CONTENTS

CHAPTER 1

Using the Command-Line Interface 1

- Using the Command-Line Interface 2
- Understanding Command Modes 2
- Understanding the Help System 3
- Understanding Abbreviated Commands 4
- Understanding no and default Forms of Commands 4
- Understanding CLI Error Messages 4
- Using Configuration Logging 5
- Using Command History 5
 - Changing the Command History Buffer Size 5
 - Recalling Commands 6
 - Disabling the Command History Feature 6
- Using Editing Features 6
 - Enabling and Disabling Editing Features 7
 - Editing Commands through Keystrokes 7
 - Editing Command Lines that Wrap 9
- Searching and Filtering Output of show and more Commands 10
- Accessing the CLI 10
 - Accessing the CLI through a Console Connection or through Telnet 11

PART I

Cisco TrustSec 13

CHAPTER 2

Cisco TrustSec Commands 15

- cts authorization list 16
- cts change-password 17
- cts credentials 18

PART II

Interface and Hardware Components 63

CHAPTER 3

Interface and Hardware Commands 65

bluetooth pin 68

clear coap database 69

clear macro auto configuration 70

coop endpoint (coap-proxy configuration) 71

debug coap 72
network-policy 129
network-policy profile (global configuration) 130
port-dtls (coap-proxy configuration) 131
port-unsecure (coap-proxy configuration) 132
power-priority 133
power inline 135
power inline police 138
power supply 140
resource directory (coap-proxy configuration) 142
security (coap-proxy configuration) 143
shell trigger 144
show beacon all 145
show coap dtls endpoints 146
show coap endpoints 147
show coap globals 148
show coap resources 149
show coap stats 150
show coap version 151
show device classifier attached 152
show device classifier clients 154
show device classifier profile type 155
show env 158
show errdisable detect 161
show errdisable recovery 163
show ip interface 164
show interfaces 169
show interfaces counters 174
show interfaces switchport 176
show interfaces transceiver 178
show macro auto 182
show memory platform 185
show module 188
show network-policy profile 189
show parser macro 190
show platform hardware bluetooth 193
show platform hardware fed switch forward interface 194
show platform resources 197
show platform software audit 198
show platform software fed switch punt cpuq rates 202
show platform software fed switch punt packet-capture display 204
show platform software fed switch punt rates interfaces 206
show platform software ilpower 209
show platform software memory 211
show platform software process list 217
show platform software process memory 221
show platform software process slot switch 224
show platform software status control-processor 226
show platform software thread list 229
show processes cpu platform 231
show processes cpu platform history 234
show processes cpu platform monitor 237
show processes memory platform 239
show processes platform 243
show shell 246
show system mtu 249
show tech-support 250
show tech-support bgp 252
show tech-support diagnostic 255
speed 257
start (coap-proxy configuration) 259
stop (coap-proxy configuration) 260
switchport block 261
system mtu 262
transport (coap-proxy configuration) 263
voice-signaling vlan (network-policy configuration) 264
voice vlan (network-policy configuration) 266

PART III IP Addressing Services 269
CHAPTER 4

IP Addressing Services Commands

- clear ipv6 access-list 271
- clear ipv6 dhcp 275
- clear ipv6 dhcp binding 276
- clear ipv6 dhcp client 277
- clear ipv6 dhcp conflict 278
- clear ipv6 dhcp relay binding 279
- clear ipv6 eigrp 280
- clear ipv6 mfib counters 281
- clear ipv6 mld counters 282
- clear ipv6 mld traffic 283
- clear ipv6 mtu 284
- clear ipv6 multicast aaa authorization 285
- clear ipv6 nd destination 286
- clear ipv6 nd on-link prefix 287
- clear ipv6 nd router 288
- clear ipv6 neighbors 289
- clear ipv6 ospf 290
- clear ipv6 ospf counters 291
- clear ipv6 ospf events 292
- clear ipv6 pim reset 293
- clear ipv6 pim topology 294
- clear ipv6 pim traffic 295
- clear ipv6 prefix-list 296
- clear ipv6 rip 297
- clear ipv6 route 298
- clear ipv6 spd 299
- def ip delay 300
- def ip version vrrp v3 301
- ip address dhcp 302
- ip address pool (DHCP) 303
- ip address 304
- ipv6 access-list 305
show ipv6 pim join-prune statistic 495
show ipv6 pim limit 496
show ipv6 pim neighbor 497
show ipv6 pim range-list 499
show ipv6 pim topology 501
show ipv6 pim traffic 503
show ipv6 pim tunnel 505
show ipv6 policy 507
show ipv6 prefix-list 508
show ipv6 protocols 510
show ipv6 rip 512
show ipv6 routers 517
show ipv6 rpf 520
show ipv6 source-guard policy 522
show ipv6 spd 523
show ipv6 static 524
show ipv6 traffic 528
show key chain 531
show track 532
track 534
vrrp 536
vrrp description 537
vrrp preempt 538
vrrp priority 539
vrrp timers advertise 540
vrrs leader 542

PART IV IP Multicast Routing 543

CHAPTER 5 IP Multicast Routing Commands 545

clear ip mfib counters 547
clear ip mroute 548
clear ip pim snooping vlan 549
ip igmp filter 550
ip igmp max-groups 551
ip igmp profile 553
ip igmp snoping 554
ip igmp snoping last-member-query-count 555
ip igmp snoping querier 557
ip igmp snoping report-suppression 559
ip igmp snoping vlan mrouter 560
ip igmp snoping vlan static 561
ip multicast auto-enable 562
ip multicast-routing 563
ip pim accept-register 564
ip pim bsr-candidate 565
ip pim rp-candidate 567
ip pim send-rp-announce 568
ip pim snoping 570
ip pim snoping dr-flood 571
ip pim snoping vlan 572
ip pim spt-threshold 573
match message-type 574
match service-type 575
match service-instance 576
mrinfo 577
service-policy-query 579
service-policy 580
show ip igmp filter 581
show ip igmp profile 582
show ip igmp snoping 583
show ip igmp snoping groups 585
show ip igmp snoping mrouter 586
show ip igmp snoping querier 587
show ip pim autorp 589
show ip pim bsr-router 590
show ip pim bsr 591
show ip pim snoping 592
show ip pim tunnel 595
show platform software fed switch ip multicast 597

PART V

Layer 2/3 599

CHAPTER 6

Layer 2/3 Commands 601

channel-group 603
channel-protocol 606
clear lacp 607
clear pagp 608
clear spanning-tree counters 609
clear spanning-tree detected-protocols 610
debug etherchannel 611
debug lacp 612
debug pagp 613
debug platform pm 614
debug platform udlld 615
debug spanning-tree 616
interface port-channel 618
lacp max-bundle 620
lacp port-priority 621
lacp rate 622
lacp system-priority 623
pagp learn-method 624
pagp port-priority 626
port-channel 627
port-channel auto 628
port-channel load-balance 629
port-channel load-balance extended 631
port-channel min-links 632
rep admin vlan 633
rep block port 634
rep lsl-age-timer 636
rep lsl-retries 637
rep preempt delay 638
rep preempt segment 639
rep segment 640
rep stcn 642
show etherchannel 643
show interfaces rep detail 646
show lacp 647
show pagp 651
show platform etherchannel 653
show platform pm 654
show rep topology 655
show udld 657
switchport 661
switchport access vlan 662
switchport mode 663
switchport nonegotiate 665
switchport voice vlan 666
udld 669
udld port 671
udld reset 673

PART VI

Network Management 675

CHAPTER 7

Network Management Commands 677

ip wccp 679
map platform-type 681
match platform-type 682
monitor session destination 683
monitor session filter 687
monitor session source 689
show class-map type control subscriber 691
show ip sla statistics 692
show monitor 694
show parameter-map type subscriber attribute-to-service 696
cache 747

clear flow exporter 749

clear flow monitor 750

collect 752

collect counter 753

collect interface 754

collect timestamp absolute 755

collect transport tcp flags 756

datalink flow monitor 757

debug flow exporter 758

debug flow monitor 759

debug flow record 760

debug sampler 761

description 762

destination 763

dscp 764

export-protocol netflow-v9 765

export-protocol netflow-v5 766

exporter 767

flow exporter 768

flow monitor 769

flow record 770

ip flow monitor 771

ipv6 flow monitor 773

match datalink dot1q priority 775

match datalink dot1q vlan 776

match datalink ethertype 777

match datalink mac 778

match datalink vlan 779

match flow cts 780

match flow direction 781

match interface 782

match ipv4 783

match ipv4 destination address 784
match ipv4 source address 785
match ipv4 ttl 786
match ipv6 787
match ipv6 destination address 788
match ipv6 hop-limit 789
match ipv6 source address 790
match transport 791
match transport icmp ipv4 792
match transport icmp ipv6 793
mode random 1 out-of 794
option 795
record 797
sampler 798
show flow exporter 799
show flow interface 801
show flow monitor 803
show flow record 808
show sampler 809
source 811
templatedatatimeout 813
transport 814
ttl 815

PART VII

QoS 817

CHAPTER 9

QoS Commands 819

auto qos classify 820
auto qos trust 822
auto qos video 829
auto qos voip 839
class 853
class-map 855
debug auto qos 857
match (class-map configuration) 858
policy-map 861
priority 863
queue-buffers ratio 865
queue-limit 866
random-detect cos 868
random-detect cos-based 869
random-detect dscp 870
random-detect dscp-based 872
random-detect precedence 873
random-detect precedence-based 875
service-policy (Wired) 876
set 878
show auto qos 884
show class-map 886
show platform hardware fed switch 887
show platform software fed switch qos 890
show platform software fed switch qos qsb 891
show policy-map 894
show tech-support qos 896
trust device 898

PART VIII

Routing 901

CHAPTER 10

IP Routing Commands 903
address-family ipv6 (OSPF) 905
area nssa 906
area virtual-link 908
authentication (BFD) 911
bfd 912
bfd all-interfaces 914
bfd check-ctrl-plane-failure 915
bfd echo 916
bfd slow-timers 918
bfd template 920
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x test timeout</td>
<td>1056</td>
</tr>
<tr>
<td>dot1x timeout</td>
<td>1057</td>
</tr>
<tr>
<td>dtls</td>
<td>1059</td>
</tr>
<tr>
<td>enable password</td>
<td>1061</td>
</tr>
<tr>
<td>enable secret</td>
<td>1064</td>
</tr>
<tr>
<td>epm access-control open</td>
<td>1067</td>
</tr>
<tr>
<td>ip access-list role-based</td>
<td>1068</td>
</tr>
<tr>
<td>ip admission</td>
<td>1069</td>
</tr>
<tr>
<td>ip admission name</td>
<td>1070</td>
</tr>
<tr>
<td>ip dhcp snooping database</td>
<td>1072</td>
</tr>
<tr>
<td>ip dhcp snooping information option format remote-id</td>
<td>1074</td>
</tr>
<tr>
<td>ip dhcp snooping verify no-relay-agent-address</td>
<td>1075</td>
</tr>
<tr>
<td>ip http access-class</td>
<td>1076</td>
</tr>
<tr>
<td>ip radius source-interface</td>
<td>1078</td>
</tr>
<tr>
<td>ip source binding</td>
<td>1080</td>
</tr>
<tr>
<td>ip ssh source-interface</td>
<td>1081</td>
</tr>
<tr>
<td>ip verify source</td>
<td>1082</td>
</tr>
<tr>
<td>ipv6 access-list</td>
<td>1083</td>
</tr>
<tr>
<td>ipv6 snooping policy</td>
<td>1085</td>
</tr>
<tr>
<td>key chain macsec</td>
<td>1086</td>
</tr>
<tr>
<td>key config-key password-encrypt</td>
<td>1087</td>
</tr>
<tr>
<td>limit address-count</td>
<td>1089</td>
</tr>
<tr>
<td>mab logging verbose</td>
<td>1090</td>
</tr>
<tr>
<td>mab request format attribute 32</td>
<td>1091</td>
</tr>
<tr>
<td>macsec network-link</td>
<td>1093</td>
</tr>
<tr>
<td>match (access-map configuration)</td>
<td>1094</td>
</tr>
<tr>
<td>mka pre-shared-key</td>
<td>1096</td>
</tr>
<tr>
<td>mka suppress syslogs sak-rekey</td>
<td>1097</td>
</tr>
<tr>
<td>password encryption aes</td>
<td>1098</td>
</tr>
<tr>
<td>permit (MAC access-list configuration)</td>
<td>1100</td>
</tr>
<tr>
<td>protocol (IPv6 snooping)</td>
<td>1104</td>
</tr>
<tr>
<td>radius server</td>
<td>1105</td>
</tr>
<tr>
<td>security level (IPv6 snooping)</td>
<td>1107</td>
</tr>
<tr>
<td>server-private (RADIUS)</td>
<td>1108</td>
</tr>
</tbody>
</table>
show aaa clients 1110
show aaa command handler 1111
show aaa local 1112
show aaa servers 1114
show aaa sessions 1115
show authentication brief 1116
show authentication sessions 1119
show cisp 1122
show dot1x 1124
show eap pac peer 1126
show ip dhcp snooping statistics 1127
show radius server-group 1130
show tech-support acl 1132
show tech-support identity 1136
show vlan access-map 1145
show vlan filter 1146
show vlan group 1147
switchport port-security aging 1148
switchport port-security mac-address 1150
switchport port-security maximum 1153
switchport port-security violation 1155
tacacs server 1157
tracking (IPv6 snooping) 1158
trusted-port 1160
username 1161
vlan access-map 1166
vlan filter 1168
vlan group 1169

PART X

Stack Manager and High Availability 1171

CHAPTER 12

Stack Manager and High Availability Commands 1173
debug platform stack-manager 1174
main-cpu 1175
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode sso</td>
<td>1176</td>
</tr>
<tr>
<td>policy config-sync prc reload</td>
<td>1177</td>
</tr>
<tr>
<td>redundancy</td>
<td>1178</td>
</tr>
<tr>
<td>redundancy config-sync mismatched-commands</td>
<td>1179</td>
</tr>
<tr>
<td>redundancy force-switchover</td>
<td>1181</td>
</tr>
<tr>
<td>redundancy reload</td>
<td>1182</td>
</tr>
<tr>
<td>reload</td>
<td>1183</td>
</tr>
<tr>
<td>session</td>
<td>1184</td>
</tr>
<tr>
<td>show redundancy</td>
<td>1185</td>
</tr>
<tr>
<td>show redundancy config-sync</td>
<td>1189</td>
</tr>
<tr>
<td>show switch</td>
<td>1191</td>
</tr>
<tr>
<td>show switch stack-mode</td>
<td>1194</td>
</tr>
<tr>
<td>stack-mac persistent timer</td>
<td>1195</td>
</tr>
<tr>
<td>stack-mac update force</td>
<td>1196</td>
</tr>
<tr>
<td>standby console enable</td>
<td>1197</td>
</tr>
<tr>
<td>switch clear stack-mode</td>
<td>1198</td>
</tr>
<tr>
<td>switch switch-number role</td>
<td>1199</td>
</tr>
<tr>
<td>switch stack port</td>
<td>1200</td>
</tr>
<tr>
<td>switch priority</td>
<td>1201</td>
</tr>
<tr>
<td>switch provision</td>
<td>1202</td>
</tr>
<tr>
<td>switch renumber</td>
<td>1204</td>
</tr>
<tr>
<td>switch renumber</td>
<td>1205</td>
</tr>
</tbody>
</table>

PART XI

System Management

CHAPTER 13

System Management Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp</td>
<td>1211</td>
</tr>
<tr>
<td>boot</td>
<td>1212</td>
</tr>
<tr>
<td>cat</td>
<td>1213</td>
</tr>
<tr>
<td>copy</td>
<td>1214</td>
</tr>
<tr>
<td>copy startup-config tftp:</td>
<td>1215</td>
</tr>
<tr>
<td>copy tftp: startup-config</td>
<td>1216</td>
</tr>
<tr>
<td>debug voice diagnostics mac-address</td>
<td>1217</td>
</tr>
<tr>
<td>debug platform condition feature multicast controlplane</td>
<td>1218</td>
</tr>
</tbody>
</table>
vtp (global configuration) 1410
vtp (interface configuration) 1415
vtp primary 1416
Using the Command-Line Interface

This chapter contains the following topics:

• Using the Command-Line Interface, on page 2
Using the Command-Line Interface

This chapter describes the Cisco IOS command-line interface (CLI) and how to use it to configure your switch.

Understanding Command Modes

The Cisco IOS user interface is divided into many different modes. The commands available to you depend on which mode you are currently in. Enter a question mark (?) at the system prompt to obtain a list of commands available for each command mode.

When you start a session on the switch, you begin in user mode, often called user EXEC mode. Only a limited subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time commands, such as `show` commands, which show the current configuration status, and `clear` commands, which clear counters or interfaces. The user EXEC commands are not saved when the switch reboots.

To have access to all commands, you must enter privileged EXEC mode. Normally, you must enter a password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.

Using the configuration modes (global, interface, and line), you can make changes to the running configuration. If you save the configuration, these commands are stored and used when the switch reboots. To access the various configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and line configuration mode.

This table describes the main command modes, how to access each one, the prompt you see in that mode, and how to exit the mode. The examples in the table use the hostname `Switch`.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>About This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Begin a session with your switch.</td>
<td><code>Switch></code></td>
<td>Enter <code>logout</code> or <code>quit</code>.</td>
<td>Use this mode to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Change terminal settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Perform basic tests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Display system information.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>While in user EXEC mode, enter the <code>enable</code> command.</td>
<td><code>#</code></td>
<td>Enter <code>disable</code> to exit.</td>
<td>Use this mode to verify commands that you have entered. Use a password to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>protect access to this mode.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>While in privileged EXEC mode, enter the <code>configure</code> command.</td>
<td><code>(config)#</code></td>
<td>To exit to privileged EXEC mode, enter <code>exit</code> or <code>end</code>, or press <code>Ctrl-Z</code>.</td>
<td>Use this mode to configure parameters that apply to the entire switch.</td>
</tr>
</tbody>
</table>
Understanding the Help System

You can enter a question mark (?) at the system prompt to display a list of commands available for each command mode. You can also obtain a list of associated keywords and arguments for any command.

Table 2: Help Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Obtains a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td>abbreviated-command-entry ?</td>
<td>Obtains a list of commands that begin with a particular character string.</td>
</tr>
<tr>
<td># di? dir disable disconnect</td>
<td></td>
</tr>
<tr>
<td>abbreviated-command-entry <Tab></td>
<td>Completes a partial command name.</td>
</tr>
<tr>
<td># sh conf<tab> # show configuration</td>
<td></td>
</tr>
</tbody>
</table>
Understanding Abbreviated Commands

You need to enter only enough characters for the switch to recognize the command as unique.

This example shows how to enter the `show configuration` privileged EXEC command in an abbreviated form:

```
# show conf
```

Understanding no and default Forms of Commands

Almost every configuration command also has a `no` form. In general, use the `no` form to disable a feature or function or reverse the action of a command. For example, the `no shutdown` interface configuration command reverses the shutdown of an interface. Use the command without the keyword `no` to re-enable a disabled feature or to enable a feature that is disabled by default.

Configuration commands can also have a `default` form. The `default` form of a command returns the command setting to its default. Most commands are disabled by default, so the `default` form is the same as the `no` form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the `default` command enables the command and sets variables to their default values.

Understanding CLI Error Messages

This table lists some error messages that you might encounter while using the CLI to configure your switch.
Table 3: Common CLI Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Ambiguous command: "show con"</td>
<td>You did not enter enough characters for your switch to recognize the command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Incomplete command.</td>
<td>You did not enter all the keywords or values required by this command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Invalid input detected at <code>^^</code> marker.</td>
<td>You entered the command incorrectly. The caret (^) marks the point of the error.</td>
<td>Enter a question mark (?) to display all the commands that are available in this command mode. The possible keywords that you can enter with the command appear.</td>
</tr>
</tbody>
</table>

Using Configuration Logging

You can log and view changes to the switch configuration. You can use the Configuration Change Logging and Notification feature to track changes on a per-session and per-user basis. The logger tracks each configuration command that is applied, the user who entered the command, the time that the command was entered, and the parser return code for the command. This feature includes a mechanism for asynchronous notification to registered applications whenever the configuration changes. You can choose to have the notifications sent to the syslog.

Note

Only CLI or HTTP changes are logged.

Using Command History

The software provides a history or record of commands that you have entered. The command history feature is particularly useful for recalling long or complex commands or entries, including access lists. You can customize this feature to suit your needs.

Changing the Command History Buffer Size

By default, the switch records ten command lines in its history buffer. You can alter this number for a current terminal session or for all sessions on a particular line. These procedures are optional.

Beginning in privileged EXEC mode, enter this command to change the number of command lines that the switch records during the current terminal session:
terminal history [size number-of-lines]

The range is from 0 to 256.

Beginning in line configuration mode, enter this command to configure the number of command lines the switch records for all sessions on a particular line:

(config-line)# history [size number-of-lines]

The range is from 0 to 256.

Recalling Commands

To recall commands from the history buffer, perform one of the actions listed in this table. These actions are optional.

Note

The arrow keys function only on ANSI-compatible terminals such as VT100s.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press Ctrl-P or the up arrow key.</td>
<td>Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Press Ctrl-N or the down arrow key.</td>
<td>Returns to more recent commands in the history buffer after recalling commands with Ctrl-P or the up arrow key. Repeat the key sequence to recall successively more recent commands.</td>
</tr>
<tr>
<td>show history</td>
<td>While in privileged EXEC mode, lists the last several commands that you just entered. The number of commands that appear is controlled by the setting of the <code>terminal history</code> global configuration command and the <code>history</code> line configuration command.</td>
</tr>
<tr>
<td>(config)# help</td>
<td></td>
</tr>
</tbody>
</table>

Disabling the Command History Feature

The command history feature is automatically enabled. You can disable it for the current terminal session or for the command line. These procedures are optional.

To disable the feature during the current terminal session, enter the `terminal no history` privileged EXEC command.

To disable command history for the line, enter the `no history` line configuration command.

Using Editing Features

This section describes the editing features that can help you manipulate the command line.
Enabling and Disabling Editing Features

Although enhanced editing mode is automatically enabled, you can disable it, re-enable it, or configure a specific line to have enhanced editing. These procedures are optional.

To globally disable enhanced editing mode, enter this command in line configuration mode:

```
Switch (config-line)# no editing
```

To re-enable the enhanced editing mode for the current terminal session, enter this command in privileged EXEC mode:

```
# terminal editing
```

To reconfigure a specific line to have enhanced editing mode, enter this command in line configuration mode:

```
(config-line)# editing
```

Editing Commands through Keystrokes

This table shows the keystrokes that you need to edit command lines. These keystrokes are optional.

Note

The arrow keys function only on ANSI-compatible terminals such as VT100s.

<table>
<thead>
<tr>
<th>Capability</th>
<th>Keystroke</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move around the command line to make changes or corrections.</td>
<td>Press Ctrl-B, or press the left arrow key.</td>
<td>Moves the cursor back one character.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-F, or press the right arrow key.</td>
<td>Moves the cursor forward one character.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-A.</td>
<td>Moves the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-E.</td>
<td>Moves the cursor to the end of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Esc B.</td>
<td>Moves the cursor back one word.</td>
</tr>
<tr>
<td></td>
<td>Press Esc F.</td>
<td>Moves the cursor forward one word.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-T.</td>
<td>Transposes the character to the left of the cursor with the character located at the cursor.</td>
</tr>
<tr>
<td>Capability</td>
<td>Keystroke</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Recall commands from the buffer and paste them in the command line. The switch provides a buffer with the last ten items that you deleted.</td>
<td>Press Ctrl-Y.</td>
<td>Recalls the most recent entry in the buffer.</td>
</tr>
<tr>
<td></td>
<td>Press Esc Y.</td>
<td>Recalls the next buffer entry. The buffer contains only the last 10 items that you have deleted or cut. If you press Esc Y more than ten times, you cycle to the first buffer entry.</td>
</tr>
<tr>
<td>Delete entries if you make a mistake or change your mind.</td>
<td>Press the Delete or Backspace key.</td>
<td>Erases the character to the left of the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-D.</td>
<td>Deletes the character at the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-K.</td>
<td>Deletes all characters from the cursor to the end of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-U or Ctrl-X.</td>
<td>Deletes all characters from the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-W.</td>
<td>Deletes the word to the left of the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Esc D.</td>
<td>Deletes from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Capitalize or lowercase words or capitalize a set of letters.</td>
<td>Press Esc C.</td>
<td>Capitalizes at the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Esc L.</td>
<td>Changes the word at the cursor to lowercase.</td>
</tr>
<tr>
<td></td>
<td>Press Esc U.</td>
<td>Capitalizes letters from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Designate a particular keystroke as an executable command, perhaps as a shortcut.</td>
<td>Press Ctrl-V or Esc Q.</td>
<td></td>
</tr>
</tbody>
</table>
Editing Command Lines that Wrap

You can use a wraparound feature for commands that extend beyond a single line on the screen. When the cursor reaches the right margin, the command line shifts ten spaces to the left. You cannot see the first ten characters of the line, but you can scroll back and check the syntax at the beginning of the command. The keystroke actions are optional.

To scroll back to the beginning of the command entry, press Ctrl-B or the left arrow key repeatedly. You can also press Ctrl-A to immediately move to the beginning of the line.

Note: The arrow keys function only on ANSI-compatible terminals such as VT100s.

In this example, the access-list global configuration command entry extends beyond one line. When the cursor first reaches the end of the line, the line is shifted ten spaces to the left and redisplayed. The dollar sign ($) shows that the line has been scrolled to the left. Each time the cursor reaches the end of the line, the line is again shifted ten spaces to the left.

```
(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1
(config)# $ 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.25
(config)# $ t tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq
(config)# $1 08.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq 45
```

After you complete the entry, press Ctrl-A to check the complete syntax before pressing the Return key to execute the command. The dollar sign ($) appears at the end of the line to show that the line has been scrolled to the right.
The software assumes that you have a terminal screen that is 80 columns wide. If you have a width other than that, use the `terminal width` privileged EXEC command to set the width of your terminal.

Use line wrapping with the command history feature to recall and modify previous complex command entries.

Searching and Filtering Output of show and more Commands

You can search and filter the output for `show` and `more` commands. This is useful when you need to sort through large amounts of output or if you want to exclude output that you do not need to see. Using these commands is optional.

To use this functionality, enter a `show` or `more` command followed by the pipe character (|), one of the keywords `begin`, `include`, or `exclude`, and an expression that you want to search for or filter out:

```
command | {begin | include | exclude} regular-expression
```

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` appear.

This example shows how to include in the output display only lines where the expression `protocol` appears:

```
# show interfaces | include protocol
Vlan1 is up, line protocol is up
Vlan10 is up, line protocol is down
GigabitEthernet1/0/1 is up, line protocol is down
GigabitEthernet1/0/2 is up, line protocol is up
```

Accessing the CLI

You can access the CLI through a console connection, through Telnet, or by using the browser.

You manage the switch stack and the stack member interfaces through the active switch. You cannot manage stack members on an individual switch basis. You can connect to the active switch through the console port or the Ethernet management port of one or more stack members. Be careful with using multiple CLI sessions to the active switch. Commands you enter in one session are not displayed in the other sessions. Therefore, it is possible to lose track of the session from which you entered commands.

Note

We recommend using one CLI session when managing the switch stack.

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation.

To debug a specific stack member, you can access it from the active switch by using the `session stack-member-number` privileged EXEC command. The stack member number is appended to the system prompt. For example, `Switch-2#` is the prompt in privileged EXEC mode for stack member 2, and where the system prompt for the active switch is Switch. Only the `show` and `debug` commands are available in a CLI session to a specific stack member.
Accessing the CLI through a Console Connection or through Telnet

Before you can access the CLI, you must connect a terminal or a PC to the switch console or connect a PC to the Ethernet management port and then power on the switch, as described in the hardware installation guide that shipped with your switch.

CLI access is available before switch setup. After your switch is configured, you can access the CLI through a remote Telnet session or SSH client.

You can use one of these methods to establish a connection with the switch:

• Connect the switch console port to a management station or dial-up modem, or connect the Ethernet management port to a PC. For information about connecting to the console or Ethernet management port, see the switch hardware installation guide.

• Use any Telnet TCP/IP or encrypted Secure Shell (SSH) package from a remote management station. The switch must have network connectivity with the Telnet or SSH client, and the switch must have an enable secret password configured.

The switch supports up to 16 simultaneous Telnet sessions. Changes made by one Telnet user are reflected in all other Telnet sessions.

The switch supports up to five simultaneous secure SSH sessions.

