

Configuring Control Plane Policing

- Restrictions for CoPP, on page 1
- Information About CoPP, on page 2
- How to Configure CoPP, on page 11
- Configuration Examples for CoPP, on page 14
- Monitoring CoPP, on page 19
- Feature History for CoPP, on page 19

Restrictions for CoPP

Restrictions for control plane policing (CoPP) include the following:

- Only ingress CoPP is supported. The **system-cpp-policy** policy-map is available on the control plane interface, and only in the ingress direction.
- Only the **system-cpp-policy** policy-map can be installed on the control plane interface.
- The system-cpp-policy policy-map and the system-defined classes cannot be modified or deleted.
- Only the **police** action is allowed under the **system-cpp-policy** policy-map. The police rate for system-defined classes must be configured only in packets per second (pps).
- Removing the policer rate configuration, disables CoPP on all affected queues.
- We recommend not disabling the policer for a system-defined class map, that is, do not configure **no police rate** *rate* **pps** command. Doing so affects the overall system health in case of high traffic towards the CPU. Further, even if you disable the policer rate for a system-defined class map, the systems automatically reverts to the default policer rate after system bootup in order to protect the system bring-up process.
- The **show run** command does not display information about classes configured under system-cpp policy, when they are left at default values. Use the **show policy-map system-cpp-policy** or the **show policy-map control-plane** commands instead.

You can continue use the **show run** command to display information about custom policies.

• A protocol with a large number of CPU-bound packets may impact other protocols in the same class, as some of these protocols share the same policer. For example, Address Resolution Protocol (ARP) shares 4000 hardware policers with an array of host protocols like Telnet, Internet Control Message Protocol (ICMP), SSH, FTP, and SNMP in the system-cpp-police-forus class. If there is an ARP poisoning or an

ICMP attack, hardware policers start throttling any incoming traffic that exceeds 4000 packets per second to protect the CPU and the overall integrity of the system. As a result, ARP and ICMP host protocols are dropped, along with any other host protocols that share the same class.

• Starting from Cisco IOS XE Fuji 16.8.1a, the creation of user-defined class-maps is not supported.

Information About CoPP

This chapter describes how control plane policing (CoPP) works on your device and how to configure it.

CoPP Overview

The CoPP feature improves security on your device by protecting the CPU from unnecessary traffic and denial of service (DoS) attacks. It can also protect control traffic and management traffic from traffic drops caused by high volumes of other, lower priority traffic.

Your device is typically segmented into three planes of operation, each with its own objective:

- The data plane, to forward data packets.
- The control plane, to route data correctly.
- The management plane, to manage network elements.

You can use CoPP to protect most of the CPU-bound traffic and ensure routing stability, reachability, and packet delivery. Most importantly, you can use CoPP to protect the CPU from a DoS attack.

CoPP uses the modular QoS command-line interface (MQC) and CPU queues to achieve these objectives. Different types of control plane traffic are grouped together based on certain criteria, and assigned to a CPU queue. You can manage these CPU queues by configuring dedicated policers in hardware. For example, you can modify the policer rate for certain CPU queues (traffic-type), or you can disable the policer for a certain type of traffic.

Although the policers are configured in hardware, CoPP does not affect CPU performance or the performance of the data plane. But since it limits the number of packets going to CPU, the CPU load is controlled. This means that services waiting for packets from hardware may see a more controlled rate of incoming packets (the rate being user-configurable).

System-Defined Aspects of CoPP

When you power-up the device for the first time, the system automatically performs the following tasks:

- Looks for policy-map **system-cpp-policy**. If not found, the system creates and installs it on the control-plane.
- Creates eighteen class-maps under **system-cpp-policy**.

The next time you power-up the device, the system detects the policy and class maps that have already been created.

• Enables all CPU queues by default, with their respective default rate. The default rates are indicated in the table System-Defined Values for CoPP.

The **system-cpp-policy** policy map is a system-default policy map, and normally, you do not have to expressly save it to the startup configuration of the device. But, a *failed* bulk synchronization with a standby device can result in the configuration being erased from the startup configuration. In case this happens, you have to manually save the **system-cpp-policy** policy map to the startup configuration. Use the **show running-config** privileged EXEC command to verify that it has been saved:

policy-map system-cpp-policy

The following table (System-Defined Values for CoPP) lists the class-maps that the system creates when you load the device. It lists the policer that corresponds to each class-map and one or more CPU queues that are grouped under each class-map. There is a one-to-one mapping of class-maps to policers; and one or more CPU queues map to a class-map. This is followed by another table (CPU Queues and Associated Features), which lists features associated with each CPU queue.

