command enables or disables automatic detection of devices of given type. The no format of the command returns to the default.

**Syntax**

```plaintext
macro auto processing type smartport-type {enabled | disabled}
no macro auto processing type smartport-type
```

**Parameters**

- `smartport-type`—Smartport type (range: **host**, **ip_phone**, **ip_phone_desktop**, **switch**, **router** or wireless access point **ap**).

**Default Configuration**

By default, auto detection of **ip_phone**, **ip_phone_desktop**, **switch**, and **wireless access point (ap)** is enabled.

**Command Mode**

Global Configuration mode

**Example**

In this example, automatic detection of wireless access points (ap) is enabled.

```plaintext
switchxxxxxx(config)# macro auto processing type ?
host set type to host
ip_phone set type to ip_phone
ip_phone_desktop set type to ip_phone_desktop
switch set type to switch
router set type to router
ap set type to access point

switchxxxxxx(config)# macro auto processing type ap enabled
```
macro auto resume

The **macro auto resume** Interface Configuration mode command changes the Smartport type from **unknown** to **default** and resumes the Smartport feature on a given interface (but does not reapply the Smartport macro; this is done by the **macro auto trunk refresh** command).

**Syntax**

```
macro auto resume
```

**Parameters**

This command has no parameters or keywords.

**Default Configuration**

None

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

When a Smartport macro fails at an interface, the Smartport type of the interface becomes **Unknown**. You must diagnose the reason for the failure on the interface and/or Smartport macro, and correct the error.

**Example**

Changes the Smartport type from **unknown** to **default** and resumes the Smartport feature on port 1.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# macro auto resume
```
The macro auto smartport Interface Configuration mode command enables the Auto Smartport feature on a given interface. The no format of the command disables the feature on the interface.

**Syntax**

```plaintext
macro auto smartport
no macro auto smartport
```

**Parameters**

This command has no parameters or keywords.

**Default Configuration**

Enabled.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

This command is effective only when Auto Smartport is globally enabled.

**Example**

Enables the Auto Smartport feature on port 1:

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# macro auto smartport
```
macro auto smartport type

The macro auto smartport type Interface Configuration mode command manually (statically) assigns a Smartport type to an interface. The no format of the command removes the manually-configured type and returns it to default.

Syntax

macro auto smartport type smartport-type [parameter-name value [parameter-name value [parameter-name value]]]

no macro auto smartport type

Parameters

- smartport-type — Smartport type.
- parameter-name value — Specifies the parameter name and its value (Range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

Default Configuration

parameter-name value — Parameter default value. For instance, if the parameter is the voice VLAN, the default value is the default voice VLAN.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

A static type set by the command cannot be changed by a dynamic type.

Example

This example shows an attempt to set the Smartport type of port 1 to printer (statically). The macro fails at line 10.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# macro auto smartport type printer
30-May-2011 15:02:45 %AUTOSMARTPORT-E-FAILEDMACRO: Macro printer for auto smartport type Printer on interface gi1/0/1 failed at command number 10
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# do show parser macro name
Macro name : printer
Macro type : default interface
1. #macro description printer
2. #macro keywords $native_vlan
3.
4. #macro key description: $native_vlan: The untag VLAN which will be configured on the port
5. #Default Values are
6. #$native_vlan = Default VLAN
7.
8. #the port type cannot be detected automatically
9.
```
10. switchport mode access
11. switchport access vlan $native_vlan
12. 
13. #single host
14. port security max 1
15. port security mode max-addresses
16. port security discard trap 60
17. 
18. smartport storm-control broadcast level 10
19. smartport storm-control include-multicast
20. smartport storm-control broadcast enable
switchxxxxxx(config)#
**macro auto trunk refresh**

The **macro auto trunk refresh** Global Configuration command reapplies the Smartport macro on a specific interface, or to all the interfaces with the specified Smartport type.

**Syntax**

```
macro auto trunk refresh [smartport-type] [interface-id]
```

**Parameters**

- **smartport-type**—Smartport type (**switch**, **router**, wireless access point (**ap**))
- **interface-id**—Interface Identifier (port or port channel).

**Default Configuration**

See User Guidelines.

**Command Mode**

Global Configuration mode

**User Guidelines**

The **macro auto smartport** command becomes effective only when the Auto Smartport is globally enabled.

If both **smartport-type** and **interface-id** are defined, the attached Smartport macro is executed on the interface if it has the given Smartport type.

If only **smartport-type** is defined, the attached Smartport macro is executed on all interfaces having the given Smartport type.

If only **interface-id** is defined then the corresponding attached Smartport macro is executed if the interface has one of the following Smartport types: **switch**, **router** or wireless access point (**ap**).

If a Smartport macro contains configuration commands that are no longer current on one or more interfaces, you can update their configuration by reapplying the Smartport macro on the interfaces.

**Example**

Adds the ports of Smartport type **switch** to all existing VLANs by running the associated Smartport macros.

```
switchxxxxxx(config)# macro auto trunk refresh switch
```
macro auto user smartport macro

The macro auto user smartport macro Global Configuration mode command links user-defined Smartport macros to a Smartport type. This is done by replacing the link to the built-in macro with the link to the user-defined macro. The no format of the command returns the link to the default built-in Smartport macro.

Syntax

macro auto user smartport macro smartport-type user-defined-macro-name [parameter-name value [parameter-name value [parameter-name value]]]

no macro auto user smartport macro smartport-type

Parameters

• smartport-type—Smartport type (range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

• user-defined-macro-name—Specifies the user-defined macro name that replaces the built-in Smartport macro.

• parameter-name value—Specifies the parameter name and its value in the user-defined macro.

Default Configuration

parameter-name value—Parameter’s default value. For instance, if the parameter is the native VLAN, the default value is the default native VLAN.

Command Mode

Global Configuration mode

User Guidelines

The scope of each parameter is the macro in which it is defined, with the exception of the parameter $voice_vlan, which is a global parameter and its value is specified by the switch and cannot be defined in a macro.

The macros must be defined before linking them in this command.

Smartport macros must be disconnected from the Smartport type before removing them (using the no version of this command).

To associate a Smartport type with a user-defined macros, you must have defined a pair of macros: one to apply the configuration, and the other (anti macro) to remove the configuration. The macros are paired by their name. The name of the anti macro is the concatenation of no_ with the name of the corresponding macro. Please refer to the Macro Command section for details about defining macro.

Example

To link the user-defined macro: my_ip_phone_desktop to the Smartport type: ip_phone_desktop and provide values for its two parameters:
switchxxxxxx(config)# macro auto user smartport macro ip_phone_desktop my_ip_phone_desktop
$p1 1 $p2 2
show macro auto ports

The **show macro auto ports** EXEC mode command displays information about all Smartport ports or a specific one. If a macro was run on the port and it failed, the type of the port is displayed as Unknown.

**Syntax**

```
show macro auto ports [interface-id | detailed]
```

**Parameters**

- **interface-id**—Interface Identifier (Ethernet interface, port channel)
- **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Information about all ports is displayed.

**Command Mode**

User EXEC mode

**Examples**

**Example 1**—Note that Smartport on switch and phone types was configured automatically. Smartport on routers was configured statically. Auto smartports are enabled globally.

```
switchxxxxxx# show macro auto ports
Smartport is enabled
Administrative Globally Auto Smartport is enabled
Operational Globally Auto Smartport is enabled

<table>
<thead>
<tr>
<th>Interface</th>
<th>Auto Smartport</th>
<th>Persistent</th>
<th>Smartport Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>enabled</td>
<td>enabled</td>
<td>router(static)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>enabled</td>
<td>enabled</td>
<td>switch</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>enabled</td>
<td>enabled</td>
<td>default</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>enabled</td>
<td>enabled</td>
<td>phone</td>
</tr>
</tbody>
</table>
```

**Example 2**—Note that Smartport on switch and phone types was configured automatically. Smartport on routers was configured statically. Auto smartports are enabled globally.

```
switchxxxxxx# show macro auto ports
Smartport is enabled
Administrative Globally Auto Smartport is disabled
Operational Globally Auto Smartport is disabled
```
### Smartport Commands

**Example 3** — Disabling auto SmartPort on gi1/0/2:

```plaintext
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# no macro auto smartport
switchxxxxxx(config-if)# end
switchxxxxxx# show macro auto ports gi1/0/2
SmartPort is Enabled
Administrative Globally Auto SmartPort is controlled
Operational Globally Auto SmartPort is enabled
Auto SmartPort is disabled on gi1/0/2
Persistent state is not-persistent
Interface type is default
No macro has been activated
```

### Example 4 — Enabling auto SmartPort on gi1/0/1:

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# macro auto smartport
switchxxxxxx(config-if)# end
switchxxxxxx# show macro auto ports gi1/0/1
SmartPort is Enabled
Administrative Globally Auto SmartPort is enabled
Operational Globally Auto SmartPort is enabled
Auto SmartPort is enabled on gi1/0/1
Persistent state is persistent
Interface type is switch
Last activated macro is switch
```
show macro auto processing

The **show macro auto processing** EXEC mode command displays information about which protocols (CDP/LLDP) are enabled and which device types can be detected automatically.

**Syntax**

`show macro auto processing`

**Parameters**

This command has no parameters or keywords.

**Default Configuration**

None

**Command Mode**

User EXEC mode

**Example**

```
switchxxxxxx# show macro auto processing
CDP: enabled
LLDP: enabled
host :disabled
ip_phone :enabled
ip_phone_desktop:enabled
switch :enabled
router :disabled
ap :enabled
```
show macro auto smart-macros

The show macro auto smart-macros EXEC mode command displays the name of Smartport macros, their type (built-in or user-defined) and their parameters. This information is displayed for all Smartport types or for the specified one.

Syntax

show macro auto smart-macros [smartport-type]

Parameters

- smartport-type—Smartport type (range: printer, desktop, guest, server, host, ip_camera, ip_phone, ip_phone_desktop, switch, router or wireless access point (ap)).

Default Configuration

None

Command Mode

User EXEC mode

Example

switchxxxxxx# show macro auto smart-macros
SG300-52-R#show macro auto smart-macros
SmartPort type : printer
Parameters : $native_vlan=1
SmartPort Macro: printer (Built-In)
SmartPort type : desktop
Parameters : $max_hosts=10 $native_vlan=1
SmartPort Macro: desktop (Built-In)
SmartPort type : guest
Parameters : $native_vlan=1
SmartPort Macro: guest (Built-In)
SmartPort type : server
Parameters : $max_hosts=10 $native_vlan=1
SmartPort Macro: server (Built-In)
SmartPort type : host
Parameters : $max_hosts=10 $native_vlan=1
SmartPort Macro: host (Built-In)
SmartPort type : ip-camera
Parameters : $native_vlan=1
SmartPort Macro: ip-camera (Built-In)
SmartPort type : ip-phone
Parameters : $max_hosts=10 $native_vlan=1 $voice_vlan=1
SmartPort Macro: ip_phone (Built-In)
SmartPort type : ip-phone-desktop
Parameters : $max_hosts=10 $native_vlan=1 $voice_vlan=1
SmartPort Macro: ip_phone_desktop (Built-In)
SmartPort type : switch
Parameters : $native_vlan=1 $voice_vlan=1
SmartPort Macro: switch (Built-In)
SmartPort type : router
Parameters : $native_vlan=1 $voice_vlan=1
SmartPort Macro: router (Built-In)
show macro auto smart-macros

SmartPort type : ap
Parameters : $native_vlan=1 $voice_vlan=1
SmartPort Macro: ap (Built-In)
SG300-52-R#
smartport storm-control

To enable broadcast, multicast, or unicast storm control on an interface, use the storm-control command in Interface (Ethernet, Port Channel) Configuration mode. To return to default, use the no form of this command.

Syntax
smartport storm-control broadcast {level level | kbps kbps} [trap] [shutdown]
no smartport storm-control broadcast
smartport storm-control multicast [registered | unregistered] {level level | kbps kbps} [trap] [shutdown]
no smartport storm-control multicast
smartport storm-control unicast {level level | kbps kbps} [trap] [shutdown]
no smartport storm-control unicast
no smartport storm-control

Parameters
- **broadcast** — Enables broadcast storm control on the port.
- **multicast [registered | unregistered]** — Enables ether all multicast, only registered multicast, or only unregistered multicast storm control on the port.
- **unicast** — Enables unicast unknown storm control on the port.
- **level level** — Suppression level in percentage. Block the flooding of storm packets when the value specified for level is reached. (Range 1-100)
- **kbps kbps** — Maximum of kilobits per second of Broadcast traffic on a port. (Range 1 -1000000)
- **trap** — (Optional) Sends a trap when a storm occurs on a port. If the keyword is not specified the trap is not sent.
- **shutdown** — (Optional) Shut down a port when a storm occurs on the port. If the keyword is not specified extra traffic is discarded.

Default Configuration
Storm control is disabled.

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

Example 1 - Set the maximum number of kilobits per second of Broadcast traffic on port 1 to 10000.
```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# smartport storm-control broadcast kbps 10000
```

Example 2 - Set the maximum percentage of kilobits per second of Broadcast traffic on port 1 to 30%.
switchxxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# smartport storm-control broadcast level 30
sFlow Commands

This chapter contains the following sections:

- sflow receiver, on page 1196
- sflow flow-sampling, on page 1197
- sflow counters-sampling, on page 1198
- clear sflow statistics, on page 1199
- show sflow configuration, on page 1200
- sflow receiver source-interface, on page 1201
- sflow receiver source-interface-ipv6, on page 1202
sflow receiver

To define the sFlow collector, use the sflow receiver Global Configuration mode command. To remove the definition of the collector, use the no form of this command.

Syntax

sflow receiver index {ipv4-address | ipv6-address | hostname} [port port] [max-datagram-size bytes]

no sflow receiver index

Parameters

- **index**—The index of the receiver. (Range: 1–8)
- **ipv4-address**—IPv4 address of the host to be used as an sFlow Collector.
- **ipv6-address**—IPv6 address of the host to be used as an sFlow Collector. When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified. Refer to the User Guidelines for the interface name syntax.
- **hostname**—Hostname of the host to be used as an sFlow Collector.
- **port**—(Optional) Port number for sflow messages. If unspecified, the port number defaults to 6343. The range is 1-65535.
- **bytes**—(Optional) Specifies the maximum datagram size that can be sent. If unspecified, it defaults to 1400.

Default

No receiver is defined.

Command Mode

Global Configuration mode

User Guidelines

If the IP address of the sFlow receiver is set to 0.0.0.0, no sFlow datagrams are sent.
sflow flow-sampling

To enable sFlow Flow sampling and configure the average sampling rate of a specific port, use the `sflow flow-sampling` Interface Configuration mode command. To disable Flow sampling, use the `no` form of this command.

**Syntax**

```
sflow flow-sampling rate receiver-index [max-header-size bytes]
```

```
no sflow flow-sampling
```

**Parameters**

- **rate**—Specifies the average sampling rate. The sampling rate is calculated as `1/rate` (Range: 1024–1073741823.)
- **receiver-index**—Index of the receiver/collector (Range: 1–8.)
- **bytes**—(Optional) Specifies the maximum number of bytes that would be copied from the sampled packet. If unspecified, defaults to 128. (Range: 20–256.)

**Default**

Disabled

**Command Mode**

Interface Configuration mode

**User Guidelines**

A new sampling rate configuration is not immediately loaded to the hardware. It will be loaded to the hardware only after the next packet is sampled (based on the current sampling rate).
**sflow counters-sampling**

To enable sFlow Counters sampling and to configure the maximum interval of a specific port, use the `sflow counters-sampling` Interface Configuration mode command. To disable sFlow Counters sampling, use the `no` form of this command.

**Syntax**

```
sflow counters-sampling interval receiver-index
no sflow counters-sampling
```

**Parameters**

- **interval**—Specifies the maximum number of seconds between successive samples of the interface counters. (Range: 15–86400.)
- **receiver-index**—Index of the receiver/collector. (Range: 1–8.)

**Default**

Disabled

**Command Mode**

Interface Configuration mode
clear sflow statistics

To clear sFlow statistics, use the `clear sFlow statistics` Privileged EXEC mode command.

**Syntax**

`clear sflow statistics [interface-id]`

**Parameters**

`interface-id`—(Optional) Specifies an interface ID. The interface ID must be an Ethernet port.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

If no interface is specified by the user, the command clears all the sFlow statistics counters (including datagrams sent). If an interface is specified by the user, the command clears only the counter of the specific interface.
show sflow configuration

To display the sFlow configuration for ports that are enabled for Flow sampling or Counters sampling, use the `show sflow configuration` Privileged EXEC mode command.

**Syntax**

```
show sflow configuration [interface-id]
```

**Parameters**

`interface-id`—(Optional) Specifies an interface ID. The interface ID must be an Ethernet port.

**Command Mode**

Privileged EXEC mode

**Example**

```
switchxxxxxx# show sflow configuration
sFlow Agent Address 172.16.1.1

Receivers
Index IP Address Port Max Datagram Size
----- -------------------- -------- ----------------
 1 0.0.0.0 6343 1400
 2 172.16.1.2 6343 1400
 3 0.0.0.0 6343 1400
 4 0.0.0.0 6343 1400
 5 0.0.0.0 6343 1400
 6 0.0.0.0 6343 1400
 7 0.0.0.0 6343 1400
 8 0.0.0.0 6343 1400

Interfaces
Inter- Flow Counters Max Header Flow Counters Collector
face Sampling Sampling Size Collector Index Index
----- ----------- --------- --------- ---------- ----- ------------
 gi1/0/1 1/2048 60 sec 128 1 1
 gi1/0/2 1/4096 Disabled 128 0 2

Global values

Source IPv4 interface: vlan 120
Source IPv6 interface: vlan 10
```
sflow receiver source-interface

Use the **sflow receiver source-interface** Global Configuration mode command to specify the source interface whose IPv4 address will be used as the Source IPv4 address for communication with sFlow receivers. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
sflow receiver source-interface interface-id
no sflow receiver source-interface
```

**Parameters**

- `interface-id`—Specifies the source interface.

**Default Configuration**

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 sFlow server.

**Example**

The following example configures the VLAN 10 as the source interface.

```
switchxxxxx(config)# sflow receiver source-interface vlan 100
```
sflow receiver source-interface-ipv6

Use the **sflow receiver source-interface-ipv6** Global Configuration mode command to specify the source interface whose IPv6 address will be used as the source IPv6 address for communication with IPv6 sFlow receivers. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
sflow receiver source-interface-ipv6 interface-id
no sflow receiver source-interface-ipv6
```

**Parameters**

- **interface-id**—Specifies the source interface.

**Default Configuration**

The IPv6 source address is the IPv6 address defined on the outgoing interface and selected in accordance with RFC6724.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the source interface is the outgoing interface, the source IPv6 address is an IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the source IPv6 address is the minimal IPv6 address defined on the source interface and matched to the scope of the destination IPv6 address is applied.

If there is no available source IPv6 address, a SYSLOG message is issued when attempting to communicate with an IPv6 sFlow receiver.

**Example**

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# sflow receiver source-interface-ipv6 vlan 100
```
SPAN and RSPAN Commands

This chapter contains the following sections:

- monitor session destination, on page 1204
- monitor session source, on page 1207
- remote-span, on page 1209
- show monitor session, on page 1211
- show vlan remote-span, on page 1213
monitor session destination

To create a new Switched Port Analyzer (SPAN) or Remote SPAN (RSPAN) destination session, use the `monitor session destination` command in Global Configuration mode. To remove a destination session, use the `no` form of the command.

**Syntax**

```
monitor session session_number destination { {interface interface-id [network]} | {remote vlan vlan-id reflector-port interface-id} [network] }
no monitor session session_number destination
```

**Parameters**

- **session_number**—Specify the session number identified with the SPAN, RSPAN or flow mirror session. The range is 1 to 7.
- **interface interface-id**—Specify the destination interface for the SPAN, RSPAN or flow mirror session (Ethernet port). When the source interface is a RSPAN VLAN the RSPAN VLAN_ID is removed from all frames copied to the interface.
- **network**—Specify that the destination port acts also as a network port.
- **remote vlan vlan-id**—Specify the RSPAN VLAN for an RSPAN destination session. Not more than one RSPAN destination VLAN can be defined.
- **reflector-port interface-id**—Specify the destination interface for a RSPAN session (Ethernet port). The RSPAN VLAN_ID is added to all frames copied to the interface.

**Default Configuration**

No SPAN and RSPAN sessions are configured.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `monitor session session_number destination interface interface-id`, to create a SPAN, local flow mirror, final RSPAN or final remote flow mirror destination session to copy traffic to a destination port.

Use the `monitor session session_number destination remote vlan vlan-id reflector-port interface-id` command, to create a start RSPAN destination session to copy traffic to a RSPAN VLAN via a reflector port.

A destination or reflector port cannot be a source port.

A destination or reflector port cannot be a OOB port.

If the `network` keyword is not defined only mirrored traffic sent on a destination port and all input traffic is discard and a value of DOWN is advertised as its operational status to all applications running on it.

A destination port configured without the `network` keyword has the following limitations:
- UDLD cannot be enabled on the port.
- 802.1x cannot be enabled on the port.

A port cannot be configured as destination port with the **network** keyword if one of the following conditions is true:

- It belongs to the source VLAN
- It belongs to the remote VLAN

Please, do not add the destination port to the source/remote VLAN.

A port cannot be configured as reflector if it belongs to the remote VLAN.

The remote VLAN cannot be configured as a source VLAN.

Only in the final switch the remote VLAN can be configured as a source remote VLAN.

A destination port with the **network** keyword or reflector port cannot be configured on an edge port (a port having one of the **vlan-mapping** modes).

Mirrored traffic is sent to queue number 1 of the destination port.

Use the `no monitor session session_number destination` command to remove one destination session.

**Example 1.** The following example configures a SPAN session consisting from 3 source and one destination session. The first source session copies traffic for both directions from the source port gi1/0/2, the second source session copies bridges traffic from VLAN 100, and the third source session copies traffic for received on the source port gi1/0/3. The destination session defines port gi1/0/1 as the destination port.

```
switchxxxxxx(config)# monitor session 1 source interface gi1/0/2 both
switchxxxxxx(config)# monitor session 1 source vlan 100
switchxxxxxx(config)# monitor session 1 source interface gi1/0/3 rx
witchxxxxxx(config)# monitor session 1 destination interface gi1/0/1
```

**Example 2.** The following example configures a flow mirror session:

```
switchxxxxxx(config)# ip access-list extended ip1
switchxxxxxx(config-ip-al)# permit ip any any
switchxxxxxx(config-ip-al)# exit
switchxxxxxx(config)# class-map c1
switchxxxxxx(config-cmap)# match access-group ip1
switchxxxxxx(config-cmap)# exit
switchxxxxxx(config)# policy-map p1
switchxxxxxx(config-pmap)# class c1
switchxxxxxx(config-pmap-c)# mirror 1
switchxxxxxx(config-pmap-c)# exit
switchxxxxxx(config-pmap)# exit
```

**Example 3.** The following example configures a RSPAN start session consisting from 2 source and one destination sessions. The first source session copies traffic for both directions from the source port gi1/0/2 and the second session copies traffic from VLAN 100. The destination session defines VLAN 2 as the RSPAN VLAN and port gi1/0/1 as the reflector port.

```
switchxxxxxx(config)# monitor session 1 source interface gi1/0/2 both
switchxxxxxx(config)# monitor session 1 source vlan 100
switchxxxxxx(config)# monitor session 1 destination remote vlan 2 reflector-port gi1/0/1
```
Example 4. The following example configures a final RSPAN session that copies traffic from a RSPAN VLAN 2 to destination port gi1/0/1:

```
switchxxxxxx(config)# vlan 2
switchxxxxxx(config-vlan)# remote-span
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)# monitor session 1 source remote vlan 2
switchxxxxxx(config)# monitor session 1 destination interface gi1/0/1
```
monitor session source

To create a new Switched Port Analyzer (SPAN) or Remote SPAN (RSPAN) source session, use the `monitor session source` command in Global Configuration mode. To remove a source session, use the `no` form of the command.

**Syntax**

```
monitor session session_number source {interface interface-id [both | rx | tx]} | {vlan vlan-id} | {remote vlan vlan-id}
no monitor session [session_number] source [{interface interface-id} | {vlan vlan-id} | {remote vlan vlan-id}]
```

**Parameters**

- **session_number**—Specify the session number identified with the SPAN or RSPAN session. The range is 1 to 7.
- **interface interface-id**—Specify the source interface for a SPAN or RSPAN session (Ethernet port).
- **both, rx, tx**—Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both transmitted and received traffic.
- **vlan vlan-id**—Specify the SPAN source interface as a VLAN ID. In this case only a value of 1 is allowed for the session_number argument.
- **remote vlan vlan-id**—Specify the source RSPAN source VLAN ID.

**Default Configuration**

No SPAN and RSPAN sessions are configured.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `monitor session session_number source interface interface-id [both | rx | tx]` command, to create a SPAN or RSPAN start source session to monitor traffic that enters or leaves a source port.

Use the `monitor session session_number source vlan vlan-id` command, to create a SPAN or start RSPAN source session to monitor traffic that bridged into a source VLAN.

Use the `monitor session session_number source remote vlan vlan-id` command, to create a final RSPAN source session to monitor traffic that passed via a RSPAN VLAN.

A SPAN or RSPAN session consists from up to 8 sources and one destination with the same session number. Each `monitor session source` command defines one source port or VLAN. Different `monitor session source` commands must define different sources. A new command with the same session number and the same source overrides the previous defined one.

Up to 8 sources can be defined in one session.
If a packet is mirrored by both the port-based ingress mirroring mechanism, and one of the other ingress mirroring mechanisms, the selected session is the one with the higher session number.

All definitions of different source ports for the same source session must be of the same type: SPAN, start RSPAN, or RSPAN final.

A source port cannot be a destination port.

A source port cannot be the a OOB port.

The source interface in a RSPAN source switch can not be a membership of the remote VLAN.

Use the `no monitor session session_number source {interface interface-id} | {vlan vlan-id} | {remote vlan vlan-id}` command to remove one source.

Use the `no monitor session session_number source` command to remove all sources ports of the given source session.

**Example 1.** The following example configures a SPAN session consisting from 3 source and one destination session. The first source session copies traffic for both directions from the source port gi1/0/2, the second source session copies bridges traffic from VLAN 100, and the third source session copies traffic for received on the source port gi1/0/3. The destination session defines port gi1/0/1 as the destination port.

```plaintext
switchxxxxxx(config)# monitor session 1 source interface gi1/0/2 both
switchxxxxxx(config)# monitor session 1 source vlan 100
switchxxxxxx(config)# monitor session 1 source interface gi1/0/3 rx
switchxxxxxx(config)# monitor session 1 destination interface gi1/0/1
```

**Example 2.** The following example configures a RSPAN start session consisting from 2 source and one destination sessions. The first source session copies traffic for both directions from the source port gi1/0/2 and the second session copies traffic from VLAN 100. The destination session defines VLAN 2 as the RSPAN VLAN and port gi1/0/1 as the reflector port.

```plaintext
switchxxxxxx(config)# monitor session 1 source interface gi1/0/2 both
switchxxxxxx(config)# monitor session 1 source vlan 100
switchxxxxxx(config)# monitor session 1 destination remote vlan 2 reflector-port gi1/0/1
```

**Example 3.** The following example configures a final RSPAN session that copies traffic from a RSPAN VLAN 2 to destination port gi1/0/1:

```plaintext
switchxxxxxx(config)# vlan 2
switchxxxxxx(config-vlan)# remote-span
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)# monitor session 1 source remote vlan 2
switchxxxxxx(config)# monitor session 1 destination interface gi1/0/1
```
remote-span

To configure a virtual local area network (VLAN) as a RSPAN remote VLAN, use the `remote-span` command in VLAN Configuration mode. To return to default, use the `no` form of this command.

**Syntax**

remote-span
no remote-span

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

A VLAN is not a RSPAN remote VLAN.

**Command Mode**

VLAN Configuration mode

**User Guidelines**

Use the `remote-span` command to define a VLAN as a RSPAN remote VLAN.

Only one Remote VLAN can be defined per switch.

The Remote VLAN must be created manually before configuring of the `remote-span` command.

Guest VLAN cannot be configured as a Remote VLAN.

All traffic into a RSPAN VLAN is tagged and MAC learning is disabled in a RSPAN VLAN.

The `remote-span` command verifies that all ports of the configured VLAN are egress tagged ports and disables MAC learning. The `no remote-span` command resets MAC learning.

**Note.** The membership of a RSPAN remote VLAN depended where it is defined:

- Source or Start switch—It is recommended that the RSPAN remote VLAN does not have any memberships.
- Intermediate switch—It is recommended to remove the RSPAN remote VLAN from trunk ports not used for passing mirrored traffic to avoid superfluous flooding. Usually, a RSPAN remote VLAN contains two ports.
- Destination or Final switch—The RSPAN remote VLAN should contain memberships on which the mirrored traffic via this VLAN is arrived. The destination interface cannot be a membership of this VLAN.

**Example 1.** The following example shows how to configure a RSPAN remote VLAN in a source switch:

```
switchxxxxxx(config)# vlan 2
switchxxxxxx(config-vlan)# remote-span
```
Example 2. The following example shows how to configure a RSPAN remote VLAN in a final switch:

```plaintext
switchxxxxxx(config)# interface gi1/0/3
switchxxxxxx(config-if)# switchport mode trunk
switchxxxxxx(config-if)# switchport trunk allowed none
switchxxxxxx(config-if)# switchport trunk allowed add 2
switchxxxxxx(config-if)# exit
switchxxxxxx(config-vlan)# vlan 2
switchxxxxxx(config-vlan)# remote-span
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)# monitor session 1 source remote vlan 2
switchxxxxxx(config)# monitor session 1 destination interface gi1/0/1
```

Example 3. The following example shows how to configure a RSPAN remote VLAN in an intermediate switch:

```plaintext
switchxxxxxx(config)# interface range gi1/0/3,4
switchxxxxxx(config-if)# switchport mode trunk
switchxxxxxx(config-if)# switchport trunk allowed none
switchxxxxxx(config-if)# switchport trunk allowed add 2
switchxxxxxx(config-if)# exit
switchxxxxxx(config)# vlan 2
switchxxxxxx(config-vlan)# remote-span
switchxxxxxx(config-vlan)# exit
```
**show monitor session**

To display information about Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) sessions on the switch, use the `show monitor` command in User EXEC mode.

**Syntax**

```
show monitor session [session_number]
```

**Parameters**

- `session_number`—Specify the session number identified with the SPAN or RSPAN session. The range is 1 to 7. If the argument is not defined information about all sessions are displayed.

**Default Configuration**

This command has no default settings.

**Command Mode**

User EXEC mode

**User Guidelines**

Use the `show monitor session session_number` command to display information about one session.

Use the `show monitor session` command to display information about all sessions.

**Example 1.** The following example displays information about all SPAN sessions defined into the switch:

```
switchxxxxxx> show monitor session
Session 1
 Type: SPAN
 Source: gi1/0/2, rx only
 Source: VLAN 100
 Source: flow mirror, policy-map: alpha class-maps: ip-http, ipv6-http
 Destination: gi1/0/1, network port
```

**Example 2.** The following example displays information about all start RSPAN sessions defined into the switch:

```
switchxxxxxx> show monitor session
Session 1
 Type: RSPAN Start
 Source: gi1/0/3, both
 Source: VLAN 100
 Source: flow mirror, policy-map: alpha class-maps: ip-http, ipv6-http
 Destination: RSPAN VLAN 2, reflector-port gi1/0/1, network port
```

**Example 3.** The following example displays information about all final RSPAN sessions defined into the switch:

```
switchxxxxxx> show monitor session
Session 1
 Type: RSPAN Final
 Source: RSPAN VLAN 10
```
Source: RSPAN VLAN 20
Destination: gi1/0/1

Field Definitions:

- **Type**—The type of the session.

- **Source**—A source of the session. The following options are supported:

  **Source:** *interface-id*, *traffic-direction*(rx only, tx only, or both)
  The Source is an interface.

  **Source:** *vlan vlan-id*
  The Source is a VLAN.

  **Source:** *remote-vlan vlan-id*
  The Source is a RSPAN VLAN (in the RSPAN session final switch).

  **Source:** *flow-monitor, policy-map:* *policy-map-name*, *class-maps:* *class-map-name1*, *class-map-name2*
  The Source is a flow mirror, only attached policy-names are displayed.

- **Destination**—A destination of the session. The following options are supported:

  **Destination:** *interface-id*
  The Destination is an interface, regular forwarding on the interface is not supported.

  **Destination:** *interface-id, network*
  The Destination is an interface, regular forwarding on the interface is supported.

  **Destination:** *RSPAN VLAN vlan-id, reflector-port interface-id*
  The switch is the first switch in the RSPAN session, regular forwarding on the interface
  is not supported.

  **Destination:** *RSPAN VLAN vlan-id, reflector-port interface-id, network*
  The switch is the first switch in the RSPAN session, regular forwarding on the interface
  is supported.
show vlan remote-span

To display a list of remote Switched Port Analyzer (RSPAN) VLANs, use the `show vlan remote-span` command in User EXEC mode.

**Syntax**

```
show vlan remote-span
```

**Parameters**

This command has no arguments or keywords

**Default Configuration**

This command has no default settings.

**Command Mode**

User EXEC mode

**Example.** This example shows how to display a list of remote SPAN VLANs:

```
switchxxxxxx> show vlan remote-span
Remote SPAN VLAN: 20
```
show vlan remote-span
Spanning Tree Commands

This chapter contains the following sections:

- spanning-tree, on page 1217
- spanning-tree mode, on page 1218
- spanning-tree forward-time, on page 1219
- spanning-tree hello-time, on page 1220
- spanning-tree max-age, on page 1221
- spanning-tree priority, on page 1222
- spanning-tree disable, on page 1223
- spanning-tree cost, on page 1224
- spanning-tree port-priority, on page 1225
- spanning-tree portfast, on page 1226
- spanning-tree link-type, on page 1227
- spanning-tree pathcost method, on page 1228
- spanning-tree bpdu (Global), on page 1229
- spanning-tree bpdu (Interface), on page 1230
- spanning-tree guard root, on page 1231
- spanning-tree bpduguard, on page 1232
- clear spanning-tree counters, on page 1233
- clear spanning-tree detected-protocols, on page 1234
- spanning-tree mst priority, on page 1235
- spanning-tree mst max-hops, on page 1236
- spanning-tree mst port-priority, on page 1237
- spanning-tree mst cost, on page 1238
- spanning-tree mst configuration, on page 1239
- instance (MST), on page 1240
- name (MST), on page 1241
- revision (MST), on page 1242
- show (MST), on page 1243
- exit (MST), on page 1244
- abort (MST), on page 1245
- show spanning-tree, on page 1246
- show spanning-tree bpdu, on page 1248
- spanning-tree loopback-guard, on page 1259
• spanning-tree vlan forward-time, on page 1260
• spanning-tree vlan hello-time, on page 1261
• spanning-tree vlan max-age, on page 1262
• spanning-tree vlan priority, on page 1263
• spanning-tree vlan cost, on page 1264
• spanning-tree vlan port-priority, on page 1265
spanning-tree

Use the `spanning-tree` Global Configuration mode command to enable spanning-tree functionality. Use the `no` form of this command to disable the spanning-tree functionality.

**Syntax**

- `spanning-tree`
- `no spanning-tree`

**Default Configuration**

Spanning-tree is enabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables spanning-tree functionality.

```
switchxxxxx(config)# spanning-tree
```
spanning-tree mode

Use the `spanning-tree mode` Global Configuration mode command to select which Spanning Tree Protocol (STP) protocol to run. Use the `no` form of this command to restore the default configuration.

**Syntax**

```plaintext
spanning-tree mode {stp | rstp | mst | pvst | rapid-pvst}
no spanning-tree mode
```

**Parameters**

- `stp`—Specifies that STP is enabled.
- `rstp`—Specifies that the Rapid STP is enabled.
- `mst`—Specifies that the Multiple STP is enabled.
- `pvst`—Specifies that the PVST+ is enabled.
- `rapid-pvst`—Specifies that the Rapid PVST+ is enabled.

**Default Configuration**

The default is RSTP.

**Command Mode**

Global Configuration mode

**User Guidelines**

In the RSTP mode, the device uses STP on a port, when the neighbor device uses STP.

In the MSTP mode, the device uses RSTP when the neighbor device uses RSTP, and uses STP when the neighbor device uses STP.

If the PVST mode or the Rapid PVST mode is enabled the switch can support maximum 126 VLANs.

In the Rapid PVST mode, the device uses PVST into a VLAN on a port, when the neighbor device uses PVST.

**Examples**

The following example enables MSTP.

