
Secure Shell Version 2 Support

The Secure Shell Version 2 Support feature allows you to configure Secure Shell (SSH) Version 2. (SSH
Version 1 support was implemented in an earlier Cisco software release.) SSH runs on top of a reliable transport
layer and provides strong authentication and encryption capabilities. The only reliable transport that is defined
for SSH is TCP. SSH provides a means to securely access and securely execute commands on another computer
over a network. The Secure Copy Protocol (SCP) feature that is provided with SSH allows for the secure
transfer of files.

• Finding Feature Information, on page 1
• Information About Secure Shell Version 2 Support, on page 1
• How to Configure Secure Shell Version 2 Support, on page 4
• Configuration Examples for Secure Shell Version 2 Support, on page 19
• Additional References for Secure Shell Version 2 Support, on page 24
• Feature Information for Secure Shell Version 2 Support, on page 24

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not
required.

Information About Secure Shell Version 2 Support

Secure Shell Version 2
The Secure Shell Version 2 Support feature allows you to configure SSH Version 2.

The configuration for the SSH Version 2 server is similar to the configuration for SSH Version 1. The ip ssh
version command defines the SSH version to be configured. If you do not configure this command, SSH by
default runs in compatibility mode; that is, both SSH Version 1 and SSH Version 2 connections are honored.

Secure Shell Version 2 Support
1

www.cisco.com/go/cfn

SSH Version 1 is a protocol that has never been defined in a standard. If you do not want your device to fall
back to the undefined protocol (Version 1), you should use the ip ssh version command and specify Version
2.

Note

The ip ssh rsa keypair-name command enables an SSH connection using the Rivest, Shamir, and Adleman
(RSA) keys that you have configured. Previously, SSH was linked to the first RSA keys that were generated
(that is, SSH was enabled when the first RSA key pair was generated). This behavior still exists, but by using
the ip ssh rsa keypair-name command, you can overcome this behavior. If you configure the ip ssh rsa
keypair-name command with a key pair name, SSH is enabled if the key pair exists or SSH will be enabled
if the key pair is generated later. If you use this command to enable SSH, you are not forced to configure a
hostname and a domain name, which was required in SSH Version 1 of the Cisco software.

The login banner is supported in SSH Version 2, but it is not supported in Secure Shell Version 1.Note

Secure Shell Version 2 Enhancements for RSA Keys
Cisco SSH Version 2 supports keyboard-interactive and password-based authentication methods. The SSH
Version 2 Enhancements for RSA Keys feature also supports RSA-based public key authentication for the
client and the server.

User authentication—RSA-based user authentication uses a private/public key pair associated with each user
for authentication. The user must generate a private/public key pair on the client and configure a public key
on the Cisco SSH server to complete the authentication.

An SSH user trying to establish credentials provides an encrypted signature using the private key. The signature
and the user’s public key are sent to the SSH server for authentication. The SSH server computes a hash over
the public key provided by the user. The hash is used to determine if the server has a matching entry. If a
match is found, an RSA-based message verification is performed using the public key. Hence, the user is
authenticated or denied access based on the encrypted signature.

Server authentication—While establishing an SSH session, the Cisco SSH client authenticates the SSH server
by using the server host keys available during the key exchange phase. SSH server keys are used to identify
the SSH server. These keys are created at the time of enabling SSH and must be configured on the client.

For server authentication, the Cisco SSH client must assign a host key for each server. When the client tries
to establish an SSH session with a server, the client receives the signature of the server as part of the key
exchange message. If the strict host key checking flag is enabled on the client, the client checks if it has the
host key entry corresponding to the server. If a match is found, the client tries to validate the signature by
using the server host key. If the server is successfully authenticated, the session establishment continues;
otherwise, it is terminated and displays a “Server Authentication Failed” message.

Storing public keys on a server uses memory; therefore, the number of public keys configurable on an SSH
server is restricted to ten users, with a maximum of two public keys per user.

Note

Secure Shell Version 2 Support
2

Secure Shell Version 2 Support
Secure Shell Version 2 Enhancements for RSA Keys

RSA-based user authentication is supported by the Cisco server, but Cisco clients cannot propose public key
as an authentication method. If the Cisco server receives a request from an open SSH client for RSA-based
authentication, the server accepts the authentication request.

Note

For server authentication, configure the RSA public key of the server manually and configure the ip ssh
stricthostkeycheck command on the Cisco SSH client.

Note

SNMP Trap Generation
Depending on your release, Simple NetworkManagement Protocol (SNMP) traps are generated automatically
when an SSH session terminates if the traps have been enabled and SNMP debugging has been enabled. For
information about enabling SNMP traps, see the “Configuring SNMP Support” module in the SNMP
Configuration Guide.

When you configure the snmp-server host command, the IP address must be the address of the PC that has
the SSH (telnet) client and that has IP connectivity to the SSH server.

Note

You must also enable SNMP debugging using the debug snmp packet command to display the traps. The
trap information includes information such as the number of bytes sent and the protocol that was used for the
SSH session.

The following example shows that an SNMP trap is set. The trap notification is generated automatically when
the SSH session terminates. In the example, a.b.c.d is the IP address of the SSH client.

snmp-server
snmp-server host a.b.c.d public tty

The following is sample output from the debug snmp packet command. The output provides SNMP trap
information for an SSH session.

