Interface and Hardware Commands

- bluetooth pin, on page 4
- clear coap database, on page 5
- clear macro auto configuration, on page 6
- coap endpoint (coap-proxy configuration), on page 7
- debug coap, on page 8
- device classifier, on page 9
- debug ilpower, on page 10
- debug interface, on page 11
- debug lldp packets, on page 12
- debug platform poe, on page 13
- debug platform software fed switch active punt packet-capture start, on page 14
- duplex, on page 15
- errdisable detect cause, on page 17
- errdisable recovery cause, on page 19
- errdisable recovery cause, on page 21
- interface, on page 23
- interface range, on page 25
- ip mtu, on page 27
- ipv6 mtu, on page 28
- list (coap-proxy configuration), on page 29
- lldp (interface configuration), on page 30
- logging event power-inline-status, on page 32
- macro, on page 33
- macro auto, on page 36
- macro auto apply (Cisco IOS shell scripting capability), on page 39
- macro auto config (Cisco IOS shell scripting capability), on page 41
- macro auto control, on page 42
- macro auto execute, on page 44
- macro auto global control, on page 51
- macro auto global processing, on page 53
- macro auto mac-address-group, on page 54
- macro auto processing, on page 56
- macro auto sticky, on page 57
• macro auto trigger, on page 58
• macro description, on page 59
• macro global, on page 60
• macro global description, on page 62
• max-endpoints (coap-proxy configuration), on page 63
• mdix auto, on page 64
• network-policy, on page 65
• network-policy profile (global configuration), on page 66
• port-dtls (coap-proxy configuration), on page 67
• port-unsecure (coap-proxy configuration), on page 68
• power-priority, on page 69
• power inline, on page 71
• power inline police, on page 74
• power supply, on page 76
• resource directory (coap-proxy configuration), on page 78
• security (coap-proxy configuration), on page 79
• shell trigger, on page 80
• show beacon all, on page 81
• show coap dtls endpoints, on page 82
• show coap endpoints, on page 83
• show coap globals, on page 84
• show coap resources, on page 85
• show coap stats, on page 86
• show coap version, on page 87
• show device classifier attached, on page 88
• show device classifier clients, on page 90
• show device classifier profile type, on page 91
• show env, on page 94
• show erratic detect, on page 97
• show errdisable recovery, on page 99
• show ip interface, on page 100
• show interfaces, on page 105
• show interfaces counters, on page 110
• show interfaces switchport, on page 112
• show interfaces transceiver, on page 114
• show macro auto, on page 118
• show memory platform, on page 121
• show module, on page 124
• show network-policy profile, on page 125
• show parser macro, on page 126
• show platform hardware bluetooth, on page 129
• show platform hardware fed switch forward interface, on page 130
• show platform resources, on page 133
• show platform software audit, on page 134
• show platform software fed switch punt cpuq rates, on page 138
• show platform software fed switch punt packet-capture display, on page 140
• show platform software fed switch punt rates interfaces, on page 142
• show platform software ilpower, on page 145
• show platform software memory, on page 147
• show platform software process list, on page 153
• show platform software process memory, on page 157
• show platform software process slot switch, on page 160
• show platform software status control-processor, on page 162
• show platform software thread list, on page 165
• show processes cpu platform, on page 167
• show processes cpu platform history, on page 170
• show processes cpu platform monitor, on page 173
• show processes memory platform, on page 175
• show processes platform, on page 179
• show shell, on page 182
• show system mtu, on page 185
• show tech-support, on page 186
• show tech-support bgp, on page 188
• show tech-support diagnostic, on page 191
• speed, on page 193
• start (coap-proxy configuration), on page 195
• stop (coap-proxy configuration), on page 196
• switchport block, on page 197
• system mtu, on page 198
• transport (coap-proxy configuration), on page 199
• voice-signaling vlan (network-policy configuration), on page 200
• voice vlan (network-policy configuration), on page 202
bluetooth pin

To configure a new Bluetooth pin, use the `bluetooth pin` command in interface configuration or global configuration mode.

bluetooth pin

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pin</code></td>
<td>Pairing pin for the Bluetooth interface. The pin is a 4-digit number.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface configuration (config-if)</td>
<td></td>
</tr>
<tr>
<td>Global configuration (config)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.12.1</td>
<td>This command was introduced.</td>
<td></td>
</tr>
</tbody>
</table>

| Usage Guidelines | The `bluetooth pin` command can be configured either in the interface configuration or global configuration mode. Cisco recommends using the global configuration mode to configure the Bluetooth pin. |

<table>
<thead>
<tr>
<th>Examples</th>
<th>This example shows how to configure a new Bluetooth pin using the <code>bluetooth pin</code> command.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device> <code>enable</code> Device# <code>configure terminal</code> Device(config)# <code>bluetooth pin 1111</code> Device(config)#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show platform hardware bluetooth</td>
<td>Displays information about the Bluetooth interface</td>
<td></td>
</tr>
</tbody>
</table>
clear coap database

To clear the CoAP database, use the **clear coap database** command in user EXEC or privileged EXEC mode.

clear coap database

Command Default

This command has no arguments or keywords.

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to clear the coap database:

```
Device(config)# clear coap database
```
clear macro auto configuration

To remove the macro applied configuration from the interfaces, use the `clear macro auto configuration` command.

Note
Before executing the `clear macro auto configuration` command, you must disable Auto SmartPorts on the switch.

```
clear macro auto configuration {all | interface [interface-id]}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Removes macro applied configuration from all the interfaces.</td>
</tr>
<tr>
<td>interface [interface-id]</td>
<td>Removes macro applied configuration from an interface.</td>
</tr>
</tbody>
</table>

Command Default
This command has no default setting.

Command Modes
User EXEC (>)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the command to remove configuration applied by macros from all the interfaces or a particular interface on the switch.

You can verify your settings by entering the `show macro auto interface` command in privileged EXEC mode.

Example
This example shows how to remove the configuration from all the switch interfaces:

```
Device(config)# clear macro auto configuration all
```
coap endpoint (coap-proxy configuration)

To configure the COAP Proxy to support multiple IPv4/IPv6 static-endpoints, use the `coap endpoint` command in coap-proxy configuration mode. To return to the default settings, use the `no` form of the command.

```
coap endpoint {ipv4 | ipv6} [ip-address]
no coap endpoint {ipv4 | ipv6} [ip-address]
```

Syntax Description
- `ipv4 ip-address` Specifies IPv4 static endpoint.
- `ipv6 ip-address` Specifies IPv6 static endpoint.

Command Modes
- coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example show how to configure IPv4 static endpoint

```
Device(config)# endpoint ipv4 1.1.1.1
Device(config-coap-proxy)# transport tcp
```
debug coap

To enable debugging of the coap configurations, use the debug coap command in privileged EXEC mode.

debug coap {all | database | errors | events | packet | trace | warnings}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Displays all coap debug messages.</td>
</tr>
<tr>
<td>database</td>
<td>Displays coap database debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Displays coap error debug messages.</td>
</tr>
<tr>
<td>events</td>
<td>Displays coap event debug messages.</td>
</tr>
<tr>
<td>packet</td>
<td>Displays coap packet debug messages.</td>
</tr>
<tr>
<td>trace</td>
<td>Displays coap trace debug messages.</td>
</tr>
<tr>
<td>warnings</td>
<td>Displays coap warning debug messages</td>
</tr>
</tbody>
</table>

Command Default

This command has no arguments or keywords.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

The example shows how to enable debugging for coap database:

Device# debug coap database
device classifier

To enable the device classifier, use the `device classifier` command in global configuration mode. Use the `no` form of this command to disable the device classifier.

```plaintext
device classifier

no device classifier
```

Command Default

This command is disabled by default.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `no device classifier` command, in global configuration mode, to disable the device classifier. You cannot disable the device classifier while it is being used by features such as Auto SmartPorts (ASP).

Example

This example shows how to enable the ASP device classifier on a switch:

```plaintext
Device(config)# device classifier
Device(config)# end
```
debug ilpower

To enable debugging of the power controller and Power over Ethernet (PoE) system, use the debug ilpower command in privileged EXEC mode. To disable debugging, use the no form of this command.

```
debug ilpower {cdp | event | ha | port | powerman | registries | scp | sense}
no debug ilpower {cdp | event | ha | port | powerman | registries | scp | sense}
```

Syntax Description
- **cdp**: Displays PoE Cisco Discovery Protocol (CDP) debug messages.
- **event**: Displays PoE event debug messages.
- **ha**: Displays PoE high-availability messages.
- **port**: Displays PoE port manager debug messages.
- **powerman**: Displays PoE power management debug messages.
- **registries**: Displays PoE registries debug messages.
- **scp**: Displays PoE SCP debug messages.
- **sense**: Displays PoE sense debug messages.

Command Default
Debugging is disabled.

Command Modes
Privileged EXEC

Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command is supported only on PoE-capable switches.

When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the `session switch-number EXEC` command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE EXEC` command on the active switch to enable debugging on a member switch without first starting a session.
debug interface

To enable debugging of interface-related activities, use the `debug interface` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug interface {interface-id | counters {exceptions | protocol memory} | null interface-number | port-channel port-channel-number | states | vlan vlan-id}
```

```
no debug interface {interface-id | counters {exceptions | protocol memory} | null interface-number | port-channel port-channel-number | states | vlan vlan-id}
```

Syntax Description

- **interface-id**: ID of the physical interface. Displays debug messages for the specified physical port, identified by type switch number/module number/port, for example, gigabitethernet 1/0/2.
- **null interface-number**: Displays debug messages for null interfaces. The interface number is always 0.
- **port-channel port-channel-number**: Displays debug messages for the specified EtherChannel port-channel interface. The `port-channel-number` range is 1 to 48.
- **vlan vlan-id**: Displays debug messages for the specified VLAN. The `vlan` range is 1 to 4094.
- **counters**: Displays counters debugging information.
- **exceptions**: Displays debug messages when a recoverable exceptional condition occurs during the computation of the interface packet and data rate statistics.
- **protocol memory**: Displays debug messages for memory operations of protocol counters.
- **states**: Displays intermediary debug messages when an interface's state transitions.

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not specify a keyword, all debug messages appear.

The `undebug interface` command is the same as the `no debug interface` command.

When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the `session switch-number` EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command` `stack-member-number LINE` EXEC command on the active switch to enable debugging on a member switch without first starting a session.
debug lldp packets

To enable debugging of Link Layer Discovery Protocol (LLDP) packets, use the `debug lldp packets` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```plaintext
ddebug lldp packets
no debug lldp packets
```

Syntax Description

This command has no arguments or keywords.

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `undebug lldp packets` command is the same as the `no debug lldp packets` command.

When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the `session switch-number` EXEC command.

Interface and Hardware Commands

12
debug platform poe

To enable debugging of a Power over Ethernet (PoE) port, use the `debug platform poe` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug platform poe  [{error | info}]  [switch  switch-number]
no debug platform poe  [{error | info}]  [switch  switch-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>error</td>
<td>(Optional) Displays PoE-related error debug messages.</td>
</tr>
<tr>
<td>info</td>
<td>(Optional) Displays PoE-related information debug messages.</td>
</tr>
<tr>
<td>switch switch-number</td>
<td>(Optional) Specifies the stack member. This keyword is supported only on stacking-capable switches.</td>
</tr>
</tbody>
</table>

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `undebug platform poe` command is the same as the `no debug platform poe` command.
debug platform software fed switch active punt packet-capture start

to enable debugging of packets during high CPU utilization, for an active switch, use the debug platform software fed switch active punt packet-capture start command in privileged EXEC mode. to disable debugging of packets during high CPU utilization, for an active switch, use the debug platform software fed switch active punt packet-capture stop command in privileged EXEC mode.

ddebug platform software fed switch active punt packet-capture start
ddebug platform software fed switch active punt packet-capture stop

Syntax Description

switch active
Specifies information about the active switch.
punt
Specifies the punt information.
packet-capture
Specifies information about the captured packet.
start
Enables debugging of the active switch.
stop
Disables debugging of the active switch.

Command Modes

Privileged EXEC (#)

Command History

Release Modification
Cisco IOS XE Gibraltar 16.10.1 This command was introduced.

Usage Guidelines

The debug platform software fed switch active punt packet-capture start command starts the debugging of packets during high CPU utilization. The packet capture is stopped when the 4k buffer size is exceeded.

Examples

The following is a sample output from the debug platform software fed switch active punt packet-capture start command:

Device# debug platform software fed switch active punt packet-capture start
Punt packet capturing started.

The following is a sample output from the debug platform software fed switch active punt packet-capture stop command:

Device# debug platform software fed switch active punt packet-capture stop
Punt packet capturing stopped. Captured 101 packet(s)
duplex

To specify the duplex mode of operation for a port, use the `duplex` command in interface configuration mode. To return to the default value, use the `no` form of this command.

```
duplex {auto | full | half}
no duplex {auto | full | half}
```

Syntax Description

- `auto` Enables automatic duplex configuration. The port automatically detects whether it should run in full- or half-duplex mode, depending on the attached device mode.
- `full` Enables full-duplex mode.
- `half` Enables half-duplex mode (only for interfaces operating at 10 or 100 Mb/s). You cannot configure half-duplex mode for interfaces operating at 1000 or 10,000 Mb/s.

Command Default

The default is `auto` for Gigabit Ethernet ports.

Duplex options are not supported on the 1000BASE-x or 10GBASE-x (where -x is -BX, -CWDM, -LX, -SX, or -ZX) small form-factor pluggable (SFP) modules.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For Gigabit Ethernet ports, setting the port to `auto` has the same effect as specifying `full` if the attached device does not autonegotiate the duplex parameter.

Note

Half-duplex mode is supported on Gigabit Ethernet interfaces if the duplex mode is `auto` and the connected device is operating at half duplex. However, you cannot configure these interfaces to operate in half-duplex mode.

Certain ports can be configured to be either full duplex or half duplex. How this command is applied depends on the device to which the switch is attached.

If both ends of the line support autonegotiation, we highly recommend using the default autonegotiation settings. If one interface supports autonegotiation and the other end does not, configure duplex and speed on both interfaces, and use the `auto` setting on the supported side.

If the speed is set to `auto`, the switch negotiates with the device at the other end of the link for the speed setting and then forces the speed setting to the negotiated value. The duplex setting remains as configured on each end of the link, which could result in a duplex setting mismatch.

You can configure the duplex setting when the speed is set to `auto`.
Changing the interface speed and duplex mode configuration might shut down and reenable the interface during the reconfiguration.

You can verify your setting by entering the `show interfaces` privileged EXEC command.

Examples

This example shows how to configure an interface for full-duplex operation:

```plaintext
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# duplex full
```
errdisable detect cause

To enable error-disable detection for a specific cause or for all causes, use the `errdisable detect cause` command in global configuration mode. To disable the error-disable detection feature, use the `no` form of this command.

```
errdisable detect cause {all | arp-inspection | bpduguard shutdown vlan | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | pagp-flap | pppoe-ia-rate-limit | psp shutdown vlan | security-violation shutdown vlan | sfp-config-mismatch}
no errdisable detect cause {all | arp-inspection | bpduguard shutdown vlan | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | pagp-flap | pppoe-ia-rate-limit | psp shutdown vlan | security-violation shutdown vlan | sfp-config-mismatch}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables error detection for all error-disabled causes.</td>
</tr>
<tr>
<td>arp-inspection</td>
<td>Enables error detection for dynamic Address Resolution Protocol (ARP) inspection.</td>
</tr>
<tr>
<td>bpduguard shutdown vlan</td>
<td>Enables per-VLAN error-disable for BPDU guard.</td>
</tr>
<tr>
<td>dhcp-rate-limit vlan</td>
<td>Enables error detection for DHCP snooping.</td>
</tr>
<tr>
<td>dtp-flap</td>
<td>Enables error detection for the Dynamic Trunking Protocol (DTP) flapping.</td>
</tr>
</tbody>
</table>
| **gbic-invalid** | Enables error detection for an invalid Gigabit Interface Converter (GBIC) module.
Note This error refers to an invalid small form-factor pluggable (SFP) module. |
| **inline-power** | Enables error detection for the Power over Ethernet (PoE) error-disabled cause.
Note This keyword is supported only on switches with PoE ports. |
| **link-flap** | Enables error detection for link-state flapping. |
| **loopback** | Enables error detection for detected loopbacks. |
| **pagp-flap** | Enables error detection for the Port Aggregation Protocol (PAgP) flap error-disabled cause. |
| **pppoe-ia-rate-limit** | Enables error detection for the PPPoE Intermediate Agent rate-limit error-disabled cause. |
| **psp shutdown vlan** | Enables error detection for protocol storm protection (PSP). |
| **security-violation shutdown vlan** | Enables voice aware 802.1x security. |
| **sfp-config-mismatch** | Enables error detection on an SFP configuration mismatch. |
Detection is enabled for all causes. All causes, except per-VLAN error disabling, are configured to shut down the entire port.

Global configuration

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

A cause (such as a link-flap or dhcp-rate-limit) is the reason for the error-disabled state. When a cause is detected on an interface, the interface is placed in an error-disabled state, an operational state that is similar to a link-down state.

When a port is error-disabled, it is effectively shut down, and no traffic is sent or received on the port. For the bridge protocol data unit (BPDU) guard, voice-aware 802.1x security, and port-security features, you can configure the switch to shut down only the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.

If you set a recovery mechanism for the cause by entering the `errdisable recovery` global configuration command, the interface is brought out of the error-disabled state and allowed to retry the operation when all causes have timed out. If you do not set a recovery mechanism, you must enter the `shutdown` and then the `no shutdown` commands to manually recover an interface from the error-disabled state.

For protocol storm protection, excess packets are dropped for a maximum of two virtual ports. Virtual port error disabling using the `psp` keyword is not supported for EtherChannel and Flexlink interfaces.

To verify your settings, enter the `show errdisable detect` privileged EXEC command.

This example shows how to enable error-disabled detection for the link-flap error-disabled cause:

```
Device(config)# errdisable detect cause link-flap
```

This command shows how to globally configure BPDU guard for a per-VLAN error-disabled state:

```
Device(config)# errdisable detect cause bpduguard shutdown vlan
```

This command shows how to globally configure voice-aware 802.1x security for a per-VLAN error-disabled state:

```
Device(config)# errdisable detect cause security-violation shutdown vlan
```

You can verify your setting by entering the `show errdisable detect` privileged EXEC command.
errdisable recovery cause

To enable the error-disabled mechanism to recover from a specific cause, use the `errdisable recovery cause` command in global configuration mode. To return to the default setting, use the `no` form of this command.

```plaintext
errdisable recovery cause {all | arp-inspection | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | psp | security-violation | sfp-config-mismatch | storm-control | uddl}

no errdisable recovery cause {all | arp-inspection | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | psp | security-violation | sfp-config-mismatch | storm-control | uddl}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables the timer to recover from all error-disabled causes.</td>
</tr>
<tr>
<td>arp-inspection</td>
<td>Enables the timer to recover from the Address Resolution Protocol (ARP) inspection error-disabled state.</td>
</tr>
<tr>
<td>bpduguard</td>
<td>Enables the timer to recover from the bridge protocol data unit (BPDU) guard error-disabled state.</td>
</tr>
<tr>
<td>channel-misconfig</td>
<td>Enables the timer to recover from the EtherChannel misconfiguration error-disabled state.</td>
</tr>
<tr>
<td>dhcp-rate-limit</td>
<td>Enables the timer to recover from the DHCP snooping error-disabled state.</td>
</tr>
<tr>
<td>dtp-flap</td>
<td>Enables the timer to recover from the Dynamic Trunking Protocol (DTP) flap error-disabled state.</td>
</tr>
<tr>
<td>gbic-invalid</td>
<td>Enables the timer to recover from an invalid Gigabit Interface Converter (GBIC) module error-disabled state. Note This error refers to an invalid small form-factor pluggable (SFP) error-disabled state.</td>
</tr>
<tr>
<td>inline-power</td>
<td>Enables the timer to recover from the Power over Ethernet (PoE) error-disabled state. This keyword is supported only on switches with PoE ports.</td>
</tr>
<tr>
<td>link-flap</td>
<td>Enables the timer to recover from the link-flap error-disabled state.</td>
</tr>
<tr>
<td>loopback</td>
<td>Enables the timer to recover from a loopback error-disabled state.</td>
</tr>
<tr>
<td>mac-limit</td>
<td>Enables the timer to recover from the mac limit error-disabled state.</td>
</tr>
<tr>
<td>pagp-flap</td>
<td>Enables the timer to recover from the Port Aggregation Protocol (PAgP)-flap error-disabled state.</td>
</tr>
</tbody>
</table>
Enable the timer to recover from the port mode change failure error-disabled state.

Enable the timer to recover from the PPPoE IA rate limit error-disabled state.

Enable the timer to recover from a port security violation disable state.

Enable the timer to recover from the protocol storm protection (PSP) error-disabled state.

Enable the timer to recover from an IEEE 802.1x-violation disabled state.

Enable error detection on an SFP configuration mismatch.

Enable the timer to recover from a storm control error.

Enable the timer to recover from the UniDirectional Link Detection (UDLD) error-disabled state.

Command Default

Recovery is disabled for all causes.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A cause (such as all or BDPU guard) is defined as the reason that the error-disabled state occurred. When a cause is detected on an interface, the interface is placed in the error-disabled state, an operational state similar to link-down state.

When a port is error-disabled, it is effectively shut down, and no traffic is sent or received on the port. For the BPDU guard and port-security features, you can configure the switch to shut down only the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.

If you do not enable the recovery for the cause, the interface stays in the error-disabled state until you enter the **shutdown** and the **no shutdown** interface configuration commands. If you enable the recovery for a cause, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out.

Otherwise, you must enter the **shutdown** and then the **no shutdown** commands to manually recover an interface from the error-disabled state.

You can verify your settings by entering the **show errdisable recovery** privileged EXEC command.

Examples

This example shows how to enable the recovery timer for the BPDU guard error-disabled cause:

```
Device# configure terminal
Device(config)# errdisable recovery cause bpduguard
```
errdisable recovery cause

To enable the error-disabled mechanism to recover from a specific cause, use the `errdisable recovery cause` command in global configuration mode. To return to the default setting, use the `no` form of this command.

```
errdisable recovery cause {all | arp-inspection | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | psp | security-violation | sfp-config-mismatch | storm-control | uddl}
no errdisable recovery cause {all | arp-inspection | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | psp | security-violation | sfp-config-mismatch | storm-control | uddl}
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables the timer to recover from all error-disabled causes.</td>
</tr>
<tr>
<td>arp-inspection</td>
<td>Enables the timer to recover from the Address Resolution Protocol (ARP) inspection error-disabled state.</td>
</tr>
<tr>
<td>bpduguard</td>
<td>Enables the timer to recover from the bridge protocol data unit (BPDU) guard error-disabled state.</td>
</tr>
<tr>
<td>channel-misconfig</td>
<td>Enables the timer to recover from the EtherChannel misconfiguration error-disabled state.</td>
</tr>
<tr>
<td>dhcp-rate-limit</td>
<td>Enables the timer to recover from the DHCP snooping error-disabled state.</td>
</tr>
<tr>
<td>dtp-flap</td>
<td>Enables the timer to recover from the Dynamic Trunking Protocol (DTP) flap error-disabled state.</td>
</tr>
<tr>
<td>gbic-invalid</td>
<td>Enables the timer to recover from an invalid Gigabit Interface Converter (GBIC) module error-disabled state.</td>
</tr>
<tr>
<td>inline-power</td>
<td>Enables the timer to recover from the Power over Ethernet (PoE) error-disabled state. This keyword is supported only on switches with PoE ports.</td>
</tr>
<tr>
<td>link-flap</td>
<td>Enables the timer to recover from the link-flap error-disabled state.</td>
</tr>
<tr>
<td>loopback</td>
<td>Enables the timer to recover from a loopback error-disabled state.</td>
</tr>
<tr>
<td>mac-limit</td>
<td>Enables the timer to recover from the mac limit error-disabled state.</td>
</tr>
<tr>
<td>pagp-flap</td>
<td>Enables the timer to recover from the Port Aggregation Protocol (PAgP)-flap error-disabled state.</td>
</tr>
</tbody>
</table>
Enable the timer to recover from the port mode change failure error-disabled state.

Enable the timer to recover from the PPPoE IA rate limit error-disabled state.

Enable the timer to recover from a port security violation disable state.

Enable the timer to recover from the protocol storm protection (PSP) error-disabled state.

Enable the timer to recover from an IEEE 802.1x-violation disabled state.

Enable error detection on an SFP configuration mismatch.

Enable the timer to recover from a storm control error.

Enable the timer to recover from the UniDirectional Link Detection (UDLD) error-disabled state.

Command Default

Recovery is disabled for all causes.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A cause (such as all or BDPU guard) is defined as the reason that the error-disabled state occurred. When a cause is detected on an interface, the interface is placed in the error-disabled state, an operational state similar to link-down state.

When a port is error-disabled, it is effectively shut down, and no traffic is sent or received on the port. For the BPDU guard and port-security features, you can configure the switch to shut down only the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.

If you do not enable the recovery for the cause, the interface stays in the error-disabled state until you enter the `shutdown` and the `no shutdown` interface configuration commands. If you enable the recovery for a cause, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out.

Otherwise, you must enter the `shutdown` and then the `no shutdown` commands to manually recover an interface from the error-disabled state.

You can verify your settings by entering the `show errdisable recovery` privileged EXEC command.

Examples

This example shows how to enable the recovery timer for the BPDU guard error-disabled cause:

```
Device# configure terminal
Device(config)# errdisable recovery cause bpduguard
```
To configure an interface, use the `interface` command.

```
interface {AccessTunnel interface-number | Auto-Template interface-number | GigabitEthernet switch-number/slot-number/port-number | Internal Interface Internal Interface number | LISP interface-number Loopback interface-number Null interface-number Port-channel interface-number TenGigabitEthernet switch-number/slot-number/port-number TwentyFiveGigE switch-number/slot-number/port-number Tunnel interface-number Vlan interface-number }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>AccessTunnel interface-number</code></td>
<td>Enables you to configure an access tunnel interface.</td>
</tr>
<tr>
<td><code>Auto-Template interface-number</code></td>
<td>Enables you to configure an auto-template interface. The range is from 1 to 999.</td>
</tr>
<tr>
<td><code>GigabitEthernet switch-number/slot-number/port-number</code></td>
<td>Enables you to configure a Gigabit Ethernet IEEE 802.3z interface.</td>
</tr>
<tr>
<td></td>
<td>- <code>switch-number</code> — Switch ID. The range is from 1 to 8.</td>
</tr>
<tr>
<td></td>
<td>- <code>slot-number</code> — Slot number. The range is from 0 to 1.</td>
</tr>
<tr>
<td></td>
<td>- <code>port-number</code> — Port number. The range is from 1 to 48.</td>
</tr>
<tr>
<td><code>LISP interface-number</code></td>
<td>Enables you to configure a LISP interface.</td>
</tr>
<tr>
<td><code>Loopback interface-number</code></td>
<td>Enables you to configure a loopback interface. The range is from 0 to 2147483647.</td>
</tr>
<tr>
<td><code>Null interface-number</code></td>
<td>Enables you to configure a null interface. The default value is 0.</td>
</tr>
<tr>
<td><code>Port-channel interface-number</code></td>
<td>Enables you to configure a port-channel interface. The range is from 1 to 128.</td>
</tr>
<tr>
<td><code>TenGigabitEthernet switch-number/slot-number/port-number</code></td>
<td>Enables you to configure a 10-Gigabit Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>- <code>switch-number</code> — Switch ID. The range is from 1 to 8.</td>
</tr>
<tr>
<td></td>
<td>- <code>slot-number</code> — Slot number. The range is from 0 to 1.</td>
</tr>
<tr>
<td></td>
<td>- <code>port-number</code> — Port number. The ranges are 1 to 4, 17 to 24, and 37 to 48.</td>
</tr>
</tbody>
</table>
TwentyFiveGigE

switch-number/slot-number/port-number

Enables you to configure a 25-Gigabit Ethernet interface.

- **switch-number** — Switch ID. The range is from 1 to 8.
- **slot-number** — Slot number. Value is 1.
- **port-number** — Port number. The range is from 1 to 2.

Tunnel

interface-number

Enables you to configure a tunnel interface. The range is from 0 to 2147483647.

Vlan

interface-number

Enables you to configure a switch VLAN. The range is from 1 to 4094.

Command Default

None

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td>The TwentyFiveGigE keyword was added to the command.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You cannot use the "no" form of this command.

The range for uplink ports is 0-4.

The range for multi-Gigabit Ethernet ports on 24-port switches is 17-24.

The range for multi-Gigabit Ethernet ports on 48-port switches is 41-48.

Examples

The following example shows how to configure a tunnel interface:
```
Device(config)# interface Tunnel 15
Device(config-if)#
```

The following example shows how to configure a 25-Gigabit Ethernet interface
```
Device(config)# interface TwentyFiveGigE 1/1/1
Device(config-if)#
```

The following example shows how to configure a 40-Gigabit Ethernet interface
interface range

To configure an interface range, use the `interface range` command.

```
interface range { GigabitEthernet switch-number/slot-number/port-number | Loopback interface-number
Null interface-number Port-channel interface-number TenGigabitEthernet
switch-number/slot-number/port-number TwentyFiveGigE switch-number/slot-number/port-number Tunnel
interface-number Vlan interface-number }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
</table>
| **GigabitEthernet** | `switch-number/slot-number/port-number` Enables you to configure a Gigabit Ethernet IEEE 802.3z interface.
- `switch-number` — Switch ID. The range is from 1 to 8.
- `slot-number` — Slot number. The range is from 0 to 1.
- `port-number` — Port number. The range is from 0 to 48. |
| **Loopback** | `interface-number` Enables you to configure a loopback interface. The range is from 0 to 2147483647. |
| **Port-channel** | `interface-number` Enables you to configure a port-channel interface. The range is from 1 to 48. |
| **TenGigabitEthernet** | `switch-number/slot-number/port-number` Enables you to configure a 10-Gigabit Ethernet interface.
- `switch-number` — Switch ID. The range is from 1 to 8.
- `slot-number` — Slot number. The range is from 0 to 1.
- `port-number` — Port number. The range is from 1 to 4, 17 to 24, and 37 to 48. |
| **TwentyFiveGigE** | `switch-number/slot-number/port-number` Enables you to configure a 25-Gigabit Ethernet interface.
- `switch-number` — Switch ID. The range is from 1 to 8.
- `slot-number` — Slot number. Value is 1.
- `port-number` — Port number. The range is from 1 to 2. |
| **Tunnel** | `interface-number` Enables you to configure a tunnel interface. The range is from 0 to 2147483647. |

Vlan interface-number

Enables you to configure a switch VLAN. The range is from 1 to 4094.

Command Default

None

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td>The TwentyFiveGigE keyword was added to the command.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The range for uplink ports is 0-4.

The range for multi-Gigabit Ethernet ports on 24-port switches is 17-24.

The range for multi-Gigabit Ethernet ports on 48-port switches is 41-48.

Examples

This example shows how you can configure interface range:

```
Device(config)# interface range vlan 1-100
```
ip mtu

To set the IP maximum transmission unit (MTU) size of routed packets on all routed ports of the switch or switch stack, use the `ip mtu` command in interface configuration mode. To restore the default IP MTU size, use the `no` form of this command.

```
ip mtu  bytes 
no ip mtu  bytes
```

Syntax Description

- `bytes` MTU size, in bytes. The range is from 68 up to the system MTU value (in bytes).

Command Default

The default IP MTU size for frames received and sent on all switch interfaces is 1500 bytes.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The upper limit of the IP value is based on the switch or switch stack configuration and refers to the currently applied system MTU value. For more information about setting the MTU sizes, see the `system mtu` global configuration command.

To return to the default IP MTU setting, you can apply the `default ip mtu` command or the `no ip mtu` command on the interface.

You can verify your setting by entering the `show ip interface interface-id` or `show interfaces interface-id` privileged EXEC command.

The following example sets the maximum IP packet size for VLAN 200 to 1000 bytes:

```
Device(config)# interface vlan 200
Device(config-if)# ip mtu 1000
```

The following example sets the maximum IP packet size for VLAN 200 to the default setting of 1500 bytes:

```
Device(config)# interface vlan 200
Device(config-if)# default ip mtu
```

This is an example of partial output from the `show ip interface interface-id` command. It displays the current IP MTU setting for the interface.

```
Device# show ip interface gigabitethernet4/0/1
GigabitEthernet4/0/1 is up, line protocol is up
  Internet address is 18.0.0.1/24
  Broadcast address is 255.255.255.255
  Address determined by setup command
  MTU is 1500 bytes
  Helper address is not set

<output truncated>
```
To set the IPv6 maximum transmission unit (MTU) size of routed packets on all routed ports of the switch or switch stack, use the `ipv6 mtu` command in interface configuration mode. To restore the default IPv6 MTU size, use the `no` form of this command.

```
ipv6 mtu bytes
no ipv6 mtu bytes
```

Syntax Description

`bytes` MTU size, in bytes. The range is from 1280 up to the system MTU value (in bytes).