After you connect through the console port, through the Ethernet management port, through a Telnet session or through an SSH session, the user EXEC prompt appears on the management station.
PART I

Cisco TrustSec

• Cisco TrustSec Commands, on page 15
Cisco TrustSec Commands

- cts authorization list, on page 16
- cts change-password, on page 17
- cts credentials, on page 18
- cts refresh, on page 20
- cts rekey, on page 22
- cts role-based enforcement, on page 23
- cts role-based l2-vrf, on page 24
- cts role-based monitor, on page 26
- cts role-based permissions, on page 27
- cts role-based sgt-caching, on page 29
- cts role-based sgt-map, on page 30
- cts xp connection peer, on page 32
- cts xp default password, on page 35
- cts xp default source-ip, on page 37
- cts xp filter-enable, on page 39
- cts xp filter-group, on page 40
- cts xp filter-list, on page 42
- cts xp log binding-changes, on page 44
- cts xp reconciliation period, on page 45
- cts xp retry period, on page 46
- propagate sgt (cts manual), on page 47
- sap mode-list (cts manual), on page 49
- show cts credentials, on page 51
- show cts interface, on page 52
- show cts role-based counters, on page 54
- show cts role-based permissions, on page 56
- show cts server-list, on page 58
- show cts xp, on page 59
cts authorization list

To specify a list of authentication, authorization, and accounting (AAA) servers to be used by the TrustSec seed device, use the `cts authorization list` command on the Cisco TrustSec seed device in global configuration mode. Use the `no` form of the command to stop using the list during authentication.

```
cts authorization list server_list
```

```
no cts authorization list server_list
```

Syntax Description

- `server_list` Cisco TrustSec AAA server group.

Command Default

None

Command Modes

Global configuration (config)

Supported User Roles

Administrator

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is only for the seed device. Non-seed devices obtain the TrustSec AAA server list from their TrustSec authenticator peer as a component of their TrustSec environment data.

The following example displays an AAA configuration of a TrustSec seed device:

```
Device# cts credentials id Device1 password Cisco123
Device# configure terminal
Device(config)# aaa new-model
Device(config)# aaa authentication dot1x default group radius
Device(config)# aaa authorization network MLIST group radius
Device(config)# cts authorization list MLIST
Device(config)# aaa accounting dot1x default start-stop group radius
Device(config)# radius-server host 10.20.3.1 auth-port 1812 acct-port 1813 pac key AbCe1234
Device(config)# radius-server vsa send authentication
Device(config)# dot1x system-auth-control
Device(config)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cts server-list</td>
<td>Displays RADIUS server configurations.</td>
</tr>
</tbody>
</table>
cts change-password

To change the password between the local device and the authentication server, use the `cts change-password` privileged EXEC command.

```plaintext
cts change-password server ipv4_address udp_port {a-id hex_string | key radius_key }[{'source interface_list}]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>server</code></td>
<td>Specifies the authentication server.</td>
</tr>
<tr>
<td><code>ipv4_address</code></td>
<td>IP address of the authentication server.</td>
</tr>
<tr>
<td><code>udp_port</code></td>
<td>UDP port of the authentication server.</td>
</tr>
<tr>
<td><code>a-id</code></td>
<td>Specifies the identification string of the ACS server.</td>
</tr>
<tr>
<td><code>hex_string</code></td>
<td>Specifies the RADIUS key to be used for provisioning.</td>
</tr>
<tr>
<td><code>key</code></td>
<td>(Optional) Specifies the interface type and its identifying parameters as per the displayed list for source address in request packets.</td>
</tr>
<tr>
<td><code>source interface_list</code></td>
<td>(Optional) Specifies the interface type and its identifying parameters as per the displayed list for source address in request packets.</td>
</tr>
</tbody>
</table>

Command Default
None.

Command Modes
Privileged EXEC (#)

Supported User Roles
Administrator

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `cts change-password` command allows an administrator to change the password used between the local device and the Cisco Secure ACS authentication server, without having to reconfigure the authentication server.

The following example shows how to change the Cisco TrustSec password between a switch and a Cisco Secure ACS:

```
Device# cts change-password server 192.168.2.2 88 a-id ffef
```
cts credentials

Use the **cts credentials** command in privileged EXEC mode to specify the TrustSec ID and password of the network device. Use the **clear cts credentials** command to delete the credentials.

```
ccts credentials id  cts_id  password  cts_pwd
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>credentials id</td>
<td>Specifies the Cisco TrustSec device ID for this device to use when authenticating with other Cisco TrustSec devices with EAP-FAST. The cts-id variable has a maximum length of 32 characters and is case sensitive.</td>
</tr>
<tr>
<td>password</td>
<td>Specifies the password for this device to use when authenticating with other Cisco TrustSec devices with EAP-FAST.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC (#)

Supported User Roles

Administrator

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **cts credentials** command specifies the Cisco TrustSec device ID and password for this device to use when authenticating with other Cisco TrustSec devices with EAP-FAST. The Cisco TrustSec credentials state retrieval is not performed by the nonvolatile generation process (NVGEN) because the Cisco TrustSec credential information is saved in the keystore, and not in the startup configuration. The device can be assigned a Cisco TrustSec identity by the Cisco Secure Access Control Server (ACS), or a new password auto-generated when prompted to do so by the ACS. These credentials are stored in the keystore, eliminating the need to save the running configuration. To display the Cisco TrustSec device ID, use the **show cts credentials** command. The stored password is never displayed.

To change the device ID or the password, reenter the command. To clear the keystore, use the **clear cts credentials** command.

Note

When the Cisco TrustSec device ID is changed, all Protected Access Credentials (PACs) are flushed from the keystore because PACs are associated with the old device ID and are not valid for a new identity.

The following example shows how to configure the Cisco TrustSec device ID and password:

```
Device# cts credentials id cts1 password password1
CTS device ID and password have been inserted in the local keystore. Please make sure that the same ID and password are configured in the server database.
```
The following example show how to change the Cisco TrustSec device ID and password to cts_new and password123, respectively:

Device# cts credentials id cts_new password password123
A different device ID is being configured.
This may disrupt connectivity on your CTS links.
Are you sure you want to change the Device ID? [confirm] y

TS device ID and password have been inserted in the local keystore. Please make sure that the same ID and password are configured in the server database.

The following sample output displays the Cisco TrustSec device ID and password state:

Device# show cts credentials

CTS password is defined in keystore, device-id = cts_new

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear cts credentials</td>
<td>Clears the Cisco TrustSec device ID and password.</td>
</tr>
<tr>
<td>show cts credentials</td>
<td>Displays the state of the current Cisco TrustSec device ID and password.</td>
</tr>
<tr>
<td>show cts keystore</td>
<td>Displays contents of the hardware and software keystores.</td>
</tr>
</tbody>
</table>
cts refresh

To refresh the TrustSec peer authorization policy of all or specific Cisco TrustSec peers, or to refresh the SGACL policies downloaded to the device by the authentication server, use the `cts refresh` command in privileged EXEC mode.

```
cts refresh [peer [peer_id] | sgt [{sgt_number | default | unknown}]]
```

Syntax Description

- `environment-data` Refreshes environment data.
- `peer Peer-ID` (Optional) If a peer-id is specified, only policies related to the specified peer connection are refreshed.
- `sgt sgt_number` (Optional) Performs an immediate refresh of the SGACL policies from the authentication server.
 - If an SGT number is specified, only policies related to that SGT are refreshed.
- `default` (Optional) Refreshes the default SGACL policy.
- `unknown` (Optional) Refreshes the unknown SGACL policy.

Command Default

None

Command Modes

Privileged EXEC (#)

Supported User Roles

Administrator

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To refresh the Peer Authorization Policy on all TrustSec peers, enter `cts policy refresh` without specifying a peer ID.

The peer authorization policy is initially downloaded from the Cisco ACS at the end of the EAP-FAST NDAC authentication success. The Cisco ACS is configured to refresh the peer authorization policy, but the `cts policy refresh` command can force immediate refresh of the policy before the Cisco ACS timer expires. This command is relevant only to TrustSec devices that can impose Security Group Tags (SGTs) and enforce Security Group Access Control Lists (SGACLs).

The following example shows how to refresh the TrustSec peer authorization policy of all peers:

```
Device# cts policy refresh
Policy refresh in progress
```

The following sample output displays the TrustSec peer authorization policy of all peers:

```
VSS-1# show cts policy peer
```
CTS Peer Policy

device-id of the peer that this local device is connected to
Peer name: VSS-2T-1
Peer SGT: 1-02
Trusted Peer: TRUE
Peer Policy Lifetime = 120 secs
Peer Last update time = 12:19:09 UTC Wed Nov 18 2009
Policy expires in 0:00:01:51 (dd:hr:mm:sec)
Policy refreshes in 0:00:01:51 (dd:hr:mm:sec)
Cache data applied = NONE

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear cts policy</td>
<td>Clears all Cisco TrustSec policies, or by the peer ID or SGT.</td>
</tr>
<tr>
<td>show cts policy peer</td>
<td>Displays peer authorization policy for all or specific TrustSec peers.</td>
</tr>
</tbody>
</table>
cts rekey

To regenerate the Pairwise Master Key used by the Security Association Protocol (SAP), use the `cts rekey` privileged EXEC command.

```plaintext
ccts rekey interface type slot/port
```

Syntax Description
- `interface type slot/port` Specifies the Cisco TrustSec interface on which to regenerate the SAP key.

Command Default
None.

Command Modes
Privileged EXEC (#)

Supported User Roles
Administrator

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

SAP Pair-wise Master Key key (PMK) refresh ordinarily occurs automatically, triggered by combinations of network events and non-configurable internal timers related to dot1X authentication. The ability to manually refresh encryption keys is often part of network administration security requirements. To manually force a PMK refresh, use the `cts rekey` command.

TrustSec supports a manual configuration mode where dot1X authentication is not required to create link-to-link encryption between switches. In this case, the PMK is manually configured on devices on both ends of the link with the `sap pmk` Cisco TrustSec manual interface configuration command.

The following example shows how to regenerate the PMK on a specified interface:

```plaintext
Device# cts rekey interface gigabitEthernet 2/1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sap mode-list (cts manual)</code></td>
<td>Configures Cisco TrustSec SAP for manual mode.</td>
</tr>
</tbody>
</table>
cts role-based enforcement

To enable role-based access control globally and on specific Layer 3 interfaces using Cisco TrustSec, use the **cts role-based enforcement** command in global configuration mode and interface configuration mode respectively. To disable the enforcement of role-based access control at an interface level, use the **no** form of this command.

```
cts role-based enforcement
no cts role-based enforcement
```

Syntax Description

This command has no keywords or arguments.

Command Default

Enforcement of role-based access control at an interface level is disabled globally.

Command Modes

- Global configuration (config)
- Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **cts role-based enforcement** command in global configuration mode enables role-based access control globally. Once role-based access control is enabled globally, it is automatically enabled on every Layer 3 interface on the device. To disable role-based access control on specific Layer 3 interfaces, use the **no** form of the command in interface configuration mode. The **cts role-based enforcement** command in interface configuration mode enables enforcement of role-based access control on specific Layer 3 interfaces.

The attribute-based access control list organizes and manages the Cisco TrustSec access control on a network device. The security group access control list (SGACL) is a Layer 3-4 access control list to filter access based on the value of the security group tag (SGT). The filtering usually occurs at an egress port of the Cisco TrustSec domain. The terms role-based access control list (RBACL) and SGACL can be used interchangeably, and they refer to a topology-independent ACL used in an attribute-based access control (ABAC) policy model.

The following example shows how to enable role-based access control on a Gigabit Ethernet interface:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/3
Device(config-if)# cts role-based enforcement
Device(config-if)# end
```
cts role-based l2-vrf

To select a virtual routing and forwarding (VRF) instance for Layer 2 VLANs, use the cts role-based l2-vrf command in global configuration mode. To remove the configuration, use the no form of this command.

```
ccts role-based l2-vrf vrf-name vlan-list {all vlan-ID} [{,}] [{-}]
no ccts role-based l2-vrf vrf-name vlan-list {all vlan-ID} [{,}] [{-}]
```

Syntax Description

- **vrf-name**: Name of the VRF instance.
- **vlan-list**: Specifies the list of VLANs to be assigned to a VRF instance.
 - **all**: Specifies all VLANs.
 - **vlan-ID**: VLAN ID. Valid values are from 1 to 4094.
 - **,**: (Optional) Specifies another VLAN separated by a comma.
 - **-**: (Optional) Specifies a range of VLANs separated by a hyphen.

Command Default

VRF instances are not selected.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **vlan-list** argument can be a single VLAN ID, a list of comma-separated VLAN IDs, or hyphen-separated VLAN ID ranges.

The **all** keyword is equivalent to the full range of VLANs supported by the network device. The **all** keyword is not preserved in the nonvolatile generation (NVGEN) process.

If the cts role-based l2-vrf command is issued more than once for the same VRF, each successive command entered adds the VLAN IDs to the specified VRF.

The VRF assignments configured by the cts role-based l2-vrf command are active as long as a VLAN remains a Layer 2 VLAN. The IP–SGT bindings learned while a VRF assignment is active are also added to the Forwarding Information Base (FIB) table associated with the VRF and the IP protocol version. If an Switched Virtual Interface (SVI) becomes active for a VLAN, the VRF-to-VLAN assignment becomes inactive and all bindings learned on the VLAN are moved to the FIB table associated with the VRF of the SVI.

Use the interface vlan command to configure an SVI interface, and the vrf forwarding command to associate a VRF instance to the interface.

The VRF-to-VLAN assignment is retained even when the assignment becomes inactive. It is reactivated when the SVI is removed or when the SVI IP address is changed. When reactivated, the IP–SGT bindings are moved back from the FIB table associated with the VRF of the SVI to the FIB table associated with the VRF assigned by the cts role-based l2-vrf command.
The following example shows how to select a list of VLANS to be assigned to a VRF instance:

Device(config)# cts role-based l2-vrf vrf1 vlan-list 20

The following example shows how to configure an SVI interface and associate a VRF instance:

Device(config)# interface vlan 101
Device(config-if)# vrf forwarding vrf1

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface vlan</td>
<td>Configures a VLAN interface.</td>
</tr>
<tr>
<td>vrf forwarding</td>
<td>Associates a VRF instance or a virtual network with an interface or subinterface.</td>
</tr>
<tr>
<td>show cts role-based permissions</td>
<td>Displays the SGACL permission list.</td>
</tr>
</tbody>
</table>
cts role-based monitor

To enable role-based (security-group) access list monitoring, use the `cts role-based monitor` command in global configuration mode. To remove role-based access list monitoring, use the `no` form of this command.

```
cts role-based monitor {all | permissions {default [ipv4 | ipv6] | from {sgt | unknown} to {sgt | unknown} [ipv4 | ipv6]}}
no cts role-based monitor {all | permissions {default [ipv4 | ipv6] | from {sgt | unknown} to {sgt | unknown} [ipv4 | ipv6]}}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Monitors permissions for all source tags to all destination tags.</td>
</tr>
<tr>
<td>permissions</td>
<td>Monitors permissions from a source tags to a destination tags.</td>
</tr>
<tr>
<td>default</td>
<td>Monitors the default permission list.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies the IPv4 protocol.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies the IPv6 protocol.</td>
</tr>
<tr>
<td>from</td>
<td>Specifies the source group tag for filtered traffic.</td>
</tr>
<tr>
<td>sgt</td>
<td>Security Group Tag (SGT). Valid values are from 2 to 65519.</td>
</tr>
<tr>
<td>unknown</td>
<td>Specifies an unknown source or destination group tag (DST).</td>
</tr>
</tbody>
</table>

Command Default

Role-based access control monitoring is not enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `cts role-based monitor all` command to enable the global monitor mode. If the `cts role-based monitor all` command is configured, the output of the `show cts role-based permissions` command displays monitor mode for all configured policies as true.

The following examples shows how to configure SGACL monitor from a source tag to a destination tag:

```
Device(config)# cts role-based monitor permissions from 10 to 11
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cts role-based permissions</code></td>
<td>Displays the SGACL permission list.</td>
</tr>
</tbody>
</table>
cts role-based permissions

To enable permissions from a source group to a destination group, use the `cts role-based permissions` command in global configuration mode. To remove the permissions, use the `no` form of this command.

```
cts role-based permissions {default | from {sgt | unknown} to {sgt | unknown}} {rbacl-name | ipv4 | ipv6}
no cts role-based permissions {default | from {sgt | unknown} to {sgt | unknown}} {rbacl-name | ipv4 | ipv6}
```

Syntax Description

- **default**
 - Specifies the default permissions list. Every cell (an SGT pair) for which, security group access control list (SGACL) permission is not configured statically or dynamically falls under the default category.

- **from**
 - Specifies the source group tag of the filtered traffic.

- **sgt**
 - Security Group Tag (SGT). Valid values are from 2 to 65519.

- **unknown**
 - Specifies an unknown source or destination group tag.

- **rbacl-name**
 - Role-based access control list (RBACL) or SGACL name. Up to 16 SGACLs can be specified in the configuration.

- **ipv4**
 - Specifies the IPv4 protocol.

- **ipv6**
 - Specifies the IPv6 protocol.

Command Default

Permissions from a source group to a destination group is not enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `cts role-based permissions` command to define, replace, or delete the list of SGACLs for a given source group tag (SGT), destination group tag (DGT) pair. This policy is in effect as long as there is no dynamic policy for the same DGT or SGT.

The `cts role-based permissions default` command defines, replaces, or deletes the list of SGACLs of the default policy as long as there is no dynamic policy for the same DGT.

The following example shows how to enable permissions for a destination group:

```
Device(config)# cts role-based permissions from 6 to 6 mon_2
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cts role-based permissions</code></td>
<td>Displays the SGACL permission list.</td>
</tr>
</tbody>
</table>
cts role-based sgt-caching

To enable Security Group Tag (SGT) caching globally, use the `cts role-based sgt-caching` command in global configuration mode. To remove SGT caching, use the `no` form of this command.

`cts role-based sgt-caching [vlan-list {vlan-id | all}]`

`no cts role-based sgt-caching [vlan-list {vlan-id | all}]`

Syntax Description

- **vlan-list vlan-id**
 - (Optional) Specifies VLAN IDs. Individual VLAN IDs are separated by commas, and a range of IDs specified with a hyphen. Valid values are from 1 to 4094.

- **all**
 - (Optional) Selects all VLANs.

Command Default

SGT caching is not configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To enable SGT caching on a VLAN, both `cts role-based sgt-caching` and `cts role-based sgt-caching vlan-list` commands must be configured.

Example

The following example shows how to enable SGT caching on a VLAN:

```
Device# configure terminal
Device(config)# cts role-based sgt-caching
Device(config)# cts role-based sgt-caching vlan-list 4
```
cts role-based sgt-map

To manually map a source IP address to a Security Group Tag (SGT) on either a host or a VRF, use the **cts role-based sgt-map** command in global configuration mode. Use the **no** form of the command to remove the mapping.

Syntax:
```
ccts role-based sgt-map {ipv4_netaddress | ipv6_netaddress | ipv4_netaddress/prefix | ipv6_netaddress/prefix} sgt sgt-number
cts role-based sgt-map host {ipv4_hostaddress | ipv6_hostaddress} sgt sgt-number
cts role-based sgt-map vlan-list [vlan_ids | all] sgt sgt-number
cts role-based sgt-map vrf instance_name {ipv4_netaddress | ipv6_netaddress | ipv4_netaddress/prefix | ipv6_netaddress/prefix | host} sgt sgt-number
no cts role-based sgt-map
```

Syntax Description:
- **ipv4_netaddress | ipv6_netaddress**
 - Specifies the network to be associated with an SGT. Enter IPv4 address in dot decimal notation; IPv6 in colon hexadecimal notation.

- **ipv4_netaddress/prefix | ipv6_netaddress/prefix**
 - Maps the SGT to all hosts of the specified subnet address (IPv4 or IPv6). IPv4 is specified in dot decimal CIDR notation, IPv6 in colon hexadecimal notation.

- **host {ipv4_hostaddress | ipv6_hostaddress}**
 - Binds the specified host IP address with the SGT. Enter the IPv4 address in dot decimal notation; IPv6 in colon hexadecimal notation.

- **vlan-list {vlan_ids | all}**
 - Specifies VLAN IDs.
 - (Optional) `vlan_ids`: Individual VLAN IDs are separated by commas, a range of IDs specified with a hyphen.
 - (Optional) `all`: Specifies all VLAN IDs.

- **vrf instance_name**
 - Specifies a VRF instance, previously created on the device.

- **sgt sgt-number**
 - Specifies the SGT number from 0 to 65,535.

Command Default: None

Command Modes:
Global configuration (config)

Command History:

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines:
If you do not have a Cisco Identity Services Engine, Cisco Secure ACS, dynamic Address Resolution Protocol (ARP) inspection, Dynamic Host Control Protocol (DHCP) snooping, or Host Tracking available on your
device to automatically map SGTs to source IP addresses, you can manually map an SGT to the following with the **cts role-based sgt-map** command:

- A single host IPv4 or IPv6 address
- All hosts of an IPv4 or IPv6 network or subnetwork
- VRFs
- Single or multiple VLANs

The **cts role-based sgt-map** command binds the specified SGT with packets that fall within the specified network address.

SXP exports an exhaustive expansion of all possible individual IP–SGT bindings within the specified network or subnetwork. IPv6 bindings and subnet bindings are exported only to SXP listener peers of SXP version 2 or later. The expansion does not include host bindings which are known individually or are configured or learnt from SXP for any nested subnet bindings.

The **cts role-based sgt-map host** command binds the specified SGT with incoming packets when the IP source address is matched by the specified host address. This IP-SGT binding has the lowest priority and is ignored in the presence of any other dynamically discovered bindings from other sources (such as, SXP or locally authenticated hosts). The binding is used locally on the device for SGT imposition and SGACL enforcement. It is exported to SXP peers if it is the only binding known for the specified host IP address.

The **vrf** keyword specifies a virtual routing and forwarding table previously defined with the vrf definition global configuration command. The IP-SGT binding specified with the **cts role-based sgt-map vrf** global configuration command is entered into the IP-SGT table associated with the specified VRF and the IP protocol version which is implied by the type of IP address entered.

The **cts role-based sgt-map vlan-list** command binds an SGT with a specified VLAN or a set of VLANs. The keyword **all** is equivalent to the full range of VLANs supported by the device and is not preserved in the nonvolatile generation (NVGEN) process. The specified SGT is bound to incoming packets received in any of the specified VLANs. The system uses discovery methods such as DHCP and/or ARP snooping (a.k.a. IP device tracking) to discover active hosts in any of the VLANs mapped by this command. Alternatively, the system could map the subnet associated with the SVI of each VLAN to the specified SGT. SXP exports the resulting bindings as appropriate for the type of binding.

Examples

The following example shows how to manually map a source IP address to an SGT:

```
Device(config)# cts role-based sgt-map 10.10.1.1 sgt 77
```

In the following example, a device binds host IP address 10.1.2.1 to SGT 3 and 10.1.2.2 to SGT 4. These bindings are forwarded by SXP to an SGACL enforcement device.

```
Device(config)# cts role-based sgt-map host 10.1.2.1 sgt 3
Device(config)# cts role-based sgt-map host 10.1.2.2 sgt 4
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cts role-based sgt-map</td>
<td>Displays role-based access control information.</td>
</tr>
</tbody>
</table>
cts sxp connection peer

To enter the Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) peer IP address, to specify if a password is used for the peer connection, to specify the global hold-time period for a listener or speaker device, and to specify if the connection is bidirectional, use the cts sxp connection peer command in global configuration mode. To remove these configurations for a peer connection, use the no form of this command.

```
ccts sxp connection peer ipv4-address {source | password} {default | none} mode {local | peer}
[{{[[{listener | speaker}]} [{hold-time minimum-time maximum-time | vrf vrf-name}]]} | both [vrf vrf-name]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>SXP peer IPv4 address.</td>
</tr>
<tr>
<td>source</td>
<td>Specifies the source IPv4 address.</td>
</tr>
<tr>
<td>password</td>
<td>Specifies that an SXP password is used for the peer connection.</td>
</tr>
<tr>
<td>default</td>
<td>Specifies that the default SXP password is used.</td>
</tr>
<tr>
<td>none</td>
<td>Specifies no password is used.</td>
</tr>
<tr>
<td>mode</td>
<td>Specifies either the local or peer SXP connection mode.</td>
</tr>
<tr>
<td>local</td>
<td>Specifies that the SXP connection mode refers to the local device.</td>
</tr>
<tr>
<td>peer</td>
<td>Specifies that the SXP connection mode refers to the peer device.</td>
</tr>
<tr>
<td>listener</td>
<td>(Optional) Specifies that the device is the listener in the connection.</td>
</tr>
<tr>
<td>speaker</td>
<td>(Optional) Specifies that the device is the speaker in the connection.</td>
</tr>
<tr>
<td>hold-time minimum-time maximum-time</td>
<td>(Optional) Specifies the hold-time period, in seconds, for the device. The range for minimum and maximum time is from 0 to 65535.</td>
</tr>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies the virtual routing and forwarding (VRF) instance name to the peer.</td>
</tr>
<tr>
<td>both</td>
<td>(Optional) Specifies that the device is both the speaker and the listener in the bidirectional SXP connection.</td>
</tr>
</tbody>
</table>

Note

A `maximum-time` value is required only when you use the following keywords: `peer speaker` and `local listener`. In other instances, only a `minimum-time` value is required.

If both minimum and maximum times are required, the `maximum-time` value must be greater than or equal to the `minimum-time` value.
The CTS-SXP peer IP address is not configured and no CTS-SXP peer password is used for the peer connection.
The default setting for a CTS-SXP connection password is `none`.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When a CTS-SXP connection to a peer is configured with the `cts sxp connection peer` command, only the connection mode can be changed. The `vrf` keyword is optional. If a VRF name is not provided or a VRF name is provided with the `default` keyword, then the connection is set up in the default routing or forwarding domain.

A **hold-time maximum-period** value is required only when you use the following keywords: **peer speaker** and **local listener**. In other instances, only a **hold-time minimum-period** value is required.

Note

The **maximum-period** value must be greater than or equal to the **minimum-period** value.

Use the **both** keyword to configure a bidirectional SXP connection. With the support for bidirectional SXP configuration, a peer can act as both a speaker and a listener and propagate SXP bindings in both directions using a single connection.