```
switchxxxxxx(config)# spanning-tree mode mst
```
spanning-tree forward-time

Use the `spanning-tree forward-time` Global Configuration mode command to configure the spanning-tree bridge forward time, which is the amount of time a port remains in the listening and learning states before entering the forwarding state. Use the `no` form of this command to restore the default configuration.

**Syntax**

```plaintext
spanning-tree forward-time seconds
no spanning-tree forward-time
```

**Parameters**

- `seconds`—Specifies the spanning-tree forward time in seconds. (Range: 4–30)

**Default Configuration**

15 seconds.

**Command Mode**

Global Configuration mode

**User Guidelines**

When configuring the forwarding time, the following relationship should be maintained:

```
2*(Forward-Time - 1) >= Max-Age
```

**Example**

The following example configures the spanning tree bridge forwarding time to 25 seconds.

```plaintext
switchxxxxxx(config)# spanning-tree forward-time 25
```
spanning-tree hello-time

Use the `spanning-tree hello-time` Global Configuration mode command to configure how often the device broadcasts Hello messages to other devices. Use the `no` form of this command to restore the default configuration.

**Syntax**

`spanning-tree hello-time seconds`

`no spanning-tree hello-time`

**Parameters**

- `seconds`—Specifies the spanning-tree Hello time in seconds. (Range: 1–10)

**Default Configuration**

2 seconds.

**Command Mode**

Global Configuration mode

**User Guidelines**

When configuring the Hello time, the following relationship should be maintained:

- Max-Age >= 2*(Hello-Time + 1)

**Example**

The following example configures the spanning-tree bridge hello time to 5 seconds.

```
switchxxxxxx(config)# spanning-tree hello-time 5
```
spanning-tree max-age

Use the spanning-tree max-age Global Configuration mode command to configure the STP maximum age. Use the no form of this command to restore the default configuration.

Syntax

spanning-tree max-age seconds
no spanning-tree max-age

Parameters

- seconds—Specifies the spanning-tree bridge maximum age in seconds. (Range: 6–40)

Default Configuration

The default maximum age is 20 seconds.

Command Mode

Global Configuration mode

User Guidelines

When configuring the maximum age, the following relationships should be maintained:

- 2*(Forward-Time - 1) >= Max-Age
- Max-Age >= 2*(Hello-Time + 1)

Example

The following example configures the spanning-tree bridge maximum age to 10 seconds.

switchxxxxxx(config)# spanning-tree max-age 10
spanning-tree priority

Use the `spanning-tree priority` Global Configuration mode command to configure the device STP priority, which is used to determine which bridge is selected as the root bridge. Use the `no` form of this command to restore the default device spanning-tree priority.

Syntax

```
spanning-tree priority priority
no spanning-tree priority
```

Parameters

- `priority`—Specifies the bridge priority. (Range: 0–61440)

Default Configuration

Default priority = 32768.

Command Mode

Global Configuration mode

User Guidelines

The priority value must be a multiple of 4096.

The switch with the lowest priority is the root of the spanning tree. When more than one switch has the lowest priority, the switch with the lowest MAC address is selected as the root.

Example

The following example configures the spanning-tree priority to 12288.

```
switchxxxxxx(config)# spanning-tree priority 12288
```
spanning-tree disable

Use the `spanning-tree disable` Interface (Ethernet, Port Channel) Configuration mode command to disable the spanning tree on a specific port. Use the `no` form of this command to enable the spanning tree on a port.

**Syntax**

`spanning-tree disable`

`no spanning-tree disable`

**Default Configuration**

Spanning tree is enabled on all ports.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example disables the spanning tree on gi1/0/5

```bash
switchxxxxxx(config)# interface gi1/0/5
switchxxxxxx(config-if)# spanning-tree disable
```
spanning-tree cost

Use the `spanning-tree cost` Interface (Ethernet, Port Channel) Configuration mode command to configure the spanning-tree path cost for a port. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
spanning-tree cost cost
no spanning-tree cost
```

**Parameters**

- `cost`—Specifies the port path cost. (Range: 1–200000000)

**Default Configuration**

Default path cost is determined by port speed and path cost method (long or short) as shown below.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Long</th>
<th>Short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-channel</td>
<td>Half the default cost based on Port-channel interface speed</td>
<td>Half the default cost based on Port-channel interface speed</td>
</tr>
<tr>
<td>TenGigabit Ethernet (10000 Mbps)</td>
<td>2000</td>
<td>2</td>
</tr>
<tr>
<td>5 Gigabit Ethernet (5000 Mbps)</td>
<td>12,000</td>
<td>3</td>
</tr>
<tr>
<td>2.5 Gigabit Ethernet (2500 Mbps)</td>
<td>17,000</td>
<td>4</td>
</tr>
<tr>
<td>Gigabit Ethernet (1000 Mbps)</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Fast Ethernet (100 Mbps)</td>
<td>200,000</td>
<td>19</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>2,000,000</td>
<td>100</td>
</tr>
</tbody>
</table>

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example configures the spanning-tree cost on gi1/0/15 to 35000.

```plaintext
switchxxxxxx(config)# interface gi1/0/15
switchxxxxxx(config-if)# spanning-tree cost 35000
```
spanning-tree port-priority

Use the `spanning-tree port-priority` Interface (Ethernet, Port Channel) Configuration mode command to configure the port priority. Use the `no` form of this command to restore the default configuration.

**Syntax**

`spanning-tree port-priority priority`

`no spanning-tree port-priority`

**Parameters**

- `priority`—Specifies the port priority. (Range: 0–240)

**Default Configuration**

The default port priority is 128.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

The priority value must be a multiple of 16.

**Example**

The following example configures the spanning priority on gi1/0/15 to 96

```
switchxxxxxx(config)# interface gi1/0/15
switchxxxxxx(config-if)# spanning-tree port-priority 96
```
spanning-tree portfast

Use the `spanning-tree portfast` Interface (Ethernet, Port Channel) Configuration mode command to enable the PortFast mode. Use the `no` form of this command to disable the PortFast mode.

**Syntax**

```plaintext
spanning-tree portfast [auto]
no spanning-tree portfast
```

**Parameters**

- `auto`—Specifies delay before putting the interface into the PortFast mode.

**Default Configuration**

PortFast mode is set to `auto`.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

In the PortFast mode, the interface is immediately put into the forwarding state upon linkup, without waiting for the standard forward time delay.

Use the `spanning-tree portfast` command to enable immediately the PortFast mode.

Use the `spanning-tree portfast auto` to delay the PortFast mode for 3 seconds. The interface will turn into the PortFast mode if for this interval it does not receive a Spanning Tree protocol message.

**Example**

The following example enables the PortFast mode on gi1/0/15.

```plaintext
switchxxxxxx(config)# interface gi1/0/15
switchxxxxxx(config-if)# spanning-tree portfast
```
spanning-tree link-type

Use the **spanning-tree link-type** Interface (Ethernet, Port Channel) Configuration mode command to override the default link-type setting determined by the port duplex mode, and enable RSTP transitions to the Forwarding state. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
spanning-tree link-type {point-to-point | shared}
no spanning-tree spanning-tree link-type
```

**Parameters**

- **point-to-point**—Specifies that the port link type is point-to-point.
- **shared**—Specifies that the port link type is shared.

**Default Configuration**

The device derives the port link type from the duplex mode. A full-duplex port is considered a point-to-point link and a half-duplex port is considered a shared link.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example enables shared spanning-tree on gi1/0/15.

```
switchxxxxxx(config)# interface gi1/0/15
switchxxxxxx(config-if)# spanning-tree link-type shared
```
spanning-tree pathcost method

Use the `spanning-tree pathcost method` Global Configuration mode command to set the default path cost method. Use the `no` form of this command to return to the default configuration.

**Syntax**

```
spanning-tree pathcost method {long | short}
no spanning-tree pathcost method
```

**Parameters**

- `long` — Specifies that the default port path costs are within the range: 1–200,000,000.
- `short` — Specifies that the default port path costs are within the range: 1–65,535.

**Default Configuration**

Long path cost method.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command applies to all the spanning tree instances on the switch.

- If the short method is selected, the switch calculates the default cost as 100.
- If the long method is selected, the switch calculates the default cost as 20000.

**Example**

The following example sets the default path cost method to Long.

```
switchxxxxxx(config)# spanning-tree pathcost method long
```
spanning-tree bpdu (Global)

Use the `spanning-tree bpdu` Global Configuration mode command to define Bridge Protocol Data Unit (BPDU) handling when the spanning tree is disabled globally or on a single interface. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
spanning-tree bpdu {filtering | flooding}
no spanning-tree bpdu
```

**Parameters**

- `filtering`—Specifies that BPDU packets are filtered when the spanning tree is disabled on an interface.
- `flooding`—Specifies that untagged BPDU packets are flooded unconditionally (without applying VLAN rules) to all ports with the spanning tree disabled and BPDU handling mode of flooding. Tagged BPDU packets are filtered.

**Default Configuration**

The default setting is `flooding`.

**Command Mode**

Global Configuration mode

**User Guidelines**

The `filtering` and `flooding` modes are relevant when the spanning tree is disabled globally or on a single interface.

**Example**

The following example defines the BPDU packet handling mode as `flooding` when the spanning tree is disabled on an interface.

```
switchxxxxxx(config)# spanning-tree bpdu flooding
```
spanning-tree bpdu (Interface)

Use the `spanning-tree bpdu` Interface (Ethernet, Port Channel) Configuration mode command to define BPDU handling when the spanning tree is disabled on a single interface. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
spanning-tree bpdu {filtering | flooding}
no spanning-tree bpdu
```

**Parameters**

- **filtering**—Specifies that BPDU packets are filtered when the spanning tree is disabled on an interface.
- **flooding**—Specifies that untagged BPDU packets are flooded unconditionally (without applying VLAN rules) to ports with the spanning tree disabled and BPDU handling mode of flooding. Tagged BPDU packets are filtered.

**Default Configuration**

The `spanning-tree bpdu (Global), on page 1229` command determines the default configuration.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example defines the BPDU packet as `flooding` when the spanning tree is disabled on gi1/0/3.

```
switchxxxxxx(config)# interface gi1/0/3
switchxxxxxx(config-if)# spanning-tree bpdu flooding
```
spanning-tree guard root

Use the `spanning-tree guard root` Interface (Ethernet, Port Channel) Configuration mode command to enable Root Guard on all spanning-tree instances on the interface. Root guard prevents the interface from becoming the root port of the device. Use the `no` form of this command to disable the root guard on the interface.

**Syntax**

```
spanning-tree guard root
no spanning-tree guard root
```

**Default Configuration**

Root guard is disabled.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

Root Guard can be enabled when the device operates in any spanning tree mode.

When Root Guard is enabled, the port changes to the alternate state if the spanning-tree calculations select the port as the root port.

**Example**

The following example prevents gi1/0/1 from being the root port of the device.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# spanning-tree guard root
```
spanning-tree bpduguard

Use the `spanning-tree bpduguard` Interface (Ethernet, Port Channel) Configuration mode command to shut down an interface when it receives a Spanning Tree message. Use the `no` form of this command to restore the default configuration.

**Syntax**

`spanning-tree bpduguard {enable | disable}`

`no spanning-tree bpduguard`

**Parameters**

- `enable`—Enables BPDU Guard.
- `disable`—Disables BPDU Guard.

**Default Configuration**

BPDU Guard is disabled.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

The command can be enabled when the spanning tree is enabled (useful when the port is in the PortFast mode) or disabled.

**Example**

The following example shuts down gi1/0/5 when it receives a BPDU.

```
switchxxxxxx(config)# interface gi1/0/5
switchxxxxxx(config-if)# spanning-tree bpduguard enable
```
clear spanning-tree counters

Use the clear spanning-tree counters Privileged EXEC mode command to clear STP counters on all interfaces or on the specified interface

Syntax

clear spanning-tree counters [interface interface-id]

Parameters

- interface-id — (Optional) Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All interfaces.

Command Mode

Privileged EXEC mode

User Guidelines

The clear spanning-tree counters command clears sent and received STP BPDU counters from the entire switch or from the specified interface.

Example

This example shows how to clear STP counter on all interfaces.

switchxxxxx# clear spanning-tree counters
clear spanning-tree detected-protocols

Use the clear spanning-tree detected-protocols Privileged EXEC mode command to restart the STP migration process (force renegotiation with neighboring switches) on all interfaces or on the specified interface.

Syntax

clear spanning-tree detected-protocols [interface interface-id]

Parameters

• interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Default Configuration

All interfaces.

Command Mode

Privileged EXEC mode

User Guidelines

This feature can only be used when working in the RSTP, MSTP, or Rapid PVST mode.

Example

This restarts the STP migration process on all interfaces.

switchxxxxxx# clear spanning-tree detected-protocols
spanning-tree mst priority

Use the `spanning-tree mst priority` Global Configuration mode command to configure the device priority for the specified spanning-tree instance. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
spanning-tree mst instance-id priority priority
no spanning-tree mst instance-id priority
```

**Parameters**

- `instance-id`—Specifies the spanning-tree instance ID. (Range: 1–7)
- `priority`—Specifies the device priority for the specified spanning-tree instance. This setting determines the likelihood that the switch is selected as the root switch. A lower value increases the probability that the switch is selected as the root switch. (Range: 0–61440)

**Default Configuration**

The default priority is 32768.

**Command Mode**

Global Configuration mode

**User Guidelines**

The priority value must be a multiple of 4096.

The switch with the lowest priority is the root of the spanning tree.

**Example**

The following example configures the spanning tree priority of instance 1 to 4096.

```
switchxxxxxxx(config)# spanning-tree mst 1 priority 4096
```
spanning-tree mst max-hops

Use the `spanning-tree mst max-hops` Global Configuration mode command to configure the number of hops in an MST region before the BDPU is discarded and the port information is aged out. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
spanning-tree mst max-hops hop-count
no spanning-tree mst max-hops
```

**Parameters**

- `hop-count`—Specifies the number of hops in an MST region before the BDPU is discarded. (Range: 1–40)

**Default Configuration**

The default number of hops is 20.

**Command Mode**

Global Configuration mode

**Example**

The following example configures the maximum number of hops that a packet travels in an MST region before it is discarded to 10.

```
switchxxxxxx(config)# spanning-tree mst max-hops 10
```
spanning-tree mst port-priority

Use the `spanning-tree mst port-priority` Interface (Ethernet, Port Channel) Configuration mode command to configure the priority of a port. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
spanning-tree mst instance-id port-priority priority
no spanning-tree mst instance-id port-priority
```

**Parameters**

- `instance-id`—Specifies the spanning tree instance ID. (Range: 1–7)
- `priority`—Specifies the port priority. (Range: 0–240 in multiples of 16)

**Default Configuration**

The default port priority is 128.

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**User Guidelines**

The priority value must be a multiple of 16.

**Example**

The following example configures the port priority of gi1/0/1 to 144.

```
switchxxxxx(config)# interface gi1/0/1
switchxxxxx(config-if)# spanning-tree mst 1 port-priority 144
```
spanning-tree mst cost

Use the `spanning-tree mst cost` Interface (Ethernet, Port Channel) Configuration mode command to configure the path cost for MST calculations. If a loop occurs, the spanning tree considers path cost when selecting an interface to put in the Forwarding state. Use the `no` form of this command to restore the default configuration.

**Syntax**

```plaintext
spanning-tree mst instance-id cost cost
no spanning-tree mst instance-id cost
```

**Parameters**

- `instance-id` — Specifies the spanning-tree instance ID. (Range: 1–7)
- `cost` — Specifies the port path cost. (Range: 1–200000000)

**Default Configuration**

Default path cost is determined by the port speed and path cost method (long or short) as shown below:

**Command Mode**

Interface (Ethernet, Port Channel) Configuration mode

**Example**

The following example configures the MSTP instance 1 path cost for port gi1/0/9 to 4.

```
switchxxxxxx(config)# interface gi1/0/9
switchxxxxxx(config-if)# spanning-tree mst 1 cost 4
```
spanning-tree mst configuration

Use the **spanning-tree mst configuration** Global Configuration mode command to enable configuring an MST region by entering the MST mode.

**Syntax**

```
spanning-tree mst configuration
```

**Command Mode**

Global Configuration mode

**User Guidelines**

For two or more switches to be in the same MST region, they must contain the same VLAN mapping, the same configuration revision number, and the same name.

**Example**

The following example configures an MST region.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# instance 1 vlan 10-20
switchxxxxxx(config-mst)# name region1
switchxxxxxx(config-mst)# revision 1
```
Use **instance** MST Configuration mode command to map VLANs to an MST instance. Use the **no** form of this command to restore the default mapping.

**Syntax**

```
instance instance-id vlan vlan-range
no instance instance-id vlan vlan-range
```

**Parameters**

- **instance-id**—MST instance (Range: 1–7)
- **vlan-range**—The specified range of VLANs is added to the existing ones. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 1–4094)

**Default Configuration**

All VLANs are mapped to the common and internal spanning tree (CIST) instance (instance 0).

**Command Mode**

MST Configuration mode

**User Guidelines**

All VLANs that are not explicitly mapped to an MST instance are mapped to the common and internal spanning tree (CIST) instance (instance 0) and cannot be unmapped from the CIST.

For two or more devices to be in the same MST region, they must have the same VLAN mapping, the same configuration revision number, and the same name.

**Examples**

The following example maps VLANs 10-20 to MST instance 1.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# instance 1 vlan 10-20
```
name (MST)

Use the name MST Configuration mode command to define the MST region name. Use the no form of this command to restore the default setting.

Syntax

name string
no name

Parameters

• string—Specifies the MST region name. (Length: 1–32 characters)

Default Configuration

The default name is the bridge MAC address.

Command Mode

MST Configuration mode

Example

The following example defines the region name as Region1.

switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# name region1
Use the `revision` MST Configuration mode command to define the MST configuration revision number. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
revision value
no revision
```

**Parameters**

- `value` — Specifies the MST configuration revision number. (Range: 0–65535)

**Default Configuration**

The default configuration revision number is 0.

**Command Mode**

MST Configuration mode

**Example**

The following example sets the configuration revision to 1.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst) # revision 1
```
**show (MST)**

Use the `show` MST Configuration mode command to display the current or pending MST region configuration.

**Syntax**

`show {current | pending}`

**Parameters**

- **current**—Displays the current MST region configuration.
- **pending**—Displays the pending MST region configuration.

**Command Mode**

MST Configuration mode

**Example**

The following example displays a pending MST region configuration:

```
switchxxxxxx(config-mst)# show pending
Gathering information Current MST configuration
Name: Region1
Revision: 1
Digest: 0xB41829F9030A054FB74EF7A8587FF58D
Instance VLANs Mapped State
-------- ------------------------ -----
0 1-4094 Disabled
```

`switchxxxxxx(config-mst)#`
exit (MST)

Use the exit MST Configuration mode command to exit the MST region Configuration mode and apply all configuration changes.

Syntax
exit

Command Mode
MST Configuration mode

Example
The following example exits the MST Configuration mode and saves changes.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# exit
switchxxxxxx(config)#
```
**abort (MST)**

Use the `abort` MST Configuration mode command to exit the MST Configuration mode without applying the configuration changes.

**Syntax**

```
abort
```

**Command Mode**

MST Configuration mode

**Example**

The following example exits the MST Configuration mode without saving changes.

```
switchxxxxxx(config)# spanning-tree mst configuration
switchxxxxxx(config-mst)# abort
```
show spanning-tree

Use the show spanning-tree Privileged EXEC mode command to display the spanning-tree configuration.

Syntax

show spanning-tree [interface-id] [ {instance instance-id} | {vlan vlan-id} ]
show spanning-tree [detail] [ active | blockedports ] [ {instance instance-id} | {vlan vlan-id} ]
show spanning-tree inconsistentports
show spanning-tree mst-configuration
show spanning-tree mst-configuration digest

Parameters

- interface-id — Specifies an interface ID (optional). The interface ID can be one of the following types: Ethernet port or Port-channel.
- detail — Displays detailed information.
- active — Displays active ports only. Active ports are ports that are STP enabled and in the operational status of up. If device mode is PVST+ or Rapid PVST+, ports also need to be members of the displayed VLAN.
- blockedports — Displays blocked ports only.
- instance-id — MST instance (Range: 1–7). The parameter could be defined only when mode MSTP is enabled.
- vlan vlan-id — Specifies the VLAN ID. (Range: 1–4094). The parameter could be defined only when mode PVST or RPVST is enabled.
- inconsistentports - Displays the ports that are in an inconsistent STP state. Command is relevant only when in PVST+ or Rapid PVST mode.
- mst-configuration — Displays the MST configuration information.
- mst-configuration digest — Displays the MST configuration digest information.

Default Configuration

If no interface is specified, the default is all interfaces.

Command Mode

Privileged EXEC mode

User Guidelines

This command only works when MST is enabled.
Example

The following examples display spanning-tree information in various configurations:

- **Display examples for a device that is in STP or RSTP mode**

```
switchxxxxxx# show spanning-tree
Spanning tree enabled mode RSTP
Default port cost method: long
Loopback guard: Disabled
```

```
<table>
<thead>
<tr>
<th>Root ID</th>
<th>Priority</th>
<th>Address</th>
<th>Cost</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:01:42:97:e0:00</td>
<td>20000</td>
<td>gi1/0/1</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Hello Time 2 sec</th>
<th>Max Age 20 sec</th>
<th>Forward Delay 15 sec</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>Bridge ID</th>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36864</td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>
```

```
Interfaces
```

```
<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio. No</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
<td>P2p (RSTP)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>DIS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
```

```
switchxxxxxx# show spanning-tree
Spanning tree disabled (BPDU filtering) mode RSTP
Default port cost method: long
Loopback guard: Disabled
```

```
Interfaces
```

```
<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
<td>P2p (RSTP)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>DIS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
```

```
switchxxxxxx# show spanning-tree
Spanning tree disabled (BPDU filtering) mode RSTP
Default port cost method: long
Loopback guard: Disabled
```

Cisco Business Switches 350 Series CLI Guide
### Root ID

<table>
<thead>
<tr>
<th>Priority</th>
<th>Address</th>
<th>Max Age</th>
<th>Forward Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

### Bridge ID

<table>
<thead>
<tr>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>36864</td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>

### Hello Time

<table>
<thead>
<tr>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 sec</td>
<td>20 sec</td>
</tr>
</tbody>
</table>

### Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

### Root ID

<table>
<thead>
<tr>
<th>Priority</th>
<th>Address</th>
<th>Path Cost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>36864</td>
<td>00:02:4b:29:7a:00</td>
<td>20000</td>
<td>gi1/0/1</td>
</tr>
</tbody>
</table>

### Bridge ID

<table>
<thead>
<tr>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>36864</td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>

### Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
<td>P2P (RSTP)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td></td>
<td></td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
</tbody>
</table>

### Switch

```
switchxxxxxx# show spanning-tree
Spanning tree enabled mode RSTP
Default port cost method: long
Loopback guard: Disabled
```

### Root ID

<table>
<thead>
<tr>
<th>Priority</th>
<th>Address</th>
<th>Path Cost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>32768</td>
<td>00:01:42:97:e0:00</td>
<td>20000</td>
<td>gi1/0/1</td>
</tr>
</tbody>
</table>

### Bridge ID

<table>
<thead>
<tr>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>36864</td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>

### Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
<td>P2P (RSTP)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
</tbody>
</table>

### Switch

```
switchxxxxxx# show spanning-tree blockedports
Spanning tree enabled mode RSTP
Default port cost method: long
Loopback guard: Disabled
```
Spanning Tree Commands

<table>
<thead>
<tr>
<th>Root ID</th>
<th>Priority</th>
<th>Address</th>
<th>Path Cost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:01:42:97:e0:00</td>
<td>20000</td>
<td>gi1/0/1</td>
</tr>
</tbody>
</table>

Hello Time 2 sec  | Max Age 20 sec  | Forward Delay 15 sec

<table>
<thead>
<tr>
<th>Bridge ID</th>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36864</td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>

Hello Time 2 sec  | Max Age 20 sec  | Forward Delay 15 sec

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>19</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
</tbody>
</table>

switchxxxxxx# show spanning-tree detail
Spanning tree enabled mode RSTP
Default port cost method: long
Loopback guard: Disabled

Root ID
<table>
<thead>
<tr>
<th>Priority</th>
<th>Address</th>
<th>Path Cost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>32768</td>
<td>00:01:42:97:e0:00</td>
<td>20000</td>
<td>gi1/0/1</td>
</tr>
</tbody>
</table>

Hello Time 2 sec  | Max Age 20 sec  | Forward Delay 15 sec

Bridge ID
<table>
<thead>
<tr>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>36864</td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>

Hello Time 2 sec  | Max Age 20 sec  | Forward Delay 15 sec

Number of topology changes 2 last change occurred 2d18h ago

Times:
hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15

Port 1 (gi1/0/1) enabled
State: Forwarding
Port id: 128.1
Type: P2p (configured: auto) RSTP
Designated bridge Priority: 32768
Designated port id: 128.25
Guard root: Disabled
Role: Root
Port cost: 20000
Port Fast: No (configured:no)
Address: 00:01:42:97:e0:00
Designated path cost: 0
BFDU guard: Disabled

Number of transitions to forwarding state: 1
BFDU: sent 2, received 120638
Port 2 (gi1/0/2) enabled
State: Forwarding
Port id: 128.2
Type: Shared (configured: auto) STP
Designated bridge Priority: 32768
Designated port id: 128.2
Guard root: Disabled
Role: Designated
Port cost: 20000
Port Fast: No (configured:no)
Address: 00:02:4b:29:7a:00
Designated path cost: 20000
BPDU guard: Disabled

Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Port 3 (gi1/0/3) disabled
State: N/A
Port id: 128.3
Type: N/A (configured: auto)
Designated bridge Priority: N/A
Designated port id: N/A
Guard root: Disabled
Role: N/A
Port cost: 20000
Port Fast: N/A (configured:no)
Address: N/A
Designated path cost: N/A
BPDU guard: Disabled

Number of transitions to forwarding state: N/A
BPDU: sent N/A, received N/A

Port 4 (gi1/0/4) enabled
State: Blocking
Port id: 128.4
Type: Shared (configured: auto) STP
Designated bridge Priority: 28672
Designated port id: 128.25
Guard root: Disabled
Role: Alternate
Port cost: 20000
Port Fast: No (configured:no)
Address: 00:30:94:41:62:c8
Designated path cost: 20000
BPDU guard: Disabled

Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

Port 5 (gi1/0/5) enabled
State: Disabled
Port id: 128.5
Type: N/A (configured: auto)
Designated bridge Priority: N/A
Designated port id: N/A
Guard root: Disabled
Role: N/A
Port cost: 20000
Port Fast: N/A (configured:no)
Address: N/A
Designated path cost: N/A
BPDU guard: Disabled

Number of transitions to forwarding state: N/A
BPDU: sent N/A, received N/A

switchxxxxxxx# show spanning-tree ethernet gi1/0/1

Port 1 (gi1/0/1) enabled
State: Forwarding
Port id: 128.1
Type: P2p (configured: auto) RSTP
Designated bridge Priority: 32768
Designated port id: 128.25
Guard root: Disabled
Role: Root
Port cost: 20000
Port Fast: No (configured:no)
Address: 00:01:42:97:e0:00
Designated path cost: 0
BPDU guard: Disabled

Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

• Display examples for a device that is in PVST or Rapid PVST mode-

switchxxxxxxx# show spanning-tree
Spanning tree enabled mode Rapid-PVST
Default port cost method: long
Loopback guard: Disabled
VLAN 1
<table>
<thead>
<tr>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>gi1/0/1</td>
</tr>
<tr>
<td>gi1/0/2</td>
</tr>
<tr>
<td>gi1/0/3</td>
</tr>
<tr>
<td>gi1/0/4</td>
</tr>
<tr>
<td>gi1/0/5</td>
</tr>
<tr>
<td>gi1/0/6</td>
</tr>
<tr>
<td>* Port Type or PVID Inconsistency VLAN 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>gi1/0/1</td>
</tr>
<tr>
<td>gi1/0/2</td>
</tr>
<tr>
<td>gi1/0/3</td>
</tr>
<tr>
<td>gi1/0/4</td>
</tr>
<tr>
<td>gi1/0/5</td>
</tr>
<tr>
<td>gi1/0/6</td>
</tr>
<tr>
<td>* Port Type or PVID Inconsistency</td>
</tr>
</tbody>
</table>

Switchxxxxxx# show spanning-tree active
Spanning tree enabled mode Rapid-FVST
Default port cost method: long
Loopback guard: Disabled
VLAN 1
show spanning-tree

<table>
<thead>
<tr>
<th>Root ID</th>
<th>Priority</th>
<th>Address</th>
<th>Path Cost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>gi1/0/1</td>
</tr>
</tbody>
</table>

Hello Time 2 sec | Max Age 20 sec | Forward Delay 15 sec

<table>
<thead>
<tr>
<th>Bridge ID</th>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>

Hello Time 2 sec | Max Age 20 sec | Forward Delay 15 sec

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>Frw</td>
<td>Root</td>
<td>No</td>
<td>P2p (RPVST)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>Dscr</td>
<td>Bkup</td>
<td>No</td>
<td>P2p (RPVST)</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>Dscr</td>
<td>Altn</td>
<td>Yes</td>
<td>P2p (RPVST)</td>
</tr>
<tr>
<td>gi1/0/6</td>
<td>Enabled</td>
<td>128.6</td>
<td>20000</td>
<td>Frw</td>
<td>Desg</td>
<td>Yes</td>
<td>Shared (PVST)</td>
</tr>
</tbody>
</table>

* Port Type or PVID Inconsistency

VLAN 20

This switch is the root

Hello Time 2 sec | Max Age 20 sec | Forward Delay 15 sec

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>Frw</td>
<td>Desg</td>
<td>Yes</td>
<td>P2p (RPVST)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>Dscr*</td>
<td>Desg</td>
<td>Yes</td>
<td>P2p (RPVST)</td>
</tr>
<tr>
<td>gi1/0/6</td>
<td>Enabled</td>
<td>128.6</td>
<td>20000</td>
<td>Frw</td>
<td>Desg</td>
<td>Yes</td>
<td>Shared (PVST)</td>
</tr>
</tbody>
</table>

* Port Type or PVID Inconsistency

switchxxxxxx# show spanning-tree VLAN 20
Spanning tree enabled mode PVST
Default port cost method: long
Loopback guard: Disabled
VLAN 20

This switch is the root

Hello Time 2 sec | Max Age 20 sec | Forward Delay 15 sec

Interfaces
### Spanning Tree Commands

#### show spanning-tree

```
Name | State | Prio.Nbr | Cost | Sts | Role | PortFast | Type
-----|-------|---------|------|------|------|----------|--------
g11/0/1 | Enabled | 128.1 | 20000 | Frw | Desg | No | P2p (RPVST)
g11/0/2 | Enabled | 128.2 | 20000 | Dscr* | Desg | No | P2p (RPVST)
g11/0/3 | Disabled | 128.3 | 20000 | Dsbl | Dsbl | No | -
g11/0/4 | Enabled | 128.4 | 20000 | Dsbl | Dsbl | No | -
g11/0/5 | Enabled | 128.5 | 20000 | Dsbl | Dsbl | Yes | P2p (RPVST)
g11/0/6 | Enabled | 128.6 | 20000 | Frw | Desg | Yes | Shared(PVST)
```

* Port Type or PVID Inconsistency

```
switchxxxxxx# show spanning-tree g11/0/2
```

```
VLAN | State | Prio.Nbr | Cost | Sts | Role | PortFast | Type
-----|-------|---------|------|------|------|----------|--------
1 | Enabled | 128.1 | 2000 | Frw | Root | No | P2p (RPVST)
2 | Enabled | 128.2 | 2000 | Dscr* | Desg | No | P2p (RPVST)
3 | Enabled | 128.3 | 2000 | Dscr | Altr | Yes | P2p (RPVST)
6 | Enabled | 128.6 | 2000 | Frw | Desg | Yes | Shared(PVST)
```

* Port Type or PVID Inconsistency

```
switchxxxxxx# show spanning-tree g11/0/2 vlan 3
```

```
(g11/0/2) enabled
State: Discarding
Port id: 128.3
Type: P2p (configured: auto) RPVST
Designated bridge Priority: 32768
Designated port id: 128.22
Guard root: Disabled
```

```
switchxxxxxx# show spanning-tree inconsistentports
```

```
name | interface | inconsistency
-----|-----------|------------
VLAN 10 | g11/0/2 | Port Type Inconsistency
VLAN 10 | g11/0/7 | PVID Inconsistency
VLAN 20 | g11/0/7 | PVID Inconsistency
VLAN 20 | g11/0/8 | Port Type Inconsistency
```

Number of inconsistent ports (segments) in the system : 4

**Display examples for a device that is in MSTP mode**

```
switchxxxxxx# show spanning-tree mst-configuration
Name: Region1
Revision: 1
```

Cisco Business Switches 350 Series CLI Guide | 1253
### Spanning Tree Commands

**show spanning-tree**

<table>
<thead>
<tr>
<th>Instance</th>
<th>Vlans mapped</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-9, 21-4094</td>
<td>Enabled</td>
</tr>
<tr>
<td>2</td>
<td>10-20</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

```
switchxxxxxx# show spanning-tree mst-configuration digest
Name: Region1
Revision: 1
Format selector: 0
Digest: 0xB41829F9030A054FB74EF7A8587FF58D
Number of instances configured: 3
```

```
switchxxxxxx# show spanning-tree
Spanning tree enabled mode MSTP
Default port cost method: long
Loopback guard: Disabled
```

```
switchxxxxxx# show spanning-tree
```

**CST Root ID**

<table>
<thead>
<tr>
<th>CST Root ID</th>
<th>Priority</th>
<th>Address</th>
<th>Path Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:01:42:97:e0:00</td>
<td>20000</td>
</tr>
</tbody>
</table>

```
Root Port: gi1/0/1
```

Hello Time 2 sec  | Max Age 20 sec  | Forward Delay 15 sec

**IST Master ID**

<table>
<thead>
<tr>
<th>IST Master ID</th>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>

This switch is the IST master.