Switch# debug snmp packet

SNMP packet debugging is on
Device1# ssh -l lab 10.0.0.2
Password:

Switch# exit

[Connection to 10.0.0.2 closed by foreign host]
Device1#
*Jul 18 10:18:42.619: SNMP: Queuing packet to 10.0.0.2
*Jul 18 10:18:42.619: SNMP: V1 Trap, ent cisco, addr 10.0.0.1, gentrap 6, spectrap 1
local.9.3.1.1.2.1 = 6
tcpConnEntry.1.10.0.0.1.22.10.0.0.2.55246 = 4
ltcpConnEntry.5.10.0.0.1.22.10.0.0.2.55246 = 1015
ltcpConnEntry.1.10.0.0.1.22.10.0.0.2.55246 = 1056
ltcpConnEntry.2.10.0.0.1.22.10.0.0.2.55246 = 1392
local.9.2.1.18.2 = lab

Secure Shell Version 2 Support
3

Secure Shell Version 2 Support
SNMP Trap Generation

*Jul 18 10:18:42.879: SNMP: Packet sent via UDP to 10.0.0.2

Switch#

SSH Keyboard Interactive Authentication
The SSH Keyboard Interactive Authentication feature, also known as Generic Message Authentication for
SSH, is a method that can be used to implement different types of authentication mechanisms. Basically, any
currently supported authentication method that requires only user input can be performed with this feature.
The feature is automatically enabled.

The following methods are supported:

• Password

• SecurID and hardware tokens printing a number or a string in response to a challenge sent by the server

• Pluggable Authentication Module (PAM)

• S/KEY (and other One-Time-Pads)

How to Configure Secure Shell Version 2 Support

Configuring a Device for SSH Version 2 Using a Hostname and Domain Name

SUMMARY STEPS

1. enable
2. configure terminal
3. hostname name
4. ip domain-name name
5. crypto key generate rsa
6. ip ssh [time-out seconds | authentication-retries integer]
7. ip ssh version [1 | 2]
8. exit

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Secure Shell Version 2 Support
4

Secure Shell Version 2 Support
SSH Keyboard Interactive Authentication

PurposeCommand or Action

Configures a hostname for your device.hostname name

Example:

Step 3

Device(config)# hostname cisco7200

Configures a domain name for your device.ip domain-name name

Example:

Step 4

cisco7200(config)# ip domain-name example.com

Enables the SSH server for local and remote authentication.crypto key generate rsa

Example:

Step 5

cisco7200(config)# crypto key generate rsa

(Optional) Configures SSH control variables on your device.ip ssh [time-out seconds | authentication-retries integer]

Example:

Step 6

cisco7200(config)# ip ssh time-out 120

(Optional) Specifies the version of SSH to be run on your
device.

ip ssh version [1 | 2]

Example:

Step 7

cisco7200(config)# ip ssh version 1

Exits global configurationmode and enters privileged EXEC
mode.

exit

Example:

Step 8

• Use no hostname command to return to the default
host.cisco7200(config)# exit

Configuring a Device for SSH Version 2 Using RSA Key Pairs

SUMMARY STEPS

1. enable
2. configure terminal
3. ip ssh rsa keypair-name keypair-name
4. crypto key generate rsa usage-keys label key-label modulus modulus-size
5. ip ssh [time-out seconds | authentication-retries integer]
6. ip ssh version 2
7. exit

Secure Shell Version 2 Support
5

Secure Shell Version 2 Support
Configuring a Device for SSH Version 2 Using RSA Key Pairs

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Specifies the RSA key pair to be used for SSH.ip ssh rsa keypair-name keypair-nameStep 3

Example: A Cisco device can have many RSA key pairs.Note

Device(config)# ip ssh rsa keypair-name sshkeys

Enables the SSH server for local and remote authentication
on the device.

crypto key generate rsa usage-keys label key-label
modulus modulus-size

Step 4

Example: • For SSH Version 2, the modulus size must be at least
768 bits.

Device(config)# crypto key generate rsa usage-keys
label sshkeys modulus 768 To delete the RSA key pair, use the crypto key

zeroize rsa command.When you delete the RSA
key pair, you automatically disable the SSH
server.

Note

Configures SSH control variables on your device.ip ssh [time-out seconds | authentication-retries integer]

Example:

Step 5

Device(config)# ip ssh time-out 12

Specifies the version of SSH to be run on the device.ip ssh version 2

Example:

Step 6

Device(config)# ip ssh version 2

Exits global configurationmode and enters privileged EXEC
mode.

exit

Example:

Step 7

Device(config)# exit

Secure Shell Version 2 Support
6

Secure Shell Version 2 Support
Configuring a Device for SSH Version 2 Using RSA Key Pairs

Configuring the Cisco SSH Server to Perform RSA-Based User Authentication

SUMMARY STEPS

1. enable
2. configure terminal
3. hostname name
4. ip domain-name name
5. crypto key generate rsa
6. ip ssh pubkey-chain
7. username username
8. key-string
9. key-hash key-type key-name
10. end

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Specifies the hostname.hostname name

Example:

Step 3

Device(config)# hostname host1

Defines a default domain name that the Cisco software
uses to complete unqualified hostnames.

ip domain-name name

Example:

Step 4

host1(config)# ip domain-name name1

Generates RSA key pairs.crypto key generate rsa

Example:

Step 5

host1(config)# crypto key generate rsa

Configures SSH-RSA keys for user and server
authentication on the SSH server and enters public-key
configuration mode.

ip ssh pubkey-chain

Example:

host1(config)# ip ssh pubkey-chain

Step 6

Secure Shell Version 2 Support
7

Secure Shell Version 2 Support
Configuring the Cisco SSH Server to Perform RSA-Based User Authentication

PurposeCommand or Action

• The user authentication is successful if the RSA
public key stored on the server is verified with the
public or the private key pair stored on the client.

Configures the SSH username and enters public-key user
configuration mode.

username username

Example:

Step 7

host1(conf-ssh-pubkey)# username user1

Specifies the RSA public key of the remote peer and enters
public-key data configuration mode.

key-string

Example:

Step 8

You can obtain the public key value from an
open SSH client; that is, from the
.ssh/id_rsa.pub file.

Note
host1(conf-ssh-pubkey-user)# key-string

(Optional) Specifies the SSH key type and version.key-hash key-type key-nameStep 9

Example: • The key type must be ssh-rsa for the configuration of
private public key pairs.

host1(conf-ssh-pubkey-data)# key-hash ssh-rsa key1
• This step is optional only if the key-string command
is configured.