Examples

The following example shows how to enable CTS-SXP and configure the CTS-SXP peer connection on **Device_A**, a speaker, for connection to **Device_B**, a listener:

```
Device_A> enable
Device_A# configure terminal
Device_A#(config)# cts sxp enable
Device_A#(config)# cts sxp connection peer 10.20.2.2 password default mode local speaker
```

The following example shows how to configure the CTS-SXP peer connection on **Device_B**, a listener, for connection to **Device_A**, a speaker:

```
Device_B> enable
Device_B# configure terminal
Device_B(config)# cts sxp enable
Device_B(config)# cts sxp connection peer 10.20.2.2 password default mode local listener
```

You can also configure both peer and source IP addresses for an SXP connection. The source IP address specified in the `cts sxp connection` command overwrites the default value.

```
Device_A(config)# cts sxp connection peer 51.51.51.1 source 51.51.51.2 password none mode local speaker
```
The following example shows how to enable bidirectional CTS-SXP and configure the SXP peer connection on Device_A to connect to Device_B:

Device_A> enable
Device_A# configure terminal
Device_A#(config)# cts sxp enable
Device_A#(config)# cts sxp default password Cisco123
Device_A#(config)# cts sxp default source-ip 10.10.1.1
Device_A#(config)# cts sxp connection peer 10.20.2.2 password default mode local both

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts sxp default password</td>
<td>Configures the Cisco TrustSec SXP default password.</td>
</tr>
<tr>
<td>cts sxp default source-ip</td>
<td>Configures the Cisco TrustSec SXP source IPv4 address.</td>
</tr>
<tr>
<td>cts sxp enable</td>
<td>Enables Cisco TrustSec SXP on a device.</td>
</tr>
<tr>
<td>cts sxp log</td>
<td>Enables logging for IP-to-SGT binding changes.</td>
</tr>
<tr>
<td>cts sxp reconciliation</td>
<td>Changes the Cisco TrustSec SXP reconciliation period.</td>
</tr>
<tr>
<td>cts sxp retry</td>
<td>Changes the Cisco TrustSec SXP retry period timer.</td>
</tr>
<tr>
<td>cts sxp speaker hold-time</td>
<td>Configures the global hold-time period of a speaker device in a Cisco TrustSec SGT SXPv4 network.</td>
</tr>
<tr>
<td>cts sxp listener hold-time</td>
<td>Configures the global hold-time period of a listener device in a Cisco TrustSec SGT SXPv4 network.</td>
</tr>
<tr>
<td>show cts sxp</td>
<td>Displays the status of all Cisco TrustSec SXP configurations.</td>
</tr>
</tbody>
</table>
cts sxp default password

To specify the Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) default password, use the `cts sxp default password` command in global configuration mode. To remove the CTS-SXP default password, use the `no` form of this command.

```
ccts sxp default password {0 unencrypted-pwd | 6 encrypted-key | 7 encrypted-key cleartext-pwd}
no ccts sxp default password {0 unencrypted-pwd | 6 encrypted-key | 7 encrypted-key cleartext-pwd}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>0 unencrypted-pwd</code></td>
<td>Specifies that an unencrypted CTS-SXP default password follows. The maximum password length is 32 characters.</td>
</tr>
<tr>
<td><code>6 encrypted-key</code></td>
<td>Specifies that a 6 encryption type password is used as the CTS-SXP default password. The maximum password length is 32 characters.</td>
</tr>
<tr>
<td><code>7 encrypted-key</code></td>
<td>Specifies that a 7 encryption type password is used as the CTS-SXP default password. The maximum password length is 32 characters.</td>
</tr>
<tr>
<td><code>cleartext-pwd</code></td>
<td>Specifies a cleartext CTS-SXP default password. The maximum password length is 32 characters.</td>
</tr>
</tbody>
</table>

Command Default

Type `0` (cleartext)

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `cts sxp default password` command sets the CTS-SXP default password to be optionally used for all CTS-SXP connections configured on the device. The CTS-SXP password can be cleartext, or encrypted with the `0`, `7`, `6` encryption type keywords. If the encryption type is `0`, then an unencrypted cleartext password follows.

Examples

The following example shows how to enable CTS-SXP and configure the CTS-SXP peer connection on Device_A, a speaker, for connection to Device_B, a listener:

```
Device_A# configure terminal
Device_A#(config)# cts sxp enable
Device_A#(config)# cts sxp default password Cisco123
Device_A#(config)# cts sxp default source-ip 10.10.1.1
Device_A#(config)# cts sxp connection peer 10.20.2.2 password default mode local speaker
```

The following example shows how to configure the CTS-SXP peer connection on Device_B, a listener, for connection to Device_A, a speaker:

```
Device_B# configure terminal
```
Device_B(config)# cts sxp enable
Device_B(config)# cts sxp default password Cisco123
Device_B(config)# cts sxp default source-ip 10.20.2.2
Device_B(config)# cts sxp connection peer 10.10.1.1 password default mode local listener

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts sxp connection peer</td>
<td>Enters the CTS-SXP peer IP address and specifies if a password is used for the peer connection.</td>
</tr>
<tr>
<td>cts sxp default source-ip</td>
<td>Configures the CTS-SXP source IPv4 address.</td>
</tr>
<tr>
<td>cts sxp enable</td>
<td>Enables CTS-SXP on a device.</td>
</tr>
<tr>
<td>cts sxp log</td>
<td>Enables logging for IP-to-SGT binding changes.</td>
</tr>
<tr>
<td>cts sxp reconciliation</td>
<td>Changes the CTS-SXP reconciliation period.</td>
</tr>
<tr>
<td>cts sxp retry</td>
<td>Changes the CTS-SXP retry period timer.</td>
</tr>
<tr>
<td>show cts sxp</td>
<td>Displays the status of all SXP configurations.</td>
</tr>
</tbody>
</table>
cts sxp default source-ip

To configure the Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) source IPv4 address, use the `cts sxp default source-ip` command in global configuration mode. To remove the CTS-SXP default source IP address, use the `no` form of this command.

```
cts sxp default source-ip ipv4-address
no cts sxp default source-ip ipv4-address
```

Syntax Description

| `ip-address` | Default source CTS-SXP IPv4 address. |

Command Default

The CTS-SXP source IP address is not configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

The `cts sxp default source-ip` command sets the default source IP address that CTS-SXP uses for all new TCP connections where a source IP address is not specified. Preexisting TCP connections are not affected when this command is entered. CTS-SXP connections are governed by three timers:

- Retry timer
- Delete Hold Down timer
- Reconciliation timer

Examples

The following example shows how to enable CTS-SXP and configure the CTS-SXP peer connection on Device_A, a speaker, for connection to Device_B, a listener:

```
Device_A# configure terminal
Device_A(config)# cts sxp enable
Device_A(config)# cts sxp default password Cisco123
Device_A(config)# cts sxp default source-ip 10.10.1.1
Device_A(config)# cts sxp connection peer 10.20.2.2 password default mode local speaker
```

The following example shows how to configure the CTS-SXP peer connection on Device_B, a listener, for connection to Device_A, a speaker:

```
Device_B# configure terminal
Device_B(config)# cts sxp enable
Device_B(config)# cts sxp default password Cisco123
Device_B(config)# cts sxp default source-ip 10.20.2.2
Device_B(config)# cts sxp connection peer 10.10.1.1 password default mode local listener
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts sxp connectionpeer</td>
<td>Enters the CTS-SXP peer IP address and specifies if a password is used for the peer connection.</td>
</tr>
<tr>
<td>cts sxp default password</td>
<td>Configures the CTS-SXP default password.</td>
</tr>
<tr>
<td>cts sxp enable</td>
<td>Enables CTS-SXP on a device.</td>
</tr>
<tr>
<td>cts sxp log</td>
<td>Enables logging for IP-to-SGT binding changes.</td>
</tr>
<tr>
<td>cts sxp reconciliation</td>
<td>Changes the CTS-SXP reconciliation period.</td>
</tr>
<tr>
<td>cts sxp retry</td>
<td>Changes the CTS-SXP retry period timer.</td>
</tr>
<tr>
<td>show cts sxp</td>
<td>Displays the status of all SXP configurations.</td>
</tr>
</tbody>
</table>
cts sxp filter-enable

To enable filtering after creating filter lists and filter groups, use the `cts sxp filter-enable` command in global configuration mode. To disable filtering, use the `no` form of the command.

```
cts sxp filter-enable
no cts sxp filter-enable
```

Syntax Description
This command has no keywords or arguments.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command can be used at any time to enable or disable filtering. Configured filter lists and filter groups can be used to implement filtering only after filtering is enabled. The filter action will only filter bindings that are exchanged after filtering is enabled; there won’t be any effect on the bindings that were exchanged before filtering was enabled.

Examples

```
Device(config)# cts sxp filter-enable
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts sxp filter-list</td>
<td>Creates a SXP filter list to filter IP-SGT bindings based on IP prefixes, SGT or a combination of both.</td>
</tr>
<tr>
<td>cts sxp filter-group</td>
<td>Creates a filter group for grouping a set of peers and applying a filter list to them.</td>
</tr>
<tr>
<td>show cts sxp filter-group</td>
<td>Displays information about the configured filter groups.</td>
</tr>
<tr>
<td>show cts sxp filter-list</td>
<td>Displays information about the configured filter lists.</td>
</tr>
<tr>
<td>debug cts sxp filter</td>
<td>Logs events related to the creation, deletion and update of filter-lists and filter-groups</td>
</tr>
<tr>
<td>events</td>
<td></td>
</tr>
</tbody>
</table>
cts sxp filter-group

To create a filter group for grouping a set of peers and applying a filter list to them, use the `cts sxp filter-group` command in global configuration mode. To delete a filter group, use the `no` form of this command.

```
cts sxp filter-group {listener | speaker} {filter-group-name | global filter-list-name}
no cts sxp filter-group {listener | speaker} {filter-group-name | global filter-list-name}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>listener</td>
<td>Creates a filter group for a set of listeners.</td>
</tr>
<tr>
<td>speaker</td>
<td>Creates a filter group for a set of speakers.</td>
</tr>
<tr>
<td>global</td>
<td>Groups all speakers or listeners on the device.</td>
</tr>
<tr>
<td>filter-group-name</td>
<td>Name of the filter group.</td>
</tr>
<tr>
<td>filter-list-name</td>
<td>Name of the filter list.</td>
</tr>
</tbody>
</table>

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Issuing this command, places the device in the filter group configuration mode. From this mode, you can specify the devices to be grouped and apply a filter list to the filter group.

The command format to add devices or peers to the group is as follows:

```
peer ipv4 peer-IP
```

In a single command, you can add one peer. To add more peers, repeat the command as many times as required.

The command format to apply a filter list to the group is as follows:

```
filter filter-list-name
```

You cannot specify a peer list for the global listener and global speaker filter-group options because in this case the filter is applied to all SXP connections.

When both the global filter group and peer-based filter groups are applied, the global filter takes priority. If only a global listener or global speaker filter group is configured, then the global filtering takes precedence only in that specific direction. For the other direction, the peer-based filter group is implemented.

Examples

The following example shows how to create a listener group called `group_1`, and assign peers and a filter list to this group:

```
Device# configure terminal
Device(config)# cts sxp filter-group listener group_1
Device(config-filter-group)# filter filter_1
```
Device(config-filter-group)# peer ipv4 10.0.0.1
Device(config-filter-group)# peer ipv4 10.10.10.1

The following example shows how to create a global listener group called `group_2`:

Device# configure terminal
Device(config)# cts sxp filter-group listener global group_2

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cts sxp filter-list</td>
<td>Creates a SXP filter list to filter IP-SGT bindings based on IP prefixes, SGT or a combination of both.</td>
</tr>
<tr>
<td></td>
<td>cts sxp filter-enable</td>
<td>Enables filtering.</td>
</tr>
<tr>
<td></td>
<td>show cts sxp filter-group</td>
<td>Displays information about the configured filter groups.</td>
</tr>
<tr>
<td></td>
<td>show cts sxp filter-list</td>
<td>Displays information about the configured filter lists.</td>
</tr>
<tr>
<td></td>
<td>debug cts sxp filter events</td>
<td>Logs events related to the creation, deletion and update of filter-lists and filter-groups</td>
</tr>
</tbody>
</table>
cts sxp filter-list

To create a SXP filter list to hold a set of filter rules for filtering IP-SGT bindings, use the `cts sxp filter-list` command in global configuration mode. To delete a filter list, use the `no` form of the command.

```
ccts sxp filter-list filter-list-name
no ccts sxp filter-list filter-list-name
```

Syntax Description

- **filter-list-name**: Name of the filter-list.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Issuing this command, places the device in the filter list configuration mode. From this mode, you can specify rules for the filter lists.

A filter rule can be based on SGT or IP Prefixes or a combination of both SGT and IP Prefixes.

The command format to add rules to the group is as follows:

```
sequence-number  action(permit/deny)  filter-type(ipv4/ipv6/sgt)  value/values
```

For example, to permit SGT-IP bindings whose SGT value is 20, the rule is as follows:

```
30 permit sgt 20
```

Note that the sequence number is optional. If you do not specify a sequence number, it is generated by the system. Sequence numbers are automatically incremented by a value of 10 from the last used/configured sequence number. A new rule can be inserted by specifying a sequence number in between two existing rules.

The range of valid SGT values is between 2 and 65519. To provide multiple SGT values in a rule, separate the values using a space. A maximum of 8 SGT values are allowed in a rule.

In a SGT and IP prefix combination rule, if there is a match for the binding in both the parts of the rule, then the action specified in the second part of the rule takes precedence. For example, in the following rule, if the SGT value of the IP prefix 10.0.0.1 is 20, the corresponding binding will be denied even if the first part of the rule permits the binding.

```
Device(config-filter-list)# 10 permit sgt 30 20 deny 10.0.0.1/24
```

Similarly, in the rule below the binding with the sgt value 20 will be permitted even if the sgt of the IP prefix 10.0.0.1 is 20, and the first action does not permit the binding.

```
Device(config-filter-list)# 10 deny 10.0.0.1/24 permit sgt 30 20
```

Examples

The following example shows how to create a filter list and add some rules to the list:

```
Device(config-filter-list)#
```
Device# configure terminal
Device(config)# cts sxp filter-list filter_1
Device (config-filter-list)# 10 deny ipv4 10.0.0.1/24 permit sgt 100
Device(config-filter-list)# 20 permit sgt 60 61 62 63

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts sxp filter-enable</td>
<td>Enable SXP IP-prefix and SGT-based filtering.</td>
</tr>
<tr>
<td>cts sxp filter-group</td>
<td>Creates a filter group for grouping a set of peers and applying a filter list to them.</td>
</tr>
<tr>
<td>show cts sxp filter-group</td>
<td>Displays information about the configured filter groups.</td>
</tr>
<tr>
<td>show cts sxp filter-list</td>
<td>Displays information about the configured filter lists.</td>
</tr>
<tr>
<td>debug cts sxp filter events</td>
<td>Logs events related to the creation, deletion and update of filter-lists and filter-groups.</td>
</tr>
</tbody>
</table>
cts sxp log binding-changes

To enable logging for IP-to-Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) binding changes, use the `cts sxp log binding-changes` command in global configuration mode. To disable logging, use the `no` form of this command.

```
ccts sxp log binding-changes
no ccts sxp log binding-changes
```

Command Default
Logging is disabled.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `cts sxp log binding-changes` command enables logging for IP-to-SGT binding changes. SXP syslogs (sev 5 syslogs) are generated whenever IP address-to-SGT binding occurs (add, delete, change). These changes are learned and propagated on the SXP connection.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts sxp connectionpeer</td>
<td>Enters the CTS-SXP peer IP address and specifies if a password is used for the peer connection</td>
</tr>
<tr>
<td>cts sxp default password</td>
<td>Configures the CTS-SXP default password.</td>
</tr>
<tr>
<td>cts sxp default source-ip</td>
<td>Configures the CTS-SXP source IPv4 address.</td>
</tr>
<tr>
<td>cts sxp enable</td>
<td>Enables CTS-SXP on a device.</td>
</tr>
<tr>
<td>cts sxp reconciliation</td>
<td>Changes the CTS-SXP reconciliation period.</td>
</tr>
<tr>
<td>cts sxp retry</td>
<td>Changes the CTS-SXP retry period timer.</td>
</tr>
<tr>
<td>show cts sxp</td>
<td>Displays status of all SXP configurations.</td>
</tr>
</tbody>
</table>
cts sxp reconciliation period

To change the Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) reconciliation period, use the `cts sxp reconciliation period` command in global configuration mode. To return the CTS-SXP reconciliation period to its default value, use the `no` form of this command.

```
cts sxp reconciliation period seconds
no cts sxp reconciliation period seconds
```

Syntax Description

| seconds | CTS-SXP reconciliation timer in seconds. The range is from 0 to 64000. The default is 120. |

Command Default

120 seconds (2 minutes)

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

After a peer terminates a CTS-SXP connection, an internal delete hold-down timer starts. If the peer reconnects before the delete hold-down timer expires, then the CTS-SXP reconciliation timer starts. While the CTS-SXP reconciliation period timer is active, the CTS-SXP software retains the SGT mapping entries learned from the previous connection and removes invalid entries. Setting the SXP reconciliation period to 0 seconds disables the timer and causes all entries from the previous connection to be removed.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cts sxp connection peer</code></td>
<td>Enters the CTS-SXP peer IP address and specifies if a password is used for the peer connection.</td>
</tr>
<tr>
<td><code>cts sxp default password</code></td>
<td>Configures the CTS-SXP default password.</td>
</tr>
<tr>
<td><code>cts sxp default source-ip</code></td>
<td>Configures the CTS-SXP source IPv4 address.</td>
</tr>
<tr>
<td><code>cts sxp enable</code></td>
<td>Enables CTS-SXP on a device.</td>
</tr>
<tr>
<td><code>cts sxp log</code></td>
<td>Turns on logging for IP to SGT binding changes.</td>
</tr>
<tr>
<td><code>cts sxp retry</code></td>
<td>Changes the CTS-SXP retry period timer.</td>
</tr>
<tr>
<td><code>show cts sxp</code></td>
<td>Displays status of all CTS-SXP configurations.</td>
</tr>
</tbody>
</table>
cts sxp retry period

To change the Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) retry period timer, use the `cts sxp retry period` command in global configuration mode. To return the CTS-SXP retry period timer to its default value, use the `no` form of this command.

```
cts sxpretry period seconds
no cts sxpretry period seconds
```

Syntax Description
- `seconds`: CTS-SXP retry timer in seconds. The range is from 0 to 64000. The default is 120.

Command Default
- 120 seconds (2 minutes)

Command Modes
- Global configuration (config)

Command History
- **Release** | **Modification**
 - Cisco IOS XE Fuji 16.9.2 | This command was introduced.

Usage Guidelines
The retry timer is triggered if there is at least one CTS-SXP connection that is not up. A new CTS-SXP connection is attempted when this timer expires. A zero value results in no retry being attempted.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cts sxp connectionpeer</code></td>
<td>Enters the CTS-SXP peer IP address and specifies if a password is used for the peer connection.</td>
</tr>
<tr>
<td><code>cts sxp default password</code></td>
<td>Configures the CTS-SXP default password.</td>
</tr>
<tr>
<td><code>cts sxp default source-ip</code></td>
<td>Configures the CTS-SXP source IPv4 address.</td>
</tr>
<tr>
<td><code>cts sxp enable</code></td>
<td>Enables CTS-SXP on a device.</td>
</tr>
<tr>
<td><code>cts sxp log</code></td>
<td>Enables logging for IP-to-SGT binding changes.</td>
</tr>
<tr>
<td><code>cts sxp reconciliation</code></td>
<td>Changes the CTS-SXP reconciliation period.</td>
</tr>
<tr>
<td><code>show cts sxp</code></td>
<td>Displays the status of all CTS-SXP configurations.</td>
</tr>
</tbody>
</table>
propagate sgt (cts manual)

To enable Security Group Tag (SGT) propagation at Layer 2 on Cisco TrustSec Security (CTS) interfaces, use the `propagate sgt` command in interface configuration mode. To disable SGT propagation, use the `no` form of this command.

Syntax Description
This command has no arguments or keywords.

Command Default
SGT processing propagation is enabled.

Command Modes
CTS manual interface configuration mode (config-if-cts-manual)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
SGT processing propagation allows a CTS-capable interface to accept and transmit a CTS Meta Data (CMD) based L2 SGT tag. The `no propagate sgt` command can be used to disable SGT propagation on an interface in situations where a peer device is not capable of receiving an SGT, and as a result, the SGT tag cannot be put in the L2 header.

Examples
The following example shows how to disable SGT propagation on a manually-configured TrustSec-capable interface:

```
Device# configure terminal
Device(config)# interface gigabitethernet 0
Device(config-if)# cts manual
Device(config-if-cts-manual)# no propagate sgt
```

The following example shows that SGT propagation is disabled on Gigabit Ethernet interface 0:

```
Device# show cts interface brief
Global Dot1x feature is Disabled
Interface GigabitEthernet0:
    CTS is enabled, mode: MANUAL
    IFC state: OPEN
    Authentication Status: NOT APPLICABLE
    Peer identity: "unknown"
    Peer's advertised capabilities: ""
    Authorization Status: NOT APPLICABLE
    SAP Status: NOT APPLICABLE
    Propagate SGT: Disabled
    Cache Info:
        Cache applied to link : NONE
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts manual</td>
<td>Enables an interface for CTS.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>show cts interface</td>
<td>Displays Cisco TrustSec states and statistics per interface.</td>
</tr>
</tbody>
</table>
sap mode-list (cts manual)

To select the Security Association Protocol (SAP) authentication and encryption modes (prioritized from highest to lowest) used to negotiate link encryption between two interfaces, use the `sap mode-list` command in CTS dot1x interface configuration mode. To remove a mode-list and revert to the default, use the `no` form of this command.

Use the `sap mode-list` command to manually specify the Pairwise Master Key (PMK) and the Security Association Protocol (SAP) authentication and encryption modes to negotiate MACsec link encryption between two interfaces. Use the `no` form of the command to disable the configuration.

```
sap pmk mode-list \{gcm-encrypt | gmac | no-encap | null\} \[gcm-encrypt | gmac | no-encap | null\]
no sap pmk mode-list \{gcm-encrypt | gmac | no-encap | null\} \[gcm-encrypt | gmac | no-encap | null\]
```

Syntax Description

<table>
<thead>
<tr>
<th>pmk hex_value</th>
<th>Specifies the Hex-data PMK (without leading 0x; enter even number of hex characters, or else the last character is prefixed with 0.).</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode-list</td>
<td>Specifies the list of advertised modes (prioritized from highest to lowest).</td>
</tr>
<tr>
<td>gcm-encrypt</td>
<td>Specifies GMAC authentication, GCM encryption.</td>
</tr>
<tr>
<td>gmac</td>
<td>Specifies GMAC authentication only, no encryption.</td>
</tr>
<tr>
<td>no-encap</td>
<td>Specifies no encapsulation.</td>
</tr>
<tr>
<td>null</td>
<td>Specifies encapsulation present, no authentication, no encryption.</td>
</tr>
</tbody>
</table>

Command Default

The default encryption is `sap pmk mode-list gcm-encrypt null`. When the peer interface does not support 802.1AE MACsec or 802.REV layer-2 link encryption, the default encryption is `null`.

Command Modes

CTS manual interface configuration (config-if-cts-manual)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `sap pmk mode-list` command to specify the authentication and encryption method.
The Security Association Protocol (SAP) is an encryption key derivation and exchange protocol based on a draft version of the 802.11i IEEE protocol. SAP is used to establish and maintain the 802.1AE link-to-link encryption (MACsec) between interfaces that support MACsec.

SAP and the Pairwise Master Key (PMK) can be manually configured between two interfaces with the `sap pmk mode-list` command. When using 802.1X authentication, both sides (supplicant and authenticator) receive the PMK and the MAC address of the peer's port from the Cisco Secure Access Control Server.

If a device is running CTS-aware software but the hardware is not CTS-capable, disallow encapsulation with the `sap mode-list no-encap` command.

Examples

The following example shows how to configure SAP on a Gigabit Ethernet interface:

```plaintext
Device# configure terminal
Device(config)# interface gigabitethernet 2/1
Device(config-if)# cts manual
Device(config-if-cts-manual)# sap pmk FFFEE mode-list gcm-encrypt
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cts manual</code></td>
<td>Enables an interface for CTS.</td>
</tr>
<tr>
<td><code>show cts interface</code></td>
<td>Displays Cisco TrustSec interface configuration statistics.</td>
</tr>
</tbody>
</table>
show cts credentials

To display the Cisco TrustSec (CTS) device ID, use the show cts credentials command in EXEC or privileged EXEC mode.

show cts credentials

Syntax Description
This command has no commands or keywords.

Command Modes
Privileged EXEC (#) User EXEC (>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
The following example displays output:

Device# show cts credentials

CTS password is defined in keystore, device-id = r4

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts credentials</td>
<td>Specifies the TrustSec ID and password.</td>
</tr>
</tbody>
</table>
show cts interface

To display Cisco TrustSec (CTS) configuration statistics for an interface(s), use the `show cts interface` command in EXEC or privileged EXEC mode.

`show cts interface [{GigabitEthernet port | Vlan number | brief | summary}]`

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>port</code></td>
<td>(Optional) Gigabit Ethernet interface number. A verbose status output for this interface is returned.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>(Optional) VLAN interface number from 1 to 4095.</td>
</tr>
<tr>
<td><code>brief</code></td>
<td>(Optional) Displays abbreviated status for all CTS interfaces.</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>(Optional) Displays a tabular summary of all CTS interfaces with 4 or 5 key status fields for each interface.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

- EXEC (`>`)
- Privileged EXEC (`#`)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show cts interface` command without keywords to display verbose status for all CTS interfaces.

Examples

The following example displays output without using a keyword (verbose status for all CTS interfaces):

```
Device# show cts interface
Global Dot1x feature is Disabled
Interface GigabitEthernet0/1/0:
  CTS is enabled, mode: MANUAL
  IFC state: OPEN
  Interface Active for 00:00:18.232
  Authentication Status: NOT APPLICABLE
  Peer identity: "unknown"
  Peer's advertised capabilities: ""
  Authorization Status: NOT APPLICABLE
  SAP Status: NOT APPLICABLE
  Configured pairwise ciphers:
    gcm=encrypt
    null
  Replay protection: enabled
  Replay protection mode: STRICT
  Selected cipher:
```
Propagate SGT: Enabled

Cache Info:
Cache applied to link : NONE

Statistics:
authc success: 0
authc reject: 0
authc failure: 0
authc no response: 0
authc logoff: 0
sap success: 0
sap fail: 0
authz success: 0
authz fail: 0
port auth fail: 0

Ingress:
control frame bypassed: 0
sap frame bypassed: 0
esp packets: 0
unknown sa: 0
invalid sa: 0
inverse binding failed: 0
auth failed: 0
replay error: 0

Egress:
control frame bypassed: 0
esp packets: 0
sgt filtered: 0
unknown sa bypassed: 0

The following example displays output using the brief keyword:

Device# show cts interface brief

Global Dot1x feature is Disabled
Interface GigabitEthernet0/1/0:
 CTS is enabled, mode: MANUAL
 IFC state: OPEN
 Interface Active for 00:00:40.386
 Authentication Status: NOT APPLICABLE
 Peer identity: "unknown"
 Peer’s advertised capabilities: ""
 Authorization Status: NOT APPLICABLE
 SAP Status: NOT APPLICABLE
 Propagate SGT: Enabled
 Cache Info:
 Cache applied to link : NONE

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts manual</td>
<td>Enables an interface for CTS.</td>
</tr>
<tr>
<td>cts xsp enable</td>
<td>Configures SXP on a network device.</td>
</tr>
<tr>
<td>propagate sgt</td>
<td>Enables Security Group Tag (SGT) propagation at Layer 2 on Cisco TrustSec Security (CTS) interfaces.</td>
</tr>
</tbody>
</table>
show cts role-based counters

To display Security Group access control list (ACL) enforcement statistics, use the `show cts role-based counters` command in user EXEC or privileged EXEC mode.

```
show cts role-based counters [{default [{ipv4 | ipv6}]}] [{from {sgt-number | unknown} [{ipv4 | ipv6} | to | {sgt-number | unknown} [{ipv4 | ipv6}]}] [{to {sgt-number | unknown} [{ipv4 | ipv6}]}] [{ipv4 | ipv6}]
```

Syntax Description

- `default` (Optional) Displays information about the default policy counters.
- `from` (Optional) Displays information about the source security group.
- `ipv4` (Optional) Displays information about security groups on IPv4 networks.
- `ipv6` (Optional) Displays information about security groups on IPv6 networks.
- `to` (Optional) Displays information about the destination security group.
- `sgt-number` (Optional) Security Group Tag number. Valid values are from 0 to 65533.
- `unknown` (Optional) Displays information about all source groups.

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `clear cts role-based counters` command to reset all or a range of statistics.

Specify the source SGT with the `from` keyword and the destination SGT with the `to` keyword. All statistics are displayed when both the `from` and `to` keywords are omitted.

The `default` keyword displays the statistics of the default unicast policy. When neither `ipv4` nor `ipv6` keywords are specified, this command displays only IPv4 counters.

In Cisco TrustSec monitor mode, permitted traffic counters are displayed under the SW-Permitt label and the denied traffic counters are displayed under SW-Monitor label.
Example

The following is sample output from the `show cts role-based counters` command.

```
Device# show cts role-based counters

Role-based IPv4 counters
From   To   SW-Denied   HW-Denied   SW-Permitt   HW-Permitt   SW-Monitor   HW-Monitor
12     24     0           0           0            0            0            0
12     77     0           0           5            0            0            0
```

The table below lists the significant fields shown in the display.

Table 6: show cts role-based counters Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>Source security group.</td>
</tr>
<tr>
<td>To</td>
<td>Destination security group.</td>
</tr>
<tr>
<td>SW-Permitt</td>
<td>Permitted traffic counters.</td>
</tr>
<tr>
<td>SW-Monitor</td>
<td>Denied traffic counters.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear role-basedcounters</td>
<td>Resets SGACL statistic counters.</td>
</tr>
<tr>
<td>cts role-based</td>
<td>Maps IP addresses, Layer 3 interfaces, and VRFs to SGTs. Enables Cisco TrustSec caching and SGACL enforcement.</td>
</tr>
</tbody>
</table>
show cts role-based permissions

To display the role-based (security group) access control permission list, use the `show cts role-based permissions` command in privileged EXEC mode.

```
show cts role-based permissions [{default [{details | ipv4 [details] | ipv6 [details]}] | from [{sgt | unknown} [{ipv4 | ipv6 | to {sgt | unknown} [{details | ipv4 [details] | ipv6 [details]}]]}] | ipv4 | ipv6 | platform | to {sgt | unknown} [{ipv4 | ipv6}]]
```

Syntax Description

- `default` (Optional) Displays information about the default permission list.
- `details` (Optional) Displays attached access control list (ACL) details.
- `ipv4` (Optional) Displays information about the IPv4 protocol.
- `ipv6` (Optional) Displays information about the IPv6 protocol.
- `from` (Optional) Displays information about the source group.
- `sgt` (Optional) Security Group Tag. Valid values are from 2 to 65519.
- `to` (Optional) Displays information about the destination group.
- `unknown` (Optional) Displays information about unknown source and destination groups.
- `platform` (Optional) Displays information about the platform.

