

Configuring IPv6 Provider Edge over MPLS (6PE)

- Finding Feature Information, on page 1
- Configuring 6PE, on page 1

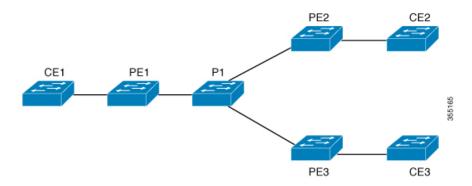
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Configuring 6PE

Information About 6PE


6PE is a technique that provides global IPv6 reachability over IPv4 MPLS. It allows one shared routing table for all other devices. 6PE allows IPv6 domains to communicate with one another over the IPv4 without an explicit tunnel setup, requiring only one IPv4 address per IPv6 domain.

While implementing 6PE, the provider edge routers are upgraded to support 6PE, while the rest of the core network is not touched (IPv6 unaware). This implementation requires no reconfiguration of core routers because forwarding is based on labels rather than on the IP header itself. This provides a cost-effective strategy for deploying IPv6. The IPv6 reachability information is exchanged by PE routers using multiprotocol Border Gateway Protocol (mp-iBGP) extensions.

6PE relies on mp-iBGP extensions in the IPv4 network configuration on the PE router to exchange IPv6 reachability information in addition to an MPLS label for each IPv6 address prefix to be advertised. PE routers are configured as dual stacks, running both IPv4 and IPv6, and use the IPv4 mapped IPv6 address for IPv6 prefix reachability exchange. The next hop advertised by the PE router for 6PE and 6VPE prefixes is still the IPv4 address that is used for IPv4 L3 VPN routes. A value of ::FFFF: is prepended to the IPv4 next hop, which is an IPv4-mapped IPv6 address.

The following figure illustrates the 6PE topology.

Figure 1: 6PE Topology

For scale information related to this feature, see Cisco Catalyst 9300 Series Switches Data Sheet.

Prerequisites for 6PE

Redistribute PE-CE IGP IPv6 routes into core BGP and vice-versa

Restrictions for 6PE

eBGP as CE-PE is not supported. Static Routes, OSPFv3, ISIS, RIPv2 are supported as CE-PE.

Configuring 6PE

Ensure that you configure 6PE on PE routers participating in both the IPv4 cloud and IPv6 clouds.

BGP running on a PE router should establish (IPv4) neighborhood with BGP running on other PEs. Subsequently, it should advertise the IPv6 prefixes learnt from the IPv6 table to the neighbors. The IPv6 prefixes advertised by BGP would automatically have IPv4-encoded-IPv6 addresses as the nexthop-address in the advertisement.

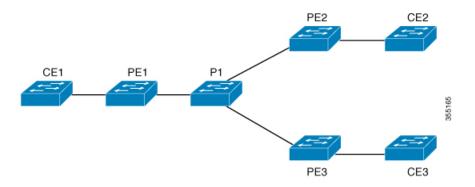
To configure 6PE, complete the following steps:

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ipv6 unicast-routing
- **4. router bgp** *as-number*
- 5. bgp router-id interface interface-id
- 6. bgp log-neighbor-changes
- 7. bgp graceful-restart
- **8. neighbor** { *ip-address* | *ipv6-address* | *peer-group-name* } **remote-as** *as-number*
- **9. neighbor** { *ip-address* | *ipv6-address* | *peer-group-name* } **update-source** *interface-type interface-number*
- 10. address-family ipv6
- 11. redistribute protocol as-number match { internal | external 1 | external 2
- **12. neighbor** { *ip-address* | *ipv6-address* | *peer-group-name* } **activate**

- $\textbf{13.} \quad \textbf{neighbor} \; \{ \, \textit{ip-address} \, | \, \textit{ipv6-address} \, | \, \textit{peer-group-name} \, \} \; \textbf{send-label}$
- 14. exit-address-family
- **15**. end

DETAILED STEPS


	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	Enter your password if prompted.	
	Device> enable		
Step 2	configure terminal	Enters global configuration mode.	
	Example:		
	Device# configure terminal		
Step 3	ipv6 unicast-routing	Enables the forwarding of IPv6 unicast datagrams.	
	Example:		
	Device(config)# ipv6 unicast-routing		
Step 4	router bgp as-number	Enters the number that identifies the autonomous system	
	Example:	(AS) in which the router resides.	
	Device(config)# router bgp 65001	<i>as-number</i> —Autonomous system number. Range for 2-byte numbers is 1 to 65535. Range for 4-byte numbers is 1.0 to 65535.65535.	
Step 5	bgp router-id interface interface-id	Configures a fixed router ID for the local Border Gateway	
	Example:	Protocol (BGP) routing process.	
	Device(config-router)# bgp router-id interface Loopback1		
Step 6	bgp log-neighbor-changes	Enables logging of BGP neighbor resets.	
	Example:		
	Device(config-router)# bgp log-neighbor-changes		
Step 7	bgp graceful-restart	Enables the Border Gateway Protocol (BGP) graceful	
	Example:	restart capability globally for all BGP neighbors.	
	Device(config-router)# bgp graceful-restart		
Step 8	neighbor { ip-address ipv6-address peer-group-name } remote-as as-number	Adds an entry to the BGP or multiprotocol BGP neighbor table.	