• You must configure either the key-string command
or the key-hash command.

You can use a hashing software to compute the
hash of the public key string, or you can also
copy the hash value from another Cisco device.
Entering the public key data using the
key-string command is the preferred way to
enter the public key data for the first time.

Note

Exits public-key data configuration mode and returns to
privileged EXEC mode.

end

Example:

Step 10

• Use no hostname command to return to the default
host.host1(conf-ssh-pubkey-data)# end

Configuring the Cisco IOS SSH Client to Perform RSA-Based Server
Authentication

SUMMARY STEPS

1. enable
2. configure terminal
3. hostname name

Secure Shell Version 2 Support
8

Secure Shell Version 2 Support
Configuring the Cisco IOS SSH Client to Perform RSA-Based Server Authentication

4. ip domain-name name
5. crypto key generate rsa
6. ip ssh pubkey-chain
7. server server-name
8. key-string
9. exit
10. key-hash key-type key-name
11. end
12. configure terminal
13. ip ssh stricthostkeycheck

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Specifies the hostname.hostname name

Example:

Step 3

Device(config)# hostname host1

Defines a default domain name that the Cisco software
uses to complete unqualified hostnames.

ip domain-name name

Example:

Step 4

host1(config)# ip domain-name name1

Generates RSA key pairs.crypto key generate rsa

Example:

Step 5

host1(config)# crypto key generate rsa

Configures SSH-RSA keys for user and server
authentication on the SSH server and enters public-key
configuration mode.

ip ssh pubkey-chain

Example:

host1(config)# ip ssh pubkey-chain

Step 6

Enables the SSH server for public-key authentication on
the device and enters public-key server configurationmode.

server server-name

Example:

Step 7

Secure Shell Version 2 Support
9

Secure Shell Version 2 Support
Configuring the Cisco IOS SSH Client to Perform RSA-Based Server Authentication

PurposeCommand or Action

host1(conf-ssh-pubkey)# server server1

Specifies the RSA public-key of the remote peer and enters
public key data configuration mode.

key-string

Example:

Step 8

You can obtain the public key value from an
open SSH client; that is, from the
.ssh/id_rsa.pub file.

Note
host1(conf-ssh-pubkey-server)# key-string

Exits public-key data configuration mode and enters
public-key server configuration mode.

exit

Example:

Step 9

host1(conf-ssh-pubkey-data)# exit

(Optional) Specifies the SSH key type and version.key-hash key-type key-nameStep 10

Example: • The key type must be ssh-rsa for the configuration of
private/public key pairs.

host1(conf-ssh-pubkey-server)# key-hash ssh-rsa
key1 • This step is optional only if the key-string command

is configured.

• You must configure either the key-string command
or the key-hash command.

You can use a hashing software to compute the
hash of the public key string, or you can copy
the hash value from another Cisco device.
Entering the public key data using the
key-string command is the preferred way to
enter the public key data for the first time.

Note

Exits public-key server configuration mode and returns to
privileged EXEC mode.

end

Example:

Step 11

host1(conf-ssh-pubkey-server)# end

Enters global configuration mode.configure terminal

Example:

Step 12

host1# configure terminal

Ensures that server authentication takes place.ip ssh stricthostkeycheckStep 13

Example: • The connection is terminated in case of a failure.

host1(config)# ip ssh stricthostkeycheck • Use no hostname command to return to the default
host.

Secure Shell Version 2 Support
10

Secure Shell Version 2 Support
Configuring the Cisco IOS SSH Client to Perform RSA-Based Server Authentication

Starting an Encrypted Session with a Remote Device

The device with which you want to connect must support a Secure Shell (SSH) server that has an encryption
algorithm that is supported in Cisco software. Also, you need not enable your device. SSH can be run in
disabled mode.

Note

SUMMARY STEPS

1. ssh [-v {1 | 2} | -c {aes128-ctr | aes192-ctr | aes256-ctr | aes128-cbc | 3des | aes192-cbc | aes256-cbc}
| -l user-id | -l user-id:vrf-name number ip-address ip-address | -l user-id:rotary number ip-address
| -m {hmac-md5-128 | hmac-md5-96 | hmac-sha1-160 | hmac-sha1-96} | -o numberofpasswordprompts
n | -p port-num] {ip-addr | hostname} [command | -vrf]

DETAILED STEPS

PurposeCommand or Action

Starts an encrypted session with a remote networking
device.

ssh [-v {1 | 2} | -c {aes128-ctr | aes192-ctr | aes256-ctr |
aes128-cbc | 3des | aes192-cbc | aes256-cbc} | -l user-id
| -l user-id:vrf-name number ip-address ip-address | -l

Step 1

user-id:rotary number ip-address | -m {hmac-md5-128 |
hmac-md5-96 | hmac-sha1-160 | hmac-sha1-96} | -o
numberofpasswordprompts n | -p port-num] {ip-addr |
hostname} [command | -vrf]

Example:

Device# ssh -v 2 -c aes256-ctr -m hmac-sha1-96 -l
user2 10.76.82.24

Enabling Secure Copy Protocol on the SSH Server

The following task configures the server-side functionality for SCP. This task shows a typical configuration
that allows the device to securely copy files from a remote workstation.

Note

SUMMARY STEPS

1. enable
2. configure terminal
3. aaa new-model
4. aaa authentication login default local
5. aaa authorization exec defaultlocal
6. usernamename privilege privilege-level password password
7. ip ssh time-outseconds
8. ip ssh authentication-retries integer

Secure Shell Version 2 Support
11

Secure Shell Version 2 Support
Starting an Encrypted Session with a Remote Device

9. ip scpserverenable
10. exit
11. debug ip scp

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Enables the AAA access control model.aaa new-model

Example:

Step 3

Device(config)# aaa new-model

Sets AAA authentication at login to use the local username
database for authentication.

aaa authentication login default local

Example:

Step 4

Device(config)# aaa authentication login default
local

Sets the parameters that restrict user access to a network,
runs the authorization to determine if the user ID is allowed

aaa authorization exec defaultlocal

Example:

Step 5

to run an EXEC shell, and specifies that the system must
use the local database for authorization.