Command Modes

Privileged EXE (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command displays the content of the SGACL permission matrix. You can specify the source security group tag (SGT) by using the `from` keyword and the destination SGT by using the `to` keyword. When both these keywords are specified RBACLs of a single cell are displayed. An entire column is displayed when only the `to` keyword is used. An entire row is displayed when the `from` keyword is used. The entire permission matrix is displayed when both the `from` and `to` keywords are omitted.

The command output is sorted by destination SGT as a primary key and the source SGT as a secondary key. SGACLs for each cell is displayed in the same order they are defined in the configuration or acquired from Cisco Identity Services Engine (ISE).

The `details` keyword is provided when a single cell is selected by specifying both `from` and `to` keywords. When the `details` keyword is specified the access control entries of SGACLs of a single cell are displayed.

The following is sample output from the `show role-based permissions` command:

```
Device# show cts role-based permissions
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
IPv4 Role-based permissions default (monitored):
default_sgacl-02
Permit IP-00
IPv4 Role-based permissions from group 305:sgt to group 306:dgt (monitored):
test_reg tcp permit-02
RBACL Monitor All for Dynamic Policies : TRUE
RBACL Monitor All for Configured Policies : FALSE
IPv4 Role-based permissions from group 6:SGT_6 to group 6:SGT_6 (configured):
 mon_1
IPv4 Role-based permissions from group 10 to group 11 (configured):
 mon_2
RBACL Monitor All for Dynamic Policies : FALSE
RBACL Monitor All for Configured Policies : FALSE

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts role-based permissions</td>
<td>Enables permissions from a source group to a destination group.</td>
</tr>
<tr>
<td>cts role-based monitor</td>
<td>Enables role-based access list monitoring.</td>
</tr>
</tbody>
</table>
show cts server-list

To display the list of RADIUS servers available to Cisco TrustSec (CTS) seed and nonseed devices, use the show cts server-list command in user EXEC or privileged EXEC mode.

show cts server-list

Syntax Description
This command has no commands or keywords.

Command Modes
Privileged EXEC (#) User EXEC (>)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command is useful for gathering CTS RADIUS server address and status information.

Examples
The following example displays the CTS RADIUS server list:

Device> show cts server-list
CTS Server Radius Load Balance = DISABLED
Server Group Deadtime = 20 secs (default)
Global Server Liveness Automated Test Deadtime = 20 secs
Global Server Liveness Automated Test Idle Time = 60 mins
Global Server Liveness Automated Test = ENABLED (default)
Preferred list, 1 server(s):
 *Server: 10.0.1.6, port 1812, A-ID 1100E046659D4275B644BF946EFA49CD
 Status = ALIVE
 auto-test = TRUE, idle-time = 60 mins, deadtime = 20 secs
Installed list: ACSServerList1-0001, 1 server(s):
 *Server: 101.0.2.61, port 1812, A-ID 1100E046659D4275B644BF946EFA49CD
 Status = ALIVE
 auto-test = TRUE, idle-time = 60 mins, deadtime = 20 secs

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address ipv4 (config-radius-server)</td>
<td>Configures the RADIUS server accounting and authentication parameters for PAC provisioning.</td>
</tr>
<tr>
<td>pac key</td>
<td>Specifies the PAC encryption key.</td>
</tr>
</tbody>
</table>
show cts sxp

To display Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (CTS-SXP) connection or source IP-to-SGT mapping information, use the `show cts sxp` command in user EXEC or privileged EXEC mode.

```
show cts sxp {connections[{brief | vrf instance-name}] | filter-group [{detailed | global | listener | speaker}] | filter-list filter-list-name | sgt-map [{brief | vrf instance-name}] [{brief | vrf instance-name}]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connections</td>
<td>Displays Cisco TrustSec SXP connections information.</td>
</tr>
<tr>
<td>brief</td>
<td>(Optional) Displays an abbreviation of the SXP information.</td>
</tr>
<tr>
<td>vrf instance-name</td>
<td>(Optional) Displays the SXP information for the specified Virtual Routing and Forwarding (VRF) instance name.</td>
</tr>
<tr>
<td>filter-group</td>
<td>(Optional) Displays filter group information.</td>
</tr>
<tr>
<td>listener</td>
<td>global</td>
</tr>
<tr>
<td>filter-list filter-list-name</td>
<td>(Optional) Displays the IP-to-SGT mappings received through SXP.</td>
</tr>
<tr>
<td>sgt-map</td>
<td>(Optional) Displays the IP-to-SGT mappings received through SXP.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example displays the SXP connections using the `brief` keyword:

```
Device# show cts sxp connection brief
SXP : Enabled
Default Password : Set
Default Source IP: Not Set
Connection retry open period: 10 secs
Reconcile period: 120 secs
Retry open timer is not running
----------------------------------------------------------------------------
Peer_IP Source_IP Conn Status Duration
----------------------------------------------------------------------------
10.10.10.1 10.10.10.2 On 0:00:02:14 (dd:hr:mm:sec)
10.10.2.1 10.10.2.2 On 0:00:02:14 (dd:hr:mm:sec)
Total num of SXP Connections = 2
```
The following example displays the CTS-SXP connections:

Device# show cts sxp connections

SXP : Enabled
Default Password : Set
Default Source IP: Not Set
Connection retry open period: 10 secs
Reconcile period: 120 secs
Retry open timer is not running
--
Peer IP : 10.10.10.1
Source IP : 10.10.10.2
Set up : Peer
Conn status : On
Connection mode : SXP Listener
Connection inst# : 1
TCP conn fd : 1
TCP conn password: not set (using default SXP password)
Duration since last state change: 0:00:01:25 (dd:hr:mm:sec)
--
Peer IP : 10.10.2.1
Source IP : 10.10.2.2
Set up : Peer
Conn status : On
Connection mode : SXP Listener
TCP conn fd : 2
TCP conn password: not set (using default SXP password)
Duration since last state change: 0:00:01:25 (dd:hr:mm:sec)
Total num of SXP Connections = 2

The following example displays the CTS-SXP connections for a bi-directional connection when the device is both the speaker and listener:

Device# show cts sxp connections

SXP : Enabled
Highest Version Supported: 4
Default Password : Set
Default Source IP: Not Set
Connection retry open period: 120 secs
Reconcile period: 120 secs
Retry open timer is running
--
Peer IP : 2.0.0.2
Source IP : 1.0.0.2
Conn status : On (Speaker) :: On (Listener)
Conn version : 4
Local mode : Both
Connection inst# : 1
TCP conn fd : 1(Speaker) 3(Listener)
TCP conn password: default SXP password
Duration since last state change: 1:03:38:03 (dd:hr:mm:sec) :: 0:00:00:46 (dd:hr:mm:sec)

The following example displays output from a CTS-SXP listener with a torn down connection to the SXP speaker. Source IP-to-SGT mappings are held for 120 seconds, the default value of the delete hold down timer.

Device# show cts sxp connections
SXP: Enabled
Default Password: Set
Default Source IP: Not Set
Connection retry open period: 10 secs
Reconcile period: 120 secs
Retry open timer is not running

Peer IP: 10.10.10.1
Source IP: 10.10.10.2
Set up: Peer
Conn status: Delete_Hold_Down
Connection mode: SXP Listener
Connection inst#: 1
TCP conn fd: -1
TCP conn password: not set (using default SXP password)
Delete hold down timer is running
Duration since last state change: 0:00:00:16 (dd:hr:mm:sec)

Peer IP: 10.10.2.1
Source IP: 10.10.2.2
Set up: Peer
Conn status: On
Connection inst#: 1
TCP conn fd: 2
TCP conn password: not set (using default SXP password)
Duration since last state change: 0:00:05:49 (dd:hr:mm:sec)
Total num of SXP Connections = 2

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cts xsp connection peer</code></td>
<td>Enters the Cisco TrustSec SXP peer IP address and specifies if a password is used for the peer connection</td>
</tr>
<tr>
<td><code>cts xsp default password</code></td>
<td>Configures the Cisco TrustSec SXP default password.</td>
</tr>
<tr>
<td><code>cts xsp default source-ip</code></td>
<td>Configures the Cisco TrustSec SXP source IPv4 address.</td>
</tr>
<tr>
<td><code>cts xsp enable</code></td>
<td>Enables Cisco TrustSec SXP on a device.</td>
</tr>
<tr>
<td><code>cts xsp log</code></td>
<td>Enables logging for IP-to-SGT binding changes.</td>
</tr>
<tr>
<td><code>cts xsp reconciliation</code></td>
<td>Changes the Cisco TrustSec SXP reconciliation period.</td>
</tr>
<tr>
<td><code>cts xsp retry</code></td>
<td>Changes the Cisco TrustSec SXP retry period timer.</td>
</tr>
</tbody>
</table>
show cts sxp
PART II

Interface and Hardware Components

• Interface and Hardware Commands, on page 65
Interface and Hardware Commands

- bluetooth pin, on page 68
- clear coap database, on page 69
- clear macro auto configuration, on page 70
- coap endpoint (coap-proxy configuration), on page 71
- debug coap, on page 72
- device classifier, on page 73
- debug ilpower, on page 74
- debug interface, on page 75
- debug lldp packets, on page 76
- debug platform poe, on page 77
- debug platform software fed switch active punt packet-capture start, on page 78
- duplex, on page 79
- errdisable detect cause, on page 81
- errdisable recovery cause, on page 83
- errdisable recovery cause, on page 85
- interface, on page 87
- interface range, on page 89
- ip mtu, on page 91
- ipv6 mtu, on page 92
- list (coap-proxy configuration), on page 93
- lldp (interface configuration), on page 94
- logging event power-inline-status, on page 96
- macro, on page 97
- macro auto, on page 100
- macro auto apply (Cisco IOS shell scripting capability), on page 103
- macro auto config (Cisco IOS shell scripting capability), on page 105
- macro auto control, on page 106
- macro auto execute, on page 108
- macro auto global control, on page 115
- macro auto global processing, on page 117
- macro auto mac-address-group, on page 118
- macro auto processing, on page 120
- macro auto sticky, on page 121
• macro auto trigger, on page 122
• macro description, on page 123
• macro global, on page 124
• macro global description, on page 126
• max-endpoints (coap-proxy configuration), on page 127
• mdix auto, on page 128
• network-policy, on page 129
• network-policy profile (global configuration), on page 130
• port-dtls (coap-proxy configuration), on page 131
• port-unsecure (coap-proxy configuration), on page 132
• power-priority, on page 133
• power inline, on page 135
• power inline police, on page 138
• power supply, on page 140
• resource directory (coap-proxy configuration), on page 142
• security (coap-proxy configuration), on page 143
• shell trigger, on page 144
• show beacon all, on page 145
• show coap dtls endpoints, on page 146
• show coap endpoints, on page 147
• show coap globals, on page 148
• show coap resources, on page 149
• show coap stats, on page 150
• show coap version, on page 151
• show device classifier attached, on page 152
• show device classifier clients, on page 154
• show device classifier profile type, on page 155
• show env, on page 158
• show err disable detect, on page 161
• show err disable recovery, on page 163
• show ip interface, on page 164
• show interfaces, on page 169
• show interfaces counters, on page 174
• show interfaces switchport, on page 176
• show interfaces transceiver, on page 178
• show macro auto, on page 182
• show memory platform, on page 185
• show module, on page 188
• show network-policy profile, on page 189
• show parser macro, on page 190
• show platform hardware bluetooth, on page 193
• show platform hardware fed switch forward interface, on page 194
• show platform resources, on page 197
• show platform software audit, on page 198
• show platform software fed switch punt cpuq rates, on page 202
• show platform software fed switch punt packet-capture display, on page 204
• show platform software fed switch punt rates interfaces, on page 206
• show platform software ilpower, on page 209
• show platform software memory, on page 211
• show platform software process list, on page 217
• show platform software process memory, on page 221
• show platform software process slot switch, on page 224
• show platform software status control-processor, on page 226
• show platform software thread list, on page 229
• show processes cpu platform, on page 231
• show processes cpu platform history, on page 234
• show processes cpu platform monitor, on page 237
• show processes memory platform, on page 239
• show processes platform, on page 243
• show shell, on page 246
• show system mtu, on page 249
• show tech-support, on page 250
• show tech-support bgp, on page 252
• show tech-support diagnostic, on page 255
• speed, on page 257
• start (coap-proxy configuration), on page 259
• stop (coap-proxy configuration), on page 260
• switchport block, on page 261
• system mtu, on page 262
• transport (coap-proxy configuration), on page 263
• voice-signaling vlan (network-policy configuration), on page 264
• voice vlan (network-policy configuration), on page 266
bluetooth pin

To configure a new Bluetooth pin, use the `bluetooth pin` command in interface configuration or global configuration mode.

```
bluetooth pin pin
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pin</code></td>
<td>Pairing pin for the Bluetooth interface. The pin is a 4-digit number.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface configuration (config-if)</td>
<td></td>
</tr>
<tr>
<td>Global configuration (config)</td>
<td></td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.12.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `bluetooth pin` command can be configured either in the interface configuration or global configuration mode. Cisco recommends using the global configuration mode to configure the Bluetooth pin.

Examples

This example shows how to configure a new Bluetooth pin using the `bluetooth pin` command.

```
Device> enable
Device# configure terminal
Device(config)# bluetooth pin 1111
Device(config)#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show platform hardware bluetooth</code></td>
<td>Displays information about the Bluetooth interface</td>
</tr>
</tbody>
</table>
clear coap database

To clear the CoAP database, use the `clear coap database` command in user EXEC or privileged EXEC mode.

clear coap database

Command Default
This command has no arguments or keywords.

Command Modes
User EXEC (>)
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to clear the coap database:

```
Device(config)# clear coap database
```
clear macro auto configuration

To remove the macro applied configuration from the interfaces, use the `clear macro auto configuration` command.

Note
Before executing the `clear macro auto configuration` command, you must disable Auto SmartPorts on the switch.

```
clear macro auto configuration {all | interface [interface-id]}
```

Syntax Description
- `all`: Removes macro applied configuration from all the interfaces.
- `interface [interface-id]`: Removes macro applied configuration from an interface.

Command Default
This command has no default setting.

Command Modes
User EXEC (>

Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the command to remove configuration applied by macros from all the interfaces or a particular interface on the switch.

You can verify your settings by entering the `show macro auto interface` command in privileged EXEC mode.

Example
This example shows how to remove the configuration from all the switch interfaces:

```
Device(config)# clear macro auto configuration all
```
coap endpoint (coap-proxy configuration)

To configure the COAP Proxy to support multiple IPv4/IPv6 static-endpoints, use the coap endpoint command in coap-proxy configuration mode. To return to the default settings, use the no form of the command.

```
coap endpoint {ipv4 | ipv6}[ip-address]
no coap endpoint {ipv4 | ipv6}[ip-address]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4 ip-address</td>
<td>Specifies IPv4 static endpoint.</td>
</tr>
<tr>
<td>ipv6 ip-address</td>
<td>Specifies IPv6 static endpoint.</td>
</tr>
</tbody>
</table>

Command Modes

coop-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example show how to configure IPv4 static endpoint

```
Device(config)# endpoint ipv4 1.1.1.1
Device(config-coap-proxy)# transport tcp
```
debug coap

To enable debugging of the coap configurations, use the `debug coap` command in privileged EXEC mode.

```
depth coap {all | database | errors | events | packet | trace | warnings}
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Displays all coap debug messages.</td>
</tr>
<tr>
<td>database</td>
<td>Displays coap database debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Displays coap error debug messages.</td>
</tr>
<tr>
<td>events</td>
<td>Displays coap event debug messages.</td>
</tr>
<tr>
<td>packet</td>
<td>Displays coap packet debug messages.</td>
</tr>
<tr>
<td>trace</td>
<td>Displays coap trace debug messages.</td>
</tr>
<tr>
<td>warnings</td>
<td>Displays coap warning debug messages.</td>
</tr>
</tbody>
</table>

Command Default

This command has no arguments or keywords.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

The example shows how to enable debugging for coap database:

```
Device# debug coap database
```
device classifier

To enable the device classifier, use the device classifier command in global configuration mode. Use the no form of this command to disable the device classifier.

device classifier

no device classifier

Command Default

This command is disabled by default.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the no device classifier command, in global configuration mode, to disable the device classifier. You cannot disable the device classifier while it is being used by features such as Auto SmartPorts (ASP).

Example

This example shows how to enable the ASP device classifier on a switch:

```
Device(config)# device classifier
Device(config)# end
```
To enable debugging of the power controller and Power over Ethernet (PoE) system, use the `debug ilpower` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug ilpower  {cdp | event | ha | port | powerman | registries | scp | sense}
no debug ilpower  {cdp | event | ha | port | powerman | registries | scp | sense}
```

Syntax Description
- `cdp` Displays PoE Cisco Discovery Protocol (CDP) debug messages.
- `event` Displays PoE event debug messages.
- `ha` Displays PoE high-availability messages.
- `port` Displays PoE port manager debug messages.
- `powerman` Displays PoE power management debug messages.
- `registries` Displays PoE registries debug messages.
- `scp` Displays PoE SCP debug messages.
- `sense` Displays PoE sense debug messages.

Command Default
Debugging is disabled.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is supported only on PoE-capable switches.

When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the `session switch-number` EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` EXEC command on the active switch to enable debugging on a member switch without first starting a session.
debug interface

To enable debugging of interface-related activities, use the `debug interface` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```plaintext
debug interface {interface-id | counters {exceptions | protocol memory} | null interface-number | port-channel port-channel-number | states | vlan vlan-id}
no debug interface {interface-id | counters {exceptions | protocol memory} | null interface-number | port-channel port-channel-number | states | vlan vlan-id}
```

Syntax Description

- `interface-id`: ID of the physical interface. Displays debug messages for the specified physical port, identified by type switch number/module number/port, for example, gigabitethernet 1/0/2.
- `null interface-number`: Displays debug messages for null interfaces. The interface number is always 0.
- `port-channel port-channel-number`: Displays debug messages for the specified EtherChannel port-channel interface. The `port-channel-number` range is 1 to 48.
- `vlan vlan-id`: Displays debug messages for the specified VLAN. The vlan range is 1 to 4094.
- `counters`: Displays counters debugging information.
- `exceptions`: Displays debug messages when a recoverable exceptional condition occurs during the computation of the interface packet and data rate statistics.
- `protocol memory`: Displays debug messages for memory operations of protocol counters.
- `states`: Displays intermediary debug messages when an interface's state transitions.

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not specify a keyword, all debug messages appear.

The `und debug interface` command is the same as the `no debug interface` command.

When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the `session switch-number` EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` EXEC command on the active switch to enable debugging on a member switch without first starting a session.
To enable debugging of Link Layer Discovery Protocol (LLDP) packets, use the `debug lldp packets` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug lldp packets
no debug lldp packets
```

Syntax Description
This command has no arguments or keywords.

Command Default
Debugging is disabled.

Command Modes
Privileged EXEC (#)

Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `undebug lldp packets` command is the same as the `no debug lldp packets` command.

When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the `session switch-number` EXEC command.

debug platform poe

To enable debugging of a Power over Ethernet (PoE) port, use the `debug platform poe` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug platform poe  [{error | info}]  [switch  switch-number]
no debug platform poe  [{error | info}]  [switch  switch-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>error</td>
<td>(Optional) Displays PoE-related error debug messages.</td>
</tr>
<tr>
<td>info</td>
<td>(Optional) Displays PoE-related information debug messages.</td>
</tr>
<tr>
<td>switch</td>
<td>(Optional) Specifies the stack member. This keyword is supported only on stacking-capable switches.</td>
</tr>
<tr>
<td>switch-number</td>
<td></td>
</tr>
</tbody>
</table>

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `undebug platform poe` command is the same as the `no debug platform poe` command.
debug platform software fed switch active punt packet-capture start

to enable debugging of packets during high CPU utilization, for an active switch, use the debug platform software fed switch active punt packet-capture start command in privileged EXEC mode. To disable debugging of packets during high CPU utilization, for an active switch, use the debug platform software fed switch active punt packet-capture stop command in privileged EXEC mode.

dump platform software fed switch active punt packet-capture start
dump platform software fed switch active punt packet-capture stop

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch active</td>
<td>Displays information about the active switch.</td>
</tr>
<tr>
<td>punt</td>
<td>Specifies the punt information.</td>
</tr>
<tr>
<td>packet-capture</td>
<td>Specifies information about the captured packet.</td>
</tr>
<tr>
<td>start</td>
<td>Enables debugging of the active switch.</td>
</tr>
<tr>
<td>stop</td>
<td>Disables debugging of the active switch.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The dump platform software fed switch active punt packet-capture start command starts the debugging of packets during high CPU utilization. The packet capture is stopped when the 4k buffer size is exceeded.

Examples

The following is a sample output from the dump platform software fed switch active punt packet-capture start command:

Device# dump platform software fed switch active packet-capture start
Punt packet capturing started.

The following is a sample output from the dump platform software fed switch active punt packet-capture stop command:

Device# dump platform software fed switch active packet-capture stop
Punt packet capturing stopped. Captured 101 packet(s)
duplex

To specify the duplex mode of operation for a port, use the `duplex` command in interface configuration mode. To return to the default value, use the `no` form of this command.

```
duplex  {auto | full | half}
no duplex  {auto | full | half}
```

Syntax Description

- **auto** Enables automatic duplex configuration. The port automatically detects whether it should run in full- or half-duplex mode, depending on the attached device mode.

- **full** Enables full-duplex mode.

- **half** Enables half-duplex mode (only for interfaces operating at 10 or 100 Mb/s). You cannot configure half-duplex mode for interfaces operating at 1000 or 10,000 Mb/s.

Command Default

The default is **auto** for Gigabit Ethernet ports.

Duplex options are not supported on the 1000BASE-*x* or 10GBASE-*x* (where -*x* is -BX, -CWDM, -LX, -SX, or -ZX) small form-factor pluggable (SFP) modules.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For Gigabit Ethernet ports, setting the port to **auto** has the same effect as specifying **full** if the attached device does not autonegotiate the duplex parameter.

Note

Half-duplex mode is supported on Gigabit Ethernet interfaces if the duplex mode is **auto** and the connected device is operating at half duplex. However, you cannot configure these interfaces to operate in half-duplex mode.

Certain ports can be configured to be either full duplex or half duplex. How this command is applied depends on the device to which the switch is attached.

If both ends of the line support autonegotiation, we highly recommend using the default autonegotiation settings. If one interface supports autonegotiation and the other end does not, configure duplex and speed on both interfaces, and use the **auto** setting on the supported side.

If the speed is set to **auto**, the switch negotiates with the device at the other end of the link for the speed setting and then forces the speed setting to the negotiated value. The duplex setting remains as configured on each end of the link, which could result in a duplex setting mismatch.

You can configure the duplex setting when the speed is set to **auto**.
Caution
Changing the interface speed and duplex mode configuration might shut down and reenable the interface during the reconfiguration.

You can verify your setting by entering the `show interfaces` privileged EXEC command.

Examples

This example shows how to configure an interface for full-duplex operation:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# duplex full
```
errdisable detect cause

To enable error-disable detection for a specific cause or for all causes, use the `errdisable detect cause` command in global configuration mode. To disable the error-disable detection feature, use the `no` form of this command.

```
errdisable detect cause { all | arp-inspection | bpduguard shutdown vlan | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | pagp-flap | pppoe-ia-rate-limit | psp shutdown vlan | security-violation shutdown vlan | sfp-config-mismatch }
no errdisable detect cause { all | arp-inspection | bpduguard shutdown vlan | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | pagp-flap | pppoe-ia-rate-limit | psp shutdown vlan | security-violation shutdown vlan | sfp-config-mismatch }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables error detection for all error-disabled causes.</td>
</tr>
<tr>
<td>arp-inspection</td>
<td>Enables error detection for dynamic Address Resolution Protocol (ARP) inspection.</td>
</tr>
<tr>
<td>bpduguard shutdown vlan</td>
<td>Enables per-VLAN error-disable for BPDU guard.</td>
</tr>
<tr>
<td>dhcp-rate-limit</td>
<td>Enables error detection for DHCP snooping.</td>
</tr>
<tr>
<td>dtp-flap</td>
<td>Enables error detection for the Dynamic Trunking Protocol (DTP) flapping.</td>
</tr>
<tr>
<td>gbic-invalid</td>
<td>Enables error detection for an invalid Gigabit Interface Converter (GBIC) module.</td>
</tr>
<tr>
<td></td>
<td>Note This error refers to an invalid small form-factor pluggable (SFP) module.</td>
</tr>
<tr>
<td>inline-power</td>
<td>Enables error detection for the Power over Ethernet (PoE) error-disabled cause.</td>
</tr>
<tr>
<td></td>
<td>Note This keyword is supported only on switches with PoE ports.</td>
</tr>
<tr>
<td>link-flap</td>
<td>Enables error detection for link-state flapping.</td>
</tr>
<tr>
<td>loopback</td>
<td>Enables error detection for detected loopbacks.</td>
</tr>
<tr>
<td>pagp-flap</td>
<td>Enables error detection for the Port Aggregation Protocol (PAgP) flap error-disabled cause.</td>
</tr>
<tr>
<td>pppoe-ia-rate-limit</td>
<td>Enables error detection for the PPPoE Intermediate Agent rate-limit error-disabled cause.</td>
</tr>
<tr>
<td>psp shutdown vlan</td>
<td>Enables error detection for protocol storm protection (PSP).</td>
</tr>
<tr>
<td>security-violation shutdown vlan</td>
<td>Enables voice aware 802.1x security.</td>
</tr>
<tr>
<td>sfp-config-mismatch</td>
<td>Enables error detection on an SFP configuration mismatch.</td>
</tr>
</tbody>
</table>
Command Default

Detection is enabled for all causes. All causes, except per-VLAN error disabling, are configured to shut down the entire port.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A cause (such as a link-flap or dhcp-rate-limit) is the reason for the error-disabled state. When a cause is detected on an interface, the interface is placed in an error-disabled state, an operational state that is similar to a link-down state.

When a port is error-disabled, it is effectively shut down, and no traffic is sent or received on the port. For the bridge protocol data unit (BPDU) guard, voice-aware 802.1x security, and port-security features, you can configure the switch to shut down only the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.

If you set a recovery mechanism for the cause by entering the `errdisable recovery` global configuration command, the interface is brought out of the error-disabled state and allowed to retry the operation when all causes have timed out. If you do not set a recovery mechanism, you must enter the `shutdown` and then the `no shutdown` commands to manually recover an interface from the error-disabled state.

For protocol storm protection, excess packets are dropped for a maximum of two virtual ports. Virtual port error disabling using the `psp` keyword is not supported for EtherChannel and Flexlink interfaces.

To verify your settings, enter the `show errdisable detect` privileged EXEC command.

This example shows how to enable error-disabled detection for the link-flap error-disabled cause:

```
Device(config)# errdisable detect cause link-flap
```

This command shows how to globally configure BPDU guard for a per-VLAN error-disabled state:

```
Device(config)# errdisable detect cause bpduguard shutdown vlan
```

This command shows how to globally configure voice-aware 802.1x security for a per-VLAN error-disabled state:

```
Device(config)# errdisable detect cause security-violation shutdown vlan
```

You can verify your setting by entering the `show errdisable detect` privileged EXEC command.
errdisable recovery cause

To enable the error-disabled mechanism to recover from a specific cause, use the `errdisable recovery cause` command in global configuration mode. To return to the default setting, use the `no` form of this command.