Hello Time 2 sec | Max Age 20 sec | Forward Delay 15 sec

Max hops 20

**Interfaces**

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>No</td>
<td>P2p Bound (RSTP)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>No</td>
<td>Shared Bound (STP)</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Enabled</td>
<td>128.3</td>
<td>20000</td>
<td>FRW</td>
<td>No</td>
<td>P2p</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FRW</td>
<td>No</td>
<td>P2p</td>
</tr>
</tbody>
</table>

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```
<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prior.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FRW</td>
<td>Boun</td>
<td>No</td>
<td>P2p Bound (RSTP)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FRW</td>
<td>Boun</td>
<td>No</td>
<td>Shared</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Enabled</td>
<td>128.3</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
<td>Boundary STP</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FRW</td>
<td>Root</td>
<td>No</td>
<td>P2p</td>
</tr>
</tbody>
</table>

```
switchxxxxxx# show spanning-tree detail
Spanning tree enabled mode MSTP
Default port cost method: long
Loopback guard: Disabled
MST 0 Vlans Mapped: 1-9

<table>
<thead>
<tr>
<th>CST Root ID</th>
<th>Priority</th>
<th>Address</th>
<th>Path Cost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:01:42:97:e0:00</td>
<td>20000</td>
<td>gi1/0/1</td>
</tr>
</tbody>
</table>

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

<table>
<thead>
<tr>
<th>IST Master ID</th>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>

This switch is the IST master.

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Max hops 20
Number of topology changes 2 last change occurred 2d18h ago
Times: hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15

Port 1 (gi1/0/1) enabled
State: Forwarding
Port id: 128.1
Type: P2p (configured: auto) Boundary RSTP
Designated bridge Priority: 32768
Designated port id: 128.25
Number of transitions to forwarding state: 1
BFDU: sent 2, received 120638

Role: Root
Port cost: 20000
Port Fast: No (configured:no)
Address: 00:01:42:97:e0:00
Designated path cost: 0

Port 2 (gi1/0/2) enabled
State: Forwarding
Port id: 128.2
Type: Shared (configured: auto) Boundary STP
Designated bridge Priority: 32768
Designated port id: 128.2
Number of transitions to forwarding state: 1
BFDU: sent 2, received 170638

Role: Designated
Port cost: 20000
Port Fast: No (configured:no)
Address: 00:02:4b:29:7a:00
Designated path cost: 20000
MST 1 Vlans Mapped: 10-20

<table>
<thead>
<tr>
<th>Root ID</th>
<th>Priority</th>
<th>Path Cost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24576</td>
<td>20000</td>
<td>gi1/0/4</td>
</tr>
</tbody>
</table>

Rem hops 19

<table>
<thead>
<tr>
<th>Bridge ID</th>
<th>Priority</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:02:4b:29:7a:00</td>
</tr>
</tbody>
</table>

Number of topology changes 2 last change occurred 1d9h ago

<table>
<thead>
<tr>
<th>Times:</th>
<th>hold 1, topology change 2, notification 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hello 2, max age 20, forward delay 15</td>
</tr>
</tbody>
</table>

Port 1 (gi1/0/1) enabled

State: Forwarding
Port id: 128.1
Type: P2p (configured: auto) Boundary RSTP

<table>
<thead>
<tr>
<th>Designated bridge Priority</th>
<th>Designated port id</th>
</tr>
</thead>
<tbody>
<tr>
<td>32768</td>
<td>128.1</td>
</tr>
</tbody>
</table>

Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

Role: Boundary
Port cost: 20000
Port Fast: No (configured: no)
Address: 00:02:4b:29:7a:00
Designated path cost: 20000

Port 2 (gi1/0/2) enabled

State: Forwarding
Port id: 128.2
Type: Shared (configured: auto) Boundary STP

<table>
<thead>
<tr>
<th>Designated bridge Priority</th>
<th>Designated port id</th>
</tr>
</thead>
<tbody>
<tr>
<td>32768</td>
<td>128.2</td>
</tr>
</tbody>
</table>

Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Role: Designated
Port cost: 20000
Port Fast: No (configured: no)
Address: 00:02:4b:29:7a:00
Designated path cost: 20000

Port 3 (gi1/0/3) enabled

State: Forwarding
Port id: 128.3
Type: Shared (configured: auto) Internal

Designated bridge Priority: 32768
Designated port id: 128.3

Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Role: Designated
Port cost: 20000
Port Fast: No (configured: no)
Address: 00:02:4b:29:7a:00
Designated path cost: 20000

Port 4 (gi1/0/4) enabled

State: Forwarding
Port id: 128.4
Type: Shared (configured: auto) Internal

Designated bridge Priority: 32768
Designated port id: 128.2

Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Role: Designated
Port cost: 20000
Port Fast: No (configured: no)
Address: 00:02:4b:29:7a:00
Designated path cost: 20000
| Port 3 (gi1/0/3) disabled | Role: Alternate
| State: Blocking
| Port id: 128.3
| Type: Shared (configured: auto) Internal
| Designated bridge Priority: 32768
| Designated port id: 128.78
| Number of transitions to forwarding state: 1
| BPDU: sent 2, received 170638 |
| Port 4 (gi1/0/4) enabled | Role: Designated
| State: Forwarding
| Port id: 128.4
| Type: Shared (configured: auto) Internal
| Designated bridge Priority: 32768
| Designated port id: 128.2
| Number of transitions to forwarding state: 1
| BPDU: sent 2, received 170638 |
show spanning-tree bpdu

Use the **show spanning-tree bpdu** User EXEC mode command to display the BPDU handling when spanning-tree is disabled.

Syntax

```
show spanning-tree bpdu [interface-id | detailed]
```

Parameters

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

Show information for all interfaces. If detailed is not used, only present ports are displayed.

Command Mode

User EXEC mode

Example

The following examples display spanning-tree BPDU information:

```
switchxxxxxx# show spanning-tree bpdu
```

The following is the output if the global BPDU handling command is not supported.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Filtering</td>
<td>Filtering</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Filtering</td>
<td>Filtering</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Filtering</td>
<td>Guard</td>
</tr>
</tbody>
</table>

The following is the output if both the global BPDU handling command and the per-interface BPDU handling command are supported.

Global: Flooding

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Global</td>
<td>Flooding</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Global</td>
<td>STP</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Flooding</td>
<td>STP</td>
</tr>
</tbody>
</table>
spanning-tree loopback-guard

Use the spanning-tree loopback-guard global configuration command to shut down an interface if it receives a loopback BPDU. Use the no form of this command to return the default setting.

Syntax

spanning-tree loopback-guard
no spanning-tree loopback-guard

Command Mode

Global

User Guidelines

This enables shutting down all interfaces if a loopback BPDU is received on it.

Example

switchxxxxxx(config)# spanning-tree loopback-guard
spanning-tree vlan forward-time

To configure the spanning-tree bridge forward time for a VLAN, use the `spanning-tree vlan forward-time` command in Global Configuration mode. To return to the default settings, use the `no` form of this command.

Syntax

```
spanning-tree vlan vlan-range forward-time seconds
no spanning-tree vlan vlan-range forward-time
```

Parameters

- `vlan-range`—Specifies a range of VLANs to configure. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 2–4094)
- `seconds`—Specifies the spanning-tree forward time in seconds. (Range: 4–30)

Default Configuration

The default forward time is 15 seconds.

Command Mode

Global Configuration mode

User Guidelines

The spanning-tree bridge forward time is the amount of time a port remains in the listening and learning states before entering the forwarding state.

When configuring the forwarding time, the following relationship should be maintained:

- $2 \times (\text{Forward-Time} - 1) \geq \text{Max-Age}$

Use this command to configure the forward time for the specified VLAN instance. Setting will take effect if Spanning-tree mode is set to PVST or Rapid PVST.

Example

The following example configures the spanning tree bridge forwarding time to 25 seconds for VLAN 100:

```
switchxxxxxx(config)# spanning-tree vlan 100 forward-time 25
```
spanning-tree vlan hello-time

To configure the spanning-tree bridge hello time for a VLAN, use the `spanning-tree vlan hello-time` command in Global Configuration mode. To return to the default settings, use the `no` form of this command.

Syntax

```
spanning-tree vlan vlan-range hello-time seconds
no spanning-tree vlan vlan-range hello-time
```

Parameters

- `vlan-range`—Specifies a range of VLANs to configure. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 2–4094)
- `seconds`—Specifies the spanning-tree Hello time in seconds. (Range: 1–10)

Default Configuration

The default hello time is 2 seconds.

Command Mode

Global Configuration mode

User Guidelines

The spanning-tree bridge hello time is the time between two sequential sent Hello messages. When configuring the Hello time, the following relationship should be maintained:

```
Max-Age >= 2*(Hello-Time + 1)
```

Use this command to configure the hello time for the specified VLAN instance. Setting will take effect if Spanning-tree mode is set to PVST or Rapid PVST.

Example

The following example configures the spanning-tree bridge hello time to 5 seconds for VLANs 100-101:

```
switchxxxxxx(config)# spanning-tree vlan 100-101 hello-time 5
```
spanning-tree vlan max-age

To configure the spanning-tree bridge maximum age time for a VLAN, use the `spanning-tree vlan max-age` command in Global Configuration mode. To return to the default settings, use the `no` form of this command.

Syntax

```
spanning-tree vlan vlan-range max-age seconds
no spanning-tree vlan vlan-range max-age
```

Parameters

- `vlan-range` — Specifies a range of VLANs to configure. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 2–4094)
- `seconds` — Specifies the spanning-tree bridge maximum age in seconds. (Range: 6–40)

Default Configuration

The default max-age value is 15 seconds.

Command Mode

Global Configuration mode

User Guidelines

When configuring the maximum age, the following relationships should be maintained:

- \(2 \times (\text{Forward-Time} - 1) \geq \text{Max-Age}\)
- \(\text{Max-Age} \geq 2 \times (\text{Hello-Time} + 1)\)

Use this command to configure the maximum age for the specified VLAN instance. Setting will take effect if Spanning-tree mode is set to PVST or Rapid PVST.

Example

The following example configures the spanning-tree bridge maximum age to 10 seconds for VLAN 100:

```
switchxxxxxx(config)# spanning-tree vlan 100 max-age 10
```
spanning-tree vlan priority

To configure the spanning-tree bridge priority for a VLAN, use the spanning-tree vlan priority command in Global Configuration mode. To return to the default settings, use the no form of this command.

Syntax

spanning-tree vlan vlan-range priority

no spanning-tree vlan vlan-range priority

Parameters

• vlan-range—Specifies a range of VLANs to configure. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 2–4094)

• priority—Specifies the bridge priority. (Range: 0–61440)

Default Configuration

The default priority equal to 32768.

Command Mode

Global Configuration mode

User Guidelines

The priority value must be a multiple of 4096.

The switch with the lowest priority is the root of the spanning tree. When more than one switch has the lowest priority, the switch with the lowest MAC address is selected as the root.

Use this command to configure the bridge priority for the specified VLAN instance. Setting will take effect if Spanning-tree mode is set to PVST or Rapid PVST.

Example

The following example configures the spanning-tree priority to 12288 for VLAN 100-105:

switchxxxxxx(config)# spanning-tree vlan 100-105 priority 12288
spanning-tree vlan cost

To configure the spanning-tree bridge path cost for a port and a VLAN, use the `spanning-tree vlan cost` command in Interface (Ethernet, Port Channel) Configuration mode. To return to the default settings, use the `no` form of this command.

Syntax

```plaintext
spanning-tree vlan vlan-range cost cost
no spanning-tree vlan vlan-range cost
```

Parameters

- `vlan-range`—Specifies a range of VLANs to configure. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 2–4094)
- `cost`—Specifies the port path cost. (Range: 1–20000000)

Default Configuration

Default path cost is determined by port speed and path cost method (long or short).

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use this command to configure the port cost for the specified VLAN instance. Setting will take effect if Spanning-tree mode is set to PVST or Rapid PVST.

The VLAN instances that can be specified are VLAN ID 2-4094.

Example

The following example configures the spanning-tree cost to 35000 for port gi1/0/15 and VLAN 100:

```
switchxxxxxx(config)# interface gi1/0/15
switchxxxxxx(config-if)# spanning-tree vlan 100 cost 35000
```
spanning-tree vlan port-priority

To configure the spanning-tree port priority for a VLAN, use the `spanning-tree vlan port-priority` command in Interface (Ethernet, Port Channel) Configuration mode. To return to the default settings, use the `no` form of this command.

Syntax

```
spanning-tree vlan vlan-range port-priority priority
no spanning-tree vlan vlan-range port-priority
```

Parameters

- `vlan-range`—Specifies a range of VLANs to configure. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 2–4094)
 - `priority`—Specifies the port priority. (Range: 0–240)

Default Configuration

The default port priority is 128.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The priority value must be a multiple of 16.

Use this command to configure the port priority for the specified VLAN instance. Setting will take effect if Spanning-tree mode is set to PVST or Rapid PVST.

Example

The following example configures the spanning priority on gi1/0/15 to 16 for VLANs 100-102:

```
switchxxxxxx(config)# interface gi1/0/15-16
switchxxxxxx(config-if)# spanning-tree vlan 100-102 port-priority 96
```
SSH Client Commands

This chapter contains the following sections:

- ip ssh-client authentication, on page 1268
- ip ssh-client change server password, on page 1269
- ip ssh-client key, on page 1270
- ip ssh-client password, on page 1273
- ip ssh-client server authentication, on page 1274
- ip ssh-client server fingerprint, on page 1275
- ip ssh-client source-interface, on page 1276
- ipv6 ssh-client source-interface, on page 1277
- ip ssh-client username, on page 1278
- show ip ssh-client, on page 1279
- show ip ssh-client server, on page 1281
ip ssh-client authentication

To define the SSH client authentication method used by the local SSH clients to be authenticated by remote SSH servers, use the `ip ssh-client authentication` command in Global Configuration mode.

To return to default, use the `no` format of the command.

Syntax

```
ip ssh-client authentication {password | public-key {rsa | dsa}}
```

```
no ip ssh-client authentication
```

Parameters

- `password`—Username and password are used for authentication.
- `public-key rsa`—Username and RSA public key are used for authentication.
- `public-key dsa`—Username and DSA public key are used for authentication.

Default Configuration

Username and password are used for authentication by the local SSH clients.

Command Mode

Global Configuration mode

User Guidelines

A user can use the `ip ssh-client key` command to generate/configure RSA/DSA keys if SSH authentication is by public key. Otherwise, the default keys generated by the switch are used.

Example

The following example specifies that, username and public key are used for authentication:

```
switchxxxxxx(config)# ip ssh-client authentication public-key rsa
```
ip ssh-client change server password

To change a password of an SSH client on a remote SSH server, use the `ip ssh-client change server password` command in Global Configuration mode.

Syntax

```
ip ssh-client change server password server {host | ip-address | ipv6-address} username username old-password new-password new-password
```

Parameters

- `host`—DNS name of a remote SSH server.
- `ip-address`—Specifies the IP address of a remote SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.
- `username`—Username of the local SSH clients (1 - 70 characters).
- `old-password`—Old password of the local SSH client (1 - 70 characters).
- `new-password`—New password for the local SSH client (1 - 70 characters). The password cannot include the characters "@" and ":".

Command Mode

Global Configuration mode

User Guidelines

Use the command to change a password on a remote SSH server. Use the `ip ssh-client password` command to change the SSH client password of the switch’s SSH client so that it matches the new password set on the remote SSH server.

Example

The following example changes a password of the local SSH clients:

```
switchxxxxxx(config)# ip ssh-client change server password server 10.7.50.155 username john old-password &&@@@aaff new-password &&@@aaee
```
ip ssh-client key

To create a key pair for SSH client authentication by public key (either by generating a key or by importing a key), use the **ip ssh-client key** command in Global Configuration mode. To remove a key, use the **no** form of the command.

Syntax

```
ip ssh-client key {dsa | rsa} {generate | key-pair privkey pubkey}
encrypted ip ssh-client key {dsa | rsa} key-pair encrypted-privkey pubkey
no ip ssh-client key [dsa | rsa]
```

Parameters

- **dsa**—DSA key type.
- **rsa**—RSA key type.
- **key-pair**—Key that is imported to the device.
 - **privkey**—Plaintext private key.
 - **encrypted-privkey**—private key is in encrypted format.
 - **pubkey**—The plaintext public key.

Default Configuration

The application creates a key automatically; this is the default key.

Command Mode

Global Configuration mode

User Guidelines

When using the keyword **generate**, a private key and a public key of the given type (RSA/DSA) are generated for the SSH client. Downloading a configuration file with a Key Generating command is not allowed, and such download will fail.

When using the keyword **key-pair**, the user can import a key-pair created by another device. In this case, the keys must follow the format specified by RFC 4716.

If the specified key already exists, a warning will be issued before replacing the existing key with a new key.

Use the **no ip ssh-client key** command to remove a key pair. Use this command without specifying a key-type to remove both key pairs.
Table 4: Keys, Defaults and Users

<table>
<thead>
<tr>
<th>From/To</th>
<th>Show</th>
<th>Show (detailed)</th>
<th>Copy/Upload of Startup Config</th>
<th>Copy/Upload of Running Config</th>
<th>Download text-based CLI (TFTP/Backup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Config</td>
<td>Only user-defined</td>
<td>N/A</td>
<td>All keys (default and user)</td>
<td>N/A</td>
<td>All keys (default and user)</td>
</tr>
<tr>
<td>Running Config</td>
<td>Keys are not displayed.</td>
<td>All keys (default and user)</td>
<td>N/A</td>
<td>Only user-defined.</td>
<td>Same as user configuration</td>
</tr>
<tr>
<td>Text-based CLI (TFTP/Backup)</td>
<td>As it was copied.</td>
<td>N/A</td>
<td>All keys (default and user)</td>
<td>Only user-defined.</td>
<td>As a text file</td>
</tr>
</tbody>
</table>

If no keys are included in text-based configuration file, the device generates it’s own keys during initialization. If the Running Configuration contains default keys (not user-defined), the same default keys remain.

Example 1 - In the following example, a key pair of the RSA type is created:

```
switchxxxxxx(config)# ip ssh-client key rsa generate
```

The SSH service is generating a private RSA key. This may take a few minutes, depending on the key size.

Example 2 - In the following example, both public and private keys of the RSA type are imported (private key as plaintext):

```
switchxxxxxx(config)# ip ssh-client key rsa key-pair
```

Please paste the input now, add a period(.) on a separate line after the input

```
-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQDH6CU/2KYR18yrK5+TIvW54zhBm1cI31n9C+11RTFVIMRuJ+TEr
p9ssqWYL1T9dUjzmG0N3jHzp2je5/DUTHZXvYaU2chBDnsP3Jo8dyiB14BqYqHGqC1Uhk
2xQvly=1luRJTAalVXCBAmu1/U=/kML0eox8/zwjJb/jzf9w1BwKBgC2x5mQsyy0+yu2GU
FwilO5f0yweuMl1j8ScMtmqBfVTrrdброWws3exVqsaUFYwa8Le6JFX+DpP4x0vEfc/
igl2BSC8S6dM1Z176HrkAyD9HhF=3j2j9KB+5Z7B1wPz2Xcza2sC1000wznYw=YTzjULxy
WS7v/XxbBllLAKEA/JQuVSCfmdM12xexF.JVzgPOLcF8gu vsMLTeE=fr/guvHuvByuNy0T
OWePoKvKzsl/mwCmpppkgcqqrBo0JaYbUOPFJBAMo/cCrykhs1i/V+2zryeD26nBEKiaK16V
Tz2ayDatidGuwcvm2Fy75dJ66mNYx3+/ZlycSn82okbd1NhDONsCQQCSMaas+C4HAsQn
zSu+/1W1D838a4qJzND2NmmGbtsvBHqXqhWHA4atBWAa6Vb124+RPyuan/jnk81rniOyVza
FPakeA1q80v=1XyA8V39/94Fz+/fRjMckUmK144rmt32+u9i6fzaWdg817+v2S3AzQ
afQDEK56yXSM1GLvwC4YWwaJBA0QFZm0ho4d1x1T81rzf2cUZGgopfnX6yL+Y1O9MuZhwH
xAbGcj xâyMVXn10nCnehApBjG3m3?YVWrj02DV2w=
-----END RSA PRIVATE KEY-----
```

Example 3 - In the following example, both public and private keys of the DSA type are imported (private key as encrypted):

```
switchxxxxxx(config)# encrypted ip ssh-client key rsa key-pair
```

(Need to encrypted SSH client RSA key pair, for example;)

```
------BEGIN RSA ENCRYPTED PRIVATE KEY------
MIGHAoGBAMfsoJ7/YphGJyttsrnn5Ml/BjLo+EgaII1gfjWb1xH/WJFPMVIxG4n75MUn2yyp
b1jVOL13SPOydQzeMFonaN7n8NRMit9hpTNYEEOew9Mmjx3KIGXgPgdCAKNSGS1eq+W
j1L7wFRLK1BotVcIoC4aHt+*QwugSjHz/PCM+OwX3AeJg
------END RSA PUBLIC KEY------
```

Example 3 - In the following example, both public and private keys of the DSA type are imported (private key as encrypted):

```
switchxxxxxx(config)# encrypted ip ssh-client key rsa key-pair
```

(To encrypted SSH client RSA key pair, for example;)

```
------BEGIN RSA ENCRYPTED PRIVATE KEY------
gxeOjs6zOGItLq4qtMq1b/4gexQb1fa56r6jgHAMEjvUT02e1YmN1}*m4aTu6blyXPmXyYP
lX1Xny7jg2KHyRqgZ8EczpE803yqzq3K1756cMg4Oqbkm7TUOtdqYFF/7Z6uJJQvUvfh
B3sEQ3e16/tOP1cwKg43wTzeduuyFeoMXX9BcupUJc2UeqVQfM1t5OMOBFbVcU06cGqXhG
sEEdoTihlDwMW9797FV7v+bEhPefzfGzmrbrUxxxOxk1K3uCn103/94FPHK83EYxWtr2xKoCDD
qPRu9MuecpjmElh6MO2GURVUSTctohEWEIVC10r5SBCbc1axv5o0j1zXMr3A=
```

Cisco Business Switches 350 Series CLI Guide
-----END RSA PRIVATE KEY-----
-----BEGIN RSA PUBLIC KEY-----
MIGHAoGBALLOeh3css8tBL8ujFt3trcX0XJyJLlxt4sGp8Q3ExlSRN25+Mcac6togpIEg
tIzk6t1IEJscuAih9Brwh1ovgMLRaMe25j5'yjO4xG6Fp42nhHiRcie+YTS1o309EdZkiXa
QeJtLdnYL/x3uTIRVGbX15nxwtfWpweGxwDwfoqzHAqEj
-----END RSA PUBLIC KEY-----

Example 4 - In the following example, a DSA key pair is removed:

```
switchxxxxxx(config)# no ip ssh-client key dsa
```

Example 5 - In the following example, all key pairs (RSA and DSA types) are removed.

```
switchxxxxxx(config)# no ip ssh-client key
```
ip ssh-client password

To configure the password for SSH client authentication by password, use the `ip ssh-client password` command in Global Configuration mode. To return to default, use the `no` form of the command.

Syntax

```
ip ssh-client password string
encrypted ip ssh-client password encrypted-string
no ip ssh-client password
```

Parameters

- `string`—Password for the SSH clients (1 - 70 characters). The password cannot include the characters "@" and ":".
- `encrypted-string`—Password for the SSH client in encrypted form.

Default Configuration
The default password is anonymous.

Command Mode
Global Configuration mode

User Guidelines
If authentication is configured to use a password (using the command `ip ssh-client authentication`), use the `ip ssh-client password` command to define the password.

If the `encrypted` keyword is used, the password must be in the encrypted form.

Use the command `ip ssh-client change server password` to change the password on the remote SSH server so that it will match the new password of the SSH client.

Example
The following example specifies a plaintext password for the local SSH clients:

```
switchxxxxxx(config)# ip ssh-client password 6661111aff
```
ip ssh-client server authentication

To enable remote SSH server authentication by the SSH client, use the `ip ssh-client server authentication` command in Global Configuration mode.

To disable remote SSH server authentication, use the `no` form of the command.

Syntax

`ip ssh-client server authentication`

`no ip ssh-client server authentication`

Parameters

This command has no arguments or keywords.

Default Configuration

SSH server authentication is disabled

Command Mode

Global Configuration mode

User Guidelines

When remote SSH server authentication is disabled, any remote SSH server is accepted (even if there is no entry for the remote SSH server in the SSH Trusted Remote Server table).

When remote SSH server authentication is enabled, only trusted SSH servers are accepted. Use the `ip ssh-client server fingerprint` command to configure trusted SSH servers.

Example

The following example enables SSH server authentication:

```
switchxxxxxx(config)# ip ssh-client server authentication
```
ip ssh-client server fingerprint

To add a trusted server to the Trusted Remote SSH Server Table, use the `ip ssh-client server fingerprint` command in Global configuration mode. To remove an entry or all entries from the Trusted Remote SSH Server Table, use the `no` form of the command.

Syntax

`ip ssh-client server fingerprint {host | ip-address} fingerprint`

`no ip ssh-client server fingerprint [host | ip-address]`

Parameters

- **host**—DNS name of an SSH server.
- **ip-address**— Specifies the address of an SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.
- **fingerprint**—Fingerprint of the SSH server public key (32 Hex characters).

Default Configuration

The Trusted Remote SSH Server table is empty.

Command Mode

Global Configuration mode

User Guidelines

Fingerprints are created by applying a cryptographic hash function to a public key. Fingerprints are shorter than the keys they refer to, making it simpler to use (easier to manually input than the original key). Whenever the switch is required to authenticate an SSH server’s public key, it calculates the received key’s fingerprint and compares it to the previously-configured fingerprint.

The fingerprint can be obtained from the SSH server (the fingerprint is calculated when the public key is generated on the SSH server).

The `no ip ssh-client server fingerprint` command removes all entries from the Trusted Remote SSH Server table.

Example

In the following example, a trusted server is added to the Trusted Servers table (with and without a separator ":"):

```
switchxxxxxx(config)# ip ssh-client server fingerprint 1.1.1.1 DC789788DC88A988127897BCBB789788
```
ip ssh-client source-interface

To specify the source interface which IPv4 address will be used as the Source IPv4 address for communication with IPv4 SSH servers, use the **ip ssh-client source-interface** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

```
ip ssh-client source-interface interface-id
no ip ssh-client source-interface
```

Parameters

- **interface-id**—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface then the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface then the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 SSH servers.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# ip ssh-client source-interface vlan 100
```
ipv6 ssh-client source-interface

To specify the source interface whose IPv6 address will be used as the Source IPv6 address for communication with IPv6 SSH servers, use the `ipv6 ssh-client source-interface` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

```
ipv6 ssh-client source-interface interface-id
```

```
no ipv6 ssh-client source-interface
```

Parameters

- `interface-id`—(Optional) Specifies the source interface.

Default Configuration

The IPv6 source address is the IPv6 address defined of the outgoing interface and selected in accordance with RFC6724.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface then the IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface then the minimal IPv4 address defined on the source interface and with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to communicate with an IPv6 SSH servers.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxx(config)# ipv6 ssh-client source-interface vlan 100
```
ip ssh-client username

To configure the SSH client username of the switch, use the `ip ssh-client username` command in Global Configuration mode.

To return to default, use the `no` form of the command.

Syntax

`ip ssh-client username string`

`no ip ssh-client username`

Parameters

- `string`—Username of the SSH client. The length is 1 - 70 characters. The username cannot include the characters "@" and ":".

Default Configuration

The default username is `anonymous`

Command Mode

Global Configuration mode

User Guidelines

The configured username is used when SSH client authentication is done both by password or by key.

Example

The following example specifies a username of the SSH client:

```
switchxxxxxx(config)# ip ssh-client username jeff
```
show ip ssh-client

To display the SSH client credentials, both default and user-defined keys, use the `show ip ssh-client` command in Privilege EXEC mode.

Syntax

```
show ip ssh-client
show ip ssh-client {mypubkey | key} {dsa | rsa}
```

Parameters

- `dsa`—Specifies displaying the DSA key type.
- `rsa`—Specifies displaying the RSA key type.
- `mypubkey`—Specifies that only the public key is selected to be displayed.

Command Mode

Privileged EXEC mode

User Guidelines

Use the command with a specific key-type to display the SSH client key; You can either specify display of public key or private key, or with no parameter to display both private and public keys. The keys are displayed in the format specified by RFC 4716.

Example 1. The following example displays the authentication method and the RSA public key:

```sh
switchxxxxxx# show ip ssh-client mypubkey rsa
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Authentication method: DSA key
Username: john
Key Source: User Defined
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1yc2EAAABIAwAAECAwQAMeYsKvJvjs8XALAKqBN1WxXnY
KUf5o2jGY3QoMGDvNlpQvdN3YmLUBiKk31WvVwFB3N2K5a7fUBjobjlkdjsn
QRTKZiu4V+IL5rds/bD6LOEkJbjUoJmp9h1lh9uc0ceZ3xMtKhn0RlxHL
aRyxYs05PuirTo6xW8=
---- END SSH2 PUBLIC KEY ----
```

Example 2. The following example displays the authentication method and DSA private key in encrypted format:

```sh
switchxxxxxx# show ip ssh-client key DSA
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Authentication method: DSA key
Username: john
Key Source: User Defined
---- BEGIN SSH2 PUBLIC KEY ----
```

Cisco Business Switches 350 Series CLI Guide

1279
Example 3. The following example displays the SSH client authentication method, the username and the password:

```
switchxxxxxx# show ip ssh-client
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Authentication method: DSA key
Username: anonymous (default)
Password(Encrypted): KzGgzpYa7gCHhaveSJDehGJ6L3Yf9ZBAU5nsxSwiic=
```
show ip ssh-client server

To display the SSH remote server authentication method and the Trusted Remote SSH Server table, use the `show ip ssh-client server` command in Privilege EXEC Configuration mode.

Syntax

```
show ip ssh-client server [host | ip-address]
```

Parameters

- **host**—(Optional) DNS name of an SSH server.
- **ip-address**—(Optional) IP Address of an SSH server. The IP address can be an IPv4, IPv6 or IPv6z address. See IPv6z Address Conventions.

Default Configuration

None

Command Mode

Privileged EXEC mode

User Guidelines

If a specific SSH server is specified, only the fingerprint of this SSH server is displayed. Otherwise, all known servers are displayed.

Example 1 - In the following example, the SSH remote server authentication method and all trusted remote SSH servers are displayed:

```
switchxxxxxxx# show ip ssh-client server
SSH Server Authentication is enabled
server address: 11.1.0.1
server address: 192.165.204.111
server address: 4002:0011::12
```

Example 2 - The following example displays the authentication method and DSA private key in encrypted format:

```
switchxxxxxxx# show ip ssh-client key DSA
Authentication method: DSA key
Username: john
Key Source: Default
---- BEGIN SSH2 PUBLIC KEY ----
Comment: RSA Public Key
AAAAB3NzaC1kc3MAAACBAPY8Z0HYyYsJ5A6Xyc9HRwNHxaehvx5wOJ0rzE3dsoS0X1bET
W6To/HB6UDJz-zZRo9FIkJ7oZxyb2znDi4aB9tb1Qz+Yp7StxylHnxzFiY11fXDI1G4T6JYrdH
Y1J4cmle9e4NncRleaoZPf3UGfZfia6XrGTtQz3O3qJq2e7y1sk/gF+1VAAAAPQdb8D5c
vXHWTZQFX0Dz9rdYBNvZAAAIAIAi9h92+Bb7D4KLYk3lWnXvXeRgqAapDtdW9vcF
J0/RHd+NjB4eolD+0dix6tLWxVGN7PKS5R/FXPNwxdHPapcj9uLJn2AWQ2dsknf+1/FAA
```
Example 3 - The following example displays the SSH client authentication method, the username and the password:

```
switchxxxxxx# show ip ssh-client
Authentication method: password (default)
Username: anonymous (default)
password(Encrypted): KzGzpYa7GzCHhaveSJDehGJ6L3Yf9ZBAU5
```
SSD Commands

This chapter contains the following sections:

- ssd config, on page 1284
- passphrase, on page 1285
- ssd rule, on page 1286
- show SSD, on page 1288
- ssd session read, on page 1290
- show ssd session, on page 1291
- ssd file passphrase control, on page 1292
- ssd file integrity control, on page 1293
ssd config

To enter the Secure Sensitive Data (SSD) command mode, use `ssd config` in Global Configuration mode. In this command mode, an administrator can configure how the sensitive data on the device, such as keys and passwords, is to be protected.

Syntax

`ssd config`

Parameters

This command has no arguments or keywords.

Command Mode

Global Configuration mode

User Guidelines

Only users with sufficient permission can use this command, which edits and displays the SSD configuration. See `ssd rule, on page 1286` for a description of these permissions.

Example

```
switchxxxxxx(config)# ssd config
switchxxxxxx(config-ssd)#
```
passphrase

To change the passphrase in the system, use passphrase in SSD Configuration mode. A device protects its sensitive data by encrypting them using the key generated from the passphrase.

To reset the passphrase to the default passphrase, use the no passphrase.

Syntax

passphrase {passphrase}
encrypted passphrase {encrypted-passphrase}
no passphrase

Parameters

• passphrase—New system passphrase.
• encrypted-passphrase—The passphrase in its encrypted form.

Default Usage

If this command is not entered, the default passphrase is used.

Command Mode

SSD Configuration mode

User Guidelines

To use this command, enter passphrase and Enter, a confirmation message is displayed and the user must confirm the intention to change the passphrase. Then the passphrase can be entered (see example).

Encrypted passphrase is allowed only in the SSD Control Block of a source file that is being copied to the startup configuration file (user cannot manually enter this command).

When generating a passphrase, the user must use 4 different character classes (similar to strong password/passwords complexity). These can be: uppercase letters, lowercase letters, numbers, and special characters available on a standard keyboard.

Example

The following example defines a decrypted passphrase.

switchxxxxxx(config-ssd)# passphrase
This operation will change the system SSD passphrase. Are you sure? (Y/N) [N] Y
Please enter SSD passphrase:**********
Please reenter SSD passphrase:**********
ssd rule

To configure an SSD rule, use `ssd rule` in SSD Configuration mode. A device grants read permission of sensitive data to users based on the SSD rules. A user that is granted Both or Plaintext read permission is also granted permission to enter SSD Configuration mode.

To delete user-defined rules and restore default rules, use `no ssd rule`.

Syntax

```
[encrypted] SSD rule {all | level-15 | default-user | user user-name}
{secure | insecure | secure-xml-snmp | insecure-xml-snmp}
permission {encrypted-only | plaintext-only | both | exclude}
default-read {encrypted | plaintext | exclude}
no ssd rule [ {all | level-15 | default-user | user user-name}
{secure | insecure | secure-xml-snmp | insecure-xml-snmp}]
```

Command Mode

SSD Configuration mode.

Default Rules

The device has the following factory default rules:

Table 5: Default SSD Rules

<table>
<thead>
<tr>
<th>Rule Key</th>
<th>Rule Action</th>
<th>Default Read Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Channel</td>
<td>Read Permission</td>
</tr>
<tr>
<td>level-15</td>
<td>secure-xml-snmp</td>
<td>Plaintext Only</td>
</tr>
<tr>
<td>level-15</td>
<td>secure</td>
<td>Both</td>
</tr>
<tr>
<td>level-15</td>
<td>insecure</td>
<td>Both</td>
</tr>
<tr>
<td>all</td>
<td>insecure-xml-snmp</td>
<td>Exclude</td>
</tr>
<tr>
<td>all</td>
<td>secure</td>
<td>Encrypted Only</td>
</tr>
<tr>
<td>all</td>
<td>insecure</td>
<td>Encrypted</td>
</tr>
</tbody>
</table>

User Guidelines

Use `no ssd rule` to delete a user-defined rule or to restore the default of a modified default rule.

Use `no ssd rule` (without parameters) to remove all SSD rules and restore the default SSD rules. A confirmation message will be displayed asking permission to do this. To delete specific rules (applicable for the user defined), provide parameters specifying the user and security of the channel.
encrypted SSD rule is used to copy an SSD rule from one device to another in a secure manner.

You can modify but cannot delete the default SSD rules. The following is the order in which SSD rules are applied:

- The SSD rules for specified users.
- The SSD rule for the default-user (cisco).
- The SSD rules for level-15 users.
- The remaining SSD rules for all.

The user can enter the commands in any order. The ordering is done implicitly by the device.

Example 1 - The following example modifies a rule.

```plaintext
switchxxxxxx(config-ssd)# ssd rule level-15 secure permission encrypted-only default-read encrypted
```

Example 2 - The following example adds a rule.

```plaintext
switchxxxxxx(config-ssd)# ssd rule user james secure permission both default-read encrypted
```

Example 3 - The following example adds a rule as encrypted format.

```plaintext
switchxxxxxx(config-ssd)# encrypted ssd rule iurwe874jho32iu9ufjo32i83232fdefsd
```

Example 4 - The following example deletes a default rule.

```plaintext
switchxxxxxx(config-ssd)# no ssd rule all secure
```

Example 5 - The following example deletes a user-defined rule.

```plaintext
switchxxxxxx(config-ssd)# no ssd rule user james secure
```

Example 6 - The following example deletes all rules.

```plaintext
switchxxxxxx(config-ssd)# no ssd rule
```

This operation will delete all user-defined rules and retrieve the default rules instead. Are you sure (Y/N): N
show SSD

To present the current SSD rules; the rules will be displayed as plaintext, use `show ssd rules` in SSD Configuration mode.

Syntax

`show SSD [rules | brief]`

Parameters

- `rules`—(Optional) Display only the SSD rules.
- `brief`—(Optional) Display the encrypted passphrase, File Passphrase Control and File Integrity attributes.

Command Mode

SSD Configuration mode

Default Configuration

Display all SSD information.

Example 1 - The following example displays all SSD information.

```
switchxxxxxx(config-ssd)# show ssd
SSD current parameters:
Local Passphrase: Default
File Passphrase Control: Unrestricted
File Integrity Control: Disabled
SSD parameters after reset:
Local Passphrase: Default
File Passphrase Control: Unrestricted
File Integrity Control: Disabled
```

```
User Type  User Name  Channel  Read Permission  Default Read  Type
------------ --------- ----------------- ----------------- --------------
Specific    admin11 secure Both Encrypted User-Define
Specific    admin2  secure Encrypted-Only Encrypted User-Define
Level-15    secure-xml-snmp Plaintext-Only Plaintext Default
Level-15    secure Both Encrypted Default
Level-15    insecure Both Encrypted Default
All         secure Encrypted-Only Encrypted Default
All         insecure Encrypted-Only Encrypted Default
```

* Modified default entry

Example 2 - The following example displays the SSD rules.

```
switchxxxxxx(config-ssd)# show ssd rules
```

```
User Type  User Name  Channel  Read Permission  Default Read  Type
------------ --------- ----------------- ----------------- --------------
Specific    admin11 secure Both Encrypted User-Define
Specific    admin2  secure Encrypted-Only Encrypted User-Define
Level-15    secure-xml-snmp Plaintext-Only Plaintext Default
Level-15    insecure Both Encrypted Default
All         secure Encrypted-Only Encrypted Default
All         insecure-xml-snmp Plaintext-Only Plaintext *Default
```

* Modified default entry
Example 3 - The following example displays the SSD attributes.

