
Trace Management

• Information About Trace Management, on page 1
• How to Configure Conditional Debugging, on page 4
• Configuration Examples for Trace Management, on page 7
• Additional References for Trace Management, on page 10
• Feature History for Trace Management, on page 10

Information About Trace Management
The tracing functionality logs internal events. Trace files are automatically created and saved on the persistent
storage device of specific platforms.

If the device has issues, the contents of the trace files are useful to troubleshoot the issue. The trace file outputs
provide logs that are used to locate and solve the issue, and helps to get a detailed view of system actions and
operations.

To view the recent trace information for a specific process, use the show logging [process | Profile |
process-helper] command. The process keyword uses the first few letters of the name of a process and
provides trace logs of the process that starts or matches with the entered string, the profile keyword lists the
predefined set of process names, and the profile-helper keyword displays the available names.

To change the verbosity in a trace message output, you can adjust the trace level of processes using the set
platform software trace level command. You can choose the all keyword to adjust the trace level for all the
processes listed or you can select a specific process. When you select a specific process, there's also the option
to adjust the trace level for a specific module, or you can use the all-modules keyword to adjust all the modules
of processes.

Introduction to Binary Tracing
Binary tracing is helpful in gathering trace information with a minimal impact on performance. In binary
tracing, the tracing is always on for the system components and a basic level of trace is collected on all the
time; thus, the data necessary for troubleshooting a problem has been captured the first time it occurs.

Introduction to Conditional Debugging and Radioactive Tracing
The Conditional Debugging feature allows you to enable debugging and logging for specific features based
on the set of conditions you define. This feature is useful in systems where many features are supported.

Trace Management
1

The Conditional debug allows granular debugging in a network that is operating at a large scale with a large
number of features. It allows you to observe detailed debugs for granular instances within the system. This
type of debugging is useful when we need to debug only a particular session among thousands of sessions.
It's also possible to specify multiple conditions.

A condition refers to a feature or identity, where an identity could be an interface, IP Address, or a MAC
address and so on.

Conditional debugging is in contrast to the general debug command, that produces its output without
discriminating on the feature objects that are being processed. General debug command consumes numerous
system resources and impacts the system performance.

Radioactive tracing provides the ability to form a chain of execution for operations of interest across the
system, at an increased verbosity level. This provides a way to print conditionally debug information (up to
DEBUG Level or a specified level) across threads, processes, and function calls.

Radioactive Tracing when coupled with Conditional Debugging, provides a single debug command to debug
all execution contexts related to the condition. You can execute this command without being aware of the
various control flow processes of the feature within the box and without having to issue debugs at these
processes individually.

Tracing Levels
Trace level determines the types of traces outputted. Each trace message is assigned a trace level. If the trace
level of a process or its module it set as greater than or equal to the level as the trace message, the trace message
is displayed otherwise, it's skipped. For example, the default trace level is Notice level, so all traces with the
Notice level and below the notice level are included while the traces above the Notice level are excluded.

The following table shows the available tracing levels, and provides descriptions of the message that are
displayed with each tracing level. The tracing levels listed in the table are from the lowest to the highest order.
The default trace level is Notice.

Table 1: Tracing Levels and Descriptions

DescriptionTracing Level

The message stating the process is aborted.Fatal

The message is regarding an issue that makes the
system unusable.

Emergency

The message indicating that an action must be taken
immediately.

Alert

The message is regarding a critical event causing loss
of important functions.

Critical

The message is regarding a system error.Error

The message is regarding a system warning.Warning

The message is regarding a significant event.Notice

Themessage is useful for informational purposes only.Informational

Trace Management
2

Trace Management
Tracing Levels

DescriptionTracing Level

The message provides debug-level output.Debug

All possible trace messages are sent.Verbose

All possible tracemessages for the module are logged.

The noise level is always equal to the highest possible
tracing level. Even if a future enhancement to tracing
introduces a higher tracing level, the noise level will
become equal to the level of that new enhancement.