Device(config)# aaa authorization exec default
local

Establishes a username-based authentication system, and
specifies the username, privilege level, and an unencrypted
password.

usernamename privilege privilege-level password
password

Example:

Step 6

The minimum value for the privilege-level
argument is 15. A privilege level of less than
15 results in the connection closing.

Note
Device(config)# username samplename privilege 15
password password1

Sets the time interval (in seconds) that the device waits for
the SSH client to respond.

ip ssh time-outseconds

Example:

Step 7

Device(config)# ip ssh time-out 120

Sets the number of authentication attempts after which the
interface is reset.

ip ssh authentication-retries integer

Example:

Step 8

Secure Shell Version 2 Support
12

Secure Shell Version 2 Support
Enabling Secure Copy Protocol on the SSH Server

PurposeCommand or Action

Device(config)# ip ssh authentication-retries 3

Enables the device to securely copy files from a remote
workstation.

ip scpserverenable

Example:

Step 9

Device(config)# ip scp server enable

Exits global configuration mode and returns to privileged
EXEC mode.

exit

Example:

Step 10

Device(config)# exit

(Optional) Provides diagnostic information about SCP
authentication problems.

debug ip scp

Example:

Step 11

Device# debug ip scp

Verifying the Status of the Secure Shell Connection

SUMMARY STEPS

1. enable
2. show ssh
3. exit

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Displays the status of SSH server connections.show ssh

Example:

Step 2

Device# show ssh

Exits privileged EXEC mode and returns to user EXEC
mode.

exit

Example:

Step 3

Device# exit

Secure Shell Version 2 Support
13

Secure Shell Version 2 Support
Verifying the Status of the Secure Shell Connection

Examples

The following sample output from the show ssh command displays status of various SSH Version
1 and Version 2 connections for Version 1 and Version 2 connections:

Device# show ssh

Connection Version Encryption State Username
0 1.5 3DES Session started lab
Connection Version Mode Encryption Hmac State
Username
1 2.0 IN aes128-cbc hmac-md5 Session started lab
1 2.0 OUT aes128-cbc hmac-md5 Session started lab

The following sample output from the show ssh command displays status of various SSH Version
1 and Version 2 connections for a Version 2 connection with no Version 1 connection:

Device# show ssh

Connection Version Mode Encryption Hmac State
Username
1 2.0 IN aes128-cbc hmac-md5 Session started lab
1 2.0 OUT aes128-cbc hmac-md5 Session started lab
%No SSHv1 server connections running.

The following sample output from the show ssh command displays status of various SSH Version
1 and Version 2 connections for a Version 1 connection with no Version 2 connection:

Device# show ssh

Connection Version Encryption State Username
0 1.5 3DES Session started lab
%No SSHv2 server connections running.

Verifying the Secure Shell Status

SUMMARY STEPS

1. enable
2. show ip ssh
3. exit

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Secure Shell Version 2 Support
14

Secure Shell Version 2 Support
Verifying the Secure Shell Status

PurposeCommand or Action

Example: • Enter your password if prompted.

Device> enable

Displays the version and configuration data for SSH.show ip ssh

Example:

Step 2

Device# show ip ssh

Exits privileged EXEC mode and returns to user EXEC
mode.

exit

Example:

Step 3

Device# exit

Examples

The following sample output from the show ip ssh command displays the version of SSH that is
enabled, the authentication timeout values, and the number of authentication retries for Version 1
and Version 2 connections:

Device# show ip ssh

SSH Enabled - version 1.99
Authentication timeout: 120 secs; Authentication retries: 3

The following sample output from the show ip ssh command displays the version of SSH that is
enabled, the authentication timeout values, and the number of authentication retries for a Version 2
connection with no Version 1 connection:

--
Device# show ip ssh

SSH Enabled - version 2.0
Authentication timeout: 120 secs; Authentication retries: 3
--

The following sample output from the show ip ssh command displays the version of SSH that is
enabled, the authentication timeout values, and the number of authentication retries for a Version 1
connection with no Version 2 connection:

--
Device# show ip ssh

3d06h: %SYS-5-CONFIG_I: Configured from console by console
SSH Enabled - version 1.5
Authentication timeout: 120 secs; Authentication retries: 3
--

Secure Shell Version 2 Support
15

Secure Shell Version 2 Support
Verifying the Secure Shell Status

Monitoring and Maintaining Secure Shell Version 2

SUMMARY STEPS

1. enable
2. debug ip ssh
3. debug snmp packet

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enables debugging of SSH.debug ip ssh

Example:

Step 2

Device# debug ip ssh

Enables debugging of every SNMP packet sent or received
by the device.

debug snmp packet

Example:

Step 3

Device# debug snmp packet

Example

The following sample output from the debug ip ssh command shows the connection is an SSH
Version 2 connection:

Device# debug ip ssh

00:33:55: SSH1: starting SSH control process
00:33:55: SSH1: sent protocol version id SSH-1.99-Cisco-1.25
00:33:55: SSH1: protocol version id is - SSH-2.0-OpenSSH_2.5.2p2
00:33:55: SSH2 1: send: len 280 (includes padlen 4)
00:33:55: SSH2 1: SSH2_MSG_KEXINIT sent
00:33:55: SSH2 1: ssh_receive: 536 bytes received
00:33:55: SSH2 1: input: packet len 632
00:33:55: SSH2 1: partial packet 8, need 624, maclen 0
00:33:55: SSH2 1: ssh_receive: 96 bytes received
00:33:55: SSH2 1: partial packet 8, need 624, maclen 0
00:33:55: SSH2 1: input: padlen 11
00:33:55: SSH2 1: received packet type 20
00:33:55: SSH2 1: SSH2_MSG_KEXINIT received
00:33:55: SSH2: kex: client->server aes128-cbc hmac-md5 none
00:33:55: SSH2: kex: server->client aes128-cbc hmac-md5 none
00:33:55: SSH2 1: expecting SSH2_MSG_KEXDH_INIT
00:33:55: SSH2 1: ssh_receive: 144 bytes received
00:33:55: SSH2 1: input: packet len 144
00:33:55: SSH2 1: partial packet 8, need 136, maclen 0

Secure Shell Version 2 Support
16

Secure Shell Version 2 Support
Monitoring and Maintaining Secure Shell Version 2

00:33:55: SSH2 1: input: padlen 5
00:33:55: SSH2 1: received packet type 30
00:33:55: SSH2 1: SSH2_MSG_KEXDH_INIT received
00:33:55: SSH2 1: signature length 111
00:33:55: SSH2 1: send: len 384 (includes padlen 7)
00:33:55: SSH2: kex_derive_keys complete
00:33:55: SSH2 1: send: len 16 (includes padlen 10)
00:33:55: SSH2 1: newkeys: mode 1
00:33:55: SSH2 1: SSH2_MSG_NEWKEYS sent
00:33:55: SSH2 1: waiting for SSH2_MSG_NEWKEYS
00:33:55: SSH2 1: ssh_receive: 16 bytes received
00:33:55: SSH2 1: input: packet len 16
00:33:55: SSH2 1: partial packet 8, need 8, maclen 0
00:33:55: SSH2 1: input: padlen 10
00:33:55: SSH2 1: newkeys: mode 0
00:33:55: SSH2 1: received packet type 2100:33:55: SSH2 1: SSH2_MSG_NEWKEYS received
00:33:56: SSH2 1: ssh_receive: 48 bytes received
00:33:56: SSH2 1: input: packet len 32
00:33:56: SSH2 1: partial packet 16, need 16, maclen 16
00:33:56: SSH2 1: MAC #3 ok
00:33:56: SSH2 1: input: padlen 10
00:33:56: SSH2 1: received packet type 5
00:33:56: SSH2 1: send: len 32 (includes padlen 10)
00:33:56: SSH2 1: done calc MAC out #3
00:33:56: SSH2 1: ssh_receive: 64 bytes received
00:33:56: SSH2 1: input: packet len 48
00:33:56: SSH2 1: partial packet 16, need 32, maclen 16
00:33:56: SSH2 1: MAC #4 ok
00:33:56: SSH2 1: input: padlen 9
00:33:56: SSH2 1: received packet type 50
00:33:56: SSH2 1: send: len 32 (includes padlen 13)
00:33:56: SSH2 1: done calc MAC out #4
00:34:04: SSH2 1: ssh_receive: 160 bytes received
00:34:04: SSH2 1: input: packet len 64
00:34:04: SSH2 1: partial packet 16, need 48, maclen 16
00:34:04: SSH2 1: MAC #5 ok
00:34:04: SSH2 1: input: padlen 13
00:34:04: SSH2 1: received packet type 50
00:34:04: SSH2 1: send: len 16 (includes padlen 10)
00:34:04: SSH2 1: done calc MAC out #5
00:34:04: SSH2 1: authentication successful for lab
00:34:04: SSH2 1: input: packet len 64
00:34:04: SSH2 1: partial packet 16, need 48, maclen 16
00:34:04: SSH2 1: MAC #6 ok
00:34:04: SSH2 1: input: padlen 6
00:34:04: SSH2 1: received packet type 2
00:34:04: SSH2 1: ssh_receive: 64 bytes received
00:34:04: SSH2 1: input: packet len 48
00:34:04: SSH2 1: partial packet 16, need 32, maclen 16
00:34:04: SSH2 1: MAC #7 ok
00:34:04: SSH2 1: input: padlen 19
00:34:04: SSH2 1: received packet type 90
00:34:04: SSH2 1: channel open request
00:34:04: SSH2 1: send: len 32 (includes padlen 10)
00:34:04: SSH2 1: done calc MAC out #6
00:34:04: SSH2 1: ssh_receive: 192 bytes received
00:34:04: SSH2 1: input: packet len 64
00:34:04: SSH2 1: partial packet 16, need 48, maclen 16
00:34:04: SSH2 1: MAC #8 ok
00:34:04: SSH2 1: input: padlen 13
00:34:04: SSH2 1: received packet type 98
00:34:04: SSH2 1: pty-req request
00:34:04: SSH2 1: setting TTY - requested: height 24, width 80; set: height 24,
width 80