Command Default

The default IPv6 MTU size for frames received and sent on all switch interfaces is 1500 bytes.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The upper limit of the IPv6 MTU value is based on the switch or switch stack configuration and refers to the currently applied system MTU value. For more information about setting the MTU sizes, see the `system mtu` global configuration command.

To return to the default IPv6 MTU setting, you can apply the `default ipv6 mtu` command or the `no ipv6 mtu` command on the interface.

You can verify your setting by entering the `show ipv6 interface interface-id` or `show interface interface-id` privileged EXEC command.

The following example sets the maximum IPv6 packet size for an interface to 2000 bytes:

```
Device(config)# interface gigabitethernet4/0/1
Device(config-if)# ipv6 mtu 2000
```

The following example sets the maximum IPv6 packet size for an interface to the default setting of 1500 bytes:

```
Device(config)# interface gigabitethernet4/0/1
Device(config-if)# default ipv6 mtu
```

This is an example of partial output from the `show ipv6 interface interface-id` command. It displays the current IPv6 MTU setting for the interface.

```
Device# show ipv6 interface gigabitethernet4/0/1
GigabitEthernet4/0/1 is up, line protocol is up
   Internet address is 18.0.0.1/24
   Broadcast address is 255.255.255.255
   Address determined by setup command
   MTU is 1500 bytes
   Helper address is not set
<output truncated>
```
list (coap-proxy configuration)

To restrict the IP address range where the lights and their resources can be learnt, use the list command in coap-proxy configuration mode. To return to the default settings, use the no form of the command.

A maximum of five ip-lists can be configured, irrespective of ipv4 or ipv6, using the list command.

```
list {ipv4 | ipv6} [list-name]
no list {ipv4 | ipv6} [list-name]
```

Syntax Description

- `ipv4 list-name` Specifies IPv4 list name.
- `ipv6 list-name` Specifies IPv6 list name.

Command Modes

- coap-proxy configuration (config-coap-proxy)

Command History

```
Release          Modification
Cisco IOS XE Fuji 16.9.2    This command was introduced.
```

Usage Guidelines

To access coap-proxy configuration mode, enter the coap proxy command in global configuration mode.

Example

This example shows how to restrict the IPv4 address range using a list name.

```
Device(config)# coap proxy
Device config-coap-proxy)# list ipv4 trial_list
```
lldp (interface configuration)

To enable Link Layer Discovery Protocol (LLDP) on an interface, use the `lldp` command in interface configuration mode. To disable LLDP on an interface, use the `no` form of this command.

```plaintext
lldp {med-tlv-select tlv | receive | tlv-select power-management | transmit}
no lldp {med-tlv-select tlv | receive | tlv-select power-management | transmit}
```

Syntax Description

- **med-tlv-select**
 - Selects an LLDP Media Endpoint Discovery (MED) time-length-value (TLV) element to send.

- **tlv**
 - String that identifies the TLV element. Valid values are the following:
 - `inventory-management` — LLDP MED Inventory Management TLV.
 - `location` — LLDP MED Location TLV.
 - `network-policy` — LLDP MED Network Policy TLV.
 - `power-management` — LLDP MED Power Management TLV.

- **receive**
 - Enables the interface to receive LLDP transmissions.

- **tlv-select**
 - Selects the LLDP TLVs to send.

- **power-management**
 - Sends the LLDP Power Management TLV.

- **transmit**
 - Enables LLDP transmission on the interface.

Command Default

LLDP is disabled.

Command Modes

- Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is supported on 802.1 media types.

If the interface is configured as a tunnel port, LLDP is automatically disabled.

The following example shows how to disable LLDP transmission on an interface:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# no lldp transmit
```

The following example shows how to enable LLDP transmission on an interface:

```
Device(config)# interface gigabitethernet1/0/1
```
Device(config-if)# lldp transmit
logging event power-inline-status

To enable the logging of Power over Ethernet (PoE) events, use the `logging event power-inline-status` command in interface configuration mode. To disable the logging of PoE status events, use the `no` form of this command.

- `logging event power-inline-status`
- `no logging event power-inline-status`

Syntax Description

This command has no arguments or keywords.

Command Default

Logging of PoE events is enabled.

Command Modes

Interface configuration (config-if)

Command History

- **Release**
 - Cisco IOS XE Fuji 16.9.2
 - This command was introduced.

Usage Guidelines

The `no` form of this command does not disable PoE error events.

Examples

This example shows how to enable logging of PoE events on a port:

```
Device(config-if)# interface gigabitethernet1/0/1
Device(config-if)# logging event power-inline-status
Device(config-if)#
```
macro

To apply a macro to an interface or to apply and debug a macro on an interface, use the `macro` command in interface configuration mode.

```
macro {apply | trace}macro-name [parameter {value}] [parameter {value}] [parameter {value}]
```

Syntax Description

- **apply**: Applies a macro to an interface.
- **trace**: Applies a macro to an interface and then debugs it.
- **macro-name**: Specifies the name of the macro.
- **parameter value**: (Optional) Specifies unique parameter values that are specific to the interface. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.

Command Default

This command has no default setting.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can use the `macro apply macro-name` command to apply and show the macros running on an interface.

You can use the `macro trace macro-name` command to apply and then debug the macro to find any syntax or configuration errors.

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the interface.

When creating a macro that requires the assignment of unique values, use the `parameter value` keywords to designate values specific to the interface.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the `macro apply macro-name ?` command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.

There are Cisco-default SmartPorts macros embedded in the switch software. You can display these macros and the commands that they contain by using the `show parser macro` command in user EXEC mode.

Follow these guidelines when you apply a Cisco-default SmartPorts macro on an interface:
• Display all macros on the switch by using the `show parser macro` command in user EXEC mode. Display the contents of a specific macro by using the `show parser macro macro-name` command in user EXEC mode.

• Keywords that begin with `$` mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the `parameter value` keywords.

The Cisco-default macros use the `$` character to identify required keywords. You can use the `$` character to define keywords when you create a macro.

When you apply a macro to an interface, the macro name is automatically added to the interface. You can display the applied commands and macro names by using the `show running-config interface interface-id` command in user EXEC mode.

A macro applied to an interface range behaves the same way as a macro applied to a single interface. When you use an interface range, the macro is applied sequentially to each interface within the range. If a macro command fails on one interface, it is still applied to the remaining interfaces.

You can delete a macro-applied configuration on an interface by entering the `default interface interface-id` command in interface configuration mode.

Example

After you use the `macro name` command, in interface configuration mode, you can apply it to an interface. This example shows how to apply a user-created macro called duplex to an interface:

```
Device(config-if)# macro apply duplex
```

To debug a macro, use the `macro trace` command, in interface configuration mode, to find any syntax or configuration errors in the macro as it is applied to an interface.

```
Device(config-if)# macro trace duplex
Applying command...'duplex auto'
%Error Unknown error.
Applying command...'speed nonegotiate'
```

This example shows how to display the Cisco-default cisco-desktop macro and how to apply the macro and set the access VLAN ID to 25 on an interface:

```
Device# show parser macro cisco-desktop
--------------------------------------------------------------
Macro name : cisco-desktop
Macro type : default
# Basic interface - Enable data VLAN only
# Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access
# Enable port security limiting port to a single
# MAC address -- that of desktop
switchport port-security
switchport port-security maximum 1
# Ensure port-security age is greater than one minute
# and use inactivity timer
switchport port-security violation restrict
switchport port-security aging time 2
switchport port-security aging type inactivity
# Configure port as an edge network port
spanning-tree portfast
```
spanning-tree bpduguard enable

Device#
Device# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)# interface gigabitethernet1/0/4
Device(config-if)# macro apply cisco-desktop $AVID 25
To configure and apply a global macro using the CLI, use the `macro auto` command in privileged EXEC mode.

Use the `no` form of this command to return to the default setting.

```
macro auto {apply | config} macro-name
```

Syntax Description
- `apply` Applies the macro.
- `config` Enters the macro parameters.
- `macro-name` Specifies the macro name.

Command Default
No macros are applied to the switch.

Command Modes
Privileged EXEC (#)

Command History
Cisco IOS XE Fuji 16.9.2

This command was introduced.

Usage Guidelines
To remove the macro from the switch, enter the `no` forms of the macro commands.

If you enter the `macro auto config macro-name` command, you are prompted to enter values for all the macro parameters.

Use the exact text string when entering the macro-name. The entries are case sensitive.

The user-defined values appear only in the `show macro auto` or `show running-config` command output.

Example
This example shows how to display global macros:

```
Device# macro auto apply ?
CISCO_SWITCH_AAA_ACCOUNTING Configure aaa accounting parameters
CISCO_SWITCH_AAA_AUTHENTICATION Configure aaa authentication parameters
CISCO_SWITCH_AAA_AUTHORIZATION Configure aaa authorization parameters
CISCO_SWITCH_AUTO_IP_CONFIG Configure the ip parameters
CISCO_SWITCH_AUTO_PCI_CONFIG Configure PCI compliant parameters
CISCO_SWITCH_DOMAIN_NAME_CONFIG Configure domain name
CISCO_SWITCH_ETHERCHANNEL_CONFIG Configure the etherchannel parameters
CISCO_SWITCH_HOSTNAME_CONFIG Configure hostname
CISCO_SWITCH_HTTP_SERVER_CONFIG Configure http server
CISCO_SWITCH_LOGGING_SERVER_CONFIG Configure logging server
CISCO_SWITCH_MGMT_VLAN_CONFIG Configure management vlan parameters
CISCO_SWITCH_NAME_SERVER_CONFIG Configure name server parameters
CISCO_SWITCH_NTP_SERVER_CONFIG Configure NTP server
CISCO_SWITCH_RADIUS_SERVER_CONFIG Configure radius server
CISCO_SWITCH_SETUP_SNMP_TRAPS Configure SNMP trap parameters
CISCO_SWITCH_SETUP_USR_CONFIG Configure the user parameters
CISCO_SWITCH_SNMP_SOURCE_CONFIG Configure snmp source interface
```
This example shows how to display the parameters for a specific macro:

```
Device# macro auto config CISCO_SWITCH_AUTO_IP_CONFIG ?
CISCO_SWITCH_DOMAIN_NAME_CONFIG domain name parameters
CISCO_SWITCH_LOGGING_SERVER_CONFIG logging host parameters
CISCO_SWITCH_NAME_SERVER_CONFIG name server parameters
CISCO_SWITCH_NTP_SERVER_CONFIG ntp server parameters
LINE
<cr>
```

This example shows how to set macro parameters and apply the macro using the CLI:
Device# macro auto config CISCO_SWITCHEtherchannel_CONFIG
Enter the port channel id[1-48] for 3K & 2350, [1-6] for 2K: 2
Enter the port channel type, Layer: [2-3 (L3 not supported on 2K)]: 2
Enter etherchannel mode for the interface [auto/desirable/on/active/passive]: active
Enter the channel protocol [lacp/none]: lacp
Enter the number of interfaces to join the etherchannel [8-PAGP/MODE:ON, 16-LACP]: 7
Enter interface name [GigabitEthernet3/0/3]: gigabitethernet1/0/1
Enter interface name [GigabitEthernet3/0/3]: gigabitethernet1/0/2
Enter interface name [GigabitEthernet3/0/3]: gigabitethernet1/0/3
Enter interface name [GigabitEthernet3/0/3]: gigabitethernet1/0/4
Enter interface name [GigabitEthernet3/0/3]: gigabitethernet1/0/5
Enter interface name [GigabitEthernet3/0/3]: gigabitethernet1/0/6
Enter interface name [GigabitEthernet3/0/3]: gigabitethernet1/0/7
Do you want to apply the parameters? [yes/no]: yes
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Device# macro auto apply CISCO_SWITCHEtherchannel_CONFIG
Enter configuration commands, one per line. End with CNTL/Z.
Device#
macro auto apply (Cisco IOS shell scripting capability)

To configure and apply a global macro using the Cisco IOS shell scripting capability, use the **macro auto apply** command in privileged EXEC mode. Use the **no** form of this command to return to the default setting.

```
macro auto apply macro-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply</td>
<td>Applies the macro.</td>
</tr>
<tr>
<td>macro-name</td>
<td>Specifies the macro name.</td>
</tr>
</tbody>
</table>

Command Default

No macros are applied to the switch.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To remove the macro from the switch, enter the **no** forms of the macro commands.

Use the exact text string when entering the **macro-name**. The entries are case sensitive.

The user-defined values appear only in the **show macro auto** or **show running-config** command output.

You can also use the Cisco IOS shell scripting capability to set the parameters. For examples, see the “Configuring and Applying Global Macros” section in the “Configuring Auto Smartports and Static Smartports Macros” chapter.

Example

This example shows how to display global macros:

```
Device# macro auto apply ?
```

<table>
<thead>
<tr>
<th>Macro Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO_SWITCH_AAA_ACCOUNTING</td>
<td>Configure aaa accounting parameters</td>
</tr>
<tr>
<td>CISCO_SWITCH_AAA_AUTHENTICATION</td>
<td>Configure aaa authentication parameters</td>
</tr>
<tr>
<td>CISCO_SWITCH_AAA_AUTHORIZATION</td>
<td>Configure aaa authorization parameters</td>
</tr>
<tr>
<td>CISCO_SWITCH_AUTO_IP_CONFIG</td>
<td>Configure the ip parameters</td>
</tr>
<tr>
<td>CISCO_SWITCH_AUTO_PCI_CONFIG</td>
<td>Configure PCI compliant parameters</td>
</tr>
<tr>
<td>CISCO_SWITCH_DOMAIN_NAME_CONFIG</td>
<td>Configure domain name</td>
</tr>
<tr>
<td>CISCO_SWITCH_ETHERCHANNEL_CONFIG</td>
<td>Configure the etherchannel parameters</td>
</tr>
<tr>
<td>CISCO_SWITCH_HOSTNAME_CONFIG</td>
<td>Configure hostname</td>
</tr>
<tr>
<td>CISCO_SWITCH_HTTP_SERVER_CONFIG</td>
<td>Configure http server</td>
</tr>
<tr>
<td>CISCO_SWITCH_LOGGING_SERVER_CONFIG</td>
<td>Configure logging server</td>
</tr>
<tr>
<td>CISCO_SWITCH_MGMT_VLAN_CONFIG</td>
<td>Configure management vlan parameters</td>
</tr>
<tr>
<td>CISCO_SWITCH_NAME_SERVER_CONFIG</td>
<td>Configure name server parameters</td>
</tr>
<tr>
<td>CISCO_SWITCH_NTP_SERVER_CONFIG</td>
<td>Configure NTP server</td>
</tr>
<tr>
<td>CISCO_SWITCH_RADIUS_SERVER_CONFIG</td>
<td>Configure radius server</td>
</tr>
<tr>
<td>CISCO_SWITCH_SETUP_SNMP_TRAPS</td>
<td>Configure SNMP trap parameters</td>
</tr>
<tr>
<td>CISCO_SWITCH_SETUP_USR_CONFIG</td>
<td>Configure the user parameters</td>
</tr>
<tr>
<td>CISCO_SWITCH_SNMP_SOURCE_CONFIG</td>
<td>Configure snmp source interface</td>
</tr>
</tbody>
</table>
macro auto apply (Cisco IOS shell scripting capability)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO_SWITCH_TACACS_SERVER_CONFIG</td>
<td>Configure tacacs server</td>
</tr>
<tr>
<td>CISCO_SWITCH_USER_PASS_CONFIG</td>
<td>Configure username and password</td>
</tr>
</tbody>
</table>
macro auto config (Cisco IOS shell scripting capability)

To configure and apply a global macro, use the `macro auto config` command in privileged EXEC mode. Use the `no` form of this command to return to the default setting.

```plaintext
macro auto config macro-name [parameter=value [parameter=value]...]  
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>config</code></td>
<td>Enters the macro parameters.</td>
</tr>
<tr>
<td><code>macro-name</code></td>
<td>Specifies the macro name.</td>
</tr>
<tr>
<td><code>parameter=value</code></td>
<td>Replaces values for global macro parameter values. Enter values in the form of name value pair separated by a space: <code><name1>=<value1> [<name2>=<value2>...].</code></td>
</tr>
</tbody>
</table>

Command Default

No macros are applied to the switch.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To remove the macro from the switch, enter the `no` forms of the macro commands.

If you enter the `macro auto config macro-name` command, you are prompted to enter values for all the macro parameters.

Use the exact text string when entering the `macro-name` and `parameters`. The entries are case sensitive.

The user-defined values appear only in the `show macro auto` or `show running-config` command output.

You can also use the Cisco IOS shell scripting capability to set the parameters. For examples, see the “Configuring and Applying Global Macros” section in the “Configuring Auto Smartports and Static Smartports Macros” chapter.
macro auto control

To specify when the switch applies an Auto Smartports macro based on the detection method, device type, or trigger (referred to as event trigger control), use the **macro auto control** command in interface configuration mode. Use the **no** form of this command to disable trigger-to-macro mapping. The switch then does not apply macros based on event triggers.

```plaintext
macro auto control {detection [cdp] [lldp] [mac-address] | device [ip-camera] [media-player] [phone] [lightweight-ap] [access-point] [router] [switch] | trigger [last-resort]}
no macro auto control {detection [cdp] [lldp] [mac-address] | device [ip-camera] [media-player] [phone] [lightweight-ap] [access-point] [router] [switch] | trigger [last-resort]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detection [cdp] [lldp] [mac-address]</td>
<td>detection—Sets one or more of these as an event trigger:</td>
</tr>
<tr>
<td></td>
<td>• (Optional) cdp—CDP messages</td>
</tr>
<tr>
<td></td>
<td>• (Optional) lldp—LLDP messages</td>
</tr>
<tr>
<td></td>
<td>• (Optional) mac-address—User-defined MAC address groups</td>
</tr>
<tr>
<td>device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch]</td>
<td>device—Sets one or more of these devices as an event trigger:</td>
</tr>
<tr>
<td></td>
<td>• (Optional) access-point—Autonomous access point</td>
</tr>
<tr>
<td></td>
<td>• (Optional) ip-camera—Cisco IP video surveillance camera</td>
</tr>
<tr>
<td></td>
<td>• (Optional) lightweight-ap—Lightweight access point</td>
</tr>
<tr>
<td></td>
<td>• (Optional) media-player—Digital media player</td>
</tr>
<tr>
<td></td>
<td>• (Optional) phone—Cisco IP phone</td>
</tr>
<tr>
<td></td>
<td>• (Optional) router—Cisco router</td>
</tr>
<tr>
<td></td>
<td>• (Optional) switch—Cisco switch</td>
</tr>
<tr>
<td>trigger [last-resort]</td>
<td>trigger—Sets a specific event trigger.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) last-resort—Last-resort trigger.</td>
</tr>
</tbody>
</table>
The switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses MAC address groups, MAB messages, 802.1x authentication messages, and LLDP messages in random order.

Command Modes
Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not set event triggers, the switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses MAC address groups, MAB messages, 802.1x authentication messages, and LLDP messages in random order.

To verify that a macro is applied to an interface, use the **show macro auto interface** command in user EXEC mode.

Example

This example shows how to set LLDP messages and MAC address groups as event triggers:

```
Device(config)# interface gigabitethernet 5/0/2
Device(config-if)# macro auto control detection lldp mac-address
Device(config-if)# exit
Device(config)# end
```

This example shows how to set access points, video surveillance cameras, and digital media players as event triggers:

```
Device(config)# interface gigabitethernet 5/0/1
Device(config-if)# macro auto control device access-point ip-camera media-player
Device(config-if)# exit
Device(config)# end
```

Note

The switch applies a built-in macro only when it detects an access point, video surveillance camera, or digital media player.
macro auto execute

To replace built-in macro default values and to configure mapping from an event trigger to a built-in or user-defined macro, use the **macro auto execute** command in global configuration mode.

```
macro auto execute event trigger {builtin built-in macro | remote url} {parameter=value} {function contents}
no macro auto execute event trigger {builtin built-in macro | remote url} {parameter=value} {function contents}
```

Syntax Description

- **event trigger**

 Defines mapping from an event trigger to a built-in macro. Specifies an event trigger:
 - **CISCO_CUSTOM_EVENT**
 - **CISCO_DMP_EVENT**
 - **CISCO_IPVSC_EVENT**
 - **CISCO_LAST_RESORT_EVENT**
 - **CISCO_PHONE_EVENT**
 - **CISCO_ROUTER_EVENT**
 - **CISCO_SWITCH_EVENT**
 - **CISCO_WIRELESS_AP_EVENT**
 - **CISCO_WIRELESS_LIGHTWEIGHT_AP_EVENT**
 - **WORD**—Apply a user-defined event trigger such as a MAC address group
builtin built-in macro name

(Optional) Specifies a built-in macro name:

- **CISCO_AP_AUTO_SMARTPORT**
 Specify the parameter value: `NATIVE_VLAN=1`

- **CISCO_DMP_AUTO_SMARTPORT**
 Specify the parameter value: `ACCESS_VLAN=1`

- **CISCO_IPVSC_AUTO_SMARTPORT**
 Specify the parameter value: `ACCESS_VLAN=1`

- **CISCO_LWAP_AUTO_SMARTPORT**
 Specify the parameter value: `ACCESS_VLAN=1`

- **CISCO_PHONE_AUTO_SMARTPORT**
 Specify the parameter values: `ACCESS_VLAN=1` and `VOICE_VLAN=2`.

- **CISCO_ROUTER_AUTO_SMARTPORT**
 Specify the parameter value: `NATIVE_VLAN=1`

- **CISCO_SWITCH_AUTO_SMARTPORT**
 Specify the parameter value: `NATIVE_VLAN=1`

parameter=value

(Optional) `parameter=value`—Replaces default values for parameter values shown for the `builtin-macro name`, for example, `ACCESS_VLAN=1`. Enter new values in the form of name value pair separated by a space: `[<name1>=<value1> <name2>=<value2>...]`.

{function contents}

(Optional) `{function contents}`—Specifies a user-defined macro to associate with the trigger. Enter the macro contents within braces. Begin the Cisco IOS shell commands with the left brace and end the command grouping with the right brace.
remote url

(Optional) Specifies a remote server location:

- The syntax for the local flash file system on the standalone switch or the stack master: flash:
The syntax for the local flash file system on a stack member:
 flash member number:
The syntax for the FTP:
 ftp://[[username]:password@location]/directory/filename
The syntax for an HTTP server:
 http://[[username:password@]hostname | host-ip]/[directory]/filename
The syntax for a secure HTTP server:
 https://[[username:password@]hostname | host-ip]/[directory]/filename
The syntax for the NVRAM:
 nvram://[[username:password@]@[directory]/filename
The syntax for the Remote Copy Protocol (RCP):
 rcp://[[username@location]/directory/filename
The syntax for the Secure Copy Protocol (SCP):
 scp://[[username@location]/directory/filename
The syntax for the TFTP:
 tftp://[[location]/directory/filename

Command Default
None

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `macro auto execute` command to replace the built-in macro default values with values that are specific to your switch.

The switch automatically maps from event triggers to built-in macros. The built-in macros are system-defined macros in the software image. You can also create user-defined macros by using the Cisco IOS shell scripting capability.

You can create new event triggers by using the `shell trigger` commands in global configuration mode. Use the `show shell triggers` command in privileged EXEC to display the contents of the user-defined triggers and macros.

You can use the `macro auto mac-address-group` command in global configuration mode to create event triggers for devices that do not support Cisco Discovery Protocol (CDP) or Link Layer Discovery Protocol (LLDP).
You can use the remote macro feature to store macros in a central location for designated network switches to use. You can then maintain and update the macro files for use by multiple switches. Use `remote url` to configure the remote server location and macro path information. There are no specific file extension requirements for saved macro files.

Auto Smartports macros and antimacros (the antimacro is the portion of the applied macro that removes it at link down) have these guidelines and limitations:

- You can delete or change the built-in macros. However, you can override a built-in macro by creating a user-defined macro with the same name. To restore the original built-in macro, delete the user-defined macro.

- If you enable both the `macro auto device` and the `macro auto execute` commands, the parameters specified in the command last executed are applied to the switch. Only one command is active on the switch.

- To avoid system conflicts when macros are applied, remove all port configurations except for 802.1x authentication.

- Do not configure port security when enabling Auto SmartPorts on the switch.

- If the macro conflicts with the original configuration, either the macro does not apply some of the original configuration commands, or the antimacro does not remove them. (The antimacro is the portion of the applied macro that removes the macro at a link-down event.)

- For example, if 802.1x authentication is enabled, you cannot remove the switchport-mode access configuration. Remove the 802.1x authentication before removing the switchport mode configuration.

- A port cannot be a member of an EtherChannel when you apply Auto SmartPorts macros.

- The built-in-macro default data VLAN is VLAN 1. The default voice VLAN is VLAN 2. If your switch uses different access, native, or voice VLANs, use the `macro auto device` or the `macro auto execute` commands to configure the values.

- For 802.1x authentication or MAC authentication bypass (MAB), to detect non-Cisco devices, configure the RADIUS server to support the Cisco attribute-value pair `auto-smart-port=event trigger`

- The switch supports Auto SmartPort macros only on directly connected devices. Multiple device connections, such as hubs, are not supported.

- If authentication is enabled on a port, the switch ignores a MAC address trigger if authentication fails.

- The order of CLI commands within the macro and the corresponding antimacro can be different.

Example

This example shows how to use two built-in macros for connecting Cisco switches and Cisco IP phones to the switch. This example modifies the default voice VLAN, access VLAN, and native VLAN for the trunk interface:

```plaintext
Device(config)# !!! the next command modifies the access and voice vlans
Device(config)# !!! for the built in Cisco IP phone auto smartport macro
Device(config)# macro auto execute CISCO_PHONE_EVENT builtin CISCO_PHONE_AUTO_SMARTPORT
ACCESS_VLAN=10 VOICE_VLAN=20
Device(config)# !!! The next command modifies the Native vlan used for inter switch trunks
```
This example shows how to map a user-defined event trigger called media player to a user-defined macro

1. Connect the media player to an 802.1x- or MAB-enabled switch port.

2. On the RADIUS server, set the attribute-value pair to auto-smart-port=DMP_EVENT

3. On the switch, create the event trigger DMP_EVENT, and enter the user-defined macro commands.

4. The switch recognizes the attribute-value pair=DMP_EVENT response from the RADIUS server and applies the macro associated with this event trigger.

```bash
Device(config)# shell trigger DMP_EVENT mediaplayer
Device(config)# macro auto execute DMP_EVENT {
  if [[ $LINKUP == YES ]]; then
    conf t
      interface $INTERFACE
        macro description $TRIGGER
        switchport access vlan 1
        switchport mode access
        switchport port-security
        switchport port-security maximum 1
        switchport port-security violation restrict
        switchport port-security aging time 2
        switchport port-security aging type inactivity
        spanning-tree portfast
        spanning-tree bpduguard enable
      exit
  fi
  if [[ $LINKUP == NO ]]; then
    conf t
      interface $INTERFACE
        no macro description $TRIGGER
        no switchport access vlan 1
        if [[ $AUTH_ENABLED == NO ]]; then
          no switchport mode access
        fi
  fi
}
```
no switchport port-security
no switchport port-security maximum 1
no switchport port-security violation restrict
no switchport port-security aging time 2
no switchport port-security aging type inactivity
no spanning-tree portfast
no spanning-tree bpduguard enable
exit
fi

Table 1: Supported Cisco IOS Shell Keywords

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{</td>
<td>Begin the command grouping.</td>
</tr>
<tr>
<td>}</td>
<td>End the command grouping.</td>
</tr>
<tr>
<td>[[</td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td>]]</td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td>else</td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td>==</td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td>fi</td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td>if</td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td>then</td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td>-z</td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td>$</td>
<td>Variables that begin with the $ character are replaced with a parameter value.</td>
</tr>
<tr>
<td>#</td>
<td>Use the # character to enter comment text.</td>
</tr>
</tbody>
</table>

Table 2: Unsupported Cisco IOS Shell Reserved Keywords

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pipeline.</td>
</tr>
<tr>
<td>case</td>
<td>Conditional construct.</td>
</tr>
<tr>
<td>esac</td>
<td>Conditional construct.</td>
</tr>
<tr>
<td>for</td>
<td>Looping construct.</td>
</tr>
<tr>
<td>function</td>
<td>Shell function.</td>
</tr>
<tr>
<td>in</td>
<td>Conditional construct.</td>
</tr>
<tr>
<td>select</td>
<td>Conditional construct.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>time</td>
<td>Pipeline.</td>
</tr>
<tr>
<td>until</td>
<td>Looping construct.</td>
</tr>
<tr>
<td>while</td>
<td>Looping construct.</td>
</tr>
</tbody>
</table>
macro auto global control

To specify when the switch applies an Auto Smartports macro based on the device type or trigger (referred to as event trigger control), use the **macro auto global control** command in global configuration mode. Use the **no** form of this command to disable trigger-to-macro mapping.

```
macro auto global control {detection [cdp] [lldp] [mac-address] | device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch] | trigger [last-resort]}
no macro auto global control {detection [cdp] [lldp] [mac-address] | device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch] | trigger [last-resort]}
```

Syntax Description

- **detection [cdp] [lldp] [mac-address]**
 - detection—Sets one or more of these as an event trigger:
 - (Optional) **cdp**—CDP messages
 - (Optional) **lldp**—LLDP messages
 - (Optional) **mac-address**—User-defined MAC address groups

- **device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch]**
 - device—Sets one or more of these devices as an event trigger:
 - (Optional) **access-point**—Autonomous access point
 - (Optional) **ip-camera**—Cisco IP video surveillance camera
 - (Optional) **lightweight-ap**—Lightweight access point
 - (Optional) **media-player**—Digital media player
 - (Optional) **phone**—Cisco IP phone
 - (Optional) **router**—Cisco router
 - (Optional) **switch**—Cisco switch

- **trigger [last-resort]**
 - trigger—Sets a specific event trigger.
 - (Optional) **last-resort**—Last-resort trigger.

Command Default

The switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses MAC address groups, MAB messages, 802.1x authentication messages, and LLDP messages in random order.
Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not set event triggers, the switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses MAC address groups, MAB messages, 802.1x authentication messages, and LLDP messages in random order.

To verify that a macro is applied to a switch, use the `show macro auto global` command in user EXEC mode.

Example

This example shows how to set CDP messages, LLDP messages and MAC address groups as event triggers:

```
Device(config)# macro auto global control detection cdp lldp mac-address
Device(config)# end
```

This example shows how to set autonomous access points, lightweight access points, and IP phones:

```
Device(config)# macro auto global control device access-point lightweight-ap phone
Device(config)# end
```
macro auto global processing

To enable Auto SmartPorts macros on the switch, use the `macro auto global processing` command in global configuration mode. Use the `no` form of this command to disable the macros.

```plaintext
macro auto global processing

no macro auto global processing
```

Command Default
Auto Smartports is disabled.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `macro auto global processing` command to globally enable macros on the switch. To disable macros on a specific port, use the `no macro auto processing` command in interface mode.

When using 802.1x or MAB authentication, you need to configure the RADIUS server to support the Cisco attribute-value pair `auto-smart-port=event trigger`. If authentication fails, the macro is not applied. If the 802.1x or MAB authentication fails on the interface, the switch does not use the fallback CDP event trigger.

When CDP-identified devices advertise multiple capabilities, the switch chooses a capability first by switch and then by router.

To verify that a macro is applied to an interface, use the `show macro auto interface` command in privileged EXEC mode.