```
errdisable recovery cause {all | arp-inspection | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | psp | security-violation | sfp-config-mismatch | storm-control | udld}

no errdisable recovery cause {all | arp-inspection | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | psp | security-violation | sfp-config-mismatch | storm-control | udld}
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Enables the timer to recover from all error-disabled causes.</td>
</tr>
<tr>
<td><code>arp-inspection</code></td>
<td>Enables the timer to recover from the Address Resolution Protocol (ARP) inspection error-disabled state.</td>
</tr>
<tr>
<td><code>bpduguard</code></td>
<td>Enables the timer to recover from the bridge protocol data unit (BPDU) guard error-disabled state.</td>
</tr>
<tr>
<td><code>channel-misconfig</code></td>
<td>Enables the timer to recover from the EtherChannel misconfiguration error-disabled state.</td>
</tr>
<tr>
<td><code>dhcp-rate-limit</code></td>
<td>Enables the timer to recover from the DHCP snooping error-disabled state.</td>
</tr>
<tr>
<td><code>dtp-flap</code></td>
<td>Enables the timer to recover from the Dynamic Trunking Protocol (DTP) flap error-disabled state.</td>
</tr>
<tr>
<td><code>gbic-invalid</code></td>
<td>Enables the timer to recover from an invalid Gigabit Interface Converter (GBIC) module error-disabled state.</td>
</tr>
<tr>
<td></td>
<td>Note This error refers to an invalid small form-factor pluggable (SFP) error-disabled state.</td>
</tr>
<tr>
<td><code>inline-power</code></td>
<td>Enables the timer to recover from the Power over Ethernet (PoE) error-disabled state.</td>
</tr>
<tr>
<td></td>
<td>This keyword is supported only on switches with PoE ports.</td>
</tr>
<tr>
<td><code>link-flap</code></td>
<td>Enables the timer to recover from the link-flap error-disabled state.</td>
</tr>
<tr>
<td><code>loopback</code></td>
<td>Enables the timer to recover from a loopback error-disabled state.</td>
</tr>
<tr>
<td><code>mac-limit</code></td>
<td>Enables the timer to recover from the mac limit error-disabled state.</td>
</tr>
<tr>
<td><code>pagp-flap</code></td>
<td>Enables the timer to recover from the Port Aggregation Protocol (PAgP)-flap error-disabled state.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td><code>port-mode-failure</code></td>
<td>Enables the timer to recover from the port mode change failure error-disabled state.</td>
</tr>
<tr>
<td><code>pppoe-ia-rate-limit</code></td>
<td>Enables the timer to recover from the PPPoE IA rate limit error-disabled state.</td>
</tr>
<tr>
<td><code>psecure-violation</code></td>
<td>Enables the timer to recover from a port security violation disable state.</td>
</tr>
<tr>
<td><code>psp</code></td>
<td>Enables the timer to recover from the protocol storm protection (PSP) error-disabled state.</td>
</tr>
<tr>
<td><code>security-violation</code></td>
<td>Enables the timer to recover from an IEEE 802.1x-violation disabled state.</td>
</tr>
<tr>
<td><code>sfp-config-mismatch</code></td>
<td>Enables error detection on an SFP configuration mismatch.</td>
</tr>
<tr>
<td><code>storm-control</code></td>
<td>Enables the timer to recover from a storm control error.</td>
</tr>
<tr>
<td><code>udld</code></td>
<td>Enables the timer to recover from the UniDirectional Link Detection (UDLD) error-disabled state.</td>
</tr>
</tbody>
</table>

Command Default

Recovery is disabled for all causes.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A cause (such as all or BDPU guard) is defined as the reason that the error-disabled state occurred. When a cause is detected on an interface, the interface is placed in the error-disabled state, an operational state similar to link-down state.

When a port is error-disabled, it is effectively shut down, and no traffic is sent or received on the port. For the BPDU guard and port-security features, you can configure the switch to shut down only the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.

If you do not enable the recovery for the cause, the interface stays in the error-disabled state until you enter the `shutdown` and the `no shutdown` interface configuration commands. If you enable the recovery for a cause, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out.

Otherwise, you must enter the `shutdown` and then the `no shutdown` commands to manually recover an interface from the error-disabled state.

You can verify your settings by entering the `show errdisable recovery` privileged EXEC command.

Examples

This example shows how to enable the recovery timer for the BPDU guard error-disabled cause:

```
Device# configure terminal
Device(config)# errdisable recovery cause bpduguard
```
errdisable recovery cause

To enable the error-disabled mechanism to recover from a specific cause, use the **errdisable recovery cause** command in global configuration mode. To return to the default setting, use the no form of this command.

```
errdisable recovery cause {all | arp-inspection | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | psp | security-violation | sfp-config-mismatch | storm-control | udld}
```

```
no errdisable recovery cause {all | arp-inspection | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | link-flap | loopback | mac-limit | pagp-flap | port-mode-failure | pppoe-ia-rate-limit | psecure-violation | psp | security-violation | sfp-config-mismatch | storm-control | udld}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables the timer to recover from all error-disabled causes.</td>
</tr>
<tr>
<td>arp-inspection</td>
<td>Enables the timer to recover from the Address Resolution Protocol (ARP) inspection error-disabled state.</td>
</tr>
<tr>
<td>bpduguard</td>
<td>Enables the timer to recover from the bridge protocol data unit (BPDU) guard error-disabled state.</td>
</tr>
<tr>
<td>channel-misconfig</td>
<td>Enables the timer to recover from the EtherChannel misconfiguration error-disabled state.</td>
</tr>
<tr>
<td>dhcp-rate-limit</td>
<td>Enables the timer to recover from the DHCP snooping error-disabled state.</td>
</tr>
<tr>
<td>dtp-flap</td>
<td>Enables the timer to recover from the Dynamic Trunking Protocol (DTP) flap error-disabled state.</td>
</tr>
<tr>
<td>gbic-invalid</td>
<td>Enables the timer to recover from an invalid Gigabit Interface Converter (GBIC) module error-disabled state.</td>
</tr>
<tr>
<td>inline-power</td>
<td>Enables the timer to recover from the Power over Ethernet (PoE) error-disabled state.</td>
</tr>
<tr>
<td>link-flap</td>
<td>Enables the timer to recover from the link-flap error-disabled state.</td>
</tr>
<tr>
<td>loopback</td>
<td>Enables the timer to recover from a loopback error-disabled state.</td>
</tr>
<tr>
<td>mac-limit</td>
<td>Enables the timer to recover from the mac limit error-disabled state.</td>
</tr>
<tr>
<td>pagp-flap</td>
<td>Enables the timer to recover from the Port Aggregation Protocol (PAgP)-flap error-disabled state.</td>
</tr>
</tbody>
</table>

Note
This error refers to an invalid small form-factor pluggable (SFP) error-disabled state.
<table>
<thead>
<tr>
<th>Cause</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-mode-failure</td>
<td>Enables the timer to recover from the port mode change failure error-disabled state.</td>
</tr>
<tr>
<td>pppoe-ia-rate-limit</td>
<td>Enables the timer to recover from the PPPoE IA rate limit error-disabled state.</td>
</tr>
<tr>
<td>psecure-violation</td>
<td>Enables the timer to recover from a port security violation disable state.</td>
</tr>
<tr>
<td>psp</td>
<td>Enables the timer to recover from the protocol storm protection (PSP) error-disabled state.</td>
</tr>
<tr>
<td>security-violation</td>
<td>Enables the timer to recover from an IEEE 802.1x-violation disabled state.</td>
</tr>
<tr>
<td>sfp-config-mismatch</td>
<td>Enables error detection on an SFP configuration mismatch.</td>
</tr>
<tr>
<td>storm-control</td>
<td>Enables the timer to recover from a storm control error.</td>
</tr>
<tr>
<td>udld</td>
<td>Enables the timer to recover from the UniDirectional Link Detection (UDLD) error-disabled state.</td>
</tr>
</tbody>
</table>

Command Default

Recovery is disabled for all causes.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A cause (such as all or BDPU guard) is defined as the reason that the error-disabled state occurred. When a cause is detected on an interface, the interface is placed in the error-disabled state, an operational state similar to link-down state.

When a port is error-disabled, it is effectively shut down, and no traffic is sent or received on the port. For the BPDU guard and port-security features, you can configure the switch to shut down only the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.

If you do not enable the recovery for the cause, the interface stays in the error-disabled state until you enter the **shutdown** and the **no shutdown** interface configuration commands. If you enable the recovery for a cause, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out.

Otherwise, you must enter the **shutdown** and then the **no shutdown** commands to manually recover an interface from the error-disabled state.

You can verify your settings by entering the **show errdisable recovery** privileged EXEC command.

Examples

This example shows how to enable the recovery timer for the BPDU guard error-disabled cause:

```
Device# configure terminal
Device(config)# errdisable recovery cause bpduguard
```
interface

To configure an interface, use the `interface` command.

```bash
interface {AccessTunnel interface-number | Auto-Template interface-number | GigabitEthernet switch-number/slot-number/port-number | Internal Interface Internal Interface number | LISP interface-number Loopback interface-number Null interface-number Port-channel interface-number TenGigabitEthernet switch-number/slot-number/port-number TwentyFiveGigE switch-number/slot-number/port-number Tunnel interface-number Vlan interface-number }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccessTunnel interface-number</td>
<td>Enables you to configure an access tunnel interface.</td>
</tr>
<tr>
<td>Auto-Template interface-number</td>
<td>Enables you to configure a auto-template interface. The range is from 1 to 999.</td>
</tr>
<tr>
<td>GigabitEthernet switch-number/slot-number/port-number</td>
<td>Enables you to configure a Gigabit Ethernet IEEE 802.3z interface.</td>
</tr>
<tr>
<td></td>
<td>• switch-number — Switch ID. The range is from 1 to 8.</td>
</tr>
<tr>
<td></td>
<td>• slot-number — Slot number. The range is from 0 to 1.</td>
</tr>
<tr>
<td></td>
<td>• port-number — Port number. The range is from 1 to 48.</td>
</tr>
<tr>
<td>LISP interface-number</td>
<td>Enables you to configure a LISP interface.</td>
</tr>
<tr>
<td>Loopback interface-number</td>
<td>Enables you to configure a loopback interface. The range is from 0 to 2147483647.</td>
</tr>
<tr>
<td>Null interface-number</td>
<td>Enables you to configure a null interface. The default value is 0.</td>
</tr>
<tr>
<td>Port-channel interface-number</td>
<td>Enables you to configure a port-channel interface. The range is from 1 to 128.</td>
</tr>
<tr>
<td>TenGigabitEthernet switch-number/slot-number/port-number</td>
<td>Enables you to configure a 10-Gigabit Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>• switch-number — Switch ID. The range is from 1 to 8.</td>
</tr>
<tr>
<td></td>
<td>• slot-number — Slot number. The range is from 0 to 1.</td>
</tr>
<tr>
<td></td>
<td>• port-number — Port number. The ranges are 1 to 4, 17 to 24, and 37 to 48.</td>
</tr>
</tbody>
</table>
TwentyFiveGigE

`switch-number/slot-number/port-number`
Enables you to configure a 25-Gigabit Ethernet interface.

- **switch-number** — Switch ID. The range is from 1 to 8.
- **slot-number** — Slot number. Value is 1.
- **port-number** — Port number. The range is from 1 to 2.

Tunnel `interface-number`
Enables you to configure a tunnel interface. The range is from 0 to 2147483647.

Vlan `interface-number`
Enables you to configure a switch VLAN. The range is from 1 to 4094.

Command Default

None

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td>The TwentyFiveGigE keyword was added to the command.</td>
</tr>
</tbody>
</table>

Usage Guidelines

- You cannot use the "no" form of this command.
- The range for uplink ports is 0-4.
- The range for multi-Gigabit Ethernet ports on 24-port switches is 17-24.
- The range for multi-Gigabit Ethernet ports on 48-port switches is 41-48.

Examples

The following example shows how to configure a tunnel interface:
```
Device(config)# interface Tunnel 15
Device(config-if)#
```

The following example shows how to configure a 25-Gigabit Ethernet interface
```
Device(config)# interface TwentyFiveGigE 1/1/1
Device(config-if)#
```

The following example shows how to configure a 40-Gigabit Ethernet interface
interface range

To configure an interface range, use the interface range command.

```
interface range { GigabitEthernet switch-number/slot-number/port-number | Loopback interface-number
Null interface-number Port-channel interface-number TenGigabitEthernet
switch-number/slot-number/port-number TwentyFiveGigE switch-number/slot-number/port-number Tunnel
interface-number Vlan interface-number }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet switch-number/slot-number/port-number</td>
<td>Enables you to configure a Gigabit Ethernet IEEE 802.3z interface.</td>
</tr>
<tr>
<td></td>
<td>• switch-number — Switch ID. The range is from 1 to 8.</td>
</tr>
<tr>
<td></td>
<td>• slot-number — Slot number. The range is from 0 to 1.</td>
</tr>
<tr>
<td></td>
<td>• port-number — Port number. The range is from 0 to 48.</td>
</tr>
<tr>
<td>Loopback interface-number</td>
<td>Enables you to configure a loopback interface. The range is from 0 to 2147483647.</td>
</tr>
<tr>
<td>Port-channel interface-number</td>
<td>Enables you to configure a port-channel interface. The range is from 1 to 48.</td>
</tr>
<tr>
<td>TenGigabitEthernet switch-number/slot-number/port-number</td>
<td>Enables you to configure a 10-Gigabit Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>• switch-number — Switch ID. The range is from 1 to 8.</td>
</tr>
<tr>
<td></td>
<td>• slot-number — Slot number. The range is from 0 to 1.</td>
</tr>
<tr>
<td></td>
<td>• port-number — Port number. The range are 1 to 4, 17 to 24, and 37 to 48.</td>
</tr>
<tr>
<td>TwentyFiveGigE switch-number/slot-number/port-number</td>
<td>Enables you to configure a 25-Gigabit Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>• switch-number — Switch ID. The range is from 1 to 8.</td>
</tr>
<tr>
<td></td>
<td>• slot-number — Slot number. Value is 1.</td>
</tr>
<tr>
<td></td>
<td>• port-number — Port number. The range is from 1 to 2.</td>
</tr>
<tr>
<td>Tunnel interface-number</td>
<td>Enables you to configure a tunnel interface. The range is from 0 to 2147483647.</td>
</tr>
</tbody>
</table>
Vlan interface-number

Enables you to configure a switch VLAN. The range is from 1 to 4094.

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Modes</td>
<td>Global configuration (config)</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td>The TwentyFiveGigE keyword was added to the command.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The range for uplink ports is 0-4.

The range for multi-Gigabit Ethernet ports on 24-port switches is 17-24.

The range for multi-Gigabit Ethernet ports on 48-port switches is 41-48.

Examples

This example shows how you can configure interface range:

```
Device(config)# interface range vlan 1-100
```
ip mtu

To set the IP maximum transmission unit (MTU) size of routed packets on all routed ports of the switch or switch stack, use the `ip mtu` command in interface configuration mode. To restore the default IP MTU size, use the `no` form of this command.

```
  ip  mtu  bytes
  no ip mtu bytes
```

Syntax Description

`bytes` MTU size, in bytes. The range is from 68 up to the system MTU value (in bytes).

Command Default

The default IP MTU size for frames received and sent on all switch interfaces is 1500 bytes.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The upper limit of the IP value is based on the switch or switch stack configuration and refers to the currently applied system MTU value. For more information about setting the MTU sizes, see the `system mtu` global configuration command.

To return to the default IP MTU setting, you can apply the `default ip mtu` command or the `no ip mtu` command on the interface.

You can verify your setting by entering the `show ip interface interface-id` or `show interfaces interface-id` privileged EXEC command.

The following example sets the maximum IP packet size for VLAN 200 to 1000 bytes:

```
Device(config)# interface vlan 200
Device(config-if)# ip mtu 1000
```

The following example sets the maximum IP packet size for VLAN 200 to the default setting of 1500 bytes:

```
Device(config)# interface vlan 200
Device(config-if)# default ip mtu
```

This is an example of partial output from the `show ip interface interface-id` command. It displays the current IP MTU setting for the interface.

```
Device# show ip interface gigabitethernet4/0/1
GigabitEthernet4/0/1 is up, line protocol is up
  Internet address is 18.0.0.1/24
  Broadcast address is 255.255.255.255
  Address determined by setup command
  MTU is 1500 bytes
  Helper address is not set
<output truncated>
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
ipv6 mtu

To set the IPv6 maximum transmission unit (MTU) size of routed packets on all routed ports of the switch or switch stack, use the `ipv6 mtu` command in interface configuration mode. To restore the default IPv6 MTU size, use the `no` form of this command.

```
ipv6 mtu  bytes  
no ipv6 mtu  bytes  
```

Syntax Description

- `bytes` MTU size, in bytes. The range is from 1280 up to the system MTU value (in bytes).

Command Default

The default IPv6 MTU size for frames received and sent on all switch interfaces is 1500 bytes.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The upper limit of the IPv6 MTU value is based on the switch or switch stack configuration and refers to the currently applied system MTU value. For more information about setting the MTU sizes, see the `system mtu` global configuration command.

To return to the default IPv6 MTU setting, you can apply the `default ipv6 mtu` command or the `no ipv6 mtu` command on the interface.

You can verify your setting by entering the `show ipv6 interface interface-id` or `show interface interface-id` privileged EXEC command.

The following example sets the maximum IPv6 packet size for an interface to 2000 bytes:

```
Device(config)# interface gigabitethernet4/0/1
Device(config-if)# ipv6 mtu 2000
```

The following example sets the maximum IPv6 packet size for an interface to the default setting of 1500 bytes:

```
Device(config)# interface gigabitethernet4/0/1
Device(config-if)# default ipv6 mtu
```

This is an example of partial output from the `show ipv6 interface interface-id` command. It displays the current IPv6 MTU setting for the interface.

```
Device# show ipv6 interface gigabitethernet4/0/1
GigabitEthernet4/0/1 is up, line protocol is up
  Internet address is 18.0.0.1/24
  Broadcast address is 255.255.255.255
  Address determined by setup command
  MTU is 1500 bytes
  Helper address is not set
  <output truncated>
```
list (coap-proxy configuration)

To restrict the IP address range where the lights and their resources can be learnt, use the `list` command in coap-proxy configuration mode. To return to the default settings, use the `no` form of the command.

A maximum of five ip-lists can be configured, irrespective of ipv4 or ipv6, using the `list` command.

```
list {ipv4 | ipv6}[list-name]
no list {ipv4 | ipv6}[list-name]
```

Syntax Description
- `ipv4 list-name` Specifies IPv4 list name.
- `ipv6 list-name` Specifies IPv6 list name.

Command Modes
- coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example
This example shows how to restrict the IPv4 address range using a list name.

```
Device(config)# coap proxy
Device config-coap-proxy)# list ipv4 trial_list
```
lldp (interface configuration)

To enable Link Layer Discovery Protocol (LLDP) on an interface, use the `lldp` command in interface configuration mode. To disable LLDP on an interface, use the `no` form of this command.

```
lldp {med-tlv-select tlv | receive | tlv-select power-management | transmit}
nolldp {med-tlv-select tlv | receive | tlv-select power-management | transmit}
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>med-tlv-select</td>
<td>Selects an LLDP Media Endpoint Discovery (MED) time-length-value (TLV) element to send.</td>
</tr>
<tr>
<td>tlv</td>
<td>String that identifies the TLV element. Valid values are the following:</td>
</tr>
<tr>
<td>• inventory-management — LLDP MED Inventory Management TLV.</td>
<td></td>
</tr>
<tr>
<td>• location — LLDP MED Location TLV.</td>
<td></td>
</tr>
<tr>
<td>• network-policy — LLDP MED Network Policy TLV.</td>
<td></td>
</tr>
<tr>
<td>• power-management — LLDP MED Power Management TLV.</td>
<td></td>
</tr>
<tr>
<td>receive</td>
<td>Enables the interface to receive LLDP transmissions.</td>
</tr>
<tr>
<td>tlv-select</td>
<td>Selects the LLDP TLVs to send.</td>
</tr>
<tr>
<td>power-management</td>
<td>Sends the LLDP Power Management TLV.</td>
</tr>
<tr>
<td>transmit</td>
<td>Enables LLDP transmission on the interface.</td>
</tr>
</tbody>
</table>

Command Default

LLDP is disabled.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is supported on 802.1 media types.

If the interface is configured as a tunnel port, LLDP is automatically disabled.

The following example shows how to disable LLDP transmission on an interface:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# no lldp transmit
```

The following example shows how to enable LLDP transmission on an interface:

```
Device(config)# interface gigabitethernet1/0/1
```
Device(config-if)# lldp transmit
logging event power-inline-status

To enable the logging of Power over Ethernet (PoE) events, use the `logging event power-inline-status` command in interface configuration mode. To disable the logging of PoE status events, use the `no` form of this command.

```
logging event power-inline-status
no logging event power-inline-status
```

Syntax Description
This command has no arguments or keywords.

Command Default
Logging of PoE events is enabled.

Command Modes
Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `no` form of this command does not disable PoE error events.

Examples
This example shows how to enable logging of PoE events on a port:

```
Device(config-if)# interface gigabitethernet1/0/1
Device(config-if)# logging event power-inline-status
Device(config-if)#
```
To apply a macro to an interface or to apply and debug a macro on an interface, use the `macro` command in interface configuration mode.

```
macro {apply | trace} macro-name [parameter {value}] [parameter {value}] [parameter {value}]
```

Syntax Description

- **apply**: Applies a macro to an interface.
- **trace**: Applies a macro to an interface and then debugs it.
- **macro-name**: Specifies the name of the macro.
- **parameter value**: (Optional) Specifies unique parameter values that are specific to the interface. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.

Command Default

This command has no default setting.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can use the `macro apply macro-name` command to apply and show the macros running on an interface.

You can use the `macro trace macro-name` command to apply and then debug the macro to find any syntax or configuration errors.

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the interface.

When creating a macro that requires the assignment of unique values, use the `parameter value` keywords to designate values specific to the interface.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the `macro apply macro-name ?` command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.

There are Cisco-default SmartPorts macros embedded in the switch software. You can display these macros and the commands that they contain by using the `show parser macro` command in user EXEC mode.

Follow these guidelines when you apply a Cisco-default SmartPorts macro on an interface:
• Display all macros on the switch by using the `show parser macro` command in user EXEC mode. Display the contents of a specific macro by using the `show parser macro macro-name` command in user EXEC mode.

• Keywords that begin with `$` mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the `parameter value` keywords.

The Cisco-default macros use the `$` character to identify required keywords. You can use the `$` character to define keywords when you create a macro.

When you apply a macro to an interface, the macro name is automatically added to the interface. You can display the applied commands and macro names by using the `show running-config interface interface-id` command in user EXEC mode.

A macro applied to an interface range behaves the same way as a macro applied to a single interface. When you use an interface range, the macro is applied sequentially to each interface within the range. If a macro command fails on one interface, it is still applied to the remaining interfaces.

You can delete a macro-applied configuration on an interface by entering the `default interface interface-id` command in interface configuration mode.

Example

After you use the `macro name` command, in interface configuration mode, you can apply it to an interface. This example shows how to apply a user-created macro called duplex to an interface:

```plaintext
Device(config-if)# macro apply duplex
```

To debug a macro, use the `macro trace` command, in interface configuration mode, to find any syntax or configuration errors in the macro as it is applied to an interface.

```plaintext
Device(config-if)# macro trace duplex
Applying command...`duplex auto`
%Error Unknown error.
Applying command...`speed nonegotiate`
```

This example shows how to display the Cisco-default cisco-desktop macro and how to apply the macro and set the access VLAN ID to 25 on an interface:

```plaintext
Device# show parser macro cisco-desktop
```

```
Macro name : cisco-desktop
Macro type : default
# Basic interface - Enable data VLAN only
# Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access
# Enable port security limiting port to a single
# MAC address -- that of desktop
switchport port-security
switchport port-security maximum 1
# Ensure port-security age is greater than one minute
# and use inactivity timer
switchport port-security violation restrict
switchport port-security aging time 2
switchport port-security aging type inactivity
# Configure port as an edge network port
spanning-tree portfast
```
spanning-tree bpduguard enable

Device# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)# interface gigabitethernet1/0/4
Device(config-if)# macro apply cisco-desktop $AVID 25
macro auto

To configure and apply a global macro using the CLI, use the **macro auto** command in privileged EXEC mode.

Use the **no** form of this command to return to the default setting.

```
macro auto {apply | config} macro-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply</td>
<td>Applies the macro.</td>
</tr>
<tr>
<td>config</td>
<td>Enters the macro parameters.</td>
</tr>
<tr>
<td>macro-name</td>
<td>Specifies the macro name.</td>
</tr>
</tbody>
</table>

Command Default

No macros are applied to the switch.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To remove the macro from the switch, enter the **no** forms of the macro commands.

If you enter the **macro auto config macro-name** command, you are prompted to enter values for all the macro parameters.

Use the exact text string when entering the macro-name. The entries are case sensitive.

The user-defined values appear only in the **show macro auto** or **show running-config** command output.

Example

This example shows how to display global macros:

```
Device# macro auto apply ?
CISCO_SWITCH_AAA_ACCOUNTING Configure aaa accounting parameters
CISCO_SWITCH_AAA_AUTHENTICATION Configure aaa authentication parameters
CISCO_SWITCH_AAA_AUTHORIZATION Configure aaa authorization parameters
CISCO_SWITCH_AUTO_IP_CONFIG Configure the ip parameters
CISCO_SWITCH_AUTO_PCI_CONFIG Configure PCI compliant parameters
CISCO_SWITCH_DOMAIN_NAME_CONFIG Configure domain name
CISCO_SWITCH_ETHERCHANNEL_CONFIG Configure the etherchannel parameters
CISCO_SWITCH_HOSTNAME_CONFIG Configure hostname
CISCO_SWITCH_HTTP_SERVER_CONFIG Configure http server
CISCO_SWITCH_LOGGING_SERVER_CONFIG Configure logging server
CISCO_SWITCH_MGMT_VLAN_CONFIG Configure management vlan parameters
CISCO_SWITCH_NAME_SERVER_CONFIG Configure name server parameters
CISCO_SWITCH_NTP_SERVER_CONFIG Configure NTP server
CISCO_SWITCH_RADIUS_SERVER_CONFIG Configure radius server
CISCO_SWITCH_SETUP_SNMP_TRAPS Configure SNMP trap parameters
CISCO_SWITCH_SETUP_USR_CONFIG Configure the user parameters
CISCO_SWITCH_SNMP_SOURCE_CONFIG Configure snmp source interface
```
CISCO_SWITCH_TACACS_SERVER_CONFIG Configure tacacs server
CISCO_SWITCH_USER_PASS_CONFIG Configure username and password

Device# macro auto config?
CISCO_SWITCH_AAA_ACCOUNTING Configure aaa accounting parameters
CISCO_SWITCH_AAA_AUTHENTICATION Configure aaa authentication parameters
CISCO_SWITCH_AAA_AUTHORIZATION Configure aaa authorization parameters
CISCO_SWITCH_AUTO_IP_CONFIG Configure the ip parameters
CISCO_SWITCH_AUTO_PCI_CONFIG Configure PCI compliant parameters
CISCO_SWITCH_DOMAIN_NAME_CONFIG Configure domain name
CISCO_SWITCHEther-channel_CONFIG Configure the etherchannel parameters
CISCO_SWITCH_HOSTNAME_CONFIG Configure hostname
CISCO_SWITCH_HTTP_SERVER_CONFIG Configure http server
CISCO_SWITCH_LOGGING_SERVER_CONFIG Configure logging server
CISCO_SWITCH_MGMT_VLAN_CONFIG Configure management vlan parameters
CISCO_SWITCH_NAME_SERVER_CONFIG Configure name server parameters
CISCO_SWITCH_NTP_SERVER_CONFIG Configure NTP server
CISCO_SWITCH_RADIUS_SERVER_CONFIG Configure radius server
CISCO_SWITCH_TACACS_SERVER_CONFIG Configure tacacs server
CISCO_SWITCH_RADIUS_SERVER_CONFIG Configure radius server
CISCO_SWITCH_SETUP_SNMP_TRAPS Configure SNMP trap parameters
CISCO_SWITCH_SETUP_USR_CONFIG Configure the user parameters
CISCO_SWITCH_SNMP_SOURCE_CONFIG Configure snmp source interface
CISCO_SWITCH_TACACS_SERVER_CONFIG Configure tacacs server
CISCO_SWITCH_USER_PASS_CONFIG Configure username and password

This example shows how to display the parameters for a specific macro:

Device# macro auto config CISCO_SWITCH_AUTO_IP_CONFIG?
CISCO_SWITCH_DOMAIN_NAME_CONFIG Configure domain name parameters
CISCO_SWITCH_LOGGING_SERVER_CONFIG Configure logging host parameters
CISCO_SWITCH_NAME_SERVER_CONFIG Configure name server parameters
CISCO_SWITCH_NTP_SERVER_CONFIG Configure NTP server
LINE Provide parameters of form [Parameters name=value]

Device# macro auto config CISCO_SWITCH_AUTO_PCI_CONFIG?
CISCO_SWITCH_AAA_ACCOUNTING Configure aaa accounting parameters
CISCO_SWITCH_AAA_AUTHENTICATION Configure aaa authentication parameters
CISCO_SWITCH_AAA_AUTHORIZATION Configure aaa authorization parameters
CISCO_SWITCH_HTTP_SERVER_CONFIG Configure http server parameters
CISCO_SWITCH_RADIUS_SERVER_CONFIG Configure radius server parameters
CISCO_SWITCH_TACACS_SERVER_CONFIG Configure tacacs server parameters
LINE Provide parameters of form [Parameters name=value]

Device# macro auto config CISCO_SWITCH_SETUP_SNMP_TRAPS?
CISCO_SWITCH_SNMP_SOURCE_CONFIG Configure snmp source parameters
LINE Provide parameters of form [Parameters name=value]

Device# macro auto config CISCO_SWITCH_SETUP_USR_CONFIG?
CISCO_AUTO_TIMEZONE_CONFIG Configure timezone parameters
CISCO_SWITCH_HOSTNAME_CONFIG Configure hostname parameters
LINE Provide parameters of form [Parameters name=value]

This example shows how to set macro parameters and apply the macro using the CLI:
Device# macro auto config CISCO_SWITCH_ETHERCHANNEL_CONFIG
Enter the port channel id[1-48] for 3K & 2350,[1-6] for 2K: 2
Enter the port channel type, Layer:[2-3(L3 not supported on 2K)]: 2
Enter etherchannel mode for the interface[auto/desirable/on/active/passive]: active
Enter the channel protocol[lacp/none]: lacp
Enter the number of interfaces to join the etherchannel[8-PAGP/MODE:ON,16-LACP]: 7
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/1
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/2
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/3
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/4
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/5
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/6
Enter interface name[GigabitEthernet3/0/3]: gigabitethernet1/0/7
Do you want to apply the parameters? [yes/no]: yes
Enter configuration commands, one per line. End with CNTL/Z.
Device# macro auto apply CISCO_SWITCH_ETHERCHANNEL_CONFIG
Enter configuration commands, one per line. End with CNTL/Z.
Device#
macro auto apply (Cisco IOS shell scripting capability)

To configure and apply a global macro using the Cisco IOS shell scripting capability, use the `macro auto apply` command in privileged EXEC mode. Use the `no` form of this command to return to the default setting.