Secure Shell Version 2 Support
17

Secure Shell Version 2 Support
Monitoring and Maintaining Secure Shell Version 2

00:34:04: SSH2 1: input: packet len 96
00:34:04: SSH2 1: partial packet 16, need 80, maclen 16
00:34:04: SSH2 1: MAC #9 ok
00:34:04: SSH2 1: input: padlen 11
00:34:04: SSH2 1: received packet type 98
00:34:04: SSH2 1: x11-req request
00:34:04: SSH2 1: ssh_receive: 48 bytes received
00:34:04: SSH2 1: input: packet len 32
00:34:04: SSH2 1: partial packet 16, need 16, maclen 16
00:34:04: SSH2 1: MAC #10 ok
00:34:04: SSH2 1: input: padlen 12
00:34:04: SSH2 1: received packet type 98
00:34:04: SSH2 1: shell request
00:34:04: SSH2 1: shell message received
00:34:04: SSH2 1: starting shell for vty
00:34:04: SSH2 1: send: len 48 (includes padlen 18)
00:34:04: SSH2 1: done calc MAC out #7
00:34:07: SSH2 1: ssh_receive: 48 bytes received
00:34:07: SSH2 1: input: packet len 32
00:34:07: SSH2 1: partial packet 16, need 16, maclen 16
00:34:07: SSH2 1: MAC #11 ok
00:34:07: SSH2 1: input: padlen 17
00:34:07: SSH2 1: received packet type 94
00:34:07: SSH2 1: send: len 32 (includes padlen 17)
00:34:07: SSH2 1: done calc MAC out #8
00:34:07: SSH2 1: ssh_receive: 48 bytes received
00:34:07: SSH2 1: input: packet len 32
00:34:07: SSH2 1: partial packet 16, need 16, maclen 16
00:34:07: SSH2 1: MAC #12 ok
00:34:07: SSH2 1: input: padlen 17
00:34:07: SSH2 1: received packet type 94
00:34:07: SSH2 1: send: len 32 (includes padlen 17)
00:34:07: SSH2 1: done calc MAC out #9
00:34:07: SSH2 1: ssh_receive: 48 bytes received
00:34:07: SSH2 1: input: packet len 32
00:34:07: SSH2 1: partial packet 16, need 16, maclen 16
00:34:07: SSH2 1: MAC #13 ok
00:34:07: SSH2 1: input: padlen 17
00:34:07: SSH2 1: received packet type 94
00:34:07: SSH2 1: send: len 32 (includes padlen 17)
00:34:07: SSH2 1: done calc MAC out #10
00:34:08: SSH2 1: ssh_receive: 48 bytes received
00:34:08: SSH2 1: input: packet len 32
00:34:08: SSH2 1: partial packet 16, need 16, maclen 16
00:34:08: SSH2 1: MAC #14 ok
00:34:08: SSH2 1: input: padlen 17
00:34:08: SSH2 1: received packet type 94
00:34:08: SSH2 1: send: len 32 (includes padlen 17)
00:34:08: SSH2 1: done calc MAC out #11
00:34:08: SSH2 1: ssh_receive: 48 bytes received
00:34:08: SSH2 1: input: packet len 32
00:34:08: SSH2 1: partial packet 16, need 16, maclen 16
00:34:08: SSH2 1: MAC #15 ok
00:34:08: SSH2 1: input: padlen 17
00:34:08: SSH2 1: received packet type 94
00:34:08: SSH2 1: send: len 32 (includes padlen 16)
00:34:08: SSH2 1: done calc MAC out #12
00:34:08: SSH2 1: send: len 48 (includes padlen 18)
00:34:08: SSH2 1: done calc MAC out #13
00:34:08: SSH2 1: send: len 16 (includes padlen 6)
00:34:08: SSH2 1: done calc MAC out #14
00:34:08: SSH2 1: send: len 16 (includes padlen 6)
00:34:08: SSH2 1: done calc MAC out #15
00:34:08: SSH1: Session terminated normally

Secure Shell Version 2 Support
18

Secure Shell Version 2 Support
Monitoring and Maintaining Secure Shell Version 2

Configuration Examples for Secure Shell Version 2 Support

Example: Configuring Secure Shell Version 2

Device# configure terminal
Device(config)# ip ssh version 2

Example: Starting an Encrypted Session with a Remote Device

Device# ssh -v 2 -c aes256-cbc -m hmac-sha1-160 -l shaship 10.76.82.24

Example: Configuring Server-Side SCP
The following example shows how to configure the server-side functionality for SCP. This example also
configures AAA authentication and authorization on the device. This example uses a locally defined username
and password.

Device# configure terminal
Device(config)# aaa new-model
Device(config)# aaa authentication login default local
Device(config)# aaa authorization exec default local
Device(config)# username samplename privilege 15 password password1
Device(config)# ip ssh time-out 120
Device(config)# ip ssh authentication-retries 3
Device(config)# ip scp server enable

Example: Setting an SNMP Trap
The following example shows that an SNMP trap is set. The trap notification is generated automatically when
the SSH session terminates. In the example, a.b.c.d is the IP address of the SSH client.

snmp-server
snmp-server host a.b.c.d public tty

The following is sample output from the debug snmp packet command. The output provides SNMP trap
information for an SSH session.

Device1# debug snmp packet

SNMP packet debugging is on
Device1# ssh -l lab 10.0.0.2
Password:

Device2# exit

[Connection to 10.0.0.2 closed by foreign host]
Device1#
*Jul 18 10:18:42.619: SNMP: Queuing packet to 10.0.0.2

Secure Shell Version 2 Support
19

Secure Shell Version 2 Support
Configuration Examples for Secure Shell Version 2 Support

*Jul 18 10:18:42.619: SNMP: V1 Trap, ent cisco, addr 10.0.0.1, gentrap 6, spectrap 1
local.9.3.1.1.2.1 = 6
tcpConnEntry.1.10.0.0.1.22.10.0.0.2.55246 = 4
ltcpConnEntry.5.10.0.0.1.22.10.0.0.2.55246 = 1015
ltcpConnEntry.1.10.0.0.1.22.10.0.0.2.55246 = 1056
ltcpConnEntry.2.10.0.0.1.22.10.0.0.2.55246 = 1392
local.9.2.1.18.2 = lab
*Jul 18 10:18:42.879: SNMP: Packet sent via UDP to 10.0.0.2

Device1#

Examples: SSH Keyboard Interactive Authentication

Example: Enabling Client-Side Debugs
The following example shows that the client-side debugs are turned on, and the maximum number of prompts
is six (three for the SSH keyboard interactive authentication method and three for the password authentication
method).