Noise

Payload Filter
This feature is used to filter trace messages. Trace messages contain actual debug information such as text
strings, special characters, and variable arguments (strings), integers, long, IPv4/IPv6/MAC addresses, and
so on. Using the payload feature, the trace messages can be filtered based on the selected criteria and without
string operations.

You can use the following set and show commands to configure a payload filter and to view the applied filters.

Table 2: Set Commands for Payload Filter

Enables and disables the payload filtering feature.set platform software btrace-manager ... utm-pf
enable

set platform software btrace-manager ... utm-pf
disable

Creates and deletes consumer/stream.set platform software btrace-manager ...
consumer-name <input> create

set platform software btrace-manager ...
consumer-name <input> delete

Applies and removes filter on stream/consumerset platform software btrace-manager ...
consumer-name <input> filter <input> add

set platform software btrace-manager ...
consumer-name <input> filter <input> remove

Table 3: Show Commands for Payload Filter

Shows the current status of the payload feature and
other additional details

#show platform software btrace-manager ... utm-pf

Shows all filters currently applied on
consumer/stream.

show platform software btrace-manager ... utm-pf
consumer-name <input> all-filters

Trace Management
3

Trace Management
Payload Filter

Shows all or selected LUID of consumer for the
applied filter.

show platform software btrace-manager ... utm-pf
consumer-name <input> all-luids

show platform software btrace-manager ... utm-pf
consumer-name <input> filter <input>

Shows consumer/stream messages.show platform software btrace-manager ... utm-pf
message

How to Configure Conditional Debugging

Conditional Debugging and Radioactive Tracing
Radioactive Tracing when coupled with Conditional Debugging, prpvides a single debug command to debug
all execution contexts related to the condition. You can execute this command without being aware of the
various control flow processes of the feature within the box and without having to issue debugs at these
processes individually.

Configuring Conditional Debugging
Follow the steps to configure conditional debugging:

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Configures conditional debugging for theMAC
Address specified.

debug platform condition mac {mac-address}

Example:

Step 2

Device# debug platform condition mac
bc16.6509.3314

Starts conditional debugging (this step starts
radioactive tracing if there's a match on one of
the preceding conditions).

debug platform condition start

Example:
Device# debug platform condition start

Step 3

Displays the current conditions set.show platform condition OR show debug

Example:

Step 4

Device# show platform condition
Device# show debug

Trace Management
4

Trace Management
How to Configure Conditional Debugging

PurposeCommand or Action

Stops conditional debugging (this step stops
radioactive tracing).

debug platform condition stop

Example:

Step 5

Device# debug platform condition stop

(Optional) Displays historical logs of merged
tracefiles on the system. Filter on any
combination of number of days or location.

request platform software trace archive [last
{number} days] [target {crashinfo: |
flashinfo:}]

Example:

Step 6

request platform software trace archive
last 2 days

(Optional) Displays logs merged from the latest
trace file. Filter on any combination of

show platform software trace [filter-binary
| level | message]

Step 7

application condition, trace module name, and
trace level.Example:

Device# show platform software trace
message • filter-binary - Filter the modules to be

collated

• level - Show trace levels

• message - Show trace message ring
contents

On the device:

• Available from IOS console
in addition to linux shell.

• Generates a file with merged
logs

• Displays merged logs only
from staging area.

Note

Clears all conditions.clear platform condition all

Example:

Step 8

Device# clear platform condition all

What to do next

The commands request platform software trace filter-binary and show platform software trace
filter-binary work in a similar way. The only difference is:

Note

• request platform software trace filter-binary - Sources the data from historical logs.

• show platform software trace filter-binary – Sources the data from the flash Temp directory.

Trace Management
5

Trace Management
Configuring Conditional Debugging

The mac_log <..date..> is the important file, as it provides messages for the MAC that is being debugged.
The command show platform software trace filter-binary also generates the same flash files, and also prints
the mac_log on the screen.