Example
This example shows how to enable Auto SmartPorts on the switch and to disable the feature on a specific interface:

```
Device(config)# macro auto global processing
Device(config)# interface gigabitethernet 0/1
Device(config-if)# no macro auto processing
Device(config-if)# exit
Device(config)#
```
macro auto mac-address-group

To create an event trigger for devices that do not support Cisco Discovery Protocol (CDP) or Link Layer Discover Protocol (LLDP), use the `macro auto mac-address-group` command in global configuration mode. Use the `no` form of this command to delete the group.

```
macro auto mac-address-group name {mac-address list list | oui {list list | range start-value size number}}
no macro auto mac-address-group name {mac-address list list | oui {list list | range start-value size number}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>name</code></td>
<td>(Optional) Specifies the group name.</td>
</tr>
<tr>
<td><code>ui</code></td>
<td>(Optional) Specifies an operationally unique identifier (OUI) list or range.</td>
</tr>
<tr>
<td></td>
<td>• <code>list</code>—Enter an OUI list in hexadecimal format separated by spaces.</td>
</tr>
<tr>
<td></td>
<td>• <code>range</code>—Enter the starting OUI hexadecimal value (<code>start-value</code>).</td>
</tr>
<tr>
<td></td>
<td>• <code>size</code>—Enter the length of the range (number) from 1 to 5 to create a list of sequential addresses.</td>
</tr>
<tr>
<td><code>mac-address list list</code></td>
<td>(Optional) Configures a list of MAC addresses separated by a space.</td>
</tr>
</tbody>
</table>

Command Default

No groups are defined.

Command Modes

Group configuration (config-addr-grp-mac)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `macro auto mac-address-group` command to create an event trigger for devices that do not support CDP or LLDP. Use the MAC address group as a trigger to map to a built-in or user-defined macro by using the `macro auto execute` command. At link-up the switch detects the device type and applies the specified macro.

The switch supports up to ten MAC address groups. Each group can have up to 32 OUI and 32 MAC configured addresses.

Example

This example shows how to create a MAC-address-group event trigger called `address_trigger` and how to verify your entries:

```
Device(config)# macro auto mac-address-group mac address_trigger
Device(config-addr-grp-mac)# mac-address list 2222.3333.3334 22.33.44 a.b.c
Device(config-addr-grp-mac)# oui list 455555 233244
Device(config-addr-grp-mac)# oui range 333333 size 2
```
Device(config-addr-grp-mac)# exit
Device(config)# end
Device# show running configuration
!
!macro auto mac-address-group address_trigger
 oui list 333334
 oui list 333333
 oui list 233244
 oui list 455555
 mac-address list 0000.0000.0000
 mac-address list 0000.0000.0001
 mac-address list 2222.3333.3333
!
<output truncated>
macro auto processing

To enable Auto SmartPorts macros on an interface, use the **macro auto processing** command in interface configuration mode. Use the no form of this command to disable the macros.

macro auto processing

no macro auto processing

Command Default

Auto SmartPorts is disabled.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **macro auto processing** command, in interface configuration mode, to enable macros on a specific interface. To disable macros on a specific interface, use the no macro auto processing command, in interface configuration mode.

A port cannot be a member of an EtherChannel when you apply Auto SmartPorts macros. If you use EtherChannels, disable Auto SmartPorts on the EtherChannel interface by using the **no macro auto processing** command. The EtherChannel interface applies the configuration to the member interfaces.

To verify that a macro is applied to an interface, use the **show macro auto interface** command in privileged EXEC mode.

Example

This example shows how to enable Auto SmartPorts on the switch and to disable the feature on a specific interface:

```
Device(config)# interface gigabitethernet 0/1
Device(config-if)# no macro auto processing
Device(config-if)# exit
Device(config)# macro auto global processing
```
macro auto sticky

To configure macros to remain active after a link-down event, referred to as macro persistence, use the `macro auto sticky` command in global configuration mode. Use the `no` form of this command to disable the macro persistence.

```
macro auto sticky
no macro auto sticky
```

Command Default

Macro persistence is disabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `macro auto sticky` command so that macros remain active after a link-down event.

Example

This example shows how to enable macro persistence on an interface:

```
Device(config)# interface gigabitethernet 5/0/2
Device(config-if)# macro auto port sticky
Device(config-if)# exit
Device(config)# end
```
macro auto trigger

To enter the configure-macro-trigger mode and define a trigger for a device that has no built-in trigger and associate the trigger with a device or profile, use the `macro auto trigger` command in global configuration mode. To remove the user-defined trigger, use the `no` form of this command.

```
macro auto trigger trigger_name {device | exit | no | profile}
no macro auto trigger trigger_name {device | exit | no | profile}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>trigger_name</code></td>
<td>Specifies a trigger to be associated with the device type or profile name.</td>
</tr>
<tr>
<td><code>device</code></td>
<td>Specifies a device name to map to the named trigger.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits device group configuration mode.</td>
</tr>
<tr>
<td><code>no</code></td>
<td>Removes any configured device.</td>
</tr>
<tr>
<td><code>profile</code></td>
<td>Specifies a profile name to map to the named trigger.</td>
</tr>
</tbody>
</table>

Command Default

No user-defined triggers are configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If a device is classified by the Device Classifier, but does not have a built-in trigger defined, use the `macro auto trigger` command in global configuration mode, to define a trigger based on a device name or a profile name. After you enter the command, the switch is in the configure-macro-trigger mode and the `device`, `exit`, `no`, and `profile` keywords are visible. In this mode, you can provide a device name or a profile name to map to the trigger. It is not necessary to map the trigger to both a device name and a profile name. If you map the trigger to both names, the trigger-to-profile name mapping has preference for macro application.

You must use this command to configure a trigger when you configure a user-defined macro. The trigger name is required for the custom macro configuration.

After the device is profiled, you must add the complete string to the device-group database.

Example

This example shows how to configure a user-defined trigger for a profile called DMP_EVENT mediaplayer for use with a media player that has no built-in trigger:

```
Device(config)# macro auto trigger DMP
Device(config-macro-trigger)# profile mediaplayer-DMP
Device(config-macro-trigger)# exit
```
macro description

To enter a description about which macros are applied to an interface, use the **macro description** command in interface configuration mode. Use the **no** form of this command to remove the description. This command is mandatory for Auto SmartPorts to work.

```
macro description text
no macro description text
```

Syntax Description

| description text | Enters a description about the macros that are applied to the specified interface. |

Command Default

This command has no default setting.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **description** keyword to associate comment text or the macro name with an interface. When multiple macros are applied on a single interface, the description text is from the last applied macro.

You can verify your settings by entering the **show parser macro description** command in privileged EXEC mode.

Example

This example shows how to add a description to an interface:

```
(config-if)# macro description duplex settings
```
macro global

To apply a macro to a switch or to apply and debug a macro on a switch, use the \texttt{macro global} command in global configuration mode.

\begin{verbatim}
macro global \{apply | trace\} macro-name \{parameter \{value\}\} [parameter \{value\}] [parameter \{value\}]

\textbf{Syntax Description}

- \textit{apply}:
 Applies a macro to the switch.

- \textit{trace}:
 Applies a macro to a switch and debugs the macro.

- \textit{macro-name}:
 Specifies the name of the macro.

- \textit{parameter \{value\}}:
 (Optional) Specifies unique parameter values that are specific to the switch. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.

\textbf{Command Default}

This command has no default setting.

\textbf{Command Modes}

Global configuration (config)

\textbf{Command History}

\begin{tabular}{|l|l|}
\hline
\textbf{Release} & \textbf{Modification} \\
\hline
Cisco IOS XE Fuji 16.9.2 & This command was introduced. \\
\hline
\end{tabular}

\textbf{Usage Guidelines}

\textbf{Note}

You can delete a global macro-applied configuration on a switch only by entering the no version of each command in the macro.

Use the \texttt{macro global apply \textit{macro-name}} command to apply the macro to an interface.

Use the \texttt{macro global trace \textit{macro-name}} command to apply and then debug the macro to find any syntax or configuration errors.

If a command fails when you apply a macro because of a syntax error or a configuration error, the macro continues to apply the remaining commands to the switch.

When creating a macro that requires the assignment of unique values, use the \texttt{parameter \textit{value}} keywords to designate values specific to the switch.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the \texttt{macro global apply \textit{macro-name} ?} command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.
There are Cisco-default Smartports macros embedded in the switch software. You can display these macros and the commands they contain by using the `show parser macro` command in user EXEC mode.

Follow these guidelines when you apply a Cisco-default Smartports macro on a switch:

- Display all macros on the switch by using the `show parser macro` command. Display the contents of a specific macro by using the `show parser macro name macro-name` command.

- Keywords that begin with `$` mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the `parameter value` keywords.

 The Cisco-default macros use the `$` character to help identify required keywords. There is no restriction on using the `$` character to define keywords when you create a macro.

When you apply a macro to a switch, the macro name is automatically added to the switch. You can display the applied commands and macro names by using the `show running-config` command.

Example

After you have created a new macro by using the `macro auto execute` command, you can apply it to a switch. This example shows how to view the `snmp` macro, how to apply the macro, set the hostname to test-server, and set the IP precedence value to 7:

```
Device# show parser macro name snmp
Macro name : snmp
Macro type : customizable

#enable port security, linkup, and linkdown traps
snmp-server enable traps port-security
snmp-server enable traps linkup
snmp-server enable traps linkdown
#set snmp-server host
snmp-server host ADDRESS
#set SNMP trap notifications precedence
snmp-server ip precedence VALUE
```

```
Device(config)# macro global apply snmp ADDRESS test-server VALUE 7
```

To debug a macro, use the `macro global trace` command to find any syntax or configuration errors in the macro when you apply it to a switch. In this example, the `ADDRESS` parameter value was not entered, the `snmp-server host` command failed, and the remainder of the macro is applied to the switch:

```
Device(config)# macro global trace snmp VALUE 7
Applying command...‘snmp-server enable traps port-security’
Applying command...‘snmp-server enable traps linkup’
Applying command...‘snmp-server enable traps linkdown’
Applying command...‘snmp-server host’
%Error Unknown error.
Applying command...‘snmp-server ip precedence 7’
```
macro global description

To enter a description about the macros that are applied to a switch, use the `macro global description` command in global configuration mode. Use the `no` form of this command to remove the description.

```
macro global description text
no macro global description text
```

Syntax Description

- `description text`: Enters a description about the macros that are applied to the switch.

Command Default

This command has no default setting.

Command Modes

Global configuration (config)

Command History

- **Release** Cisco IOS XE Fuji 16.9.2
- **Modification** This command was introduced.

Usage Guidelines

Use the `description` keyword to associate comment text or the macro name with a switch. When multiple macros are applied on a switch, the description text is from the last applied macro.

You can verify your settings by entering the `show parser macro description` command in privileged EXEC mode.

Example

This example shows how to add a description to a switch:

```
Device(config)# macro global description udld aggressive mode enabled
```
max-endpoints (coap-proxy configuration)

To specify the maximum number of endpoints that can be learnt on the device, use the `max-endpoints` command in coap-proxy configuration mode. To return to the default settings, use the `no` form of the command.

```
max-endpoints number
no max-endpoints
```

Syntax Description

- `number`: Range is from 1 to 500

Command Default

The default number of endpoints is 10.

Command Modes

- coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to specify maximum endpoints as 12 that can be learnt on the device.

```
Device(config)# coap proxy
Device(config-coap-proxy)# max-endpoints 12
```
mdix auto

To enable the automatic medium-dependent interface crossover (auto-MDIX) feature on the interface, use the `mdix auto` command in interface configuration mode. To disable auto-MDIX, use the `no` form of this command.

```
mdix auto
no mdix auto
```

Syntax Description

This command has no arguments or keywords.

Command Default

Auto-MDIX is enabled.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When auto-MDIX is enabled, the interface automatically detects the required cable connection type (straight-through or crossover) and configures the connection appropriately.

When you enable auto-MDIX on an interface, you must also set the interface speed and duplex to `auto` so that the feature operates correctly.

When auto-MDIX (and autonegotiation of speed and duplex) is enabled on one or both of the connected interfaces, link up occurs, even if the cable type (straight-through or crossover) is incorrect.

Auto-MDIX is supported on all 10/100 and 10/100/1000 Mb/s interfaces and on 10/100/1000BASE-TX small form-factor pluggable (SFP) module interfaces. It is not supported on 1000BASE-SX or -LX SFP module interfaces.

You can verify the operational state of auto-MDIX on the interface by entering the `show controllers ethernet-controller interface-id phy` privileged EXEC command.

This example shows how to enable auto-MDIX on a port:

```
Device# configure terminal
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed auto
Device(config-if)# duplex auto
Device(config-if)# mdix auto
Device(config-if)# end
```
network-policy

To apply a network-policy profile to an interface, use the **network-policy** command in interface configuration mode. To remove the policy, use the **no** form of this command.

```
network-policy  profile-number
no  network-policy
```

Syntax Description

- **profile-number** The network-policy profile number to apply to the interface.

Command Default

No network-policy profiles are applied.

Command Modes

- Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **network-policy profile number** interface configuration command to apply a profile to an interface.

You cannot apply the **switchport voice vlan** command on an interface if you first configure a network-policy profile on it. However, if **switchport voice vlan vlan-id** is already configured on the interface, you can apply a network-policy profile on the interface. The interface then has the voice or voice-signaling VLAN network-policy profile applied.

This example shows how to apply network-policy profile 60 to an interface:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# network-policy 60
```
network-policy profile (global configuration)

To create a network-policy profile and to enter network-policy configuration mode, use the `network-policy profile` command in global configuration mode. To delete the policy and to return to global configuration mode, use the `no` form of this command.

```
network-policy profile  profile-number
no network-policy profile  profile-number
```

Syntax Description

- `profile-number` Network-policy profile number. The range is 1 to 4294967295.

Command Default

No network-policy profiles are defined.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `network-policy profile` global configuration command to create a profile and to enter network-policy profile configuration mode.

To return to privileged EXEC mode from the network-policy profile configuration mode, enter the `exit` command.

When you are in network-policy profile configuration mode, you can create the profile for voice and voice signaling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode.

These profile attributes are contained in the Link Layer Discovery Protocol for Media Endpoint Devices (LLDP-MED) network-policy time-length-value (TLV).

This example shows how to create network-policy profile 60:

```
Device(config)# network-policy profile 60
Device(config-network-policy)#
```
port-dtls (coap-proxy configuration)

To configure a Datagram Transport Layer Security (DTLS) port, use the `port-dtls` command in coap-proxy configuration mode. To return to the default settings, use the `no` form of the command.

```
port-dtls number
no port-dtls
```

Syntax Description

- `number` Range is from 1 to 65000.

Command Default

The default port is 5683.

Command Modes

- `coap-proxy configuration (config-coap-proxy)`

Command History

- **Release**
 - Cisco IOS XE Fuji 16.9.2
 - This command was introduced.

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to configure a dtls port.

```
Device(config)# coap proxy
Device(config-coap-proxy)# port-dtls 5899
```
port-unsecure (coap-proxy configuration)

To configure a port, use the `port-unsecure` command in coap-proxy configuration mode. To return to the default settings, use the `no` form of the command.

```
port-unsecure number
no port-dtls
```

Syntax Description

- `number`

 Range is from 1 to 65000.

Command Default

The default port is 5683.

Command Modes

coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to configure a port.

```
Device(config)# coap proxy
Device(config-coap-proxy)# port-unsecure 5899
```
power-priority

To configure Cisco StackPower power-priority values for a switch in a power stack and for its high-priority and low-priority PoE ports, use the `power-priority` command in switch stack-power configuration mode. To return to the default setting, use the `no` form of the command.

```
power-priority {high value | low value | switch value}
no power-priority {high | low | switch}
```

Syntax Description

- **high value** Sets the power priority for the ports configured as high-priority ports. The range is 1 to 27, with 1 as the highest priority. The `high` value must be lower than the value set for the low-priority ports and higher than the value set for the switch.

- **low value** Sets the power priority for the ports configured as low-priority ports. The range is 1 to 27. The `low` value must be higher than the value set for the high-priority ports and the value set for the switch.

- **switch value** Sets the power priority for the switch. The range is 1 to 27. The `switch` value must be lower than the values set for the low and high-priority ports.

Command Default

If no values are configured, the power stack randomly determines a default priority.

The default ranges are 1 to 9 for switches, 10 to 18 for high-priority ports, 19 to 27 for low-priority ports.

On non-PoE switches, the high and low values (for port priority) have no effect.

Command Modes

Switch stack-power configuration (config-stack)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access switch stack-power configuration mode, enter the `stack-power switch switch-number` global configuration command.

Cisco StackPower power-priority values determine the order for shutting down switches and ports when power is lost and load shedding must occur. Priority values are from 1 to 27; the highest numbers are shut down first.

We recommend that you configure different priority values for each switch and for its high-priority ports and low-priority ports to limit the number of devices shut down at one time during a loss of power. If you try to configure the same priority value on different switches in a power stack, the configuration is allowed, but you receive a warning message.

Note

This command is available only on switch stacks running the IP Base or IP Services feature set.

Examples

This is an example of setting the power priority for switch 1 in power stack a to 7, for the high-priority ports to 11, and for the low-priority ports to 20.
Device(config)# stack-power switch 1
Device(config-switch-stackpower)# stack-id power_stack_a
Device(config-switch-stackpower)# power-priority high 11
Device(config-switch-stackpower)# power-priority low 20
Device(config-switch-stackpower)# power-priority switch 7
Device(config-switch-stackpower)# exit
power inline

To configure the power management mode on Power over Ethernet (PoE) ports, use the `power inline` command in interface configuration mode. To return to the default settings, use the `no` form of this command.

```
power inline {auto [max max-wattage] | never | port priority {high | low} | static [max max-wattage]}
```

Syntax Description

- **auto**
 - Enables powered-device detection. If enough power is available, automatically allocates power to the PoE port after device detection. Allocation is first-come, first-serve.

- **max max-wattage**
 - (Optional) Limits the power allowed on the port. The range is 4000 to 30,000 mW. If no value is specified, the maximum is allowed.

- **never**
 - Disables device detection, and disables power to the port.

- **port**
 - Configures the power priority of the port. The default priority is low.

- **priority {high | low}**
 - Sets the power priority of the port. In case of a power supply failure, ports configured as low priority are turned off first and ports configured as high priority are turned off last. The default priority is low.

- **static**
 - Enables powered-device detection. Pre-allocates (reserves) power for a port before the switch discovers the powered device. This action guarantees that the device connected to the interface receives enough power.

Command Default

- The default is `auto` (enabled).
- The maximum wattage is 30,000 mW.
- The default port priority is low.

Command Default

Interface configuration (config-if)
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is supported only on PoE-capable ports. If you enter this command on a port that does not support PoE, this error message appears:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# power inline auto

% Invalid input detected at '^' marker.
```

In a switch stack, this command is supported on all ports in the stack that support PoE.

Use the `max max-wattage` option to disallow higher-power powered devices. With this configuration, when the powered device sends Cisco Discovery Protocol (CDP) messages requesting more power than the maximum wattage, the switch removes power from the port. If the powered-device IEEE class maximum is greater than the maximum wattage, the switch does not power the device. The power is reclaimed into the global power budget.

Note

The switch never powers any class 0 or class 3 device if the `power inline max max-wattage` command is configured for less than 30 W.

If the switch denies power to a powered device (the powered device requests more power through CDP messages or if the IEEE class maximum is greater than the maximum wattage), the PoE port is in a power-deny state. The switch generates a system message, and the Oper column in the `show power inline` privileged EXEC command output shows `power-deny`.

Use the `power inline static max max-wattage` command to give a port high priority. The switch allocates PoE to a port configured in static mode before allocating power to a port configured in auto mode. The switch reserves power for the static port when it is configured rather than upon device discovery. The switch reserves the power on a static port even when there is no connected device and whether or not the port is in a shutdown or in a no shutdown state. The switch allocates the configured maximum wattage to the port, and the amount is never adjusted through the IEEE class or by CDP messages from the powered device. Because power is pre-allocated, any powered device that uses less than or equal to the maximum wattage is guaranteed power when it is connected to a static port. However, if the powered device IEEE class is greater than the maximum wattage, the switch does not supply power to it. If the switch learns through CDP messages that the powered device needs more than the maximum wattage, the powered device is shut down.

If the switch cannot pre-allocate power when a port is in static mode (for example, because the entire power budget is already allocated to other auto or static ports), this message appears: Command rejected: power inline static: pwr not available. The port configuration remains unchanged.

When you configure a port by using the `power inline auto` or the `power inline static` interface configuration command, the port autonegotiates by using the configured speed and duplex settings. This is necessary to determine the power requirements of the connected device (whether or not it is a powered device). After the power requirements have been determined, the switch hardcodes the interface by using the configured speed and duplex settings without resetting the interface.

When you configure a port by using the `power inline never` command, the port reverts to the configured speed and duplex settings.
If a port has a Cisco powered device connected to it, you should not use the `power inline never` command to configure the port. A false link-up can occur, placing the port in an error-disabled state.

Use the `power inline port priority {high | low}` command to configure the power priority of a PoE port. Powered devices connected to ports with low port priority are shut down first in case of a power shortage.

You can verify your settings by entering the `show power inline` EXEC command.

Examples

This example shows how to enable detection of a powered device and to automatically power a PoE port on a switch:

```plaintext
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline auto
```

This example shows how to configure a PoE port on a switch to allow a class 1 or a class 2 powered device:

```plaintext
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline auto max 7000
```

This example shows how to disable powered-device detection and to not power a PoE port on a switch:

```plaintext
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline never
```

This example shows how to set the priority of a port to high, so that it would be one of the last ports to be shut down in case of power supply failure:

```plaintext
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline port priority high
```
power inline police

To enable policing of real-time power consumption on a powered device, use the `power inline police` command in interface configuration mode. To disable this feature, use the `no` form of this command.

```
power inline police [action {errdisable | log}]
no power inline police
```

Syntax Description

- **action**
 - *Optional* Configures the device to turn off power to the port if the real-time power consumption exceeds the maximum power allocation on the port. This is the default action.

- **errdisable**
 - *Optional* Configures the device to generate a syslog message while still providing power to a connected device if the real-time power consumption exceeds the maximum power allocation on the port.

Command Default

Policing of the real-time power consumption of the powered device is disabled.

Command Modes

Interface configuration (config-if)

Command History

Release

Cisco IOS XE Fuji 16.9.2

Modification

This command was introduced.

Usage Guidelines

This command is supported only on Power over Ethernet (PoE)-capable ports. If you enter this command on a device or port that does not support PoE, an error message appears.

In a switch stack, this command is supported on all switches or ports in the stack that support PoE and real-time power-consumption monitoring.

When policing of the real-time power consumption is enabled, the device takes action when a powered device consumes more power than the allocated maximum amount.

When PoE is enabled, the device senses the real-time power consumption of the powered device. This feature is called `power monitoring` or `power sensing`. The device also polices the power usage with the `power policing` feature.

When power policing is enabled, the device uses one of the these values as the cutoff power on the PoE port in this order:

1. The user-defined power level that limits the power allowed on the port when you enter the `power inline auto max max-wattage` or the `power inline static max max-wattage` interface configuration command

2. The device automatically sets the power usage of the device by using CDP power negotiation or by the IEEE classification and LLDP power negotiation.

If you do not manually configure the cutoff-power value, the device automatically determines it by using CDP power negotiation or the device IEEE classification and LLDP power negotiation. If CDP or LLDP are not enabled, the default value of 30 W is applied. However without CDP or LLDP, the device does not allow devices to consume more than 15.4 W of power because values from 15400 to 30000 mW are only allocated based on CDP or LLDP requests. If a powered device consumes more than 15.4 W without CDP or LLDP negotiation, the device might be in violation of the maximum current I_{max} limitation and might experience
an \textit{Icut} fault for drawing more current than the maximum. The port remains in the fault state for a time before attempting to power on again. If the port continuously draws more than 15.4 W, the cycle repeats.

When a powered device connected to a PoE+ port restarts and sends a CDP or LLDP packet with a power TLV, the device locks to the power-negotiation protocol of that first packet and does not respond to power requests from the other protocol. For example, if the device is locked to CDP, it does not provide power to devices that send LLDP requests. If CDP is disabled after the device has locked on it, the device does not respond to LLDP power requests and can no longer power on any accessories. In this case, you should restart the powered device.

If power policing is enabled, the device polices power usage by comparing the real-time power consumption to the maximum power allocated on the PoE port. If the device uses more than the maximum power allocation (or \textit{cutoff power}) on the port, the device either turns power off to the port, or the device generates a syslog message and updates the LEDs (the port LEDs are blinking amber) while still providing power to the device.

- To configure the device to turn off power to the port and put the port in the error-disabled state, use the \texttt{power inline police} interface configuration command.
- To configure the device to generate a syslog message while still providing power to the device, use the \texttt{power inline police action log} command.

If you do not enter the \texttt{action log} keywords, the default action is to shut down the port, turn off power to it, and put the port in the PoE error-disabled state. To configure the PoE port to automatically recover from the error-disabled state, use the \texttt{erdisable detect cause inline-power} global configuration command to enable error-disabled detection for the PoE cause and the \texttt{erdisable recovery cause inline-power interval interval} global configuration command to enable the recovery timer for the PoE error-disabled cause.

\textbullet \ Caution

If policing is disabled, no action occurs when the powered device consumes more than the maximum power allocation on the port, which could adversely affect the device.

You can verify your settings by entering the \texttt{show power inline police} privileged EXEC command.

\textbf{Examples}

This example shows how to enable policing of the power consumption and configuring the device to generate a syslog message on the PoE port on a device:

\begin{verbatim}
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline police action log
\end{verbatim}
power supply

To configure and manage the internal power supplies on a switch, use the `power supply` command in privileged EXEC mode.

```
power supply stack-member-number slot {A | B} {off | on}
```

Syntax Description

<table>
<thead>
<tr>
<th>Stack member number for which to configure the internal power supplies. The range is 1 to 9, depending on the number of switches in the stack. This parameter is available only on stacking-capable switches.</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack-member-number</td>
</tr>
<tr>
<td>Selects the switch power supply to set.</td>
</tr>
<tr>
<td>slot</td>
</tr>
<tr>
<td>Selects the power supply in slot A.</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>Selects the power supply in slot B.</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Note Power supply slot B is the closest slot to the outer edge of the switch.</td>
</tr>
<tr>
<td>off</td>
</tr>
<tr>
<td>Sets the switch power supply to off.</td>
</tr>
<tr>
<td>on</td>
</tr>
<tr>
<td>Sets the switch power supply to on.</td>
</tr>
</tbody>
</table>

Command Default

The switch power supply is on.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `power supply` command applies to a switch or to a switch stack where all switches are the same platform.

In a switch stack with the same platform switches, you must specify the stack member before entering the `slot {A | B} off` or `on` keywords.

To return to the default setting, use the `power supply stack-member-number on` command.

You can verify your settings by entering the `show env power` privileged EXEC command.

Examples

This example shows how to set the power supply in slot A to off:

```
Device> power supply 2 slot A off
Disabling Power supply A may result in a power loss to PoE devices and/or switches ...
Continue? (yes/[no]): yes
Device
Jun 10 04:52:54.389: %PLATFORM_ENV-6-FRU_PS_OIR: FRU Power Supply 1 powered off
Jun 10 04:52:56.717: %PLATFORM_ENV-1-FAN_NOT_PRESENT: Fan is not present
```
This example shows how to set the power supply in slot A to on:

Device> `power supply 1 slot B on`
Jun 10 04:54:39.600: %PLATFORM_ENV-6-FRU_PS_OIR: FRU Power Supply 1 powered on

This example shows the output of the `show env power` command:

Device> `show env power`

<table>
<thead>
<tr>
<th>SW</th>
<th>PID</th>
<th>Serial#</th>
<th>Status</th>
<th>Sys Pwr</th>
<th>PoE Pwr</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>PWR-1RUC2-640WAC</td>
<td>DCB1705B05B</td>
<td>OK</td>
<td>Good</td>
<td>Good</td>
<td>250/390</td>
</tr>
<tr>
<td>1B</td>
<td>Not Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To unicast upstream resource directory server to which the switch can act as a COAP client, use the `resource directory` command in coap-proxy configuration mode. To return to the default settings, use the `no` form of the command.

A maximum of five ip-lists can be configured, for each ipv4 or ipv6, using the resource directory command.

```
resource directory {ipv4 | ipv6}[ip-address]
no resource directory
```

Syntax Description

- `ipv4 ip-address` Specifies IPv4 address.
- `ipv6 ip-address` Specifies IPv6 address.

Command Modes

coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to unicast upstream resource directory server to which the switch can act as a COAP client.

```
Device(config)# coap proxy
Device(config-coap-proxy)# resource-directory ipv4 192.168.1.1
```
security (coap-proxy configuration)

To configure CoAP security features, use the `security` command in coap-proxy configuration mode. To return to the default settings, use the `no` form of the command.

```
security {none [ipv4 { ip-address ip-mask/prefix} | ipv6 { ip-address ip-mask/prefix} | list {ipv4-list-name ipv6-list-name} } | dtls [{id-trustpoint {identity-trustpoint label}}][verification-trustpoint {verification-trustpoint}][ipv4 { ip-address ip-mask/prefix} | ipv6 { ip-address ip-mask/prefix} | list {ipv4-list-name ipv6-list-name} ]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Indicates no security on that port.</td>
</tr>
<tr>
<td>Note</td>
<td>A maximum of five ipv4 and five ipv6 addresses can be associated.</td>
</tr>
<tr>
<td>dtls</td>
<td>The DTLS security takes RSA trustpoint and Verification trustpoint which are optional. Without 1.1.0.0 255.255.0.0 Verification trustpoint it does the normal Public Key Exchange.</td>
</tr>
<tr>
<td>Note</td>
<td>A maximum of five ipv4 and five ipv6 addresses can be associated.</td>
</tr>
</tbody>
</table>

Command Modes

coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to configure no security on the port.

```
Device(config)# coap proxy
Device(config-coap-proxy)# security none ipv4 1.1.0.0 255.255.0.0
```
shell trigger

To create an event trigger, use the `shell trigger` command in global configuration mode. Use the `no` form of this command to delete the trigger.

```
shell trigger identifier description

no shell trigger identifier description
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>identifier</td>
<td>Specifies the event trigger identifier. The identifier should have no spaces or hyphens between words.</td>
</tr>
<tr>
<td>description</td>
<td>Specifies the event trigger description text.</td>
</tr>
</tbody>
</table>

Command Default

System-defined event triggers:

- CISCO_DMP_EVENT
- CISCO_IPVSC_AUTO_EVENT
- CISCO_PHONE_EVENT
- CISCO_SWITCH_EVENT
- CISCO_ROUTER_EVENT
- CISCO_WIRELESS_AP_EVENT
- CISCO_WIRELESS_LIGHTWEIGHT_AP_EVENT

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to create user-defined event triggers for use with the `macro auto device` and the `macro auto execute` commands.

To support dynamic device discovery when using IEEE 802.1x authentication, you need to configure the RADIUS authentication server to support the Cisco attribute-value pair: `auto-smart-port=event trigger`.

Example

This example shows how to create a user-defined event trigger called RADIUS_MAB_EVENT:

```
Device(config)# shell trigger RADIUS_MAB_EVENT MACAuthBypass Event
Device(config)# end
```
show beacon all

To display the status of beacon LED on the device, use the **show beacon all** command in privileged EXEC mode.

```
show beacon {rp {active | standby} | slot slot-number} | all}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>**rp {active</td>
<td>standby}**</td>
</tr>
<tr>
<td>slot slot-num</td>
<td>Specifies the slot whose beacon LED status is to be displayed.</td>
</tr>
<tr>
<td>all</td>
<td>Displays the status of all beacon LEDs.</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Command Default

This command has no default settings.

Command Modes

Privileged EXEC (#)

Usage Guidelines

Use the command **show beacon all** to know the status of all beacon LEDs.

Sample output of **show beacon all command.**

```
Device#show beacon all
Switch#  Beacon Status
-----------------------
*1        OFF
```

Sample output of **show beacon rp command.

```
Device#show beacon rp active
Switch#  Beacon Status
-----------------------
*1        OFF
```

```
Device#show beacon slot 1
Switch#  Beacon Status
-----------------------
*1        OFF
```
show coap dtls endpoints

To display the CoAP dtls endpoints, use the `show coap dtls endpoints` command in user EXEC or privileged EXEC mode.

show coap dtls endpoints

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Command Modes</th>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>User EXEC (>)</td>
<td>Release</td>
</tr>
<tr>
<td></td>
<td>Privileged EXEC (#)</td>
<td>Modification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco IOS XE Fuji 16.9.2</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the CoAP dtls endpoint:

```
Device# show coap dtls endpoints
# Index StateString StateValue Port IP
---------------------------------------------------------------
```
show coap endpoints

To display the CoAP endpoints, use the **show coap endpoints** command in user EXEC or privileged EXEC mode.

show coap endpoints

Command Default

This command has no arguments or keywords.

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the CoAP endpoint

```
Device# show coap endpoints
List of all endpoints :

Code : D - Discovered , N - New
# Status Age(s) LastNKC(s) IP
------------------------------------------------------------------------

Endpoints - Total : 0 Discovered : 0 New : 0
```
show coap globals

To display the CoAP globals, use the `show coap globals` command in user EXEC or privileged EXEC mode.

show coap globals

Command Default

This command has no arguments or keywords.

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

The following is sample output from the `show coap globals` command:

```
Device# show coap dtls globals
Coap System Timer Values :
  Discovery  : 120 sec
  Cache Exp  : 5 sec
  Keep Alive : 120 sec
  Client DB  : 5 sec
  Query Queue: 500 ms
  Ack delay  : 500 ms
  Timeout    : 5 sec
  Ageout     : 300 sec

  Max Endpoints       : 10
  Max DTLS Endpoints  : 20
  Resource Disc Mode  : POST
```
show coap resources

To display the CoAP resources, use the `show coap resources` command in user EXEC or privileged EXEC mode.

show coap resources

This command has no arguments or keywords.

Command Modes

| Command Default | User EXEC (>)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Privileged EXEC (#)</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the CoAP resources:

```bash
Device# show coap resources
Link format data =

</>
</cisco/flood>
</cisco/context>
</cisco/showtech>
</cisco/discover>
</cisco/sleep>
</cisco/lldp>
```
show coap stats

To display the CoAP stats, use the `show coap stats` command in user EXEC or privileged EXEC mode.