Table 1: System-Defined Values for CoPP

Class Maps Names	Policer Index (Policer No.)	CPU queues (Queue No.)
system-cpp- police-data	WK_CPP_POLICE_DATA(0)	WK_CPU_Q_ICMP_GEN(3)
		WK_CPU_Q_BROADCAST(12)
		WK_CPU_Q_ICMP_REDIRECT(6)
system-cpp-police-12- control	WK_CPP_POLICE_L2_ CONTROL(1)	WK_CPU_Q_L2_CONTROL(1)
system-cpp-police-routing-control	WK_CPP_POLICE_ROUTING_CONTROL(2)	WK_CPU_Q_ROUTING_CONTROL(4)
		WK_CPU_Q_LOW_LATENCY (27)
system-cpp-police-punt-webauth	WK_CPP_POLICE_PU NT_WEBAUTH(7)	WK_CPU_Q_PUNT_WEBAUTH(22)
system-cpp-police- topology-control	WK_CPP_POLICE_TOPOLOGY_CONTROL(8)	WK_CPU_Q_TOPOLOGY_CONTROL(15)
system-cpp-police- multicast	WK_CPP_POLICE_MULTICAST(9)	WK_CPU_Q_TRANSIT_TRAFFIC(18)
		WK_CPU_Q_MCAST_DATA(30)
system-cpp-police-sys- data	WK_CPP_POLICE_SYS	WK_CPU_Q_OPENFLOW (13)
	_DATA(10)	WK_CPU_Q_CRYPTO_CONTROL(23)
		WK_CPU_Q_EXCEPTION(24)
		WK_CPU_Q_EGR_EXCEPTION(28)
		WK_CPU_Q_NFL_SAMPLED_DATA(26)
		WK_CPU_Q_GOLD_PKT(31)
		WK_CPU_Q_RPF_FAILED(19)
system-cpp-police-dot1x-auth	WK_CPP_POLICE_DOT1X(11)	WK_CPU_Q_DOT1X_AUTH(0)
system-cpp-police- protocol-snooping	WK_CPP_POLICE_PR(12)	WK_CPU_Q_PROTO_SNOOPING(16)
system-cpp-police-dhcp-snooping	WK_CPP_DHCP_SNOOPING(6)	WK_CPU_Q_DHCP_SNOOPING(17)

Class Maps Names	Policer Index (Policer No.)	CPU queues (Queue No.)
system-cpp-police-sw-forward	WK_CPP_POLICE_SW_FWD	WK_CPU_Q_SW_FORWARDING_Q(14)
	(13)	WK_CPU_Q_LOGGING(21)
		WK_CPU_Q_L2_LVX_DATA_PACK (11)
system-cpp-police-forus	WK_CPP_POLICE_FORUS(14)	WK_CPU_Q_FORUS_ADDR_RESOLUTION(5)
		WK_CPU_Q_FORUS_TRAFFIC(2)
system-cpp-police- multicast-end-station	WK_CPP_POLICE_MUTICAST_SVCOPNC(IS)	WK_CPU_Q_MCAST_END_STA TION_SERVICE(20)
system-cpp-default	WK_CPP_POLICE_DEFAULT_POLICER(16)	WK_CPU_Q_INTER_FED_TRAFFIC(7)
		WK_CPU_Q_EWLC_CONTROL(9)
		WK_CPU_Q_EWLC_DATA(10)
system-cpp-police-stackwise-virt-control	WK_CPP_SIACKWSE_VRIUAL_CONIRCI_(5)	WK_CPU_Q_STACKWISE_VIRTUAL_CONTROL (29)
system-cpp-police-l2lvx-control	WK_CPP_ L2_LVX_CONT_PACK(4)	WK_CPU_Q_L2_LVX_CONT_PACK(8)
system-cpp-police-high-rate-app	WK_CPP_HIGH_RATE_APP(18)	WK_CPU_Q_HIGH_RATE_APP(23)
system-cpp-police-system-critical	WK_CPP_SYSTEM_CRITICAL(3)	WK_CPU_Q_SYSTEM_CRITICAL(25)

The following table lists the CPU queues and the feature(s) associated with each CPU queue.

