-
During Wireshark packet capture, hardware forwarding happens concurrently.
-
Because packet forwarding typically occurs in hardware, packets are not copied to the CPU for software processing. For Wireshark packet capture, packets are copied and delivered to the CPU, which causes an increase in CPU usage.
-
You might experience high CPU (or memory) usage if:
-
You leave a capture session enabled and unattended for a long period of time, resulting in unanticipated bursts of traffic.
-
You launch a capture session with ring files or capture buffer and leave it unattended for a long time, resulting in performance or system health issues.
-
To avoid high CPU usage, do the following:
-
Attach only relevant ports.
-
Use a class map, and secondarily, an access list to express match conditions. If neither is viable, use an explicit, in-line filter.
-
Adhere closely to the filter rules. Restrict the traffic type (such as, IPv4 only) with a restrictive, rather than relaxed ACL, which elicits unwanted traffic.
-
When using Wireshark to capture live traffic, consider applying a QoS policy temporarily to limit the actual traffic until the capture process concludes.
-
Always limit packet capture to either a shorter duration or a smaller packet number. The parameters of the capture command enable you to specify the following:
-
During a capture session, watch for high CPU usage and memory consumption due to Wireshark that may impact device performance or health. If these situations arise, stop the Wireshark session immediately.
-
Run a capture session without limits if you know that very little traffic matches the core filter.
-
Limit the number of Wireshark instances to two or less to avoid CPU or memory resource drain.
You can use up to eight Wireshark instances. An active show command that decodes and displays packets from a .pcap file or capture buffer counts as one instance.
-
Whenever an ACL is installed or modified on a switch in the ingress direction, for the first 15 seconds, the software ignores packet classification details sent by the hardware. Instead, it uses software-based classification for the packets received by CPU. So, during this period, the system can only capture fewer packets (compared to the time after the first 15 seconds) and CPU usage will be high.
-
Whenever an ACL that is associated with a running capture is modified, you must restart the capture for the ACL modifications to take effect. If you do not restart the capture, it will continue to use the original ACL as if it had not been modified.
-
Writing to flash disk is a CPU-intensive operation, so if the capture rate is insufficient, you may want to use a buffer capture.
-
Avoid decoding and displaying packets from a .pcap file for a large file. Instead, transfer the .pcap file to a PC and run Wireshark on the PC.
-
If you plan to store packets to a storage file, ensure that sufficient space is available before beginning a Wireshark capture process.
-
To avoid packet loss, consider the following:
-
Use store-only (when you do not specify the display option) while capturing live packets rather than decode and display, which is an CPU-intensive operation (especially in detailed mode).
-
If you have more than one capture that is storing packets in a buffer, clear the buffer before starting a new capture to avoid memory loss.
-
If you use the default buffer size, packets may be dropped. Increase buffer size and avoid packet loss.
-
If you want to decode and display live packets in the console window, ensure that the Wireshark session is bounded by a short capture duration.
-
The core filter can be an explicit filter, access list, or class map. Specifying a newer filter of these types replaces the existing one.
 Note | A core filter is required except when using a CAPWAP tunnel interface as a capture point attachment point. |
-
No specific order applies when defining a capture point; you can define capture point parameters in any order, provided that CLI allows this. The Wireshark CLI allows as many parameters as possible on a single line. This limits the number of commands required to define a capture point.
-
All parameters except attachment points take a single value. Generally, you can replace the value with a new one by reentering the command. After user confirmation, the system accepts the new value and overrides the older one. A no form of the command is unnecessary to provide a new value, but it is necessary to remove a parameter.
-
Wireshark allows you to specify one or more attachment points. To add more than one attachment point, reenter the command with the new attachment point. To remove an attachment point, use the no form of the command. You can specify an interface range as an attachment point.
For example, enter monitor capture mycap interface gi 3/1 in where interface gi 3/1 is an attachment point. If you also need to attach interface gi 3/2, enter it as monitor capture mycap interface gi 3/2 in .
-
The action you want to perform determines which parameters are mandatory. The Wireshark CLI allows you to specify or modify any parameter prior to entering the start command. When you enter the start command, Wireshark will start only after determining that all mandatory parameters have been provided.
-
You cannot modify any parameters of a capture point while a session is active. To modify any parameter, stop the session, make the changes, and restart the session. Because an access list is generic to a switch and unrelated to the Wireshark process, it is alterable during a Wireshark session.
-
If the file already exists at the time of creation of the capture point, Wireshark queries you as to whether the file can be overwritten. If the file already exists at the time of activating the capture point, Wireshark will overwrite the existing file.
-
The Wireshark capture session operates normally in streaming mode where packets are both captured and processed. However, when you specify a buffer size of at least 32 MB but less than 80MB, the session automatically turns on lock-step mode in which a Wireshark capture session is split into two phases: capture and process. In the capture phase, the packets are stored in the temporary buffer. The duration parameter in lock-step mode serves as capture duration rather than session duration. When the buffer is full or the capture duration or packet limit has been attained, a session transitions to the process phase, wherein it stops accepting packets and starts processing packets in the buffer. You can also stop the capture manually. You will see a message in the output when the capture stops. With this second approach (lock-step mode), a higher capture throughput can be achieved. Last, when you specify a buffer size of at least 80MB, the session turns on lock-step mode with high-speed capture. This is similar to lock-step mode except that it captures the packets directly from the hardware queue and passes the packet to the Wireshark packet queue. Note | If you are capturing packets to a buffer, there is no file storage defined. Hence, you must export your capture from the buffer to a static storage file. Use the monitor capture capture-name export file-location : file-name command. |
-
You can terminate a Wireshark session with an explicit stop command or by entering q in automore mode. The session could terminate itself automatically when a stop condition such as duration or packet capture limit is met, or if an internal error occurs, or resource is full (specifically if disk is full in file mode).
-
Dropped packets will not be shown at the end of the capture. However, only the count of dropped and oversized packets will be displayed.