

Configuring Generalized Precision Time Protocol

- Information About Generalized Precision Time Protocol, on page 1
- How to Configure Generalized Precision Time Protocol, on page 3
- Monitoring Generalized Precision Time Protocol, on page 5
- Configuration Examples for Generalized Precision Time Protocol, on page 5
- Feature History for Generalized Precision Time Protocol, on page 11

Information About Generalized Precision Time Protocol

Generalized precision time protocol (PTP) is an IEEE 802.1AS standard that provides a mechanism to synchronize the clocks of the bridges and end-point devices in a network. Generalized PTP defines the mechanism to elect the grandmaster clock (using Best Master Clock Algorithm [BMCA]) among the time-aware bridges and the talker and listener. The grandmaster is the root of the timing hierarchy that gets established in a time-aware network and distributes time to the nodes below to enable synchronization.

Time synchronization also requires determining the link delay and switch delays in the network nodes. A generalized PTP switch is an IEEE 1588 boundary clock, which also determines the link delay using the peer-to-peer delay mechanism. The delays that are computed are included in the correction field of the PTP messages and relayed to the endpoints. The talker and listener use this generalized PTP time as a shared clock reference, which is used to relay and recover the media clock. Generalized PTP currently defines only domain 0 , which is what the generalized PTP switch supports.

The peer-to-peer delay mechanism runs on Spanning Tree Protocol-blocked (STP-blocked) ports as well. No other PTP messages are sent over blocked ports.

In a PTP domain, BMCA organizes clocks and ports in an hierarchical fashion, which includes clocks and port states:

Clocks

- Grandmaster (GM or GMC)
- Boundary Clock (BC)

Port States

- Master (M)
- Slave (S)
- Passive (P)

Generalized Precision Time Protocol on an EtherChannel Interface

An EtherChannel interface allows multiple physical Ethernet links to be combined into one logical channel. Configuring an EtherChannel interface allows load sharing of traffic among the links in the channel as well as redundancy if one or more links in the EtherChannel fail. This behaviour of an EtherChannel interface does not change when generalized PTP is configured.
For example, in Figure 1: Generalized Precision Time Protocol on an EtherChannel Interface shows that two switches (Switch A and Switch B) are connected through an eight-member EtherChannel. If you consider Switch A as the master clock, all the ports that are a part of the EtherChannel are master ports. Similarly, Switch B is the slave clock, and one of the ports from the EtherChannel bundle becomes the slave port while all the other ports become passive ports. It is always the port with the lowest port number in the EtherChannel bundle that is designated as the slave port. If that slave port is disabled or shut down for any reason, the next port with the lowest port number is designated as the slave port.

The master and slave relationship is established when the feature is configured on an EtherChannel interface as well. The master ports from Switch A send and receive generalized PTP messages. In Switch B, only the slave port exchanges generalized PTP messages. There is no exchange of generalized PTP messages in the passive ports.
Figure 1: Generalized Precision Time Protocol on an EtherChannel Interface

Master ports (M)
Slave port (S)
Passive ports (P)
--- PTP messages being sent and received

How to Configure Generalized Precision Time Protocol

This section describes the various configurations available for generalized PTP.

Enabling Generalized Precision Time Protocol

To enable generalized PTP on a device, perform this procedure.

Procedure

	Command or Action	Purpose				
Step 1	enable Example: Device> enable	Enables privileged EXEC mode.				
Enter your password, if prompted.				Step 2	configure terminal Example: Device configure terminal	Enters global configuration mode.
:---	:---	:---				
Step 3	[nolptp profile dot1as Example: Device (config) \# ptp profile dot1as	Generalized PTP is enabled globally. Use the no form of this command to disable generalized PTP globally.				
Step 4	end Example: Device (config) \# end	Returns to privileged EXEC mode.				

Enabling Generalized Precision Time Protocol on an Interface

To enable generalized PTP on an interface, perform this procedure.
Procedure

	Command or Action	Purpose
Step 1	enable Example: Device> enable	Enables privileged EXEC mode.
Enter your password, if prompted.		
Step 2	configure terminal Example: Device\# configure terminal	Enters global configuration mode.
Step 3	interface interface-id Example:	Defines the interface to be configured as a trunk, and enters interface configuration mode. The

	Command or Action	Purpose
Step 4	Device (config) \# interface te1/1/1 Example: Device (config-if) \# ptp enable	interface that you specify can be a part of an EtherChannel.
Step 5	end Example: Device(config-if) \# end	Enables generalized PTP on all the interfaces. To disable generalized PTP on a port, use the no form of this command: Device (config-if) \# no ptp enable

Configuring the Values of Precision Time Protocol Clocks

Follow these steps to configure the values of PTP clocks, priority1 and priority2:

Procedure

	Command or Action	Purpose
Step 1	enable Example: Device> enable	Enables privileged EXEC mode. Enter your password, if prompted.
Step 2	configure terminal Example: Device\# configure terminal	Enters global configuration mode. Example: Device (config) \# ptp priority1 120
Step 3	Note is from 0 to 255. The default value is 128. If the value of priority1 is configured as 255, the clock cannot be considered as grandmaster.	
Step 4	ptp priority2 value Example: Device (config) \# ptp priority2 120	Sets the value of PTP clock priority1. The range
Step 5	exit Example: Device (config) \# exit	Rets the value of PTP clock priority2. The range is from 0 to 255. The default value is 128.

Monitoring Generalized Precision Time Protocol

Use the following commands in privileged EXEC mode to monitor generalized PTP.
Table 1: Commands to Monitor Generalized Precision Time Protocol

Command	Purpose
show ptp brief	Displays the brief status of PTP on all interfaces.
show ptp clock	Displays PTP clock information.
show ptp parent	Displays the parent clock information.
show ptp port	Displays the PTP port information.
show platform software fed switch active ptp if-id \{interface-id $\}$	Displays details about the PTP status on a port.

Configuration Examples for Generalized Precision Time Protocol

The following sections provide configuration examples for generalized PTP.

Example: Verifying Generalized Precision Time Protocol

The following is a sample output of the show ptp brief command:

```
Device# show ptp brief
Interface
FortyGigabitEthernet1/1/1
FortyGigabitEthernet1/1/2
GigabitEthernet1/1/1
GigabitEthernet1/1/2
GigabitEthernet1/1/3
\begin{tabular}{ll} 
Domain & PTP State \\
0 & FAULTY \\
0 & SLAVE \\
0 & FAULTY \\
0 & MASTER \\
0 & FAULTY \\
0 & FAULTY \\
0 & FAULTY \\
0 & MASTER \\
0 & FAULTY \\
0 & FAULTY \\
0 & FAULTY \\
0 & MASTER \\
0 & FAULTY \\
0 & FAULTY
\end{tabular}
```

TenGigabitEthernet1/0/19	0	MASTER
TenGigabitEthernet1/0/20	0	FAULTY
TenGigabitEthernet1/0/21	0	FAULTY
TenGigabitEthernet1/0/22	0	FAULTY
TenGigabitEthernet1/0/23	0	FAULTY
TenGigabitEthernet1/0/24	0	FAULTY
TenGigabitEthernet1/1/1	0	FAULTY
TenGigabitEthernet1/1/2	0	FAULTY
TenGigabitEthernet1/1/3	0	FAULTY
TenGigabitEthernet1/1/4	0	FAULTY
TenGigabitEthernet1/1/5	0	FAULTY
TenGigabitEthernet1/1/6	0	FAULTY
TenGigabitEthernet1/1/7	0	FAULTY
TenGigabitEthernet $1 / 1 / 8$	0	FAULTY

The following is a sample output of the show ptp clock command:

```
Device# show ptp clock
    PTP CLOCK INFO
        PTP Device Type: Boundary clock
        PTP Device Profile: IEEE 802/1AS Profile
        Clock Identity: 0x4:6C:9D:FF:FE:4F:95:0
        Clock Domain: 0
        Number of PTP ports: 38
        PTP Packet priority: 4
        Priority1: 128
        Priority2: 128
        Clock Quality:
            Class: 248
            Accuracy: Unknown
            Offset (log variance): 16640
    Offset From Master(ns): 0
    Mean Path Delay(ns): 0
    Steps Removed: 3
    Local clock time: 00:12:13 UTC Jan 1 1970
```

The following is a sample output of the show ptp parent command:

```
Device# show ptp parent
    PTP PARENT PROPERTIES
        Parent Clock:
        Parent Clock Identity: 0xB0:7D:47:FF:FE:9E:B6:80
        Parent Port Number: 3
        Observed Parent Offset (log variance): 16640
        Observed Parent Clock Phase Change Rate: N/A
        Grandmaster Clock:
        Grandmaster Clock Identity: 0x4:6C:9D:FF:FE:67:3A:80
        Grandmaster Clock Quality:
            Class: 248
            Accuracy: Unknown
            Offset (log variance): 16640
            Priority1: 0
            Priority2: 128
```