Table 2: CPU Queues and Associated Features

CPU queues (Queue No.)	Feature(s)
WK_CPU_Q_DOT1X_AUTH(0)	IEEE 802.1x Port-Based Authentication

CPU queues (Queue No.)	Feature(s)
WK_CPU_Q_L2_CONTROL(1)	Dynamic Trunking Protocol (DTP)
	VLAN Trunking Protocol (VTP)
	Port Aggregation Protocol (PAgP)
	Client Information Signaling Protocol (CISP)
	Message session relay protocol
	Multiple VLAN Registration Protocol (MVRP)
	Metropolitan Mobile Network (MMN)
	Link Level Discovery Protocol (LLDP)
	UniDirectional Link Detection (UDLD)
	Link Aggregation Control Protocol (LACP)
	Cisco Discovery Protocol (CDP)
	Spanning Tree Protocol (STP)
WK_CPU_Q_FORUS_TRAFFIC(2)	Host such as Telnet,Pingv4 and Pingv6, and SNMP
	Keepalive / loopback detection
	Initiate-Internet Key Exchange (IKE) protocol (IPSec)
WK_CPU_Q_ICMP_GEN(3)	ICMP - destination unreachable
	ICMP-TTL expired

CPU queues (Queue No.)	Feature(s)
WK_CPU_Q_ROUTING_CONTROL(4)	Routing Information Protocol version 1 (RIPv1)
	RIPv2
	Interior Gateway Routing Protocol (IGRP)
	Border Gateway Protocol (BGP)
	PIM-UDP
	Virtual Router Redundancy Protocol (VRRP)
	Hot Standby Router Protocol version 1 (HSRPv1)
	HSRPv2
	Gateway Load Balancing Protocol (GLBP)
	Label Distribution Protocol (LDP)
	Web Cache Communication Protocol (WCCP)
	Routing Information Protocol next generation (RIPng)
	Open Shortest Path First (OSPF)
	Open Shortest Path First version 3(OSPFv3)
	Enhanced Interior Gateway Routing Protocol (EIGRP)
	Enhanced Interior Gateway Routing Protocol version 6 (EIGRPv6)
	DHCPv6
	Protocol Independent Multicast (PIM)
	Protocol Independent Multicast version 6 (PIMv6)
	Hot Standby Router Protocol next generation (HSRPng)
	IPv6 control
	Generic Routing Encapsulation (GRE) keepalive
	Network Address Translation (NAT) punt
	Intermediate System-to-Intermediate System (IS-IS)
WK_CPU_Q_FORUS_ADDR_RESOLUTION(5)	Address Resolution Protocol (ARP)
_ ``	IPv6 neighbor advertisement and neighbor solicitation
WK_CPU_Q_ICMP_REDIRECT(6)	Internet Control Message Protocol (ICMP) redirect

CPU queues (Queue No.)	Feature(s)
WK_CPU_Q_INTER_FED_TRAFFIC(7)	Layer 2 bridge domain inject for internal communication.
WK_CPU_Q_L2_LVX_CONT_PACK(8)	Exchange ID (XID) packet
WK_CPU_Q_EWLC_CONTROL(9)	Embedded Wirelss Controller (eWLC) [Control and Provisioning of Wireless Access Points (CAPWAP) (UDP 5246)]
WK_CPU_Q_EWLC_DATA(10)	eWLC data packet (CAPWAP DATA, UDP 5247)
WK_CPU_Q_L2_LVX_DATA_PACK(11)	Unknown unicast packet punted for map request.
WK_CPU_Q_BROADCAST(12)	All types of broadcast
WK_CPU_Q_OPENFLOW(13)	Learning cache overflow (Layer 2 + Layer 3)
WK_CPU_Q_CONTROLLER_PUNT(14)	Data - access control list (ACL) Full
	Data - IPv4 options
	Data - IPv6 hop-by-hop
	Data - out-of-resources / catch all
	Data - Reverse Path Forwarding (RPF) incomplete
	Glean packet
WK_CPU_Q_TOPOLOGY_CONTROL(15)	Spanning Tree Protocol (STP)
	Resilient Ethernet Protocol (REP)
	Shared Spanning Tree Protocol (SSTP)
WK_CPU_Q_PROTO_SNOOPING(16)	Address Resolution Protocol (ARP) snooping for Dynamic ARP Inspection (DAI)
WK_CPU_Q_DHCP_SNOOPING(17)	DHCP snooping
WK_CPU_Q_TRANSIT_TRAFFIC(18)	This is used for packets punted by NAT, which need to be handled in the software path.
WK_CPU_Q_RPF_FAILED(19)	Data – mRPF (multicast RPF) failed
WK_CPU_Q_MCAST_END_STATION_SERVICE(20)	Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD) control
WK_CPU_Q_LOGGING(21)	Access control list (ACL) logging
WK_CPU_Q_PUNT_WEBAUTH(22)	Web Authentication