```
macro auto apply macro-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>apply</code></td>
<td>Applies the macro.</td>
</tr>
<tr>
<td><code>macro-name</code></td>
<td>Specifies the macro name.</td>
</tr>
</tbody>
</table>

Command Default

No macros are applied to the switch.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To remove the macro from the switch, enter the `no` forms of the macro commands.

Use the exact text string when entering the `macro-name`. The entries are case sensitive.

The user-defined values appear only in the `show macro auto` or `show running-config` command output.

You can also use the Cisco IOS shell scripting capability to set the parameters. For examples, see the “Configuring and Applying Global Macros” section in the “Configuring Auto Smartports and Static Smartports Macros” chapter.

Example

This example shows how to display global macros:

```
Device# macro auto apply ?
CISCO_SWITCH_AAA_ACCOUNTING Configure aaa accounting parameters
CISCO_SWITCH_AAA_AUTHENTICATION Configure aaa authentication parameters
CISCO_SWITCH_AAA_AUTHORIZATION Configure aaa authorization parameters
CISCO_SWITCH_AUTO_IP_CONFIG Configure the ip parameters
CISCO_SWITCH_AUTO_PCI_CONFIG Configure PCI compliant parameters
CISCO_SWITCH_DOMAIN_NAME_CONFIG Configure domain name
CISCO_SWITCH_ETHERCHANNEL_CONFIG Configure the etherchannel parameters
CISCO_SWITCH_HOSTNAME_CONFIG Configure hostname
CISCO_SWITCH_HTTP_SERVER_CONFIG Configure http server
CISCO_SWITCH_LOGGING_SERVER_CONFIG Configure logging server
CISCO_SWITCH_MGMT_VLAN_CONFIG Configure management vlan parameters
CISCO_SWITCH_NAME_SERVER_CONFIG Configure name server parameters
CISCO_SWITCH_NTP_SERVER_CONFIG Configure NTP server
CISCO_SWITCH_RADIUS_SERVER_CONFIG Configure radius server
CISCO_SWITCH_SETUP_SNMP_TRAPS Configure SNMP trap parameters
CISCO_SWITCH_SETUP_USR_CONFIG Configure the user parameters
CISCO_SWITCH_SNMP_SOURCE_CONFIG Configure snmp source interface
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
CISCO_SWITCH_TACACS_SERVER_CONFIG Configure tacacs server
CISCO_SWITCH_USER_PASS_CONFIG Configure username and password
macro auto config (Cisco IOS shell scripting capability)

To configure and apply a global macro, use the `macro auto config` command in privileged EXEC mode. Use the `no` form of this command to return to the default setting.

```
micro auto config macro-name [parameter=value [parameter=value]...]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>config</code></td>
<td>Enters the macro parameters.</td>
</tr>
<tr>
<td><code>macro-name</code></td>
<td>Specifies the macro name.</td>
</tr>
<tr>
<td><code>parameter=value [parameter=value]...</code></td>
<td>Replaces values for global macro parameter values. Enter values in the form of name value pair separated by a space: <code><name1>=<value1> [<name2>=<value2>...]</code></td>
</tr>
</tbody>
</table>

Command Default

No macros are applied to the switch.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To remove the macro from the switch, enter the `no` forms of the macro commands.

If you enter the `macro auto config macro-name` command, you are prompted to enter values for all the macro parameters.

Use the exact text string when entering the `macro-name` and `parameters`. The entries are case sensitive.

The user-defined values appear only in the `show macro auto` or `show running-config` command output.

You can also use the Cisco IOS shell scripting capability to set the parameters. For examples, see the “Configuring and Applying Global Macros” section in the “Configuring Auto Smartports and Static Smartports Macros” chapter.
macro auto control

To specify when the switch applies an Auto Smartports macro based on the detection method, device type, or trigger (referred to as event trigger control), use the **macro auto control** command in interface configuration mode. Use the **no** form of this command to disable trigger-to-macro mapping. The switch then does not apply macros based on event triggers.

```
macro auto control {detection [cdp] [lldp] [mac-address] | device [ip-camera] [media-player] [phone] [lightweight-ap] [access-point] [router] [switch] | trigger [last-resort]}
no macro auto control {detection [cdp] [lldp] [mac-address] | device [ip-camera] [media-player] [phone] [lightweight-ap] [access-point] [router] [switch] | trigger [last-resort]}
```

Syntax Description

detection [cdp] [lldp] [mac-address]
- **detection**—Sets one or more of these as an event trigger:
 - (Optional) **cdp**—CDP messages
 - (Optional) **lldp**—LLDP messages
 - (Optional) **mac-address**—User-defined MAC address groups

device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch]
- **device**—Sets one or more of these devices as an event trigger:
 - (Optional) **access-point**—Autonomous access point
 - (Optional) **ip-camera**—Cisco IP video surveillance camera
 - (Optional) **lightweight-ap**—Lightweight access point
 - (Optional) **media-player**—Digital media player
 - (Optional) **phone**—Cisco IP phone
 - (Optional) **router**—Cisco router
 - (Optional) **switch**—Cisco switch

trigger [last-resort]
- **trigger**—Sets a specific event trigger.
 - (Optional) **last-resort**—Last-resort trigger.
Command Default
The switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses MAC address groups, MAB messages, 802.1x authentication messages, and LLDP messages in random order.

Command Modes
Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
If you do not set event triggers, the switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses MAC address groups, MAB messages, 802.1x authentication messages, and LLDP messages in random order.

To verify that a macro is applied to an interface, use the `show macro auto interface` command in user EXEC mode.

Example
This example shows how to set LLDP messages and MAC address groups as event triggers:

```
Device(config)# interface gigabitethernet 5/0/2
Device(config-if)# macro auto control detection lldp mac-address
Device(config-if)# exit
Device(config)# end
```

This example shows how to set access points, video surveillance cameras, and digital media players as event triggers:

```
Device(config)# interface gigabitethernet 5/0/1
Device(config-if)# macro auto control device access-point ip-camera media-player
Device(config-if)# exit
Device(config)# end
```

Note
The switch applies a built-in macro only when it detects an access point, video surveillance camera, or digital media player.
macro auto execute

To replace built-in macro default values and to configure mapping from an event trigger to a built-in or user-defined macro, use the `macro auto execute` command in global configuration mode.

```plaintext
macro auto execute event trigger {builtin built-in macro | remote url} {parameter=value} {function contents}
no macro auto execute event trigger {builtin built-in macro | remote url} {parameter=value} {function contents}
```

Syntax Description

`event trigger` Defines mapping from an event trigger to a built-in macro.

Specifies an event trigger:

- CISCO_CUSTOM_EVENT
- CISCO_DMP_EVENT
- CISCO_IPVSC_EVENT
- CISCO_LAST_RESORT_EVENT
- CISCO_PHONE_EVENT
- CISCO_ROUTER_EVENT
- CISCO_SWITCH_EVENT
- CISCO_WIRELESS_AP_EVENT
- CISCO_WIRELESS_LIGHTWEIGHT_AP_EVENT
- WORD—Apply a user-defined event trigger such as a MAC address group
builtin built-in macro
(Optional) Specifies a builtin built-in macro name:

- **CISCO_AP_AUTO_SMARTPORT**
 Specify the parameter value: `NATIVE_VLAN=1`

- **CISCO_DMP_AUTO_SMARTPORT**
 Specify the parameter value: `ACCESS_VLAN=1`

- **CISCO_IPVSC_AUTO_SMARTPORT**
 Specify the parameter value: `ACCESS_VLAN=1`

- **CISCO_LWAP_AUTO_SMARTPORT**
 Specify the parameter value: `ACCESS_VLAN=1`

- **CISCO_PHONE_AUTO_SMARTPORT**
 Specify the parameter values: `ACCESS_VLAN=1` and `VOICE_VLAN=2`.

- **CISCO_ROUTER_AUTO_SMARTPORT**
 Specify the parameter value: `NATIVE_VLAN=1`

- **CISCO_SWITCH_AUTO_SMARTPORT**
 Specify the parameter value: `NATIVE_VLAN=1`

parameter=value
(Optional) `parameter=value`—Replaces default values for parameter values shown for the `builtin-macro name`, for example, `ACCESS_VLAN=1`. Enter new values in the form of name value pair separated by a space: `[<name1>=<value1> <name2>=<value2>...]`.

{function contents}
(Optional) `{function contents}`—Specifies a user-defined macro to associate with the trigger. Enter the macro contents within braces. Begin the Cisco IOS shell commands with the left brace and end the command grouping with the right brace.
remote url (Optional) Specifies a remote server location:

- The syntax for the local flash file system on the standalone switch or the stack master: `flash`

 The syntax for the local flash file system on a stack member:

 `flash member number`

- The syntax for the FTP:

 `ftp://[//username[:password]@[location]/directory]/filename`

- The syntax for an HTTP server:

 `http://[[username:password]@[hostname | host-ip]]/[directory]/filename`

- The syntax for a secure HTTP server:

 `https://[[username:password]@[hostname | host-ip]]/[directory]/filename`

- The syntax for the NVRAM:

 `nvram://[[username:password]@[directory]/filename`

- The syntax for the Remote Copy Protocol (RCP):

 `rcp://[[username@[location]/directory]/filename`

- The syntax for the Secure Copy Protocol (SCP):

 `scp://[[username@[location]/directory]/filename`

- The syntax for the TFTP:

 `tftp://[location]/directory]/filename`

Command Default

None

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `macro auto execute` command to replace the built-in macro default values with values that are specific to your switch.

The switch automatically maps from event triggers to built-in macros. The built-in macros are system-defined macros in the software image. You can also create user-defined macros by using the Cisco IOS shell scripting capability.

You can create new event triggers by using the `shell trigger` commands in global configuration mode. Use the `show shell triggers` command in privileged EXEC to display the contents of the user-defined triggers and macros.

You can use the `macro auto mac-address-group` command in global configuration mode to create event triggers for devices that do not support Cisco Discovery Protocol (CDP) or Link Layer Discovery Protocol (LLDP).
You can use the remote macro feature to store macros in a central location for designated network switches to use. You can then maintain and update the macro files for use by multiple switches. Use `remote url` to configure the remote server location and macro path information. There are no specific file extension requirements for saved macro files.

Auto Smartports macros and antimacros (the antimacro is the portion of the applied macro that removes it at link down) have these guidelines and limitations:

- You can delete or change the built-in macros. However, you can override a built-in macro by creating a user-defined macro with the same name. To restore the original built-in macro, delete the user-defined macro.
- If you enable both the `macro auto device` and the `macro auto execute` commands, the parameters specified in the command last executed are applied to the switch. Only one command is active on the switch.
- To avoid system conflicts when macros are applied, remove all port configurations except for 802.1x authentication.
- Do not configure port security when enabling Auto SmartPorts on the switch.
- If the macro conflicts with the original configuration, either the macro does not apply some of the original configuration commands, or the antimacro does not remove them. (The antimacro is the portion of the applied macro that removes the macro at a link-down event.)
- For example, if 802.1x authentication is enabled, you cannot remove the switchport-mode access configuration. Remove the 802.1x authentication before removing the switchport mode configuration.
- A port cannot be a member of an EtherChannel when you apply Auto SmartPorts macros.
- The built-in-macro default data VLAN is VLAN 1. The default voice VLAN is VLAN 2. If your switch uses different access, native, or voice VLANs, use the `macro auto device` or the `macro auto execute` commands to configure the values.
- For 802.1x authentication or MAC authentication bypass (MAB), to detect non-Cisco devices, configure the RADIUS server to support the Cisco attribute-value pair `auto-smart-port=event trigger`
- The switch supports Auto SmartPort macros only on directly connected devices. Multiple device connections, such as hubs, are not supported.
- If authentication is enabled on a port, the switch ignores a MAC address trigger if authentication fails.
- The order of CLI commands within the macro and the corresponding antimacro can be different.

Example

This example shows how to use two built-in macros for connecting Cisco switches and Cisco IP phones to the switch. This example modifies the default voice VLAN, access VLAN, and native VLAN for the trunk interface:

```
Device(config)# !!! the next command modifies the access and voice vlans
Device(config)# !!! for the built in Cisco IP phone auto smartport macro
Device(config)# macro auto execute CISCO_PHONE_EVENT builtin CISCO_PHONE_AUTO_SMARTPORT
ACCESS_VLAN=10 VOICE_VLAN=20
Device(config)# !!! The next command modifies the Native vlan used for inter switch trunks
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
This example shows how to map a user-defined event trigger called media player to a user-defined macro:

1. Connect the media player to an 802.1x- or MAB-enabled switch port.
2. On the RADIUS server, set the attribute-value pair to auto-smart-port=DMP_EVENT.
3. On the switch, create the event trigger DMP_EVENT, and enter the user-defined macro commands.
4. The switch recognizes the attribute-value pair=DMP_EVENT response from the RADIUS server and applies the macro associated with this event trigger.
no switchport port-security
no switchport port-security maximum 1
no switchport port-security violation restrict
no switchport port-security aging time 2
no switchport port-security aging type inactivity
no spanning-tree portfast
no spanning-tree bpdu guard enable
exit
fi

Table 7: Supported Cisco IOS Shell Keywords

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{</code></td>
<td>Begin the command grouping.</td>
</tr>
<tr>
<td><code>}</code></td>
<td>End the command grouping.</td>
</tr>
<tr>
<td><code>[[</code></td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td><code>]]</code></td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td><code>else</code></td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td><code>==</code></td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td><code>fi</code></td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td><code>if</code></td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td><code>then</code></td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td><code>-z</code></td>
<td>Use as a conditional construct.</td>
</tr>
<tr>
<td><code>$</code></td>
<td>Variables that begin with the $ character are replaced with a parameter value.</td>
</tr>
<tr>
<td><code>#</code></td>
<td>Use the # character to enter comment text.</td>
</tr>
</tbody>
</table>

Table 8: Unsupported Cisco IOS Shell Reserved Keywords

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`</td>
<td>`</td>
</tr>
<tr>
<td><code>case</code></td>
<td>Conditional construct.</td>
</tr>
<tr>
<td><code>esac</code></td>
<td>Conditional construct.</td>
</tr>
<tr>
<td><code>for</code></td>
<td>Looping construct.</td>
</tr>
<tr>
<td><code>function</code></td>
<td>Shell function.</td>
</tr>
<tr>
<td><code>in</code></td>
<td>Conditional construct.</td>
</tr>
<tr>
<td><code>select</code></td>
<td>Conditional construct.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>time</td>
<td>Pipeline.</td>
</tr>
<tr>
<td>until</td>
<td>Looping construct.</td>
</tr>
<tr>
<td>while</td>
<td>Looping construct.</td>
</tr>
</tbody>
</table>
macro auto global control

To specify when the switch applies an Auto Smartports macro based on the device type or trigger (referred to as event trigger control), use the `macro auto global control` command in global configuration mode. Use the `no` form of this command to disable trigger-to-macro mapping.

```plaintext
macro auto global control {detection [cdp] [lldp] [mac-address] | device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch] | trigger [last-resort]}
no macro auto global control {detection [cdp] [lldp] [mac-address] | device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch] | trigger [last-resort]}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
</table>
| detection [cdp] [lldp] [mac-address] | Sets one or more of these as an event trigger:
 - (Optional) **cdp**—CDP messages
 - (Optional) **lldp**—LLDP messages
 - (Optional) **mac-address**—User-defined MAC address groups |
| device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch] | Sets one or more of these devices as an event trigger:
 - (Optional) **access-point**—Autonomous access point
 - (Optional) **ip-camera**—Cisco IP video surveillance camera
 - (Optional) **lightweight-ap**—Lightweight access point
 - (Optional) **media-player**—Digital media player
 - (Optional) **phone**—Cisco IP phone
 - (Optional) **router**—Cisco router
 - (Optional) **switch**—Cisco switch |
| trigger [last-resort] | Sets a specific event trigger.
 - (Optional) **last-resort**—Last-resort trigger |

Command Default

The switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses MAC address groups, MAB messages, 802.1x authentication messages, and LLDP messages in random order.
Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not set event triggers, the switch uses the device type as the event trigger. If the switch cannot determine the device type, it uses MAC address groups, MAB messages, 802.1x authentication messages, and LLDP messages in random order.

To verify that a macro is applied to a switch, use the `show macro auto global` command in user EXEC mode.

Example

This example shows how to set CDP messages, LLDP messages and MAC address groups as event triggers:

```
Device(config)# macro auto global control detection cdp lldp mac-address
Device(config)# end
```

This example shows how to set autonomous access points, lightweight access points, and IP phones:

```
Device(config)# macro auto global control device access-point lightweight-ap phone
Device(config)# end
```
macro auto global processing

To enable Auto SmartPorts macros on the switch, use the `macro auto global processing` command in global configuration mode. Use the `no` form of this command to disable the macros.

```
macro auto global processing

no macro auto global processing
```

Command Default
Auto Smartports is disabled.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `macro auto global processing` command to globally enable macros on the switch. To disable macros on a specific port, use the `no macro auto processing` command in interface mode.

When using 802.1x or MAB authentication, you need to configure the RADIUS server to support the Cisco attribute-value pair `auto-smart-port=event trigger`. If authentication fails, the macro is not applied. If the 802.1x or MAB authentication fails on the interface, the switch does not use the fallback CDP event trigger.

When CDP-identified devices advertise multiple capabilities, the switch chooses a capability first by switch and then by router.

To verify that a macro is applied to an interface, use the `show macro auto interface` command in privileged EXEC mode.

Example

This example shows how to enable Auto SmartPorts on the switch and to disable the feature on a specific interface:

```
Device(config)# macro auto global processing
Device(config)# interface gigabitethernet 0/1
Device(config-if)# no macro auto processing
Device(config-if)# exit
Device(config)#
```
macro auto mac-address-group

To create an event trigger for devices that do not support Cisco Discovery Protocol (CDP) or Link Layer Discover Protocol (LLDP), use the macro auto mac-address-group command in global configuration mode. Use the no form of this command to delete the group.

```
macro auto mac-address-group name {mac-address list list | oui {list list | range start-value size number}}
no macro auto mac-address-group name {mac-address list list | oui {list list | range start-value size number}}
```

Syntax Description

- **name** (Optional) Specifies the group name.
- **ui** (Optional) Specifies an operationally unique identifier (OUI) list or range.
 - **list**—Enter an OUI list in hexadecimal format separated by spaces.
 - **range**—Enter the starting OUI hexadecimal value (**start-value**).
 - **size**—Enter the length of the range (number) from 1 to 5 to create a list of sequential addresses.

- **mac-address list list** (Optional) Configures a list of MAC addresses separated by a space.

Command Default

No groups are defined.

Command Modes

Group configuration (config-addr-grp-mac)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the macro auto mac-address-group command to create an event trigger for devices that do not support CDP or LLDP. Use the MAC address group as a trigger to map to a built-in or user-defined macro by using the macro auto execute command. At link-up the switch detects the device type and applies the specified macro.

The switch supports up to ten MAC address groups. Each group can have up to 32 OUI and 32 MAC configured addresses.

Example

This example shows how to create a MAC-address-group event trigger called **address_trigger** and how to verify your entries:

```
Device(config)# macro auto mac-address-group mac address_trigger
Device(config-addr-grp-mac)# mac-address list 2222.3333.3334 22.33.44 a.b.c
Device(config-addr-grp-mac)# oui list 455555 233244
Device(config-addr-grp-mac)# oui range 333333 size 2
```
Device(config-addr-grp-mac)# exit
Device(config)# end
Device# show running configuration
!
!macro auto mac-address-group address_trigger
 oui list 333334
 oui list 333333
 oui list 233244
 oui list 455555
 mac-address list 000A.000B.000C
 mac-address list 0022.0033.0044
 mac-address list 2222.3333.3334
!

<output truncated>
macro auto processing

To enable Auto SmartPorts macros on an interface, use the macro auto processing command in interface configuration mode. Use the no form of this command to disable the macros.

macro auto processing

no macro auto processing

Command Default

Auto SmartPorts is disabled.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the macro auto processing command, in interface configuration mode, to enable macros on a specific interface. To disable macros on a specific interface, use the no macro auto processing command, in interface configuration mode.

A port cannot be a member of an EtherChannel when you apply Auto SmartPorts macros. If you use EtherChannels, disable Auto SmartPorts on the EtherChannel interface by using the no macro auto processing command. The EtherChannel interface applies the configuration to the member interfaces.

To verify that a macro is applied to an interface, use the show macro auto interface command in privileged EXEC mode.

Example

This example shows how to enable Auto SmartPorts on the switch and to disable the feature on a specific interface:

Device(config)# interface gigabitethernet 0/1
Device(config-if)# no macro auto processing
Device(config-if)# exit
Device(config)# macro auto global processing
macro auto sticky

To configure macros to remain active after a link-down event, referred to as macro persistence, use the `macro auto sticky` command in global configuration mode. Use the `no` form of this command to disable the macro persistence.

```
macro auto sticky
no macro auto sticky
```

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Macro persistence is disabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Modes</td>
<td>Global configuration (config)</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `macro auto sticky` command so that macros remain active after a link-down event.

Example

This example shows how to enable macro persistence on an interface:

```
Device(config)# interface gigabitethernet 5/0/2
Device(config-if)# macro auto port sticky
Device(config-if)# exit
Device(config)# end
```
macro auto trigger

To enter the configure-macro-trigger mode and define a trigger for a device that has no built-in trigger and associate the trigger with a device or profile, use the **macro auto trigger** command in global configuration mode. To remove the user-defined trigger, use the **no** form of this command.

```
macro auto trigger trigger_name {device | exit | no | profile}
no macro auto trigger trigger_name {device | exit | no | profile}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>trigger_name</td>
<td>Specifies a trigger to be associated with the device type or profile name.</td>
</tr>
<tr>
<td>device</td>
<td>Specifies a device name to map to the named trigger.</td>
</tr>
<tr>
<td>exit</td>
<td>Exits device group configuration mode.</td>
</tr>
<tr>
<td>no</td>
<td>Removes any configured device.</td>
</tr>
<tr>
<td>profile</td>
<td>Specifies a profile name to map to the named trigger.</td>
</tr>
</tbody>
</table>

Command Default

No user-defined triggers are configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If a device is classified by the Device Classifier, but does not have a built-in trigger defined, use the **macro auto trigger** command, in global configuration mode, to define a trigger based on a device name or a profile name. After you enter the command, the switch is in the configure-macro-trigger mode and the **device**, **exit**, **no**, and **profile** keywords are visible. In this mode, you can provide a device name or a profile name to map to the trigger. It is not necessary to map the trigger to both a device name and a profile name. If you map the trigger to both names, the trigger-to-profile name mapping has preference for macro application.

You must use this command to configure a trigger when you configure a user-defined macro. The trigger name is required for the custom macro configuration.

After the device is profiled, you must add the complete string to the device-group database.

Example

This example shows how to configure a user-defined trigger for a profile called DMP_EVENT mediaplayer for use with a media player that has no built-in trigger:

```
Device(config)# macro auto trigger DMP
Device(config-macro-trigger)# profile mediaplayer-DMP
Device(config-macro-trigger)# exit
```
macro description

To enter a description about which macros are applied to an interface, use the `macro description` command in interface configuration mode. Use the `no` form of this command to remove the description. This command is mandatory for Auto SmartPorts to work.

```
micro description text
no macro description text
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>description text</code></td>
<td>Enters a description about the macros that are applied to the specified interface.</td>
</tr>
</tbody>
</table>

Command Default

This command has no default setting.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `description` keyword to associate comment text or the macro name with an interface. When multiple macros are applied on a single interface, the description text is from the last applied macro.

You can verify your settings by entering the `show parser macro description` command in privileged EXEC mode.

Example

This example shows how to add a description to an interface:

```
(config-if)# macro description duplex settings
```
To apply a macro to a switch or to apply and debug a macro on a switch, use the `macro global` command in global configuration mode.

```
macro global {apply | trace} macro-name [parameter {value}] [parameter {value}] [parameter {value}]
```

Parameter

apply Applies a macro to the switch.

trace Applies a macro to a switch and debugging the macro.

macro-name Specifies the name of the macro.

parameter value (Optional) Specifies unique parameter values that are specific to the switch. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.

Command Default

This command has no default setting.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can delete a global macro-applied configuration on a switch only by entering the no version of each command in the macro.

Use the `macro global apply macro-name` command to apply the macro to an interface.

Use the `macro global trace macro-name` command to apply and then debug the macro to find any syntax or configuration errors.

If a command fails when you apply a macro because of a syntax error or a configuration error, the macro continues to apply the remaining commands to the switch.

When creating a macro that requires the assignment of unique values, use the `parameter value` keywords to designate values specific to the switch.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the `macro global apply macro-name ?` command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.
There are Cisco-default Smartports macros embedded in the switch software. You can display these macros and the commands they contain by using the `show parser macro` command in user EXEC mode.

Follow these guidelines when you apply a Cisco-default Smartports macro on a switch:

- Display all macros on the switch by using the `show parser macro` command. Display the contents of a specific macro by using the `show parser macro name macro-name` command.

- Keywords that begin with `$` mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the `parameter value` keywords.

The Cisco-default macros use the `$` character to help identify required keywords. There is no restriction on using the `$` character to define keywords when you create a macro.

When you apply a macro to a switch, the macro name is automatically added to the switch. You can display the applied commands and macro names by using the `show running-config` command.

Example

After you have created a new macro by using the `macro auto execute` command, you can apply it to a switch. This example shows how to view the `snmp` macro, how to apply the macro, set the hostname to `test-server`, and set the IP precedence value to 7:

```
Device# show parser macro name snmp
Macro name : snmp
Macro type : customizable

#enable port security, linkup, and linkdown traps
snmp-server enable traps port-security
snmp-server enable traps linkup
snmp-server enable traps linkdown
#set snmp-server host
snmp-server host ADDRESS
#set SNMP trap notifications precedence
snmp-server ip precedence VALUE

--------------------------------------------------
Device(config)# macro global apply snmp ADDRESS test-server VALUE 7
```

To debug a macro, use the `macro global trace` command to find any syntax or configuration errors in the macro when you apply it to a switch. In this example, the `ADDRESS` parameter value was not entered, the `snmp-server host` command failed, and the remainder of the macro is applied to the switch:

```
Device(config)# macro global trace snmp VALUE 7
Applying command...‘snmp-server enable traps port-security’
Applying command...‘snmp-server enable traps linkup’
Applying command...‘snmp-server enable traps linkdown’
Applying command...‘snmp-server host’
%Error Unknown error.
Applying command...‘snmp-server ip precedence 7’
```
macro global description

To enter a description about the macros that are applied to a switch, use the `macro global description` command in global configuration mode. Use the `no` form of this command to remove the description.

```
macro global description text

no macro global description text
```

Syntax Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Text</th>
<th>Enter a description about the macros that are applied to the switch.</th>
</tr>
</thead>
</table>

Command Default

This command has no default setting.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `description` keyword to associate comment text or the macro name with a switch. When multiple macros are applied on a switch, the description text is from the last applied macro.