The following is a sample output of the show ptp port command:

```
Device# show ptp port
PTP PORT DATASET: FortyGigabitEthernet1/1/1
    Port identity: clock identity: 0x4:6C:9D:FF:FE:4E:3A:80
    Port identity: port number: 1
    PTP version: 2
    Port state: FAULTY
    Delay request interval(log mean): 5
    Announce receipt time out: 3
    Peer mean path delay(ns): 0
```

```
Announce interval(log mean): 1
Sync interval(log mean): 0
Delay Mechanism: End to End
Peer delay request interval(log mean): 0
Sync fault limit: 500000000
PTP PORT DATASET: FortyGigabitEthernet1/1/2
    Port identity: clock identity: 0x4:6C:9D:FF:FE:4E:3A:80
    Port identity: port number: 2
    PTP version: 2
    Port state: FAULTY
    Delay request interval(log mean): 5
    Announce receipt time out: 3
    Peer mean path delay(ns): 0
    Announce interval(log mean): 1
--More-
```

The following is a sample output of the show ptp port command for an interface:

```
Device# show ptp port gil/0/26
PTP PORT DATASET: GigabitEthernet1/0/26
    Port identity: clock identity: 0x4:6C:9D:FF:FE:4E:3A:80
    Port identity: port number: 28
    PTP version: 2
    Port state: MASTER
    Delay request interval(log mean): 5
    Announce receipt time out: 3
    Peer mean path delay(ns): 0
    Announce interval(log mean): 1
    Sync interval(log mean): 0
    Delay Mechanism: Peer to Peer
    Peer delay request interval(log mean): 0
    Sync fault limit: 500000000
```

The following is a sample output of the show platform software fed switch active ptp if-id command for an interface:

```
Device# show platform software fed switch active ptp if-id 0x20
Displaying port data for if_id 20
========================================
Port Mac Address 04:6C:9D:4E:3A:9A
Port Clock Identity 04:6C:9D:FF:FE:4E:3A:80
Port number 28
PTP Version 2
domain_value 0
dotlas capable: FALSE
sync_recpt_timeout_time_interval 375000000 nanoseconds
sync_interval 1250000000 nanoseconds
neighbor_rate_ratio 0.000000
neighbor_prop_delay 0 nanoseconds
compute_neighbor_rate_ratio: TRUE
compute_neighbor_prop_delay: TRUE
port_enabled: TRUE
ptt port enabled: TRUE
current_log_pdelay_req_interval 0
pdelay_req_interval 0 nanoseconds
allowe\overline{d_lost_responses 3}
neighbor_prop_delay_threshold 2000 nanoseconds
is_measuring_\overline{delay : FALSE}
Port state: : MASTER
sync seq_num 22023
delay_req_seq_num 23857
num sync messagges transmitted 0
num sync messages received 0
```

```
num followup messages transmitted 0
num followup messages received 0
num pdelay requests transmitted 285695
num pdelay requests received 0
num pdelay responses transmitted 0
num pdelay responses received 0
num pdelay followup responses transmitted 0
num pdelay followup responses received 0
```


Example: Verifying Generalized Precision Time Protocol on an EtherChannel Interface

The following examples show how to verify generalized PTP on an EtherChannel interface (see Figure 1: Generalized Precision Time Protocol on an EtherChannel Interface).

Master Clock

The following is a sample output of the show ptp brief command used to verify the PTP state on an interface:

```
Device# show ptp brief | exclude FAULTY
Interface Domain PTP State
TenGigE1/0/39 0 MASTER
TenGigE1/0/44 0 MASTER
TenGigE1/0/48 0 MASTER
```

The following is a sample output of the show etherchannel summary command used to verify if the interface configured on each port is an EtherChannel interface:

```
Device# show etherchannel 1 summary
Flags: D - down P - bundled in port-channel
    I - stand-alone s - suspended
    H - Hot-standby (LACP only)
    R - Layer3 S - Layer2
    U - in use f - failed to allocate aggregator
    M - not in use, minimum links not met
    u - unsuitable for bundling
    w - waiting to be aggregated
    d - default port
    A - formed by Auto LAG
Number of channel-groups in use: 3
Number of aggregators: 3
Group Port-channel Protocol Ports
------+-------------+-----------+-------------------------------------------------------------
1 Po1(SU) LACP Hul/0/39(P) Hul/0/44(P)
    Hu1/0/48(P)
```