```
show coap stats
```

Command Default
This command has no arguments or keywords.

Command Modes
- User EXEC (>
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the CoAP stats:

```
Device# show coap stats
Coap Stats :
Endpoints    : 0
Requests     : 20
Ext Queries  : 0
New Endpoints: 0
```
show coap version

To display the CoAP version, use the **show coap version** command in user EXEC or privileged EXEC mode.

show coap version

Command Default

This command has no arguments or keywords.

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the CoAP version:

```
Device# show coap version
CoAP version 1.0.5
RFC 7252
```
show device classifier attached

To display the devices connected to a switch and their associated properties, use the `show device classifier attached` command in user EXEC mode.

```
show device classifier attached [{detail | interface interface_id | mac-address mac_address}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detail</code></td>
<td>Displays detailed device classifier information.</td>
</tr>
<tr>
<td><code>interface interface_id</code></td>
<td>Displays information about devices attached to the specified interface.</td>
</tr>
<tr>
<td><code>mac-address mac_address</code></td>
<td>Displays device information for the specified endpoint.</td>
</tr>
</tbody>
</table>

Command Modes

- User EXEC (`>`)
- Privileged EXEC (`#`)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to display the devices connected to a switch. Use the `show device classifier attached` command in privileged EXEC mode to display the configurable parameters for a device.

Example

This example shows how to use the `show device classifier attached` command with no optional keywords to view the devices connected to the switch:

```
Device# show device classifier attached
MAC_Address   Port_Id   Profile Name
------------- ------- --------------------------
000a.b8c6.1e07 Gi1/0/2   Cisco-Device
001f.9e90.1250 Gi1/0/4   Cisco-AP-Aironet-1130
```

This example shows how to use the `show device classifier attached` command in privileged EXEC mode with the optional `mac-address` keyword to view summary information about the connected device with the specified MAC address:

```
Device# show device classifier attached mac-address 001f.9e90.1250
MAC_Address   Port_Id   Profile Name
------------- ------- --------------------------
001f.9e90.1250 Gi1/0/4   Cisco-AP-Aironet-1130
```

This example shows how to use the `show device classifier attached` command in privileged EXEC mode with the optional `mac-address` and `detail` keywords to view detailed information about the connected device with the specified MAC address:

```
Device# show device classifier attached mac-address 001f.9e90.1250 detail
MAC_Address   Port_Id   Profile Name
------------- ------- --------------------------
001f.9e90.1250 Gi1/0/4   Cisco-AP-Aironet-1130
```
show device classifier attached

<table>
<thead>
<tr>
<th>MAC_Address</th>
<th>Port_Id</th>
<th>Certainty</th>
<th>Parent</th>
<th>ProfileType</th>
<th>Profile Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>001f.9e90.1250</td>
<td>Gi1/0/4</td>
<td>40</td>
<td>2</td>
<td>Built-in</td>
<td>Cisco-AP-Aironet-1130</td>
</tr>
</tbody>
</table>

This example shows how to use the `show device classifier attached` command in privileged EXEC mode with the optional `interface` keyword to view summary information about the device connected to the specified interface:

```
Device# show device classifier attached interface gi 1/0/2
MAC_Address     Port_Id     Profile Name
-------------   ---------     ------------
000a.b8c6.1e07 Gi1/0/2     Cisco-Device
```

This example shows how to use the `show device classifier attached` command in privileged EXEC mode with the optional `interface` and `detail` keywords to view detailed information about the device connected to the specified interface:

```
Device# show device classifier attached interface gi 1/0/2 detail
MAC_Address     Port_Id     Certainty | Parent | ProfileType | Profile Name               |
-------------   ---------     -------- | ------ |-------------|-----------------------------|
000a.b8c6.1e07 Gi1/0/2     10       | 0      | Default     | Cisco-Device cisco          |
```

Interface and Hardware Commands

show device classifier clients

To display the clients using the device classifier facility on the switch, use the **show device classifier clients** command in user EXEC mode.

show device classifier clients

Command Default
This command has no arguments or keywords.

Command Modes
User EXEC (>
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Device classifier (DC) is enabled by default when you enable a client application (for example, Auto SmartPorts) that uses its functionality. Use the **show device classifier clients** command to display the clients that are using the DC feature on the switch.

As long as any clients are using the DC, you cannot disable it by using the **no device classifier** command. If you attempt to disable the DC while a client is using it, an error message appears.

Example
This example shows how to use the **show device classifier clients** command to view the clients using the DC on the switch:

```
Device# show device classifier clients
Client Name
-------------------
Auto Smart Ports
```

This example shows the error message that appears when you attempt to disable DC while a client is using it:
```
Switch(config)# no device classifier
These subsystems should be disabled before disabling Device classifier
Auto Smart Ports

% Error - device classifier is not disabled
```
show device classifier profile type

To display all the device types recognized by the device classifier, use the `show device classifier profile type` command in user EXEC mode.

```
show device classifier profile type [[table [{built-in default}] | string filter_string]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>table</code></td>
<td>Displays device classification in a table.</td>
</tr>
<tr>
<td><code>built-in</code></td>
<td>Displays device classification information from the built-in device table.</td>
</tr>
<tr>
<td><code>default</code></td>
<td>Displays device classification information from the default device table.</td>
</tr>
<tr>
<td><code>filter string</code></td>
<td>Displays information for devices that match the filter.</td>
</tr>
</tbody>
</table>

Command Modes

- User EXEC (`>`)
- Privileged EXEC (`#`)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command displays all the device types recognized by the device classification engine. The number of available device types is the number of profiles stored on the switch. Because the number of profiles can be very large, you can use the `filter` keyword to limit the command output.

Example

This example shows how to use the `show device classifier profile type` command in privileged EXEC mode with no optional keywords to view the devices recognized by the device classifier:

```
Device# show device classifier profile type table
Valid Type Profile Name          min Conf ID
------------- ----------- ------------------- --- ---
Valid Default Apple-Device       10 0
Valid Default Aruba-Device       10 1
Valid Default Avaya-Device       10 2
Valid Default Avaya-IP-Phone     20 3
Valid Default BlackBerry        20 4
Valid Default Cisco-Device       10 5
Valid Default Cisco-IP-Phone     20 6
Valid Default Cisco-IP-Phone-7902 70 7
Valid Default Cisco-IP-Phone-7905 70 8
Valid Default Cisco-IP-Phone-7906 70 9
Valid Default Cisco-IP-Phone-7910 70 10
Valid Default Cisco-IP-Phone-7911 70 11
Valid Default Cisco-IP-Phone-7912 70 12
Valid Default Cisco-IP-Phone-7940 70 13
Valid Default Cisco-IP-Phone-7941 70 14
Valid Default Cisco-IP-Phone-7942 70 15
```
<table>
<thead>
<tr>
<th>Valid</th>
<th>Default</th>
<th>Cisco-IP-Phone-7945</th>
<th>70 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7945G</td>
<td>70 17</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7960</td>
<td>70 18</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7961</td>
<td>70 19</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7962</td>
<td>70 20</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7965</td>
<td>70 21</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7970</td>
<td>70 22</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7971</td>
<td>70 23</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7975</td>
<td>70 24</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7985</td>
<td>70 25</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-9971</td>
<td>70 26</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-WLC-2100-Series</td>
<td>40 27</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>DLink-Device</td>
<td>10 28</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Enterasys-Device</td>
<td>10 29</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>HP-Device</td>
<td>10 30</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>HP-JetDirect-Printer</td>
<td>30 31</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Lexmark-Device</td>
<td>10 32</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Lexmark-Printer-E260dn</td>
<td>30 33</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Microsoft-Device</td>
<td>10 34</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Netgear-Device</td>
<td>10 35</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>NintendoWII</td>
<td>10 36</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Nortel-Device</td>
<td>10 37</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Nortel-IP-Phone-2000-Series</td>
<td>20 38</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>SonyPS3</td>
<td>10 39</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>XBOX360</td>
<td>20 40</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Xerox-Device</td>
<td>10 41</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Xerox-Printer-Phaser3250</td>
<td>30 42</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Aruba-AP</td>
<td>20 43</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-Access-Point</td>
<td>10 44</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Conference-Station-7935</td>
<td>70 45</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Conference-Station-7936</td>
<td>70 46</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Conference-Station-7937</td>
<td>70 47</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>DLink-DAP-1522</td>
<td>20 48</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AP-Aironet-1130</td>
<td>30 49</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AP-Aironet-1240</td>
<td>30 50</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AP-Aironet-1250</td>
<td>30 51</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-IAP</td>
<td>25 52</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-IAP-1130</td>
<td>30 53</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-IAP-1240</td>
<td>50 54</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-IAP-1250</td>
<td>50 55</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-AP</td>
<td>25 56</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-AP-1130</td>
<td>30 57</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-AP-1240</td>
<td>50 58</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-AP-1250</td>
<td>50 59</td>
</tr>
<tr>
<td>Invalid</td>
<td>Default</td>
<td>Sun-Workstation</td>
<td>10 60</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Linksys-Device</td>
<td>20 61</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>LinksysWAP54G-Device</td>
<td>30 62</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>HTC-Device</td>
<td>10 63</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>MotorolaMobile-Device</td>
<td>10 64</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>VMWare-Device</td>
<td>10 65</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>ISE-Appliance</td>
<td>10 66</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Device</td>
<td>10 0</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Router</td>
<td>10 1</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Router</td>
<td>10 2</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera</td>
<td>10 3</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-2xxx</td>
<td>30 4</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-2421</td>
<td>50 5</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-2500</td>
<td>50 6</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-2520</td>
<td>50 7</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-2530</td>
<td>50 8</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-4xxx</td>
<td>50 9</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Transparent-Bridge</td>
<td>8 10</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Transparent-Bridge</td>
<td>8 11</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Source-Bridge</td>
<td>10 12</td>
</tr>
<tr>
<td>Interface and Hardware Commands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>show device classifier profile type</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valid</th>
<th>Built-in</th>
<th>Cisco-Switch</th>
<th>10</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Phone</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>IP-Phone</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-DMP</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-DMP-4305G</td>
<td>70</td>
<td>17</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-DMP-4310G</td>
<td>70</td>
<td>18</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-DMP-4400G</td>
<td>70</td>
<td>19</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-WLC-2100-Series</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Access-Point</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-AIR-LAP</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-AIR-AP</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Linksys-Device</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>
show env

To display fan, temperature, and power information, use the `show env` command in EXEC mode.

```
show env {all | fan | power [{all | switch [stack-member-number]}] | stack [stack-member-number] | temperature [status]}
```

Syntax Description

- **all**
 - Displaysthe fan and temperature environmental status and the status of the internal power supplies.

- **fan**
 - Displays the switch fan status.

- **power**
 - Displays the internal power status of the active switch.

- **all**
 - (Optional) Displays the status of all the internal power supplies in a standalone switch when the command is entered on the switch, or in all the stack members when the command is entered on the active switch.

- **switch**
 - (Optional) Displays the status of the internal power supplies for each switch in the stack or for the specified switch.

 This keyword is available only on stacking-capable switches.

- **stack-member-number**
 - (Optional) Number of the stack member for which to display the status of the internal power supplies or the environmental status.

 The range is 1 to 9.

- **stack**
 - Displays all environmental status for each switch in the stack or for the specified switch.

 This keyword is available only on stacking-capable switches.

- **temperature**
 - Displays the switch temperature status.

- **status**
 - (Optional) Displays the switch internal temperature (not the external temperature) and the threshold values.

Command Default

None

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show env` EXEC command to display the information for the switch being accessed—a standalone switch or the active switch. Use this command with the `stack` and `switch` keywords to display all information for the stack or for the specified stack member.
If you enter the `show env temperature status` command, the command output shows the switch temperature state and the threshold level.

You can also use the `show env temperature` command to display the switch temperature status. The command output shows the green and yellow states as *OK* and the red state as *FAULTY*. If you enter the `show env all` command, the command output is the same as the `show env temperature status` command output.

Examples

This is an example of output from the `show env all` command:

```
Device>show env all
Switch 1 FAN 1 is OK
Switch 1 FAN 2 is OK
Switch 1 FAN 3 is OK
FAN PS-1 is NOT PRESENT
FAN PS-2 is OK
Switch 1: SYSTEM TEMPERATURE is OK
Inlet Temperature Value: 25 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 46 Degree Celsius
Red Threshold : 56 Degree Celsius
Hotspot Temperature Value: 35 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 105 Degree Celsius
Red Threshold : 125 Degree Celsius
```

```
SW PID Serial# Status Sys Pwr PoE Pwr Watts
--- --------------- ------- ------- ------- -----
1A Unknown Unknown No Input Power Bad Bad 235
1B PWR-C1-350WAC DCB2137H04P OK Good Good 350
```

```
Device# show env fan
Switch 1 FAN 1 is OK
Switch 1 FAN 2 is OK
Switch 1 FAN 3 is OK
FAN PS-1 is NOT PRESENT
FAN PS-2 is OK
```

This is an example of output from the `show env power` command:

```
Device>show env power
SW PID Serial# Status Sys Pwr PoE Pwr Watts
--- --------------- ------- ------- ------- -----
1A Unknown Unknown No Input Power Bad Bad 235
1B PWR-C1-350WAC DCB2137H04P OK Good Good 350
```

```
> show env stack
SWITCH: 1
Switch 1 FAN 1 is OK
Switch 1 FAN 2 is OK
Switch 1 FAN 3 is OK
FAN PS-1 is NOT PRESENT
FAN PS-2 is OK
Switch 1: SYSTEM TEMPERATURE is OK
Inlet Temperature Value: 25 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 46 Degree Celsius
Red Threshold : 56 Degree Celsius
Hotspot Temperature Value: 35 Degree Celsius
```
This example shows how to display the temperature value, state, and the threshold values on a stack.

```bash
# show env stack
System Temperature Value: 41 Degree Celsius
System Temperature State: GREEN
Yellow Threshold : 66 Degree Celsius
Red Threshold : 76 Degree Celsius
```

This example shows the output of `show env temperature` command.

```
Device> show env temperature
Switch 1: SYSTEM TEMPERATURE is OK
Inlet Temperature Value: 25 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 46 Degree Celsius
Red Threshold : 56 Degree Celsius

Hotspot Temperature Value: 35 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 105 Degree Celsius
Red Threshold : 125 Degree Celsius
```

Table 3: States in the show env temperature status Command Output

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>The switch temperature is in the normal operating range.</td>
</tr>
<tr>
<td>Yellow</td>
<td>The temperature is in the warning range. You should check the external temperature around the switch.</td>
</tr>
<tr>
<td>Red</td>
<td>The temperature is in the critical range. The switch might not run properly if the temperature is in this range.</td>
</tr>
</tbody>
</table>
show errdisable detect

To display error-disabled detection status, use the `show errdisable detect` command in EXEC mode.

show errdisable detect

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A gbic-invalid error reason refers to an invalid small form-factor pluggable (SFP) module.

The error-disable reasons in the command output are listed in alphabetical order. The mode column shows how error-disable is configured for each feature.

You can configure error-disabled detection in these modes:

- port mode—The entire physical port is error-disabled if a violation occurs.
- vlan mode—The VLAN is error-disabled if a violation occurs.
- port/vlan mode—The entire physical port is error-disabled on some ports and is per-VLAN error-disabled on other ports.

This is an example of output from the `show errdisable detect` command:

```
Device> show errdisable detect
ErrDisable Reason       Detection Mode
-------------------------------------
arp-inspection          Enabled   port
bpduguard              Enabled   vlan
channel-misconfig       Enabled   port
community-limit         Enabled   port
dhcp-rate-limit         Enabled   port
dtp-flap                Enabled   port
gbic-invalid           Enabled   port
inline-power            Enabled   port
invalid-policy          Enabled   port
l2ptguard               Enabled   port
link-flap               Enabled   port
loopback                Enabled   port
lsgroup                 Enabled   port
pgap-flap               Enabled   port
psecure-violation       Enabled   port/vlan
security-violation     Enabled   port
sfp-config-mismatch     Enabled   port
storm-control           Enabled   port
```
show errdisable detect

<table>
<thead>
<tr>
<th>Command</th>
<th>Status</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>udld</td>
<td>Enabled</td>
<td>port</td>
</tr>
<tr>
<td>vmps</td>
<td>Enabled</td>
<td>port</td>
</tr>
</tbody>
</table>
show errdisable recovery

To display the error-disabled recovery timer information, use the `show errdisable recovery` command in EXEC mode.

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command Modes
User EXEC (>
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A gbic-invalid error-disable reason refers to an invalid small form-factor pluggable (SFP) module interface.

Note
Though visible in the output, the unicast-flood field is not valid.
show ip interface

To display the usability status of interfaces configured for IP, use the **show ip interface** command in privileged EXEC mode.

```
show ip interface [type number] [brief]
```

Syntax Description

- **type** *(Optional)* Interface type.
- **number** *(Optional)* Interface number.
- **brief** *(Optional)* Displays a summary of the usability status information for each interface.

Note
The output of the **show ip interface brief** command displays information of all the available interfaces whether or not the corresponding network module for these interfaces are connected. These interfaces can be configured if the network module is connected. Run the **show interface status** command to see which network modules are connected.

Command Default
The full usability status is displayed for all interfaces configured for IP.

Command Modes
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The Cisco IOS software automatically enters a directly connected route in the routing table if the interface is usable (which means that it can send and receive packets). If an interface is not usable, the directly connected routing entry is removed from the routing table. Removing the entry lets the software use dynamic routing protocols to determine backup routes to the network, if any.

If the interface can provide two-way communication, the line protocol is marked "up." If the interface hardware is usable, the interface is marked "up."

If you specify an optional interface type, information for that specific interface is displayed. If you specify no optional arguments, information on all the interfaces is displayed.

When an asynchronous interface is encapsulated with PPP or Serial Line Internet Protocol (SLIP), IP fast switching is enabled. A **show ip interface** command on an asynchronous interface encapsulated with PPP or SLIP displays a message indicating that IP fast switching is enabled.

You can use the **show ip interface brief** command to display a summary of the device interfaces. This command displays the IP address, the interface status, and other information.

The **show ip interface brief** command does not display any information related to Unicast RPF.

Examples

The following example shows interface information on Gigabit Ethernet interface 1/0/1:

```
Device# show ip interface gigabitethernet 1/0/1
GigabitEthernet1/0/1 is up, line protocol is up
```
Internet address is 10.1.1.1/16
Broadcast address is 255.255.255.255
Address determined by setup command
MTU is 1500 bytes
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is not set
Inbound access list is not set
Proxy ARP is enabled
Local Proxy ARP is disabled
Security level is default
Split horizon is enabled
ICMP redirects are always sent
ICMP unreachables are always sent
ICMP mask replies are never sent
IP fast switching is enabled
IP fast switching on the same interface is disabled
IP Flow switching is disabled
IP CEF switching is enabled
IP Feature Fast switching turbo vector
IP VPN Flow CEF switching turbo vector
IP multicast fast switching is enabled
IP multicast distributed fast switching is disabled
IP route-cache flags are Fast, CEF
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTP/IP header compression is disabled
Policy routing is enabled, using route map PBR
Network address translation is disabled
BGP Policy Mapping is disabled
IP Multi-Processor Forwarding is enabled
IP Input features, "PBR", are not supported by MPF and are IGNORED
IP Output features, "NetFlow", are not supported by MPF and are IGNORED

The following example shows how to display the usability status for a specific VLAN:

Device# show ip interface vlan 1

Vlan1 is up, line protocol is up
Internet address is 10.0.0.4/24
Broadcast address is 255.255.255.255
Address determined by non-volatile memory
MTU is 1500 bytes
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is not set
Inbound access list is not set
Proxy ARP is enabled
Local Proxy ARP is disabled
Security level is default
Split horizon is enabled
ICMP redirects are always sent
ICMP unreachables are always sent
ICMP mask replies are never sent
IP fast switching is enabled
IP fast switching on the same interface is disabled
IP Flow switching is disabled
IP CEF switching is enabled
IP Fast switching turbo vector
IP Normal CEF switching turbo vector
IP multicast fast switching is enabled
IP multicast distributed fast switching is disabled
IP route-cache flags are Fast, CEF
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTF/IP header compression is disabled
Probe proxy name replies are disabled
Policy routing is disabled
Network address translation is disabled
WCCP Redirect outbound is disabled
WCCP Redirect inbound is disabled
WCCP Redirect exclude is disabled
BGP Policy Mapping is disabled
Sampled Netflow is disabled
IP multicast multilayer switching is disabled
Netflow Data Export (hardware) is enabled

The table below describes the significant fields shown in the display.

Table 4: show ip interface Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast address is</td>
<td>Broadcast address.</td>
</tr>
<tr>
<td>Peer address is</td>
<td>Peer address.</td>
</tr>
<tr>
<td>MTU is</td>
<td>MTU value set on the interface, in bytes.</td>
</tr>
<tr>
<td>Helper address</td>
<td>Helper address, if one is set.</td>
</tr>
<tr>
<td>Directed broadcast forwarding</td>
<td>Shows whether directed broadcast forwarding is enabled.</td>
</tr>
<tr>
<td>Outgoing access list</td>
<td>Shows whether the interface has an outgoing access list set.</td>
</tr>
<tr>
<td>Inbound access list</td>
<td>Shows whether the interface has an incoming access list set.</td>
</tr>
<tr>
<td>Proxy ARP</td>
<td>Shows whether Proxy Address Resolution Protocol (ARP) is enabled for the interface.</td>
</tr>
<tr>
<td>Security level</td>
<td>IP Security Option (IPSO) security level set for this interface.</td>
</tr>
<tr>
<td>Split horizon</td>
<td>Shows whether split horizon is enabled.</td>
</tr>
<tr>
<td>ICMP redirects</td>
<td>Shows whether redirect messages will be sent on this interface.</td>
</tr>
<tr>
<td>ICMP unreachables</td>
<td>Shows whether unreachable messages will be sent on this interface.</td>
</tr>
<tr>
<td>ICMP mask replies</td>
<td>Shows whether mask replies will be sent on this interface.</td>
</tr>
<tr>
<td>IP fast switching</td>
<td>Shows whether fast switching is enabled for this interface. It is generally enabled on serial interfaces, such as this one.</td>
</tr>
<tr>
<td>IP Flow switching</td>
<td>Shows whether Flow switching is enabled for this interface.</td>
</tr>
</tbody>
</table>
Field and Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP CEF switching</td>
<td>Shows whether Cisco Express Forwarding switching is enabled for the interface.</td>
</tr>
<tr>
<td>IP multicast fast switching</td>
<td>Shows whether multicast fast switching is enabled for the interface.</td>
</tr>
<tr>
<td>IP route-cache flags are Fast</td>
<td>Shows whether NetFlow is enabled on an interface. Displays "Flow init" to specify that NetFlow is enabled on the interface. Displays "Ingress Flow" to specify that NetFlow is enabled on a subinterface using the <code>ip flow ingress</code> command. Shows "Flow" to specify that NetFlow is enabled on a main interface using the <code>ip route-cache flow</code> command.</td>
</tr>
<tr>
<td>Router Discovery</td>
<td>Shows whether the discovery process is enabled for this interface. It is generally disabled on serial interfaces.</td>
</tr>
<tr>
<td>IP output packet accounting</td>
<td>Shows whether IP accounting is enabled for this interface and what the threshold (maximum number of entries) is.</td>
</tr>
<tr>
<td>TCP/IP header compression</td>
<td>Shows whether compression is enabled.</td>
</tr>
<tr>
<td>WCCP Redirect outbound is disabled</td>
<td>Shows the status of whether packets received on an interface are redirected to a cache engine. Displays "enabled" or "disabled."</td>
</tr>
<tr>
<td>WCCP Redirect exclude is disabled</td>
<td>Shows the status of whether packets targeted for an interface will be excluded from being redirected to a cache engine. Displays "enabled" or "disabled."</td>
</tr>
<tr>
<td>Netflow Data Export (hardware) is enabled</td>
<td>NetFlow Data Expert (NDE) hardware flow status on the interface.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of the usability status information for each interface:

```
Device# show ip interface brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan1</td>
<td>unassigned</td>
<td>YES NVRAM administratively down</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet0/0</td>
<td>unassigned</td>
<td>YES NVRAM</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/1</td>
<td>unassigned</td>
<td>YES NVRAM</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/2</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/3</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/4</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/5</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/6</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/7</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
</tbody>
</table>

<output truncated>  
```

Table 5: show ip interface brief Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Type of interface.</td>
</tr>
</tbody>
</table>
Field | Description
---|---
IP-Address | IP address assigned to the interface.
OK? | "Yes" means that the IP Address is valid. "No" means that the IP Address is not valid.

Method
The Method field has the following possible values:
- RARP or SLARP: Reverse Address Resolution Protocol (RARP) or Serial Line Address Resolution Protocol (SLARP) request.
- BOOTP: Bootstrap protocol.
- TFTP: Configuration file obtained from the TFTP server.
- manual: Manually changed by the command-line interface.
- NVRAM: Configuration file in NVRAM.
- IPCP: ip address negotiated command.
- DHCP: ip address dhcp command.
- unset: Unset.
- other: Unknown.

Status
Shows the status of the interface. Valid values and their meanings are:
- up: Interface is up.
- down: Interface is down.
- administratively down: Interface is administratively down.

Protocol
Shows the operational status of the routing protocol on this interface.

Related Commands
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip interface</td>
<td>Configures a virtual gateway IP interface on a Secure Socket Layer Virtual Private Network (SSL VPN) gateway</td>
</tr>
<tr>
<td>show interface status</td>
<td>Displays the status of the interface</td>
</tr>
</tbody>
</table>
show interfaces

To display the administrative and operational status of all interfaces or for a specified interface, use the show interfaces command in the EXEC mode.

show interfaces [{interface-id | vlan vlan-id}] [{accounting | capabilities [module number] | debounce | description | etherchannel | flowcontrol | private-vlan mapping | pruning | stats | status [{err-disabled | inactive}] | trunk}]

Syntax Description

interface-id
(Optional) ID of the interface. Valid interfaces include physical ports (including type, stack member for stacking-capable switches, module, and port number) and port channels. The port channel range is 1 to 48.

vlan vlan-id
(Optional) VLAN identification. The range is 1 to 4094.

accounting
(Optional) Displays accounting information on the interface, including active protocols and input and output packets and octets.

Note
The display shows only packets processed in software; hardware-switched packets do not appear.

capabilities
(Optional) Displays the capabilities of all interfaces or the specified interface, including the features and options that you can configure on the interface. Though visible in the command line help, this option is not available for VLAN IDs.

module number
(Optional) Displays capabilities of all interfaces on the switch or specified stack member.

This option is not available if you entered a specific interface ID.

description
(Optional) Displays the administrative status and description set for interfaces.

Note
The output of the show interfaces description command displays information of all the available interfaces whether or not the corresponding network module for these interfaces are connected. These interfaces can be configured if the network module is connected. Run the show interface status command to see which network modules are connected.

etherchannel
(Optional) Displays interface EtherChannel information.

flowcontrol
(Optional) Displays interface flow control information.

private-vlan mapping
(Optional) Displays private-VLAN mapping information for the VLAN switch virtual interfaces (SVIs). This keyword is not available if the switch is running the LAN base feature set.
pruning (Optional) Displays trunk VTP pruning information for the interface.

stats (Optional) Displays the input and output packets by switching the path for the interface.

status (Optional) Displays the status of the interface. A status of unsupported in the Type field means that a non-Cisco small form-factor pluggable (SFP) module is inserted in the module slot.

err-disabled (Optional) Displays interfaces in an error-disabled state.

inactive (Optional) Displays interfaces in an inactive state.

trunk (Optional) Displays interface trunk information. If you do not specify an interface, only information for active trunking ports appears.

Note
Though visible in the command-line help strings, the crb, fair-queue, irb, mac-accounting, precedence, random-detect, rate-limit, and shape keywords are not supported.

Command Default
None

Command Modes
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The show interfaces capabilities command with different keywords has these results:

- Use the show interface capabilities module number command to display the capabilities of all interfaces on that switch. If there is no switch with that module number in the stack, there is no output.
- Use the show interfaces interface-id capabilities to display the capabilities of the specified interface.
- Use the show interfaces capabilities (with no module number or interface ID) to display the capabilities of all interfaces in the stack.

Note
The field Last Input displayed in the command output indicates the number of hours, minutes, and seconds since the last packet was successfully received by an interface and processed by the CPU on the device. This information can be used to know when a dead interface failed.

Last Input is not updated by fast-switched traffic.

The field output displayed in the command output indicates the number of hours, minutes, and seconds since the last packet was successfully transmitted by the interface. The information provided by this field can useful for knowing when a dead interface failed.
This is an example of output from the `show interfaces` command for an interface on stack member 3:

Device# `show interfaces gigabitethernet3/0/2`

```
GigabitEthernet3/0/2 is down, line protocol is down (notconnect)
Hardware is Gigabit Ethernet, address is 2037.064d.4381 (bia 2037.064d.4381)
MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Auto-duplex, Auto-speed, media type is 10/100/1000BaseTX
input flow-control is off, output flow-control is unsupported
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output never, output hang never
Last clearing of "show interface" counters never
Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts (0 multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 0 multicast, 0 pause input
0 input packets with dribble condition detected
0 packets output, 0 bytes, 0 underruns
0 output errors, 0 collisions, 1 interface resets
0 unknown protocol drops
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier, 0 pause output
0 output buffer failures, 0 output buffers swapped out
```

Device# `show interfaces accounting`

```
Vlan1
  Protocol     Pkts In  Chars In  Pkts Out  Chars Out
  IP           0         0         6         378

Vlan200
  Protocol     Pkts In  Chars In  Pkts Out  Chars Out
  No traffic sent or received on this interface.

GigabitEthernet0/0
  Protocol     Pkts In  Chars In  Pkts Out  Chars Out
  Other       165476    11417844  0         0
  Spanning Tree 1240284  64494768  0         0
  ARP           7096    425760   0         0
  CDP           41368   18781072 82908     35318608

GigabitEthernet1/0/1
  Protocol     Pkts In  Chars In  Pkts Out  Chars Out
  No traffic sent or received on this interface.

GigabitEthernet1/0/2
  Protocol     Pkts In  Chars In  Pkts Out  Chars Out
  No traffic sent or received on this interface.
<output truncated>
```

This is an example of output from the `show interfaces interface description` command when the interface has been described as `Connects to Marketing` by using the `description` interface configuration command:
Device# `show interfaces gigabitethernet1/0/2 description`

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/2</td>
<td>up</td>
<td>down</td>
<td>Connects to Marketing</td>
</tr>
</tbody>
</table>

Device# `show interfaces etherchannel`

Port-channel34:
- Age of the Port-channel: 28d:18h:51m:46s
- Logical slot/port: 12/34
- Number of ports: 0
- GC: 0x00000000
- HotStandBy port: null
- Passive port list: -
- Port state: Port-channel L3-Ag Ag-Not-Inuse
- Protocol: -
- Port security: Disabled

This is an example of output from the `show interfaces interface-id pruning` command when pruning is enabled in the VTP domain:

Device# `show interfaces gigabitethernet1/0/2 pruning`

Port Gi1/0/2 Vlans pruned for lack of request by neighbor
 3,4

Port Gi1/0/2 Vlans traffic requested of neighbor
 1-3

This is an example of output from the `show interfaces stats` command for a specified VLAN interface:

Device# `show interfaces vlan 1 stats`

<table>
<thead>
<tr>
<th>Switching path</th>
<th>Pkts In</th>
<th>Chars In</th>
<th>Pkts Out</th>
<th>Chars Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>1165354</td>
<td>136205310</td>
<td>570800</td>
<td>91731594</td>
</tr>
<tr>
<td>Route cache</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1165354</td>
<td>136205310</td>
<td>570800</td>
<td>91731594</td>
</tr>
</tbody>
</table>

This is an example of output from the `show interfaces status err-disabled` command. It displays the status of interfaces in the error-disabled state:

Device# `show interfaces status err-disabled`

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Status</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/2</td>
<td>err-disabled</td>
<td>gbic-invalid</td>
<td></td>
</tr>
<tr>
<td>Gi2/0/3</td>
<td>err-disabled</td>
<td>dtp-flap</td>
<td></td>
</tr>
</tbody>
</table>

This is an example of output from the `show interfaces interface-id pruning` command:

Device# `show interfaces gigabitethernet1/0/2 pruning`

Port Vlans pruned for lack of request by neighbor

Device# `show interfaces for lack of request by neighbor`

Device# `show interfaces gigabitethernet1/0/1 trunk`

<table>
<thead>
<tr>
<th>Port</th>
<th>Mode</th>
<th>Encapsulation</th>
<th>Status</th>
<th>Native vlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>on</td>
<td>802.1q</td>
<td>other</td>
<td>10</td>
</tr>
</tbody>
</table>

Port Vlans allowed on trunk

Device# `show interfaces gigabitethernet1/0/1 trunk`

Port Vlans allowed and active in management domain
Gi1/0/1 none
Port Vlans in spanning tree forwarding state and not pruned
Gi1/0/1 none

This is an example of output from the `show interfaces description` command:

```
Device# show interfaces description

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V11</td>
<td>admin</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>Gi0/0</td>
<td>down</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>Gi1/0/1</td>
<td>down</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>down</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>down</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>Gi1/0/4</td>
<td>down</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>Gi1/0/5</td>
<td>down</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>Gi1/0/6</td>
<td>down</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>Gi1/0/7</td>
<td>down</td>
<td>down</td>
<td>down</td>
</tr>
</tbody>
</table>

<output truncated>
```
show interfaces counters

To display various counters for the switch or for a specific interface, use the `show interfaces counters` command in privileged EXEC mode.