You can verify your settings by entering the `show parser macro description` command in privileged EXEC mode.

Example

This example shows how to add a description to a switch:

```
Device(config)# macro global description udl aggressvie mode enabled
```
max-endpoints (coap-proxy configuration)

To specify the maximum number of endpoints that can be learnt on the device, use the `max-endpoints` command in coap-proxy configuration mode. To return to the default settings, use the `no` form of the command.

```
max-endpoints number
no max-endpoints
```

Syntax Description

- `number` Range is from 1 to 500

Command Default

The default number of endpoints is 10.

Command Modes

- coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to specify maximum endpoints as 12 that can be learnt on the device.

```
Device(config)# coap proxy
Device(config-coap-proxy)# max-endpoints 12
```
To enable the automatic medium-dependent interface crossover (auto-MDIX) feature on the interface, use the `mdix auto` command in interface configuration mode. To disable auto-MDIX, use the `no` form of this command.

```
mdix auto
no mdix auto
```

Syntax Description
This command has no arguments or keywords.

Command Default
Auto-MDIX is enabled.

Command Modes
Interface configuration (config-if)

Command History
```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
```

Usage Guidelines
When auto-MDIX is enabled, the interface automatically detects the required cable connection type (straight-through or crossover) and configures the connection appropriately.

When you enable auto-MDIX on an interface, you must also set the interface speed and duplex to **auto** so that the feature operates correctly.

When auto-MDIX (and autonegotiation of speed and duplex) is enabled on one or both of the connected interfaces, link up occurs, even if the cable type (straight-through or crossover) is incorrect.

Auto-MDIX is supported on all 10/100 and 10/100/1000 Mb/s interfaces and on 10/100/1000BASE-TX small form-factor pluggable (SFP) module interfaces. It is not supported on 1000BASE-SX or -LX SFP module interfaces.

You can verify the operational state of auto-MDIX on the interface by entering the `show controllers ethernet-controller interface-id phy` privileged EXEC command.

This example shows how to enable auto-MDIX on a port:

```
Device# configure terminal
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed auto
Device(config-if)# duplex auto
Device(config-if)# mdix auto
Device(config-if)# end
```
network-policy

To apply a network-policy profile to an interface, use the `network-policy` command in interface configuration mode. To remove the policy, use the no form of this command.

```
network-policy profile-number
no network-policy
```

Syntax Description

- `profile-number` The network-policy profile number to apply to the interface.

Command Default

No network-policy profiles are applied.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `network-policy profile number` interface configuration command to apply a profile to an interface.

You cannot apply the `switchport voice vlan` command on an interface if you first configure a network-policy profile on it. However, if `switchport voice vlan vlan-id` is already configured on the interface, you can apply a network-policy profile on the interface. The interface then has the voice or voice-signaling VLAN network-policy profile applied.

This example shows how to apply network-policy profile 60 to an interface:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# network-policy 60
```
network-policy profile (global configuration)

To create a network-policy profile and to enter network-policy configuration mode, use the `network-policy profile` command in global configuration mode. To delete the policy and to return to global configuration mode, use the `no` form of this command.

```
network-policy profile profile-number
no network-policy profile profile-number
```

Syntax Description

- **profile-number**
 Network-policy profile number. The range is 1 to 4294967295.

Command Default

No network-policy profiles are defined.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `network-policy profile` global configuration command to create a profile and to enter network-policy profile configuration mode.

To return to privileged EXEC mode from the network-policy profile configuration mode, enter the `exit` command.

When you are in network-policy profile configuration mode, you can create the profile for voice and voice signaling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode.

These profile attributes are contained in the Link Layer Discovery Protocol for Media Endpoint Devices (LLDP-MED) network-policy time-length-value (TLV).

This example shows how to create network-policy profile 60:

```
Device(config)# network-policy profile 60
Device(config-network-policy)#
```
port-dtls (coap-proxy configuration)

To configure a Datagram Transport Layer Security (DTLS) port, use the `port-dtls` command in coap-proxy configuration mode. To return to the default settings, use the `no` form of the command.

```plaintext
port-dtls number
no port-dtls
```

Syntax Description

| `number` | Range is from 1 to 65000. |

Command Default

The default port is 5683.

Command Modes

coop-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to configure a dtls port:

```plaintext
Device(config)# coap proxy
Device(config-coap-proxy)# port-dtls 5899
```
port-unsecure (coap-proxy configuration)

To configure a port, use the **port-unsecure** command in coap-proxy configuration mode. To return to the default settings, use the **no** form of the command.

```
port-unsecure number
no port-dtls
```

Syntax Description
- `number` Range is from 1 to 65000.

Command Default
- The default port is 5683.

Command Modes
- coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
To access coap-proxy configuration mode, enter the **coap proxy** command in global configuration mode.

Example
This example shows how to configure a port.

```
Device(config)# coap proxy
Device(config-coap-proxy)# port-unsecure 5899
```
power-priority

To configure Cisco StackPower power-priority values for a switch in a power stack and for its high-priority and low-priority PoE ports, use the **power-priority** command in switch stack-power configuration mode. To return to the default setting, use the **no** form of the command.

```
power-priority {high value | low value | switch value}
no power-priority {high | low | switch}
```

Syntax Description

- **high value** Sets the power priority for the ports configured as high-priority ports. The range is 1 to 27, with 1 as the highest priority. The **high** value must be lower than the value set for the low-priority ports and higher than the value set for the switch.

- **low value** Sets the power priority for the ports configured as low-priority ports. The range is 1 to 27. The **low** value must be higher than the value set for the high-priority ports and the value set for the switch.

- **switch value** Sets the power priority for the switch. The range is 1 to 27. The **switch** value must be lower than the values set for the low and high-priority ports.

Command Default

If no values are configured, the power stack randomly determines a default priority.

The default ranges are 1 to 9 for switches, 10 to 18 for high-priority ports, 19 to 27 for low-priority ports. On non-PoE switches, the high and low values (for port priority) have no effect.

Command Modes

Switch stack-power configuration (config-stack)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access switch stack-power configuration mode, enter the **stack-power switch switch-number** global configuration command.

Cisco StackPower power-priority values determine the order for shutting down switches and ports when power is lost and load shedding must occur. Priority values are from 1 to 27; the highest numbers are shut down first.

We recommend that you configure different priority values for each switch and for its high priority ports and low priority ports to limit the number of devices shut down at one time during a loss of power. If you try to configure the same priority value on different switches in a power stack, the configuration is allowed, but you receive a warning message.

Note

This command is available only on switch stacks running the IP Base or IP Services feature set.

Examples

This is an example of setting the power priority for switch 1 in power stack a to 7, for the high-priority ports to 11, and for the low-priority ports to 20.
Device(config)# stack-power switch 1
Device(config-switch-stackpower)# stack-id power_stack_a
Device(config-switch-stackpower)# power-priority high 11
Device(config-switch-stackpower)# power-priority low 20
Device(config-switch-stackpower)# power-priority switch 7
Device(config-switch-stackpower)# exit
power inline

To configure the power management mode on Power over Ethernet (PoE) ports, use the **power inline** command in interface configuration mode. To return to the default settings, use the **no** form of this command.

```plaintext
power inline {auto [max max-wattage] | never | port priority {high | low} | static [max max-wattage]}
no power inline {auto | never | port priority {high | low} | static [max max-wattage]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Enables powered-device detection. If enough power is available, automatically allocates power to the PoE port after device detection. Allocation is first-come, first-serve.</td>
</tr>
<tr>
<td>max max-wattage</td>
<td>(Optional) Limits the power allowed on the port. The range is 4000 to 30000 mW. If no value is specified, the maximum is allowed.</td>
</tr>
<tr>
<td>never</td>
<td>Disables device detection, and disables power to the port.</td>
</tr>
<tr>
<td>port</td>
<td>Configures the power priority of the port. The default priority is low.</td>
</tr>
<tr>
<td>priority {high</td>
<td>low}</td>
</tr>
<tr>
<td>static</td>
<td>Enables powered-device detection. Pre-allocates (reserves) power for a port before the switch discovers the powered device. This action guarantees that the device connected to the interface receives enough power.</td>
</tr>
</tbody>
</table>

Command Default

The default is **auto** (enabled).

- The maximum wattage is 30,000 mW.
- The default port priority is low.

Command Default

- Interface configuration (config-if)
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is supported only on PoE-capable ports. If you enter this command on a port that does not support PoE, this error message appears:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# power inline auto
% Invalid input detected at '^' marker.
```

In a switch stack, this command is supported on all ports in the stack that support PoE.

Use the `max max-wattage` option to disallow higher-power powered devices. With this configuration, when the powered device sends Cisco Discovery Protocol (CDP) messages requesting more power than the maximum wattage, the switch removes power from the port. If the powered-device IEEE class maximum is greater than the maximum wattage, the switch does not power the device. The power is reclaimed into the global power budget.

Note

The switch never powers any class 0 or class 3 device if the `power inline max max-wattage` command is configured for less than 30 W.

If the switch denies power to a powered device (the powered device requests more power through CDP messages or if the IEEE class maximum is greater than the maximum wattage), the PoE port is in a power-deny state. The switch generates a system message, and the Oper column in the `show power inline` privileged EXEC command output shows `power-deny`.

Use the `power inline static max max-wattage` command to give a port high priority. The switch allocates PoE to a port configured in static mode before allocating power to a port configured in auto mode. The switch reserves power for the static port when it is configured rather than upon device discovery. The switch reserves the power on a static port even when there is no connected device and whether or not the port is in a shutdown or in a no shutdown state. The switch allocates the configured maximum wattage to the port, and the amount is never adjusted through the IEEE class or by CDP messages from the powered device. Because power is pre-allocated, any powered device that uses less than or equal to the maximum wattage is guaranteed power when it is connected to a static port. However, if the powered device IEEE class is greater than the maximum wattage, the switch does not supply power to it. If the switch learns through CDP messages that the powered device needs more than the maximum wattage, the powered device is shut down.

If the switch cannot pre-allocate power when a port is in static mode (for example, because the entire power budget is already allocated to other auto or static ports), this message appears: Command rejected: power inline static: pwr not available. The port configuration remains unchanged.

When you configure a port by using the `power inline auto` or the `power inline static` interface configuration command, the port autonegotiates by using the configured speed and duplex settings. This is necessary to determine the power requirements of the connected device (whether or not it is a powered device). After the power requirements have been determined, the switch hardcodes the interface by using the configured speed and duplex settings without resetting the interface.

When you configure a port by using the `power inline never` command, the port reverts to the configured speed and duplex settings.
If a port has a Cisco powered device connected to it, you should not use the `power inline never` command to configure the port. A false link-up can occur, placing the port in an error-disabled state.

Use the `power inline port priority {high | low}` command to configure the power priority of a PoE port. Powered devices connected to ports with low port priority are shut down first in case of a power shortage.

You can verify your settings by entering the `show power inline` EXEC command.

Examples

This example shows how to enable detection of a powered device and to automatically power a PoE port on a switch:

```
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline auto
```

This example shows how to configure a PoE port on a switch to allow a class 1 or a class 2 powered device:

```
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline auto max 7000
```

This example shows how to disable powered-device detection and to not power a PoE port on a switch:

```
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline never
```

This example shows how to set the priority of a port to high, so that it would be one of the last ports to be shut down in case of power supply failure:

```
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline port priority high
```
power inline police

To enable policing of real-time power consumption on a powered device, use the `power inline police` command in interface configuration mode. To disable this feature, use the `no` form of this command.

```plaintext
power inline police [action {errdisable | log}]

no power inline police
```

Syntax Description

- **action** (Optional) Configures the device to turn off power to the port if the real-time power consumption exceeds the maximum power allocation on the port. This is the default action.
- **errdisable** (Optional) Configures the device to generate a syslog message while still providing power to a connected device if the real-time power consumption exceeds the maximum power allocation on the port.

Command Default

Policing of the real-time power consumption of the powered device is disabled.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is supported only on Power over Ethernet (PoE)-capable ports. If you enter this command on a device or port that does not support PoE, an error message appears.

In a switch stack, this command is supported on all switches or ports in the stack that support PoE and real-time power-consumption monitoring.

When policing of the real-time power consumption is enabled, the device takes action when a powered device consumes more power than the allocated maximum amount.

When PoE is enabled, the device senses the real-time power consumption of the powered device. This feature is called *power monitoring* or *power sensing*. The device also polices the power usage with the *power policing* feature.

When power policing is enabled, the device uses one of the these values as the cutoff power on the PoE port in this order:

1. The user-defined power level that limits the power allowed on the port when you enter the `power inline auto max max-wattage` or the `power inline static max max-wattage` interface configuration command

2. The device automatically sets the power usage of the device by using CDP power negotiation or by the IEEE classification and LLDP power negotiation.

If you do not manually configure the cutoff-power value, the device automatically determines it by using CDP power negotiation or the device IEEE classification and LLDP power negotiation. If CDP or LLDP are not enabled, the default value of 30 W is applied. However without CDP or LLDP, the device does not allow devices to consume more than 15.4 W of power because values from 15400 to 30000 mW are only allocated based on CDP or LLDP requests. If a powered device consumes more than 15.4 W without CDP or LLDP negotiation, the device might be in violation of the maximum current I_{max} limitation and might experience...
an Icut fault for drawing more current than the maximum. The port remains in the fault state for a time before attempting to power on again. If the port continuously draws more than 15.4 W, the cycle repeats.

When a powered device connected to a PoE+ port restarts and sends a CDP or LLDP packet with a power TLV, the device locks to the power-negotiation protocol of that first packet and does not respond to power requests from the other protocol. For example, if the device is locked to CDP, it does not provide power to devices that send LLDP requests. If CDP is disabled after the device has locked on it, the device does not respond to LLDP power requests and can no longer power on any accessories. In this case, you should restart the powered device.

If power policing is enabled, the device polices power usage by comparing the real-time power consumption to the maximum power allocated on the PoE port. If the device uses more than the maximum power allocation (or cutoff power) on the port, the device either turns power off to the port, or the device generates a syslog message and updates the LEDs (the port LEDs are blinking amber) while still providing power to the device.

- To configure the device to turn off power to the port and put the port in the error-disabled state, use the `power inline police` interface configuration command.
- To configure the device to generate a syslog message while still providing power to the device, use the `power inline police action log` command.

If you do not enter the `action log` keywords, the default action is to shut down the port, turn off power to it, and put the port in the PoE error-disabled state. To configure the PoE port to automatically recover from the error-disabled state, use the `errdisable detect cause inline-power` global configuration command to enable error-disabled detection for the PoE cause and the `errdisable recovery cause inline-power interval interval` global configuration command to enable the recovery timer for the PoE error-disabled cause.

⚠️ **Caution**

If policing is disabled, no action occurs when the powered device consumes more than the maximum power allocation on the port, which could adversely affect the device.

You can verify your settings by entering the `show power inline police` privileged EXEC command.

Examples

This example shows how to enable policing of the power consumption and configuring the device to generate a syslog message on the PoE port on a device:

```
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# power inline police action log
```
power supply

To configure and manage the internal power supplies on a switch, use the `power supply` command in privileged EXEC mode.

```
power supply stack-member-number slot {A | B} {off | on}
```

Syntax Description

- `stack-member-number` Stack member number for which to configure the internal power supplies. The range is 1 to 9, depending on the number of switches in the stack.

 This parameter is available only on stacking-capable switches.

- `slot` Selects the switch power supply to set.

- `A` Selects the power supply in slot A.

- `B` Selects the power supply in slot B.

 Note Power supply slot B is the closest slot to the outer edge of the switch.

- `off` Sets the switch power supply to off.

- `on` Sets the switch power supply to on.

Command Default

The switch power supply is on.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `power supply` command applies to a switch or to a switch stack where all switches are the same platform.

In a switch stack with the same platform switches, you must specify the stack member before entering the `slot {A | B} off` or `on` keywords.

To return to the default setting, use the `power supply stack-member-number on` command.

You can verify your settings by entering the `show env power` privileged EXEC command.

Examples

This example shows how to set the power supply in slot A to off:

```
Device> power supply 2 slot A off
Disabling Power supply A may result in a power loss to PoE devices and/or switches ...
Continue? (yes/[no]): yes
Device
Jun 10 04:52:54.389: %PLATFORM_ENV-6-FRU_PS_OIR: FRU Power Supply 1 powered off
Jun 10 04:52:56.717: %PLATFORM_ENV-1-FAN_NOT_PRESENT: Fan is not present
```
This example shows how to set the power supply in slot A to on:

```
Device> power supply 1 slot B on
Jun 10 04:54:39.600: %PLATFORM_ENV-6-FRU_PS_OIR: FRU Power Supply 1 powered on
```

This example shows the output of the `show env power` command:

```
Device> show env power
1W  PID             Serial#     Status    Sys Pwr PoE Pwr Watts
      ------------------ ---------- --------------- ------- ------- -----
1A    PWR-1RUC2-640WAC  DCB1705B05B OK       Good     Good   250/390
1B    Not Present
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
resource directory (coap-proxy configuration)

To unicast upstream resource directory server to which the switch can act as a COAP client, use the resource directory command in coap-proxy configuration mode. To return to the default settings, use the no form of the command.

A maximum of five ip-lists can be configured, for each ipv4 or ipv6, using the resource directory command.

```
resource directory {ipv4 | ipv6}[ip-address]
no resource directory
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4 ip-address</td>
<td>Specifies IPv4 address.</td>
</tr>
<tr>
<td>ipv6 ip-address</td>
<td>Specifies IPv6 address.</td>
</tr>
</tbody>
</table>

Command Modes

coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the coap proxy command in global configuration mode.

Example

This example shows how to unicast upstream resource directory server to which the switch can act as a COAP client.

```
Device(config)# coap proxy
Device(config-coap-proxy)# resource-directory ipv4 192.168.1.1
```
security (coap-proxy configuration)

To configure CoAP security features, use the `security` command in coap-proxy configuration mode. To return to the default settings, use the `no` form of the command.

```
security {none [{ipv4 { ip-address ip-mask/prefix} | ipv6 { ip-address ip-mask/prefix} | list {ipv4-list-name ipv6-list-name}]} | dtls [{id-trustpoint {identity-trustpoint label}}][verification-trustpoint {verification-trustpoint}][{ipv4 { ip-address ip-mask/prefix} | ipv6 { ip-address ip-mask/prefix} | list {ipv4-list-name ipv6-list-name}}]}]
```

Syntax Description

- **none**: Indicates no security on that port.

 Note: A maximum of five ipv4 and five ipv6 addresses can be associated.

- **dtls**: The DTLS security takes RSA trustpoint and Verification trustpoint which are optional. Without 1.1.0.0 255.255.0.0 Verification trustpoint it does the normal Public Key Exchange.

 Note: A maximum of five ipv4 and five ipv6 addresses can be associated.

Command Modes

coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to configure no security on the port.

```
Device(config)# coap proxy
Device(config-coap-proxy)# security none ipv4 1.1.0.0 255.255.0.0
```
shell trigger

To create an event trigger, use the shell trigger command in global configuration mode. Use the no form of this command to delete the trigger.

shell trigger identifier description

no shell trigger identifier description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>identifier</td>
<td>Specifies the event trigger identifier. The identifier should have no spaces or hyphens between words.</td>
</tr>
<tr>
<td>description</td>
<td>Specifies the event trigger description text.</td>
</tr>
</tbody>
</table>

Syntax Description

System-defined event triggers:

- CISCO_DMP_EVENT
- CISCO_IPVSC_AUTO_EVENT
- CISCO_PHONE_EVENT
- CISCO_SWITCH_EVENT
- CISCO_ROUTER_EVENT
- CISCO_WIRELESS_AP_EVENT
- CISCO_WIRELESS_LIGHTWEIGHT_AP_EVENT

Command Default

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Command Modes

Global configuration (config)

Usage Guidelines

Use this command to create user-defined event triggers for use with the macro auto device and the macro auto execute commands.

To support dynamic device discovery when using IEEE 802.1x authentication, you need to configure the RADIUS authentication server to support the Cisco attribute-value pair: auto-smart-port=event trigger.

Example

This example shows how to create a user-defined event trigger called RADIUS_MAB_EVENT:

```
Device(config)# shell trigger RADIUS_MAB_EVENT MAC_AuthBypass Event
Device(config)# end
```
show beacon all

To display the status of beacon LED on the device, use the **show beacon all** command in privileged EXEC mode.

```
show beacon { rp { active | standby } | slot slot-number } | all }
```

Syntax Description

- **rp (active | standby)**: Specifies the active or the standby Switch whose beacon LED status is to be displayed.
- **slot slot-num**: Specifies the slot whose beacon LED status is to be displayed.
- **all**: Displays the status of all beacon LEDs.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Command Default

This command has no default settings.

Command Modes

Privileged EXEC (#)

Usage Guidelines

Use the command **show beacon all** to know the status of all beacon LEDs.

Sample output of show beacon all command.

```
Device#show beacon all
Switch# Beacon Status
-----------------------
*1 OFF
```

Sample output of show beacon rp command.

```
Device#show beacon rp active
Switch# Beacon Status
-----------------------
*1 OFF
```

```
Device#show beacon slot 1
Switch# Beacon Status
-----------------------
*1 OFF
```
show coap dtls endpoints

To display the CoAP dtls endpoints, use the **show coap dtls endpoints** command in user EXEC or privileged EXEC mode.

show coap dtls endpoints

Command Default
- This command has no arguments or keywords.

Command Modes
- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the CoAP dtls endpoint:

```
Device# show coap dtls endpoints
#     Index StateString StateValue Port IP
---------------------------------------------------------------
```

show coap endpoints

To display the CoAP endpoints, use the **show coap endpoints** command in user EXEC or privileged EXEC mode.

show coap endpoints

This command has no arguments or keywords.

Command Modes

- User EXEC (>
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the CoAP endpoint

```
Device# show coap endpoints
List of all endpoints :

Code : D - Discovered , N - New
# Status Age(s) LastNKC(s) IP

Endpoints - Total : 0 Discovered : 0 New : 0
```
show coap globals

To display the CoAP globals, use the **show coap globals** command in user EXEC or privileged EXEC mode.

show coap globals

Command Default

This command has no arguments or keywords.

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

The following is sample output from the **show coap globals** command:

This example shows how to display the CoAP configuration:

```
Device# show coap dtls globals
Coap System Timer Values :
  Discovery     : 120 sec
  Cache Exp     : 5  sec
  Keep Alive    : 120 sec
  Client DB     : 5  sec
  Query Queue   : 500 ms
  Ack delay     : 500 ms
  Timeout       : 5  sec
  Ageout        : 300 sec

Max Endpoints    : 10
Max DTLS Endpoints: 20
Resource Disc Mode: POST
```
show coap resources

To display the CoAP resources, use the show coap resources command in user EXEC or privileged EXEC mode.

show coap resources

Command Default
This command has no arguments or keywords.

Command Modes
User EXEC (>)
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the CoAP resources:

Device# show coap resources
Link format data =
</>
</cisco/flood>
</cisco/context>
</cisco/showtech>
</cisco/discover>
</cisco/sleep>
</cisco/lldp>
show coap stats

To display the CoAP stats, use the **show coap stats** command in user EXEC or privileged EXEC mode.

show coap stats

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Command Modes</th>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td>This command has no arguments or keywords.</td>
<td>User EXEC (>)</td>
<td>Release</td>
</tr>
<tr>
<td>Privileged EXEC (#)</td>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the CoAP stats:

```
Device# show coap stats
Coap Stats :
Endpoints  : 0
Requests   : 20
Ext. Queries : 0
New Endpoints: 0
```
show coap version

To display the CoAP version, use the `show coap version` command in user EXEC or privileged EXEC mode.

show coap version

Command Default

This command has no arguments or keywords.

Command Modes

User EXEC (`>`)
Privileged EXEC (`#`)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the CoAP version:

```
Device# show coap version
CoAP version 1.0.5
RFC 7252
```
show device classifier attached

To display the devices connected to a switch and their associated properties, use the `show device classifier attached` command in user EXEC mode.

```
show device classifier attached [[{detail | interface interface_id | mac-address mac_address}]]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detail</code></td>
<td>Displays detailed device classifier information.</td>
</tr>
<tr>
<td><code>interface interface_id</code></td>
<td>Displays information about devices attached to the specified interface.</td>
</tr>
<tr>
<td><code>mac mac_address</code></td>
<td>Displays device information for the specified endpoint.</td>
</tr>
</tbody>
</table>

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to display the devices connected to a switch. Use the `show device classifier attached` command in privileged EXEC mode to display the configurable parameters for a device.

Example

This example shows how to use the `show device classifier attached` command with no optional keywords to view the devices connected to the switch:

```
Device# show device classifier attached
MAC_Address   Port_Id   Profile Name
----------------- --------- ---------------------------
000a.b8c6.1e07 Gi1/0/2   Cisco-Device
001f.9e90.1250 Gi1/0/4   Cisco-AP-Aironet-1130
```

This example shows how to use the `show device classifier attached` command in privileged EXEC mode with the optional `mac-address` keyword to view summary information about the connected device with the specified MAC address:

```
Device# show device classifier attached mac-address 001f.9e90.1250
MAC_Address   Port_Id   Profile Name
----------------- --------- ---------------------------
001f.9e90.1250 Gi1/0/4   Cisco-AP-Aironet-1130
```

This example shows how to use the `show device classifier attached` command in privileged EXEC mode with the optional `mac-address` and `detail` keywords to view detailed information about the connected device with the specified MAC address:

```
Device# show device classifier attached mac-address 001f.9e90.1250
detail
MAC_Address   Port_Id   Profile Name
----------------- --------- ---------------------------
001f.9e90.1250 Gi1/0/4   Cisco-AP-Aironet-1130
```
This example shows how to use the `show device classifier attached` command in privileged EXEC mode with the optional `interface` keyword to view summary information about the device connected to the specified interface:

```
Device# show device classifier attached interface gi 1/0/2
MAC_Address Port_Id Profile Name
----------------- ------ ---------------------------
000a.b8c6.1e07 Gi1/0/2 Cisco-Device

This example shows how to use the `show device classifier attached` command in privileged EXEC mode with the optional `interface` and `detail` keywords to view detailed information about the device connected to the specified interface:

```
Device# show device classifier attached interface gi 1/0/2 detail
MAC_Address Port_Id Certainty Parent ProfileType Profile Name
----------------- ------ ----- ------ -------- ---------------------------
000a.b8c6.1e07 Gi1/0/2 10 0 Default Cisco-Device cisco
```
show device classifier clients

To display the clients using the device classifier facility on the switch, use the `show device classifier clients` command in user EXEC mode.

**show device classifier clients**

**Command Default**

This command has no arguments or keywords.

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Device classifier (DC) is enabled by default when you enable a client application (for example, Auto SmartPorts) that uses its functionality. Use the `show device classifier clients` command to display the clients that are using the DC feature on the switch.

As long as any clients are using the DC, you cannot disable it by using the `no device classifier` command. If you attempt to disable the DC while a client is using it, an error message appears.

**Example**

This example shows how to use the `show device classifier clients` command to view the clients using the DC on the switch:

```
Device# show device classifier clients
Client Name

Auto Smart Ports
```

This example shows the error message that appears when you attempt to disable DC while a client is using it:

```
Switch(config)# no device classifier
These subsystems should be disabled before disabling Device classifier
Auto Smart Ports

% Error - device classifier is not disabled
```
show device classifier profile type

To display all the device types recognized by the device classifier, use the `show device classifier profile type` command in user EXEC mode.

```
show device classifier profile type [table [{built-in default}] | string filter_string]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>table</td>
<td>Displays device classification in a table.</td>
</tr>
<tr>
<td>built-in</td>
<td>Displays device classification information from the built-in device table.</td>
</tr>
<tr>
<td>default</td>
<td>Displays device classification information from the default device table.</td>
</tr>
<tr>
<td>filter string</td>
<td>Displays information for devices that match the filter.</td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC (>
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command displays all the device types recognized by the device classification engine. The number of available device types is the number of profiles stored on the switch. Because the number of profiles can be very large, you can use the `filter` keyword to limit the command output.