```
switchxxxxxx(config-ssd)# show ssd brief
SSD current parameters:
Local Passphrase: Default
File Passphrase Control: Unrestricted
File Integrity Control: Disabled
SSD parameters after reset:
Local Passphrase: Default
File Passphrase Control: Unrestricted
File Integrity Control: Disabled
```
ssd session read

To override the current SSD default read of the current session, use `ssd session read` in Global Configuration mode.

Syntax

```plaintext
ssd session read {encrypted | plaintext | exclude}
```

no ssd session read

Parameters

- **encrypted** — Override the SSD default option to encrypted
- **plaintext** — Override the SSD default option to plaintext
- **exclude** — Override the SSD default option to exclude

Command Mode

Global Configuration mode.

Default

The command itself does not have a default. However, note that the read mode of the session itself, defaults to the default read mode of the SSD rule that the device uses to grant SSD permission to the user of the session.

User Guidelines

Use `no ssd session read` to restore the default read option of the SSD rules. This configuration will be allowed only if the user of the current session has sufficient read permissions; otherwise, the command will fail and an error will be displayed. The setting will take effect immediately and will terminate when the user restores the settings or exits the session.

Example

```plaintext
switchxxxxxx(config)# ssd session read plaintext
```
show ssd session

To view the SSD read permission and default read mode of the user of the current session, use **show ssd session** in Privileged EXEC mode.

Syntax

`show ssd session`

Command Mode

Privileged EXEC mode

Default

None

Examples

```
switchxxxxxx# show ssd session
User Name/Level: James / Level 15
User Read Permission: Both
Current Session Read mode: Plaintext
```
ssd file passphrase control

To provide an additional level of protection when copying configuration files to the startup configuration file, use **ssd file passphrase control** in SSD Configuration mode. The passphrase in a configuration file is always encrypted with the default passphrase key.

Syntax

```
ssd file passphrase control {restricted | unrestricted}

no ssd file passphrase control
```

Parameters

- **Restricted**—In this mode, a device restricts its passphrase from being exported into a configuration file. Restricted mode protects the encrypted sensitive data in a configuration file from devices that do not have the passphrase. The mode should be used when a user does not want to expose the passphrase in a configuration file.

- **Unrestricted**—In this mode, a device will include its passphrase when creating a configuration file. This allows any devices accepting the configuration file to learn the passphrase from the file.

Default

The default is **unrestricted**.

Command Mode

SSD Configuration mode.

User Guidelines

To revert to the default state, use the **no ssd file passphrase control** command.

Note that after a device is reset to the factory default, its local passphrase is set to the default passphrase. As a result, the device will not be able to decrypt sensitive data encrypted with a user-defined passphrase key in its own configuration files until the device is manually configured with the user-passphrase again or the files are created in unrestricted mode.

If a user-defined passphrase in Unrestricted mode are configured, it is highly recommended to enable SSD File Integrity Control. Enabling SSD File Integrity Control protects configuration files from tampering.

Examples

```
console(ssd-config)# ssd file passphrase control restricted
console(ssd-config)# no ssd file passphrase control
```
ssd file integrity control

To instruct the device to protect newly-generated configuration files that contain encrypted sensitive data from tampering, use `ssd file integrity control` command in SSD Configuration mode.

To disable Integrity Control, use `no ssd file integrity control`.

Syntax

```
ssd file integrity control enabled
no ssd file integrity control
```

Parameters

- `enabled`—Enable file integrity control to protect newly-generated configuration files from tampering.

Default

The default file input control is `disable`.

Command Mode

SSD Configuration mode.

User Guidelines

TA user can protect a configuration file from being tampered by creating the file with File Integrity Control enabled. It is recommended that File Integrity Control be enabled when a device's users a user-defined passphrase with Unrestricted Configuration File Passphrase Control.

A device determines whether the integrity of a configuration file is protected by examining the File Integrity Control command in the file. If a file in integrity-protected, but a device finds the integrity of the file is not intact, the device rejects the file. Otherwise, the file is accepted for further processing.

Examples

```
switchxxxxx(config-ssd)# ssd file integrity control enabled
```

When File Integrity is enabled, an internal digest command is added to the end of the entire configuration file. This is used in downloading the configuration file to the startup configuration.

```
config-file-digest 0AC7800112233440AC780011223344
```
ssd file integrity control
Stack Commands

This chapter contains the following sections:

- set stack mode, on page 1296
- set stack unit-type, on page 1297
- stack unit, on page 1299
- stack configuration, on page 1300
- show stack configuration, on page 1301
- show stack, on page 1302
- show stack links, on page 1303
set stack mode

To configure the stack mode of all units in stack after reboot, use the `set stack mode` Privileged EXEC mode command.

Syntax

```
set stack mode {native|hybrid}
```

Parameters

- `native` - all units in stack are of the same type (network interfaces type is the same on all units).
- `hybrid` - units in stack contain units of different types (network interfaces type of different units may be different).

Default Configuration

native mode

Command Mode

Privileged EXEC mode

User Guidelines

- command is applied to all units in stack
- After prompting user, command will reload all devices in stack.
- Reseting stack/unit to factory default will return all units to native mode (the default)
- In case of changing mode from native to hybrid mode, the command will delete stack startup configuration as well, and may upgrade inactive image version on all units to active image version (if current inactive image does not support hybrid mode). It is advisable to save device configuration to external server before changing modes.

Example 1—The following example sets all units in stack to hybrid mode.

```
switchxxxxxx# set stack mode hybrid
Following confirmation, changing the stacking mode to hybrid will:
* Delete the startup configuration file;
* Upgrade the in-active image to the active image version (in case in-active image version does not support hygrid mode);
* Automatically reload the stack;
It is highly recommended that you will backup the configuration before changing the mode, continue ? (Y/N)[N] Y
```

Example 2—The following example sets all units in stack to native mode.

```
switchxxxxxx# set stack mode native
Changing the stacking mode to native will reload the stack, continue ? (Y/N)[N] Y
```
set stack unit-type

To configure the unit type of a stack member, use the `set stack unit-type` Privileged EXEC mode command.

`set stack unit-type unit unit-id network network-type uplink uplink-type`

Parameters

- **unit** unit-id - Define the unit ID to apply setting. (Range: 1–4)
- **network** network-type - The type of network ports of the unit. Supported values are:
 - `gi` (for device for which all network ports types are Gigabitethernet)
 - `tw` (for device for which all network ports types are TwoPointFiveGigabitEthernet).
 - `te` (for device for which all network ports types are Tengigabitethernet).
- **uplink** uplink-type - The type of uplink ports of the unit. Supported values are:
 - `te` (for device with Tengigabitethernet uplink ports)
 - `none` (for devices with no uplink ports)

Default Configuration

User defined type is not configured

Command Mode

Privileged EXEC mode

User Guidelines

Use the `set stack unit-type` command to define the type of "not-present" stack units (see below). The type of unit in stack defines the type of interface naming for this unit and determines which interface level commands can be applied.

If a unit is present or inserted in a stack, the unit type is automatically set by the software to the type of unit identified. If unit that was present is subsequently removed from stack the unit will become "not-present" but retain the existing unit type. If a unit is "not-present", and there is no previous type identified (unit did not exist previously in stack), its unit type is automatically set to the same unit type as the Active unit.

- If **network** port type is set to te, **uplink** port type must be set to none.
- If **network** port type is set to gi or tw, **uplink** port type must be set to te.
- If the command is applied to a unit which is present in stack, command will fail with the following error message: "Unit ID X is present in stack - cannot manually set unit type"
- The unit-type of each unit is saved across reboots and displayed as part of configuration file header in the following format: "unit-type unit X network network-type uplink uplink-type"

Example 1—The following example sets the unit type of unit 3.
Switchxxxxx# set stack unit-type unit 3 network gi uplink te
stack unit

To place the user in the context of the specified stack unit or all stack units, use the **stack unit** Global Configuration command.

Syntax

```
stack unit {unit-id | all}
```

Parameters

- **unit-id**— Select a specific unit. All commands after this command refer to this unit. Unit must be member in the stack. (Range: 1–4).

- **all**— Select all the units in the stack.

Default Configuration

None

Command Mode

Global Configuration mode

Example 1— The following example sets the unit context to 2, all following stack command will apply to unit 2.

```
switchxxxxxx(config)# stack unit 2
```

Example 2— The following example sets the unit context to all units in the stack, all following stack command will apply to all the units.

```
switchxxxxxx(config)# stack unit all
```
stack configuration

To configure the ports and unit id after reboot, use the stack configuration command.

Syntax

```
stack configuration {[links ports-list] [unit-id {unit-id | auto}]} }
no stack configuration
```

Parameters

- **links**— Select port list to be used as stack links after reload.

- **ports-list** - a list of one or more stack ports separated by comma, or a range of sequential ports marked by dash.

 - **no-links**— set stack unit without stack links after reboot.

- **unit-id**— Select the unit id to be used after reload. (Range: 1–4). Use auto to enable stack auto numbering feature.

Command Mode

Global Configuration mode

Stack Unit mode.

User Guidelines

- Running the command in Global Configuration mode will configure the current stack Active unit.

- The no stack configuration is used to return the stack configuration to factory default after reload (use the reload command to reboot unit).

- Running the command in stack unit all context and configuration of the unit-id parameter not to auto generate an error (to avoid setting several units to the same Id).

- Optional parameters not provided in the command will not be changed.

Example 1—The following example sets the Active unit to stack factory default.

```
switchxxxxxx(config)# no stack configuration
```

Example 2—The following example sets the unit 3 to have stack links (ports) te3-4 with unit ID auto.

```
switchxxxxxx(config)# stack unit 3
switchxxxxxxunit# stack configuration links te3-4 unit-id auto
```
show stack configuration

To display the stack configuration (including configuration that is configured after reboot) parameters, use the `show stack configuration` EXEC mode command.

Syntax

`show stack configuration`

Command Mode

User EXEC mode

Examples

Display the stack configuration information for an entire stack.

```
switchxxxxxx# show stack configuration
```

<table>
<thead>
<tr>
<th>Unit Id</th>
<th>After Reboot Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit Id</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>auto</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
show stack

To display the stack operational status, use the `show stack` EXEC mode command.

Syntax

show stack

Command Mode

User EXEC mode

Examples

Display the stack information for an entire stack.

```plaintext
switchxxxxxx# show stack
Topology is Ring
Units stack mode: Hybrid
```

<table>
<thead>
<tr>
<th>Unit Id</th>
<th>MAC Address</th>
<th>Role</th>
<th>Network Port Type</th>
<th>Uplink Port Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00:b0:00:10:00</td>
<td>Active</td>
<td>te</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>00:00:b0:00:20:00</td>
<td>Standby</td>
<td>gi</td>
<td>te</td>
</tr>
<tr>
<td>3</td>
<td>00:00:b0:00:30:00</td>
<td>Member</td>
<td>gi</td>
<td>te</td>
</tr>
<tr>
<td>4</td>
<td>00:00:b0:00:40:00</td>
<td>Member</td>
<td>tw</td>
<td>te</td>
</tr>
</tbody>
</table>
show stack links

To display the stack links operational status, use the `show stack links` EXEC mode command.

Syntax

`show stack links [details]`

Command Mode

User EXEC mode

Example 1—Display the stack links information for an entire stack.

```
switchxxxxxx# show stack links
```

Topology is Ring

<table>
<thead>
<tr>
<th>Unit Id</th>
<th>Active Links</th>
<th>Neighbor Links</th>
<th>Operational Link Speed</th>
<th>Down/Standby Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>te1/1-2</td>
<td>te3/4,te2/1</td>
<td>10G</td>
<td>te1/3,te1/4</td>
</tr>
<tr>
<td>2</td>
<td>te2/1-2</td>
<td>te1/2,te3/3</td>
<td>10G</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>te3/3-4</td>
<td>te2/2,te1/1</td>
<td>10G</td>
<td></td>
</tr>
</tbody>
</table>

Example 2—Display the stack links information for an entire stack with details.

```
switchxxxxxx# show stack links details
```

```
Neighbor Mac Address
00:00:b0:00:20:00
```

<table>
<thead>
<tr>
<th>Unit Id</th>
<th>Link</th>
<th>Status</th>
<th>Speed</th>
<th>Neighbor Unit Id</th>
<th>Neighbor Link</th>
<th>Neighbor Mac Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>te1</td>
<td>Active</td>
<td>10G</td>
<td>2</td>
<td>te2</td>
<td>00:00:b0:00:20:00</td>
</tr>
<tr>
<td>1</td>
<td>te2</td>
<td>Down</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>te1</td>
<td>Down</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>te2</td>
<td>Active</td>
<td>10G</td>
<td>1</td>
<td>te1</td>
<td>00:00:b0:00:10:00</td>
</tr>
</tbody>
</table>

Topology is Ring
show stack links
SYSLOG Commands

This chapter contains the following sections:

- aaa logging, on page 1306
- clear logging, on page 1307
- clear logging file, on page 1308
- file-system logging, on page 1309
- logging buffered, on page 1310
- logging console, on page 1311
- logging file, on page 1312
- logging host, on page 1313
- logging on, on page 1314
- logging source-interface, on page 1315
- logging source-interface-ipv6, on page 1316
- logging aggregation on, on page 1317
- logging aggregation aging-time, on page 1318
- logging origin-id, on page 1319
- logging cbd module, on page 1320
- logging cbd level, on page 1321
- show logging, on page 1322
- show logging file, on page 1323
- show syslog-servers, on page 1324
aaa logging

To enable logging AAA logins, use the **aaa logging** Global Configuration mode command. To disable logging AAA logins, use the **no** form of this command.

Syntax

```
aaa logging {login}
no aaa logging {login}
```

Parameters

`login`—Enables logging messages related to successful AAA login events, unsuccessful AAA login events and other AAA login-related events.

Default Configuration

Enabled.

Command Mode

Global Configuration mode

User Guidelines

This command enables logging messages related to successful login events, unsuccessful login events and other login-related events. Other types of AAA events are not subject to this command.

Example

The following example enables logging AAA login events.

```
switchxxxxxx(config)# aaa logging login
```
clear logging

To clear messages from the internal logging buffer, use the `clear logging` Privileged EXEC mode command.

Syntax

`clear logging`

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example clears messages from the internal logging buffer.

```bash
switchxxxxxx# clear logging
Clear Logging Buffer ? (Y/N)[N]
```
clear logging file

To clear messages from the logging file, use the **clear logging file** Privileged EXEC mode command.

Syntax
clear logging file

Parameters
This command has no arguments or keywords.

Default Configuration
None

Command Mode
Privileged EXEC mode

Example
The following example clears messages from the logging file.

```
switchxxxxxx# clear logging file
Clear Logging File [y/n]
```
file-system logging

To enable logging file system events, use the file-system logging Global Configuration mode command. To disable logging file system events, use the no form of this command.

Syntax
file-system logging /copy | delete-rename/
no file-system logging /copy | delete-rename/

Parameters
- **copy**—Specifies logging messages related to file copy operations.
- **delete-rename**—Specifies logging messages related to file deletion and renaming operations.

Default Configuration
Enabled.

Command Mode
Global Configuration mode

Example
The following example enables logging messages related to file copy operations.

```
switchxxxxxx(config)# file-system logging copy
```
logging buffered

To limit the SYSLOG message display to messages with a specific severity level, and to define the buffer size (number of messages that can be stored), use the `logging buffered` Global Configuration mode command. To cancel displaying the SYSLOG messages, and to return the buffer size to default, use the `no` form of this command.

Syntax

```
logging buffered [buffer-size] [severity-level | severity-level-name]
no logging buffered
```

Parameters

- `buffer-size` — (Optional) Specifies the maximum number of messages stored in buffer. (Range: 20–1000)
- `severity-level` — (Optional) Specifies the severity level of messages logged in the buffer. The possible values are: 1-7.
- `severity-level-name` — (Optional) Specifies the severity level of messages logged in the buffer. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

The default severity level is informational.

The default buffer size is 1000.

Command Mode

Global Configuration mode

User Guidelines

All the SYSLOG messages are logged to the internal buffer. This command limits the messages displayed to the user.

Example

The following example shows two ways of limiting the SYSLOG message display from an internal buffer to messages with severity level `debugging`. In the second example, the buffer size is set to 100 and severity level informational.

```
switchxxxxxx(config)# logging buffered debugging
switchxxxxxx(config)# logging buffered 100 informational
```
logging console

To limit messages logged to the console to messages to a specific severity level, use the **logging console** Global Configuration mode command. To restore the default, use the **no** form of this command.

Syntax

```
logging console level
no logging console
```

Parameters

- **level**—Specifies the severity level of logged messages displayed on the console. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

Informational.

Command Mode

Global Configuration mode

Example

The following example limits logging messages displayed on the console to messages with severity level **errors**.

```
switchxxxxxx(config)# logging console errors
```

Cisco Business Switches 350 Series CLI Guide

1311
To limit SYSLOG messages sent to the logging file to messages with a specific severity level, use the `logging file` Global Configuration mode command. To cancel sending messages to the file, use the `no` form of this command.

Syntax

```
logging file level

no logging file
```

Parameters

- **level**—Specifies the severity level of SYSLOG messages sent to the logging file. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration

The default severity level is `errors`.

Command Mode

Global Configuration mode

Example

The following example limits SYSLOG messages sent to the logging file to messages with severity level alerts.

```
switchxxxxxx(config)# logging file alerts
```
logging host

To log messages to the specified SYSLOG server, use the **logging host** Global Configuration command. To delete the SYSLOG server with the specified address from the list of SYSLOG servers, use the **no** form of this command.

Syntax

```
logging host {ip-address | ipv6-address | hostname} [port port] [severity level] [facility facility] [description text]
no logging host {ipv4-address | ipv6-address | hostname}
```

Parameters

- **ip-address**—IP address of the host to be used as a SYSLOG server. The IP address can be an IPv4, IPv6 or IPv6z address.
- **hostname**—Hostname of the host to be used as a SYSLOG server. Only translation to IPv4 addresses is supported. (Range: 1–158 characters. Maximum label size for each part of the hostname: 63)
- **port port**—(Optional) Port number for SYSLOG messages. If unspecified, the port number defaults to 514. (Range: 1–65535)
- **severity level**—(Optional) Limits the logging of messages to the SYSLOG servers to a specified level: Emergencies, Alerts, Critical, Errors, Warnings, Notifications, Informational, Debugging.
- **facility facility**—(Optional) The facility that is indicated in the message. It can be one of the following values: local0, local1, local2, local3, local4, local5, local6, local7. If unspecified, the port number defaults to local7.
- **description text**—(Optional) Description of the SYSLOG server. (Range: Up to 64 characters)

Default Configuration

No messages are logged to a SYSLOG server.
If unspecified, the **severity level** defaults to Informational.

Command Mode

Global Configuration mode

User Guidelines

You can use multiple SYSLOG servers.

Examples

```
switchxxxxxx(config)# logging host 1.1.1.121
switchxxxxxx(config)# logging host 3000::100/SYSLOG1
```
logging on

To enable message logging, use the **logging on** Global Configuration mode command. This command sends
debug or error messages asynchronously to designated locations. To disable the logging, use the **no** form of
this command.

Syntax

`logging on`

`no logging on`

Parameters

This command has no arguments or keywords.

Default Configuration

Message logging is enabled.

Command Mode

Global Configuration mode

Example

The following example enables logging error messages.

```
switchxxxxx(config)# logging on
```
logging source-interface

To specify the source interface whose IPv4 address will be used as the source IPv4 address for communication with IPv4 SYSLOG servers, use the **logging source-interface** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

logging source-interface *interface-id*

no logging source-interface

Parameters

interface-id—Specifies the source interface.

Default Configuration

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the interface IP address belonging to the next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the lowest IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 SYSLOG server.

OOB cannot be defined as a source interface.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# logging source-interface vlan 100
```
logging source-interface-ipv6

To specify the source interface whose IPv6 address will be used as the source IPv6 address for communication with IPv6 SYSLOG servers, use the **logging source-interface-ipv6** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

logging source-interface-ipv6 *interface-id*

no logging source-interface-ipv6

Parameters

interface-id—Specifies the source interface.

Default Configuration

The IPv6 source address is the defined IPv6 address of the outgoing interface and selected in accordance with RFC6724.

Command Mode

Global Configuration mode

User Guidelines

If the source interface is the outgoing interface, the IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the minimal IPv6 address defined on the source interface with the scope of the destination IPv6 address is applied.

If there is no available IPv6 source address, a SYSLOG message is issued when attempting to communicate with an IPv6 SYSLOG server.

Example

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# logging source-interface-ipv6 vlan 100
```
logging aggregation on

To control aggregation of SYSLOG messages, use the **logging aggregation on** Global Configuration mode command. If aggregation is enabled, logging messages are displayed every time interval (according to the aging time specified by **logging aggregation aging-time**, on page 1318). To disable aggregation of SYSLOG messages, use the **no** form of this command.

Syntax

```
logging aggregation on
no logging aggregation on
```

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled

Command Mode

Global Configuration mode

Example

To turn off aggregation of SYSLOG messages:

```
switchxxxxxx(config)# no logging aggregation on
```
logging aggregation aging-time

To configure the aging time of the aggregated SYSLOG messages, use the `logging aggregation aging-time` Global Configuration mode command. The SYSLOG messages are aggregated during the time interval set by the aging-time parameter. To return to the default, use the `no` form of this command.

Syntax

```
logging aggregation aging-time sec
no logging aggregation aging-time
```

Parameters

- `aging-time sec`—Aging time in seconds (Range: 15–3600)

Default Configuration

300 seconds.

Command Mode

Global Configuration mode

Example

```
switchxxxxx(config)# logging aggregation aging-time 300
```
logging origin-id

To configure the origin field of the SYSLOG message packet headers sent to the SYSLOG server, use the `logging origin-id` Global Configuration mode command. To return to the default, use the `no` form of this command.

Syntax

logging origin-id \{hostname | IP | IPv6 | string user-defined-id\}
no logging origin-id

Parameters

- `hostname`—The system hostname will be used as the message origin identifier.
- `IP`—IP address of the sending interface that is used as the message origin identifier.
- `IPv6`—IPv6 address of the sending interface that is used as the message origin identifier. If the sending interface is IPv4, the IPv4 address will be used instead.
- `string user-defined-id`—Specifies an identifying description chosen by the user. The `user-defined-id` argument is the identifying description string.

Default Configuration

No header is sent apart from the PRI field.

Command Mode

Global Configuration mode

Example

switchxxxxxx(config)# logging origin-id string “Domain 1, router B”
logging cbd module

To define supported modules for Cisco Business Dashboard (CBD) logging, use the **logging cbd module** Global Configuration mode command. To restore the default, use the **no** form of this command.

Syntax

logging cbd module {module [module2 ... module6] | none | all}

no logging cbd module

Parameters

- **module** - list includes: call-home, discovery, northbound, services, southbound, system. The list replaces the previously configured list.
- **none** — disable logging for all modules.
- **all** — enable logging for all modules.

Default Configuration

Logging CBD is enabled on all modules.

Command Mode

Global Configuration mode

User Guidelines

This setting affect the CBD agent logging.

Example

The following example enables logging messages of all CBD modules.

```
switchxxxxxx(config)# logging cbd module all
```
logging cbd level

To limit messages logged of the Cisco Business Dashboard (CBD) to messages to a specific severity level, use the `logging cbd level` Global Configuration mode command. To restore the default, use the `no` form of this command.

Syntax

`logging cbd level level`

`no logging cbd level`

Parameters

`level`—Specifies the severity level of logged messages displayed on the console. The possible values are: errors, warnings, informational and debugging. This enable logging of messages with this level or higher.

Default Configuration

Informational.

Command Mode

Global Configuration mode

Example

The following example limits logging messages of the CBD to messages with severity level `errors`.

```
switchxxxxxx(config)# logging cbd errors
```
show logging

To display the logging status and SYSLOG messages stored in the internal buffer, use the show logging Privileged EXEC mode command.

Syntax

show logging

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays the logging status and the SYSLOG messages stored in the internal buffer.

switchxxxxxx# show logging
Logging is enabled.

Origin id: hostname

Console Logging: Level info. Console Messages: 0 Dropped.
4 messages were not logged
Application filtering control

Application Event Status
---------------------- -----------------------
AAA Login Enabled
File system Copy Enabled
File system Delete-Rename Enabled
Management ACL Deny Enabled
Aggregation: Disabled.
Aggregation aging time: 300 Sec
Logging cbd level: Informational
Logging cbd modules Enabled: call-home
01-Jan-2010 05:29:46 :%INIT-I-Startup: Warm Startup
01-Jan-2010 05:29:02 :%LINK-I-Up: Vlan 1
01-Jan-2010 05:29:02 :%LINK-I-Up: SYSLOG6
01-Jan-2010 05:29:02 :%LINK-I-Up: SYSLOG7
01-Jan-2010 05:29:00 :%LINK-W-Down: SYSLOG8
show logging file

To display the logging status and the SYSLOG messages stored in the logging file, use the **show logging file** Privileged EXEC mode command.

Syntax

```
show logging file
```

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example displays the logging status and the SYSLOG messages stored in the logging file.

```
switchxxxxxx# show logging file
Logging is enabled.

Origin id: hostname

Console Logging: Level info. Console Messages: 0 Dropped.
4 messages were not logged
Application filtering control

Application                      Event      Status
----------------------------------------- -----------
AAA                               Login       Enabled
File system                       Copy        Enabled
File system                       Delete-Rename Enabled
Management ACL                   Deny        Enabled

Aggregation: Disabled.
Aggregation aging time: 300 Sec
1-Jan-2010 05:57:00 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:56:36 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:55:37 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:55:03 :%SSHD-E-ERROR: SSH error: key_from_blob bgEgGnt9z6HgWkI5xKqFP7cBtd11xmeFgSewu5hhoSUedydA7vKxSSXR2... failed
01-Jan-2010 05:55:03 :%SSHD-E-ERROR: SSH error: key_from_blob: invalid key type.
01-Jan-2010 05:56:34 :%SSHD-E-ERROR: SSH error: bad sigbloblen 58 != SIGBLOB_LEN
```

console#
show syslog-servers

To display the SYSLOG server settings, use the **show syslog-servers** Privileged EXEC mode command.

Syntax

show syslog-servers

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

Privileged EXEC mode

Example

The following example provides information about the SYSLOG servers.

```
switchxxxxxx# show syslog-servers
Source IPv4 interface: vlan 1
Source IPv6 interface: vlan 10
Device Configuration
-------------------
<table>
<thead>
<tr>
<th>IP address</th>
<th>Port</th>
<th>Facility</th>
<th>Severity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.121</td>
<td>514</td>
<td>local7</td>
<td>info</td>
<td></td>
</tr>
<tr>
<td>3000::100</td>
<td>514</td>
<td>local7</td>
<td>info</td>
<td></td>
</tr>
</tbody>
</table>

OOB host Configuration
----------------------
<table>
<thead>
<tr>
<th>IP address</th>
<th>Port</th>
<th>Facility</th>
<th>Severity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1.200</td>
<td>514</td>
<td>local7</td>
<td>warning</td>
<td></td>
</tr>
</tbody>
</table>
```
System Management Commands

This chapter contains the following sections:

- disable ports leds, on page 1326
- hostname, on page 1327
- reload, on page 1328
- resume, on page 1330
- service cpu-utilization, on page 1331
- show cpld version, on page 1332
- show cpu input rate, on page 1333
- show cpu utilization, on page 1334
- show environment, on page 1335
- show inventory, on page 1337
- show reload, on page 1339
- show sessions, on page 1340
- show system, on page 1341
- show system languages, on page 1343
- show system tcam utilization, on page 1344
- show services tcp-udp, on page 1345
- show tech-support, on page 1346
- show system fans, on page 1348
- show system sensors, on page 1350
- show system id, on page 1351
- show ports leds configuration, on page 1352
- show users, on page 1353
- show hardware version, on page 1354
- show hardware components, on page 1355
- system light, on page 1357
- system recovery, on page 1358
disable ports leds

To turn off the LEDs on all ports on a device, use the disable ports leds Global Configuration mode command. To set the LEDs of all the ports on the device to their current operational status of the port, use the no disable ports leds command.

Syntax

disable ports leds

no disable ports leds

Parameters

This command has no arguments or keywords.

Default Configuration

The default is no disable port leds; that is the LEDs of all the ports reflect their current status.

Command Mode

Global Configuration mode

Examples

The following example turns off the port LEDs.

switchxxxxxx(config)# disable ports leds
hostname

To specify or modify the device host name, use the hostname Global Configuration mode command. To remove the existing host name, use the no form of the command.

Syntax
hostname name
no hostname

Parameters
Name—Specifies the device host name. (Length: 1-58 characters). The hostname must start with a letter, end with a letter or digit, and have as interior characters only letters, digits, and hyphens.

Default Configuration
No host name is defined.

Command Mode
Global Configuration mode

Example
The following example specifies the device host name as ‘enterprise’.

switchxxxxxx(config)# hostname enterprise
enterprise(config)#
reload

To reload the operating system at a user-specified time, use the reload Privileged EXEC mode command.

Syntax

```
reload [in [hh:mm | mmm] | at hh:mm [day month]] | cancel]
```

Parameters

- **in hh:mm | mmm**—(Optional) Schedules a reload of the software to take effect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days.
- **at hh:mm**—(Optional) Schedules a reload of the software to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 days.
- **day**—(Optional) Number of the day in the range from 1 to 31.
- **month**—(Optional) Month of the year.
- **cancel**—(Optional) Cancels a scheduled reload.

Default Usage

None

Command Mode

Privileged EXEC mode

User Guidelines

The at keyword can be used only if the system clock has been set on the device. To schedule reloads across several devices to occur simultaneously, synchronize the time on each device with SNTP.

When you specify the reload time using the at keyword, if you specify the month and day, the reload takes place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time), or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight. The reload must take place within 24 days.

To display information about a scheduled reload, use the `show reload` command.

Example 1: The following example reloads the operating system on all units of a stack system or on the single unit of a standalone system.

```
switchxxxxxx> reload
This command will reset the whole system and disconnect your current session. Do you want to continue? (y/n) [Y]
```
Example 2: The following example reloads the operating system in 10 minutes on all on all units of a stack system or on the single unit of a standalone system.

```console
switchxxxxxx> reload in 10
This command will reset the whole system and disconnect your current session. Reload is scheduled for 11:57:08 UTC Fri Apr 21 2012 (in 10 minutes). Do you want to continue? (y/n) [Y]
```

Example 3: The following example reloads the operating system at 13:00 on all units of a stack system or on the single unit of a standalone system.

```console
switchxxxxxx> reload at 13:00
This command will reset the whole system and disconnect your current session. Reload is scheduled for 13:00:00 UTC Fri Apr 21 2012 (in 1 hour and 3 minutes). Do you want to continue? (y/n) [Y]
```

Example 4: The following example cancels a reload.

```console
switchxxxxxx> reload cancel
Reload cancelled.
```
To enable switching to another open Telnet session, use the `resume` EXEC mode command.

Syntax

```
resume [connection]
```

Parameters

`connection`—(Optional) Specifies the connection number. (Range: 1-4 connections.)

Default Configuration

The default connection number is that of the most recent connection.

Command Mode

Privileged EXEC mode

Example

The following command switches to open Telnet session number 1.

```
switchxxxxxx\> resume 1
```
service cpu-utilization

To enable measuring CPU utilization, use the service cpu-utilization Global Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

service cpu-utilization

no service cpu-utilization

Parameters

This command has no arguments or keywords.

Default Configuration

Measuring CPU utilization is enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the service cpu utilization command to measure information on CPU utilization.

Example

The following example enables measuring CPU utilization.

```
switchxxxxxx(config)# service cpu-utilization
```
show cpld version

To display the device CPLD code version, use the **show cpld version** User EXEC mode command.

Syntax

```
show cpld version [unit unit-id]
```

Parameters

`unit [unit-id]`—Specifies the unit number (Range: 1 – 4). If not specified, the command will display CPLD code version for all units in stack.

Command Mode

User EXEC mode

Example 1 - The following example displays the CPLD version of all units in stack.

```
switchxxxxxx> show cpld version
Unit ID  Unit Type     CPLD code  Version
      ----  -----------  ------------
       1    CBS350-48P-4X   1.0.1
       2    CBS350-48P-4X   1.0.2
```

Example 2 - The following example displays the CPLD version where a unit in stack does not have a CPLD.

```
switchxxxxxx> show cpld version
Unit ID  Unit Type     CPLD code  Version
      ----  -----------  ------------
       1    CBS350-48P-4X  Not Supported
       2    CBS350-48P-4X   1.0.2
```
show cpu input rate

To display the rate of input frames to the CPU in packets per seconds (pps), use the **show cpu input rate** User EXEC mode command.

Syntax

```
show cpu input rate
```

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

Example

The following example displays CPU input rate information.

```
switchxxxxxx> show cpu input rate
Input Rate to CPU is 1030 pps.
```

Cisco Business Switches 350 Series CLI Guide
show cpu utilization

To display information about CPU utilization, use the `show cpu utilization` Privileged EXEC mode command.

Syntax

```plaintext
show cpu utilization
```

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

Privileged EXEC mode

User Guidelines

Use the `show cpu-utilization` command to enable measuring CPU utilization.

Example

The following example displays CPU utilization information.

```
switchxxxxxx> show cpu utilization
CPU utilization service is on.
CPU utilization
--------------------------------------------------
five seconds: 5%; one minute: 3%; five minutes: 3%
```
show environment

To display environment information, use the show environment User EXEC mode command.

Syntax

show environment {all | fan | temperature {status} | stack [switch-number]}

Parameters

- **all**—Displays the fan and temperature general status. If this parameter is used - a fault situation will be reported if it exists on any one of the stack units
- **fan**—Displays the fan(s) status
- **temperature {status}**—Displays the temperature status
- **stack [switch-number]**—(Optional) Displays detailed environment status of a stack, per each stack unit. If the switch-number is specified, the environment status of the selected device number is displayed. (Range: 1 - 4)

Command Mode

User EXEC mode

User Guidelines

The **fan** and **temperature status** parameters are available only on devices on which fan and/or temperature sensor are installed.

Fan status can be one of:

- **OK** - The fan/s functions correctly.
- **Failure** - One or more of the fans failed.
- **Fan read fail** - Reading information from one or more fans failed.
- **NA** - No fan is installed.

Temperature can be one of:

- **OK** - The temperature is below the warning threshold.
- **Warning** - The temperature is between the warning threshold and the critical threshold.
- **Critical** - the temperature is above the critical threshold.

Sensor status can be one of:

- **OK** - All Sensors on device are functioning properly.
- **Failure** - One or more of the sensors failed.
- **NA** - No sensor installed.
Example 1 - The following example displays the general environment status of a device or a stack.

switchxxxxxx> show environment all

Internal power supply Active.

fans OK
Sensor is OK
Temperature is OK

#EDITOR: The temperature status is OK if ALL the temperature sensors status in all the stack members is OK, and if the temperature of all the stack members is below the lowest threshold (this is calculated per stack member, if one or more of the stack members temperature is above its specific threshold, the temperature status is FAILURE)

#EDITOR: Likewise the fan status will be OK - only if status of fans on ALL stack members is OK (meaning no fan fail - or with redundant fan support - only 1 fan fail and redundant fan active

Example 2 - The following example displays the power status of a device or a stack.

switchxxxxxx> show environment power

Internal power supply Active.

Example 3 - The following example displays the general fan status of a device or a stack.

switchxxxxxx> show environment fan

fans OK

#EDITOR: The fan status is OK if the fan sensors status in ALL the stack members is OK

Example 4 - The following example displays the temperature status of a device or a stack.

switchxxxxxx> show environment temperature status

TEMPERATURE level is Warning

Example 5 - The following example displays the detailed environment status of a stack.

switchxxxxxx> show environment stack

<table>
<thead>
<tr>
<th>Unit</th>
<th>fan Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>OK</td>
</tr>
<tr>
<td>2</td>
<td>Failure</td>
</tr>
<tr>
<td>3</td>
<td>Read fan fail</td>
</tr>
<tr>
<td>4</td>
<td>NA</td>
</tr>
</tbody>
</table>

#EDITOR: * fan Direction column will be printed only in SKUs which support this feature, or in a stack when one of the units might support this feature.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Sensor Status</th>
<th>Temperature Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td>OK</td>
<td>warning</td>
</tr>
<tr>
<td>2</td>
<td>Failure</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>
show inventory

To display product inventory list, use the **show inventory** User EXEC mode command.

Syntax

```
show inventory [entity]
```

Parameters

- **entity**—Specifies the entity to be displayed. It can be a number (1 - 4) for a specific unit number in a stack, or an interface (Ethernet) name.

Command Mode

User EXEC mode

User Guidelines

Use the **show inventory** command to retrieve and display inventory information about the device, unit in stack, and connected entities such as SFPs.

In case no entity is specified the command will display information for all units in stack and all connected entities.

If the specified entity is an interface (Ethernet) name, and an SFP is not inserted into the port - Only the NAME & DESCR fields will be displayed, and DESCR will be “No SFP Inserted”.

Examples

Example 1 - The following example displays all the entities in a standalone system.

```
switchxxxxx> show inventory
NAME: "1", DESCR: "48-Port Gigabit with 4-Port 10-Gigabit Managed Switch"
PID: xx350-4x-K9, VID: V01, SN: 123456789
```

Example 2 - The following example displays a specific entity in a standalone system.

```
switchxxxxx> show inventory gigabitethernet1/0/49
NAME: "GigabitEthernet1/0/49", DESCR: "1000M base-LX Mini-GBIC SFP Transceiver"
PID: MGBLX1,VID: V01, SN: AGC1525UR7G
```

Example 3 - The following example displays information for specific entity - where VID information cannot be read from SFP.

```
switchxxxxx> show inventory gi1/0/1
NAME: "gi1/0/1", DESCR: "SFP-1000Base-LX"
PID: SFP-1000-LX,VID: Information Unavailable , SN: 613bbgr8
```

Example 4 - The following example displays information for specific interface - where SFP is not inserted into the interface.