```
show interfaces [interface-id] counters [{errors | etherchannel | module member-number | protocol status | trunk}]
```

Syntax Description

- **interface-id** (Optional) ID of the physical interface, including type, stack member (stacking-capable switches only) module, and port number.

- **errors** (Optional) Displays error counters.

- **etherchannel** (Optional) Displays EtherChannel counters, including octets, broadcast packets, multicast packets, and unicast packets received and sent.

- **module member-number** (Optional) Displays counters for the specified member. The range is 1 to 9.

 Note In this command, the `module` keyword refers to the stack member number. The module number that is part of the interface ID is always zero.

- **protocol status** (Optional) Displays the status of protocols enabled on interfaces.

- **trunk** (Optional) Displays trunk counters.

Note

Though visible in the command-line help string, the `vlan vlan-id` keyword is not supported.

Command Default

None

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not enter any keywords, all counters for all interfaces are included.

This is an example of partial output from the `show interfaces counters` command. It displays all counters for the switch.

```
Device# show interfaces counters
Port InOctets InUcastPkts InMcastPkts InBcastPkts
Gi1/0/1 0 0 0 0
Gi1/0/2 0 0 0 0
Gi1/0/3 95285341 43115 1178430 1950
Gi1/0/4 0 0 0 0
```
This is an example of partial output from the `show interfaces counters module` command for module 2. It displays all counters for the specified switch in the module.

<table>
<thead>
<tr>
<th>Port</th>
<th>InOctets</th>
<th>InUcastPkts</th>
<th>InMcastPkts</th>
<th>InBcastPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>520</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>520</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>520</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/4</td>
<td>520</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This is an example of partial output from the `show interfaces counters protocol status` command for all interfaces:

```
Device# show interfaces counters protocol status
Protocols allocated:
Vlan1: Other, IP
Vlan20: Other, IP, ARP
Vlan30: Other, IP, ARP
Vlan40: Other, IP, ARP
Vlan50: Other, IP, ARP
Vlan60: Other, IP, ARP
Vlan70: Other, IP, ARP
Vlan80: Other, IP, ARP
Vlan90: Other, IP, ARP
Vlan900: Other, IP, ARP
Vlan3000: Other, IP
Vlan3500: Other, IP
GigabitEthernet1/0/1: Other, IP, ARP, CDP
GigabitEthernet1/0/2: Other, IP
GigabitEthernet1/0/3: Other, IP
GigabitEthernet1/0/4: Other, IP
GigabitEthernet1/0/5: Other, IP
GigabitEthernet1/0/6: Other, IP
GigabitEthernet1/0/7: Other, IP
GigabitEthernet1/0/8: Other, IP
GigabitEthernet1/0/9: Other, IP
GigabitEthernet1/0/10: Other, IP, CDP
```

This is an example of output from the `show interfaces counters trunk` command. It displays trunk counters for all interfaces.

```
Device# show interfaces counters trunk
Port       TrunkFramesTx TrunkFramesRx WrongEncap
Gi1/0/1    0             0             0
Gi1/0/2    0             0             0
Gi1/0/3    80678         0             0
Gi1/0/4    82320         0             0
Gi1/0/5    0             0             0
```

<output truncated>
show interfaces switchport

To display the administrative and operational status of a switching (non-routing) port, including port blocking and port protection settings, use the `show interfaces switchport` command in privileged EXEC mode.

```
show interfaces [interface-id] switchport [{module number}]
```

Syntax Description

- `interface-id` (Optional) ID of the interface. Valid interfaces include physical ports (including type, stack member for stacking-capable switches, module, and port number) and port channels. The port channel range is 1 to 48.

- `module number` (Optional) Displays switchport configuration of all interfaces on the switch or specified stack member.

This option is not available if you entered a specific interface ID.

Command Default

None

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show interface switchport module number` command to display the switch port characteristics of all interfaces on that switch in the stack. If there is no switch with that module number in the stack, there is no output.

This is an example of output from the `show interfaces switchport` command for a port. The table that follows describes the fields in the display.

```
Device# show interfaces gigabitethernet1/0/1 switchport
Name: Gi1/0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: down
Administrative Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 10 (VLAN0010)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: 11-20
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
```
Capture VLANs Allowed: ALL

Protected: false
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the port name.</td>
</tr>
<tr>
<td>Switchport</td>
<td>Displays the administrative and operational status of the port. In this display, the port is in switchport mode.</td>
</tr>
<tr>
<td>Administrative Mode</td>
<td>Displays the administrative and operational modes.</td>
</tr>
<tr>
<td>Operational Mode</td>
<td></td>
</tr>
<tr>
<td>Administrative Trunking Encapsulation</td>
<td>Displays the administrative and operational encapsulation method and whether trunking negotiation is enabled.</td>
</tr>
<tr>
<td>Operational Trunking Encapsulation</td>
<td></td>
</tr>
<tr>
<td>Negotiation of Trunking</td>
<td></td>
</tr>
<tr>
<td>Access Mode VLAN</td>
<td>Displays the VLAN ID to which the port is configured.</td>
</tr>
<tr>
<td>Trunking Native Mode VLAN</td>
<td>Lists the VLAN ID of the trunk that is in native mode.</td>
</tr>
<tr>
<td>Trunking VLANs Enabled</td>
<td>Lists the allowed VLANs on the trunk.</td>
</tr>
<tr>
<td>Trunking VLANs Active</td>
<td>Lists the active VLANs on the trunk.</td>
</tr>
<tr>
<td>Pruning VLANs Enabled</td>
<td>Lists the VLANs that are pruning-eligible.</td>
</tr>
<tr>
<td>Protected</td>
<td>Displays whether or not protected port is enabled (True) or disabled (False) on the interface.</td>
</tr>
<tr>
<td>Unknown unicast blocked</td>
<td>Displays whether or not unknown multicast and unknown unicast traffic is blocked on the interface.</td>
</tr>
<tr>
<td>Unknown multicast blocked</td>
<td></td>
</tr>
<tr>
<td>Voice VLAN</td>
<td>Displays the VLAN ID on which voice VLAN is enabled.</td>
</tr>
<tr>
<td>Appliance trust</td>
<td>Displays the class of service (CoS) setting of the data packets of the IP phone.</td>
</tr>
</tbody>
</table>
show interfaces transceiver

To display the physical properties of a small form-factor pluggable (SFP) module interface, use the `show interfaces transceiver` command in EXEC mode.

```
show interfaces [interface-id] transceiver [{detail | module number | properties | supported-list | threshold-table}]
```

Syntax Description

- **interface-id** (Optional) ID of the physical interface, including type, stack member (stacking-capable switches only) module, and port number.
- **detail** (Optional) Displays calibration properties, including high and low numbers and any alarm information for any Digital Optical Monitoring (DoM)-capable transceiver if one is installed in the switch.
- **module number** (Optional) Limits display to interfaces on module on the switch. This option is not available if you entered a specific interface ID.
- **properties** (Optional) Displays speed, duplex, and inline power settings on an interface.
- **supported-list** (Optional) Lists all supported transceivers.
- **threshold-table** (Optional) Displays alarm and warning threshold table.

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This is an example of output from the `show interfaces interface-id transceiver properties` command:

```
Device# show interfaces transceiver
If device is externally calibrated, only calibrated values are printed.
NA or N/A: not applicable, Tx: transmit, Rx: receive.
mA: milliamperes, dBm: decibels (milliwatts).

<table>
<thead>
<tr>
<th>Port</th>
<th>Temperature (Celsius)</th>
<th>Voltage (Volts)</th>
<th>Current (mA)</th>
<th>Optical Tx Power (dBm)</th>
<th>Optical Rx Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G15/1/2</td>
<td>42.9</td>
<td>3.28</td>
<td>22.1</td>
<td>-5.4</td>
<td>-8.1</td>
</tr>
<tr>
<td>Te5/1/3</td>
<td>32.0</td>
<td>3.28</td>
<td>19.8</td>
<td>2.4</td>
<td>-4.2</td>
</tr>
</tbody>
</table>
```

```
Device# show interfaces gigabitethernet1/1/1 transceiver properties
Name : Gi1/1/1
Administrative Speed: auto
```
This is an example of output from the `show interfaces interface-id transceiver detail` command:

```
Device# show interfaces gigabitethernet1/1/1 transceiver detail
ITU Channel not available (Wavelength not available),
Transceiver is internally calibrated.
mA:milliamperes, dBm:decibels (milliwatts), N/A:not applicable.
++:high alarm, +:high warning, -:low warning, -- :low alarm.
A2D readouts (if they differ), are reported in parentheses.
The threshold values are uncalibrated.

<table>
<thead>
<tr>
<th>Port</th>
<th>Temperature (Celsius)</th>
<th>High Alarm Threshold (Celsius)</th>
<th>High Warn Threshold (Celsius)</th>
<th>Low Warn Threshold (Celsius)</th>
<th>Low Alarm Threshold (Celsius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/1/1</td>
<td>29.9</td>
<td>74.0</td>
<td>70.0</td>
<td>0.0</td>
<td>-4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Voltage (Volts)</th>
<th>High Alarm Threshold (Volts)</th>
<th>High Warn Threshold (Volts)</th>
<th>Low Warn Threshold (Volts)</th>
<th>Low Alarm Threshold (Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/1/1</td>
<td>3.28</td>
<td>3.60</td>
<td>3.50</td>
<td>3.10</td>
<td>3.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Optical Transmit Power (dBm)</th>
<th>High Alarm Threshold (dBm)</th>
<th>High Warn Threshold (dBm)</th>
<th>Low Warn Threshold (dBm)</th>
<th>Low Alarm Threshold (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/1/1</td>
<td>1.8</td>
<td>7.9</td>
<td>3.9</td>
<td>0.0</td>
<td>-4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Optical Receive Power (dBm)</th>
<th>High Alarm Threshold (dBm)</th>
<th>High Warn Threshold (dBm)</th>
<th>Low Warn Threshold (dBm)</th>
<th>Low Alarm Threshold (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/1/1</td>
<td>-23.5</td>
<td>-5.0</td>
<td>-9.0</td>
<td>-28.2</td>
<td>-32.2</td>
</tr>
</tbody>
</table>
```

Device# `show interfaces transceiver supported-list`

```
Transceiver Type      Cisco p/n min version supporting DOM
---------------------------------------------------------
DWDM GBIC             ALL
DWDM SFP              ALL
RX only WDM GBIC      ALL
DWDM XENPAK           ALL
DWDM X2               ALL
DWDM XFP              ALL
CWDM GBIC             NONE
CWDM X2               ALL
CWDM XFP              ALL
XENPAK ZR             ALL
X2 ZR                 ALL
XFP ZR                ALL
RX_only_WDM_XENPAK    ALL
XENPAK ER             10-1888-04
X2_ER                 ALL
XFP_ER                ALL
XENPAK_LR             10-1838-04
```
This is an example of output from the `show interfaces transceiver threshold-table` command:

```
Device# show interfaces transceiver threshold-table
          Optical Tx | Optical Rx | Temp | Laser Bias current | Voltage |
                     ------ | -------- | ---- | ----------------- | ------- |
DWDM GBIC
Min1  -4.00    -32.00    -4    N/A         4.65
Min2   0.00     -28.00    0     N/A         4.75
Max2   4.00     -9.00     70    N/A         5.25
Max1   7.00     -5.00     74    N/A         5.40
```

Interface and Hardware Commands
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transceiver type all</td>
<td>Enters the transceiver type configuration mode.</td>
</tr>
<tr>
<td>monitoring</td>
<td>Enables digital optical monitoring.</td>
</tr>
</tbody>
</table>
show macro auto

To display Auto Smartports macro information, use the `show macro auto` command in user EXEC mode.

```
show macro auto {address-group address-group-name | device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch] | global [event_trigger] | interface [interface_id]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>address-group [address-group-name]</code></td>
<td>Displays address-group information. (Optional) <code>address-group-name</code>—Displays information for the specified address group.</td>
</tr>
</tbody>
</table>
| `device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch]` | Displays device information about one or more devices.
 • (Optional) `access-point`—Autonomous access point
 • (Optional) `ip-camera`—Cisco IP video surveillance camera
 • (Optional) `lightweight-ap`—Lightweight access point
 • (Optional) `media-player`—Digital media player
 • (Optional) `phone`—Cisco IP phone
 • (Optional) `router`—Cisco router
 • (Optional) `switch`—Cisco switch |
| `global [event_trigger]` | Displays Auto Smartports information about the switch.
 (Optional) `event_trigger`—Displays information about the specified event trigger. |
 (Optional) `interface_id`—Displays information about the specified interface. |

Command Modes

- User EXEC (`>`)
- Privileged EXEC (`#`)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

Use this command to display the Auto SmartPorts information for the switch. Use the `show macro auto device` command to display the configurable parameters for a device.

Example

This example shows how to use the `show macro auto device` to view the configuration on the switch:

```
Device# show macro auto device
Device: lightweight-ap
Default Macro: CISCO_LWAP_AUTO_SMARTPORT
Current Macro: CISCO_LWAP_AUTO_SMARTPORT
Configurable Parameters: ACCESS_VLAN
Defaults Parameters: ACCESS_VLAN=1
Current Parameters: ACCESS_VLAN=1

Device: access-point
Default Macro: CISCO_AP_AUTO_SMARTPORT
Current Macro: CISCO_AP_AUTO_SMARTPORT
Configurable Parameters: NATIVE_VLAN
Defaults Parameters: NATIVE_VLAN=1
Current Parameters: NATIVE_VLAN=1

Device: phone
Default Macro: CISCO_PHONE_AUTO_SMARTPORT
Current Macro: CISCO_PHONE_AUTO_SMARTPORT
Configurable Parameters: ACCESS_VLAN VOICE_VLAN
Defaults Parameters: ACCESS_VLAN=1 VOICE_VLAN=2
Current Parameters: ACCESS_VLAN=1 VOICE_VLAN=2

Device: router
Default Macro: CISCO_ROUTER_AUTO_SMARTPORT
Current Macro: CISCO_ROUTER_AUTO_SMARTPORT
Configurable Parameters: NATIVE_VLAN
Defaults Parameters: NATIVE_VLAN=1
Current Parameters: NATIVE_VLAN=1

Device: switch
Default Macro: CISCO_SWITCH_AUTO_SMARTPORT
Current Macro: CISCO_SWITCH_AUTO_SMARTPORT
Configurable Parameters: NATIVE_VLAN
Defaults Parameters: NATIVE_VLAN=1
Current Parameters: NATIVE_VLAN=1

Device: ip-camera
Default Macro: CISCO_IP_CAMERA_AUTO_SMARTPORT
Current Macro: CISCO_IP_CAMERA_AUTO_SMARTPORT
Configurable Parameters: ACCESS_VLAN
Defaults Parameters: ACCESS_VLAN=1
Current Parameters: ACCESS_VLAN=1

Device: media-player
Default Macro: CISCO_DMP_AUTO_SMARTPORT
Current Macro: CISCO_DMP_AUTO_SMARTPORT
Configurable Parameters: ACCESS_VLAN
Defaults Parameters: ACCESS_VLAN=1
Current Parameters: ACCESS_VLAN=1
```

This example shows how to use the `show macro auto address-group name` command to view the TEST3 address group configuration on the switch:

```
Device# show macro auto address-group TEST3
MAC Address Group Configuration:
```

<table>
<thead>
<tr>
<th>Group Name</th>
<th>OUI</th>
<th>MAC ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST3</td>
<td>2233.33</td>
<td>0022.0022.0022</td>
</tr>
<tr>
<td></td>
<td>2233.34</td>
<td></td>
</tr>
</tbody>
</table>
show memory platform

To display memory statistics of a platform, use the `show memory platform` command in privileged EXEC mode.

```
show memory platform [{compressed-swap | information | page-merging}]
```

Syntax Description

- `compressed-swap` (Optional) Displays platform memory compressed-swap information.
- `information` (Optional) Displays general information about the platform.
- `page-merging` (Optional) Displays platform memory page-merging information.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Free memory is accurately computed and displayed in the Free Memory field of the command output.

Examples

The following is sample output from the `show memory platform` command:

```
Switch# show memory platform

Virtual memory : 12874653696
Pages resident : 627041
Major page faults: 2220
Minor page faults: 2348631
Architecture : mips64
Memory (kB)
    Physical : 3976852
    Total : 3976852
    Used : 2761276
    Free : 1215576
    Active : 2128196
    Inactive : 1581856
    Inact-dirty : 0
    Inact-clean : 0
    Dirty : 0
AnonPages : 1294984
Bounce : 0
Cached : 1978168
Commit Limit : 1988424
Committed As : 3343324
High Total : 0
High Free : 0
Low Total : 3976852
Low Free : 1215576
Mapped : 516316
NFS Unstable : 0
Page Tables : 17124
Slab : 0
```
The following is sample output from the `show memory platform information` command:

```
Device# show memory platform information

Virtual memory : 12870438912
Pages resident : 626833
Major page faults: 2222
Minor page faults: 2362455
Architecture : mips64
Memory (kB)
  Physical : 3976852
  Total : 3976852
  Used : 2761224
  Free : 1215628
  Active : 2128060
  Inactive : 1584444
  Inact-dirty : 0
  Inact-clean : 0
  Dirty : 284
  AnonPages : 1294656
  Bounce : 0
  Cached : 1979644
  Commit Limit : 1988424
  Committed As : 3342184
  High Total : 0
  High Free : 0
  Low Total : 3976852
  Low Free : 1215628
  Mapped : 516212
  NFS Unstable : 0
  Page Tables : 17096
  Slab : 0
  VMmalloc Chunk : 1069542588
  VMmalloc Total : 1069547512
  VMmalloc Used : 2588
  Writeback : 0
  HugePages Total: 0
  HugePages Free : 0
  HugePages Rsvd : 0
  HugePage Size : 2048

Swap (kB)
  Total : 0
  Used : 0
  Free : 0
  Cached : 0

Buffers (kB) : 437136

Load Average
  1-Min : 1.04
  5-Min : 1.16
  15-Min : 0.94
```

Interface and Hardware Commands
Swap (kB)
- Total : 0
- Used : 0
- Free : 0
- Cached : 0

Buffers (kB) : 438228

Load Average
- 1-Min : 1.54
- 5-Min : 1.27
- 15-Min : 0.99
show module

To display module information such as switch number, model number, serial number, hardware revision number, software version, MAC address and so on, use this command in user EXEC or privileged EXEC mode.

```
show module [{switch-num}]
```

Syntax Description

- `switch-num` (Optional) Number of the switch.

Command Default

None

Command Modes

- User EXEC (`>`)
- Privileged EXEC (`#`)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Entering the `show module` command without the `switch-num` argument is the same as entering the `show module all` command.

The following example displays information for all modules on a Cisco Catalyst 9300 Series Switch:

```
Device# show module
Switch Ports Model Serial No. MAC address Hw Ver. Sw Ver.
------- ----- --------- -------------- ----------- ------- --------
1 40 C9300-24T FOC2147Q02D b4a8.b9c1.4100 V01 16.10.1
```
show network-policy profile

To display the network-policy profiles, use the `show network policy profile` command in privileged EXEC mode.

```
show network-policy profile [profile-number] [detail]
```

Syntax Description

- `profile-number` (Optional) Displays the network-policy profile number. If no profile is entered, all network-policy profiles appear.
- `detail` (Optional) Displays detailed status and statistics information.

Command Default

None

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show network-policy profile` command:

```
Device# show network-policy profile
Network Policy Profile 10
  voice vlan 17 cos 4
  Interface: none
Network Policy Profile 30
  voice vlan 30 cos 5
  Interface: none
Network Policy Profile 36
  voice vlan 4 cos 3
  Interface:
    Interface_id
```
show parser macro

To display the parameters for all configured macros or for one macro on the switch, use the `show parser macro` command in user EXEC mode.

```
show parser macro {brief | description [interface interface-id] | name macro-name}
```

Syntax Description

- **brief**
 - (Optional) Displays the name of each macro.

- **description [interface interface-id]**
 - (Optional) Displays all macro descriptions or the description of a specific interface.

- **name macro-name**
 - (Optional) Displays information about a single macro identified by the macro name.

Command Modes

- User EXEC (>
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This is a partial output example from the `show parser macro` command. The output for the Cisco-default macros varies depending on the switch platform and the software image running on the switch:

```
Device# show parser macro
Total number of macros = 6
--------------------------------------------------------------------------
Macro name : cisco-global
Macro type : default global
  # Enable dynamic port error recovery for link state failures
  errdisable recovery cause link-flap
  errdisable recovery interval 60
  <output truncated>

--------------------------------------------------------------------------
Macro name : cisco-desktop
Macro type : default interface
  # macro keywords $AVID
  # Basic interface - Enable data VLAN only
  # Recommended value for access vlan (AVID) should not be 1
  switchport access vlan $AVID
  switchport mode access
  <output truncated>

--------------------------------------------------------------------------
Macro name : cisco-phone
```
Macro type : default interface
Cisco IP phone + desktop template
macro keywords $AVID $VVID
VoIP enabled interface - Enable data VLAN
and voice VLAN (VVID)
Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access

--

Macro name : cisco-switch
Macro type : default interface
macro keywords $NVID
Access Uplink to Distribution
Do not apply to EtherChannel/Port Group
Define unique Native VLAN on trunk ports
Recommended value for native vlan (NVID) should not be 1
switchport trunk native vlan $NVID

--

Macro name : cisco-router
Macro type : default interface
macro keywords $NVID
Access Uplink to Distribution
Define unique Native VLAN on trunk ports
Recommended value for native vlan (NVID) should not be 1
switchport trunk native vlan $NVID

--

Macro name : snmp
Macro type : customizable
enable port security, linkup, and linkdown traps
snmp-server enable traps port-security
snmp-server enable traps linkup
snmp-server enable traps linkdown
#set snmp-server host
snmp-server host ADDRESS
set SNMP trap notifications precedence
snmp-server ip precedence VALUE

--

This example shows the output from the show parser macro name command:

Device# show parser macro name standard-switch10
Macro name : standard-switch10
Macro type : customizable
macro description standard-switch10
Trust QoS settings on VOIP packets
auto qos voip trust
Allow port channels to be automatically formed
channel-protocol pagp

This example shows the output from the show parser macro brief command:
Device# `show parser macro brief`
 default global : cisco-global
 default interface: cisco-desktop
 default interface: cisco-phone
 default interface: cisco-switch
 default interface: cisco-router
 customizable : snmp

This example shows the output from the `show parser macro description` command:

Device# `show parser macro description`
Global Macro(s): cisco-global
Interface Macro Description(s)
--
Gi1/0/1 standard-switch10
Gi1/0/2 this is test macro
--

This example shows the output from the `show parser macro description interface` command:

Device# `show parser macro description interface gigabitethernet1/0/2`
Interface Macro Description
--
Gi1/0/2 this is test macro
--
show platform hardware bluetooth

To display information about Bluetooth interface, use the `show platform hardware bluetooth` command in privileged EXEC mode.

show platform hardware bluetooth

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Modes</td>
<td>Privileged EXEC (#)</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.12.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show platform hardware bluetooth` command is to be used when an external USB Bluetooth dongle is connected on the device.

Examples

This example shows how to display the information of the Bluetooth interface using the `show platform hardware bluetooth` command.

```
Device> enable
Device# show platform hardware bluetooth
Controller: 0:1a:7d:da:71:13
Type: Primary
Bus: USB
State: DOWN
Name:
HCI Version:
```
show platform hardware fed switch forward interface

To debug forwarding information and to trace the packet path in the hardware forwarding plane, use the `show platform hardware fed switch {switch_num | active | standby} forward interface` command. This command simulates a user-defined packet and retrieves the forwarding information from the hardware forwarding plane. A packet is generated on the ingress port based on the packet parameters that you have specified in this command. You can also provide a complete packet from the captured packets stored in a PCAP file.

This topic elaborates only the interface forwarding-specific options, that is, the options available with the `show platform hardware fed switch {switch_num | active | standby} forward interface` command.

```
show platform hardware fed switch {switch_num | active | standby} forward interface interface-type interface-number source-mac-address destination-mac-address {protocol-number | arp | cos | ipv4 | ipv6 | mpls}
```

```
show platform hardware fed switch {switch_num | active | standby} forward interface interface-type interface-number pcap pcap-file-name number packet-number data
```

```
show platform hardware fed switch {switch_num | active | standby} forward interface interface-type interface-number vlan vlan-id source-mac-address destination-mac-address {protocol-number | arp | cos | ipv4 | ipv6 | mpls}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch {switch_num</td>
<td>active</td>
</tr>
<tr>
<td></td>
<td>• switch_num—ID of the switch on which the ingress port is present.</td>
</tr>
<tr>
<td></td>
<td>• active—indicates the active switch on which the the ingress port is present.</td>
</tr>
<tr>
<td></td>
<td>• standby—indicates the standby switch on which the ingress port is present.</td>
</tr>
<tr>
<td>Note</td>
<td>This keyword is not supported.</td>
</tr>
<tr>
<td>interface interface-type interface-number</td>
<td>The input interface on which packet trace is simulated.</td>
</tr>
<tr>
<td>source-mac-address</td>
<td>The source MAC address of the packet you want to simulate.</td>
</tr>
<tr>
<td>destination-mac-address</td>
<td>The MAC address of the destination interface in hexadecimal format.</td>
</tr>
<tr>
<td>protocol-number</td>
<td>The number assigned to any L3 protocol.</td>
</tr>
<tr>
<td>arp</td>
<td>The Address Resolution Protocol (ARP) parameters.</td>
</tr>
<tr>
<td>ipv4</td>
<td>The IPv4 packet parameters.</td>
</tr>
<tr>
<td>ipv6</td>
<td>The IPv6 packet parameters.</td>
</tr>
<tr>
<td>mpls</td>
<td>The Multiprotocol Label Switching (MPLS) label parameters.</td>
</tr>
</tbody>
</table>
The class of service (CoS) number from 0 to 7 to set priority.

pcap pcap-file-name

Name of the pcap file in internal flash (flash:).
Ensure that the file already exists in flash:.

number packet-number

Specifies the packet number in the pcap file.

vlan vlan-id

VLAN id of the dot1q header in the simulated packet. The range is 1 to 4096.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>The command was enhanced to support MPLS/ARP/VxLAN packet parameters and trace packets captured in a PCAP file.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>The command was enhanced to support data capture across a stack.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Do not use this command unless a technical support representative asks you to. Use this command only when you are working directly with a technical support representative while troubleshooting a problem.

This command supports the following packet types:

- Non-IP packets with any L3 protocol
- ARP packets
- IPv4 packets with any L4 protocol
- IPv4 packets with TCP/UDP/IGMP/ICMP/SCTP payload
- VxLAN packets
- MPLS packets with up to 3 Labels and meta data
- MPLS packets with IPv4/IPv6 payload
- IPv6 packets with TCP/UDP/IGMP/ICMP/SCTP payload

In a stack environment, you can trace packets across the stack irrespective of the number of stack members and topology. The `show platform hardware fed switch forward interface switch-number forward interface interface-type interface-number` command consolidates packet-forwarding information of all the stack members on the ingress switch. To achieve this, ensure that the switch number specified in the `switch_num` and `interface-number` arguments are of the input switch and that the number matches.

To trace any particular packet from the captured packets stored in a PCAP file, use the `show platform hardware fed switch forward interface interface-type interface-number pcap pcap-file-name number packet-number data` command.
Example

This is an example of output from the `show platform hardware fed switch {switch_num | active | standby} forward interface` command.

Device# show platform hardware fed switch active forward interface gigabitEthernet 1/0/35 0000.0022.0055 0000.0055.0066 ipv4 44.44.0.2 55.55.0.2 udp 1222 3333

Show forward is running in the background. After completion, syslog will be generated.

*Sep 24 05:57:36.614: %SHFWD-6-PACKET_TRACE_DONE: Switch 1 R0/0: fed: Packet Trace Complete: Execute (show platform hardware fed switch <> forward last summary|detail)
*Sep 24 05:57:36.614: %SHFWD-6-PACKET_TRACE_FLOW_ID: Switch 1 R0/0: fed: Packet Trace Flow id is 15032385361

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor capture interface</td>
<td>Configures monitor capture points specifying an attachment point and the packet flow direction.</td>
</tr>
<tr>
<td>monitor capture start</td>
<td>Starts the capture of packet data at a traffic trace point into a buffer.</td>
</tr>
<tr>
<td>monitor capture stop</td>
<td>Stops the capture of packet data at a traffic trace point.</td>
</tr>
<tr>
<td>monitor capture export</td>
<td>Saves the captured packets in the buffer. Use this command to export the monitor capture buffer to a pcap file in flash: that you can use as an input in the <code>show forward with pcap</code>.</td>
</tr>
</tbody>
</table>
show platform resources

To display platform resource information, use the `show platform resources` command in privileged EXEC mode.

show platform resources

This command has no arguments or keywords.

Command Modes

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Privileged EXEC (#)</th>
</tr>
</thead>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output of this command displays the used memory, which is total memory minus the accurate free memory.

Example

The following is sample output from the `show platform resources` command:

```
Switch# show platform resources

**State Acronym: H - Healthy, W - Warning, C - Critical

<table>
<thead>
<tr>
<th>Resource</th>
<th>Usage</th>
<th>Max</th>
<th>Warning</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Processor</td>
<td>7.20%</td>
<td>100%</td>
<td>90%</td>
<td>95%</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM</td>
<td>2701MB (69%)</td>
<td>3883MB</td>
<td>90%</td>
<td>95%</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
show platform software audit

To display the SE Linux Audit logs, use the `show platform software audit` command in privileged EXEC mode.

```
show platform software audit { all | summary } [ switch { switch-number | active | standby } ]
{ 0 | F0 | R0 | { FP | RP } { active } }
```

Syntax Description

- **all**: Shows the audit log from all the slots.
- **summary**: Shows the audit log summary count from all the slots.
- **switch**: Shows the audit logs for a slot on a specific switch.
- **switch-number**: Selects the switch with the specified switch number.
- **switch active**: Selects the active instance of the switch.
- **standby**: Selects the standby instance of the switch.
- **0**: Shows the audit log for the SPA-Inter-Processor slot 0.
- **F0**: Shows the audit log for the Embedded-Service-Processor slot 0.
- **R0**: Shows the audit log for the Route-Processor slot 0.
- **FP active**: Shows the audit log for the active Embedded-Service-Processor slot.
- **RP active**: Shows the audit log for the active Route-Processor slot.

Command Modes

Privileged EXEC (#)

Command History

This command was introduced in the Cisco IOS XE Gibraltar 16.10.1 as a part of the SELinux Permissive Mode feature. The `show platform software audit` command displays the system logs containing the access violation events.

Usage Guidelines

In Cisco IOS XE Gibraltar 16.10.1, operation in a permissive mode is available - with the intent of confining specific components (process or application) of the IOS-XE platform. In the permissive mode, access violation events are detected and system logs are generated, but the event or operation itself is not blocked. The solution operates mainly in an access violation detection mode.

The following is a sample output of the `show software platform software audit summary` command:

```
Device# show platform software audit summary

AUDIT LOG ON switch 1
```

Interface and Hardware Commands

134
AVC Denial count: 58

The following is a sample output of the `show software platform software audit all` command:

```
Device# show platform software audit all

AUDIT LOG ON switch 1
-----------------------------
== START ==

审计事件

```

--- START ---
type=AVC msg=audit(1539222292.584:100): avc: denied { read } for pid=14017
comm="mcp_trace_filter" name="crashinfo" dev="rootfs" ino=13667
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0
tclass=lnk_file permissive=1
type=AVC msg=audit(1539222292.584:100): avc: denied { getattr } for pid=14017
comm="mcp_trace_filter" path="/mnt/sd1" dev="sda1" ino=2
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0
tclass=dir permissive=1
```

Interface and Hardware Commands
The following is a sample output of the `show software platform software audit switch` command:

Device# show platform software audit switch active R0

--------- START ---------

type=AVC msg=audit(1539222292.584:100): avc: denied { read } for pid=14017
comm="mcp_trace_filte" name="crashinfo" dev="rootfs" ino=13667
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0 tclass=lnk_file permissive=1
type=AVC msg=audit(1539222292.584:100): avc: denied { getattr } for pid=14017
comm="mcp_trace_filte" path="/mnt/sd1" dev="sda1" ino=2
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539222292.586:101): avc: denied { getattr } for pid=14028 comm="ls"
path="/tmp/ufs/crashinfo" dev="tmpfs" ino=58407
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539222292.586:101): avc: denied { read } for pid=14028 comm="ls"
name="crashinfo" dev="tmpfs" ino=58407
scontext=system_u:system_r:polaris_trace_filter_t:s0
tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir permissive=1

type=AVC msg=audit(1539438624.916:122): avc: denied { execute_no_trans } for pid=8600
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:polaris_auto_upgrade_server_rp_t:s0 tclass=file permissive=1

type=AVC msg=audit(1539438624.916:122): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1

type=AVC msg=audit(1539438696.969:125): avc: denied { execute_no_trans } for pid=10057
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:polaris_auto_upgrade_server_rp_t:s0 tclass=file permissive=1

type=AVC msg=audit(1539438732.973:126): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1

type=AVC msg=audit(1539438778.008:127): avc: denied { execute_no_trans } for pid=11579
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:polaris_auto_upgrade_server_rp_t:s0 tclass=file permissive=1

type=AVC msg=audit(1539438800.156:128): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1

type=AVC msg=audit(1539438834.099:129): avc: denied { execute_no_trans } for pid=12451
comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
tcontext=system_u:object_r:polaris_auto_upgrade_server_rp_t:s0 tclass=file permissive=1

type=AVC msg=audit(1539438860.907:130): avc: denied { name_connect } for pid=26421
comm="nginx" dest=8098 scontext=system_u:system_r:polaris_nginx_t:s0
tcontext=system_u:object_r:polaris_caf_api_port_t:s0 tclass=tcp_socket permissive=1
show platform software audit
show platform software fed switch punt cpuq rates

To display the rate at which packets are punted, including the drops in the punted path, use the `show platform software fed switch punt cpuq rates` command in privileged EXEC mode.