CPU queues (Queue No.)	Feature(s)
WK_CPU_Q_HIGH_RATE_APP(23)	Wired Application Visibility and Control (WDAVC) traffic
	Network-Based Application Recognition (NBAR) traffic
	Encrypted Traffic Analytics (ETA) for traffic analysis and classification
WK_CPU_Q_EXCEPTION(24)	IKE indication
	IP learning violation
	IP port security violation
	IP Static address violation
	IPv6 scope check
	Remote Copy Protocol (RCP) exception
	Unicast RPF fail
WK_CPU_Q_SYSTEM_CRITICAL(25)	Media Signaling/ Wireless Proxy ARP
WK_CPU_Q_NFL_SAMPLED_DATA(26)	Netflow sampled data and Media Services Proxy (MSP)
WK_CPU_Q_LOW_LATENCY(27)	Bidirectional Forwarding Detection (BFD), Precision Time Protocol (PTP)
WK_CPU_Q_EGR_EXCEPTION(28)	Egress resolution exception
WK_CPU_Q_STACKWISE_VIRTUAL_CONTROL(29)	Front side stacking protocols, namely SVL
WK_CPU_Q_MCAST_DATA(30)	Data - (S,G) creation
	Data - local joins
	Data - PIM Registration
	Data - SPT switchover
	Data - Multicast
WK_CPU_Q_GOLD_PKT(31)	Gold

User-Configurable Aspects of CoPP

You can perform these tasks to manage control plane traffic:

Note

All system-cpp-policy configurations must be saved so they are retained after reboot.

Enable or Disable a Policer for CPU Queues

Enable a policer for a CPU queue, by configuring a policer action (in packets per second) under the corresponding class-map, within the system-cpp-policy policy-map.

Disable a policer for CPU queue, by removing the policer action under the corresponding class-map, within the system-cpp-policy policy-map.

Note

If a default policer is already present, carefully consider and control its removal; otherwise the system may see a CPU hog or other anomalies, such as control packet drops.

Change the Policer Rate

You can do this by configuring a policer rate action (in packets per second), under the corresponding class-map, within the system-cpp-policy policy-map.

When setting a policer rate, note that the rate you set is automatically converted to the nearest multiple of 200. For instance, if you set the policer rate of a CPU queue 100 pps, the system changes it to 200; or if set the policer rate to 650, the system changes it to 600. See *Example: Setting the Default Policer Rates for All CPU Queues* in this chapter, for sample output that displays this behavior.

Set Policer Rates to Default

Set the policer for CPU queues to their default values, by entering the **cpp system-default** command in global configuration mode.

Upgrading or Downgrading the Software Version

Software Version Upgrades and CoPP

When you upgrade the software version on your device, the system checks and make the necessary updates as required for CoPP (For instance, it checks for the <code>system-cpp-policy</code> policy map and creates it if missing). You may also have to complete certain tasks before or after the upgrade activity. This is to ensure that any configuration updates are reflected correctly and CoPP continues to work as expected. Depending on the method you use to upgrade the software, upgrade-related tasks may be optional or recommended in some scenarios, and mandatory in others.

The system actions and user actions for an upgrade, are described here. Also included, are any release-specfic caveats.

System Actions for an Upgrade

When you upgrade the software version on your device, the system performs these actions. This applies to all upgrade methods:

- If the device did not have a system-cpp-policy policy map before upgrade, then on upgrade, the system creates a default policy map.
- If the device had a system-cpp-policy policy map before upgrade, then on upgrade, the system does not re-generate the policy.

User Actions for an Upgrade

User actions for an upgrade – depending on upgrade method:

Upgrade Method	Condition	Action Time and Action	Purpose
Regular ¹	None	After upgrade (required) Enter the cpp system-default command in global configuration mode	To get the latest, default policer rates.
In-Service Software Upgrade (ISSU) ²	If there are user-defined classes in the existing software version or If there are system-defined classes in the existing software version that are deprecated in a later release (for example: system-cpp-police-control-low-priority).	Before and after upgrade (required) Enter the cpp system-default command in global configuration mode	Enter the command before upgrade, to ensure that any required system configuration is updated, ensuring smooth ISSU operation. Enter the command after upgrade for the latest, default policer rates.