Collecting Trace Files
To collect trace files from a device, follow these steps:

1. To request the tracelogs for a specific time period (For example: Five days), use the command:

Device# request platform software trace archive last 5 day

2. The system generates a tar ball (.gz file) of the tracelogs in the location /flash:

Copying Archived Trace Files
The following is an example of the trace file for a switching device:

Device# dir crashinfo:/tracelogs
Directory of crashinfo:/tracelogs/

50664 -rwx 760 Sep 22 2015 11:12:21 +00:00 plogd_F0-0.bin_0.gz
50603 -rwx 991 Sep 22 2015 11:12:08 +00:00 fed_pmanlog_F0-0.bin_0.9558.20150922111208.gz
50610 -rw- 11 Nov 2 2015 00:15:59 +00:00 timestamp
50611 -rwx 1443 Sep 22 2015 11:11:31 +00:00
auto_upgrade_client_sh_pmanlog_R0-.bin_0.3817.20150922111130.gz
50669 -rwx 589 Sep 30 2015 03:59:04 +00:00 cfgwr-8021_R0-0.bin_0.gz
50612 -rwx 1136 Sep 22 2015 11:11:46 +00:00 reflector_803_R0-0.bin_0.1312.20150922111116.gz
50794 -rwx 4239 Nov 2 2015 00:04:32 +00:00 IOSRP_R0-0.bin_0.14239.20151101234827.gz
50615 -rwx 131072 Nov 2 2015 00:19:59 +00:00 linux_iosd_image_pmanlog_R0-0.bin_0
--More—

You can copy the trace files using one of the following options:

Device# copy crashinfo:/tracelogs ?
crashinfo: Copy to crashinfo: file system
flash: Copy to flash: file system
ftp: Copy to ftp: file system
http: Copy to http: file system
https: Copy to https: file system
null: Copy to null: file system
nvram: Copy to nvram: file system
rcp: Copy to rcp: file system
running-config Update (merge with) current system configuration
scp: Copy to scp: file system
startup-config Copy to startup configuration
syslog: Copy to syslog: file system
system: Copy to system: file system
tftp: Copy to tftp: file system
tmpsys: Copy to tmpsys: file system

The general syntax for copying onto a TFTP server is as follows:

Device# copy source: tftp:
Device# copy crashinfo:/tracelogs/IOSRP_R0-0.bin_0.14239.20151101234827.gz tftp:
Address or name of remote host []? 2.2.2.2
Destination filename [IOSRP_R0-0.bin_0.14239.20151101234827.gz]?

Trace Management
6

Trace Management
Collecting Trace Files

It’s important to clear the generated report or archive files off the device so that there's flash space available
for tracelog and other purposes.

Note

Configuring Payload Filter
To configure a payload filter, you must create a consumer and add the relevant payload filter data.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enables or disables the payload filter.set platform software btrace-manager utm-pf
enable

Step 2

Example:
Device# set platform software
btrace-manager chassis active r0 utm-pf
enable

Device# set platform software
btrace-manager chassis active r0 utm-pf
disable

Creates a consumer name.set platform software btrace-manager
{consumer-name}create

Step 3

Example:
Device# set platform software
btrace-manager chassis active r0
consumer-name utm_pf_test create

Add a filter data.set platform software btrace-manager
consumer{consumer-name}filter{input}add

Step 4

Example:
Device# set platform software
btrace-manager chassis active r0
consumer-name utm_pf_test filter "Failed
to retrieve an interface" add

Configuration Examples for Trace Management
The following is an output example of the show platform condition command.