```
show platform software fed switch {switch-number | active | standby} punt cpuq rates
```

**Syntax Description**

- `switch{switch-number | active | standby}` Displays information about the switch. You have the following options:
  - `switch-number`
  - `active` — Displays information relating to the active switch.
  - `standby` — Displays information relating to the standby switch, if available.

- `punt` Specifies the punt information.
- `cpuq` Specifies information about CPU receive queue.
- `rates` Specifies the rate at which the packets are punted.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE</td>
<td>Gibraltar 16.10.1</td>
</tr>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The output of this command displays the rate in packets per second at intervals of 10 seconds, 1 minute and 5 minutes.

**Example**

The following is sample output from the `show platform software fed switch active punt cpuq rates` command.

```
Device# show platform software fed switch active punt cpuq rates

Punt Rate CPU Q Statistics

Packets per second averaged over 10 seconds, 1 min and 5 mins

<table>
<thead>
<tr>
<th>Queue Name</th>
<th>Rx 10s</th>
<th>Rx 1min</th>
<th>Rx 5min</th>
<th>Drop 10s</th>
<th>Drop 1min</th>
<th>Drop 5min</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU_Q_DOT1X_AUTH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU_Q_L2_CONTROL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU_Q_FORUS_TRAFFIC</td>
<td>336</td>
<td>266</td>
<td>320</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
The table below describes the significant fields shown in the display.

Table 6: show platform software fed switch active punt cpuq rates Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue Name</td>
<td>Name of the queue.</td>
</tr>
<tr>
<td>Rx</td>
<td>The rate at which the packets are received per second in 10s, 1 minute and 5 minutes.</td>
</tr>
<tr>
<td>Drop</td>
<td>The rate at which the packets are dropped per second in 10s, 1 minute and 5 minutes.</td>
</tr>
</tbody>
</table>
show platform software fed switch punt packet-capture display

To display packet capture information during high CPU utilization, use the `show platform software fed switch active punt packet-capture display` command in privileged EXEC mode.

```
show platform software fed switch active punt packet-capture display { detailed | hexdump }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch{switch-number</td>
<td>active</td>
</tr>
<tr>
<td>active</td>
<td>Displays information relating to the active switch.</td>
</tr>
<tr>
<td>standby</td>
<td>Displays information relating to the standby switch, if available.</td>
</tr>
<tr>
<td>Note</td>
<td>The standby keyword is not supported.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>punt</td>
<td>Specifies punt information.</td>
</tr>
<tr>
<td>packet-capture display</td>
<td>Specifies information about the captured packet.</td>
</tr>
<tr>
<td>detailed</td>
<td>Specifies detailed information about the captured packet.</td>
</tr>
<tr>
<td>hex-dump</td>
<td>Specifies information about the captured packet, in hex format.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The output of this command displays the periodic and persistent logs of CPU-bound packets, inband CPU traffic rates, and running CPU processes when the CPU passes a high CPU utilization threshold.

**Examples**

The following is a sample output from the `show platform software fed switch active punt packet-capture display detailed` command:

```
Device# show platform software fed switch active punt packet-capture display detailed
Punt packet capturing: disabled. Buffer wrapping: disabled
Total captured so far: 101 packets. Capture capacity : 4096 packets

interface : GigabitEthernet2/0/2 [if-id: 0x00000032] (physical)
ether hdr : dest mac: 0100.0ccc.cccd, src mac: 2c36.f8fc.4884
ether hdr : ethertype: 0x0032

Doppler Frame Descriptor :
```
0000000044004E04 C00F402D94510000 0000000000010000 0000400401000000 0000000001000050 000000006D000100 0000000025836200 0000000000000000

Packet Data Dump (length: 68 bytes):
010000CCCCCD2C36 F8FC48840032AAAA 0300000C010B0000 00000000012C36F8 FC48800000000000 012C36F8FC489080 04000014000002000F 0071000000020001
244E733E

interface : GigabitEthernet2/0/2 [if-id: 0x00000032] (physical)
ether hdr : dest mac: 0180.c200.0000, src mac: 2c36.f8fc.4884
ether hdr : ethertype: 0x0026
!
!
!
show platform software fed switch punt rates interfaces

To display the overall statistics of punt rate for all the interfaces, use the `show platform software fed switch punt rates interfaces` command in privileged EXEC mode.

```
show platform software fed switch {switch-number | active | standby} punt rates interfaces[interface-id]
```

**Syntax Description**

- **switch** `{switch-number | active | standby}`
  - Displays information about the switch. You have the following options:
    - `switch-number`.
    - `active` — Displays information relating to the active switch.
    - `standby` — Displays information relating to the standby switch, if available.
  - **Note** This keyword is not supported.

- **punt**
  - Specifies the punt information.

- **rates**
  - Specifies the rate at which the packets are punted.

- **interfaces[interface-id]**
  - (Optional) Displays the overall statistics for an interface and also the per-queue configuration for the interface at an interval of 10 seconds.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The output displays the punt rates in packets per second at intervals of 10 seconds, 1 minute and 5 minutes.

**Example**

The following is sample output from the `show platform software fed switch active punt rates interfaces` command for all the interfaces.

```
Device# show platform software fed switch active punt rates interfaces

Punt Rate on Interfaces Statistics

Packets per second averaged over 10 seconds, 1 min and 5 mins

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>IF_ID</th>
<th>10s</th>
<th>1min</th>
<th>5min</th>
<th>10s</th>
<th>1min</th>
<th>5min</th>
</tr>
</thead>
</table>
```

---

**Interface and Hardware Commands**
The table below describes the significant fields shown in the display.

**Table 7: show platform software fed switch active punt rates interfaces Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Name</td>
<td>Name of the physical interface.</td>
</tr>
<tr>
<td>IF_ID</td>
<td>ID of the physical interface.</td>
</tr>
<tr>
<td>Rx</td>
<td>The per second rate at which the packets are received in 10s, 1 minute and 5 minutes.</td>
</tr>
<tr>
<td>Drop</td>
<td>The per second rate at which the packets are dropped in 10s, 1 minute and 5 minutes.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show platform software fed switch active punt rates interfaces` command for a specific interface.

```
Device#show platform software fed switch active punt rates interfaces 0x31
Punt Rate on Single Interfaces Statistics

Interface : Port-channel1 [if_id: 0x31]

Received | Dropped
-------- | -------
Total : 29617 | Total : 0
10 sec average : 0 | 10 sec average : 0
1 min average : 0 | 1 min average : 0
5 min average : 0 | 5 min average : 0

Per CPUQ punt stats on the interface (rate averaged over 10s interval)

<table>
<thead>
<tr>
<th>Q</th>
<th>Queue</th>
<th>Recv</th>
<th>Recv</th>
<th>Drop</th>
<th>Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
<td>Total</td>
<td>Rate</td>
<td>Total</td>
<td>Rate</td>
</tr>
<tr>
<td>0</td>
<td>CPU_Q_DOT1X_AUTH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>CPU_Q_L2_CONTROL</td>
<td>29519</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CPU_Q_FORUS_TRAFFIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>CPU_Q_ICMP_GEN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CPU_Q_ROUTING_CONTROL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>CPU_Q_FORUS_ADDR_RESOLUTION</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>CPU_Q_ICMP_REDIRECT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>CPU_Q_INTER_FED_TRAFFIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>CPU_Q_L2LVX_CONTROL_PKT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>CPU_Q_EWLC_CONTROL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>CPU_Q_EWLC_DATA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>CPU_Q_L2LVX_DATA_PKT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>CPU_Q_BROADCAST</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>CPU_Q_LEARNING_CACHE_OVFL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>CPU_Q_SN_FORWARDING</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>CPU_Q_TOPOLOGY_CONTROL</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>CPU_Q_PROTO_SNOOPING</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>CPU_Q_DHCP_SNOOPING</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>CPU_Q_TRANSIT_TRAFFIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>CPU_Q_RPF_FAILED</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
The table below describes the significant fields shown in the display.

**Table 8: show platform software fed switch punt rates interfaces interface-id Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue Name</td>
<td>Name of the queue.</td>
</tr>
<tr>
<td>Recv Total</td>
<td>Total number of packets received.</td>
</tr>
<tr>
<td>Recv Rate</td>
<td>Per second rate at which the packets are received.</td>
</tr>
<tr>
<td>Drop Total</td>
<td>Total number of packets dropped.</td>
</tr>
<tr>
<td>Drop Rate</td>
<td>Per second rate at which the packets are dropped.</td>
</tr>
</tbody>
</table>
show platform software ilpower

To display the inline power details of all the PoE ports on the device, use the `show platform software ilpower` command in privileged EXEC mode.

```
show platform software ilpower {details | port {GigabitEthernet interface-number } | system slot-number }
```

**Syntax Description**

- **details**: Displays inline power details for all the interfaces.
- **port**: Displays inline power port configuration.
- **GigabitEthernet interface-number**: The GigabitEthernet interface number. Values range from 0 to 9.
- **system slot-number**: Displays inline power system configuration.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>The command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show platform software ilpower details` command:

```
Device# show platform software ilpower details
ILP Port Configuration for interface Gi1/0/1
 Initialization Done: Yes
 ILP Supported: Yes
 ILP Enabled: Yes
 POST: Yes
 Detect On: No
 Powered Device Detected: No
 Powered Device Class Done: No
 Cisco Powered Device: No
 Power is On: No
 Power Denied: No
 Powered Device Type: Null
 Powered Device Class: Null
 Power State: NULL
 Current State: NGWC_ILP_DETECTING_S
 Previous State: NGWC_ILP_SHUT_OFF_S
 Requested Power in milli watts: 0
 Short Circuit Detected: 0
 Short Circuit Count: 0
 Cisco Powered Device Detect Count: 0
 Spare Pair mode: 0
 IEEE Detect: Stopped
 IEEE Short: Stopped
 Link Down: Stopped
 Voltage sense: Stopped
 Spare Pair Architecture: 1
 Signal Pair Power allocation in milli watts: 0
 Spare Pair Power On: 0
 Powered Device power state: 0
 Timer:
```
show platform software ilpower

Power Good:          Stopped
Power Denied:        Stopped
Cisco Powered Device Detect: Stopped
**show platform software memory**

To display memory information for a specified switch, use the `show platform software memory` command in privileged EXEC mode.

```
show platform software memory [chunk | database | messaging] process slot
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>chunk</strong></td>
<td>(Optional) Displays chunk memory information for the specified process.</td>
</tr>
<tr>
<td><strong>database</strong></td>
<td>(Optional) Displays database memory information for the specified process.</td>
</tr>
<tr>
<td><strong>messaging</strong></td>
<td>(Optional) Displays messaging memory information for the specified process. The information displayed is for internal debugging purposes only.</td>
</tr>
</tbody>
</table>
show platform software memory

process
Level that is being set. Options include:

- **bt-logger** — The Binary-Tracing Logger process.
- **btrace-manager** — The Btrace Manager process.
- **chassis-manager** — The Chassis Manager process.
- **cli-agent** — The CLI Agent process.
- **cmm** — The CMM process.
- **dbm** — The Database Manager process.
- **dmiauthd** — The DMI Authentication Daemon process.
- **emd** — The Environmental Monitoring process.
- **fed** — The Forwarding Engine Driver process.
- **forwarding-manager** — The Forwarding Manager process.
- **geo** — The Geo Manager process.
- **gnmi** — The GNMI process.
- **host-manager** — The Host Manager process.
- **interface-manager** — The Interface Manager process.
- **iomd** — The Input/Output Module daemon (IOMd) process.
- **ios** — The IOS process.
- **iox-manager** — The IOx Manager process.
- **license-manager** — The License Manager process.
- **logger** — The Logging Manager process.
- **mdt-pubd** — The Model Defined Telemetry Publisher process.
- **ndbman** — The Netconf DataBase Manager process.
- **nesd** — The Network Element Synchronizer Daemon process.
- **nginx** — The Nginx Webserver process.
- **nif_mgr** — The NIF Manager process.
- **platform-mgr** — The Platform Manager process.
- **pluggable-services** — The Pluggable Services process.
- **replication-mgr** — The Replication Manager process.
- **shell-manager** — The Shell Manager process.
- **sif** — The Stack Interface (SIF) Manager process.
- **smd** — The Session Manager process.
- **stack-mgr** — The Stack Manager process.
• syncfd—The Syncdaemon process.
• table-manager—The Table Manager Server.
• thread-test—The Multithread Manager process.
• virt-manager—The Virtualization Manager process.

<table>
<thead>
<tr>
<th>slot</th>
<th>Hardware slot where the process for which the level is set, is running. Options include:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• number—Number of the SIP slot of the hardware module where the level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.</td>
</tr>
<tr>
<td></td>
<td>• SIP-slot / SPA-bay—Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.</td>
</tr>
<tr>
<td></td>
<td>• F0—The Embedded Service Processor slot 0.</td>
</tr>
<tr>
<td></td>
<td>• FP active—The active Embedded Service Processor.</td>
</tr>
<tr>
<td></td>
<td>• R0—The route processor in slot 0.</td>
</tr>
<tr>
<td></td>
<td>• RP active—The active route processor.</td>
</tr>
<tr>
<td></td>
<td>• RP standby—The standby route processor.</td>
</tr>
<tr>
<td></td>
<td>• switch &lt;number&gt;—The switch, with its number specified.</td>
</tr>
<tr>
<td></td>
<td>• switch active—The active switch.</td>
</tr>
<tr>
<td></td>
<td>• switch standby—The standby switch.</td>
</tr>
<tr>
<td></td>
<td>• number—Number of the SIP slot of the hardware module where the level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.</td>
</tr>
<tr>
<td></td>
<td>• SIP-slot / SPA-bay—Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.</td>
</tr>
<tr>
<td></td>
<td>• F0—The Embedded Service Processor in slot 0.</td>
</tr>
<tr>
<td></td>
<td>• FP active—The active Embedded Service Processor.</td>
</tr>
<tr>
<td></td>
<td>• R0—The route processor in slot 0.</td>
</tr>
<tr>
<td></td>
<td>• RP active—The active route processor.</td>
</tr>
</tbody>
</table>

| Command Default | No default behavior or values. |
| Command Modes   | Privileged EXEC (#) |
The following is a sample output displaying the abbreviated (brief keyword) memory information for the Forwarding Manager process for Cisco Catalyst 9000 Series ESP slot 0:

```
Device# show platform software memory forwarding-manager switch 1 fp active brief

module allocated requested allocs frees
--
Summary 5702540 5619788 121888 116716
AOM object 1920374 1920310 4 0
AOM links array 880379 880315 4 0
smc_message 819575 819511 4 0
AOM update state 640380 640316 4 0
dpidx-config 208776 203544 351 24
fman-infra-avl 178016 153680 1521 0
AOM batch 152373 152309 4 0
AOM asynchronous conte 128388 128324 4 0
AOM basic data 124824 124760 5 1
eventutil 118939 118299 100 10
AOM tree node 96465 96385 5 0
AOM tree root 72377 72313 4 0
acl 36090 31914 504 243
fman-infra-ipc 35326 24366 115097 114412
AOM uplink update node 32386 32322 4 0
unknown 30528 23808 424 4
upeer 27232 27152 5 0
fman-infra-qos 26872 24712 164 29
cce-class 19427 15411 251 0
l2 control protocol 15472 12896 1521 0
fman-infra-cce 15272 13576 106 0
smc_channel 15223 15159 4 0
unknown 14208 8736 447 3
chunk 12513 12033 33 3
cce-bind 8496 7552 8 2
MATM mac entry 8040 5928 544 412
adj 7064 6312 157 110
route-pfx 6116 5412 157 113
filter_rules 4912 4896 1 0
fman-infra-dpidx 4130 2338 112 0
SMC Buffer 3794 3202 3 27
urpf-list 3028 2100 85 27
lookup 2480 2160 30 10
MATM mac table 2432 1600 148 96
cdllib 1688 1672 1 0
route-tbl 1600 1264 21 0
FNF Flowdef 1492 1460 3 1
acl-ref 1120 1024 8 2
cgm-lib 1120 880 410 395
pbr_if_cfg 1088 976 205 198
FNF Monitor 1048 1032 1 0
pbr_routemap 960 864 18 12
```

The following table describes the significant fields shown in the display.
### Table 9: show platform software memory brief Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Name of submodule.</td>
</tr>
<tr>
<td>allocated</td>
<td>Memory, allocated in bytes.</td>
</tr>
<tr>
<td>requested</td>
<td>Number of bytes requested by application.</td>
</tr>
<tr>
<td>allocs</td>
<td>Number of discrete allocation event attempts.</td>
</tr>
<tr>
<td>frees</td>
<td>Number of free events.</td>
</tr>
</tbody>
</table>
show platform software process list

To display the list of running processes on a platform, use the show platform software process list command in privileged EXEC mode.

show platform software process list switch {switch-number | active | standby} {0 | F0 | R0} [{name process-name | process-id process-ID | sort memory | summary}]

Syntax Description

switch switch-number	Displays information about the switch. Valid values for switch-number argument are from 0 to 9.
active	Displays information about the active instance of the switch.
standby	Displays information about the standby instance of the switch.
0	Displays information about the shared port adapters (SPA) Interface Processor slot 0.
F0	Displays information about the Embedded Service Processor (ESP) slot 0.
R0	Displays information about the Route Processor (RP) slot 0.
name process-name	(Optional) Displays information about the specified process. Enter the process name.
process-id process-ID	(Optional) Displays information about the specified process ID. Enter the process ID.
sort	(Optional) Displays information sorted according to processes.
memory	(Optional) Displays information sorted according to memory.
summary	(Optional) Displays a summary of the process memory of the host device.

Command Modes

Privileged EXE (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>The command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the show platform software process list switch active R0 command:

Switch# show platform software process list switch active R0 summary

Total number of processes: 278
Running : 2
Sleeping : 276
Disk sleeping : 0
Zombies : 0
Stopped : 0
Paging : 0
Up time : 8318
<table>
<thead>
<tr>
<th>Idle time</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>User time</td>
<td>216809</td>
</tr>
<tr>
<td>Kernel time</td>
<td>78931</td>
</tr>
<tr>
<td>Virtual memory</td>
<td>12933324800</td>
</tr>
<tr>
<td>Pages resident</td>
<td>634061</td>
</tr>
<tr>
<td>Major page faults</td>
<td>2228</td>
</tr>
<tr>
<td>Minor page faults</td>
<td>3491744</td>
</tr>
<tr>
<td>Architecture</td>
<td>mips64</td>
</tr>
<tr>
<td>Memory (kB)</td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td>3976852</td>
</tr>
<tr>
<td>Total</td>
<td>3976852</td>
</tr>
<tr>
<td>Used</td>
<td>2766952</td>
</tr>
<tr>
<td>Free</td>
<td>1209900</td>
</tr>
<tr>
<td>Active</td>
<td>2141344</td>
</tr>
<tr>
<td>Inactive</td>
<td>1589672</td>
</tr>
<tr>
<td>Inact-dirty</td>
<td>0</td>
</tr>
<tr>
<td>Inact-clean</td>
<td>0</td>
</tr>
<tr>
<td>Dirty</td>
<td>4</td>
</tr>
<tr>
<td>AnonPages</td>
<td>1306800</td>
</tr>
<tr>
<td>Bounce</td>
<td>0</td>
</tr>
<tr>
<td>Cached</td>
<td>1984688</td>
</tr>
<tr>
<td>Commit Limit</td>
<td>1988424</td>
</tr>
<tr>
<td>Committed As</td>
<td>3358528</td>
</tr>
<tr>
<td>High Total</td>
<td>0</td>
</tr>
<tr>
<td>High Free</td>
<td>0</td>
</tr>
<tr>
<td>Low Total</td>
<td>3976852</td>
</tr>
<tr>
<td>Low Free</td>
<td>1209900</td>
</tr>
<tr>
<td>Mapped</td>
<td>520528</td>
</tr>
<tr>
<td>NFS Unstable</td>
<td>0</td>
</tr>
<tr>
<td>Page Tables</td>
<td>17328</td>
</tr>
<tr>
<td>Slab</td>
<td>0</td>
</tr>
<tr>
<td>VMmalloc Chunk</td>
<td>1069542588</td>
</tr>
<tr>
<td>VMmalloc Total</td>
<td>1069547512</td>
</tr>
<tr>
<td>VMmalloc Used</td>
<td>2588</td>
</tr>
<tr>
<td>Writeback</td>
<td>0</td>
</tr>
<tr>
<td>HugePages Total</td>
<td>0</td>
</tr>
<tr>
<td>HugePages Free</td>
<td>0</td>
</tr>
<tr>
<td>HugePages Rsvd</td>
<td>0</td>
</tr>
<tr>
<td>HugePage Size</td>
<td>2048</td>
</tr>
<tr>
<td>Swap (kB)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
</tr>
<tr>
<td>Used</td>
<td>0</td>
</tr>
<tr>
<td>Free</td>
<td>0</td>
</tr>
<tr>
<td>Cached</td>
<td>0</td>
</tr>
<tr>
<td>Buffers (kB)</td>
<td>439528</td>
</tr>
<tr>
<td>Load Average</td>
<td></td>
</tr>
<tr>
<td>1-Min</td>
<td>1.13</td>
</tr>
<tr>
<td>5-Min</td>
<td>1.18</td>
</tr>
<tr>
<td>15-Min</td>
<td>0.92</td>
</tr>
</tbody>
</table>

The following is sample output from the `show platform software process list switch active R0` command:

```
show platform software process list switch active R0
Name Fid PPid Group Id Status Priority Size
```
The table below describes the significant fields shown in the displays.

**Table 10: show platform software process list Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the command name associated with the process. Different threads in the same process may have different command values.</td>
</tr>
<tr>
<td>Pid</td>
<td>Displays the process ID that is used by the operating system to identify and keep track of the processes.</td>
</tr>
<tr>
<td>PPid</td>
<td>Displays process ID of the parent process.</td>
</tr>
<tr>
<td>Group Id</td>
<td>Displays the group ID</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the process status in human readable form.</td>
</tr>
</tbody>
</table>
### show platform software process list

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>Displays the negated scheduling priority.</td>
</tr>
</tbody>
</table>
| Size | Prior to Cisco IOS XE Gibraltar 16.10.1: Displays Virtual Memory size.  
From Cisco IOS XE Gibraltar 16.10.1 onwards: Displays the Resident Set Size (RSS) that shows how much memory is allocated to that process in the RAM. |
show platform software process memory

To display the amount of memory used by each system process, use the `show platform software process memory` command in privileged EXEC mode.

```
show platform process memory
switch {switch-number | active | standby} {0 | F0 | FP | R0} {all | sorted | virtual | sorted} | name
process-name {maps | smaps [summary]} | process-id process-id {maps | smaps [summary]}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch switch-number</code></td>
<td>Displays information about the switch. Enter the switch number.</td>
</tr>
<tr>
<td><code>active</code></td>
<td>Specifies the active instance of the device.</td>
</tr>
<tr>
<td><code>standby</code></td>
<td>Specifies the standby instance of the device.</td>
</tr>
<tr>
<td><code>0</code></td>
<td>Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.</td>
</tr>
<tr>
<td><code>F0</code></td>
<td>Specifies the Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td><code>FP</code></td>
<td>Specifies the Embedded Service Processor (ESP).</td>
</tr>
<tr>
<td><code>R0</code></td>
<td>Specifies the Route Processor (RP) slot 0.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Lists all processes.</td>
</tr>
<tr>
<td><code>sorted</code></td>
<td>(Optional) Sorts the output based on Resident Set Size (RSS).</td>
</tr>
<tr>
<td><code>virtual</code></td>
<td>(Optional) Specifies virtual memory.</td>
</tr>
<tr>
<td><code>name process-name</code></td>
<td>Specifies a process name.</td>
</tr>
<tr>
<td><code>maps</code></td>
<td>Specifies the memory maps of a process.</td>
</tr>
<tr>
<td><code>smaps summary</code></td>
<td>Specifies the smaps summary of a process.</td>
</tr>
<tr>
<td><code>process-id process-id</code></td>
<td>Specifies a process identifier.</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC(#)  

**Examples:**

The following is a sample output from the `show platform software process memory active R0 all` command:
## Interface and Hardware Commands

The table below describes the significant fields shown in the displays.

<table>
<thead>
<tr>
<th>Pid</th>
<th>RSS</th>
<th>PSS</th>
<th>Heap</th>
<th>Shared</th>
<th>Private</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4876</td>
<td>3229</td>
<td>1064</td>
<td>1808</td>
<td>3068</td>
<td>systemd</td>
</tr>
<tr>
<td>118</td>
<td>3184</td>
<td>1327</td>
<td>132</td>
<td>2352</td>
<td>832</td>
<td>systemd-journal</td>
</tr>
<tr>
<td>159</td>
<td>3008</td>
<td>1191</td>
<td>396</td>
<td>1996</td>
<td>1012</td>
<td>systemd-udevd</td>
</tr>
<tr>
<td>407</td>
<td>3192</td>
<td>1262</td>
<td>132</td>
<td>2196</td>
<td>996</td>
<td>dbus-daemon</td>
</tr>
<tr>
<td>3406</td>
<td>4772</td>
<td>3064</td>
<td>264</td>
<td>1940</td>
<td>2832</td>
<td>virtlogd</td>
</tr>
<tr>
<td>3411</td>
<td>5712</td>
<td>3474</td>
<td>2964</td>
<td>2344</td>
<td>3368</td>
<td>systemd-udevd</td>
</tr>
<tr>
<td>3416</td>
<td>2588</td>
<td>358</td>
<td>132</td>
<td>2336</td>
<td>252</td>
<td>libvirtd</td>
</tr>
<tr>
<td>3420</td>
<td>5708</td>
<td>3484</td>
<td>2976</td>
<td>2308</td>
<td>3400</td>
<td>reflector.sh</td>
</tr>
<tr>
<td>3424</td>
<td>1804</td>
<td>263</td>
<td>132</td>
<td>1632</td>
<td>172</td>
<td>xinetd</td>
</tr>
<tr>
<td>3425</td>
<td>964</td>
<td>118</td>
<td>132</td>
<td>872</td>
<td>92</td>
<td>sleep</td>
</tr>
<tr>
<td>3434</td>
<td>3060</td>
<td>844</td>
<td>528</td>
<td>2304</td>
<td>756</td>
<td>com.sh</td>
</tr>
<tr>
<td>3442</td>
<td>2068</td>
<td>606</td>
<td>132</td>
<td>1604</td>
<td>464</td>
<td>rpcbind</td>
</tr>
<tr>
<td>3485</td>
<td>2380</td>
<td>845</td>
<td>132</td>
<td>1636</td>
<td>744</td>
<td>rpc.statd</td>
</tr>
<tr>
<td>3486</td>
<td>1632</td>
<td>338</td>
<td>132</td>
<td>1348</td>
<td>284</td>
<td>boothelper_evt.</td>
</tr>
<tr>
<td>3493</td>
<td>1136</td>
<td>156</td>
<td>132</td>
<td>1004</td>
<td>132</td>
<td>inotifywait</td>
</tr>
<tr>
<td>3504</td>
<td>2048</td>
<td>753</td>
<td>132</td>
<td>1372</td>
<td>676</td>
<td>rpc.mountd</td>
</tr>
<tr>
<td>3584</td>
<td>2868</td>
<td>620</td>
<td>36</td>
<td>2384</td>
<td>484</td>
<td>rotee</td>
</tr>
<tr>
<td>3649</td>
<td>1032</td>
<td>116</td>
<td>132</td>
<td>944</td>
<td>88</td>
<td>sleep</td>
</tr>
<tr>
<td>3705</td>
<td>2784</td>
<td>613</td>
<td>36</td>
<td>2296</td>
<td>488</td>
<td>rotee</td>
</tr>
<tr>
<td>3718</td>
<td>2856</td>
<td>610</td>
<td>36</td>
<td>2376</td>
<td>480</td>
<td>rotee</td>
</tr>
<tr>
<td>3759</td>
<td>1292</td>
<td>184</td>
<td>132</td>
<td>1136</td>
<td>156</td>
<td>inotifywait</td>
</tr>
<tr>
<td>3787</td>
<td>4256</td>
<td>2040</td>
<td>1640</td>
<td>2300</td>
<td>1956</td>
<td>iptbl.sh</td>
</tr>
<tr>
<td>3894</td>
<td>2948</td>
<td>637</td>
<td>36</td>
<td>2460</td>
<td>488</td>
<td>rotee</td>
</tr>
<tr>
<td>4017</td>
<td>1380</td>
<td>175</td>
<td>132</td>
<td>1236</td>
<td>144</td>
<td>inotifywait</td>
</tr>
<tr>
<td>4866</td>
<td>1820</td>
<td>287</td>
<td>132</td>
<td>1624</td>
<td>196</td>
<td>xinetd</td>
</tr>
<tr>
<td>5887</td>
<td>1692</td>
<td>257</td>
<td>132</td>
<td>1508</td>
<td>184</td>
<td>xinetd</td>
</tr>
<tr>
<td>5891</td>
<td>7248</td>
<td>4984</td>
<td>4584</td>
<td>2348</td>
<td>4900</td>
<td>rollback_timer.</td>
</tr>
<tr>
<td>5893</td>
<td>1764</td>
<td>257</td>
<td>132</td>
<td>1588</td>
<td>176</td>
<td>xinetd</td>
</tr>
<tr>
<td>6031</td>
<td>2804</td>
<td>601</td>
<td>36</td>
<td>2332</td>
<td>472</td>
<td>rotee</td>
</tr>
<tr>
<td>6037</td>
<td>1228</td>
<td>163</td>
<td>132</td>
<td>1092</td>
<td>136</td>
<td>inotifywait</td>
</tr>
<tr>
<td>6077</td>
<td>4736</td>
<td>3389</td>
<td>2992</td>
<td>1368</td>
<td>3368</td>
<td>psvp.sh</td>
</tr>
<tr>
<td>6115</td>
<td>1620</td>
<td>476</td>
<td>36</td>
<td>1152</td>
<td>468</td>
<td>rotee</td>
</tr>
<tr>
<td>6122</td>
<td>624</td>
<td>149</td>
<td>132</td>
<td>480</td>
<td>144</td>
<td>inotifywait</td>
</tr>
<tr>
<td>6127</td>
<td>5440</td>
<td>4077</td>
<td>3680</td>
<td>1384</td>
<td>4056</td>
<td>psvp.sh</td>
</tr>
<tr>
<td>6165</td>
<td>1736</td>
<td>592</td>
<td>36</td>
<td>1152</td>
<td>584</td>
<td>rotee</td>
</tr>
<tr>
<td>6245</td>
<td>624</td>
<td>149</td>
<td>132</td>
<td>480</td>
<td>144</td>
<td>inotifywait</td>
</tr>
<tr>
<td>6353</td>
<td>2592</td>
<td>1260</td>
<td>924</td>
<td>1352</td>
<td>1240</td>
<td>pman.sh</td>
</tr>
<tr>
<td>6470</td>
<td>1632</td>
<td>488</td>
<td>36</td>
<td>1152</td>
<td>480</td>
<td>rotee</td>
</tr>
<tr>
<td>6499</td>
<td>2588</td>
<td>1262</td>
<td>924</td>
<td>1348</td>
<td>1240</td>
<td>pman.sh</td>
</tr>
<tr>
<td>6666</td>
<td>1640</td>
<td>496</td>
<td>36</td>
<td>1152</td>
<td>488</td>
<td>rotee</td>
</tr>
<tr>
<td>6718</td>
<td>2584</td>
<td>1258</td>
<td>800</td>
<td>1348</td>
<td>1236</td>
<td>pman.sh</td>
</tr>
<tr>
<td>6736</td>
<td>8360</td>
<td>7020</td>
<td>6640</td>
<td>1360</td>
<td>7000</td>
<td>auto_upgrade_cl</td>
</tr>
<tr>
<td>6909</td>
<td>1636</td>
<td>492</td>
<td>36</td>
<td>1152</td>
<td>484</td>
<td>rotee</td>
</tr>
<tr>
<td>6955</td>
<td>2588</td>
<td>1262</td>
<td>928</td>
<td>1348</td>
<td>1240</td>
<td>pman.sh</td>
</tr>
<tr>
<td>7029</td>
<td>2196</td>
<td>679</td>
<td>40</td>
<td>1552</td>
<td>644</td>
<td>auto_upgrade_se</td>
</tr>
<tr>
<td>7149</td>
<td>1636</td>
<td>492</td>
<td>36</td>
<td>1152</td>
<td>484</td>
<td>rotee</td>
</tr>
<tr>
<td>7224</td>
<td>13200</td>
<td>4595</td>
<td>48</td>
<td>9368</td>
<td>3832</td>
<td>bt_logger</td>
</tr>
<tr>
<td>7295</td>
<td>2588</td>
<td>1262</td>
<td>800</td>
<td>1348</td>
<td>1240</td>
<td>pman.sh</td>
</tr>
</tbody>
</table>

The table below describes the significant fields shown in the displays.
### Table 11: show platform software process memory Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>Displays the process ID that is used by the operating system to identify and keep track of the processes.</td>
</tr>
<tr>
<td>RSS</td>
<td>Displays the Resident Set Size (in kilobytes (KB)) that shows how much memory is allocated to that process in the RAM.</td>
</tr>
<tr>
<td>PSS</td>
<td>Displays the Proportional Set Size of a process. This is the count of pages it has in memory, where each page is divided by the number of processes sharing it.</td>
</tr>
<tr>
<td>Heap</td>
<td>Displays where all user-allocated memory is located.</td>
</tr>
<tr>
<td>Shared</td>
<td>Shared clean + Shared dirty</td>
</tr>
<tr>
<td>Private</td>
<td>Private clean + Private dirty</td>
</tr>
<tr>
<td>Name</td>
<td>Displays the command name associated with the process. Different threads in the same process may have different command values.</td>
</tr>
</tbody>
</table>
show platform software process slot switch

To display platform software process switch information, use the `show platform software process slot switch` command in privileged EXEC mode.

```
show platform software process slot switch {switch-number | active | standby} {0 | F0 | R0} monitor [{cycles no-of-times [{interval delay [{lines number}]}]}]
```

### Syntax Description

- **switch-number**
  - Switch number.