```
switchxxxxx> show inventory gi1/0/2
NAME: "gi1/0/2", DESCR: "SFP not inserted"
```

Example 5 - The following example displays all the entities in a stacking system with two units.

```
switchxxxxx> show inventory
NAME: "2", DESCR: "48-Port Gigabit with 4-Port 10-Gigabit Managed Switch"
```
Example 6- The following example displays information for unit 1 of the stack.

switchxxxxxx> show inventory 1
NAME: "1" DESCR: "48-Port Gigabit with 4-Port 10-Gigabit Managed Switch"
PID: xx350-4x-K9 VID: V02 SN: 402
show reload

To display whether there is a pending reload for status of the device, use the **show reload** Privileged EXEC mode command.

Syntax

show reload

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

User Guidelines

You can use this command to display a pending software reload. To cancel a pending reload, use this command with the `cancel` parameter.

Example

The following example displays that reboot is scheduled for 00:00 on Saturday, April-20.

```
switchxxxxx> show reload
Reload scheduled for 00:00:00 UTC Sat April 20 (in 3 hours and 12 minutes)
```
show sessions

To display open Telnet sessions, use the `show sessions` User EXEC mode command.

Syntax

```
show sessions
```

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

User EXEC mode

User Guidelines

The `show sessions` command displays Telnet sessions to remote hosts opened by the current Telnet session to the local device. It does not display Telnet sessions to remote hosts opened by other Telnet sessions to the local device.

Example

The following example displays open Telnet sessions.

```
switchxxxxxx> show sessions

<table>
<thead>
<tr>
<th>Connection</th>
<th>Host</th>
<th>Address</th>
<th>Port</th>
<th>Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remote router</td>
<td>172.16.1.1</td>
<td>23</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>172.16.1.2</td>
<td>23</td>
<td>8</td>
</tr>
</tbody>
</table>
```

The following table describes significant fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>The connection number.</td>
</tr>
<tr>
<td>Host</td>
<td>The remote host to which the device is connected through a Telnet session.</td>
</tr>
<tr>
<td>Address</td>
<td>The remote host IP address.</td>
</tr>
<tr>
<td>Port</td>
<td>The Telnet TCP port number.</td>
</tr>
<tr>
<td>Byte</td>
<td>The number of unread bytes for the user to see on the connection.</td>
</tr>
</tbody>
</table>
show system

Use the `show system` User EXEC mode command to display system information.

Syntax

```
show system [unit unit-id]
```

Parameters

- `unit-id`—Specifies the unit number. (Range: 1 – 4)

Command Mode

User EXEC mode

User Guidelines

Use the `show system` command to display system information.

- The **System MAC address** output displays device base MAC address (not configurable by user).
- The **System Object ID** output displays the unique System Object ID (not configurable by user).
- The `fan` output displays, per each unit, the device fan(s) status summary. The value of `fail` indicates that one or more of the fans is not functioning properly. To view specific status per each fan in device use the command `show system fans`, on page 1348.
- The `sensor` and `temperature` output displays, per each unit, the temperature level and general status of all sensors. The value of `fail` for sensors indicates one or more sensors are not functioning properly. To view per sensor status, temperature read and threshold levels, use command `show system sensors`, on page 1350.

Example 1: The following example displays system information of a stack.

```
switchxxxxxx# show system
System Description: CBS350-48P-4X
System Up Time (days,hour:min:sec): 03,02:27:46
System Contact: 
System Name: switch151400
System Location: 
System MAC Address: 00:24:ab:15:14:00
System Object ID: 1.3.6.1.4.1.9.6.1.1006.48.5
Unit Type
---- ----------------- 
1 CBS350-48P-4X
2 CBS350-48P-4X
Unit Fans Status
---- ----------- 
1 OK 
2 fail
Unit Sensor Status Temperature Level
---- --------------------- ------------------------- 
1 OK Warning 
2 Fail Warning
```

Example 2: The following examples displays system information for unit 2 in a stack.

```
switchxxxxxx# show system unit 2
System Description: xxxx
System Up Time (days,hour:min:sec): 08,23:03:46
```
System Contact:
System Name:
System Location:
System MAC Address: 00:99:88:66:33:33
System Object ID: 1.3.6.1.4.1.674.10895.3031
Fans Status: OK

#Editor: For systems with no temperature sensors, the temperature in the following line will be blank and the Status will be N/A

<table>
<thead>
<tr>
<th>Unit</th>
<th>Sensor Status</th>
<th>Temperature Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Fail</td>
<td>Critical</td>
</tr>
</tbody>
</table>
show system languages

To display the list of supported languages, use the `show system languages` User EXEC mode command.

Syntax

```
show system languages
```

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

User EXEC mode

Example

The following example displays the languages configured on the device. Number of Sections indicates the number of languages permitted on the device.

```
switchxxxxxx> show system languages
Language Name    Unicode Name    Code
---------------    --------------    -----
    English        English        en-US
    Japanese        µЂµ¡µ¬€¬¬        ja-JP
```
show system tcam utilization

To display the Ternary Content Addressable Memory (TCAM) utilization, use the show system tcam utilization EXEC mode command.

Syntax

```
show system tcam utilization[unit unit-id]
```

Parameters

`unit-id`—(Optional) Specifies the unit number. (Range: 1–4)

Default Usage

None

Command Mode

User EXEC mode

Example

The following example displays TCAM utilization information.

```
switchxxxxxx> show system tcam utilization
```

<table>
<thead>
<tr>
<th>Unit</th>
<th>TCAM utilization [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>57</td>
</tr>
</tbody>
</table>
show services tcp-udp

To display information about the active TCP and UDP services, use the `show services tcp-udp` Privileged EXEC mode command.

Syntax

`show services tcp-udp`

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

User Guidelines

The output does not show sessions where the device is a TCP/UDP client.

Examples

```
switchxxxxxx> show services tcp-udp
Type Local IP Address Remote IP address Service Name State
----- ----------------- ------------------- ------------ -----------
TCP   All:22          SSH              LISTEN
TCP   All:23          Telnet           LISTEN
TCP   All:80          HTTP             LISTEN
TCP   All:443         HTTPS            LISTEN
TCP   172.16.1.1:23   172.16.1.18:8789 Telnet           ESTABLISHED
TCP6  All-23         Telnet           LISTEN
TCP6  fe80::200:b0ff:fe00:0-23   Telnet
UDP   All:161         SNMP             
UDP6  All-161         SNMP             
```
show tech-support

To display system and configuration information that can be provided to the Technical Assistance Center when reporting a problem, use the `show tech-support` User EXEC mode command.

Syntax

`show tech-support [config | memory]`

Parameters

- **memory**—(Optional) Displays memory and processor state data.
- **config**—(Optional) Displays switch configuration within the CLI commands supported on the device.

Default Configuration

By default, this command displays the output of technical-support-related show commands. Use keywords to specify the type of information to be displayed. If you do not specify any parameters, the system displays all configuration and memory data.

Command Types

Switch command.

Command Mode

User EXEC mode

User Guidelines

Caution: Avoid running multiple `show tech-support` commands on a switch or multiple switches on the network segment. Doing so may cause starvation of some time sensitive protocols, like STP.

The `show tech-support` command may time out if the configuration file output takes longer to display than the configured session time out time. If this happens, enter a `set logout timeout` value of 0 to disable automatic disconnection of idle sessions or enter a longer timeout value.

The `show tech-support` command output is continuous, meaning that it does not display one screen at a time. To interrupt the output, press Esc.

If the user specifies the `memory` keyword, the `show tech-support` command displays the following output:

- Flash info (dir if exists, or flash mapping)
- Output of command `show bootvar`
- Buffers info (like `print os buff`)
- Memory info (like `print os mem`)
- Proc info (like print OS tasks)
- Versions of software components
• Output of command `show cpu utilization`
show system fans

To view the status of the fans on the device, use the `show system fans` User EXEC mode command.

Syntax

`show system fans [unit-id]`

Parameters

`unit-id`—(Optional) Specifies the unit number to be reloaded. (Range: 1 – 4). If unspecified, displays information for all the units.

Command Mode

User EXEC mode

User Guidelines

Use the `show system fans` command to display detailed information per fan. The following information will be displayed:

- Per fan actual RPM.
- Per fan status - Possible values are: OK, fail; read fail;

Examples

Display for units whose hardware supports variable fan speed.

```
switchxxxxxx> show system fans
```

<table>
<thead>
<tr>
<th>Unit ID: 1</th>
<th>Unit/fan ID</th>
<th>Fan Actual Speed (RPM)</th>
<th>Fan Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/1</td>
<td>6000</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>NA</td>
<td>Fail</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>NA</td>
<td>Read fail</td>
</tr>
<tr>
<td></td>
<td>1/4</td>
<td>4000</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit ID: 2</th>
<th>Unit/fan ID</th>
<th>Fan Actual Speed (RPM)</th>
<th>Fan Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/1</td>
<td>8000</td>
<td>OK</td>
</tr>
</tbody>
</table>
Display of Fan Status

<table>
<thead>
<tr>
<th>Unit ID</th>
<th>Fan Status</th>
<th>Fan Actual Speed (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2</td>
<td>OK</td>
<td>8000</td>
</tr>
<tr>
<td>2/3</td>
<td>OK</td>
<td>8000</td>
</tr>
</tbody>
</table>

Fan Status for Unit 3

<table>
<thead>
<tr>
<th>Unit/fan ID</th>
<th>Fan Actual Speed (RPM)</th>
<th>Fan Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1</td>
<td>5000</td>
<td>OK</td>
</tr>
<tr>
<td>3/2</td>
<td>4500</td>
<td>OK</td>
</tr>
<tr>
<td>3/3</td>
<td>5000</td>
<td>OK</td>
</tr>
</tbody>
</table>

Display for devices that do not support display of fan speed:

```
switchxxxxxxx> show system fans
```

Fan Status for Unit 1

<table>
<thead>
<tr>
<th>Unit/fan ID</th>
<th>Fan Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>OK</td>
</tr>
<tr>
<td>1/2</td>
<td>Fail</td>
</tr>
<tr>
<td>1/3</td>
<td>Read fail</td>
</tr>
<tr>
<td>1/4</td>
<td>OK</td>
</tr>
</tbody>
</table>

Fan Status for Unit 2

<table>
<thead>
<tr>
<th>Unit/fan ID</th>
<th>Fan Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>OK</td>
</tr>
<tr>
<td>2/2</td>
<td>OK</td>
</tr>
<tr>
<td>2/3</td>
<td>OK</td>
</tr>
</tbody>
</table>

Fan Status for Unit 3

<table>
<thead>
<tr>
<th>Unit/fan ID</th>
<th>Fan Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1</td>
<td>OK</td>
</tr>
<tr>
<td>3/2</td>
<td>OK</td>
</tr>
<tr>
<td>3/3</td>
<td>OK</td>
</tr>
</tbody>
</table>
show system sensors

To view the temperature sensor status, use the `show system sensors` User EXEC mode command.

Syntax

`show system sensors`

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

User EXEC mode

User Guidelines

Use the `show system sensors` command to display detailed sensor information, per each device sensor. Information is displayed per each unit in the stack.

The following information will be displayed:

- Sensor status.
- Sensor temperature reading
- Warning and Critical Alarm thresholds (temperature in Celsius)
- Location of specific sensor. Possible locations are: PP (Packet processor sensor); PCB (Sensor located on the Printed board circuit); PHY (PHY sensor); POE (Poe chip sensor).

Examples

Display for Stack systems with multiple sensor statuses

```
switchxxxxxx> show system sensors

<table>
<thead>
<tr>
<th>Unit/ Sensor</th>
<th>Sensor status</th>
<th>Temperature (C)</th>
<th>Warning Alarm Temp (C)</th>
<th>Critical Alarm Temp (C)</th>
<th>Sensor Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>OK</td>
<td>44</td>
<td>50</td>
<td>65</td>
<td>PCB</td>
</tr>
<tr>
<td>1/2</td>
<td>Failure</td>
<td>NA</td>
<td>65</td>
<td>75</td>
<td>PP</td>
</tr>
<tr>
<td>2/1</td>
<td>OK</td>
<td>65</td>
<td>60</td>
<td>70</td>
<td>PHY</td>
</tr>
</tbody>
</table>
```
show system id

To display the system identity information, use the show system id User EXEC mode command.

Syntax

show system id [unit unit-id]

Parameters

unit unit-id—(Optional) Unit number or all. If unspecified, defaults to all. (Range: 1 – 4)

Command Mode

User EXEC mode

Example

The following example displays the system identity information.

switchxxxxxx> show system id
serial number 114
show ports leds configuration

To display whether the LEDs of the ports are enabled or disabled, use the show port leds configuration User EXEC mode command.

Syntax

show ports leds configuration

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

Example 1: The following example displays the status of the port’s LEDs when they are turned on.

`sxxxxxx> show ports leds configuration
Port leds are not disabled
x

Example 2: The following example displays the status of the port LEDs when they are turned off.

`sxxxxxx> show port leds configuration
Port leds are disabled
show users

To display information about the active users, use the **show users** User EXEC mode command.

Syntax

```
show users
```

Parameters

This command has no arguments or keywords.

Default Usage

None

Command Mode

User EXEC mode

Example

The following example displays information about the active users.

```
switchxxxxxx> show users

<table>
<thead>
<tr>
<th>Username</th>
<th>Protocol</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>Serial</td>
<td>172.16.0.1</td>
</tr>
<tr>
<td>John</td>
<td>SSH</td>
<td>172.16.0.8</td>
</tr>
<tr>
<td>Robert</td>
<td>HTTP</td>
<td>172.16.1.7</td>
</tr>
<tr>
<td>Betty</td>
<td>Telnet</td>
<td>172.16.1.6</td>
</tr>
<tr>
<td>Sam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
show hardware version

To display hardware version information, use the `show hardware version` User EXEC mode command.

Syntax

```
show hardware version [unit unit-id]
```

Parameters

- `unit`—(Optional) Specifies the unit number. (Range: 1 – 4)

Default Usage

Show hardware version on all units if no unit is specified.

Command Mode

User EXEC mode

Example

The following example displays hardware version information.

```
switchxxxxxx> show hardware version
Unit   HW Version
------ ------------
1       1.0.0
2       1.0.0.
```
show hardware components

To display device hardware component information, use the `show hardware components` Privileged EXEC mode command.

Syntax

```
show hardware components [unit unit-id]
```

Parameters

- `unit`—(Optional) Specifies the unit number. (Range: 1 – 4)

Default Usage

Shows hardware component of all units if no unit is specified.

Command Mode

Privileged EXEC mode

User Guidelines

The `show hardware components` command displays information for device components such as packet processor(s), CPU, flash, PHYs and other hardware components.

The information displayed per each component depends on the information available for that component. Example for information that is displayed: vendor name, manufacturing part number (MPN), and HW reversion.

Examples

The following example displays information on device hardware components for all units in the stack:

```
switchxxxxxx# show hardware components

MAC info:

<table>
<thead>
<tr>
<th>Unit ID/MAC ID</th>
<th>Vendor</th>
<th>MPN</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>Marvell</td>
<td>98DX3236</td>
<td>A0</td>
</tr>
<tr>
<td>1/2</td>
<td>Marvell</td>
<td>98DX3236</td>
<td>A0</td>
</tr>
<tr>
<td>2/1</td>
<td>Marvell</td>
<td>98DX3336</td>
<td>A0</td>
</tr>
</tbody>
</table>

CPU info:

<table>
<thead>
<tr>
<th>Unit ID</th>
<th>Vendor</th>
<th>MPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marvell</td>
<td>88F6820 (Armada ARMv7)</td>
</tr>
<tr>
<td>2</td>
<td>Marvell</td>
<td>MV78230</td>
</tr>
</tbody>
</table>
```
PHY info:

<table>
<thead>
<tr>
<th>Unit ID/PHY ID</th>
<th>Vendor</th>
<th>MPN</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>Marvell</td>
<td>88E1680</td>
<td>A0</td>
</tr>
<tr>
<td>1/2</td>
<td>Marvell</td>
<td>88E3222</td>
<td>NS</td>
</tr>
<tr>
<td>2/1</td>
<td>Marvell</td>
<td>88E3680</td>
<td>A0</td>
</tr>
</tbody>
</table>

Flash info:

<table>
<thead>
<tr>
<th>Unit ID</th>
<th>Vendor</th>
<th>MPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Micron</td>
<td>JS28F640J3D-75 (65536 Kbytes)</td>
</tr>
<tr>
<td>2</td>
<td>MXIC Macronix</td>
<td>MX30LF2G18AC-TI (65536 Kbytes)</td>
</tr>
</tbody>
</table>

The following example displays unit 3 hardware components information:

```plaintext
switchxxxxxx# show hardware components

MAC info for unit 3:

<table>
<thead>
<tr>
<th>MAC ID</th>
<th>Vendor</th>
<th>MPN</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marvell</td>
<td>98DX3236</td>
<td>A0</td>
</tr>
<tr>
<td>2</td>
<td>Marvell</td>
<td>98DX3236</td>
<td>A0</td>
</tr>
</tbody>
</table>

CPU info for unit 3:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>MPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marvell</td>
<td>88F6820 (Armada ARMv7)</td>
</tr>
</tbody>
</table>

PHY info for unit 3:

<table>
<thead>
<tr>
<th>PHY ID</th>
<th>Vendor</th>
<th>MPN</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marvell</td>
<td>88E1680</td>
<td>A0</td>
</tr>
<tr>
<td>2</td>
<td>Marvell</td>
<td>88E3222</td>
<td>NS</td>
</tr>
</tbody>
</table>

Flash info for unit 3:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>MPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micron</td>
<td>JS28F640J3D-75 (65536 Kbytes)</td>
</tr>
<tr>
<td>MXIC Macronix</td>
<td>MX30LF2G18AC-TI (65536 Kbytes)</td>
</tr>
</tbody>
</table>
system light

To light the networks port LEDs of a device, or of a specific unit in stack, use the system light EXEC mode command.

Syntax

```
system light [unit unit-id] [duration seconds]
```

```
system light stop
```

Parameters

- **unit-id**—Specify unit number or if left blank, all will light up.
- **duration seconds**—The number of seconds to light the LEDs. If unspecified, defaults to 60 seconds. (Range: 5–300)
- **stop**—Stop lighting the LEDs.

Command Mode

User EXEC mode

Example

The following example lights the system LED for 6 seconds.

```
switchxxxxxx> system light duration 6
```
system recovery

To set the system to automatically recover from temperature that reached the critical threshold, use the `system recovery` Global Configuration mode command.

To return to disable automatic recovery, use the `no` form of the command.

**Syntax**

```
system recovery
no system recovery
```

**Parameters**

This command has no arguments or keywords.

**Default Configuration**

System recovery is enabled by default.

**Command Mode**

Global Configuration mode

**Example**

```
switchxxxxx(config)# no system recovery
```
TACACS+ Commands

This chapter contains the following sections:

- tacacs-server host, on page 1360
- tacacs-server host source-interface, on page 1362
- tacacs-server host source-interface-ipv6, on page 1363
- tacacs-server key, on page 1364
- tacacs-server timeout, on page 1365
- show tacacs, on page 1366
- show tacacs key, on page 1367
**tacacs-server host**

To specify a TACACS+ host, use the `tacacs-server host` Global Configuration mode command. To delete the specified TACACS+ host, use the `no` form of this command.

**Syntax**

```
tacacs-server host {ip-address | hostname} [single-connection] [port port-number] [timeout timeout] [key key-string] [priority priority]
```

```
tacacs-server host {ip-address | hostname} [single-connection] [port port-number] [timeout timeout] [key encrypted-key-string] [priority priority]
```

```
no tacacs-server host {ip-address | hostname}
```

**Parameters**

- **host** ip-address—Specifies the TACACS+ server host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.
- **host** hostname—Specifies the TACACS+ server host name. (Length: 1-158 characters. Maximum label length of each part of the host name: 63 characters)
- **single-connection**—(Optional) Specifies that a single open connection is maintained between the device and the daemon, instead of the device opening and closing a TCP connection to the daemon each time it communicates.
- **port** port-number—(Optional) Specifies the TACACS server TCP port number. If the port number is 0, the host is not used for authentication. (Range: 0-65535)
- **timeout** timeout—(Optional) Specifies the timeout value in seconds. (Range: 1-30)
- **key** key-string—(Optional) Specifies the authentication and encryption key for all TACACS+ communications between the device and the TACACS+ server. This key must match the encryption used on the TACACS+ daemon. To specify an empty string, enter "". (Length: 0-128 characters). If this parameter is omitted, the globally-defined key will be used.
- **key encrypted-key-string**—(Optional) Same as key-string, but the key is in encrypted format.
- **priority** priority—(Optional) Specifies the order in which the TACACS+ servers are used, where 0 is the highest priority. (Range: 0-65535)

**Default Configuration**

No TACACS+ host is specified.

The default port-number is 1812.

If timeout is not specified, the global value (set in the `tacacs-server timeout` command) is used.

If key-string is not specified, the global value (set in the `tacacs-server key` command) is used.

**Command Mode**

Global Configuration mode
User Guidelines
Multiple `tacacs-server host` commands can be used to specify multiple hosts.

Example
The following example specifies a TACACS+ host.

```
switchxxxxxx(config)# tacacs-server host 172.16.1.1
```
**tacacs-server host source-interface**

To specify the source interface which IPv4 address will be used as the Source IPv4 address for communication with IPv4 TACACS+ servers, use the `tacacs-server host source-interface` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

**Syntax**

```
tacacs-server host source-interface interface-id
no tacacs-server host source-interface
```

**Parameters**

- `interface-id`—Specifies the source interface.

**Default Configuration**

The source IPv4 address is the IPv4 address defined on the outgoing interface and belonging to next hop IPv4 subnet.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the source interface is the outgoing interface, the interface IP address belonging to next hop IPv4 subnet is applied.

If the source interface is not the outgoing interface, the minimal IPv4 address defined on the source interface is applied.

If there is no available IPv4 source address, a SYSLOG message is issued when attempting to communicate with an IPv4 TACACS+ server.

OOB cannot be defined as a source interface.

**Example**

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# tacacs-server host source-interface vlan 100
```
**tacacs-server host source-interface-ipv6**

To specify the source interface whose IPv6 address will be used as the Source IPv6 address for communication with IPv6 TACACS+ servers, use the `tacacs-server host source-interface-ipv6` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

**Syntax**

```
tacacs-server host source-interface-ipv6 interface-id
no tacacs-server host source-interface-ipv6
```

**Parameters**

- `interface-id`—Specifies the source interface.

**Default Configuration**

The IPv6 source address is the IPv6 address defined on the outgoing interface and selected in accordance with RFC6724.

**Command Mode**

Global Configuration mode

**User Guidelines**

If the source interface is the outgoing interface, the source IPv6 address is an IPv6 address defined on the interfaces and selected in accordance with RFC 6724.

If the source interface is not the outgoing interface, the source IPv6 address is the minimal IPv6 address defined on the source interface and matched to the scope of the destination IPv6 address is applied.

If there is no available source IPv6 address, a SYSLOG message is issued when attempting to communicate with an IPv6 TACACS+ server.

**Example**

The following example configures the VLAN 10 as the source interface.

```
switchxxxxxx(config)# tacacs-server host source-interface-ipv6 vlan 100
```
**tacacs-server key**

To set the authentication encryption key used for all TACACS+ communications between the device and the TACACS+ daemon, use the `tacacs-server key` Global Configuration mode command. To disable the key, use the `no` form of this command.

**Syntax**

```
tacacs-server key key-string
encrypted tacacs-server key encrypted-key-string
no tacacs-server key
```

**Parameters**

- `key-string` — Specifies the authentication and encryption key for all TACACS+ communications between the device and the TACACS+ server. This key must match the encryption used on the TACACS+ daemon. (Length: 0–128 characters)

- `encrypted-key-string` — Same as key-string, but the key is in encrypted format.

**Default Configuration**

The default key is an empty string.

**Command Mode**

Global Configuration mode

**Example**

The following example sets Enterprise as the authentication key for all TACACS+ servers.

```
switchxxxxxx(config)# tacacs-server key enterprise
```
The following example sets the timeout value to 30 for all TACACS+ servers.

```
switchxxxxx(config)# tacacs-server timeout 30
```
**show tacacs**

To display configuration and statistical information for a TACACS+ server, use the `show tacacs` Privileged EXEC mode command.

**Syntax**

```
show tacacs [ip-address]
```

**Parameters**

- `ip-address`—Specifies the TACACS+ server name, IPv4 or IPv6 address.

**Default Configuration**

If `ip-address` is not specified, information for all TACACS+ servers is displayed.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays configuration and statistical information for all TACACS+ servers:

```
switchxxxxxx# show tacacs
IP address Status Port Single Time Priority
Connection Out
---------- --------- ---- --------- ------ --------
172.16.1.1 Connected 49 No Global 1
Global values

Time Out: 3
Source IPv4 interface: vlan 120
Source IPv6 interface: vlan 10
```
show tacacs key

To display the configured key of the TACACS+ server, use the show tacacs key Privileged EXEC mode command.

**Syntax**

```
show tacacs key [ip-address]
```

**Parameters**

- `ip-address` — Specifies the TACACS+ server name or IP address.

**Default Configuration**

If `ip-address` is not specified, information for all TACACS+ servers is displayed.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays configuration and statistical information for all TACACS+ servers.

```
switchxxxxxx# show tacacs key

<table>
<thead>
<tr>
<th>IP address</th>
<th>Key (Encrypted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>1238af77aaca17568f1298cced165fec</td>
</tr>
<tr>
<td>172.16.1.2</td>
<td>1238af77aaca17568f12988601fcabed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Global key (Encrypted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1238af77aaca17568f1298bc5476ddad</td>
</tr>
</tbody>
</table>
```
show tacacs key
Telnet, SSH and Slogin Commands

This chapter contains the following sections:

- `ip telnet server`, on page 1370
- `ip ssh server`, on page 1371
- `ip ssh port`, on page 1372
- `ip ssh password-auth`, on page 1373
- `ip ssh pubkey-auth`, on page 1374
- `crypto key pubkey-chain ssh`, on page 1376
- `user-key`, on page 1377
- `key-string`, on page 1378
- `show ip ssh`, on page 1380
- `show crypto key pubkey-chain ssh`, on page 1381
ip telnet server

Use the **ip telnet server** Global Configuration mode command to enable the device as a Telnet server that accepts connection requests from remote Telnet clients. Remote Telnet clients can configure the device through the Telnet connections.

Use the no form of this command to disable the Telnet server functionality on the device.

**Syntax**

```
ip telnet server
no ip telnet server
```

**Default Configuration**

Disabled

**Command Mode**

Global Configuration mode

**User Guidelines**

The device can be enabled to accept connection requests from both remote SSH and Telnet clients. It is recommended that the remote client connects to the device using SSH (as opposed to Telnet), since SSH is a secure protocol and Telnet is not. To enable the device to be an SSH server, use the **ip ssh server** command.

**Example**

The following example enables the device to be configured from a Telnet server.

```
switchxxxxxx(config)# ip telnet server
```
ip ssh server

The **ip ssh server** Global Configuration mode command enables the device to be an SSH server and so to accept connection requests from remote SSH clients. Remote SSH clients can manage the device through the SSH connection.

Use the **no** form of this command to disable the SSH server functionality from the device.

**Syntax**

ip ssh server

no ip ssh server

**Default Configuration**

The SSH server functionality is disabled by default.

**Command Mode**

Global Configuration mode

**User Guidelines**

The device, as an SSH server, generates the encryption keys automatically.

To generate new SSH server keys, use the **crypto key generate dsa** and **crypto key generate rsa** commands.

**Example**

The following example enables configuring the device to be an SSH server.

```
switchxxxxxx(config)# ip ssh server
```
**ip ssh port**

The **ip ssh port** Global Configuration mode command specifies the TCP port used by the SSH server. Use the **no** form of this command to restore the default configuration.

**Syntax**

```plaintext
ip ssh port port-number
no ip ssh port
```

**Parameters**

- **port-number**—Specifies the TCP port number to be used by the SSH server. (Range: 1–59999).

**Default Configuration**

The default TCP port number is 22.

**Command Mode**

Global Configuration mode

**Example**

The following example specifies that TCP port number 808 is used by the SSH server.

```
switchxxxxxx(config)# ip ssh port 808
```
ip ssh password-auth

Use the **ip ssh password-auth** Global Configuration mode command to enable password authentication of incoming SSH sessions.

Use the **no** form of this command to disable this function.

**Syntax**

ip ssh password-auth

no ip ssh password-auth

**Default Configuration**

Password authentication of incoming SSH sessions is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command enables password key authentication by a local SSH server of remote SSH clients.

The local SSH server advertises all enabled SSH authentication methods and remote SSH clients are responsible for choosing one of them.

After a remote SSH client is successfully authenticated by public key, the client must still be AAA-authenticated to gain management access to the device.

If no SSH authentication method is enabled, remote SSH clients must still be AAA-authenticated before being granted management access to the device.

**Example**

The following example enables password authentication of the SSH client.

```
switchxxxxxx(config)# ip ssh password-auth
```
ip ssh pubkey-auth

Use the `ip ssh pubkey-auth` Global Configuration mode command to enable public key authentication of incoming SSH sessions.

Use the `no` form of this command to disable this function.

**Syntax**

```
ip ssh pubkey-auth [auto-login]
no ip ssh pubkey-auth
```

**Parameters**

- `auto-login`—Specifies that the device management AAA authentication (CLI login) is not needed. By default, the login is required after the SSH authentication.

**Default Configuration**

Public key authentication of incoming SSH sessions is disabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

This command enables public key authentication by a local SSH server of remote SSH clients.

The local SSH server advertises all enabled SSH authentication methods and remote SSH clients are responsible for choosing one of them.

After a remote SSH client is successfully authenticated by public key, the client must still be AAA-authenticated to gain management access to the device, except if the auto-login parameter was specified.

If no SSH authentication method is enabled, remote SSH clients must still be AAA-authenticated before being granted management access to the device.

If the `auto-login` keyword is specified for SSH authentication by public key management access is granted if SSH authentication succeeds and the name of SSH used is found in the local user database. The device management AAA authentication is transparent to the user. If the user name is not in the local user database, then the user receives a warning message, and the user will need to pass the device management AAA authentication independently of the SSH authentication.

If the `auto-login` keyword is not specified, management access is granted only if the user engages and passes both SSH authentication and device management AAA authentication independently. If no SSH authentication method is enabled management access is granted only if the user is AAA authenticated by the device management. No SSH authentication method means SSH is enabled and neither SSH authentication by public key nor password is enabled.

**Example**

The following example enables authentication of the SSH client.
switchxxxxx(config)# ip ssh pubkey-auth
crypto key pubkey-chain ssh

The **crypto key pubkey-chain ssh** Global Configuration mode command enters the SSH Public Key-chain Configuration mode. This mode is used to manually specify device public keys, such as SSH client public keys.

**Syntax**

crypto key pubkey-chain ssh

**Default Configuration**

Keys do not exist.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use this command when you want to manually specify SSH client’s public keys.

**Example**

The following example enters the SSH Public Key-chain Configuration mode and manually configures the RSA key pair for SSH public key-chain to the user ‘bob’.

```
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-keychain)# user-key bob rsa
switchxxxxxx(config-keychain-key)# key-string
AAAAB3NzaC1yc2EAAAADAAAQABAAAQCVtNwFWl
Al4kpq1w96BRonZQXjH6cql6rMlQ+
ZXkzSSkVHG+QusIZ/76IImFT34v7u7ChFAE+
Vu4GRfSpinQVvV35LgJk67IGU/zfwollg
kTwm175QR9gHujS6KwGNg/9Nh3ub8gDj7lS
mu5N/Wd051DX2IEQWu081icg1k02LYciz
+Z4TrEUI/9FJxwPiOQ1c+KBXuR0juNg5nFYsY
0ZckON/W9a/tnkm1shRE7Dj71+w3fiNIOA
6w9o44t6+AINEIBCCCA4YtcF6zMzaT1wefWwX6f+
Rmt5nheqATN/4oJfcee166DqVX1gWmN
zN4R4YDvS29U1DnwCAG8Qh

Cisco Business Switches 350 Series CLI Guide
user-key

The **user-key** SSH Public Key-string Configuration mode command associates a username with a manually-configured SSH public key.

Use the **no user-key** command to remove an SSH user and the associated public key.

Syntax

```
user-key username {rsa | dsa}
no user-key username
```

Parameters

- **username**—Specifies the remote SSH client username. (Length: 1–48 characters)
- **rsa**—Specifies that the RSA key pair is manually configured.
- **dsa**—Specifies that the DSA key pair is manually configured.

Default Configuration

No SSH public keys exist.

Command Mode

SSH Public Key-string Configuration mode

User Guidelines

After entering this command, the existing key, if any, associated with the user will be deleted. You must follow this command with the key-string command to configure the key to the user.

Example

The following example enables manually configuring an SSH public key for SSH public key-chain bob.

```
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-keychain)# user-key bob rsa
switchxxxxxx(config-keychain-key)# key-string row
AAAAB3NzaC1yc2EAAAADAQABAAABAQCvTnRwPWl
```

Telnet, SSH and Slogin Commands
The **key-string** SSH Public Key-string Configuration mode command manually specifies an SSH public key.

Syntax

```
key-string /row key-string]
```

Parameters

- **row**—Specifies the SSH public key row by row. The maximum length of a row is 160 characters.
- **key-string**—Specifies the key in UU-encoded DER format. UU-encoded DER format is the same format as in the authorized_keys file used by OpenSSH.

Default Configuration

Keys do not exist.

Command Mode

SSH Public Key-string Configuration mode

User Guidelines

Use the **key-string** SSH Public Key-string Configuration mode command without the **row** parameter to specify which SSH public key is to be interactively configured next. Enter a row with no characters to complete the command.

Use the **key-string row** SSH Public Key-string Configuration mode command to specify the SSH public key, row by row. Each row must begin with a **key-string row** command.

The UU-encoded DER format is the same format as in the authorized_keys file used by OpenSSH.

Example

The following example enters public key strings for SSH public key client ‘bob’.

```
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-keychain)# user-key bob rsa
switchxxxxxx(config-keychain)# key-string
AAAAB3NzaC1yc2EAAAADAQABAAABAQCvTnRwPWl4kpqf2w9GtRoNZc3xjHcqlK6eM19Q+
2NxfZskvHG+QusIZ/761LmFT34v7u7ChFAE+
Vu4GtPswQ0wV35LqJjK671O0/s2f01lq
kTm175QR9gNu35bWvQ2QXg5h3ub8gDjTSq
mu5n/Wd05iDX2IExQWu081cglk02LYciz
+Z4TrEU/9FJxwP1VQ0q1c+KXv0R0jG5h5nFyoY
0ZCk0N/W9a/tnkm1shRE7d71+1+w3fNIOA
6w0o4t6+AINEICBCCA4Yc6zMa3T1wefWwX6f+
Rmt5nhqdAtN/40Jfceu66DqVX1gWmN
zNR4YDVgS2g01NwCACQq
switchxxxxxx(config)# crypto key pubkey-chain ssh
switchxxxxxx(config-keychain)# user-key bob rsa
```
switchxxxxx(config-keychain-key)# key-string row AAAAB3Nza
switchxxxxx(config-keychain-key)# key-string row C1yc2
show ip ssh

The show ip ssh Privileged EXEC mode command displays the SSH server configuration.

Syntax
show ip ssh

Command Mode
Privileged EXEC mode

Example
The following example displays the SSH server configuration.

```
switchxxxxxx# show ip ssh
SSH server enabled. Port: 22
RSA key was generated.
DSA (DSS) key was generated.
SSH Public Key Authentication is enabled with auto-login.
SSH Password Authentication is enabled.
Active incoming sessions:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>SSH Username</th>
<th>Version</th>
<th>Cipher</th>
<th>Auth Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.0.1</td>
<td>John Brown</td>
<td>1.5</td>
<td>3DES</td>
<td>HMAC-SHA1</td>
</tr>
<tr>
<td>182.20.2.1</td>
<td>Bob Smith</td>
<td>1.5</td>
<td>3DES</td>
<td>Password</td>
</tr>
</tbody>
</table>
```

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The client address</td>
</tr>
<tr>
<td>SSH Username</td>
<td>The user name</td>
</tr>
<tr>
<td>Version</td>
<td>The SSH version number</td>
</tr>
<tr>
<td>Cipher</td>
<td>The encryption type (3DES, Blowfish, RC4)</td>
</tr>
<tr>
<td>Auth Code</td>
<td>The authentication Code (HMAC-MD5, HMAC-SHA1) or Password</td>
</tr>
</tbody>
</table>
show crypto key pubkey-chain ssh

The `show crypto key pubkey-chain ssh` Privileged EXEC mode command displays SSH public keys stored on the device.

Syntax

```
show crypto key pubkey-chain ssh [username username] [fingerprint {bubble-babble | hex}]
```

Parameters

- `username username`—Specifies the remote SSH client username. (Length: 1–48 characters)
- `fingerprint {bubble-babble | hex}`—Specifies the fingerprint display format. The possible values are:
 - `bubble-babble`—Specifies that the fingerprint is displayed in Bubble Babble format.
 - `hex`—Specifies that the fingerprint is displayed in hexadecimal format.

Default Configuration

The default fingerprint format is hexadecimal.

Command Mode

Privileged EXEC mode

Example

The following examples display SSH public keys stored on the device.