Refers to a software upgrade method that involves a reload of the switch. Can be install or bundle mode.

Software Version Downgrades and CoPP

The system actions and user actions for a downgrade, are described here.

System Actions for a Downgrade

When you downgrade the software version on your device, the system performs these actions. This applies to all downgrade methods:

• The system retains the system-cpp-policy policy map on the device, and installs it on the control plane.

User Actions for a Downgrade

User actions for a downgrade:

Upgrade Method	Condition	Action Time and Action	Purpose
Regular ³	None	No action required	Not applicable
In-Service Software Upgrade (ISSU) ⁴	None	No action required	Not applicable

³ Refers to a software upgrade method that involves a reload of the switch. Can be install or bundle mode.

If you downgrade the software version and then upgrade, the system action and user actions that apply are the same as those mentioned for upgrades.

² ISSU is supported only from one extended maintenance release to another. For more information, see In-Service Software Upgrade (ISSU).

⁴ ISSU downgrades are not supported.

How to Configure CoPP

Enabling a CPU Queue or Changing the Policer Rate

The procedure to enable a CPU queue and change the policer rate of a CPU queue is the same. Follow these steps:

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	policy-map policy-map-name	Enters the policy map configuration mode.
	Example:	
	Device(config) # policy-map system-cpp-policy Device(config-pmap) #	
Step 4	class class-name Example:	Enters the class action configuration mode. Enter the name of the class that corresponds to the CPU queue you want to enable. See table
	<pre>Device(config-pmap)# class system-cpp-police-protocol-snooping Device(config-pmap-c)#</pre>	System-Defined Values for CoPP.
Step 5	police rate rate pps Example:	Specifies an upper limit on the number of incoming packets processed per second, for the specified traffic class.
	<pre>Device(config-pmap-c)# police rate 100 pps Device(config-pmap-c-police)#</pre>	
Step 6	exit	Returns to the global configuration mode.
	Example:	
	Device(config-pmap-c-police)# exit Device(config-pmap-c)# exit	

	Command or Action	Purpose
	Device(config-pmap)# exit Device(config)#	
Step 7	control-plane Example:	Enters the control plane (config-cp) configuration mode
	Device(config)# control-plane Device(config-cp)#	
Step 8	<pre>service-policy input policy-name Example: Device(config) # control-plane Device(config-cp) #service-policy input system-cpp-policy Device(config-cp) #</pre>	Installs system-cpp-policy in FED. This command is required for you to see the FED policy. Not configuring this command will lead to an error.
Step 9	<pre>end Example: Device(config-cp)# end</pre>	Returns to the privileged EXEC mode.
Step 10	show policy-map control-plane Example: Device# show policy-map control-plane	Displays all the classes configured under system-cpp policy, the rates configured for the various traffic types, and statistics

Disabling a CPU Queue

Follow these steps to disable a CPU queue:

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	policy-map policy-map-name	Enters the policy map configuration mode.
	Example:	
	Device(config)# policy-map	

	Command or Action	Purpose
	<pre>system-cpp-policy Device(config-pmap)#</pre>	
Step 4	<pre>class class-name Example: Device(config-pmap)# class system-cpp-police-protocol-snooping Device(config-pmap-c)#</pre>	Enters the class action configuration mode. Enter the name of the class that corresponds to the CPU queue you want to disable. See the table, <i>System-Defined Values for CoPP</i> .
Step 5	<pre>no police rate rate pps Example: Device(config-pmap-c) # no police rate 100 pps</pre>	Disables incoming packet processing for the specified traffic class. Note This disables all CPU queues that belong to the class-map you have specified.
Step 6	<pre>end Example: Device(config-pmap-c)# end</pre>	Returns to the privileged EXEC mode.
Step 7	<pre>show policy-map control-plane Example: Device# show policy-map control-plane</pre>	Displays all the classes configured under system-cpp policy and the rates configured for the various traffic types and statistics.

Setting the Default Policer Rates for All CPU Queues

Follow these steps to set the policer rates for all CPU queues to their default rates:

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	cpp system-default	Sets the policer rates for all the classes to the
	Example:	default rate.