Password:
Password:
Password:
Password:
Password:
Password: cisco123
Last login: Tue Dec 6 13:15:21 2005 from 10.76.248.213
user1@courier:~> exit
logout
[Connection to 10.76.248.200 closed by foreign host]
Device1# debug ip ssh client

SSH Client debugging is on

Device1# ssh -l lab 10.1.1.3

Password:
*Nov 17 12:50:53.199: SSH0: sent protocol version id SSH-1.99-Cisco-1.25
*Nov 17 12:50:53.199: SSH CLIENT0: protocol version id is - SSH-1.99-Cisco-1.25
*Nov 17 12:50:53.199: SSH CLIENT0: sent protocol version id SSH-1.99-Cisco-1.25
*Nov 17 12:50:53.199: SSH CLIENT0: protocol version exchange successful
*Nov 17 12:50:53.203: SSH0: protocol version id is - SSH-1.99-Cisco-1.25
*Nov 17 12:50:53.335: SSH CLIENT0: key exchange successful and encryption on
*Nov 17 12:50:53.335: SSH2 CLIENT 0: using method keyboard-interactive
Password:
Password:
Password:
*Nov 17 12:51:01.887: SSH2 CLIENT 0: using method password authentication
Password:
Password: lab
Device2>

*Nov 17 12:51:11.407: SSH2 CLIENT 0: SSH2_MSG_USERAUTH_SUCCESS message received
*Nov 17 12:51:11.407: SSH CLIENT0: user authenticated
*Nov 17 12:51:11.407: SSH2 CLIENT 0: pty-req request sent
*Nov 17 12:51:11.411: SSH2 CLIENT 0: shell request sent
*Nov 17 12:51:11.411: SSH CLIENT0: session open

Secure Shell Version 2 Support
20

Secure Shell Version 2 Support
Examples: SSH Keyboard Interactive Authentication

Example: Enabling ChPass with a Blank Password Change
In the following example, the ChPass feature is enabled, and a blank password change is accomplished using
the SSH Keyboard Interactive Authentication method. A TACACS+ access control server (ACS) is used as
the back-end AAA server.

Device1# ssh -l cisco 10.1.1.3

Password:
Old Password: cisco
New Password: cisco123
Re-enter New password: cisco123

Device2> exit

[Connection to 10.1.1.3 closed by foreign host]

Example: Enabling ChPass and Changing the Password on First Login
In the following example, the ChPass feature is enabled and TACACS+ ACS is used as the back-end server.
The password is changed on the first login using the SSH keyboard interactive authentication method.

Device1# ssh -l cisco 10.1.1.3

Password: cisco
Your password has expired.
Enter a new one now.
New Password: cisco123
Re-enter New password: cisco123

Device2> exit

[Connection to 10.1.1.3 closed by foreign host]

Device1# ssh -l cisco 10.1.1.3

Password:cisco1
Your password has expired.
Enter a new one now.
New Password: cisco
Re-enter New password: cisco12
The New and Re-entered passwords have to be the same.
Try again.
New Password: cisco
Re-enter New password: cisco

Device2>

Example: Enabling ChPass and Expiring the Password After Three Logins
In the following example, the ChPass feature is enabled and TACACS+ ACS is used as the back-end AAA
server. The password expires after three logins using the SSH keyboard interactive authentication method.

Device# ssh -l cisco. 10.1.1.3

Password: cisco

Device2> exit

Secure Shell Version 2 Support
21

Secure Shell Version 2 Support
Example: Enabling ChPass with a Blank Password Change

[Connection to 10.1.1.3 closed by foreign host]

Device1# ssh -l cisco 10.1.1.3

Password: cisco

Device2> exit

Device1# ssh -l cisco 10.1.1.3

Password: cisco

Device2> exit

[Connection to 10.1.1.3 closed by foreign host]

Device1# ssh -l cisco 10.1.1.3

Password: cisco
Your password has expired.
Enter a new one now.
New Password: cisco123
Re-enter New password: cisco123

Device2>

Example: SNMP Debugging
The following is sample output from the debug snmp packet command. The output provides SNMP trap
information for an SSH session.

Device1# debug snmp packet

SNMP packet debugging is on
Device1# ssh -l lab 10.0.0.2
Password:

Device2# exit

[Connection to 10.0.0.2 closed by foreign host]
Device1#
*Jul 18 10:18:42.619: SNMP: Queuing packet to 10.0.0.2
*Jul 18 10:18:42.619: SNMP: V1 Trap, ent cisco, addr 10.0.0.1, gentrap 6, spectrap 1
local.9.3.1.1.2.1 = 6
tcpConnEntry.1.10.0.0.1.22.10.0.0.2.55246 = 4
ltcpConnEntry.5.10.0.0.1.22.10.0.0.2.55246 = 1015
ltcpConnEntry.1.10.0.0.1.22.10.0.0.2.55246 = 1056
ltcpConnEntry.2.10.0.0.1.22.10.0.0.2.55246 = 1392
local.9.2.1.18.2 = lab
*Jul 18 10:18:42.879: SNMP: Packet sent via UDP to 10.0.0.2

Device1#

Examples: SSH Debugging Enhancements
The following is sample output from the debug ip ssh detail command. The output provides debugging
information about the SSH protocol and channel requests.

Device# debug ip ssh detail

Secure Shell Version 2 Support
22

Secure Shell Version 2 Support
Example: SNMP Debugging

00:04:22: SSH0: starting SSH control process
00:04:22: SSH0: sent protocol version id SSH-1.99-Cisco-1.25
00:04:22: SSH0: protocol version id is - SSH-1.99-Cisco-1.25
00:04:22: SSH2 0: SSH2_MSG_KEXINIT sent
00:04:22: SSH2 0: SSH2_MSG_KEXINIT received
00:04:22: SSH2:kex: client->server enc:aes128-cbc mac:hmac-sha1
00:04:22: SSH2:kex: server->client enc:aes128-cbc mac:hmac-sha1
00:04:22: SSH2 0: expecting SSH2_MSG_KEXDH_INIT
00:04:22: SSH2 0: SSH2_MSG_KEXDH_INIT received
00:04:22: SSH2: kex_derive_keys complete
00:04:22: SSH2 0: SSH2_MSG_NEWKEYS sent
00:04:22: SSH2 0: waiting for SSH2_MSG_NEWKEYS
00:04:22: SSH2 0: SSH2_MSG_NEWKEYS received
00:04:24: SSH2 0: authentication successful for lab
00:04:24: SSH2 0: channel open request
00:04:24: SSH2 0: pty-req request
00:04:24: SSH2 0: setting TTY - requested: height 24, width 80; set: height 24, width 80
00:04:24: SSH2 0: shell request
00:04:24: SSH2 0: shell message received
00:04:24: SSH2 0: starting shell for vty
00:04:38: SSH0: Session terminated normally

The following is sample output from the debug ip ssh packet command. The output provides debugging
information about the SSH packet.