```
switchxxxxxx# show crypto key pubkey-chain ssh
Username Fingerprint
----------- ----------------------------------------------------------
switchxxxxxx# show crypto key pubkey-chain ssh username bob
Username Fingerprint
----------- ----------------------------------------------------------
```
show crypto key pubkey-chain ssh
UDLD Commands

This chapter contains the following sections:

- show udld, on page 1384
- udld, on page 1387
- udld message time, on page 1389
- udld port, on page 1390
show udld

To display the administrative and operational Unidirectional Link Detection Protocol (UDLD) status, use the `show udld` command in Privileged EXEC mode.

Syntax

`show udld [interface-id] [neighbors]`

Parameters

- `interface-id`—Interface identifier of an Ethernet port.
- `neighbors`—Displays neighbor information only.

Command Mode

Privileged EXEC mode

User Guidelines

If you do not enter an interface ID value, the administrative and operational UDLD status for all interfaces on which UDLD is enabled are displayed.

Example 1—This example shows how to display the UDLD state for all interfaces. Most of the fields shown in the display are self-explanatory. Those that are not self-explanatory are defined below.

```
switchxxxxxx# show udld
Global UDLD mode: normal
Message Time: 15 sec (default)
Interface gi1/0/1
  Port UDLD mode: aggressive
  Port Current state: Bidirectional
  Number of detected neighbors: 1
  Port Neighbor Table
    Neighbor Device ID: 1234567893
    Neighbor MAC: 00:00:01:22:33:dd
    Neighbor Device name: switch A
    Neighbor Port ID: gi1/2/1
    Neighbor Message Time: 20 sec
    Neighbor Current State: Bidirectional
    Neighbor Expiration Time: 7 sec
  Neighbor Device ID: 1234544893
    Neighbor MAC: 00:00:01:22:33:ff
    Neighbor Device name: switch A
    Neighbor Port ID: gi1/2/1
    Neighbor Message Time: 15 sec
    Neighbor Current State: Undetermined
    Neighbor Expiration Time: 17 sec
Interface gi1/0/2
  Port UDLD mode: normal (default)
  Port Current state: Undetermined
  Number of detected neighbors: 1
  Neighbor Device ID: 1234567753
  Neighbor MAC: 00:00:01:22:33:fe
  Neighbor Device name: switch A
```
Neighbor Port ID: gi1/2/1
Neighbor Message Time: 15 sec
Neighbor Current State: Undetermined
Neighbor Expiration Time: 11 sec
Interface gi1/0/3
Port UDLD mode: disabled
Interface gi1/0/4
Port UDLD mode: normal (default)
Port Current state: shutdown

Field Descriptions:

• **Global UDLD mode**—The global UDLD mode (normal or aggressive) configured by the `udld` command.

• **Message Time**—The message time configured by the `udld message time` command.

• **Port UDLD mode**—The interface UDLD mode (normal or aggressive).

• **Port Current state**—The UDLD operational state: interface UDLD mode (normal or aggressive).
 • **Disabled**—UDLD is disabled on the port by the `udld port disable` command.
 • **Shutdown**—UDLD is enabled on the port and the port operational state is DOWN.
 • **Detection**—UDLD is detecting the link state.
 • **Bidirectional**—The link is bidirectional.
 • **Undetermined**—The link state is undetermined - no UDLD message has been received on the port.

• **Neighbor Device ID**—The device ID of the neighbor.

• **Neighbor MAC**—The MAC address of the neighbor.

• **Neighbor Device Name**—The Device name of the neighbor.

• **Neighbor Port ID**—The device port ID of the neighbor on which the recent UDLD message was sent.

• **Neighbor Message Time**—The message time of the neighbor.

• **Neighbor Current State**—The current state of the neighbor:
 • **Bidirectional**—The UDLD messages received from the neighbor contain the Device ID and Port ID of the switch in the Echo TLV.
 • **Undetermined**—The UDLD messages received from the neighbor do not contain the Device ID and Port ID of the switch in the Echo TLV.

• **Neighbor Expiration Time**—Left time in seconds until the current neighbor state expires.

Example 2—This example shows how to display the UDLD state for one given interface:

```
switchxxxxxx# show udld gi1/0/1
Global UDLD mode: normal
Message Time: 15 sec (default)
Interface gi1/0/1
  Port UDLD mode: aggressive
  Port Current state: Bidirectional
  Number of detected neighbors: 1
  Port Neighbor Table
```
Neighbor Device ID: 1234567893
Neighbor MAC: 00:00:01:22:33:dd
Neighbor Device name: switch A
Neighbor Port ID: gi1/2/1
Neighbor Message Time: 20 sec
Neighbor Current State: Bidirectional
Neighbor Expiration Time: 7 sec
Neighbor Device ID: 1234544893
Neighbor MAC: 00:00:01:22:33:ff
Neighbor Device name: switch A
Neighbor Port ID: gi1/2/1
Neighbor Message Time: 15 sec
Neighbor Current State: Undetermined
Neighbor Expiration Time: 17 sec

Example 3—This example shows how to display neighbor information only:

```
switchxxxxxx# show udld neighbors
Port | Device ID | Port-ID | Device Name | Message | Neighbor | Expiration
-----|-----------|---------|-------------|---------|----------|-----------
      | 1234567893 | gi1/0/1 | SAL0734K5R2 | 15      | Bidirect | 11        
      | 3456750193  | gi1/0/2 | SAL0734K5R3 | 20      | Undetermined | 5
```

Example 4—This example shows how to display neighbor information only for a single interface:

```
switchxxxxxx# show udld gi1/0/1 neighbors
Port | Device ID | Port-ID | Device Name | Message | Neighbor | Expiration
-----|-----------|---------|-------------|---------|----------|-----------
      | 1234567893 | gi1/0/1 | SAL0734K5R2 | 15      | Bidirect | 11
```
udld

Use the udld command in Global Configuration mode to globally enable the UniDirectional Link Detection (UDLD) protocol. To disable UDLD, use the no form of this command.

Syntax
udld aggressive | normal
no udld

Parameters
• aggressive—Enables UDLD in aggressive mode by default on all fiber interfaces.
• normal—Enables UDLD in normal mode by default on all fiber interfaces.

Default Configuration
UDLD is disabled on all fiber interfaces.

Command Mode
Global Configuration mode

User Guidelines
This command affects fiber interfaces only. Use the udld port command in Interface Configuration mode to enable UDLD on other interface types.

Use the no form of this command to disable UDLD on all fiber ports.

The device supports the UDLD protocol specified by RFC 5171.

UDLD supports two modes of operation: normal and aggressive. In the aggressive mode the device shuts down a port if it cannot explicitly detect that the link is bidirectional. In the normal mode the device shuts down an interface if it explicitly detect that the link is unidirectional. A unidirectional link occurs whenever traffic sent by a local device is received by its neighbor but traffic from the neighbor is not received by the local device.

You can use the following commands to reset an interface shut down by UDLD:
• The errdisable recover reset command with the interface interface-id parameter to reset a given interface.
• The errdisable recover reset command with the udld parameter to reset all interfaces shut down by UDLD.
• The errdisable recover cause with the udld parameter to automatically recover from the UDLD error-disabled state.

Example
This example shows how to enable UDLD on all fiber interfaces:
switchxxxxx(config)# udld normal
udld message time

Use the `udld message time` command in Global Configuration mode to configure a global value of the interval between two sent probe messages. To return to the default value, use the `no` form of this command.

Syntax

`udld message time seconds`

`no udld message time`

Parameters

`seconds`—Interval between two sent probe messages. The valid values are from 1 to 90 seconds.

Default Configuration

15 seconds.

Command Mode

Global Configuration mode

User Guidelines

Use this command to change the default value of the message interval - the interval between two sequential sent probe messages.

Example

This example shows how to globally set the interval to 40sec:

```
switchxxxxxx(config)# udld message time 40
```
To enable the UDLD protocol on an Ethernet port, use the `udld port` command in Interface Configuration mode. To return to the default, use the `no` form of this command.

Syntax

```
udld port [aggressive | normal | disable]
```

no udld port

Parameters

- **aggressive**—Enables UDLD in aggressive mode on this interface.
- **normal**—Enables UDLD in normal mode on this interface. The normal keyword is applied if no keyword is specified.
- **disable**—Disables UDLD on this interface.

Default Configuration

The defaults are as follows:

- Fiber interfaces are in the state configured by the `udld` command.
- Non-fiber interfaces are in the Disable state.

Command Mode

Interface (Ethernet) Configuration mode

User Guidelines

Use this command on fiber ports to override the setting of the global `udld` command.

If the port changes from fiber to non-fiber or vice versa, all configurations are maintained because the platform software detects a change of module or a Gigabit Interface Converter (GBIC) change.

Example 1—This example shows how to enable UDLD in normal mode on an Ethernet port regardless of the current global `udld` setting:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# udld port normal
switchxxxxxx(config-if)# exit
```

Example 2—This example shows how to return to the default configuration:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# no udld port
switchxxxxxx(config-if)# exit
```

Example 3—This example shows how to disable UDLD on an Ethernet port regardless of the current global `udld` setting:
switch(config)# interface gi1/0/1
switch(config-if)# udld port disable
switch(config-if)# exit
udld port
User Interface Commands

This chapter contains the following sections:

- banner exec, on page 1394
- banner login, on page 1396
- configure, on page 1398
- disable, on page 1399
- do, on page 1400
- enable, on page 1401
- end, on page 1402
- exit (Configuration), on page 1403
- exit (EXEC), on page 1404
- exec-banner, on page 1405
- help, on page 1406
- history, on page 1407
- history size, on page 1408
- login, on page 1409
- login-banner, on page 1410
- terminal datadump, on page 1411
- terminal history, on page 1412
- terminal history size, on page 1413
- terminal prompt, on page 1414
- terminal width, on page 1415
- show banner, on page 1416
- show history, on page 1417
- show privilege, on page 1418
banner exec

To specify and enable a message to be displayed after a successful logon, use the `banner exec` Global Configuration mode command. This banner is applied automatically on all the user interfaces: console, Telnet and SSH and also on the WEB GUI. To delete the existing EXEC banner, use the `no` form of this command.

Syntax

```plaintext
banner exec d message-text d
no banner exec
```

Parameters

- `d`—Delimiting character of user’s choice—a pound sign (`#`), for example. You cannot use the delimiting character in the banner message.

- `message-text`—The message must start in a new line. You can enter multi-line messages. You can include tokens in the form of `$(token)` in the message text. Tokens are replaced with the corresponding configuration variable (see User Guidelines). The message can contain up to 1000 characters (after every 510 characters, press `<Enter>` to continue).

Default Configuration

Disabled (no EXEC banner is displayed).

Command Mode

Global Configuration mode

User Guidelines

Follow this command with one or more blank spaces and a delimiting character of your choice. Then enter one or more lines of text, terminating the message with the second occurrence of the delimiting character.

Use tokens in the form of `$(token)` in the message text to customize the banner. The tokens are described in the table below:

<table>
<thead>
<tr>
<th>Token</th>
<th>Information Displayed in the Banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(hostname)</td>
<td>Displays the host name for the device.</td>
</tr>
<tr>
<td>$(domain)</td>
<td>Displays the domain name for the device.</td>
</tr>
<tr>
<td>$(bold)</td>
<td>Indicates that the next text is a bold text. Using this token again indicates the end of the bold text.</td>
</tr>
<tr>
<td>$(inverse)</td>
<td>Indicates that the next text is an inverse text. Using this token again indicates the end of the inverse text.</td>
</tr>
<tr>
<td>$(contact)</td>
<td>Displays the system contact string.</td>
</tr>
<tr>
<td>$(location)</td>
<td>Displays the system location string.</td>
</tr>
</tbody>
</table>
Use the **no banner exec** Line Configuration command to disable the Exec banner on a particular line or lines.

Example

The following example sets an EXEC banner that uses tokens. The percent sign (%) is used as a delimiting character. Note that the **$(token)** syntax is replaced by the corresponding configuration variable.

```
switchxxxxxx(config)# banner exec %
Enter TEXT message. End with the character '%'.
$(bold)Session activated.$(bold) Enter commands at the prompt.
%
```

When a user logs on to the system, the following output is displayed:

```
Session activated. Enter commands at the prompt.
```
To specify a message to be displayed before the username and password login prompts, use the `banner login` command in Global Configuration mode. This banner is applied automatically on all the user interfaces: Console, Telnet and SSH and also on the WEB GUI. To delete the existing login banner, use the `no` form of this command.

Syntax

```
banner login d message-text d
no banner login
```

Parameters

- `d`—Delimiting character of user’s choice—a pound sign (#), for example. You cannot use the delimiting character in the banner message.

- `message-text`—Message text. The message must start on a new line. You can enter multi-line messages. You can include tokens in the form of `$(token)` in the message text. Tokens are replaced with the corresponding configuration variable (see User Guidelines). The message can contain up to 1000 characters (after every 510 characters, you must press <Enter> to continue).

Default Configuration

Disabled (no Login banner is displayed).

Command Mode

Global Configuration mode

User Guidelines

Follow this command with one or more blank spaces and a delimiting character of your choice. Then enter one or more lines of text, terminating the message with the second occurrence of the delimiting character.

Use tokens in the form of `$(token)` in the message text to customize the banner. The tokens are described in the table below:

<table>
<thead>
<tr>
<th>Token</th>
<th>Information displayed in the banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(hostname)</td>
<td>Displays the host name for the device.</td>
</tr>
<tr>
<td>$(domain)</td>
<td>Displays the domain name for the device.</td>
</tr>
<tr>
<td>$(bold)</td>
<td>Indicates that the next text is a bold text. Using this token again indicates the end of the bold text.</td>
</tr>
<tr>
<td>$(inverse)</td>
<td>Indicates that the next text is an inverse text. Using this token again indicates the end of the inverse text.</td>
</tr>
<tr>
<td>$(contact)</td>
<td>Displays the system contact string.</td>
</tr>
<tr>
<td>Token</td>
<td>Information displayed in the banner</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>$(location)</td>
<td>Displays the system location string.</td>
</tr>
<tr>
<td>$(mac-address)</td>
<td>Displays the base MAC address of the device.</td>
</tr>
</tbody>
</table>

Use the **no banner login** Line Configuration command to disable the Login banner on a particular line or lines.

Example

The following example sets a Login banner that uses tokens. The percent sign (%) is used as a delimiting character. Note that the **$$(token)$$** syntax is replaced by the corresponding configuration variable.

```
switchxxxxxx(config)# banner login %
Enter TEXT message. End with the character '%'.
You have entered $(hostname).$(domain)
%
```

When the login banner is executed, the user will see the following banner:

You have entered host123.ourdomain.com
configure

To enter the Global Configuration mode, use the `configure` Privileged EXEC mode command.

Syntax

`configure [terminal]`

Parameters

`terminal`—(Optional) Enter the Global Configuration mode with or without the keyword terminal.

Command Mode

Privileged EXEC mode

Example

The following example enters Global Configuration mode.

```
switchxxxxxx# configure
switchxxxxxx(config)#
```
disable

To leave the Privileged EXEC mode and return to the User EXEC mode, use the disable Privileged EXEC mode command.

Syntax

disable [privilege-level]

Parameters

- **privilege-level** — (Optional) Reduces the privilege level to the specified privileged level. If privilege level is left blank, the level is reduce to the minimal privilege level.

Default Configuration

The default privilege level is 15.

Command Mode

Privileged EXEC mode

Example

The following example returns the user to user level 1.

```
switchxxxxxx# disable 1
switchxxxxxx#
```
To execute an EXEC-level command from Global Configuration mode or any configuration submode, use the `do` command.

Syntax

`do command`

Parameters

- `command`—Specifies the EXEC-level command to execute.

Command Mode

All configuration modes

Example

The following example executes the `show vlan` Privileged EXEC mode command from Global Configuration mode.

```
switchxxxxx(config)# do show vlan
```

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Name</th>
<th>Ports</th>
<th>Type</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>gi1/0/1-4, Po1, Po2</td>
<td>other</td>
<td>Required</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>gi1/0/1</td>
<td>dynamicGvrp</td>
<td>Required</td>
</tr>
<tr>
<td>10</td>
<td>v0010</td>
<td>gi1/0/1</td>
<td>permanent</td>
<td>Not Required</td>
</tr>
<tr>
<td>11</td>
<td>V0011</td>
<td>gi1/0/1, gi1/0/3</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>gi1/0/1</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>gi1/0/1, gi1/0/3</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>gi1/0/1</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>91</td>
<td>91</td>
<td>gi1/0/1, gi1/0/4</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>4093</td>
<td>guest-vlan</td>
<td>gi1/0/1, gi1/0/3</td>
<td>permanent</td>
<td>Guest</td>
</tr>
</tbody>
</table>
enable

To enter the Privileged EXEC mode, use the `enable` User EXEC mode command.

Syntax

```text
enable [privilege-level]
```

Parameters

- `privilege-level` — (Optional) Specifies the privilege level at which to enter the system. (Range: 1, 7, 15)

Default Configuration

The default privilege level is 15.

Command Mode

User EXEC mode

Example

The following example enters privilege level 7.

```text
switchxxxxxx# enable 7
enter password:**********
switchxxxxxx# Accepted
```

The following example enters privilege level 15.

```text
switchxxxxxx# enable
enter password:**********
switchxxxxxx# Accepted
```
To end the current configuration session and return to the Privileged EXEC mode, use the `end` command.

Syntax

```
end
```

Parameters

This command has no arguments or keywords.

Default Configuration

None

Command Mode

All configuration modes

Example

The following example ends the Global Configuration mode session and returns to the Privileged EXEC mode.

```
switchxxxxxx(config)# end
switchxxxxxx#
```
exit (Configuration)

To exit any mode and bring the user to the next higher mode in the CLI mode hierarchy, use the exit command.

Syntax
exit

Parameters
This command has no arguments or keywords

Default Configuration
None

Command Mode
All configuration modes

Examples
The following examples change the configuration mode from Interface Configuration mode to Privileged EXEC mode.

switchxxxxx(config-if)# exit
switchxxxxx(config)# exit
exit (EXEC)

To close an active terminal session by logging off the device, use the **exit** User EXEC mode command.

Syntax

```
exit
```

Parameters

This command has no arguments or keywords

Command Mode

User EXEC mode

Example

The following example closes an active terminal session.

```
switchxxxxxx# exit
```
exec-banner

To enable the display of exec banners, use the `exec-banner` command in Line Configuration Mode. To disable the display of exec banners, use the `no` form of this command.

Syntax

`exec-banner`

`no exec-banner`

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled

Command Mode

Line Configuration Mode

Example

```
switchxxxxxx# configure
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# exec-banner
switchxxxxxx(config-line)# exit
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)# exec-banner
switchxxxxxx(config-line)# exit
switchxxxxxx(config)# line ssh
switchxxxxxx(config)# exec-banner
```
To display a brief description of the Help system, use the help command.

Syntax

`help`

Parameters

This command has no arguments or keywords

Default Configuration

None

Command Mode

All configuration modes

Example

The following example describes the Help system.

```
switchxxxxxx# help
```

Help may be requested at any point in a command by entering a question mark '?'. If nothing matches the currently entered incomplete command, the help list is empty. This indicates that there is no command matching the input as it currently appears. If the request is within a command, press the Backspace key and erase the entered characters to a point where the request results in a match.

Help is provided when:

1. There is a valid command and a help request is made for entering a parameter or argument (e.g. 'show ?'). All possible parameters or arguments for the entered command are then displayed.
2. An abbreviated argument is entered and a help request is made for arguments matching the input (e.g. 'show pr?').
history

To enable saving commands that have been entered, use the **history** Line Configuration Mode command. To disable the command, use the **no** form of this command.

Syntax

```plaintext
history
no history
```

Parameters

This command has no arguments or keywords

Default Configuration

Enabled.

Command Mode

Line Configuration Mode

User Guidelines

This command enables saving user-entered commands for a specified line. You can return to previous lines by using the up or down arrows.

It is effective from the next time that the user logs in via console/telnet/ssh.

The following are related commands:

- Use the **terminal history size**, on page 1413 User EXEC mode command to enable or disable this command for the current terminal session.

 Use the **history size**, on page 1408 Line Configuration Mode command to set the size of the command history buffer.

Example

The following example enables the command for Telnet.

switchxxxxxx(config)# **line telnet**
switchxxxxxx(config-line)# **history**
To change the maximum number of user commands that are saved in the history buffer for a particular line, use the `history size` Line Configuration Mode command. To reset the command history buffer size to the default value, use the `no` form of this command.

Syntax

```
history size number-of-commands
no history size
```

Parameters

- `number-of-commands`—Specifies the number of commands the system records in its history buffer.

Default Configuration

The default command history buffer size is 10 commands.

Command Mode

Line Configuration Mode

User Guidelines

This command configures the command history buffer size for a particular line. It is effective from the next time that the user logs in via console/telnet/ssh.

Use the `terminal history size` User EXEC mode command to configure the command history buffer size for the current terminal session.

The allocated command history buffer is per terminal user, and is taken from a shared buffer. If there is not enough space available in the shared buffer, the command history buffer size cannot be increased above the default size.

Example

The following example changes the command history buffer size to 100 entries for Telnet.

```
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)# history size 100
```
login

To enable changing the user that is logged in, use the `login` User EXEC mode command. When this command is logged in, the user is prompted for a username/password.

Syntax

`login`

Parameters

This command has no arguments or keywords

Command Mode

User EXEC mode

Example

The following example enters Privileged EXEC mode and logs in with the required username ‘bob’.

```
switchxxxxxx# login
User Name: bob
Password: ****
switchxxxxxx#
```
login-banner

To enable the display of login banners, use the `login-banner` command in Line Configuration Mode. To disable the display of login banners, use the `no` form of this command.

Syntax

`login-banner`

`no login-banner`

Parameters

This command has no arguments or keywords

Default Configuration

Enabled

Command Mode

Line Configuration Mode

Example

```
switchxxxxxx# configure
switchxxxxxx(config)# line console
switchxxxxxx(config-line)# login-banner
switchxxxxxx(config-line)# exit
switchxxxxxx(config)# line telnet
switchxxxxxx(config-line)# login-banner
switchxxxxxx(config-line)# exit
switchxxxxxx(config)# line ssh
switchxxxxxx(config-line)# login-banner
```
terminal datadump

To enable dumping all the output of a show command without prompting, use the terminal datadump User EXEC mode command. To disable dumping, use the no form of this command.

Syntax

```
terminal datadump
terminal no datadump
```

Parameters

This command has no arguments or keywords

Default Configuration

When printing, dumping is disabled and printing is paused every 24 lines.

Command Mode

User EXEC mode

User Guidelines

By default, a **More** prompt is displayed when the output contains more than 24 lines. Pressing the **Enter** key displays the next line; pressing the **Spacebar** displays the next screen of output.

The **terminal datadump** command enables dumping all output immediately after entering the show command by removing the pause.

The width is not limited, and the width of the line being printed on the terminal is based on the terminal itself. This command is relevant only for the current session.

Example

The following example dumps all output immediately after entering a show command.

```
switchxxxxxx# terminal datadump
```
terminal history

To enable the command history function for the current terminal session, meaning that it will not be stored in the Running Configuration file, use the `terminal history` User EXEC mode command. To disable the command, use the `no` form of this command.

Syntax

```
terminal history

terminal no history
```

Parameters

This command has no arguments or keywords

Default Configuration

The default configuration for all terminal sessions is defined by the `history`, on page 1407 Line Configuration Mode command.

Command Mode

User EXEC mode

User Guidelines

The command enables the command history for the current session. The default is determined by the `history`, on page 1407 Line Configuration Mode command.

This command is effective immediately.

Example

The following example disables the command history function for the current terminal session.

```
switchxxxxxx# terminal no history
```
terminal history size

To change the command history buffer size for the current terminal session, meaning it will not be stored in the Running Configuration file, use the **terminal history size** User EXEC mode command. Use the **no** form of this command to reset the command history buffer size to the default value.

Syntax

```plaintext
terminal history size number-of-commands
terminal no history size
```

Parameters

- **number-of-commands**—Specifies the number of commands the system maintains in its history buffer. (Range: 10–206)

Default Configuration

The default configuration for all terminal sessions is defined by the **history size**, on page 1408 Line Configuration Mode command.

Command Mode

User EXEC mode

User Guidelines

The **terminal history size** EXEC command changes the command history buffer size for the current terminal session. Use the **history**, on page 1407 Line Configuration Mode command to change the default history buffer size.

The maximum number of commands in all buffers is 207.

Example

The following example sets the command history buffer size to 20 commands for the current terminal session.

```plaintext
switchxxxxxx# terminal history size 20
```
terminal prompt

To enable the terminal prompts, use the **terminal prompt** User EXEC mode command. To disable the terminal prompts, use **terminal no prompt** command.

The command is per session and will not be saved in the configuration database.

Syntax

```plaintext
terminal prompt
terminal no prompt
```

Parameters

This command has no arguments or keywords

Default Configuration

The default configuration is prompts enabled.

Command Mode

Privileged EXEC mode

Example

The following example disables the terminal prompts

```
switchxxxxxx# terminal no prompt
```
terminal width

To determine the width of the display for the echo input to CLI sessions, use the `terminal width` User EXEC mode command. To return to the default, use `terminal no width`. The command is per session and will not be saved in the configuration database.

Syntax

```
terminal width number-of-characters
terminal no width
```

Parameters

`number-of-characters` - Specifies the number of characters to be displayed for the echo output of the CLI commands and the configuration file, '0' means endless number of characters on a screen line. (Range: 0, 70-512)

Default Configuration

The default number of characters is 77.

Command Mode

Privileged EXEC mode

Example

The following example sets the terminal width to 100 characters

```
switchxxxxxx# terminal width 100
```
show banner

To display the banners that have been defined, use the show banner commands in User EXEC mode.

Syntax

show banner login
show banner exec

Parameters

This command has no arguments or keywords

Command Mode

User EXEC mode

Examples

switchxxxxxx# show banner login

Banner: Login
Line SSH: Enabled
Line Telnet: Enabled
Line Console: Enabled
switchxxxxxx# show banner exec
Banner: EXEC
Line SSH: Enabled
Line Telnet: Enabled
Line Console: Enabled
You have logged on
show history

To list the commands entered in the current session, use the **show history** User EXEC mode command.

Syntax

`show history`

Parameters

This command has no arguments or keywords

Command Mode

User EXEC mode

User Guidelines

The buffer includes executed and unexecuted commands.

Commands are listed from the first to the most recent command.

The buffer remains unchanged when entering into and returning from configuration modes.

Example

The following example displays all the commands entered while in the current Privileged EXEC mode.

```
switchxxxxxx# show version
SW version 3.131 (date 23-Jul-2005 time 17:34:19)
HW version 1.0.0
switchxxxxxx# show clock
15:29:03 Jun 17 2005
switchxxxxxx# show history
show version
show clock
3 commands were logged (buffer size is 10)
```
show privilege

To display the current privilege level, use the `show privilege` User EXEC mode command.

Syntax

`show privilege`

Parameters

This command has no arguments or keywords.

Command Mode

User EXEC mode

Example

The following example displays the privilege level for the user logged on.

```
switchxxxxxx# show privilege
Current privilege level is 15
```
VLAN Commands

This chapter contains the following sections:

- vlan database, on page 1421
- vlan, on page 1422
- show vlan, on page 1423
- interface vlan, on page 1424
- interface range vlan, on page 1425
- name, on page 1426
- switchport protected-port, on page 1427
- show interfaces protected-ports, on page 1428
- switchport, on page 1429
- switchport mode, on page 1430
- switchport access vlan, on page 1433
- switchport trunk allowed vlan, on page 1434
- switchport trunk native vlan, on page 1436
- switchport general allowed vlan, on page 1437
- switchport general pvid, on page 1438
- switchport general ingress-filtering disable, on page 1439
- switchport general acceptable-frame-type, on page 1440
- switchport general forbidden vlan, on page 1441
- switchport customer vlan, on page 1442
- ethtype, on page 1443
- switchport nni ethtype, on page 1444
- switchport vlan-mapping tunnel, on page 1445
- switchport vlan-mapping tunnel l2protocol vlan, on page 1447
- switchport vlan-mapping tunnel l2protocol cos, on page 1448
- switchport vlan-mapping tunnel l2protocol cos interface, on page 1449
- switchport vlan-mapping tunnel l2protocol drop-threshold, on page 1450
- switchport vlan-mapping tunnel l2protocol forward, on page 1451
- switchport vlan-mapping one-to-one, on page 1453
- map protocol protocols-group, on page 1455
- switchport general map protocols-group vlan, on page 1456
- show vlan protocols-groups, on page 1457
- map mac macs-group, on page 1458
• switchport general map macs-group vlan, on page 1459
• show vlan macs-groups, on page 1460
• map subnet subnets-group, on page 1461
• switchport general map subnets-group vlan, on page 1462
• show vlan subnets-groups, on page 1463
• show interfaces switchport, on page 1464
• private-vlan, on page 1466
• private-vlan association, on page 1467
• switchport private-vlan mapping, on page 1468
• switchport private-vlan host-association, on page 1469
• show vlan private-vlan, on page 1470
• switchport access multicast-tv vlan, on page 1471
• switchport customer multicast-tv vlan, on page 1472
• show vlan multicast-tv, on page 1473
• vlan prohibit-internal-usage, on page 1474
• show vlan internal usage, on page 1476
vlan database

Use the `vlan database` Global Configuration mode command to enter the VLAN Configuration mode. This mode is used to create VLAN(s) and define the default VLAN.

Use the `exit` command to return to Global Configuration mode.

Syntax

```
vlan database
```

Default Configuration

VLAN 1 exists by default.

Command Mode

Global Configuration mode

Example

The following example enters the VLAN Configuration mode, creates VLAN 1972 and exits VLAN Configuration mode.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# vlan 1972
switchxxxxxx(config-vlan)# exit
```
Use the `vlan` VLAN Configuration mode or Global Configuration mode command to create a VLAN and assign it a name (if only a single VLAN is being created). Use the `no` form of this command to delete the VLAN(s).

Syntax
```
vlan vlan-range | {vlan-id [name vlan-name]} [media ethernet] [state active]
no vlan vlan-range
```

Parameters
- `vlan-range`—Specifies a list of VLAN IDs. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs (range: 2-4094).
- `vlan-id`—Specifies a VLAN ID. (range: 2-4094).
- `vlan-name`—Specifies the VLAN name. (range: 1–32 characters).
- `media`—Specifies the media type of the VLAN. Valid values are `ethernet`.
- `state`—Specifies whether the state of the VLAN. Valid values are `active`.

Default Configuration
VLAN 1 exists by default.

Command Mode
- Global Configuration mode
- VLAN Database Configuration mode

User Guidelines
If the VLAN does not exist, it is created. If the VLAN cannot be created then the command is finished with error and the current context is not changed.

Example
The following example creates a few VLANs. VLAN 1972 is assigned the name Marketing.
```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# vlan 19-23
switchxxxxxx(config-vlan)# vlan 100
switchxxxxxx(config-vlan)# vlan 1972 name Marketing
switchxxxxxx(config-vlan)# exit
```
show vlan

Use the `show vlan` Privileged EXEC mode command to display the following VLAN information.

Syntax

`show vlan [tag vlan-id | name vlan-name]`

Parameters

- `tag vlan-id`—Specifies a VLAN ID.
- `name vlan-name`—Specifies a VLAN name string (length: 1–32 characters)

Default Configuration

All VLANs are displayed.

Command Mode

Privileged EXEC mode

Example 1—The following example displays information for all VLANs:

```
switchxxxxxx# show vlan
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Tagged Ports</th>
<th>UnTagged Ports</th>
<th>Created by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Default</td>
<td></td>
<td>gi1/0/1</td>
<td>S</td>
</tr>
<tr>
<td>10</td>
<td>Marketing</td>
<td>gi1/0/2</td>
<td>gi1/0/2</td>
<td>S</td>
</tr>
<tr>
<td>91</td>
<td>11</td>
<td>gi1/0/2-4</td>
<td>gi1/0/2</td>
<td>SGR</td>
</tr>
<tr>
<td>92</td>
<td>11</td>
<td>gi1/0/3-4</td>
<td></td>
<td>G</td>
</tr>
<tr>
<td>93</td>
<td>11</td>
<td>gi1/0/3-4</td>
<td></td>
<td>GR</td>
</tr>
</tbody>
</table>
interface vlan

Use the `interface vlan` Global Configuration mode command to enter the Interface Configuration (VLAN) mode for a specific VLAN. After this command is entered, all commands configure this VLAN.

Syntax

```
interface vlan vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN to be configured.

Command Mode

Global Configuration mode

User Guidelines

If the VLAN does not exist, the VLAN is created. If the VLAN cannot be created, this command is finished with an error and the current context is not changed.

Example

The following example configures VLAN 1 with IP address 131.108.1.27 and subnet mask 255.255.255.0.

```
switchxxxxxx(config)# interface vlan 1
switchxxxxxx(config-if)# ip address 131.108.1.27 255.255.255.0
```
interface range vlan

Use the **interface range vlan** Global Configuration mode command to configure multiple VLANs simultaneously.

Syntax

```
interface range vlan vlan-range
```

Parameters

- `vlan-range`—Specifies a list of VLANs. Separate nonconsecutive VLANs with a comma and no spaces. Use a hyphen to designate a range of VLANs.

Command Mode

Global Configuration mode

User Guidelines

Commands under the interface VLAN range context are executed independently on each VLAN in the range. If the command returns an error on one of the VLANs, an error message is displayed, and the system attempts to configure the remaining VLANs.

Example

The following example groups VLANs 221 through 228 and 889 to receive the same command(s).

```
switchxxxxxx(config)# interface range vlan 221-228, vlan 889
```
Use the `name` Interface Configuration (VLAN) mode command to name a VLAN. Use the `no` form of this command to remove the VLAN name.

Syntax

```
name string
no name
```

Parameters

- `string`—Specifies a unique name associated with this VLAN. (Length: 1–32 characters).

Default Configuration

No name is defined.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

The VLAN name must be unique.

Example

The following example assigns VLAN 19 the name Marketing.

```
switchxxxxxx(config)# interface vlan 19
switchxxxxxx(config-if)# name Marketing
```
switchport protected-port

Use the `switchport protected-port` Interface Configuration mode command to isolate Unicast, Multicast, and Broadcast traffic at Layer 2 from other protected ports on the same switch. Use the `no` form of this command to disable protection on the port.

Syntax

```plaintext
switchport protected-port
no switchport protected-port
```

Default Configuration

Unprotected

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Note that packets are subject to all filtering rules and Filtering Database (FDB) decisions.

Use this command to isolate Unicast, Multicast, and Broadcast traffic at Layer 2 from other protected ports (that are not associated with the same community as the ingress interface) on the same switch. Please note that the packet is still subject to FDB decision and to all filtering rules.

Example

```plaintext
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport protected-port
```
show interfaces protected-ports

Use the `show interfaces protected-ports` EXEC mode command to display protected ports configuration.

Syntax

`show interfaces protected-ports [interface-id | detailed]`

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
- `detailed`—Displays information for non-present ports in addition to present ports.

Default Configuration

Show all protected interfaces. If detailed is not used, only present ports are displayed.