- **active**
  - Specifies the active instance.

- **standby**
  - Specifies the standby instance.

- **0**
  - Specifies the shared port adapter (SPA) interface processor slot 0.

- **F0**
  - Specifies the Embedded Service Processor (ESP) slot 0.

- **R0**
  - Specifies the Route Processor (RP) slot 0.

- **monitor**
  - Monitors the running processes.

- **cycles no-of-times**
  - (Optional) Sets the number of times to run monitor command. Valid values are from 1 to 4294967295. The default is 5.

- **interval delay**
  - (Optional) Sets a delay after each . Valid values are from 0 to 300. The default is 3.

- **lines number**
  - (Optional) Sets the number of lines of output displayed. Valid values are from 0 to 512. The default is 0.

### Command Modes

- Privileged EXEC (#)

### Command History

**Release**

- Cisco IOS XE Fuji 16.9.2 This command was introduced.

### Usage Guidelines

The output of the `show platform software process slot switch` and `show processes cpu platform monitor location` commands display the output of the Linux `top` command. The output of these commands display Free memory and Used memory as displayed by the Linux `top` command. The values displayed for the Free memory and Used memory by these commands do not match the values displayed by the output of other platform-memory related CLIs.

### Examples

The following is sample output from the `show platform software process slot switch active R0 monitor` command:

```
Switch# show platform software process slot switch active R0 monitor
```
### top

```
top - 00:01:52 up 1 day, 11:20, 0 users, load average: 0.50, 0.68, 0.83
Tasks: 311 total, 2 running, 309 sleeping, 0 stopped, 0 zombie
Cpu(s): 7.4%us, 3.3%sy, 0.0%ni, 89.2%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st
Mem: 3976844k total, 3955036k used, 21808k free, 419312k buffers
Swap: 0k total, 0k used, 0k free, 1946764k cached
```

<table>
<thead>
<tr>
<th>PID</th>
<th>USER</th>
<th>PR</th>
<th>NI</th>
<th>VIRT</th>
<th>RES</th>
<th>SHR</th>
<th>S</th>
<th>%CPU</th>
<th>%MEM</th>
<th>TIME+</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>5693</td>
<td>root</td>
<td>20</td>
<td>0</td>
<td>3448</td>
<td>1368</td>
<td>912</td>
<td>R</td>
<td>0.0</td>
<td>0.00</td>
<td>0:00:07</td>
<td>top</td>
</tr>
<tr>
<td>17546</td>
<td>root</td>
<td>20</td>
<td>0</td>
<td>2044m</td>
<td>244m</td>
<td>79m</td>
<td>S</td>
<td>6.3</td>
<td>186:49</td>
<td>fed main event</td>
<td></td>
</tr>
<tr>
<td>18662</td>
<td>root</td>
<td>20</td>
<td>0</td>
<td>1806m</td>
<td>678m</td>
<td>263m</td>
<td>S</td>
<td>17.5</td>
<td>215:32</td>
<td>linux_iosd-imag</td>
<td></td>
</tr>
<tr>
<td>30276</td>
<td>root</td>
<td>20</td>
<td>0</td>
<td>171m</td>
<td>42m</td>
<td>33m</td>
<td>S</td>
<td>1.1</td>
<td>125:06:77</td>
<td>repm</td>
<td></td>
</tr>
<tr>
<td>17835</td>
<td>root</td>
<td>20</td>
<td>0</td>
<td>935m</td>
<td>74m</td>
<td>63m</td>
<td>S</td>
<td>1.9</td>
<td>82:28:31</td>
<td>sif_mgr</td>
<td></td>
</tr>
<tr>
<td>18534</td>
<td>root</td>
<td>20</td>
<td>0</td>
<td>182m</td>
<td>150m</td>
<td>10m</td>
<td>S</td>
<td>3.9</td>
<td>8:12:08</td>
<td>smand</td>
<td></td>
</tr>
<tr>
<td>1 root</td>
<td>0</td>
<td>-20</td>
<td>0</td>
<td>8440</td>
<td>4740</td>
<td>2184</td>
<td>S</td>
<td>0.1</td>
<td>0:09:52</td>
<td>systemd</td>
<td></td>
</tr>
<tr>
<td>2 root</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0.0</td>
<td>0:00:00</td>
<td>kthreadd</td>
<td></td>
</tr>
<tr>
<td>3 root</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0.0</td>
<td>0:02:86</td>
<td>ksoftirqd/0</td>
<td></td>
</tr>
<tr>
<td>5 root</td>
<td>0</td>
<td>-20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0.0</td>
<td>0:00:00</td>
<td>kworker/0:0H</td>
<td></td>
</tr>
<tr>
<td>7 root</td>
<td>RT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0.0</td>
<td>0:01:44</td>
<td>migration/0</td>
<td></td>
</tr>
<tr>
<td>8 root</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0.0</td>
<td>0:00:00</td>
<td>rcu_bh</td>
<td></td>
</tr>
<tr>
<td>9 root</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0.0</td>
<td>0:23:08</td>
<td>rcu_sched</td>
<td></td>
</tr>
<tr>
<td>10 root</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0.0</td>
<td>0:58:04</td>
<td>rcu/0</td>
<td></td>
</tr>
<tr>
<td>11 root</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0.0</td>
<td>21:35:60</td>
<td>rcu/1</td>
<td></td>
</tr>
<tr>
<td>12 root</td>
<td>RT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0.0</td>
<td>0:01:33</td>
<td>migration/1</td>
<td></td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show processes cpu platform monitor location</td>
<td>Displays information about the CPU utilization of the IOS-XE processes.</td>
</tr>
</tbody>
</table>
show platform software status control-processor

To display platform software control-processor status, use the `show platform software status control-processor` command in privileged EXEC mode.

```
show platform software status control-processor [{brief}]
```

**Syntax Description**

- `brief` (Optional) Displays a summary of the platform control-processor status.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show platform memory software status control-processor` command:

```
Switch# show platform software status control-processor

2-RP0: online, statistics updated 7 seconds ago
Load Average: healthy
 1-Min: 1.00, status: healthy, under 5.00
 5-Min: 1.21, status: healthy, under 5.00
 15-Min: 0.90, status: healthy, under 5.00
Memory (kb): healthy
 Total: 3976852
 Used: 2766284 (70%), status: healthy
 Free: 1210568 (30%)
 Committed: 3358008 (84%), under 95%
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
 User: 4.40, System: 1.70, Nice: 0.00, Idle: 93.80
 IRQ: 0.00, SIRQ: 0.10, IOWait: 0.00
CPU1: CPU Utilization (percentage of time spent)
 User: 3.80, System: 1.20, Nice: 0.00, Idle: 94.90
 IRQ: 0.00, SIRQ: 0.10, IOWait: 0.00
CPU2: CPU Utilization (percentage of time spent)
 User: 7.00, System: 1.10, Nice: 0.00, Idle: 91.89
 IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU3: CPU Utilization (percentage of time spent)
 User: 4.49, System: 0.69, Nice: 0.00, Idle: 94.80
 IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00

3-RP0: unknown, statistics updated 2 seconds ago
Load Average: healthy
 1-Min: 0.24, status: healthy, under 5.00
 5-Min: 0.27, status: healthy, under 5.00
 15-Min: 0.32, status: healthy, under 5.00
Memory (kb): healthy
 Total: 3976852
 Used: 2706768 (68%), status: healthy
 Free: 1270084 (32%)
 Committed: 3299332 (83%), under 95%
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
```
User: 4.50, System: 1.20, Nice: 0.00, Idle: 94.20
IRQ: 0.00, SIRQ: 0.10, IOWait: 0.00
CPU1: CPU Utilization (percentage of time spent)
User: 5.20, System: 0.50, Nice: 0.00, Idle: 94.29
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU2: CPU Utilization (percentage of time spent)
User: 3.60, System: 0.70, Nice: 0.00, Idle: 95.69
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU3: CPU Utilization (percentage of time spent)
User: 3.00, System: 0.60, Nice: 0.00, Idle: 96.39
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
4-RP0: unknown, statistics updated 2 seconds ago
Load Average: healthy
1-Min: 0.21, status: healthy, under 5.00
5-Min: 0.24, status: healthy, under 5.00
15-Min: 0.24, status: healthy, under 5.00
Memory (kb): healthy
Total: 3976852
Used: 1452404 (37%), status: healthy
Free: 2524448 (63%)
Committed: 1675120 (42%), under 95%
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
User: 2.30, System: 0.40, Nice: 0.00, Idle: 97.30
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU1: CPU Utilization (percentage of time spent)
User: 4.19, System: 0.69, Nice: 0.00, Idle: 95.10
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU2: CPU Utilization (percentage of time spent)
User: 4.79, System: 0.79, Nice: 0.00, Idle: 94.40
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU3: CPU Utilization (percentage of time spent)
User: 2.10, System: 0.40, Nice: 0.00, Idle: 97.50
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
9-RP0: unknown, statistics updated 4 seconds ago
Load Average: healthy
1-Min: 0.20, status: healthy, under 5.00
5-Min: 0.35, status: healthy, under 5.00
15-Min: 0.35, status: healthy, under 5.00
Memory (kb): healthy
Total: 3976852
Used: 1451328 (36%), status: healthy
Free: 2525524 (64%)
Committed: 1675932 (42%), under 95%
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
User: 1.90, System: 0.50, Nice: 0.00, Idle: 97.60
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU1: CPU Utilization (percentage of time spent)
User: 4.39, System: 0.19, Nice: 0.00, Idle: 95.40
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU2: CPU Utilization (percentage of time spent)
User: 5.70, System: 1.00, Nice: 0.00, Idle: 93.30
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU3: CPU Utilization (percentage of time spent)
User: 1.30, System: 0.60, Nice: 0.00, Idle: 98.00
IRQ: 0.00, SIRQ: 0.10, IOWait: 0.00

The following is sample output from the `show platform memory software status control-processor brief` command:
Switch# **show platform software status control-processor brief**

<table>
<thead>
<tr>
<th>Slot</th>
<th>Status</th>
<th>1-Min</th>
<th>5-Min</th>
<th>15-Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-RP0</td>
<td>Healthy</td>
<td>1.10</td>
<td>1.21</td>
<td>0.91</td>
</tr>
<tr>
<td>3-RP0</td>
<td>Healthy</td>
<td>0.23</td>
<td>0.27</td>
<td>0.31</td>
</tr>
<tr>
<td>4-RP0</td>
<td>Healthy</td>
<td>0.11</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>9-RP0</td>
<td>Healthy</td>
<td>0.10</td>
<td>0.30</td>
<td>0.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slot</th>
<th>Status</th>
<th>Total</th>
<th>Used (Pct)</th>
<th>Free (Pct)</th>
<th>Committed (Pct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-RP0</td>
<td>Healthy</td>
<td>3976852</td>
<td>2766956 (70%)</td>
<td>1209896 (30%)</td>
<td>3358352 (84%)</td>
</tr>
<tr>
<td>3-RP0</td>
<td>Healthy</td>
<td>3976852</td>
<td>2706824 (68%)</td>
<td>1270028 (32%)</td>
<td>3299276 (83%)</td>
</tr>
<tr>
<td>4-RP0</td>
<td>Healthy</td>
<td>3976852</td>
<td>1451888 (37%)</td>
<td>2524964 (63%)</td>
<td>1675076 (42%)</td>
</tr>
<tr>
<td>9-RP0</td>
<td>Healthy</td>
<td>3976852</td>
<td>1451580 (37%)</td>
<td>2525272 (63%)</td>
<td>1675952 (42%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slot</th>
<th>CPU</th>
<th>User</th>
<th>System</th>
<th>Nice</th>
<th>Idle</th>
<th>IRQ</th>
<th>SIRQ</th>
<th>IOwait</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-RP0</td>
<td>0</td>
<td>4.10</td>
<td>2.00</td>
<td>0.00</td>
<td>93.80</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.60</td>
<td>1.00</td>
<td>0.00</td>
<td>94.30</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.50</td>
<td>1.10</td>
<td>0.00</td>
<td>92.40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.59</td>
<td>1.19</td>
<td>0.00</td>
<td>93.20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3-RP0</td>
<td>0</td>
<td>2.80</td>
<td>1.20</td>
<td>0.00</td>
<td>95.90</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.49</td>
<td>1.29</td>
<td>0.00</td>
<td>94.20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.30</td>
<td>1.60</td>
<td>0.00</td>
<td>93.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.80</td>
<td>1.20</td>
<td>0.00</td>
<td>93.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4-RP0</td>
<td>0</td>
<td>1.30</td>
<td>0.80</td>
<td>0.00</td>
<td>97.89</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.30</td>
<td>0.20</td>
<td>0.00</td>
<td>98.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.60</td>
<td>0.80</td>
<td>0.00</td>
<td>93.59</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.09</td>
<td>0.19</td>
<td>0.00</td>
<td>94.70</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9-RP0</td>
<td>0</td>
<td>3.99</td>
<td>0.69</td>
<td>0.00</td>
<td>95.30</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2.60</td>
<td>0.70</td>
<td>0.00</td>
<td>96.70</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.49</td>
<td>0.89</td>
<td>0.00</td>
<td>94.60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.60</td>
<td>0.20</td>
<td>0.00</td>
<td>97.20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
**show platform software thread list**

To display the list of threads on a platform, use the `show platform software thread list` command in privileged EXEC mode.

```
show platform software thread list switch { switch-number | active | standby } { 0 | F0 | FP active | R0 } pname { cdman | vidman | all } tname { main | pktio | rt | all }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch switch-number</code></td>
<td>Displays information about the switch. Enter the switch number.</td>
</tr>
<tr>
<td><code>active</code></td>
<td>Specifies the active instance of the device.</td>
</tr>
<tr>
<td><code>standby</code></td>
<td>Specifies standby instance of the device.</td>
</tr>
<tr>
<td><code>0</code></td>
<td>Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.</td>
</tr>
<tr>
<td><code>F0</code></td>
<td>Specifies the Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td><code>FP active</code></td>
<td>Specifies the active instance of Embedded Service Processor (ESP).</td>
</tr>
<tr>
<td><code>R0</code></td>
<td>Specifies the Route Processor (RP) slot 0.</td>
</tr>
<tr>
<td><code>pname</code></td>
<td>Specifies a process name. The possible values are cdman, vidman, and all.</td>
</tr>
<tr>
<td><code>tname</code></td>
<td>Specifies a thread name. The possible values are main, pktio, rt, and all.</td>
</tr>
</tbody>
</table>

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Command Modes

Privileged EXEC(#)  

### Examples:

The following is sample output from the `show platform software thread list switch active R0 pname cdman tname all` command:

```
Device# show platform software thread list switch active R0 pname cdman tname all

<table>
<thead>
<tr>
<th>Name</th>
<th>Tid</th>
<th>PPid</th>
<th>Group Id</th>
<th>Core</th>
<th>Vcswch</th>
<th>Nvcswch</th>
<th>Status</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdman</td>
<td>8407</td>
<td>7295</td>
<td>8407</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>20</td>
</tr>
</tbody>
</table>
```

The table below describes the significant fields shown in the displays.
Table 12: show platform software thread list Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the command name associated with the process. Different threads in the same process may have different command values.</td>
</tr>
<tr>
<td>Tid</td>
<td>Displays the process ID.</td>
</tr>
<tr>
<td>PPid</td>
<td>Displays the process ID of the parent process.</td>
</tr>
<tr>
<td>Group Id</td>
<td>Displays the group ID.</td>
</tr>
<tr>
<td>Core</td>
<td>Displays processor information.</td>
</tr>
<tr>
<td>Vcswch</td>
<td>Displays the number of voluntary context switches.</td>
</tr>
<tr>
<td>Nvcswch</td>
<td>Displays the number of non-voluntary context switches.</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the process status in human readable form.</td>
</tr>
<tr>
<td>Priority</td>
<td>Displays the negated scheduling priority.</td>
</tr>
<tr>
<td>TIME+</td>
<td>Displays the time since the start of the process.</td>
</tr>
<tr>
<td>Size</td>
<td>Displays the Resident Set Size (in kilobytes (KB)) that shows how much memory is allocated to that process in the RAM.</td>
</tr>
</tbody>
</table>
show processes cpu platform

To display information about the CPU utilization of the IOS-XE processes, use the `show processes cpu platform` command in privileged EXEC mode.

```
show processes cpu platform [[sorted [1min | 5min | 5sec]] location
switch {switch-number | active | standby} {F0 | FP active | R0 | RP active}]
```

### Syntax Description

- **sorted** (Optional) Displays output sorted based on percentage of CPU usage on a platform.
- **1min** (Optional) Sorts based on 1 minute intervals.
- **5min** (Optional) Sorts based on 5 minute intervals.
- **5sec** (Optional) Sorts based on 5 second intervals.
- **location** Specifies the Field Replaceable Unit (FRU) location.
- **switch switch-number**
  - **active** Specifies the active instance of the device.
  - **standby** Specifies the standby instance of the device.
- **F0** Specifies the Embedded Service Processor (ESP) slot 0.
- **FP active** Specifies active instances on the Embedded Service Processor (ESP).
- **R0** Specifies the Route Processor (RP) slot 0.
- **RP active** Specifies active instances on the Route Processor (RP).

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Command Modes

Privileged EXEC (#)

### Examples:

The following is sample output from the `show processes cpu platform` command:

```
Device# show processes cpu platform

CPU utilization for five seconds: 1%, one minute: 3%, five minutes: 2%
Core 0: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 2%
Core 1: CPU utilization for five seconds: 2%, one minute: 1%, five minutes: 1%
Core 2: CPU utilization for five seconds: 3%, one minute: 1%, five minutes: 1%
Core 3: CPU utilization for five seconds: 2%, one minute: 5%, five minutes: 2%
 Pid PPid 5Sec 1Min 5Min Status Size Name

 1 0 0% 0% 0% S 4876 systemd
```
The following is sample output from the `show processes cpu platform` command:

```
Device# show processes cpu platform sorted 5min location switch 5 R0

CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 0: CPU utilization for five seconds: 1%, one minute: 1%, five minutes: 1%
Core 1: CPU utilization for five seconds: 1%, one minute: 1%, five minutes: 1%
Core 2: CPU utilization for five seconds: 1%, one minute: 1%, five minutes: 1%
Core 3: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 1%
Core 4: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 5: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 6: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 7: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
```

```
Pid PPid 5Sec 1Min 5Min Status Size Name
--
 16358 15516 4% 4% 4% S 221376 fed main event
 14062 12756 1% 1% 1% S 52140 sif_mgr
 32105 8618 0% 0% 0% S 260 inotifywait
 31396 31393 0% 0% 0% S 36516 python2.7
 31319 1 0% 0% 0% S 2744 rdope.sh
 29671 2 0% 0% 0% S 2648 rotee
 29341 29329 0% 0% 0% S 3852 pman.sh
 29329 2 0% 0% 0% S 2788 stack_sntp.sh
```

```
Device# show processes cpu platform sorted 5min location switch 5 R0

CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 0: CPU utilization for five seconds: 1%, one minute: 1%, five minutes: 1%
Core 1: CPU utilization for five seconds: 1%, one minute: 1%, five minutes: 1%
Core 2: CPU utilization for five seconds: 1%, one minute: 1%, five minutes: 1%
Core 3: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 1%
Core 4: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 5: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 6: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 7: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
```

```
``
The following is sample output from the `show processes cpu platform location switch 7 R0` command:

```
Device# show processes cpu platform location switch 7 R0

CPU utilization for five seconds: 3%, one minute: 3%, five minutes: 3%
Core 0: CPU utilization for five seconds: 1%, one minute: 5%, five minutes: 5%
Core 1: CPU utilization for five seconds: 1%, one minute: 11%, five minutes: 5%
Core 2: CPU utilization for five seconds: 22%, one minute: 7%, five minutes: 6%
Core 3: CPU utilization for five seconds: 5%, one minute: 6%, five minutes: 6%
Core 4: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 5: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 6: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 7: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 6%
```

```
<table>
<thead>
<tr>
<th>Pid</th>
<th>PPid</th>
<th>5Sec</th>
<th>1Min</th>
<th>5Min</th>
<th>Status</th>
<th>Size</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>8044</td>
<td>systemd</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kthreadd</td>
</tr>
</tbody>
</table>
```

show processes cpu platform history

To display information about the CPU usage history of a system, use the show processes cpu platform history command.

```
show processes cpu platform history [ 1min | 5min | 5sec | 60min ] location
switch [ switch-number | active | standby ] [ 0 | F0 | FP active | R0 ]
```

<table>
<thead>
<tr>
<th>1min</th>
<th>(Optional) Displays CPU utilization history with 1 minute intervals.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5min</td>
<td>(Optional) Displays CPU utilization history with 5 minute intervals.</td>
</tr>
<tr>
<td>5sec</td>
<td>(Optional) Displays CPU utilization history with 5 second intervals.</td>
</tr>
<tr>
<td>60min</td>
<td>(Optional) Displays CPU utilization history with 60 minute intervals.</td>
</tr>
<tr>
<td>location</td>
<td>Specifies the Field Replaceable Unit (FRU) location.</td>
</tr>
<tr>
<td>switch switch-number</td>
<td>Displays information about the switch. Enter the switch number.</td>
</tr>
<tr>
<td>active</td>
<td>Specifies the active instance of the device.</td>
</tr>
<tr>
<td>standby</td>
<td>Specifies the standby instance of the device.</td>
</tr>
<tr>
<td>0</td>
<td>Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.</td>
</tr>
<tr>
<td>F0</td>
<td>Specifies the Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td>FP active</td>
<td>Specifies active instances on the Embedded Service Processor (ESP).</td>
</tr>
<tr>
<td>R0</td>
<td>Specifies the Route Processor (RP) slot 0.</td>
</tr>
</tbody>
</table>

Command History

- **Release**: Cisco IOS XE Gibraltar 16.10.1
- **Modification**: This command was introduced.

Command Modes

- Privileged EXEC (#)

Examples:

The following is sample output from the `show processes cpu platform` command:

```
Device# show processes cpu platform
```
CPU utilization for five seconds: 1%, one minute: 3%, five minutes: 2%
Core 0: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 2%
Core 1: CPU utilization for five seconds: 2%, one minute: 1%, five minutes: 1%
Core 2: CPU utilization for five seconds: 3%, one minute: 1%, five minutes: 1%
Core 3: CPU utilization for five seconds: 2%, one minute: 5%, five minutes: 2%

<table>
<thead>
<tr>
<th>Pid</th>
<th>PPid</th>
<th>5Sec</th>
<th>1Min</th>
<th>5Min</th>
<th>Status</th>
<th>Size</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>4876</td>
<td>systemd</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kthreadd</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>ksoftirqd/0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kworker/0:0H</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>rcu_sched</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>rcu_bh</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>migration/0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>watchdog/0</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>watchdog/1</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>migration/1</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>ksoftirqd/1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>watchdog/1:0H</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>watchdog/2</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>migration/2</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>ksoftirqd/2</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kworker/2:0H</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>watchdog/3</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>migration/3</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>ksoftirqd/3</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kworker/3:0</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kworker/3:0:0</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kdevtmpfs</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>netns</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>perf</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>khungtaskd</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>writeback</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>7%</td>
<td>6%</td>
<td>6%</td>
<td>S</td>
<td>0</td>
<td>kmd</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>khugepaged</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>crypto</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>bioet</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kblockd</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>ata_sff</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>rpciod</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kswapd0</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>vmstat</td>
</tr>
<tr>
<td>65</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>fsnotify_mark</td>
</tr>
</tbody>
</table>

The following is sample output from the `show processes cpu platform history 5sec` command:

```
Device# show processes cpu platform history 5sec

5 seconds ago, CPU utilization: 0%
10 seconds ago, CPU utilization: 0%
15 seconds ago, CPU utilization: 0%
20 seconds ago, CPU utilization: 0%
25 seconds ago, CPU utilization: 0%
30 seconds ago, CPU utilization: 0%
35 seconds ago, CPU utilization: 0%
40 seconds ago, CPU utilization: 0%
45 seconds ago, CPU utilization: 0%
50 seconds ago, CPU utilization: 0%
55 seconds ago, CPU utilization: 0%
60 seconds ago, CPU utilization: 0%
65 seconds ago, CPU utilization: 0%
70 seconds ago, CPU utilization: 0%
```
show processes cpu platform history

75 seconds ago, CPU utilization: 0%
80 seconds ago, CPU utilization: 0%
85 seconds ago, CPU utilization: 0%
90 seconds ago, CPU utilization: 0%
95 seconds ago, CPU utilization: 0%
100 seconds ago, CPU utilization: 0%
105 seconds ago, CPU utilization: 0%
110 seconds ago, CPU utilization: 0%
115 seconds ago, CPU utilization: 0%
120 seconds ago, CPU utilization: 0%
125 seconds ago, CPU utilization: 0%
130 seconds ago, CPU utilization: 0%
135 seconds ago, CPU utilization: 0%
140 seconds ago, CPU utilization: 0%
145 seconds ago, CPU utilization: 1%
150 seconds ago, CPU utilization: 0%
155 seconds ago, CPU utilization: 0%
160 seconds ago, CPU utilization: 0%
165 seconds ago, CPU utilization: 0%
170 seconds ago, CPU utilization: 0%
175 seconds ago, CPU utilization: 0%
180 seconds ago, CPU utilization: 0%
185 seconds ago, CPU utilization: 0%
190 seconds ago, CPU utilization: 0%
195 seconds ago, CPU utilization: 0%
200 seconds ago, CPU utilization: 0%
205 seconds ago, CPU utilization: 0%
210 seconds ago, CPU utilization: 0%
215 seconds ago, CPU utilization: 0%
220 seconds ago, CPU utilization: 0%
225 seconds ago, CPU utilization: 0%
230 seconds ago, CPU utilization: 0%
235 seconds ago, CPU utilization: 0%
240 seconds ago, CPU utilization: 0%
245 seconds ago, CPU utilization: 0%
250 seconds ago, CPU utilization: 0%
.
show processes cpu platform monitor

To display information about the CPU utilization of the IOS-XE processes, use the `show processes cpu platform monitor` command in privileged EXEC mode.

```
show processes cpu platform monitor location switch {switch-number | active | standby} {0 | F0 | R0}
```

Syntax Description

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>Displays information about the Field Replaceable Unit (FRU) location.</td>
</tr>
<tr>
<td>switch</td>
<td>Specifies the switch.</td>
</tr>
<tr>
<td>switch-number</td>
<td>Switch number.</td>
</tr>
<tr>
<td>active</td>
<td>Specifies the active instance.</td>
</tr>
<tr>
<td>standby</td>
<td>Specifies the standby instance.</td>
</tr>
<tr>
<td>0</td>
<td>Specifies the shared port adapter (SPA) interface processor slot 0.</td>
</tr>
<tr>
<td>F0</td>
<td>Specifies the Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td>R0</td>
<td>Specifies the Route Processor (RP) slot 0.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output of the `show platform software process slot switch` and `show processes cpu platform monitor location` commands display the output of the Linux `top` command. The output of these commands display Free memory and Used memory as displayed by the Linux `top` command. The values displayed for the Free memory and Used memory by these commands do not match the values displayed by the output of other platform-memory related CLIs.

Examples

The following is sample output from the `show processes cpu monitor location switch active R0` command:

```
Switch# show processes cpu platform monitor location switch active R0

top - 00:04:21 up 1 day, 11:22, 0 users, load average: 0.42, 0.60, 0.78
Tasks: 312 total, 4 running, 308 sleeping, 0 stopped, 0 zombie
Cpu(s): 7.4%us, 3.3%sy, 0.0%ni, 89.2%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st
Mem: 3976844k total, 3956928k used, 19916k free, 419312k buffers
Swap: 0k total, 0k used, 0k free, 1947036k cached

PID USER  PR NI VIRT  RES  SHR  %CPU %MEM TIME+ COMMAND
6294 root  20  0 3448 1368 912 R   0.0 0:00.07 top
17546 root  20  0 2044m 244m 79m S   6.3 187:02.07 fed main event
30276 root  20  0 171m 42m 33m S   1.1 125:15.54 repm
16 root    20  0    0    0    0 S 0.00 22:07:92 rcuc/2
21 root    20  0    0    0    0 R 0.00 22:13:24 rcuc/3
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show platform software process slot switch</td>
<td>Displays platform software process switch information.</td>
</tr>
</tbody>
</table>
show processes memory platform

To display memory usage for each Cisco IOS XE process, use the `show processes memory platform` command in privileged EXEC mode.