Device# debug ip ssh packet

00:05:43: SSH2 0: send:packet of length 280 (length also includes padlen of 4)
00:05:43: SSH2 0: ssh_receive: 64 bytes received
00:05:43: SSH2 0: input: total packet length of 280 bytes
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 272 bytes, maclen 0
00:05:43: SSH2 0: ssh_receive: 64 bytes received
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 272 bytes, maclen 0
00:05:43: SSH2 0: ssh_receive: 64 bytes received
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 272 bytes, maclen 0
00:05:43: SSH2 0: ssh_receive: 64 bytes received
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 272 bytes, maclen 0
00:05:43: SSH2 0: ssh_receive: 24 bytes received
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 272 bytes, maclen 0
00:05:43: SSH2 0: input: padlength 4 bytes
00:05:43: SSH2 0: ssh_receive: 64 bytes received
00:05:43: SSH2 0: input: total packet length of 144 bytes
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 136 bytes, maclen 0
00:05:43: SSH2 0: ssh_receive: 64 bytes received
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 136 bytes, maclen 0
00:05:43: SSH2 0: ssh_receive: 16 bytes received
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 136 bytes, maclen 0
00:05:43: SSH2 0: input: padlength 6 bytes
00:05:43: SSH2 0: signature length 143
00:05:43: SSH2 0: send:packet of length 448 (length also includes padlen of 7)
00:05:43: SSH2 0: send:packet of length 16 (length also includes padlen of 10)
00:05:43: SSH2 0: newkeys: mode 1
00:05:43: SSH2 0: ssh_receive: 16 bytes received
00:05:43: SSH2 0: input: total packet length of 16 bytes
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 8 bytes, maclen 0
00:05:43: SSH2 0: input: padlength 10 bytes
00:05:43: SSH2 0: newkeys: mode 0
00:05:43: SSH2 0: ssh_receive: 52 bytes received
00:05:43: SSH2 0: input: total packet length of 32 bytes
00:05:43: SSH2 0: partial packet length(block size)16 bytes,needed 16 bytes, maclen 20
00:05:43: SSH2 0: MAC compared for #3 :ok

Secure Shell Version 2 Support
23

Secure Shell Version 2 Support
Examples: SSH Debugging Enhancements

Additional References for Secure Shell Version 2 Support
Related Documents

Document TitleRelated Topic

Cisco IOS Master Command List, All ReleasesCisco IOS commands

Standards

TitleStandards

Internet Engineering Task Force websiteIETF Secure Shell Version 2 Draft Standards

Technical Assistance

LinkDescription

http://www.cisco.com/cisco/web/support/index.htmlTheCisco Support andDocumentationwebsite provides
online resources to download documentation, software,
and tools. Use these resources to install and configure
the software and to troubleshoot and resolve technical
issues with Cisco products and technologies. Access to
most tools on the Cisco Support and Documentation
website requires a Cisco.com user ID and password.

Feature Information for Secure Shell Version 2 Support
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for Secure Shell Version 2 Support

Feature InformationReleasesFeature Name

The Cisco image was updated to provide for
the automatic generation of SNMP traps
when an SSH session terminates.

Cisco IOS Release
15.2(5)E

Secure Shell Version 2 Client and
Server Support

Secure Shell Version 2 Support
24

Secure Shell Version 2 Support
Additional References for Secure Shell Version 2 Support

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/mcl/allreleasemcl/all-book.html
http://www.ietf.org/
http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/go/cfn

	Secure Shell Version 2 Support
	Finding Feature Information
	Information About Secure Shell Version 2 Support
	Secure Shell Version 2
	Secure Shell Version 2 Enhancements for RSA Keys
	SNMP Trap Generation
	SSH Keyboard Interactive Authentication

	How to Configure Secure Shell Version 2 Support
	Configuring a Device for SSH Version 2 Using a Hostname and Domain Name
	Configuring a Device for SSH Version 2 Using RSA Key Pairs
	Configuring the Cisco SSH Server to Perform RSA-Based User Authentication
	Configuring the Cisco IOS SSH Client to Perform RSA-Based Server Authentication
	Starting an Encrypted Session with a Remote Device
	Enabling Secure Copy Protocol on the SSH Server
	Verifying the Status of the Secure Shell Connection
	Verifying the Secure Shell Status
	Monitoring and Maintaining Secure Shell Version 2

	Configuration Examples for Secure Shell Version 2 Support
	Example: Configuring Secure Shell Version 2
	Example: Starting an Encrypted Session with a Remote Device
	Example: Configuring Server-Side SCP
	Example: Setting an SNMP Trap
	Examples: SSH Keyboard Interactive Authentication
	Example: Enabling Client-Side Debugs
	Example: Enabling ChPass with a Blank Password Change
	Example: Enabling ChPass and Changing the Password on First Login
	Example: Enabling ChPass and Expiring the Password After Three Logins

	Example: SNMP Debugging
	Examples: SSH Debugging Enhancements

	Additional References for Secure Shell Version 2 Support
	Feature Information for Secure Shell Version 2 Support