Command Mode

User EXEC mode

Example

```
switchxxxxxx# show interfaces protected-ports
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Protected</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Protected</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Unprotected</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Unprotected</td>
</tr>
</tbody>
</table>

1428 Cisco Business Switches 350 Series CLI Guide

VLAN Commands
switchport

Use the **switchport** Interface Configuration mode command to put an interface that is in Layer 3 mode into Layer 2 mode. Use the **no** form of this command to put an interface in Layer 3 mode.

Syntax

```
switchport
no switchport
```

Default Configuration

Layer 2 mode

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the **no switchport** command to set the interface as a Layer 3 interface.

An interface cannot be set as a Layer 3 interface if 802x.1 is enabled on the interface and one of the following conditions is true:

- The host mode differs from multi-host.
- MAC-Based or WEB-Based authentication is enabled.
- Radius VLAN assignment is enabled.

Examples

Example 1 - The following example puts the port gi1/0/1 into Layer 2 mode.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport
```

Example 2 - The following example puts the port gi1/0/1 into Layer 3 mode.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# no switchport
```
switchport mode

Use the **switchport mode** Interface Configuration mode command to configure the VLAN membership mode. Use the **no** form of this command to restore the default configuration.

Syntax

```
switchport mode access | trunk | general | private-vlan {promiscuous | host} | customer | vlan-mapping {tunnel | one-to-one}
no switchport mode
```

Parameters

- **access**—Specifies an untagged layer 2 VLAN port.
- **trunk**—Specifies a trunking layer 2 VLAN port.
- **general**—Specifies a full 802-1q-supported VLAN port.
- **customer**—Specifies that an edge port connected to customer equipment. Traffic received from this port will be tunneled with the additional 802.1q VLAN tag (Q-in-Q VLAN tunneling).
- **private-vlan promiscuous**—Private-VLAN promiscuous port.
- **private-vlan host**—Private-VLAN host port.
- **vlan-mapping tunnel**—VLAN Mapping tunnel edge port.
- **vlan-mapping one-to-one**—VLAN Mapping one-to-one edge port.

Default Configuration

Access mode.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

When the port’s mode is changed, it receives the configuration corresponding to the mode.

If the port mode is changed to access and the access VLAN does not exist, then the port does not belong to any VLAN.

Use the **switchport mode vlan-mapping {tunnel | one-to-one}** command to configure a VLAN mapping mode of an edge interface of a Provider Edge switch. The edge interface is an interface where a Customer network is connected to the Provider Edge switch. The network which the switch belongs to is a Provider network. These networks (Customer ones and Provider one) can use the same VLAN-IDs and the edge interface must perform vlan mapping between Customer VLANs (C-VLANs) and Provider VLANs (S-VLANs).

On an edge interface C-VLANs are mapped to S-VLANs and the original C-VLAN tags are kept as part of payload. When a frame is sent on non-edge tagged interface, it is encapsulated with another layer of S-VLAN tag to which the original C-VLAN-ID is mapped. Therefore, transmitted on non-edge interfaces frames are
double-tagged, with the outer S-VLAN tag and inner C-VLAN tag. When a frame is sent on an edge interface the S-VLAN tag is stripped.

On an edge interface C-VLANS are mapped to the S-VLANs and the original C-VLAN-ID in input frame is replaced by the S-VLAN ID to which it is mapped. Untagged frames are dropped. Symmetrical translating back to the edge interface.

The following features cannot be enabled if vlan-mapping is allowed:

- IPv4 routing
- IPv6 routing
- Auto Smart Port
- Voice VLAN

The `switchport vlan-mapping` commands cannot add a port to a S-VLAN.

IPv4 and IPv6 interfaces cannot be defined on VLANs containing edge interfaces.

The following Layer 2 features are not supported into VLANs containing edge interfaces:

- IGMP Snooping
- MLD Snooping
- DHCP Snooping
- IPv6 First Hop Security

The following protocols cannot be enabled on edge interfaces:

- STP
- GVRP

The following features are not supported on edge interfaces:

- Radius VLAN assignment
- 802.1x Guest VLAN

Egress ACLs are not supported on one-to-one VLAN mapping edge ports.

A destination port with the `network` keyword or reflector port cannot be configured on an edge port.

Note. All the limitations for edge ports specified above are checked by the `switchport vlan-mapping` commands and by the commands configuring these features.

By default the switch does not forward frames received on edge ports with the following destination MAC addresses:

- 01:80:C2:00:00:00-01:80:C2:00:00:FF
- 01:00:0C:00:00:00-01:00:0C:FF:FF:FF
- 01:00:0C:CD:CD:D0

Note. The following protocols using these MAC addresses can be enabled on edge ports:

- LACP - 01:80:C2:00:00:02
Examples

Example 1 - The following example configures gi1/0/1 as an access port (untagged layer 2) VLAN port.

```bash
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport mode access
switchxxxxxx(config-if)# switchport access vlan 2
```

Example 2 - The following example puts the port gi1/0/2 into private-vlan host mode.

```bash
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# switchport mode private-vlan host
```
switchport access vlan

A port in access mode can be an untagged member of at most a single VLAN. The **switchport access vlan** Interface Configuration command reassigns an interface to a different VLAN than it currently belongs or assigns it to **none**, in which case it is not a member of any VLAN.

The **no** form of this command to restore the default configuration.

Syntax

```
switchport access vlan \{vlan-id | none\}
no switchport access vlan
```

Parameters

- **vlan-id**—Specifies the VLAN to which the port is configured.
- **none**—Specifies that the access port cannot belong to any VLAN.

Default Configuration

The interface belongs to the Default VLAN.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

When the port is assigned to a different VLAN, it is automatically removed from its previous VLAN and added it to the new VLAN. If the port is assigned to **none**, it is removed from the previous VLAN and not assigned to any other VLAN.

Example

The following example assigns access port gi1/0/1 to VLAN 2 (and removes it from its previous VLAN).

```
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# switchport mode access
switchxxxxxx(config-if)# switchport access vlan 2
```
switchport trunk allowed vlan

A trunk interface is an untagged member of a single VLAN, and, in addition, it may be an tagged member of one or more VLANs. Use the `switchport trunk allowed vlan` Interface Configuration mode command to add/remove VLAN(s) to/from a trunk port. Use the no form of the command to return to the default.

Syntax

```
switchport trunk allowed vlan {all | none | vlan-list | add vlan-list | remove vlan-list | except vlan-list}
```

```
no switchport trunk allowed vlan
```

Parameters

- **all**—Specifies all VLANs from 1 to 4094. At any time, the port belongs to all VLANs existing at the time. (range: 1–4094).
- **none**—Specifies an empty VLAN list The port does not belong to any VLAN.
- **vlan-list**— Specifies the list of VLAN IDs the interface is member of. The VLAN(s) specified in this command are the only VLAN(s) the port will be member of (all previous settings related to trunk VLAN membership are discarded). Use a hyphen to designate a range of IDs. Separate nonconsecutive VLAN IDs with a comma and no spaces (range: 1-4094).
- **add** vlan-list—List of VLAN IDs to add to the port. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.
- **remove** vlan-list—List of VLAN IDs to remove from a port. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.
- **except** vlan-list—List of VLAN IDs including all VLANs from range 1-4094 except VLANs belonging to vlan-list.

Default Configuration

By default, trunk ports belongs to all created VLANs.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the `switchport trunk allowed vlan` command to specify which VLANs the port belongs to when its mode is configured as trunk.

Non-existed VLANs can be configured. When a non-existed VLAN is created the port will add to it automatically.

Forbidden VLANs can be configured.

Example

To add VLANs 2,3 and 100 to trunk ports 1 to 13
switchxxxxx(config)# interface range gi1/0/1-3
switchxxxxx(config-if)# switchport mode trunk
switchxxxxx(config-if)# switchport trunk allowed vlan add 2-3,100
switchxxxxx(config-if)
switchport trunk native vlan

If an untagged packet arrives on a trunk port, it is directed to the port’s native VLAN. Use the **switchport trunk native vlan** Interface Configuration mode command to define the native VLAN for a trunk interface. Use the **no** form of this command to restore the default native VLAN.

Syntax

```
switchport trunk native vlan {vlan-id | none}
no switchport trunk native vlan
```

Parameters

- **vlan-id**—Specifies the native VLAN ID.
- **none**—Specifies the access port cannot belong to any VLAN.

Default Configuration

The default native VLAN is the Default VLAN.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

A value of the interface PVID is set to this VLAN ID. When the interface belongs to the Native VLAN it is set as VLAN untagged egress interface.

The configuration is applied only when the port mode is trunk.

Examples

The following example defines VLAN 2 as native VLAN for port gi1/0/1:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport trunk native vlan 2
switchxxxxxx(config-if)# exit
```
switchport general allowed vlan

General ports can receive tagged or untagged packets. Use the `switchport general allowed vlan` Interface Configuration mode command to add/remove VLANs to/from a general port and configure whether packets on the egress are tagged or untagged. Use the `no` form of this command to reset to the default.

Syntax

```
switchport general allowed vlan add vlan-list [tagged | untagged]
switchport general allowed vlan remove vlan-list
no switchport general allowed vlan
```

Parameters

- `add` vlan-list—List of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs. (range: 1–4094)
- `remove` vlan-list—List of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.
- `tagged`—Specify that packets are transmitted tagged for the configured VLANs
- `untagged`—Specify that packets are transmitted untagged for the configured VLANs (this is the default)

Default Configuration

The port is not a member of any VLAN.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

If the interface is a forbidden member of an added VLAN, the interface does not become a member of this specific VLAN. There will be an error message in this case ("An interface cannot become a a member of a forbidden VLAN. This message will only be displayed once.") and the command continues to execute in case if there are more VLANs in the vlan-list.

A non-existed VLAN cannot be configured. When a VLAN is removed it is deleted from the vlan-list.

The configuration is applied only when the port mode is general.

Example

The example adds gi1/0/1 and to VLAN 2 and 3. Packets are tagged on the egress:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport general allowed vlan add 2-3 tagged
```
switchport general pvid

Use the **switchport general pvid** Interface Configuration mode command to configure the Port VLAN ID (PVID) of an interface when it is in general mode. Use the **no** form of this command to restore the default configuration.

Syntax

```
switchport general pvid vlan-id
no switchport general pvid
```

Parameters

- **vlan-id**—Specifies the Port VLAN ID (PVID).

Default Configuration

The PVID is the Default VLAN PVID.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Examples

Example 1 - The following example sets the gi1/0/2 PVID to 234.

```
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# switchport general pvid 234
```

Example 2 - The following example performs the following:

- Adds VLANs 2&3 as tagged, and VLAN 100 as untagged to gi1/0/4
- Defines VID 100 as the PVID

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general allowed vlan add 2-3 tagged
switchxxxxxx(config-if)# switchport general allowed vlan add 100 untagged
switchxxxxxx(config-if)# switchport general pvid 100
switchxxxxxx(config-if)# exit
```
switchport general ingress-filtering disable

Use the `switchport general ingress-filtering disable` Interface Configuration mode command to disable port ingress filtering (no packets are discarded at the ingress) on a general port. Use the `no` form of this command to restore the default configuration.

Syntax

```
switchport general ingress-filtering disable
no switchport general ingress-filtering disable
```

Default Configuration

Ingress filtering is enabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example disables port ingress filtering on gi1/0/1.

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general ingress-filtering disable
```
switchport general acceptable-frame-type

The `switchport general acceptable-frame-type` Interface Configuration mode command configures the types of packets (tagged/untagged) that are filtered (discarded) on the interface. Use the `no` form of this command to return ingress filtering to the default.

Syntax

```
switchport general acceptable-frame-type {tagged-only | untagged-only | all}
no switchport general acceptable-frame-type
```

Parameters

- **tagged-only**—Ignore (discard) untagged packets and priority-tagged packets.
- **untagged-only**—Ignore (discard) VLAN-tagged packets (not including priority-tagged packets)
- **all**—Do not discard packets untagged or priority-tagged packets.

Default Configuration

All frame types are accepted at ingress (**all**).

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

Example

The following example configures port gi1/0/3 to be in general mode and to discard untagged frames at ingress.

```
switchxxxxxx(config)# interface gi1/0/3
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general acceptable-frame-type tagged-only
```
switchport general forbidden vlan

Use the switchport general forbidden vlan Interface Configuration mode command to forbid adding/removing specific VLANs to/from a port. Use the no form of this command to restore the default configuration.

Syntax

switchport general forbidden vlan {add vlan-list | remove vlan-list}

no switchport general forbidden vlan

Parameters

- add vlan-list—Specifies a list of VLAN IDs to add to interface. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.
- remove vlan-list—Specifies a list of VLAN IDs to remove from interface. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen designate a range of IDs.

Default Configuration

All VLANs are allowed.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The forbidden VLAN cannot be one that does not exist on the system, or one that is already defined on the port.

Example

The following example define s gi1/0/4 as a forbidden membership in VLANs 5-7:

```plaintext
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# switchport general forbidden vlan add 5-7
switchxxxxxx(config-if)# exit
```
Switchport customer vlan

Use the switchport customer vlan Interface Configuration mode command to set the port's VLAN when the interface is in customer mode (set by the switchport mode command). Use the no form of this command to restore the default configuration.

Syntax

switchport customer vlan vlan-id
no switchport customer vlan

Parameters

- vlan-id—Specifies the customer VLAN.

Default Configuration

No VLAN is configured as customer.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

When a port is in customer mode it is in QinQ mode. This enables the user to use their own VLAN arrangements (PVID) across a provider network. The switch is in QinQ mode when it has one or more customer ports.

Example

The following example defines gi1/0/4 as a member of customer VLAN 5.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# switchport mode customer
switchxxxxxx(config-if)# switchport customer vlan 5
```
ethtype

To define globally the Ethernet type used into S-VLAN tag, use the `ethtype` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
ethtype dot1q | dot1ad | 9100 | 9200

no ethtype
```

Parameters

- `dot1q`—A value of 0x8100 (802.1q VLAN tag) is used as Ethernet tag in VLAN tag.
- `dot1ad`—A value of 0x88a8 (802.1ad VLAN tag) is used as Ethernet tag in VLAN tag.
- `9100`—A value of 0x9100 is used as Ethernet tag in VLAN tag.
- `9200`—A value of 0x9200 is used as Ethernet tag in VLAN tag.

Default Configuration

`dot1q`

Command Mode

Global Configuration mode

User Guidelines

Use the `ethtype` command, to define globally the Ethernet type used into S-VLAN tag. The configuration is applied to all NNI interfaces. All non-edge interfaces are considered as NNI interfaces. The edge interface is an interface having one of the following modes:

- customer
- vlan-mapping tunnel
- vlan-mapping one-to-one

Use the `no ethtype` command to restore the default configuration.

Example

This example sets the Ethernet type into the VLAN tag to dot1ad (0x88a8):

```
switchxxxxxx(config)# ethtype dot1ad
```
switchport nni ethtype

To define the Ethernet type used into S-VLAN tag on a NNI interface, use the `switchport nni ethtype` command in Interface (Ethernet, Port Channel) Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
switchport nni ethtype dot1q | dot1ad | 9100 | 9200
```

no switchport nni ethtype

Parameters

- `dot1q`—A value of 0x8100 (802.1q VLAN tag) is used as Ethernet tag in VLAN tag.
- `dot1ad`—A value of 0x88a8 (802.1ad VLAN tag) is used as Ethernet tag in VLAN tag.
- `9100`—A value of 0x9100 is used as Ethernet tag in VLAN tag.
- `9200`—A value of 0x9200 is used as Ethernet tag in VLAN tag.

Default Configuration

Configured by the `ethtype` command.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the `switchport nni ethtype` command, to define the Ethernet type used into S-VLAN tag on a NNI interface. All non-edge interfaces are considered as NNI interfaces. The edge interface is an interface having one of the following modes:

- customer
- vlan-mapping tunnel
- vlan-mapping one-to-one

Use the `no switchport nni ethtype` command to restore the default configuration.

Example

This example sets the Ethernet type into the VLAN tag to `dot1ad` (0x88a8):

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport nni ethtype dot1ad
exit
```
switchport vlan-mapping tunnel

To configure selective tunneling on an edge interface, use the `switchport vlan-mapping tunnel` command in Interface (Ethernet, Port Channel) Configuration mode. To delete the configuration, use the `no` form of this command.

Syntax

```
switchport vlan-mapping tunnel {vlan-list | default} {outer-vlan-id | drop}
no switchport vlan-mapping tunnel [vlan-list | default]
```

Parameters

- `vlan-list`—Specifies the Customer VLANs (C-VLANs) for selective tunneling. The VLAN IDs in the list are separated by a comma or a series of VLAN IDs separated by a hyphen (for example 1,2,3-5). The range is from 1 to 4094.
- `default`—Specifies the list of the C-VLANs other than those not specified. If a default action is not configured the input frames with unspecified C-VLANs are dropped.
- `outer-vlan-id`—Specifies the added an outer S-VLAN tag. The range of the S-VLAN tag is 1 to 4094.
- `drop`—Specify that frames with the specified C-VLANs are dropped.

Default Configuration

No VLAN mapping is configured.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the `switchport vlan-mapping tunnel vlan-list outer-vlan-id` command to configure selective tunneling for the given C-VLANs.

The S-VLAN specified by the `outer-vlan-id` argument must be created before configuring of this command. If this VLAN does not exist the command fails.

Use the `switchport vlan-mapping tunnel vlan-list drop` command to configure selective drop for the given C-VLANs.

Use the `switchport vlan-mapping tunnel default outer-vlan-id` command to configure tunneling for C-VLANs other than those not specified.

Use the `switchport vlan-mapping tunnel default drop` command to configure drop C-VLANs other than those not specified.

The `switchport vlan-mapping tunnel` command performs the following actions:

- Creates an ACL for mapping VLANs from `vlan-list` to `outer-vlan-id`, it has not been created.
- Adds to the ACL one rule for each VLAN from `vlan-list`.
• Reserves the place into TTI for this ACL. If there is not enough free place into TTI the command fails.

Note. The ACL can be bound on the interface later by the `switchport mode vlan-mapping tunnel` command.

• Adds the edge interface to the VLAN specified by the `outer-vlan-id` argument.

The ACL contains \(V+1 \) rules, where:

• \(V \) — The number of specified C-VLANs.

A few `switchport vlan-mapping tunnel` commands can be defined on the same interface, only if their `vlan-list` arguments do not contain common VLAN-IDs.

Use the `no switchport vlan-mapping tunnel vlan-list` command to delete tunneling for the specified C-VLANs and remove the interface from the corresponding S-VLANs.

Use the `no switchport vlan-mapping tunnel default` command to delete the default tunneling and remove the interface from the corresponding S-VLANs.

Use the `no switchport vlan-mapping tunnel` command to delete tunneling for all C-VLANs and remove the interface from the corresponding S-VLANs.

Examples

Example 1 This example shows how to configure traditional tunnelling of all traffic on the port to a S-VLAN ID of 10:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport vlan-mapping tunnel default 10
switchxxxxxx(config-if)# exit
```

Example 2 This example shows how to configure selective tunneling on the port so that traffic with a C-VLAN ID of 5, 7, or 8 would be tunneled with a S-VLAN ID of 100. The traffic of any other C-VLAN IDs is dropped:

```
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# switchport vlan-mapping tunnel 5,7-8 100
switchxxxxxx(config-if)# switchport vlan-mapping tunnel 12,27 5
switchxxxxxx(config-if)# switchport vlan-mapping tunnel default drop
switchxxxxxx(config-if)# exit
```
switchport vlan-mapping tunnel l2protocol vlan

To specify S-VLAN-ID used for encapsulation of forwarded untagged Layer 2 frames received on a vlan-mapping tunnel interface, use the `switchport vlan-mapping tunnel l2protocol vlan` command in Interface (Ethernet, Port Channel) Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
switchport vlan-mapping tunnel l2protocol vlan vlan-id
no switchport vlan-mapping tunnel l2protocol vlan
```

Parameters

- `vlan-id` — Specifies S-VLAN-ID used to encapsulate of forwarded untagged Layer 2 frames.

Default Configuration

The VLAN_ID is not defined.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the `switchport vlan-mapping tunnel l2protocol vlan` command, to specify S-VLAN-ID used for encapsulation of forwarded untagged Layer 2 frames received on a `vlan-mapping tunnel` interface. The S-VLAN ID can be that of an S-VLAN already defined on port or a new one.

If the command is not configured the allowed untagged Layer 2 frames are not forwarded.

Example

The following example specifies the S-VLAN used for forwarding L2 frames:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport vlan-mapping tunnel l2protocol vlan 100
switchxxxxxx(config-if)# exit
```
switchport vlan-mapping tunnel l2protocol cos

To specify a class of service (CoS) value globally into S-VLAN tag of forwarded Layer 2 frames to the Provide network, use the `switchport vlan-mapping tunnel l2protocol cos` command in Global Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
switchport vlan-mapping tunnel l2protocol cos cos-value
no switchport vlan-mapping tunnel l2protocol cos
```

Parameters

- `cos-value` — Specifies the CoS value in range 0..7.

Default Configuration

The `cos-value` is 5.

Command Mode

Global Configuration mode

User Guidelines

Use the `switchport vlan-mapping tunnel l2protocol cos` command, to specify a class of service (CoS) value globally into S-VLAN tag of forwarded Layer 2 frames to the Provide network.

Use the `no switchport vlan-mapping tunnel l2protocol cos` command, to return to the default CoS.

Example

The following example specifies the cos of forwarded L2 frames:

```
switchxxxxxx(config)# switchport vlan-mapping tunnel l2protocol cos 6
```
switchport vlan-mapping tunnel l2protocol cos interface

To specify a class of service (CoS) value per interface into S-VLAN tag of forwarded Layer 2 frames to the Provide network, use the **switchport vlan-mapping tunnel l2protocol cos interface** command in Interface (Ethernet, Port Channel) Configuration mode. To restore the default configuration, use the **no** form of this command.

Syntax

`switchport vlan-mapping tunnel l2protocol cos interface cos-value`

`vlan-mapping tunnel l2protocol cos interface`

Parameters

- **cos-value** — Specifies the CoS value in range 0..7.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the **switchport vlan-mapping tunnel l2protocol cos interface** command, to specify a class of service (CoS) value globally into S-VLAN tag of forwarded Layer 2 frames received on the given vlan-mapping tunnel edge interface and sent to the Provide network.

Use the **no switchport vlan-mapping tunnel l2protocol cos interface** command, to return to the default CoS on the given vlan-mapping tunnel edge interface.

Example

The following example specifies the cos of forwarded L2 tunneled frames:

```bash
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport vlan-mapping tunnel l2protocol cos interface 6
switchxxxxxx(config-if)# exit
```
switchport vlan-mapping tunnel l2protocol drop-threshold

To specify the drop threshold for forwarded L2 packets that can be received on the given vlan-mapping tunnel edge interface (in kilobits per second), use the switchport vlan-mapping tunnel l2protocol drop-threshold command in Interface (Ethernet, Port Channel) Configuration mode. To restore the default configuration, use the no form of this command.

Syntax

```
switchport vlan-mapping tunnel l2protocol drop-threshold [disable | enable committed-rate-kbps]
no switchport vlan-mapping tunnel l2protocol drop-threshold
```

Parameters

- **disable** - disable drop-threshold on interface
- **enable** - enable drop-threshold on interface
- **committed-rate-kbps**—Specifies the threshold in kilobits per second (range 8-256)

Default Configuration

Drop-threshold is enabled and rate set to 32 kilobits per second.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

Use the switchport vlan-mapping tunnel l2protocol drop-threshold command, to enable or disable drop threshold, and set the drop rate, for received forwarded L2 protocol frames on a given vlan-mapping tunnel edge interface. The frames exceeding this threshold are dropped.

The L2 protocol frames are protocol frames which are tunneled using command switchport vlan-mapping tunnel l2protocol forward, on page 1451.

Use the no switchport vlan-mapping tunnel l2protocol drop-threshold command, to return configuration to default - drop threshold enabled with rate of 32 kilobits per second.

Example

The following example sets the drop threshold to 16 kilobits per second:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport vlan-mapping tunnel l2protocol drop-threshold 16
switchxxxxxx(config-if)# exit
```
switchport vlan-mapping tunnel l2protocol forward

To enable forward over the Provider network untagged Layer 2 frames received on a vlan-mapping tunnel interface, use the `switchport vlan-mapping tunnel l2protocol forward` command in Interface (Ethernet, Port Channel) Configuration mode. To restore the default configuration, use the `no` form of this command.

Syntax

```
switchport vlan-mapping tunnel l2protocol forward [protocol]
no switchport vlan-mapping tunnel l2protocol forward [protocol]
```

Parameters

- `protocol` — Configures a protocol the command is applied. The argument may have one of the following values:
 - cdp
 - lldp
 - stp
 - vtp

If the `protocol` argument is not configured then the command is applied to all these protocols.

Default Configuration

The Layer 2 frames are not forwarded.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

By default, the switch drops on edge ports input L2 PDUs with the following destination MAC addresses:

- 01:80:C2:00:00-01:80:C2:00:FF - with the exception of LACP frame (destination MAC 01:80:C2:00:00:02) which is processed by the edge port
- 01:00:0C:00:00-01:00:0C:FF:FF:FF
- 01:00:0C:CD:CD:D0

Use the `switchport vlan-mapping tunnel l2protocol forward` command to enable forward over the Provider network untagged frames of a given Layer 2 protocol received on a vlan-mapping tunnel interface. The received tagged Layer 2 frames are discarded.

When a L2 protocol is forwarded the switch overwrites the customer destination MAC address with a ‘well-known’ Multicast address 01:00:0C:CD:CD:D0 before transmission the frame on non-edge port.
When a frame with the destination address equals to this well-known Multicast address is received on non-edge port the switch forwards it to all non-edge ports belonging to the S_VLAN and to all edge ports belonging to the S-VLAN and configured with the forward option for the given protocol.

The switch replaces the ‘well-known’ destination MAC address with the respective Layer 2 protocol MAC address.

CDP cannot be both enabled and also tunneled on the same interfaces. To enable **CDP** tunneling on a Port Channel interface, **CDP** first needs to be disabled on **all** the members of the Port Channel (active and inactive). Likewise, an Ethernet Interface with CDP enabled cannot be added to a Port Channel on which CDP tunneling is enabled.

LLDP cannot be both enabled and also tunneled on the same interfaces. To enable **LLDP** tunneling on a Port Channel interface, **LLDP** first needs to be disabled on **all** the members of the Port Channel (active and inactive). Likewise, an Ethernet Interface with CDP enabled cannot be added to a Port Channel on which CDP tunneling is enabled.

If tunnel is defined, use the `no switchport vlan-mapping tunnel l2protocol forward` command without the `protocol` argument to return to the default treatment of all Layer 2 BPDUs.

Use the `no switchport vlan-mapping tunnel l2protocol forward` command with the `protocol` argument to return to the default treatment of the specified protocol BPDUs.

Example 1—The following example specifies that all the 4 protocols (CDP, LLDP, VTP and STP) frames will be forwarded:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport vlan-mapping tunnel l2protocol forward
switchxxxxxx(config-if)# exit
```

Example 2—The following example specifies that only CDP and LLDP protocols frames will be forwarded (Other 2 protocols frames of STP and VTP will be dropped):

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport vlan-mapping tunnel l2protocol forward cdp
switchxxxxxx(config-if)# switchport vlan-mapping tunnel l2protocol forward lldp
switchxxxxxx(config-if)# exit
```
To configure one-to-one VLAN translation on an edge interface, use the `switchport vlan-mapping one-to-one` command in Interface (Ethernet, Port Channel) Configuration mode. To delete the configuration, use the `no` form of this command.

Syntax
```
switchport vlan-mapping one-to-one vlan-id translated-vlan-id
no switchport vlan-mapping one-to-one [vlan-id]
```

Parameters
- `vlan-id` — Specifies the external VLAN (E-VLAN) for one-to-one VLAN translation. The range is from 1 to 4094.
- `translated-vlan-id` — Specifies B-VLAN replacing the E-VLAN. The range is from 1 to 4094.

Default Configuration
No VLAN mapping is configured.

Command Mode
Interface (Ethernet, Port Channel) Configuration mode

User Guidelines
Use the `switchport vlan-mapping one-to-one` command to configure selective one-to-one VLAN translation. The S-VLAN specified by the `translated-vlan-id` argument must be created before configuring of this command. If this VLAN does not exist the command fails.

A few `switchport vlan-mapping one-to-one` commands with different arguments can be defined on the same interface.

In the vlan-mapping one-to-one mode an interface belongs to all S-VLANs for which mapping on this interface is defined as egress tagged interface. The interface PVID is set to 4095.

In the vlan-mapping one-to-one mode an interface uses one ingress ACL and one egress ACL. The `switchport vlan-mapping one-to-one` command adds rules to this ACLs. These ACLs are applied in order to:
- Ingress ACL (in TTI):
 - Replace specified C-VLAN-ID by S-VLAN-ID.
 - Drop frames with unspecified C-VLAN-IDs.
 - Drop untagged input frames.
- Egress ACL (in TCAM):
 - Replace S-VLAN-ID by C-VLAN-ID.
The `switchport vlan-mapping one-to-one` command adds rules to these ACLs and they are bound on the interface only if its mode is vlan-mapping one-to-one.

The ingress ACL contains \(V+1 \) rules and the egress ACL contains \(V \) rules, where

- \(V \) — The number of specified C-VLANs.

Use the `no switchport vlan-mapping one-to-one vlan-id` command to delete the one-to-one VLAN translation configuration for the given E-VLAN.

Use the `no switchport vlan-mapping one-to-one` command to delete all VLAN one-to-one translations.

Example

This example shows how to configure one-to-one VLAN translation on a port:

```
switchxxxxxx(config)# interface gi1/0/1
switchxxxxxx(config-if)# switchport vlan mapping one-to-one 5 105
switchxxxxxx(config-if)# switchport vlan mapping one-to-one 15 5
switchxxxxxx(config-if)# switchport vlan mapping one-to-one 105 225
switchxxxxxx(config-if)# exit
```
map protocol protocols-group

Use the `map protocol protocols-group` VLAN Configuration mode command to map a protocol to a group of protocols. This protocol group can then be used in `switchport general map protocols-group vlan`. Use the `no` form of this command to delete a protocol from a group.

Syntax

```
map protocol protocol [encapsulation-value] protocols-group group
no map protocol protocol [encapsulation]
```

Parameters

- `protocol` — Specifies a 16-bit protocol number or one of the reserved names listed in the User Guidelines. (range: 0x0600–0xFFFF)
- `encapsulation-value` — Specifies one of the following values: Ethernet, rfc1042, llcOther.
- `protocols-group group` — Specifies the group number of the group of protocols (range: 1–2147483647).

Default Configuration

The default encapsulation value is Ethernet.

Command Mode

VLAN Database Configuration mode

User Guidelines

Forwarding of packets based on their protocol requires setting up groups of protocols and then mapping these groups to VLANs.

The value 0x8100 is not valid as the protocol number for Ethernet encapsulation.

The following protocol names are reserved for Ethernet Encapsulation:

- `ip`
- `arp`
- `ipv6`
- `ipx`

Example

The following example maps the IP protocol to protocol group number 213.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# map protocol ip protocols-group 213
```
switchport general map protocols-group vlan

Use the `switchport general map protocols-group vlan` Interface Configuration mode command to forward packets based on their protocol, otherwise known as setting up a classifying rule. This command forwards packets arriving on an interface containing a specific protocol to a specific VLAN. Use the `no` form of this command to stop forwarding packets based on their protocol.

Syntax

```
switchport general map protocols-group group vlan vlan-id
no switchport general map protocols-group group
```

Parameters

- `group`—Specifies the group number as defined in `map protocol protocols-group` command (range: 1–65535).
- `vlan-id`—Defines the VLAN ID in the classifying rule.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The VLAN classification rule priorities are:

- MAC-based VLAN (best match among the rules)
- Subnet-based VLAN (best match among the rules)
- Protocol-based VLAN
- PVID

Example

The following example forwards packets with protocols belong to protocol-group 1 to VLAN 8.

```
switchxxxxxx(config-if)# switchport general map protocols-group 1 vlan 8
```
show vlan protocols-groups

Use the `show vlan protocols-groups` EXEC mode command to display the protocols that belong to the defined protocols-groups.

Syntax

`show vlan protocols-groups`

Command Mode

User EXEC mode

Example

The following example displays protocols-groups information.

```
switchxxxxxx# show vlan protocols-groups

<table>
<thead>
<tr>
<th>Encapsulation</th>
<th>Protocol</th>
<th>Group ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>0x800 (IP)</td>
<td>1</td>
</tr>
<tr>
<td>Ethernet</td>
<td>0x806 (ARP)</td>
<td>1</td>
</tr>
<tr>
<td>Ethernet</td>
<td>0x86dd (IPv6)</td>
<td>2</td>
</tr>
<tr>
<td>Ethernet</td>
<td>0x8898</td>
<td>3</td>
</tr>
</tbody>
</table>
```
map mac macs-group

Use the `map mac macs-group` VLAN Configuration mode command to map a MAC address or range of MAC addresses to a group of MAC addresses. Use the `no` form of this command to delete the mapping.

Syntax

```
map mac mac-address {prefix-mask | host} macs-group group
no map mac mac-address {prefix-mask | host}
```

Parameters

- **mac-address**—Specifies the MAC address to be mapped to the group of MAC addresses.
- **prefix-mask**—Specifies the number of ones in the mask.
- **host**—Specifies that the mask is comprised of all 1s.
- **group**—Specifies the group number (range: 1–2147483647)

Command Mode

VLAN Database Configuration mode

User Guidelines

Forwarding of packets based on their MAC address requires setting up groups of MAC addresses and then mapping these groups to VLANs.

Up to 256 MAC addresses (host or range) can be mapped to one or many MAC-based VLAN groups.

Example

The following example creates two groups of MAC addresses, sets a port to general mode and maps the groups of MAC addresses to specific VLANs.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# map mac 0000.1111.0000 32 macs-group 1
switchxxxxxx(config-vlan)# map mac 0000.0000.2222 host macs-group 2
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general map macs-group 1 vlan 2
switchxxxxxx(config-if)# switchport general map macs-group 2 vlan 3
```
switchport general map macs-group vlan

Use the `switchport general map macs-group vlan` Interface Configuration mode command to set a MAC-based classification rule. Use the `no` form of this command to delete a classification rule.

Syntax

```
switchport general map macs-group group vlan vlan-id
go switchport general map macs-group group
```

Parameters
- `group`—Specifies the group number (range: 1–2147483647)
- `vlan-id`—Defines the VLAN ID associated with the rule.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

MAC-based VLAN rules cannot contain overlapping ranges on the same interface.

The VLAN classification rule priorities are:
- MAC-based VLAN (best match among the rules)
- Subnet-based VLAN (best match among the rules)
- Protocol-based VLAN
- PVID

User Guidelines

Each MAC address (host or range) in the MAC-based group assigned to an interface consumes a single TCAM entry.

Example

The following example creates two groups of MAC addresses, sets a port to general mode and maps the groups of MAC addresses to specific VLANs.

```plaintext
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# map mac 0000.1111.0000 32 macs-group 1
switchxxxxxx(config-vlan)# map mac 0000.0000.2222 host macs-group 2
switchxxxxxx(config-vlan)# exit
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# switchport mode general
switchxxxxxx(config-if)# switchport general map macs-group 1 vlan 2
switchxxxxxx(config-if)# switchport general map macs-group 2 vlan 3
```
show vlan macs-groups

Use the **show vlan macs-groups** EXEC mode command to display the MAC addresses that belong to the defined MAC-based classification rules.

Syntax

```
show vlan macs-groups
```

Default Configuration

Command Mode

User EXEC mode

Example

The following example displays defined MAC-based classification rules.

```
switchxxxxxx# show vlan macs-groups

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Mask</th>
<th>Group ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:12:34:56:78:90</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>00:60:70:4c:73:ff</td>
<td>40</td>
<td>1</td>
</tr>
</tbody>
</table>
```
map subnet subnets-group

Use the `map subnet subnets-group` VLAN Configuration mode command to map an IP subnet to a group of IP subnets. Use the `no` form of this command to delete the map.

Syntax

```
map subnet ip-address prefix-mask subnets-group group
no map subnet ip-address prefix-mask
```

Parameters

- `ip-address` — Specifies the IP address prefix of the subnet to be mapped to the group.
- `prefix-mask` — Specifies the number of 1s in the mask.
- `group` — Specifies the group number. (range: 1–2147483647)

Command Mode

VLAN Database Configuration mode

User Guidelines

Forwarding of packets based on their IP subnet requires setting up groups of IP subnets and then mapping these groups to VLANs.

Example

The following example maps an IP subnet to the group of IP subnets 4. It then maps this group of IP subnets to VLAN 8.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# map subnet 172.16.1.1 24 subnets-group 4
switchxxxxxx(config-vlan)# switchport general map subnets-group 4 vlan 8
```
switchport general map subnets-group vlan

Use the `switchport general map subnets-group vlan` Interface Configuration mode command to set a subnet-based classification rule. Use the `no` form of this command to delete a subnet-based classification rule.

Syntax

```
switchport general map subnets-group group vlan vlan-id
no switchport general map subnets-group group
```

Parameters

- `group` — Specifies the group number (range: 1–2147483647)
- `vlan-id` — Defines the VLAN ID associated with the rule.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The VLAN classification rule priorities are:

- MAC-based VLAN (Best match among the rules)
- Subnet-based VLAN (Best match among the rules)
- Protocol-based VLAN
- PVID

Example

The following example maps an IP subnet to the group of IP subnets 4. It then maps this group of IP subnets to VLAN 8.

```
switchxxxxxx(config)# vlan database
switchxxxxxx(config-vlan)# map subnet 172.16.1.1 24 subnets-group 4
switchxxxxxx(config-vlan)# switchport general map subnets-group 4 vlan 8
```
show vlan subnets-groups

Use the `show vlan subnets-groups` EXEC mode command to display subnets-groups information.

Syntax

```
show vlan subnets-groups
```

Command Mode

User EXEC mode

Example

The following example displays subnets-groups information.