Trace Management
7

Trace Management
Configuring Payload Filter

The following is a sample of the debug platform condition stop command.
Device# debug platform condition stop
Conditional Debug Global State: Stop

The following is an example of the show logging command for the ios process.
Device# show logging process ios
Logging display requested on 2022/10/27 09:32:06 (PDT) for Hostname: [vwlc_1_9222], Model:
[C9800-CL-K9], Version: [17.11.01], SN: [9ZY0U03YBM0], MD_SN: [9ZY0U03YBM0]

Displaying logs from the last 0 days, 0 hours, 10 minutes, 0 seconds
executing cmd on chassis 1 ...
Unified Decoder Library Init .. DONE
Found 1 UTF Streams

2022/10/27 09:31:52.835197577 {iosrp_R0-0}{1}: [parser_cmd] [26471]: (note): id=
console@console:user= cmd: 'show logging process ios' SUCCESS 2022/10/27 08:31:48.762 PST
2022/10/27 09:31:59.651965736 {iosrp_R0-0}{1}: [parser_cmd] [26471]: (note): id=
console@console:user= cmd: 'show logging process ios internal' SUCCESS 2022/10/27 08:31:56.485
PST
===
======= Unified Trace Decoder Information/Statistics ======
===
----------------- Decoder Input Information ---------------
===
Num of Unique Streams .. 1
Total UTF To Process ... 1
Total UTM To Process ... 75403
UTM Process Filter ios
MRST Filter Rules 4
===
----------------- Decoder Output Information --------------
===
First UTM TimeStamp 2022/10/27 02:21:47.048461994
Last UTM TimeStamp 2022/10/27 09:32:04.919540850
UTM [Skipped / Rendered / Total] .. 75401 / 2 / 75403
UTM [ENCODED] 75266
UTM [PLAIN TEXT] 94
UTM [DYN LIB] 0
UTM [MODULE ID] 0
UTM [TDL TAN] 43
UTM [APP CONTEXT] 0
UTM [MARKER] 0
UTM [PCAP] 0
UTM [LUID NOT FOUND] 0
===

The following is an example of the show logging profile wireless command.
Device# show logging profile wireless
Logging display requested on 2023/03/13 09:07:09 (UTC) for Hostname: [FABRIEK], Model:
[C8300-1N1S-4T2X], Version: [17.12.01], SN: [FDO24190V85], MD_SN: [FDO2451M13G]

Displaying logs from the last 0 days, 0 hours, 10 minutes, 0 seconds
executing cmd on chassis local ...
Unified Decoder Library Init .. DONE
Found 1 UTF Streams

2023/03/13 08:57:34.084609935 {iosrp_R0-0}{255}: [parser_cmd] [3793]: (note): id=
10.68.219.145@vty0:user= cmd: 'show logging profile wireless level info' SUCCESS 2023/03/13
08:57:31.376 UTC

Trace Management
8

Trace Management
Configuration Examples for Trace Management

2023/03/13 09:07:03.562290152 {iosrp_R0-0}{255}: [parser_cmd] [3793]: (note): id=
10.68.219.145@vty0:user= cmd: 'show logging profile wireless internal ' SUCCESS 2023/03/13
08:58:51.922 UTC
===
======= Unified Trace Decoder Information/Statistics ======
===
----------------- Decoder Input Information ---------------
===
Num of Unique Streams .. 1
Total UTF To Process ... 1
Total UTM To Process ... 55410
UTM Process Filter
cpp_cp,fman_fp,fman_rp,fman-rp,fman-fp,fed,mobilityd,nmspd,odm_proxy,rogued,rrm,repm,wncd,wncmgrd,wncd_x,IOSRP,smd,odm,wstatsd,linux-iosd-image,wncloudm,locationd

MRST Filter Rules 24
===
----------------- Decoder Output Information --------------
===
First UTM TimeStamp 2023/03/13 08:13:19.321653302
Last UTM TimeStamp 2023/03/13 09:07:08.462269864
UTM [Skipped / Rendered / Total] .. 55408 / 2 / 55410
UTM [ENCODED] 2
UTM [PLAIN TEXT] 0
UTM [DYN LIB] 0
UTM [MODULE ID] 0
UTM [TDL TAN] 0
UTM [APP CONTEXT] 0
UTM [MARKER] 0
UTM [PCAP] 0
UTM [LUID NOT FOUND] 0
UTM Level [EMERGENCY / ALERT / CRITICAL / ERROR] .. 0 / 0 / 0 / 0
UTM Level [WARNING / NOTICE / INFO / DEBUG] 0 / 2 / 0 / 0
UTM Level [VERBOSE / NOISE / INVALID] 0 / 0 / 0
===