The following is a sample output of the show ptp port command used to verify the port state of each interface:

```
Device# show ptp port tengigabitethernet 1/0/39
PTP PORT DATASET: TenGigE1/0/39
    Port identity: clock identity: 0x0:A7:42:FF:FE:8A:84:C0
    Port identity: port number: 39
```

```
    PTP version: 2
    Port state: MASTER
    Delay request interval(log mean): 0
    Announce receipt time out: 3
    Announce interval(log mean): 0
    Sync interval(log mean): 0
    Delay Mechanism: End to End
    Peer delay request interval(log mean): 0
    Sync fault limit: 500000000
Device# show ptp port tengigabitethernet 1/0/44
PTP PORT DATASET: TenGigE1/0/44
    Port identity: clock identity: 0x0:A7:42:FF:FE:8A:84:C0
    Port identity: port number: 44
    PTP version: 2
    Port state: MASTER
    Delay request interval(log mean): 0
    Announce receipt time out: 3
    Announce interval(log mean): 0
    Sync interval(log mean): 0
    Delay Mechanism: End to End
    Peer delay request interval(log mean): 0
    Sync fault limit: 500000000
Device# show ptp port tengigabitethernet 1/0/48
PTP PORT DATASET: TenGigE1/0/48
    Port identity: clock identity: 0x0:A7:42:FF:FE:8A:84:C0
    Port identity: port number: 48
    PTP version: 2
    Port state: MASTER
Delay request interval(log mean): 0
    Announce receipt time out: 3
    Announce interval(log mean): 0
    Sync interval(log mean): 0
    Delay Mechanism: End to End
    Peer delay request interval(log mean): 0
    Sync fault limit: 500000000
```


Slave Clock

The following is a sample output of the show ptp brief command used to verify the PTP state on the interfaces:

Device\# show ptp brief	exclude FAULTY	
Interface	Domain	PTP State
tenGigE1/0/12	0	SLAVE
TenGigE1/0/20	0	PASSIVE
TenGigE1/0/23	0	PASSIVE

The following is a sample output of the show etherchannel summary command used to verify if the interface configured on each port is an EtherChannel interface:

```
Device# show etherchannel 1 summary
Flags: D - down P - bundled in port-channel
    I - stand-alone s - suspended
    H - Hot-standby (LACP only)
    R - Layer3 S - Layer2
    U - in use f - failed to allocate aggregator
    M - not in use, minimum links not met
    u - unsuitable for bundling
    w - waiting to be aggregated
```

> d - default port
> A - formed by Auto LAG

The following is a sample output of the show ptp port command used to verify the port state of each interface:

```
Device# show ptp port tengigabitethernet 1/0/12
PTP PORT DATASET: TenGigE1/0/12
    Port identity: clock identity: 0x0:A7:42:FF:FE:9B:DA:E0
    Port identity: port number: 12
    PTP version: 2
    PTP port number: 12
    PTP slot number: 0
    Port state: SLAVE
    Delay request interval(log mean): 0
    Announce receipt time out: 3
    Announce interval(log mean): 0
    Sync interval(log mean): 0
    Delay Mechanism: End to End
    Peer delay request interval(log mean): 0
    Sync fault limit: 500000000
Device# show ptp port tengigabitethernet 1/0/20
PTP PORT DATASET: TenGigE1/0/20
    Port identity: clock identity: 0x0:A7:42:FF:FE:9B:DA:E0
    Port identity: port number: 20
    PTP version: 2
    PTP port number: 20
    PTP slot number: 0
    Port state: PASSIVE
    Delay request interval(log mean): 0
    Announce receipt time out: 3
    Announce interval(log mean): 0
    Sync interval(log mean): 0
    Delay Mechanism: End to End
    Peer delay request interval(log mean): 0
    Sync fault limit: 500000000
Device# show ptp port tengigabitethernet 1/0/23
PTP PORT DATASET: TenGigE1/0/23
    Port identity: clock identity: 0x0:A7:42:FF:FE:9B:DA:E0
    Port identity: port number: 23
    PTP version: 2
    PTP port number: 23
    PTP slot number: 0
    Port state: PASSIVE
    Delay request interval(log mean): 0
    Announce receipt time out: 3
    Announce interval(log mean): 0
    Sync interval(log mean): 0
    Delay Mechanism: End to End
    Peer delay request interval(log mean): 0
    Sync fault limit: 500000000
```


Feature History for Generalized Precision Time Protocol

This table provides release and related information for features explained in this module.
These features are available on all releases subsequent to the one they were introduced in, unless noted otherwise.
$\left.\begin{array}{|l|l|l|}\hline \text { Release } & \text { Feature } & \text { Feature Information } \\ \hline \text { Cisco IOS XE Fuji 16.8.1a } & \begin{array}{l}\text { Generalized Precision } \\ \text { Time Protocol }\end{array} & \begin{array}{l}\text { Generalized Precision Time Protocol (PTP) is an } \\ \text { IEEE 802.1AS standard that provides a mechanism } \\ \text { to synchronize the clocks of the bridges and } \\ \text { end-point devices in a network. } \\ \text { Support for this feature was introduced on all the }\end{array} \\ \text { models of the Cisco Catalyst 9500 Series Switches. }\end{array}\right\}$

Use Cisco Feature Navigator to find information about platform and software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn.