	Command or Action	Purpose
	Device(config)# cpp system-default Defaulting CPP: Policer rate for all classes will be set to their defaults	
Step 4	end	Returns to the privileged EXEC mode.
	Example:	
	Device(config)# end	
Step 5	show platform hardware fed { active standby } qos queue stats internal cpu policer	Displays device-specific internal queue information.
	Example:	
	Device# show platform hardware fed active qos queue stats internal cpu policer	

Configuration Examples for CoPP

Example: Enabling a CPU Queue or Changing the Policer Rate of a CPU Queue

This example shows how to enable a CPU queue or to change the policer rate of a CPU queue. Here the class system-cpp-police-protocol-snooping CPU queue is enabled with the policer rate of 2000 pps.

```
Device> enable
Device# configure terminal
Device(config) # policy-map system-cpp-policy
Device(config-pmap) # class system-cpp-police-protocol-snooping
Device(config-pmap-c)# police rate 2000 pps
Device(config-pmap-c-police) # end
Device# show policy-map control-plane
Control Plane
  Service-policy input: system-cpp-policy
    <output truncated>
   Class-map: system-cpp-police-dot1x-auth (match-any)
      0 packets, 0 bytes
      5 minute offered rate 0000 bps, drop rate 0000 bps
      Match: none
      police:
         rate 1000 pps, burst 244 packets
       conformed 0 bytes; actions:
```

```
transmit
    exceeded 0 bytes; actions:
Class-map: system-cpp-police-protocol-snooping (match-any)
  0 packets, 0 bytes
 5 minute offered rate 0000 bps, drop rate 0000 bps
 Match: none
      rate 2000 pps, burst 488 packets
    conformed 0 bytes; actions:
      transmit
    exceeded 0 bytes; actions:
     drop
<output truncated>
Class-map: class-default (match-any)
 0 packets, 0 bytes
 5 minute offered rate 0000 bps, drop rate 0000 bps
 Match: any
```

Example: Disabling a CPU Queue

This example shows how to disable a CPU queue. Here the **class system-cpp-police-protocol-snooping** CPU queue is disabled.

```
Device> enable
Device# configure terminal
Device (config) # policy-map system-cpp-policy
Device(config-pmap) # class system-cpp-police-protocol-snooping
Device(config-pmap-c) # no police rate 100 pps
Device(config-pmap-c)# end
Device# show running-config | begin system-cpp-policy
policy-map system-cpp-policy
class system-cpp-police-data
 police rate 200 pps
 class system-cpp-police-sys-data
 police rate 100 pps
class system-cpp-police-sw-forward
 police rate 1000 pps
class system-cpp-police-multicast
 police rate 500 pps
 class system-cpp-police-multicast-end-station
 police rate 2000 pps
class system-cpp-police-punt-webauth
class system-cpp-police-12-control
 class system-cpp-police-routing-control
  police rate 500 pps
class system-cpp-police-control-low-priority
class system-cpp-police-wireless-priority1
 class system-cpp-police-wireless-priority2
class system-cpp-police-wireless-priority3-4-5
 class system-cpp-police-topology-control
{\tt class\ system-cpp-police-dot1x-auth}
class system-cpp-police-protocol-snooping
 class system-cpp-police-forus
```

class system-cpp-default
<output truncated>

Example: Setting the Default Policer Rates for All CPU Queues

This example shows how to set the policer rates for all CPU queues to their default and then verify the setting.

Note

For some CPU queues, the default rate and the set rate values will not be the same, even if you set the default rate for all classes. This because the set rate is rounded off to the nearest multiple of 200. This behavior is controlled by the clock speed of your device. In the sample output below, the default and set rate values for DHCP Snooping and NFL SAMPLED DATA display this difference.

Device> enable
Device# configure terminal
Device(config)# cpp system-default
Defaulting CPP: Policer rate for all classes will be set to their defaults
Device(config)# end

 ${\tt Device\#} \ \ \textbf{show platform hardware fed active qos queue stats internal cpu policer}$

CPU Queue Statistics

QId	PlcIdx	Queue Name		Rate	Rate		Drop(Frames)
0	11		Yes				0
1	1	L2 Control	Yes	2000	2000	0	0
2	14	Forus traffic	Yes	4000	4000	0	0
3	0	ICMP GEN	Yes	600	600	0	0
4	2	Routing Control	Yes	5400	5400	0	0
5	14	Forus Address resolution	Yes	4000	4000	0	0
6	0	ICMP Redirect	Yes	600	600	0	0
7	16	Inter FED Traffic	Yes	2000	2000	0	0
8	4	L2 LVX Cont Pack	Yes	1000	1000	0	0
9	16	EWLC Control	Yes	2000	2000	0	0
10	16	EWLC Data	Yes	2000	2000	0	0
11	13	L2 LVX Data Pack	Yes	1000	1000	0	0
12	0	BROADCAST	Yes	600	600	0	0
13	10	Openflow	Yes	100	200	0	0
14	13	Sw forwarding	Yes	1000	1000	0	0
15	8	Topology Control	Yes	13000	13000	0	0