The following is an example of the show logging process-helper command.
Device# show logging process-helper ios
Logging display requested on 2023/03/13 10:30:29 (UTC) for Hostname: [FABRIEK], Model:
[C8300-1N1S-4T2X], Version: [17.12.01], SN: [FDO24190V85], MD_SN: [FDO2451M13G]

Displaying logs from the last 0 days, 0 hours, 10 minutes, 0 seconds
executing cmd on chassis local ...
Unified Decoder Library Init .. DONE
Found 1 UTF Streams

2023/03/13 10:30:16.884663022 {iosrp_R0-0}{255}: [parser_cmd] [3793]: (note): id=
10.68.219.145@vty0:user= cmd: 'enable' SUCCESS 2023/03/13 10:30:10.721 UTC
===
======= Unified Trace Decoder Information/Statistics ======
===
----------------- Decoder Input Information ---------------
===
Num of Unique Streams .. 1
Total UTF To Process ... 1
Total UTM To Process ... 88985
UTM Process Filter IOSRP
MRST Filter Rules 1
===
----------------- Decoder Output Information --------------
===
First UTM TimeStamp 2023/03/13 08:13:19.321653302
Last UTM TimeStamp 2023/03/13 10:30:27.267645695

Trace Management
9

Trace Management
Configuration Examples for Trace Management

UTM [Skipped / Rendered / Total] .. 88984 / 1 / 88985
UTM [ENCODED] 1
UTM [PLAIN TEXT] 0
UTM [DYN LIB] 0
UTM [MODULE ID] 0
UTM [TDL TAN] 0
UTM [APP CONTEXT] 0
UTM [MARKER] 0
UTM [PCAP] 0
UTM [LUID NOT FOUND] 0
UTM Level [EMERGENCY / ALERT / CRITICAL / ERROR] .. 0 / 0 / 0 / 0
UTM Level [WARNING / NOTICE / INFO / DEBUG] 0 / 1 / 0 / 0
UTM Level [VERBOSE / NOISE / INVALID] 0 / 0 / 0
===

Additional References for Trace Management
Related Documents

Document TitleRelated Topic

Command Reference Guide for catalyst 9K platforms.For complete syntax and usage information for
the commands used in this chapter.

Feature History for Trace Management
This table provides release and related information for features explained in this module.

These features are available on all releases subsequent to the one they were introduced in, unless noted
otherwise.

Feature InformationFeatureRelease

The Conditional Debugging feature allows you to
selectively enable debugging and logging for
specific features based on the set of conditions you
define.

Conditional Debugging
and Radioactive Tracing

Cisco IOS XE Fuji 16.9.2

Binary tracing helps in gathering of trace
informationwith aminimal impact on performance.

Binary TracingCisco IOS XE Cupertino
17.7.x

Use Cisco Feature Navigator to find information about platform and software image support. To access Cisco
Feature Navigator, go to http://www.cisco.com/go/cfn.

Trace Management
10

Trace Management
Additional References for Trace Management

http://www.cisco.com/go/cfn

	Trace Management
	Information About Trace Management
	Introduction to Binary Tracing
	Introduction to Conditional Debugging and Radioactive Tracing
	Tracing Levels
	Payload Filter

	How to Configure Conditional Debugging
	Conditional Debugging and Radioactive Tracing
	Configuring Conditional Debugging
	Collecting Trace Files
	Copying Archived Trace Files
	Configuring Payload Filter

	Configuration Examples for Trace Management
	Additional References for Trace Management
	Feature History for Trace Management