```
show processes memory platform [ [ detailed { name process-name | process-id process-ID } ] [ location | maps [ location ] | smaps [ location ] ] [ location | sorted [ location ] ] switch { switch-number | active | standby } { 0 | F0 | R0 } [ accounting ]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accounting</td>
<td>(Optional) Displays the top memory allocators for each Cisco IOS XE process.</td>
</tr>
<tr>
<td>detailed</td>
<td>(Optional) Displays detailed memory information for a specified Cisco IOS XE process.</td>
</tr>
<tr>
<td>name process-name</td>
<td>(Optional) Displays the Cisco IOS XE process name. Enter the process name.</td>
</tr>
<tr>
<td>process-id process-ID</td>
<td>(Optional) Displays the Cisco IOS XE process ID. Enter the process ID.</td>
</tr>
<tr>
<td>location</td>
<td>(Optional) Displays information about the Field Replaceable Unit (FRU) location.</td>
</tr>
<tr>
<td>maps</td>
<td>(Optional) Displays memory maps of a process.</td>
</tr>
<tr>
<td>smaps</td>
<td>(Optional) Displays static memory maps of a process.</td>
</tr>
<tr>
<td>sorted</td>
<td>(Optional) Displays the sorted output based on the Resident Set Size (RSS) memory used by Cisco IOS XE process.</td>
</tr>
<tr>
<td>switch switch-number</td>
<td>Displays information about the device.</td>
</tr>
<tr>
<td>active</td>
<td>Displays information about the active instance of the device.</td>
</tr>
<tr>
<td>standby</td>
<td>Displays information about the standby instance of the device.</td>
</tr>
<tr>
<td>0</td>
<td>Displays information about Shared Port Adapter (SPA)-Inter-Processor slot 0.</td>
</tr>
<tr>
<td>F0</td>
<td>Displays information about Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td>R0</td>
<td>Displays information about Route Processor (RP) slot 0.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was modified. The keyword accounting was added. The Total column was deleted from the output.</td>
</tr>
</tbody>
</table>

Examples

The following is a sample output from the `show processes memory platform` command:

```
device# show processes memory platform

System memory: 3976852K total, 2761580K used, 1215272K free,
Lowest: 1215272K

<table>
<thead>
<tr>
<th>Pid</th>
<th>Text</th>
<th>Data</th>
<th>Stack</th>
<th>Dynamic</th>
<th>RSS</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1246</td>
<td>4400</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>systemd</td>
</tr>
<tr>
<td>96</td>
<td>233</td>
<td>2796</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>systemd-journal</td>
</tr>
<tr>
<td>105</td>
<td>284</td>
<td>1796</td>
<td>132</td>
<td>176</td>
<td>176</td>
<td>systemd-udevd</td>
</tr>
<tr>
<td>707</td>
<td>52</td>
<td>2660</td>
<td>132</td>
<td>172</td>
<td>172</td>
<td>in.telnetd</td>
</tr>
<tr>
<td>744</td>
<td>968</td>
<td>3264</td>
<td>132</td>
<td>1700</td>
<td>1700</td>
<td>brelay.sh</td>
</tr>
<tr>
<td>835</td>
<td>52</td>
<td>2660</td>
<td>132</td>
<td>172</td>
<td>172</td>
<td>in.telnetd</td>
</tr>
<tr>
<td>863</td>
<td>968</td>
<td>3264</td>
<td>132</td>
<td>1700</td>
<td>1700</td>
<td>brelay.sh</td>
</tr>
<tr>
<td>928</td>
<td>968</td>
<td>3976</td>
<td>132</td>
<td>2312</td>
<td>2312</td>
<td>reflector.sh</td>
</tr>
<tr>
<td>933</td>
<td>968</td>
<td>3976</td>
<td>132</td>
<td>2312</td>
<td>2312</td>
<td>droputil.sh</td>
</tr>
<tr>
<td>934</td>
<td>968</td>
<td>2140</td>
<td>132</td>
<td>528</td>
<td>528</td>
<td>oom.sh</td>
</tr>
<tr>
<td>936</td>
<td>173</td>
<td>936</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>xinetd</td>
</tr>
<tr>
<td>945</td>
<td>968</td>
<td>1472</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>libvirtd.sh</td>
</tr>
<tr>
<td>947</td>
<td>592</td>
<td>43164</td>
<td>132</td>
<td>3096</td>
<td>3096</td>
<td>repm</td>
</tr>
<tr>
<td>954</td>
<td>45</td>
<td>932</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>rpcbind</td>
</tr>
<tr>
<td>986</td>
<td>482</td>
<td>3476</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>libvirtd</td>
</tr>
<tr>
<td>988</td>
<td>66</td>
<td>940</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>rpc.statd</td>
</tr>
<tr>
<td>993</td>
<td>968</td>
<td>928</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>booothelper_evt.</td>
</tr>
<tr>
<td>1017</td>
<td>21</td>
<td>640</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>inotifywait</td>
</tr>
<tr>
<td>1089</td>
<td>102</td>
<td>1200</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>rpc.mountd</td>
</tr>
<tr>
<td>1328</td>
<td>9</td>
<td>2940</td>
<td>132</td>
<td>148</td>
<td>148</td>
<td>rotee</td>
</tr>
<tr>
<td>1353</td>
<td>39</td>
<td>532</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>sleep</td>
</tr>
</tbody>
</table>
```

The following is a sample output from the `show processes memory platform accounting` command:

```
device# show processes memory platform accounting

Hourly Stats

<table>
<thead>
<tr>
<th>process</th>
<th>callsite_ID(bytes)</th>
<th>max_diff_bytes</th>
<th>callsite_ID(calls)</th>
<th>max_diff_calls</th>
<th>tracekey</th>
<th>timestamp(UTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>smand_rp_0</td>
<td>3624155137</td>
<td>172389</td>
<td>3624155138</td>
<td>50</td>
<td>1#3e04361082c702e5bf1afbd90e6313</td>
<td>2018-09-04 14:23</td>
</tr>
<tr>
<td>linux_iosd-img_rp_0</td>
<td>3626295305</td>
<td>49188</td>
<td>3624155138</td>
<td>12</td>
<td>1#545420bd869d25eb5ab826182ee5d9ce</td>
<td>2018-09-04 12:03</td>
</tr>
<tr>
<td>btman_rp_0</td>
<td>3624737792</td>
<td>17080</td>
<td>2953915394</td>
<td>64</td>
<td>1#d6888bd9564a3e4f049c31ba07a036</td>
<td>2018-09-04 22:29</td>
</tr>
</tbody>
</table>
```

Interface and Hardware Commands
The following is a sample output from the `show processes memory platform sorted` command:

```plaintext
device# show processes memory platform sorted
System memory: 3976852K total, 2762884K used, 1213968K free,
Lowest: 1213968K

<table>
<thead>
<tr>
<th>Pid</th>
<th>Text</th>
<th>Data</th>
<th>Stack</th>
<th>Dynamic</th>
<th>RSS</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7885</td>
<td>149848</td>
<td>684864</td>
<td>136</td>
<td>80</td>
<td>684864</td>
<td>linux_iosd-imag</td>
</tr>
<tr>
<td>9655</td>
<td>3787</td>
<td>264964</td>
<td>136</td>
<td>18004</td>
<td>264964</td>
<td>wcm</td>
</tr>
</tbody>
</table>
```

The following is sample output from the `show processes memory platform sorted location switch active R0` command:

```
device# show processes memory platform sorted location switch active R0
System memory: 3976852K total, 2762884K used, 1213968K free,
Lowest: 1213968K

<table>
<thead>
<tr>
<th>Pid</th>
<th>Text</th>
<th>Data</th>
<th>Stack</th>
<th>Dynamic</th>
<th>RSS</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7885</td>
<td>149848</td>
<td>684864</td>
<td>136</td>
<td>80</td>
<td>684864</td>
<td>linux_iosd-imag</td>
</tr>
<tr>
<td>9655</td>
<td>3787</td>
<td>264964</td>
<td>136</td>
<td>18004</td>
<td>264964</td>
<td>wcm</td>
</tr>
<tr>
<td>17261</td>
<td>324</td>
<td>248588</td>
<td>132</td>
<td>103908</td>
<td>248588</td>
<td>fed main event</td>
</tr>
<tr>
<td>4268</td>
<td>391</td>
<td>102084</td>
<td>136</td>
<td>5596</td>
<td>102084</td>
<td>cli_agent</td>
</tr>
<tr>
<td>4856</td>
<td>357</td>
<td>93388</td>
<td>132</td>
<td>3680</td>
<td>93388</td>
<td>dbm</td>
</tr>
<tr>
<td>17067</td>
<td>1087</td>
<td>77912</td>
<td>136</td>
<td>1796</td>
<td>77912</td>
<td>platform_mgr</td>
</tr>
</tbody>
</table>
```

Interface and Hardware Commands
show processes platform

To display information about the IOS-XE processes running on a platform, use the `show processes platform` command in privileged EXEC mode.

```
show processes platform [detailed name process-name] [location switch {switch-number | active | standby} {0 | F0 | FP active | R0}]
```

- **detailed**: (Optional) Displays detailed information of the specified IOS-XE process.
- **name process-name**: (Optional) Specifies the process name.
- **location**: (Optional) Specifies the Field Replaceable Unit (FRU) location.
- **switch switch-number**: (Optional) Displays information about the switch.
- **active**: (Optional) Specifies the active instance of the device.
- **standby**: (Optional) Specifies standby instance of the device.
- **0**: Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.
- **F0**: Specifies the Embedded Service Processor (ESP) slot 0.
- **FP active**: Specifies the active instance in the Embedded Service Processor (ESP).
- **R0**: Specifies the Route Processor (RP) slot 0.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC(#)

Examples:

The following is sample output from the `show processes platform` command:

```
Device# show processes platform

CPU utilization for five seconds: 1%, one minute: 2%, five minutes: 1%

<table>
<thead>
<tr>
<th>Pid</th>
<th>PPid</th>
<th>Status</th>
<th>Size</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>S</td>
<td>4876</td>
<td>systemd</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>kthread</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>ksoftirqd/0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>kworker/0:0H</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>rcu_sched</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>rcu_bh</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>migration/0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>watchdog/0</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>watchdog/1</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>migration/1</td>
</tr>
</tbody>
</table>
```
The table below describes the significant fields shown in the displays.

Table 13: show processes platform Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pid</td>
<td>Displays the process ID.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>PPid</td>
<td>Displays the process ID of the parent process.</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the process status in human readable form.</td>
</tr>
<tr>
<td>Size</td>
<td>Displays the Resident Set Size (in kilobytes (KB)) that shows how much memory is allocated to that process in the RAM.</td>
</tr>
<tr>
<td>Name</td>
<td>Displays the command name associated with the process. Different threads in the same process may have different command values.</td>
</tr>
</tbody>
</table>
show shell

To display shell information, use the `show shell` command in user EXEC mode.

```
show shell [{environment | functions [brief shell_function]} | triggers]
```

Syntax Description

- **environment**
 (Optional) Displays shell environment information.

- **functions [brief shell_function]**
 (Optional) Displays macro information.
 - **brief**—Names of the shell functions.
 - **shell_function**—Name of a shell function.

- **triggers**
 (Optional) Displays event trigger information.

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to display the shell information for the switch.

Example

This example shows how to use the `show shell triggers` command to view the event triggers in the switch software:

```
Device# term shell
Device# show shell triggers
User defined triggers
---------------------
Built-in triggers
------------------
Trigger Id: CISCO_CUSTOM_EVENT
Trigger description: Custom macroevent to apply user defined configuration
Trigger environment: User can define the macro
Trigger mapping function: CISCO_CUSTOM_AUTOSMARTPORT

Trigger Id: CISCO_DMP_EVENT
Trigger description: Digital media-player device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS_VLAN=(1)
  The value in parenthesis is a default value
Trigger mapping function: CISCO_DMP_AUTO_SMARTPORT

Trigger Id: CISCO_IPVSC_EVENT
Trigger description: IP-camera device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS_VLAN=(1)
  The value in parenthesis is a default value
Trigger mapping function: CISCO_IP_CAMERA_AUTO_SMARTPORT
```
Trigger Id: CISCO_LAST_RESORT_EVENT
Trigger description: Last resort event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS_VLAN=(1)
The value in the parenthesis is a default value
Trigger mapping function: CISCO_LAST_RESORT_SMARTPORT

Trigger Id: CISCO_PHONE_EVENT
Trigger description: IP-phone device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS_VLAN=(1) and $VOICE_VLAN=(2), The value in the parenthesis is a default value
Trigger mapping function: CISCO_PHONE_AUTO_SMARTPORT

Trigger Id: CISCO_ROUTER_EVENT
Trigger description: Router device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $NATIVE_VLAN=(1)
The value in the parenthesis is a default value
Trigger mapping function: CISCO_ROUTER_AUTO_SMARTPORT

Trigger Id: CISCO_SWITCH_Etherchannel_Config
Trigger description: Etherchannel parameter
Trigger environment: $INTERFACE_LIST=(), $PORT-CHANNEL_ID=(), $EC_MODE=(), $EC_PROTOCOLTYPE=(), $PORT-CHANNEL_TYPE=()
Trigger mapping function: CISCO_ETHERCHANNEL_AUTOSMARTPORT

Trigger Id: CISCO_SWITCH_EVENT
Trigger description: Switch device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $NATIVE_VLAN=(1)
The value in the parenthesis is a default value
Trigger mapping function: CISCO_SWITCH_AUTO_SMARTPORT

Trigger Id: CISCO_WIRELESS_AP_EVENT
Trigger description: Autonomous AP device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS_VLAN=(1)
The value in the parenthesis is a default value
Trigger mapping function: CISCO_AP_AUTO_SMARTPORT

Trigger Id: CISCO_WIRELESS_LIGHTWEIGHT_AP_EVENT
Trigger description: Lightweight-AP device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - $ACCESS_VLAN=(1)
The value in the parenthesis is a default value
Trigger mapping function: CISCO_LWAP_AUTO_SMARTPORT

This example shows how to use the show shell functions command to view the built-in macros in the switch software:

Device# show shell functions
#User defined functions:

#Built-in functions:
function CISCO_AP_AUTO_SMARTPORT () {
 if [[$LINKUP == YES]]; then
 conf t
 interface $INTERFACE
 macro description $TRIGGER
 switchport trunk encapsulation dot1q
 switchport trunk native vlan $NATIVE_VLAN
 switchport trunk allowed vlan ALL
 fi
}
switchport mode trunk
switchport nonegotiate
auto qos voip trust
mls qos trust cos
if [[$LIMIT == 0]]; then
default srr-queue bandwidth limit
else
srr-queue bandwidth limit $LIMIT
fi
if [[$SW_POE == YES]]; then
 if [[$AP125X == AP125X]]; then
 macro description AP125X
 macro auto port sticky
 power inline port maximum 20000
 fi
fi
exit
end
fi
if [[$LINKUP == NO]]; then
 conf t
 interface $INTERFACE
 no macro description
 no switchport nonegotiate
 no switchport trunk native vlan $NATIVE_VLAN
 no switchport trunk allowed vlan ALL
 no auto qos voip trust
 no mls qos trust cos
 default srr-queue bandwidth limit
 if [[$AUTH_ENABLED == NO]]; then
 no switchport mode
 no switchport trunk encapsulation
 fi
 if [[$STICKY == YES]]; then
 if [[$SW_POE == YES]]; then
 if [[$AP125X == AP125X]]; then
 no macro auto port sticky
 no power inline port maximum
 fi
 fi
 fi
exit
fi
end
</output truncated>
show system mtu

To display the global maximum transmission unit (MTU) or maximum packet size set for the switch, use the `show system mtu` command in privileged EXEC mode.

`show system mtu`

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For information about the MTU values and the stack configurations that affect the MTU values, see the `system mtu` command.

Examples

This is an example of output from the `show system mtu` command:

```
Device# show system mtu
Global Ethernet MTU is 1500 bytes.
```
show tech-support

To automatically run show commands that display system information, use the show tech-support command in the privilege EXEC mode.

Syntax Description

- **cef** (Optional) Displays CEF related information.
- **cft** (Optional) Displays CFT related information.
- **eigrp** (Optional) Displays EIGRP related information.
- **evc** (Optional) Displays EVC related information.
- **fnf** (Optional) Displays flexible netflow related information.
- **ipc** (Optional) Displays IPC related information.
- **ipmulticast** (Optional) Displays IP multicast related information.
- **ipsec** (Optional) Displays IPSEC related information.
- **isis** (Optional) Displays CLNS and ISIS related information.
- **license** (Optional) Displays license related information.
- **lisp** (Optional) Displays Locator/ID Separation Protocol related information.
- **memory** (Optional) Displays Memory related information.
- **mfib** (Optional) Displays MFIB related information.
- **msrp** (Optional) Displays MSRP related information.
- **mvrp** (Optional) Displays MVRP related information.
- **nat** (Optional) Displays NAT related information.
- **onep** (Optional) Displays ONEP related information.
- **ospf** (Optional) Displays OSPF related information.
- **page** (Optional) Displays the command output on a single page at a time. Use the Return key to display the next line of output or use the space bar to display the next page of information. If not used, the output scrolls (that is, it does not stop for page breaks). Press the **Ctrl-C** keys to stop the command output.
- **password** (Optional) Leaves passwords and other security information in the output. If not used, passwords and other security-sensitive information in the output are replaced with the label "<removed>".

Interface and Hardware Commands

- show tech-support
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Optional</th>
<th>Information/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>performance-monitor</td>
<td>(Optional) Displays Performance Monitor related information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pki</td>
<td>(Optional) Displays PKI related information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>platform</td>
<td>(Optional) Displays Platform related information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qos</td>
<td>(Optional) Displays QoS related information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subscriber</td>
<td>(Optional) Displays subscriber related information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>switch-report</td>
<td>(Optional) Archives switch report.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vrrp</td>
<td>(Optional) Displays VRRP related information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wccp</td>
<td>(Optional) Displays WCCP related information.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was implemented.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output from the `show tech-support` command is very long. To better manage this output, you can redirect the output to a file (for example, `show tech-support > filename`) in the local writable storage file system or the remote file system. Redirecting the output to a file also makes sending the output to your Cisco Technical Assistance Center (TAC) representative easier.

You can use one of the following redirection methods:

- `>` *filename* - Redirects the output to a file.
- `>> *filename*` - Redirects the output to a file in append mode.
show tech-support bgp

To automatically run show commands that display BGP related system information, use the `show tech-support bgp` command in the privileged EXEC mode.

```plaintext
show tech-support bgp [address-family {all | ipv4 [flowspec | multicast | unicast | mdt | mvpn {all | vrf vrf-instance-name}] | ipv6 [flowspec | multicast | mvpn {all | vrf vrf-instance-name}] | unicast] | l2vpn {evpn | vpls} | link-state [link-state] | [nsap | rtfilter] [unicast] | [vpnv4 | vvpn6] [flowspec | multicast | unicast] {all | vrf vrf-instance-name}] [detail]
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-family</td>
<td>(Optional) Displays the output for a specified address family.</td>
</tr>
<tr>
<td>address-family all</td>
<td>(Optional) Displays the output for all address families.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Displays the output for IPv4 address family.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Displays the output for IPv6 address family.</td>
</tr>
<tr>
<td>l2vpn</td>
<td>(Optional) Displays the output for L2VPN address family.</td>
</tr>
<tr>
<td>link-state</td>
<td>(Optional) Displays the output for Link State address family.</td>
</tr>
<tr>
<td>nsap</td>
<td>(Optional) Displays the output for NSAP address family.</td>
</tr>
<tr>
<td>rtfilter</td>
<td>(Optional) Displays the output for RT Filter address family.</td>
</tr>
<tr>
<td>vvpn4</td>
<td>(Optional) Displays the output for VVPNv4 address family.</td>
</tr>
<tr>
<td>vvpn6</td>
<td>(Optional) Displays the output for VVPNv6 address family.</td>
</tr>
<tr>
<td>flowspec</td>
<td>(Optional) Displays the flowspec related information for an address family.</td>
</tr>
<tr>
<td>multicast</td>
<td>(Optional) Displays the multicast related information for an address family.</td>
</tr>
<tr>
<td>unicast</td>
<td>(Optional) Displays the unicast related information for an address family.</td>
</tr>
<tr>
<td>mdt</td>
<td>(Optional) Displays the Multicast Distribution Tree (MDT) related information for an address family.</td>
</tr>
<tr>
<td>Command</td>
<td>Description/Detail</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>mvpn</td>
<td>(Optional) Displays the Multicast VPN (MVPN) related information for an address family.</td>
</tr>
<tr>
<td>vrf</td>
<td>Displays the information for a VPN Routing/Forwarding instance.</td>
</tr>
<tr>
<td>evpn</td>
<td>(Optional) Displays the Ethernet VPN (EVPN) related information for an address family.</td>
</tr>
<tr>
<td>vpls</td>
<td>(Optional) Displays the Virtual Private LAN Services (VPLS) related information for an address family.</td>
</tr>
<tr>
<td>vrf-instance-name</td>
<td>Specifies the name of the VPN Routing/Forwarding instance.</td>
</tr>
<tr>
<td>all</td>
<td>Displays the information about all VPN NLRIs.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays the detailed routes information.</td>
</tr>
</tbody>
</table>

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

- **Release**
- **Modification**

This command was introduced.

Usage Guidelines

The `show tech-support bgp` command is used to display the outputs of various BGP show commands and log them to the show-tech file. The output from the `show tech-support bgp` command is very long. To better manage this output, you can redirect the output to a file (for example, `show tech-support > filename`) in the local writable storage file system or the remote file system. Redirecting the output to a file also makes sending the output to your Cisco Technical Assistance Center (TAC) representative easier.

You can use one of the following redirection methods:

- > filename - Redirects the output to a file.
- >> filename - Redirects the output to a file in append mode.

The following `show` commands run automatically when the `show tech-support bgp` command is used:

- `show clock`
- `show version`
- `show running-config`
- `show process cpu sorted`
- `show process cpu history`
- `show process memory sorted`

The following `show` commands for a specific address family run automatically when the `show tech-support bgp address-family address-family-name address-family-modifier` command is used:
• show bgp address-family-name address-family-modifier summary
• show bgp address-family-name address-family-modifier detail
• show bgp address-family-name address-family-modifier internal
• show bgp address-family-name address-family-modifier neighbors
• show bgp address-family-name address-family-modifier update-group
• show bgp address-family-name address-family-modifier replication
• show bgp address-family-name address-family-modifier community
• show bgp address-family-name address-family-modifier dampening dampened-paths
• show bgp address-family-name address-family-modifier dampening flap-statistics
• show bgp address-family-name address-family-modifier dampening parameters
• show bgp address-family-name address-family-modifier injected-paths
• show bgp address-family-name address-family-modifier cluster-ids
• show bgp address-family-name address-family-modifier cluster-ids internal
• show bgp address-family-name address-family-modifier peer-group
• show bgp address-family-name address-family-modifier pending-prefixes
• show bgp address-family-name address-family-modifier rib-failure

In addition to the above commands, the following segment routing specific show commands also run when the show tech-support bgp command is used:

• show bgp all binding-sid
• show segment-routing client
• show segment-routing mpls state
• show segment-routing mpls gb
• show segment-routing mpls connected-prefix-sid-map protocol ipv4
• show segment-routing mpls connected-prefix-sid-map protocol backup ipv4
• show mpls traffic-eng tunnel auto-tunnel client bgp
show tech-support diagnostic

To display diagnostic information for technical support, use the `show tech-support diagnostic` command in privileged EXEC mode.

```
show tech-support diagnostic
```

Syntax Description

This command has no arguments or keywords.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output of this command is very long. To better manage this output, you can redirect the output to a file (for example, `show tech-support diagnostic > flash:filename`) in the local writable storage file system or remote file system.

Note

For devices that support stacking, this command is executed on every switch that is up. For devices that do not support stacking, this command is executed only on the active switch.

The output of this command displays the output of the following commands:

- `show clock`
- `show version`
- `show running-config`
- `show inventory`
- `show diagnostic bootup level`
- `show diagnostic status`
- `show diagnostic content switch all`
- `show diagnostic result switch all detail`
- `show diagnostic schedule switch all`
- `show diagnostic post`
- `show diagnostic description switch [switch number] test all`
- `show logging onboard switch [switch number] cli log detail`
- `show logging onboard switch [switch number] counter detail`
- `show logging onboard switch [switch number] environment detail`
- `show logging onboard switch [switch number] message detail`
• show logging onboard switch [switch number] poe detail
• show logging onboard switch [switch number] status
• show logging onboard switch [switch number] temperature detail
• show logging onboard switch [switch number] uptime detail
• show logging onboard switch [switch number] voltage detail
speed

To specify the speed of a port, use the `speed` command in interface configuration mode. To return to the default value, use the `no` form of this command.

| Note | Available configuration options depend on the switch model and transceiver module installed. Options include 10, 100, 1000, 2500, 5000, 10000, 25000, 40000, 100000 |

```
speed {10 | 100 | 1000 | 2500 | 5000 | auto [ {10 | 100 | 1000 | 2500 | 5000} ] | nonegotiate}
no speed
```

Syntax Description

- **10**: Specifies that the port runs at 10 Mbps.
- **100**: Specifies that the port runs at 100 Mbps.
- **1000**: Specifies that the port runs at 1000 Mbps. This option is valid and visible only on 10/100/1000 Mb/s ports.
- **2500**: Specifies that the port runs at 2500 Mbps. This option is valid and visible only on multi-Gigabit-supported Ethernet ports.
- **5000**: Specifies that the port runs at 5000 Mbps. This option is valid and visible only on multi-Gigabit-supported Ethernet ports.
- **auto**: Detects the speed at which the port should run, automatically, based on the port at the other end of the link. If you use the `10`, `100`, `1000`, `2500`, or `5000` keyword with the `auto` keyword, the port autonegotiates only at the specified speeds.
- **nonegotiate**: Disables autonegotiation, and the port runs at 1000 Mbps.

Command Default

The default is `auto`.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You cannot configure speed on 10-Gigabit Ethernet ports.

Except for the 1000BASE-T small form-factor pluggable (SFP) modules, you can configure the speed to not negotiate (`nonegotiate`) when an SFP module port is connected to a device that does not support autonegotiation.

The new keywords, `2500` and `5000` are visible only on multi-Gigabit (m-Gig) Ethernet supporting devices.

If the speed is set to `auto`, the switch negotiates with the device at the other end of the link for the speed setting, and then forces the speed setting to the negotiated value. The duplex setting remains configured on each end of the link, which might result in a duplex setting mismatch.
If both ends of the line support autonegotiation, we highly recommend the default autonegotiation settings. If one interface supports autonegotiation and the other end does not, use the auto setting on the supported side, but set the duplex and speed on the other side.

⚠️ **Caution**

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.

For guidelines on setting the switch speed and duplex parameters, see the “Configuring Interface Characteristics” chapter in the software configuration guide for this release.

Verify your settings using the `show interfaces` privileged EXEC command.

Examples

The following example shows how to set speed on a port to 100 Mbps:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed 100
```

The following example shows how to set a port to autonegotiate at only 10 Mbps:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed auto 10
```

The following example shows how to set a port to autonegotiate at only 10 or 100 Mbps:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed auto 10 100
```
start (coap-proxy configuration)

To start CoAP on the switch, use the start command in coap-proxy configuration mode.

start

Command Modes

coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to start CoAP on the switch.

```
Device(config)# coap proxy
Device(config-coap-proxy)# start
```
stop (coap-proxy configuration)

To stop CoAP on the switch, use the `stop` command in coap-proxy configuration mode.

```
stop
```

Command Modes

coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to stop CoAP on the switch.

```
Device(config)# coap proxy
Device(config-coap-proxy)# stop
```
switchport block

To prevent unknown multicast or unicast packets from being forwarded, use the switchport block command in interface configuration mode. To allow forwarding unknown multicast or unicast packets, use the no form of this command.

```
switchport block {multicast | unicast}
no switchport block {multicast | unicast}
```

Syntax Description

- `multicast` Specifies that unknown multicast traffic should be blocked.

 Note Only pure Layer 2 multicast traffic is blocked. Multicast packets that contain IPv4 or IPv6 information in the header are not blocked.

- `unicast` Specifies that unknown unicast traffic should be blocked.

Command Default

Unknown multicast and unicast traffic is not blocked.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, all traffic with unknown MAC addresses is sent to all ports. You can block unknown multicast or unicast traffic on protected or nonprotected ports. If unknown multicast or unicast traffic is not blocked on a protected port, there could be security issues.

With multicast traffic, the port blocking feature blocks only pure Layer 2 packets. Multicast packets that contain IPv4 or IPv6 information in the header are not blocked.

Blocking unknown multicast or unicast traffic is not automatically enabled on protected ports; you must explicitly configure it.

For more information about blocking packets, see the software configuration guide for this release.

This example shows how to block unknown unicast traffic on an interface:

```
Device(config-if)# switchport block unicast
```

You can verify your setting by entering the `show interfaces interface-id switchport` privileged EXEC command.
To set the global maximum packet size or MTU size for switched packets on Gigabit Ethernet and 10-Gigabit Ethernet ports, use the `system mtu` command in global configuration mode. To restore the global MTU value to its default value, use the `no` form of this command.

```
 system mtu  bytes
 no system mtu
```

Syntax Description

`bytes` The global MTU size in bytes. The range is 1500 to 9198 bytes; the default is 1500 bytes.

Command Default

The default MTU size for all ports is 1500 bytes.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can verify your setting by entering the `show system mtu` privileged EXEC command.

The switch does not support the MTU on a per-interface basis.

If you enter a value that is outside the allowed range for the specific type of interface, the value is not accepted.

Examples

This example shows how to set the global system MTU size to 6000 bytes:

```
Device(config)# system mtu 6000
Global Ethernet MTU is set to 6000 bytes.
Note: this is the Ethernet payload size, not the total Ethernet frame size, which includes the Ethernet header/trailer and possibly other tags, such as ISL or 802.1q tags.
```
transport (coap-proxy configuration)

To configure transport protocol, use the transport command in coap-proxy configuration mode.

```
transport {tcp | udp}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp</td>
<td>Specifies a TCP protocol.</td>
</tr>
<tr>
<td>udp</td>
<td>Specifies a UDP protocol.</td>
</tr>
</tbody>
</table>

Command Modes

coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the coap proxy command in global configuration mode.

Example

This is an example to configure tcp as transport protocol

```
Device(config)# coap proxy
Device(config-coap-proxy)# transport tcp
```
voice-signaling vlan (network-policy configuration)

To create a network-policy profile for the voice-signaling application type, use the `voice-signaling vlan` command in network-policy configuration mode. To delete the policy, use the `no` form of this command.

```
voice-signaling vlan  {vlan-id  [{cos  cos-value | dscp  dscp-value}] | dot1p  [{cos  l2-priority | dscp  dscp}] | none | untagged}
```

Syntax Description

- **vlan-id** (Optional) The VLAN for voice traffic. The range is 1 to 4094.
- **cos cos-value** (Optional) Specifies the Layer 2 priority class of service (CoS) for the configured VLAN. The range is 0 to 7; the default is 5.
- **dscp dscp-value** (Optional) Specifies the differentiated services code point (DSCP) value for the configured VLAN. The range is 0 to 63; the default is 46.
- **dot1p** (Optional) Configures the phone to use IEEE 802.1p priority tagging and to use VLAN 0 (the native VLAN).
- **none** (Optional) Does not instruct the Cisco IP phone about the voice VLAN. The phone uses the configuration from the phone key pad.
- **untagged** (Optional) Configures the phone to send untagged voice traffic. This is the default for the phone.

Command Default

- No network-policy profiles for the voice-signaling application type are defined.
- The default CoS value is 5.
- The default DSCP value is 46.
- The default tagging mode is untagged.

Command Modes

Network-policy profile configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `network-policy profile` global configuration command to create a profile and to enter network-policy profile configuration mode.

The voice-signaling application type is for network topologies that require a different policy for voice signaling than for voice media. This application type should not be advertised if all of the same network policies apply as those advertised in the voice policy TLV.

When you are in network-policy profile configuration mode, you can create the profile for voice-signaling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode.

These profile attributes are contained in the Link Layer Discovery Protocol for Media Endpoint Devices (LLDP-MED) network-policy time-length-value (TLV).
To return to privileged EXEC mode from the network-policy profile configuration mode, enter the `exit` command.

This example shows how to configure voice-signaling for VLAN 200 with a priority 2 CoS:

```
(config)# network-policy profile 1
(config-network-policy)# voice-signaling vlan 200 cos 2
```

This example shows how to configure voice-signaling for VLAN 400 with a DSCP value of 45:

```
(config)# network-policy profile 1
(config-network-policy)# voice-signaling vlan 400 dscp 45
```

This example shows how to configure voice-signaling for the native VLAN with priority tagging:

```
(config-network-policy)# voice-signaling vlan dot1p cos 4
```
voice vlan (network-policy configuration)

To create a network-policy profile for the voice application type, use the **voice vlan** command in network-policy configuration mode. To delete the policy, use the **no** form of this command.

```
voice vlan {vlan-id [{cos cos-value | dscp dscp-value}] | dot1p [{cos l2-priority | dscp dscp} | none | untagged}
```

Syntax Description

- **vlan-id** (Optional) The VLAN for voice traffic. The range is 1 to 4094.
- **cos cos-value** (Optional) Specifies the Layer 2 priority class of service (CoS) for the configured VLAN. The range is 0 to 7; the default is 5.
- **dscp dscp-value** (Optional) Specifies the differentiated services code point (DSCP) value for the configured VLAN. The range is 0 to 63; the default is 46.
- **dot1p** (Optional) Configures the phone to use IEEE 802.1p priority tagging and to use VLAN 0 (the native VLAN).
- **none** (Optional) Does not instruct the Cisco IP phone about the voice VLAN. The phone uses the configuration from the phone key pad.
- **untagged** (Optional) Configures the phone to send untagged voice traffic. This is the default for the phone.

Command Default

No network-policy profiles for the voice application type are defined.

The default CoS value is 5.

The default DSCP value is 46.

The default tagging mode is untagged.

Command Modes

Network-policy profile configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **network-policy profile** global configuration command to create a profile and to enter network-policy profile configuration mode.

The voice application type is for dedicated IP telephones and similar devices that support interactive voice services. These devices are typically deployed on a separate VLAN for ease of deployment and enhanced security through isolation from data applications.

When you are in network-policy profile configuration mode, you can create the profile for voice by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode.

These profile attributes are contained in the Link Layer Discovery Protocol for Media Endpoint Devices (LLDP-MED) network-policy time-length-value (TLV).
To return to privileged EXEC mode from the network-policy profile configuration mode, enter the `exit` command.

This example shows how to configure the voice application type for VLAN 100 with a priority 4 CoS:

```
(config)# network-policy profile 1
(config-network-policy)# voice vlan 100 cos 4
```

This example shows how to configure the voice application type for VLAN 100 with a DSCP value of 34:

```
(config)# network-policy profile 1
(config-network-policy)# voice vlan 100 dscp 34
```

This example shows how to configure the voice application type for the native VLAN with priority tagging:

```
(config-network-policy)# voice vlan dot1p cos 4
```
voice vlan (network-policy configuration)