16	12	Proto Snooping	Yes	2000	2000	0	0
17	6	DHCP Snooping	Yes	500	400	0	0
18	9	Transit Traffic	Yes	500	400	0	0
19	10	RPF Failed	Yes	100	200	0	0
20	15	MCAST END STATION	Yes	2000	2000	0	0
21	13	LOGGING	Yes	1000	1000	0	0
22	7	Punt Webauth	Yes	1000	1000	0	0
23	18	High Rate App	Yes	13000	13000	0	0
24	10	Exception	Yes	100	200	0	0
25	3	System Critical	Yes	1000	1000	0	0
26	10	NFL SAMPLED DATA	Yes	100	200	0	0
27	2	Low Latency	Yes	5400	5400	0	0
28	10	EGR Exception	Yes	100	200	0	0
29	5	Stackwise Virtual OOB	Yes	8000	8000	0	0
30	9	MCAST Data	Yes	500	400	0	0
31	10	Gold Pkt	Yes	100	200	0	0

 $^{^{\}star}$ NOTE: CPU queue policer rates are configured to the closest hardware supported value

CPU Queue Policer Statistics

Policer Index		Policer Accept Frames		
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
7	0	0	0	0
8	0	0	0	0
9	0	0	0	0
10	0	0	0	0
11	0	0	0	0
12	0	0	0	0
13	0	0	0	0
14	0	0	0	0
15	0	0	0	0
16	0	0	0	0
17	0	0	0	0
18	0	0	0	0
	Second I	evel Policer Stat	istics	
20	52772252	688073	0	0
21	0	0	0	0

Policer Index Mapping and Settings

level-2 PlcIndex		level-1 PlcIndex	(default) (set) rate rate	
20 21	-	1 2 8 0 4 7 9 10 11 12 13 14 15	13000 13000 6000 6000	

Second Level Policer Config

====				
		level-2		level-2
QId	Picidx	Picidx	Queue Name	Enabled
0	11	21	DOT1X Auth	Yes
1			L2 Control	Yes
		21		Yes
3		21		Yes
4	-		Routing Control	Yes
		21		
		21		Yes
		-		No
			L2 LVX Cont Pack	Yes
	19	_		No
	16	_	EWLC Data	No
11	13	21	L2 LVX Data Pack	Yes
12	0	21	BROADCAST	Yes
13	10	21	Openflow	Yes
14			Sw forwarding	Yes
15		20	Topology Control	Yes
16		21		Yes
	6	_		No
	13	21		Yes
19	10	21		Yes
20	15	21	MCAST END STATION	Yes
21	13	21	LOGGING	Yes
22	7	21	Punt Webauth	Yes
23	18	_	High Rate App	No
24	10	21	Exception	Yes
25	3	-	System Critical	No
26	10	21	NFL SAMPLED DATA	Yes
27	2	20	Low Latency	Yes
28	10	21	EGR Exception	Yes
29	5	-	Stackwise Virtual OOB	No
30	9	21	MCAST Data	Yes
31	3	-	Gold Pkt	No