```
switchxxxxxx# show vlan subnets-groups
IP Subnet Address   Mask   Group ID
----------------- ----------- --------------
  1.1.1.1          32   1
  172.16.2.0        24   2
```
show interfaces switchport

Use the `show interfaces switchport` Privileged EXEC command to display the administrative and operational status of all interfaces or a specific interface.

Syntax

```
show interfaces switchport [interface-id]
```

Parameters

- `Interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

Command Mode

Privileged EXEC mode

Default

Displays the status of all interfaces.

User Guidelines

Each port mode has its own private configuration. The `show interfaces switchport` command displays all these configurations, but only the port mode configuration that corresponds to the current port mode displayed in "Administrative Mode" is active.

Example

```
switchxxxxxx# show interfaces switchport gi1/0/1
Gathering information...
S-VLAN Ethernet Type: 0x88a8 (802.1ad)
VLAN Mapping Tunnel L2 protocols Global CoS: 6
Name: gi1/0/1
Switchport: enable
Administrative Mode: access
Operational Mode: down
Access Mode VLAN: 1
Access Multicast TV VLAN: none
Trunking Native Mode VLAN: 1
Trunking VLANs: 1
  2-4094 (Inactive)
General PVID: 1
General VLANS: none
General Egress Tagged VLANS: none
General Forbidden VLANS: none
General Ingress Filtering: enabled
General Acceptable Frame Type: all
General GVRP status: Enabled
General GVRP VLANS: none
Customer Mode VLAN: none
VLAN Mapping Tunnel:
S-VLAN Ethernet Type: 0x8100 (802.1q)
C-VLANs Outer S-VLAN
```

Cisco Business Switches 350 Series CLI Guide

1464
VLAN Mapping Tunnel L2 protocols S-VLAN: 100
VLAN Mapping Tunnel L2 protocols Interface CoS: 6 (global)
VLAN Mapping Tunnel L2 protocols forward enabled: cdp,stp
Drop Threshold: 4 kbps (default)

VLAN Mapping One-to-one:
C-VLANs Translated S-VLAN
--------------------- ----------------------
 2 102
 12 112
 100 10

Private-vlan promiscuous-association primary VLAN: none
Private-vlan promiscuous-association Secondary VLANs: none
Private-vlan host-association primary VLAN: none
Private-vlan host-association Secondary VLAN: none
Protected: Enabled, Uplink is gi1/0/1

Classification rules:

<table>
<thead>
<tr>
<th>Classification Type</th>
<th>Group ID</th>
<th>VLAN ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Protocol</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Protocol</td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>Subnet</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>MAC</td>
<td>1</td>
<td>77</td>
</tr>
</tbody>
</table>
private-vlan

Use the private-vlan Interface VLAN Configuration mode command to configure a private VLAN. Use the no form of this command to return the VLAN to normal VLAN configuration.

Syntax
private-vlan {primary | community | isolated}
no private-vlan

Parameters
- primary—Designate the VLAN as a primary VLAN.
- community—Designate the VLAN as a community VLAN.
- isolated—Designate the VLAN as an isolated VLAN.

Default Configuration
No private VLANs are configured.

Command Mode
Interface (VLAN) Configuration mode

User Guidelines
- The VLAN type cannot be changed if there is a private VLAN port that is a member in the VLAN.
- The VLAN type cannot be changed if it is associated with other private VLANs.
- The VLAN type is not kept as a property of the VLAN when the VLAN is deleted.

Example
The following example set vlan 2 to be primary vlan:

switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# private-vlan primary
private-vlan association

Use the **private-vlan association** Interface VLAN Configuration mode command to configure the association between the primary VLAN and secondary VLANs. Use the **no** form of this command to remove the association.

Syntax

```
private-vlan association [add | remove] secondary-vlan-list
no private-vlan association
```

Parameters

- **add secondary-vlan-list**—List of VLAN IDs of type secondary to add to a primary VLAN. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs. This is the default action.

- **remove secondary-vlan-list**—List of VLAN IDs of type secondary to remove association from a primary VLAN. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.

Default Configuration

No private VLANs are configured.

Command Mode

Interface (VLAN) Configuration mode

User Guidelines

- The command can only be executed in the context of the primary VLAN.
- A private VLAN cannot be removed or have its type changed, if it is associated with other private VLANs.
- A primary VLAN can be associated with only a single, isolated VLAN.
- A secondary VLAN can be associated with only one primary VLAN.
- The association of secondary VLANs with a primary VLAN cannot be removed if there are private VLAN ports that are members in the secondary VLAN.
- In MSTP mode, all the VLANs that are associated with a private VLAN must be mapped to the same instance.

Example

The following example associate secondary VLAN 20,21,22 and 24 to primary VLAN 2.

```
switchxxxxxx(config)# interface vlan 2
switchxxxxxx(config-if)# private-vlan association add 20-22,24
```
switchport private-vlan mapping

Use the **switchport private-vlan mapping** Interface Configuration mode command to configure the VLANs of the private VLAN promiscuous port. Use the **no** form of this command to reset to default.

Syntax

```
switchport private-vlan mapping primary-vlan-id [add | remove] secondary-vlan-list
no switchport private-vlan mapping
```

Parameters

- **primary-vlan-id** — The VLAN ID of the primary VLAN.
- **add secondary-vlan-list** — Specifies one or more secondary VLANs to be added to the port.
- **remove secondary-vlan-list** — Specifies one or more secondary VLANs to be removed from the port.

Default Configuration

No VLAN is configured.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The secondary VLANs should be associated with the primary VLANs, otherwise the configuration is not accepted.

Example

The following example add promiscuous port gi1/0/4 to primary VLAN 10 and to secondary VLAN 20.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# switchport private-vlan mapping 10 add 20
```
switchport private-vlan host-association

Use the `switchport private-vlan host-association` Interface Configuration mode command to configure the association of a host port with primary and secondary VLANs of the private VLAN. Use the no form of this command to reset to default.

Syntax

```
switchport private-vlan host-association primary-vlan-id secondary-vlan-id
no switchport private-vlan host-association
```

Parameters

- `primary-vlan-id` — The VLAN ID of the primary VLAN.
- `secondary-vlan-id` — Specifies the secondary VLAN.

Default Configuration

No association.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

The secondary VLAN must be associated with the primary VLAN, otherwise the configuration is not accepted. See the `private-vlan association` command.

The port association configuration depends on the type of the secondary VLAN. The port association configuration for a community secondary VLAN includes:

- The port is added as untagged to the primary VLAN and to the secondary VLAN.
- The PVID is set to the VLAN-ID of the secondary VLAN.
- The port ingress filtering is enabled.

The port association configuration for an isolated secondary VLAN includes:

- The port is added as untagged only to the primary VLAN and is not added to the secondary VLAN.
- The PVID is set to the VLAN-ID of the secondary VLAN.
- The port ingress filtering is disabled.

Example

The following example set port gi1/0/4 to secondary VLAN 20 in primary VLAN 10.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# switchport private-vlan host-association 10 20
```
show vlan private-vlan

Use the `show vlan private-vlan` EXEC mode command to display private VLAN information.

Syntax

`show vlan private-vlan [tag vlan-id]`

Parameters

- **tag vlan-id**—Primary VLAN that represent the private VLAN to be displayed.

Default Configuration

All private VLANs are displayed.

Command Mode

User EXEC mode

User Guidelines

The `show vlan private-vlan` command does not include non-private VLAN ports that are members in private VLANs. Tag parameters of non-primary VLAN will result in an empty show output.

Example

```
switchxxxxxx# show vlan private-vlan
Primary  Secondary  Type    Ports
---------- ---------- ---------- ----------------------
  150       151   isolated  gi1/0/2
  160       161   community gi1/0/4

switchxxxxxx# show vlan private-vlan 150
Primary  Secondary  Type    Ports
---------- ---------- ---------- ----------------------
  150       151   isolated  gi1/0/4
```
switchport access multicast-tv vlan

To assign a Multicast-TV VLAN to an access port, use the `switchport access multicast-tv vlan` command in Interface (Ethernet, Port Channel) Configuration mode. To return to the default, use the `no` format of the command.

Syntax

```
switchport access multicast-tv vlan vlan-id
no switchport access multicast-tv vlan
```

Parameters

- `vlan-id`—Specifies the Multicast TV VLAN ID.

Default Configuration

Receiving Multicast transmissions is disabled.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

When the port is assigned to a different Multicast-TV VLAN, it is automatically removed from its previous VLAN and added it to the new Multicast-TV VLAN.

When an existed Multicast-TV VLAN is assigned to an access port, the multicast messages received on a membership of the Multicast-TV VLAN are forwarded to the access port. All messages received on the access port are bridged only into its Access VLAN.

Example

The following example enables gi1/0/4 to receive Multicast transmissions from VLAN 11.

```
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# switchport access multicast-tv vlan 11
```
switchport customer multicast-tv vlan

To assign Multicast-TV VLANs to a customer port, use the `switchport customer multicast-tv vlan` command in Interface (Ethernet, Port Channel) Configuration mode. To return to the default, use the `no` format of the command.

Syntax

```plaintext
switchport customer multicast-tv vlan {add vlan-list | remove vlan-list}
```

Parameters

- `add vlan-list`—Specifies a list of Multicast TV VLANs to add to interface.
- `remove vlan-list`—Specifies a list of Multicast TV VLANs to remove from interface.

Default Configuration

The port is not a member in any Multicast TV VLAN.

Command Mode

Interface (Ethernet, Port Channel) Configuration mode

User Guidelines

When an existed Multicast-TV VLAN is assigned to a customer port, the multicast messages received on a membership of the Multicast-TV VLAN are forwarded to the customer port. All messages received on the customer port are not bridged only into the Multicast-TV VLAN.

Example

The following example enables gi1/0/4 to receive Multicast transmissions from VLANs 5, 6, 7.

```plaintext
switchxxxxxx(config)# interface gi1/0/4
switchxxxxxx(config-if)# switchport customer multicast-tv vlan add 5-7
```
show vlan multicast-tv

Use the show vlan multicast-tv EXEC mode command to display the source and receiver ports of Multicast-TV VLAN. Source ports can transmit and receive traffic to/from the VLAN, while receiver ports can only receive traffic from the VLAN.

Syntax

`show vlan multicast-tv vlan vlan-id`

Parameters

- `vlan-id`—Specifies the VLAN ID.

Command Mode

User EXEC mode

Example

The following example displays information on the source and receiver ports of Multicast-TV VLAN 1000.

```
switchxxxxxx# show vlan multicast-tv vlan 1000

<table>
<thead>
<tr>
<th>Source Ports</th>
<th>Receiver Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/3, gi1/0/4</td>
<td>gi1/0/1-2</td>
</tr>
</tbody>
</table>
```
vlan prohibit-internal-usage

Use the `vlan prohibit-internal-usage` command in Global configuration mode to specify VLANs that cannot be used by the switch as internal VLANs.

Syntax

```
vlan prohibit-internal-usage none | {add | except | remove} vlan-list
```

Parameters

- **none**—The Prohibit Internal Usage VLAN list is empty: any VLAN can be used by the switch as internal.
- **except**—The Prohibit Internal Usage VLAN list includes all VLANs except the VLANs specified by the `vlan-list` argument: only the VLANs specified by the `vlan-list` argument can be used by the switch as internal.
- **add**—Add the given VLANs to the Prohibit Internal Usage VLAN list.
- **remove**—Remove the given VLANs from the Prohibit Internal Usage VLAN list.
- **vlan-list**—List of VLAN. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs. The VLAN ID that can be used is from 1 through 4094.

Default Configuration

The Prohibit Internal usage VLAN list is empty.

Command Mode

Global Configuration mode

User Guidelines

The switch requires an internal VLAN in the following cases:

- One VLAN for each IP interface is defined directly on an Ethernet port or on a Port channel.
- One VLAN for each IPv6 tunnel.
- One VLAN for 802.1x.

When a switch needs an internal VLAN it takes a free VLAN with the highest VLAN ID.

Use the `vlan prohibit-internal-usage` command to define a list of VLANs that cannot be used as internal VLANs after reload.

If a VLAN was chosen by the software for internal usage, but you want to use that VLAN for a static or dynamic VLAN, do one of the following:

- Add the VLAN to the Prohibited User Reserved VLAN list.
- Copy the Running Configuration file to the Startup Configuration file
- Reload the switch
• Create the VLAN

Example 1—The following example specifies that VLANs 4010, 4012, and 4090-4094 cannot be used as internal VLANs:

```
vlan prohibit-internal-usage add 4010,4012,4090-4094
```

Example 2—The following specifies that all VLANs except 4000-4107 cannot be used as internal VLANs:

```
vlan prohibit-internal-usage all
vlan prohibit-internal-usage remove 4000-4107
```

Example 3—The following specifies that all VLANs except 4000-4107 cannot be used as internal VLANs:

```
vlan prohibit-internal-usage 4000-4107
```
show vlan internal usage

Use the **show vlan internal usage** Privileged EXEC mode command to display a list of VLANs used internally by the device (defined by the user).

Syntax

```plaintext
show vlan internal usage
```

Command Mode

Privileged EXEC mode

Example

The following example displays VLANs used internally by the switch:

```plaintext
show vlan internal usage
User Reserved VLAN list after reset: 4010,4012,4080-4094
Current User Reserved VLAN list: 4010,4012,4090-4094
VLAN  Usage
    ----  --------
    4089  gi1/0/2
    4088  gi1/0/3
    4087  tunnel 1
    4086  802.1x
```
Voice VLAN Commands

This chapter contains the following sections:

- show voice vlan, on page 1478
- show voice vlan local, on page 1481
- voice vlan state, on page 1482
- voice vlan refresh, on page 1484
- voice vlan id, on page 1485
- voice vlan vpt, on page 1486
- voice vlan dscp, on page 1487
- voice vlan oui-table, on page 1488
- voice vlan cos mode, on page 1490
- voice vlan cos, on page 1491
- voice vlan aging-timeout, on page 1492
- voice vlan enable, on page 1493
show voice vlan

To display the voice VLAN status for all interfaces or for a specific interface if the voice VLAN type is OUI, use the `show voice vlan` Privileged EXEC mode command.

Syntax

```
show voice vlan [type {oui [{interface-id | detailed}] | auto}]
```

Parameters

- `type oui`—(Optional) Common and OUI-voice-VLAN specific parameters are displayed.
- `type auto`—(Optional) Common and Auto Voice VLAN-specific parameters are displayed.
- `interface-id`—(Optional) Specifies an Ethernet port ID.
- `detailed`—(Optional) Displays information for non-present ports in addition to present ports.

Default Configuration

If the `type` parameter is omitted the current Voice VLAN type is used.

If the `interface-id` parameter is omitted then information about all present interfaces is displayed. If detailed is used, non-present ports are also displayed.

Command Mode

Privileged EXEC mode

User Guidelines

Using this command without parameters displays the current voice VLAN type parameters and local and agreed voice VLAN settings.

Using this command with the `type` parameter displays the voice VLAN parameters relevant to the type selected. The the local and agreed voice VLAN settings are displayed only if this is the current voice VLAN state.

The interface-id parameter is relevant only for the OUI VLAN type.

Examples

The following examples display the output of this command in various configurations.

Example 1—Displays the `auto` voice VLAN parameters (this is independent of the voice VLAN state actually enabled).

```
switch>show voice vlan type auto
switchxxxxxx# show voice vlan type auto
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
```
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 15:52:51
switchxxxxxx#

Example 2—Displays the current voice VLAN parameters when the voice VLAN state is auto-enabled.

```
switch>show voice vlan
Administrate Voice VLAN state is auto-enabled on IPv4
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 16:48:13
switchxxxxxx#
```

Example 3—Displays the current voice VLAN parameters when the administrative voice VLAN state is auto-triggered but voice VLAN has not been triggered.

```
switch>show voice vlan
Administrate Voice VLAN state is auto-triggered on ipv6
Operational Voice VLAN state is disabled
VSDP Authentication is disabled
```

Example 4—Displays the current voice VLAN parameters when the administrative voice VLAN state is auto-triggered and it has been triggered.

```
switchxxxxxx(config)# voice vlan state auto-triggered
switchxxxxxx(config)# voice vlan state auto-triggered
administrative VLAN state is auto-triggered
operate VLAN state is auto
administrative VLAN state is auto-triggered
administrative VLAN state is auto-triggered on ipv6
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Agreed Voice VLAN is received from switch 00:24:01:30:10:00
Agreed Voice VLAN priority is 0 (active static source)
Agreed Voice VLAN-ID is 5
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Jul-11 15:52:51
```

Example 5—Displays the current voice VLAN parameters when both auto voice VLAN and OUI are disabled.

```
switchxxxxxx# show voice vlan
switchxxxxxx# show voice vlan
Administrative Voice VLAN state is disable
Operational Voice VLAN state is disable
Best Local Voice VLAN-ID is 5
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
Aging timeout: 1440 minutes
```

Example 6—Displays the voice VLAN parameters when the voice VLAN operational state is OUI.

```
switch>show voice vlan
Administrative Voice VLAN state is oui-enabled
Operational Voice VLAN state is oui-enabled
Best Local Voice VLAN-ID is 1 (default)
Best Local VPT is 4
```
Best Local DSCP is 1
Aging timeout: 1440 minutes
CoS: 6
Remark: Yes
OUI table

<table>
<thead>
<tr>
<th>MAC Address - Prefix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:E0:BB</td>
<td>3COM</td>
</tr>
<tr>
<td>00:03:6B</td>
<td>Cisco</td>
</tr>
<tr>
<td>00:E0:75</td>
<td>Veritel</td>
</tr>
<tr>
<td>00:D0:1E</td>
<td>Pingtel</td>
</tr>
<tr>
<td>00:01:E3</td>
<td>Simens</td>
</tr>
<tr>
<td>00:60:B9</td>
<td>NEC/Philips</td>
</tr>
<tr>
<td>00:0F:E2</td>
<td>Huawei-3COM</td>
</tr>
<tr>
<td>00:09:6E</td>
<td>Avaya</td>
</tr>
</tbody>
</table>

Interface Enabled Secure Activated CoS Mode

<table>
<thead>
<tr>
<th>Interface</th>
<th>Enabled</th>
<th>Secure</th>
<th>Activated</th>
<th>CoS Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>all</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>src</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
show voice vlan local

The `show voice vlan local` Privileged EXEC mode command displays information about the auto voice VLAN local configuration, including the best local voice VLAN.

Syntax

```
show voice vlan local
```

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Examples

Example 1—A CDP device is connected to an interface and a conflict is detected:

```
30-Apr-2011 00:39:24 %VLAN-W-ConflictingCDPDetected: conflict detected between operational VLAN and new CDP device 00:1e:13:73:3d:62 on interface gi7. Platform TLV is -4FXO-K9, Voice VLAN-ID is 100...
```

```
switchxxxxxx# show voice vlan local
Administrative Voice VLAN state is auto-triggered on IPv6
Operational Voice VLAN state is auto-enabled
VSDP Authentication is enabled, key string name is alpha
The character '*; marks the best local Voice VLAN
VLAN-ID VPT VPT DSCP Source MAC Address Interface
-------- ----- ----- --------- ----------- ------------
  1 5 46 default --- ---
* 104 7 63 static --- ---
  100 CDP 00:1e:13:73:3d:62 gi1/0/4
```

Example 2—Displays the local voice VLAN configuration when the voice VLAN state is auto-triggered.

```
switchxxxxxx# show voice vlan local
Administrative Voice VLAN state is auto-triggered on IPv4
Operational Voice VLAN state is auto-enabled
VLAN-ID VPT VPT DSCP Source MAC Address Interface
-------- ----- ----- --------- ----------- ------------
  1 5 46 default --- ---
* 100 CDP 00:23:56:1a:dc:68 gi1/0/4 100
  CDP 00:44:55:44:55:4d gi1/0/4
The character '*; marks the best local voice VLAN.
```

Example 3—Displays the local voice VLAN configuration when the voice VLAN state is OUI.

```
switchxxxxxx# show voice vlan local
Administrative Voice VLAN state is auto-OUI
Operational Voice VLAN state is OUI
The character '*; marks the best local Voice VLAN
VLAN-ID VPT VPT DSCP Source MAC Address Interface
-------- ----- ----- --------- ----------- ------------
  1 0 0 default --- ---
* 10 1 27 static --- ---
  10 CDP 00:00:12:ea:87:dc gi1/0/1
  10 CDP 00:00:aa:aa:89:dc pol
```
voice vlan state

To set the type of voice VLAN that is functional on the device or disable voice VLAN entirely, use the voice vlan state Global Configuration mode command.

The no format of the command returns to the default.

Syntax

voice vlan state \{auto-enabled | auto-triggeredoui-enabled | disabled\}
no voice vlan state

Parameters

- **auto-enabled** — Auto Voice VLAN is enabled.
- **auto-triggered** — Auto Voice VLAN on the switch is in standby and is put into operation when the switch detects a CDP device advertising a voice VLAN or if a voice VLAN ID is configured manually on the switch.
- **oui-enabled** — Voice VLAN is of type OUI.
- **disabled** — Voice VLAN is disabled.

Default Configuration

Disabled

Command Mode

Global Configuration mode

User Guidelines

By factory default, CDP, LLDP, and LLDP-MED are enabled on the switch. In addition, manual Smartport mode and Basic QoS with trusted DSCP is enabled.

All ports are members of default VLAN 1, which is also the default Voice VLAN.

If the state is set to dynamic voice VLAN (auto-triggered) mode then voice VLAN is enabled by a trigger (advertisement received by voice device attached to port).

If the administrative state is:

- **disabled** — The operational state is disabled.
- **oui-enabled** — The operational state is oui-enabled.
- **auto-enabled** — The operational state is auto-enabled.
- **auto-triggered** — The operational state is auto-enabled only if one of the following occurs:
 - A static local configured voice VLAN ID, CoS/802.1p, and/or DSCP that is not factory default is configured.
• A CDP voice VLAN advertisement is received from a neighboring CDP device that is not a a device of the same family as the current device.

• A Voice Service Discovery Protocol (VSDP) message was received from a neighbor switch. VSDP is a Cisco Small Business proprietary protocol for SF and SG series managed switches.

• In all other cases the operational state is disabled.

Notes:

• To change the administrative state from oui-enabled to auto-enabled (or auto-triggered), or vice versa, you must first set the administrative state to disabled.

• The administrative state cannot be set to oui-enabled if the Auto SmartPort administrative state is enabled.

• The administrative state cannot be set to oui-enabled if the voice VLAN is the default VLAN (VLAN 1). For oui-enabled mode, the voice VLAN cannot be 1.

Examples

Example 1 — The following example enables the OUI mode of Voice VLAN. The first try did not work - it was necessary to first disable voice VLAN.

```
switchxxxxxx(config)# voice vlan state oui-enabled
Disable the voice VLAN before changing the voice VLAN trigger.
switchxxxxxx(config)# voice vlan state disabled
switchxxxxxx(config)# voice vlan state oui-enabled
<CR>
```

Example 2 — The following example disables the Voice VLAN state. All auto Smartport configuration on ports are removed.

```
switchxxxxxx(config)# voice vlan state disabled
All interfaces with Auto Smartport dynamic type will be set to default.
Are you sure you want to continue? (Y/N) [Y] Y
switchxxxxxx(config)# 30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 5
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 8
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 9
30-Apr-2011 00:04:41 %LINK-W-Down: Vlan 100
```

Example 3 — The following example sets the Voice VLAN state to auto-triggered. The VLANs are re-activated after auto SmartPort state is applied.

```
switchxxxxxx(config)# voice vlan state auto-triggered
switchxxxxxx(config)# 30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 5
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 8
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 9
30-Apr-2011 00:13:52 %LINK-I-Up: Vlan 100
```
voice vlan refresh

To restart the Voice VLAN discovery process on all the Auto Voice VLAN-enabled switches in the VLAN by removing all externally learned voice VLAN attributes and resetting the voice VLAN to the default voice VLAN, use the **voice vlan refresh** Global Configuration mode command.

Syntax

voice vlan refresh

Parameters

This command has no arguments or keywords

Default Configuration

None

Command Mode

Global Configuration mode

Example

```
switchxxxxxx(config)# voice vlan refresh
switchxxxxxx(config)#
30-Apr-2011 02:01:02 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 100, VPT 5, DSCP 46 (Notification that Agreed Voice VLAN is updated)
(Auto Smartport configuration is changed)
30-Apr-2011 02:01:05 %LINK-W-Down: Vlan 50
30-Apr-2011 02:01:05 %LINK-W-Down: Vlan 100
30-Apr-2011 02:01:06 %LINK-1-Up: Vlan 50
30-Apr-2011 02:01:06 %LINK-1-Up: Vlan 100
switchxxxxxx# show voice vlan
Administrative Voice VLAN state is auto-triggered
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 100
Best Local VPT is 5 (default)
Best Local DSCP is 46 (default)
(Following is the new active source)
Agreed Voice VLAN is received from switch b0:c6:9a:c1:da:00
Agreed Voice VLAN priority is 2 (active CDP device)
Agreed Voice VLAN-ID is 100
Agreed VPT is 5
Agreed DSCP is 46
Agreed Voice VLAN Last Change is 11-Apr-30 02:01:02
```
voice vlan id

To statically configure the VLAN identifier of the voice VLAN, use the **voice vlan id** Global Configuration mode command. To return the voice VLAN to the default VLAN (1), use the no format of the command.

Syntax

`voice vlan id vlan-id`

`no voice vlan id`

Parameters

`vlan id vlan-id`—Specifies the voice VLAN (range 1-4094).

Default Configuration

VLAN ID 1.

Command Mode

Global Configuration mode

User Guidelines

If the Voice VLAN does not exist, it is created automatically. It will not be removed automatically by the no version of this command.

Example

The following example enables VLAN 35 as the voice VLAN on the device.

```
switchxxxxxx(config)# voice vlan id 35
```

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N)[Y] Y

30-Apr-2011 00:19:36 %VLAN-I-VoiceVlanCreated: Voice Vlan ID 35 was created.

```
switchxxxxxx(config)#
```

30-Apr-2011 00:19:51 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 35, VPT 5, DSCP 46
voice vlan vpt

To specify a value of VPT (802.1p VLAN priority tag) that will be advertised by LLDP in the Network Policy TLV, use the `voice vlan vpt` Global Configuration mode command. To return the value to the default, use the `no` format of the command.

Syntax

```
voice vlan vpt vpt-value
no voice vlan vpt
```

Parameters

`vpt vpt-value`—The VPT value to be advertised (range 0-7).

Default Configuration

5

Command Mode

Global Configuration mode

Example

The following example sets 7 as the voice VLAN VPT. A notification that the new settings are different than the old ones is displayed.

```
switchxxxxxx(config)# voice vlan vpt 7
For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.
Are you sure you want to continue? [Y/N]? Y
30-Apr-2011 00:24:52 %VLAN-W-BestLocal!=Oper: inconsistency detected, VSDP voice VLAN configuration differs from best local. Best local is Voice VLAN-ID 104, VPT 5, DSCP 46
```

```
switchxxxxxx(config)# 30-Apr-2011 00:25:07 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 104, VPT 7, DSCP 46
```
voice vlan dscp

To specify a value of DSCP that will be advertised by LLDP in the Network Policy TLV, use the **voice vlan dscp** Global Configuration mode command. To return the value to the default, use the **no** format of the command.

Syntax

```
voice vlan dscp  dscp-value
no voice vlan dscp
```

Parameters

- `dscp dscp-value`—The DSCP value (range 0-63).

Default Configuration

```
46
```

Command Mode

Global Configuration mode

Example

The following example sets 63 as the voice VLAN DSCP.

```
switchxxxxxx(config)# voice vlan dscp 63
```

For Auto Voice VLAN, changes in the voice VLAN ID, CoS/802.1p, and/or DSCP will cause the switch to advertise the administrative voice VLAN as static voice VLAN which has higher priority than voice VLAN learnt from external sources.

Are you sure you want to continue? (Y/N) [Y] Y

30-Apr-2011 00:31:07 %VLAN-W-BestLocal!=Oper: inconsistency detected, VSDP voice VLAN configuration differs from best local. Best local is Voice VLAN-ID 104, VPT 7, DSCP 46

30-Apr-2011 00:31:22 %VLAN-I-ReceivedFromVSDP: Voice VLAN updated by VSDP. Voice VLAN-ID 104, VPT 7, DSCP 63
voice vlan oui-table

To configure the voice OUI table, use the **voice vlan oui-table** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

```
voice vlan oui-table {add mac-address-prefix | remove mac-address-prefix} [text]
no voice vlan oui-table
```

Parameters

- **add mac-address-prefix**—Adds the specified MAC address prefix to the voice VLAN OUI table (length: 3 bytes).
- **remove mac-address-prefix**—Removes the specified MAC prefix address from the voice VLAN OUI table (length: 3 bytes).
- **text**—(Optional) Adds the specified text as a description of the specified MAC address to the voice VLAN OUI table (length: 1–32 characters).

Default Configuration

The default voice VLAN OUI table is:

<table>
<thead>
<tr>
<th>OUI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:01:e3</td>
<td>Siemens AG Phone</td>
</tr>
<tr>
<td>00:03:6b</td>
<td>Cisco Phone</td>
</tr>
<tr>
<td>00:09:6e</td>
<td>Avaya Phone</td>
</tr>
<tr>
<td>00:0f:e2</td>
<td>Huawei-3COM Phone</td>
</tr>
<tr>
<td>00:60:b9</td>
<td>NEC/Philips Phone</td>
</tr>
<tr>
<td>00:d0:1e</td>
<td>Pingtel Phone</td>
</tr>
<tr>
<td>00:e0:75</td>
<td>Veritel Polycom Phone</td>
</tr>
<tr>
<td>00:e0:bb</td>
<td>3COM Phone</td>
</tr>
</tbody>
</table>

Command Mode

Global Configuration mode

User Guidelines

The classification of a packet from VoIP equipment/phones is based on the packet’s OUI in the source MAC address. OUIs are globally assigned (administered) by the IEEE.
In MAC addresses, the first three bytes contain a manufacturer ID (Organizationally Unique Identifiers (OUI)) and the last three bytes contain a unique station ID.

Since the number of IP phone manufacturers that dominates the market is limited and well known, the known OUI values are configured by default and OUIs can be added/removed by the user when required.

Example
The following example adds an entry to the voice VLAN OUI table.

```
switchxxxxx(config)# voice vlan oui-table add 00:AA:BB experimental
```
To select the OUI voice VLAN Class of Service (CoS) mode, use the `voice vlan cos mode` Interface Configuration mode command. To return to the default, use the `no` form of this command.

Syntax

```plaintext
voice vlan cos mode {src | all }
no voice vlan cos mode
```

Parameters

- `src`—QoS attributes are applied to packets with OUIs in the source MAC address.
- `all`—QoS attributes are applied to packets that are classified to the Voice VLAN.

Default Configuration

The default mode is `src`.

Command Mode

Interface Configuration mode

Example

The following example applies QoS attributes to voice packets.

```
switchxxxxxx(config-if)# voice vlan cos mode all
```
voice vlan cos

To set the OUI Voice VLAN Class of Service (CoS), use the **voice vlan cos** Global Configuration mode command. To restore the default configuration, use the **no** form of this command.

Syntax

`voice vlan cos cos [remark]`

`no voice vlan cos`

Parameters

- `cos cos`—Specifies the voice VLAN Class of Service value. (Range: 0–7)
- `remark`—(Optional) Specifies that the L2 user priority is remarked with the CoS value.

Default Configuration

The default CoS value is 6.
The L2 user priority is not remarked by default.

Command Mode

Global Configuration mode

Example

The following example sets the OUI voice VLAN CoS to 7 and does not do remarking.

```
switchxxxxxx(config)# voice vlan cos 7
```
voice vlan aging-timeout

To set the OUI Voice VLAN aging timeout interval, use the `voice vlan aging-timeout` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

voice vlan aging-timeout minutes
no voice vlan aging-timeout

Parameters

`aging-timeout minutes`—Specifies the voice VLAN aging timeout interval in minutes. (Range: 1–43200).

Default Configuration

1440 minutes

Command Mode

Global Configuration mode

Example

The following example sets the OUI Voice VLAN aging timeout interval to 12 hours.

```
switchxxxxxx(config)# voice vlan aging-timeout 720
```
voice vlan enable

To enable OUI voice VLAN configuration on an interface, use the `voice vlan enable` Interface Configuration mode mode command. To disable OUI voice VLAN configuration on an interface, use the no form of this command.

Syntax

`voice vlan enable`

`no voice vlan enable`

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled

Command Mode

Interface Configuration mode

User Guidelines

This command is applicable only if the voice VLAN state is globally configured as OUI voice VLAN (using `show voice vlan`, on page 1478).

The port can join the voice VLAN only if it is member of in the PVID/native VLAN ID.

The port is added to the voice VLAN if a packet with a source MAC address OUI address (defined by `voice vlan oui-table`, on page 1488) is trapped on the port. Note: The packet VLAN ID does not have to be the voice VLAN, it can be any VLAN.

The port joins the voice VLAN as a tagged port.

If the time since the last MAC address with a source MAC address OUI address was received on the interface exceeds the timeout limit (configured by `voice vlan aging-timeout`, on page 1492), the interface is removed from the voice VLAN.

Example

The following example enables OUI voice VLAN configuration on gi1/0/2.

```
switchxxxxxx(config)# interface gi1/0/2
switchxxxxxx(config-if)# voice vlan enable
```
voice vlan enable
Web Server Commands

This chapter contains the following sections:

- `ip https certificate`, on page 1496
- `ip http port`, on page 1497
- `ip http server`, on page 1498
- `ip http secure-server`, on page 1499
- `ip http timeout-policy`, on page 1500
- `show ip http`, on page 1501
- `show ip https`, on page 1502
ip https certificate

To configure the active certificate for HTTPS, use the `ip https certificate` Global Configuration mode command. To restore the default configuration, use the `no` form of this command.

Syntax

`ip https certificate` *number*

`no ip https certificate`

Parameters

number—Specifies the certificate number. (Range: 1–2)

Default Configuration

The default certificate number is 1.

Command Mode

Global Configuration mode

Example

The following example configures the active certificate for HTTPS.

```
switchxxxxx(config)# ip https certificate 2
```
ip http port

To specify the TCP port used by the web browser interface, use the ip http port Global Configuration mode command. To restore the default configuration, use the no form of this command.

Syntax

ip http port port-number
no ip http port

Parameters

port port-number—for use by the HTTP server. (Range: 1–59999)

Default Configuration

The default port number is 80.

Command Mode

Global Configuration mode

Example

The following example configures the http port number as 100.

switchxxxxxx(config)# ip http port 100
ip http server

To enable configuring and monitoring the device from a web browser, use the `ip http server` Global Configuration mode command. To disable this function, use the `no` form of this command.

Syntax

 ip http server
 no ip http server

Parameters

This command has no arguments or keywords.

Default Configuration

HTTP server is enabled.

Command Mode

Global Configuration mode

Example

The following example enables configuring the device from a web browser.

```
switchxxxxx(config)# ip http server
```
ip http secure-server

To enable the device to be configured or monitored securely from a browser, use the `ip http secure-server` Global Configuration mode command. To disable this function, use the `no` form of this command.

Syntax

```
ip http secure-server
no ip http secure-server
```

Parameters

This command has no arguments or keywords.

Default Configuration

Enabled

Command Mode

Global Configuration mode

Example

```
switchxxxxx(config)# ip http secure-server
```
ip http timeout-policy

To set the interval for the system to wait for user input in http/https sessions before automatic logoff, use the **ip http timeout-policy** Global Configuration mode command. To return to the default value, use the **no** form of this command.

Syntax

```
ip http timeout-policy idle-seconds [http-only | https-only]
```

```
no ip http timeout-policy
```

Parameters

- **idle-seconds**—Specifies the maximum number of seconds that a connection is kept open if no data is received or response data cannot be sent out. (Range: 0–86400)

- **http-only**—(Optional) The timeout is specified only for http

- **https-only**—(Optional) The timeout is specified only for https

Default Configuration

600 seconds. setting is applied for both HTTP and HTTPS

Command Mode

Global Configuration mode

User Guidelines

To specify no timeout, enter the **ip http timeout-policy 0** command.

Example

The following example configures the http timeout to be 1000 seconds.

```
switchxxxxxx(config)# ip http timeout-policy 1000
```
show ip http

To display the HTTP server configuration, use the `show ip http` Privileged EXEC mode command.

Syntax

```plaintext
show ip http
```

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

The following example displays the HTTP server configuration.

```plaintext
switchxxxxxx# show ip http
HTTP server enabled
Port: 80
Interactive timeout: 10 minutes, 0 seconds
```
show ip https

To display the HTTPS server configuration, use the `show ip https` Privileged EXEC mode command.

Syntax

`show ip https`

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Example

The following example displays the HTTPS server configuration.

```
switchxxxxx# show ip https
HTTPS server enabled
Port: 443
Interactive timeout: Follows the HTTP interactive timeout (10 minutes, 0 seconds)
Certificate 1 is active
Issued by: www.verisign.com
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Fingerprint: DC789788 DC88A988 127897BC BB789788
Certificate 2 is inactive
Issued by: self-signed
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Fingerprint: 1873B936 88DC3411 BC8932EF 782134BA
```