	Command or Action	Purpose
Step 9	Example: Device(config-router)# neighbor 33.33.33.33 remote-as 65001 neighbor { ip-address ipv6-address peer-group-name}	 ip-address—IP address of a peer router with which routing information will be exchanged. ipv6-address—IPv6 address of a peer router with which routing information will be exchanged. peer-group-name—Name of the BGP peer group. remote-as—Specifies a remote autonomous system. as-number—Number of an autonomous system to which the neighbor belongs, ranging from 1 to 65535 Configures BGP sessions to use any operational interface.
отер э	<pre>pupdate-source interface-type interface-number Example: Device(config-router) # neighbor 33.33.33.33 update-source Loopback1</pre>	for TCP connections.
Step 10	address-family ipv6 Example: Device(config-router)# address-family ipv6	Enters address family configuration mode for configuring routing sessions, such as BGP, that use standard IPv6 address prefixes.
Step 11	redistribute protocol as-number match { internal external 1 external 2 Example: Device (config-router-af) # redistribute ospf 11 match internal external 1	Redistributes routes from one routing domain into another routing domain.
Step 12	<pre>neighbor { ip-address ipv6-address peer-group-name } activate Example: Device (config-router-af) # neighbor 33.33.33.33 activate</pre>	Enables the exchange of information with a BGP neighbor.
Step 13	<pre>neighbor { ip-address ipv6-address peer-group-name } send-label Example: Device (config-router-af) # neighbor 33.33.33.33 send-label</pre>	Sends MPLS labels with BGP routes to a neighboring BGP router.
Step 14	exit-address-family Example:	Exits BGP address-family submode.

	Command or Action	Purpose
	Device(config-router-af)# exit-address-family	
Step 15	end	Returns to privileged EXEC mode.
	Example:	
	Device(config)# end	

Configuration Examples for 6PE

Figure 2: 6PE Topology

PE Configuration

```
router ospfv3 11
ip routing
ipv6 unicast-routing
address-family ipv6 unicast
redistribute bgp 65001
exit-address-family
router bgp 65001
bgp router-id interface Loopback1
bgp log-neighbor-changes
bgp graceful-restart
neighbor 33.33.33 remote-as 65001
neighbor 33.33.33.33 update-source Loopback1
address-family ipv4
neighbor 33.33.33 activate
address-family ipv6
redistribute ospf 11 match internal external 1 external 2 include-connected
neighbor 33.33.33 activate
neighbor 33.33.33 send-label
neighbor 33.33.33 send-community extended
```

The following is a sample output of **show bgp ipv6 unicast summary**:

```
BGP router identifier 1.1.1.1, local AS number 100
BGP table version is 34, main routing table version 34
4 network entries using 1088 bytes of memory
4 path entries using 608 bytes of memory
4/4 BGP path/bestpath attribute entries using 1120 bytes of memory
O BGP route-map cache entries using O bytes of memory
O BGP filter-list cache entries using O bytes of memory
BGP using 2816 total bytes of memory
BGP activity 6/2 prefixes, 16/12 paths, scan interval 60 secs
Neighbor
                           AS MsqRcvd MsqSent
                                                TblVer InQ OutQ Up/Down
 State/PfxRcd
2.2.2.2
                          100
                                   21
                                           21
                                                    34
                                                          0
                                                               0 00:04:57
sh ipv route
IPv6 Routing Table - default - 7 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
       B - BGP, R - RIP, I1 - ISIS L1, I2 - ISIS L2
       IA - ISIS interarea, IS - ISIS summary, D - EIGRP, EX - EIGRP
external
      ND - ND Default, NDp - ND Prefix, DCE - Destination, NDr - Redirect
       RL - RPL, O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1
       OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
       la - LISP alt, lr - LISP site-registrations, ld - LISP dyn-eid lA
 - LISP away
   10:1:1:2::/64 [0/0]
    via Vlan4, directly connected
   10:1:1:2::1/128 [0/0]
    via Vlan4, receive
LC 11:11:11:11:11/128 [0/0]
    via Loopback1, receive
   30:1:1:2::/64 [200/0]
    via 33.33.33% default, indirectly connected
    40:1:1:2::/64 [200/0]
     via 44.44.44.44% default, indirectly connected
The following is a sample output of show bgp ipv6 unicast command:
BGP table version is 112, local router ID is 11.11.11.11
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal,
              r RIB-failure, S Stale, m multipath, b backup-path, f
RT-Filter,
              x best-external, a additional-path, c RIB-compressed,
              t secondary path,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
     Network
                      Next Hop
                                          Metric LocPrf Weight Path
```

*>	10:1:1:2::/64	::	0		32768	?
*>i	30:1:1:2::/64	::FFFF:33.33.33.33				
			0	100	0	?
*>i	40:1:1:2::/64	::FFFF:44.44.44.44				
			0	100	0	?
*>i	173:1:1:2::/64	::FFFF:33.33.33.33				
			2	100	0	?

The following is a sample output of show ipv6 cef 40:1:1:2::0/64 detail command:

```
40:1:1:2::/64, epoch 6, flags [rib defined all labels] recursive via 44.44.44 label 67 nexthop 1.20.4.2 Port-channel103 label 99-(local:147)
```

Configuration Examples for 6PE