CPP Classes to queue map

=====							
PlcIdx CPP Class			Queues				
0	system-cpp-police-data	:	<pre>ICMP GEN/BROADCAST/ICMP Redirect/</pre>				
10	system-cpp-police-sys-data	:	Openflow/Exception/EGR Exception/NFL				
SAMPLE	D DATA/Gold Pkt/RPF Failed/						
13	system-cpp-police-sw-forward	:	Sw forwarding/LOGGING/L2 LVX Data Pack/				
9	system-cpp-police-multicast	:	Transit Traffic/MCAST Data/				
15	system-cpp-police-multicast-end-station	:	MCAST END STATION /				
7	system-cpp-police-punt-webauth	:	Punt Webauth/				
1	system-cpp-police-12-control	:	L2 Control/				
2	system-cpp-police-routing-control	:	Routing Control/Low Latency/				
3	system-cpp-police-system-critical	:	System Critical/				
4	system-cpp-police-121vx-control	:	L2 LVX Cont Pack/				
8	system-cpp-police-topology-control	:	Topology Control/				

```
system-cpp-police-dot1x-auth
system-cpp-police-protocol-snooping
system-cpp-police-dhcp-snooping
system-cpp-police-dhcp-snooping
: DHCP Snooping/
: Forus Address resolution/Forus traffic/
Chapterise Virtual OOB/
11
       system-cpp-police-stackwise-virt-control : Stackwise Virtual OOB/
5
                                                 : Inter FED Traffic/ EWLC Data/: High Rate App/
        system-cpp-default
18
        system-cpp-police-high-rate-app
       system-cpp-police-high-rate-app : High Rate App system-cpp-police-ewlc-control : EWLC Control/
19
        system-cpp-police-ios-routing
                                                        : L2 Control/ Topology Control/ Routing
Control/ Low Latency/
                                             : ICMP GEN/ BROADCAST/ ICMP Redirect/ L2
       system-cpp-police-ios-feature
LVX Cont Pack/ Proto Snooping/ Punt Webauth/ MCAST Data/ Transit Traffic/ DOT1X Auth/ Sw
forwarding/ LOGGING/ L2 LVX Data Pack/ Forus traffic/ Forus Address resolution/ MCAST END
STATION / Openflow/ Exception/ EGR Exception/ NFL SAMPLED DATA/ RPF Failed/
```

Monitoring CoPP

Use these commands to display policer settings, such as, traffic types and policer rates (user-configured and default rates) for CPU queues:

Command	Purpose
show policy-map control-plane	Displays the rates configured for the various traffic types
show policy-map system-cpp-policy	Displays all the classes configured under system-cpp policy, and policer rates

Feature History for CoPP

This table provides release and related information for the features explained in this module.

These features are available in all the releases subsequent to the one they were introduced in, unless noted otherwise.

Release	Feature	Feature Information
Cisco IOS XE Everest 16.6.1	Control Plane Policing (CoPP) or CPP	The CoPP feature improves security on your device by protecting the CPU from unnecessary traffic, or DoS traffic, and by prioritizing control plane and management traffic.
		The feature provides CLI configuration options to enable and disable CPU queues, to change the policer rate, set policer rates to default, and to create user-defined class-maps (with filters) and add them to policy map system-cpp-policy.
Cisco IOS XE Everest 16.6.4	Change in the system behavior for policer rates that are set.	For some CPU queues, the default rate and the set rate values will not be the same, even if you set the default rate for all classes. This is because the set rate is rounded off to the nearest multiple of 200.

Release	Feature	Feature Information
Cisco IOS XE Fuji 16.8.1a	Removal of support for user-defined class-maps	Starting from this release, the creation of user-defined class-maps is not supported.
	and changes in system-defined values for CoPP	This new system-defined class was introduced: system-cpp-police-dhcp-snooping
		This new CPU queue was added to the existing system-cpp-default class: WK_CPU_Q_INTER_FED_TRAFFIC
		These CPU queues are no longer available:
		• WK_CPU_Q_SHOW_FORWARD
		• WK_CPU_Q_UNUSED
		• The default policer rate (pps) for some CPU queues has changed:
		The default rate for WK_CPU_Q_EXCEPTION(24) was changed to 100
		The default rate for all the CPU queues under system-cpp-default was increased to 2000.
		The default rate for all the CPU queues under system-cpp-police-forus was increased to 4000.
Cisco IOS XE Fuji 16.9.1	Changes in system-defined values	Starting with this release, eighteen system-defined classes are created under system-cpp-policy.
	for CoPP	These new system-defined classes were introduced:
		• system-cpp-police-high-rate-app
		system-cpp-police-system-critical
		CPU queue WK_CPU_Q_OPENFLOW (13) was added to class system-cpp-police-sys-data.
		CPU queue WK_CPU_Q_LEARNING_CACHE_OVFL(13) is no longer available.
Cisco IOS XE Fuji 16.9.4	Deprecation of system-defined class map	This system-defined class map was deprecated: system-cpp-police-control-low-priority
Cisco IOS XE Cupertino 17.7.1	Control Plane Policing (CoPP) or CPP	This feature was implemented on supervisor modules C9400X-SUP-2 and C9400X-SUP-2XL, which were introduced in this release.

Use the Cisco Feature Navigator to find information about platform and software image support. To access Cisco Feature Navigator, go to https://cfnng.cisco.com.

Feature History for CoPP