**Example**

This example shows how to use the `show device classifier profile type` command in privileged EXEC mode with no optional keywords to view the devices recognized by the device classifier:

```
Device# show device classifier profile type table
Valid Type Profile Name min Conf ID
True Default Apple-Device 10 0
Valid Default Aruba-Device 10 1
Valid Default Avaya-Device 10 2
Valid Default Avaya-IP-Phone 20 3
Valid Default BlackBerry 20 4
Valid Default Cisco-Device 10 5
Valid Default Cisco-IP-Phone 20 6
Valid Default Cisco-IP-Phone-7902 70 7
Valid Default Cisco-IP-Phone-7905 70 8
Valid Default Cisco-IP-Phone-7906 70 9
Valid Default Cisco-IP-Phone-7910 70 10
Valid Default Cisco-IP-Phone-7911 70 11
Valid Default Cisco-IP-Phone-7912 70 12
Valid Default Cisco-IP-Phone-7940 70 13
Valid Default Cisco-IP-Phone-7941 70 14
Valid Default Cisco-IP-Phone-7942 70 15
```
<table>
<thead>
<tr>
<th>Valid</th>
<th>Default</th>
<th>Cisco-IP-Phone-7945</th>
<th>70</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7945G</td>
<td>70</td>
<td>17</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7960</td>
<td>70</td>
<td>18</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7961</td>
<td>70</td>
<td>19</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7962</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7965</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7970</td>
<td>70</td>
<td>22</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7971</td>
<td>70</td>
<td>23</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7975</td>
<td>70</td>
<td>24</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-7985</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Phone-9971</td>
<td>70</td>
<td>26</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-WLC-2100-Series</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>DLINK-Device</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Enterasys-Device</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>HP-Device</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>HP-JetDirect-Printer</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Lexmark-Device</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Lexmark-Printer-E260dn</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Microsoft-Device</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Netgear-Device</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>NintendoWII</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Nortel-Device</td>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Nortel-IP-Phone-2000-Series</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>SonyPS3</td>
<td>10</td>
<td>39</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>XBOX360</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Xerox-Device</td>
<td>10</td>
<td>41</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Xerox-Printer Phaser3250</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Aruba-AP</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-Access-Point</td>
<td>10</td>
<td>44</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Conference-Station-7935</td>
<td>70</td>
<td>45</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Conference-Station-7936</td>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-IP-Conference-Station-7937</td>
<td>70</td>
<td>47</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>DLINK-DAP-1522</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AP-Aironet-1130</td>
<td>30</td>
<td>49</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AP-Aironet-1240</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AP-Aironet-1250</td>
<td>30</td>
<td>51</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-IAP</td>
<td>25</td>
<td>52</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-IAP-1130</td>
<td>30</td>
<td>53</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-IAP-1240</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-IAP-1250</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-IAP-1250</td>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-AP</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-AP-1130</td>
<td>30</td>
<td>58</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-AP-1240</td>
<td>50</td>
<td>59</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Cisco-AIR-AP-1250</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Invalid</td>
<td>Default</td>
<td>Sun-Workstation</td>
<td>10</td>
<td>61</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>Linksys-Device</td>
<td>20</td>
<td>62</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>LinksysWAP54G-Device</td>
<td>30</td>
<td>63</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>HTC-Device</td>
<td>10</td>
<td>64</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>MotorolaMobile-Device</td>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>VMware-Device</td>
<td>10</td>
<td>66</td>
</tr>
<tr>
<td>Valid</td>
<td>Default</td>
<td>ISE-Appliance</td>
<td>10</td>
<td>67</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Device</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Router</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Router</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-2xxx</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-2421</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-2500</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-2520</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-2530</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Camera-4xxx</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Transparent-Bridge</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Transparent-Bridge</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Source-Bridge</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Switch</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-IP-Phone</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>IP-Phone</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-DMP</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-DMP-4305G</td>
<td>70</td>
<td>17</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-DMP-4310G</td>
<td>70</td>
<td>18</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-DMP-4400G</td>
<td>70</td>
<td>19</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-WLC-2100-Series</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-Access-Point</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-AIR-LAP</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Cisco-AIR-AP</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>Valid</td>
<td>Built-in</td>
<td>Linksys-Device</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>
show env

To display fan, temperature, and power information, use the show env command in EXEC mode.

```
show env {all | fan | power [{all | switch [stack-member-number]}] | stack [stack-member-number] | temperature [status]}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Displays the fan and temperature environmental status and the status of the internal power supplies.</td>
</tr>
<tr>
<td>fan</td>
<td>Displays the switch fan status.</td>
</tr>
<tr>
<td>power</td>
<td>Displays the internal power status of the active switch.</td>
</tr>
<tr>
<td>all</td>
<td>(Optional) Displays the status of all the internal power supplies in a standalone switch when the command is entered on the switch, or in all the stack members when the command is entered on the active switch.</td>
</tr>
<tr>
<td>switch</td>
<td>(Optional) Displays the status of the internal power supplies for each switch in the stack or for the specified switch. This keyword is available only on stacking-capable switches.</td>
</tr>
<tr>
<td>stack-member-number</td>
<td>(Optional) Number of the stack member for which to display the status of the internal power supplies or the environmental status. The range is 1 to 9.</td>
</tr>
<tr>
<td>stack</td>
<td>Displays all environmental status for each switch in the stack or for the specified switch. This keyword is available only on stacking-capable switches.</td>
</tr>
<tr>
<td>temperature</td>
<td>Displays the switch temperature status.</td>
</tr>
<tr>
<td>status</td>
<td>(Optional) Displays the switch internal temperature (not the external temperature) and the threshold values.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command Modes

User EXEC (>)

Privileged EXEC (#)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use the `show env` EXEC command to display the information for the switch being accessed—a standalone switch or the active switch. Use this command with the `stack` and `switch` keywords to display all information for the stack or for the specified stack member.
If you enter the `show env temperature status` command, the command output shows the switch temperature state and the threshold level.

You can also use the `show env temperature` command to display the switch temperature status. The command output shows the green and yellow states as `OK` and the red state as `FAULTY`. If you enter the `show env all` command, the command output is the same as the `show env temperature status` command output.

**Examples**

This is an example of output from the `show env all` command:

```
Device># show env all
Switch 1 FAN 1 is OK
Switch 1 FAN 2 is OK
Switch 1 FAN 3 is OK
FAN PS-1 is NOT PRESENT
FAN PS-2 is OK
Switch 1: SYSTEM TEMPERATURE is OK
Inlet Temperature Value: 25 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 46 Degree Celsius
Red Threshold : 56 Degree Celsius
Hotspot Temperature Value: 35 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 105 Degree Celsius
Red Threshold : 125 Degree Celsius

SW PID Serial# Status Sys Pwr PoE Pwr Watts
-- ------------------ ---------- --------------- ------- ------- -----
1A Unknown Unknown No Input Power Bad Bad 235
1B PWR-C1-350WAC DCB2137H04P OK Good Good 350
```

This is an example of output from the `show env fan` command:

```
Device# show env fan
Switch 1 FAN 1 is OK
Switch 1 FAN 2 is OK
Switch 1 FAN 3 is OK
FAN PS-1 is NOT PRESENT
FAN PS-2 is OK
```

This is an example of output from the `show env power` command:

```
Device# show env power
SW PID Serial# Status Sys Pwr PoE Pwr Watts
-- ------------------ ---------- --------------- ------- ------- -----
1A Unknown Unknown No Input Power Bad Bad 235
1B PWR-C1-350WAC DCB2137H04P OK Good Good 350
```

> `show env stack`

```
SWITCH: 1
Switch 1 FAN 1 is OK
Switch 1 FAN 2 is OK
Switch 1 FAN 3 is OK
FAN PS-1 is NOT PRESENT
FAN PS-2 is OK
Switch 1: SYSTEM TEMPERATURE is OK
Inlet Temperature Value: 25 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 46 Degree Celsius
Red Threshold : 56 Degree Celsius
Hotspot Temperature Value: 35 Degree Celsius
```
Temperature State: GREEN
Yellow Threshold : 105 Degree Celsius
Red Threshold : 125 Degree Celsius

This example shows how to display the temperature value, state, and the threshold values on a stack.

```
show env stack
System Temperature Value: 41 Degree Celsius
System Temperature State: GREEN
Yellow Threshold : 66 Degree Celsius
Red Threshold : 76 Degree Celsius
```

This example shows the output of `show env temperature` command

```
Device> show env temperature
Switch 1: SYSTEM TEMPERATURE is OK
Inlet Temperature Value: 25 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 46 Degree Celsius
Red Threshold : 56 Degree Celsius

Hotspot Temperature Value: 35 Degree Celsius
Temperature State: GREEN
Yellow Threshold : 105 Degree Celsius
Red Threshold : 125 Degree Celsius
```

**Table 9: States in the show env temperature status Command Output**

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>The switch temperature is in the normal operating range.</td>
</tr>
<tr>
<td>Yellow</td>
<td>The temperature is in the warning range. You should check the external temperature around the switch.</td>
</tr>
<tr>
<td>Red</td>
<td>The temperature is in the critical range. The switch might not run properly if the temperature is in this range.</td>
</tr>
</tbody>
</table>
**show errdisable detect**

To display error-disabled detection status, use the `show errdisable detect` command in EXEC mode.

```
show errdisable detect
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command Modes**

User EXEC (>)
Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A gbic-invalid error reason refers to an invalid small form-factor pluggable (SFP) module.

The error-disable reasons in the command output are listed in alphabetical order. The mode column shows how error-disable is configured for each feature.

You can configure error-disabled detection in these modes:

- **port mode**—The entire physical port is error-disabled if a violation occurs.
- **vlan mode**—The VLAN is error-disabled if a violation occurs.
- **port/vlan mode**—The entire physical port is error-disabled on some ports and is per-VLAN error-disabled on other ports.

This is an example of output from the `show errdisable detect` command:

```
Device> show errdisable detect
ErrDisable Reason Detection Mode
------------------------ --------- ----
arp-inspection Enabled port
bdpdu-guard Enabled vlan
channel-misconfig Enabled port
community-limit Enabled port
dhcp-rate-limit Enabled port
dtp-flap Enabled port
gbic-invalid Enabled port
inline-power Enabled port
invalid-policy Enabled port
l2pt-guard Enabled port
link-flap Enabled port
loopback Enabled port
lsgroup Enabled port
pagp-flap Enabled port
psecure-violation Enabled port/vlan
security-violation Enabled port
sfp-config-mismatch Enabled port
storm-control Enabled port
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Status</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>udld</td>
<td>Enabled</td>
<td>port</td>
</tr>
<tr>
<td>vmps</td>
<td>Enabled</td>
<td>port</td>
</tr>
</tbody>
</table>
show errdisable recovery

To display the error-disabled recovery timer information, use the `show errdisable recovery` command in EXEC mode.

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command Modes**
User EXEC (>)
Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
A gbic-invalid error-disable reason refers to an invalid small form-factor pluggable (SFP) module interface.

**Note**
Though visible in the output, the unicast-flood field is not valid.
show ip interface

To display the usability status of interfaces configured for IP, use the **show ip interface** command in privileged EXEC mode.

**show ip interface [type number] [brief]**

**Syntax Description**

- **type** (Optional) Interface type.
- **number** (Optional) Interface number.
- **brief** (Optional) Displays a summary of the usability status information for each interface.

**Note** The output of the **show ip interface brief** command displays information of all the available interfaces whether or not the corresponding network module for these interfaces are connected. These interfaces can be configured if the network module is connected. Run the **show interface status** command to see which network modules are connected.

**Command Default**

The full usability status is displayed for all interfaces configured for IP.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The Cisco IOS software automatically enters a directly connected route in the routing table if the interface is usable (which means that it can send and receive packets). If an interface is not usable, the directly connected routing entry is removed from the routing table. Removing the entry lets the software use dynamic routing protocols to determine backup routes to the network, if any.

If the interface can provide two-way communication, the line protocol is marked "up." If the interface hardware is usable, the interface is marked "up."

If you specify an optional interface type, information for that specific interface is displayed. If you specify no optional arguments, information on all the interfaces is displayed.

When an asynchronous interface is encapsulated with PPP or Serial Line Internet Protocol (SLIP), IP fast switching is enabled. A **show ip interface** command on an asynchronous interface encapsulated with PPP or SLIP displays a message indicating that IP fast switching is enabled.

You can use the **show ip interface brief** command to display a summary of the device interfaces. This command displays the IP address, the interface status, and other information.

The **show ip interface brief** command does not display any information related to Unicast RPF.

**Examples**

The following example shows interface information on Gigabit Ethernet interface 1/0/1:

Device# show ip interface gigabitethernet 1/0/1

GigabitEthernet1/0/1 is up, line protocol is up
Internet address is 10.1.1.1/16
Broadcast address is 255.255.255.255
Address determined by setup command
MTU is 1500 bytes
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is not set
Inbound access list is not set
Proxy ARP is enabled
Local Proxy ARP is disabled
Security level is default
Split horizon is enabled
ICMP redirects are always sent
ICMP unreachables are always sent
ICMP mask replies are never sent
IP fast switching is enabled
IP fast switching on the same interface is disabled
IP Flow switching is disabled
IP CEF switching is enabled
IP Feature Fast switching turbo vector
IP VPN Flow CEF switching turbo vector
IP multicast fast switching is enabled
IP multicast distributed fast switching is disabled
IP route-cache flags are Fast, CEF
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTP/IP header compression is disabled
Policy routing is enabled, using route map PBR
Network address translation is disabled
BGP Policy Mapping is disabled
IP Multi-Processor Forwarding is enabled
IP Input features, "PBR", are not supported by MPF and are IGNORED
IP Output features, "NetFlow", are not supported by MPF and are IGNORED

The following example shows how to display the usability status for a specific VLAN:

Device# show ip interface vlan 1

Vlan1 is up, line protocol is up
  Internet address is 10.0.0.4/24
  Broadcast address is 255.255.255.255
  Address determined by non-volatile memory
  MTU is 1500 bytes
  Helper address is not set
  Directed broadcast forwarding is disabled
  Outgoing access list is not set
  Inbound access list is not set
  Proxy ARP is enabled
  Local Proxy ARP is disabled
  Security level is default
  Split horizon is enabled
  ICMP redirects are always sent
  ICMP unreachables are always sent
  ICMP mask replies are never sent
  IP fast switching is enabled
  IP fast switching on the same interface is disabled
  IP Flow switching is disabled
  IP CEF switching is enabled
  IP Fast switching turbo vector
IP Normal CEF switching turbo vector
IP multicast fast switching is enabled
IP multicast distributed fast switching is disabled
IP route-cache flags are Fast, CEF
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTF/IP header compression is disabled
Probe proxy name replies are disabled
Policy routing is disabled
Network address translation is disabled
WCCP Redirect outbound is disabled
WCCP Redirect inbound is disabled
WCCP Redirect exclude is disabled
BGP Policy Mapping is disabled
Sampled Netflow is disabled
IP multicast multilayer switching is disabled
Netflow Data Export (hardware) is enabled

The table below describes the significant fields shown in the display.

**Table 10: show ip interface Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast address is</td>
<td>Broadcast address.</td>
</tr>
<tr>
<td>Peer address is</td>
<td>Peer address.</td>
</tr>
<tr>
<td>MTU is</td>
<td>MTU value set on the interface, in bytes.</td>
</tr>
<tr>
<td>Helper address</td>
<td>Helper address, if one is set.</td>
</tr>
<tr>
<td>Directed broadcast forwarding</td>
<td>Shows whether directed broadcast forwarding is enabled.</td>
</tr>
<tr>
<td>Outgoing access list</td>
<td>Shows whether the interface has an outgoing access list set.</td>
</tr>
<tr>
<td>Inbound access list</td>
<td>Shows whether the interface has an incoming access list set.</td>
</tr>
<tr>
<td>Proxy ARP</td>
<td>Shows whether Proxy Address Resolution Protocol (ARP) is enabled for the interface.</td>
</tr>
<tr>
<td>Security level</td>
<td>IP Security Option (IPSO) security level set for this interface.</td>
</tr>
<tr>
<td>Split horizon</td>
<td>Shows whether split horizon is enabled.</td>
</tr>
<tr>
<td>ICMP redirects</td>
<td>Shows whether redirect messages will be sent on this interface.</td>
</tr>
<tr>
<td>ICMP unreachable</td>
<td>Shows whether unreachable messages will be sent on this interface.</td>
</tr>
<tr>
<td>ICMP mask replies</td>
<td>Shows whether mask replies will be sent on this interface.</td>
</tr>
<tr>
<td>IP fast switching</td>
<td>Shows whether fast switching is enabled for this interface. It is generally enabled on serial interfaces, such as this one.</td>
</tr>
<tr>
<td>IP Flow switching</td>
<td>Shows whether Flow switching is enabled for this interface.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>IP CEF switching</td>
<td>Shows whether Cisco Express Forwarding switching is enabled for the interface.</td>
</tr>
<tr>
<td>IP multicast fast switching</td>
<td>Shows whether multicast fast switching is enabled for the interface.</td>
</tr>
<tr>
<td>IP route-cache flags are Fast</td>
<td>Shows whether NetFlow is enabled on an interface. Displays &quot;Flow init&quot; to specify that NetFlow is enabled on the interface. Displays &quot;Ingress Flow&quot; to specify that NetFlow is enabled on a subinterface using the <code>ip flow ingress</code> command. Shows &quot;Flow&quot; to specify that NetFlow is enabled on a main interface using the <code>ip route-cache flow</code> command.</td>
</tr>
<tr>
<td>Router Discovery</td>
<td>Shows whether the discovery process is enabled for this interface. It is generally disabled on serial interfaces.</td>
</tr>
<tr>
<td>IP output packet accounting</td>
<td>Shows whether IP accounting is enabled for this interface and what the threshold (maximum number of entries) is.</td>
</tr>
<tr>
<td>TCP/IP header compression</td>
<td>Shows whether compression is enabled.</td>
</tr>
<tr>
<td>WCCP Redirect outbound is disabled</td>
<td>Shows the status of whether packets received on an interface are redirected to a cache engine. Displays &quot;enabled&quot; or &quot;disabled.&quot;</td>
</tr>
<tr>
<td>WCCP Redirect exclude is disabled</td>
<td>Shows the status of whether packets targeted for an interface will be excluded from being redirected to a cache engine. Displays &quot;enabled&quot; or &quot;disabled.&quot;</td>
</tr>
<tr>
<td>Netflow Data Export (hardware) is enabled</td>
<td>NetFlow Data Expert (NDE) hardware flow status on the interface.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of the usability status information for each interface:

```
Device# show ip interface brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan1</td>
<td>unassigned</td>
<td>YES NVRAM</td>
<td>administratively down down</td>
</tr>
<tr>
<td>GigabitEthernet0/0</td>
<td>unassigned</td>
<td>YES NVRAM</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/1</td>
<td>unassigned</td>
<td>YES NVRAM</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/2</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/3</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/4</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/5</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/6</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet1/0/7</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
</tr>
</tbody>
</table>

<output truncated>
```

Table 11: show ip interface brief Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Type of interface.</td>
</tr>
</tbody>
</table>
### Field | Description
--- | ---
IP-Address | IP address assigned to the interface.
OK? | "Yes" means that the IP Address is valid. "No" means that the IP Address is not valid.

**Method**
The Method field has the following possible values:

- RARP or SLARP: Reverse Address Resolution Protocol (RARP) or Serial Line Address Resolution Protocol (SLARP) request.
- BOOTP: Bootstrap protocol.
- TFTP: Configuration file obtained from the TFTP server.
- manual: Manually changed by the command-line interface.
- NVRAM: Configuration file in NVRAM.
- IPCP: `ip address negotiated` command.
- DHCP: `ip address dhcp` command.
- unset: Unset.
- other: Unknown.

**Status**
Shows the status of the interface. Valid values and their meanings are:

- up: Interface is up.
- down: Interface is down.
- administratively down: Interface is administratively down.

**Protocol**
Shows the operational status of the routing protocol on this interface.

---

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip interface</code></td>
<td>Configures a virtual gateway IP interface on a Secure Socket Layer Virtual Private Network (SSL VPN) gateway</td>
</tr>
<tr>
<td><code>show interface status</code></td>
<td>Displays the status of the interface.</td>
</tr>
</tbody>
</table>
show interfaces

To display the administrative and operational status of all interfaces or for a specified interface, use the `show interfaces` command in the EXEC mode.

```
show interfaces [{interface-id|vlan vlan-id}] [{accounting|capabilities [module number]|debounce|description|etherchannel|flowcontrol|private-vlan mapping|pruning|stats|status [{err-disabled|inactive}] | trunk}]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>interface-id</strong></td>
<td>(Optional) ID of the interface. Valid interfaces include physical ports (including type, stack member for stacking-capable switches, module, and port number) and port channels. The port channel range is 1 to 48.</td>
</tr>
<tr>
<td><strong>vlan vlan-id</strong></td>
<td>(Optional) VLAN identification. The range is 1 to 4094.</td>
</tr>
<tr>
<td><strong>accounting</strong></td>
<td>(Optional) Displays accounting information on the interface, including active protocols and input and output packets and octets.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The display shows only packets processed in software; hardware-switched packets do not appear.</td>
</tr>
<tr>
<td><strong>capabilities</strong></td>
<td>(Optional) Displays the capabilities of all interfaces or the specified interface, including the features and options that you can configure on the interface. Though visible in the command line help, this option is not available for VLAN IDs.</td>
</tr>
<tr>
<td><strong>module number</strong></td>
<td>(Optional) Displays capabilities of all interfaces on the switch or specified stack member.</td>
</tr>
<tr>
<td><strong>description</strong></td>
<td>(Optional) Displays the administrative status and description set for interfaces.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The output of the <code>show interfaces description</code> command displays information of all the available interfaces whether or not the corresponding network module for these interfaces are connected. These interfaces can be configured if the network module is connected. Run the <code>show interface status</code> command to see which network modules are connected.</td>
</tr>
<tr>
<td><strong>etherchannel</strong></td>
<td>(Optional) Displays interface EtherChannel information.</td>
</tr>
<tr>
<td><strong>flowcontrol</strong></td>
<td>(Optional) Displays interface flow control information.</td>
</tr>
<tr>
<td><strong>private-vlan mapping</strong></td>
<td>(Optional) Displays private-VLAN mapping information for the VLAN switch virtual interfaces (SVIs). This keyword is not available if the switch is running the LAN base feature set.</td>
</tr>
</tbody>
</table>
### show interfaces

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pruning</td>
<td>(Optional) Displays trunk VTP pruning information for the interface.</td>
</tr>
<tr>
<td>stats</td>
<td>(Optional) Displays the input and output packets by switching the path for the interface.</td>
</tr>
<tr>
<td>status</td>
<td>(Optional) Displays the status of the interface. A status of unsupported in the Type field means that a non-Cisco small form-factor pluggable (SFP) module is inserted in the module slot.</td>
</tr>
<tr>
<td>err-disabled</td>
<td>(Optional) Displays interfaces in an error-disabled state.</td>
</tr>
<tr>
<td>inactive</td>
<td>(Optional) Displays interfaces in an inactive state.</td>
</tr>
<tr>
<td>trunk</td>
<td>(Optional) Displays interface trunk information. If you do not specify an interface, only information for active trunking ports appears.</td>
</tr>
</tbody>
</table>

**Note:** Though visible in the command-line help strings, the `crb`, `fair-queue`, `irb`, `mac-accounting`, `precedence`, `random-detect`, `rate-limit`, and `shape` keywords are not supported.

#### Command Default
None

#### Command Modes
Privileged EXEC (#)

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

#### Usage Guidelines

The `show interfaces capabilities` command with different keywords has these results:

- Use the `show interface capabilities module number` command to display the capabilities of all interfaces on that switch. If there is no switch with that module number in the stack, there is no output.

- Use the `show interfaces interface-id capabilities` to display the capabilities of the specified interface.

- Use the `show interfaces capabilities` (with no module number or interface ID) to display the capabilities of all interfaces in the stack.

**Note:** The field **Last Input** displayed in the command output indicates the number of hours, minutes, and seconds since the last packet was successfully received by an interface and processed by the CPU on the device. This information can be used to know when a dead interface failed.

**Last Input** is not updated by fast-switched traffic.

The field **output** displayed in the command output indicates the number of hours, minutes, and seconds since the last packet was successfully transmitted by the interface. The information provided by this field can useful for knowing when a dead interface failed.
This is an example of output from the `show interfaces` command for an interface on stack member 3:

```
Device# show interfaces gigabitethernet3/0/2
GigabitEthernet3/0/2 is down, line protocol is down (notconnect)
Hardware is Gigabit Ethernet, address is 2037.064d.4381 (bia 2037.064d.4381)
MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
 reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Auto-duplex, Auto-speed, media type is 10/100/1000BaseTX
input flow control is off, output flow control is unsupported
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output never, output hang never
Last clearing of "show interface" counters never
Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
 Received 0 broadcasts (0 multicastrts)
 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
 0 watchdogg, 0 multicast, 0 pause input
 0 input packets with dribbble condition detected
 0 packets output, 0 bytes, 0 underruns
 0 output errors, 0 collisions, 1 interface resets
 0 unknown protocol drops
 0 babbles, 0 late collision, 0 deferred
 0 lost carrier, 0 no carrier, 0 pause output
 0 output buffer failures, 0 output buffers swapped out
```

```Device# show interfaces accounting
Vlan1
 Protocol Pkts In Chars In Pkts Out Chars Out
 IP 0 0 6 378
Vlan200
 Protocol Pkts In Chars In Pkts Out Chars Out
No traffic sent or received on this interface.
GigabitEthernet0/0
 Protocol Pkts In Chars In Pkts Out Chars Out
 Other 165476 11417844 0 0
 Spanning Tree 1240284 64494768 0 0
 ARP 7096 425760 0 0
 CDP 41368 18781072 82908 35318608
GigabitEthernet1/0/1
 Protocol Pkts In Chars In Pkts Out Chars Out
No traffic sent or received on this interface.
GigabitEthernet1/0/2
 Protocol Pkts In Chars In Pkts Out Chars Out
No traffic sent or received on this interface.
<output truncated>
```

This is an example of output from the `show interfaces interface description` command when the interface has been described as *Connects to Marketing* by using the `description` interface configuration command:
Device# `show interfaces gigabitethernet1/0/2 description`

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/2</td>
<td>up</td>
<td>down</td>
<td>Connects to Marketing</td>
</tr>
</tbody>
</table>

Device# `show interfaces etherchannel`

---

Port-channel34:
- Age of the Port-channel: 28d:18h:51m:46s
- Logical slot/port: 12/34
- Number of ports: 0
- GC: 0x00000000
- HotStandBy port: null
- Passive port list: -
- Port state: Port-channel L3-Ag Not-Inuse
- Protocol: -
- Port security: Disabled

This is an example of output from the `show interfaces interface-id pruning` command when pruning is enabled in the VTP domain:

Device# `show interfaces gigabitethernet1/0/2 pruning`

<table>
<thead>
<tr>
<th>Port</th>
<th>Vlans</th>
<th>Vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/2</td>
<td>Vlans pruned for lack of request by neighbor</td>
<td>3,4</td>
</tr>
</tbody>
</table>

Device# `show interfaces gigabitethernet1/0/1 trunk`

<table>
<thead>
<tr>
<th>Port</th>
<th>Mode</th>
<th>Encapsulation</th>
<th>Status</th>
<th>Native vlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>on</td>
<td>802.1q</td>
<td>other</td>
<td>10</td>
</tr>
</tbody>
</table>

Port Vlans pruned for lack of request by neighbor

This is an example of output from the `show interfaces stats` command for a specified VLAN interface:

Device# `show interfaces vlan 1 stats`

<table>
<thead>
<tr>
<th>Switching path</th>
<th>Pkts In</th>
<th>Chars In</th>
<th>Pkts Out</th>
<th>Chars Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>1165354</td>
<td>136205310</td>
<td>570800</td>
<td>91731594</td>
</tr>
<tr>
<td>Route cache</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1165354</td>
<td>136205310</td>
<td>570800</td>
<td>91731594</td>
</tr>
</tbody>
</table>

This is an example of output from the `show interfaces status err-disabled` command. It displays the status of interfaces in the error-disabled state:

Device# `show interfaces status err-disabled`

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Status</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/2</td>
<td>err-disabled</td>
<td>gbic-invalid</td>
<td></td>
</tr>
<tr>
<td>Gi2/0/3</td>
<td>err-disabled</td>
<td>dtp-flap</td>
<td></td>
</tr>
</tbody>
</table>

This is an example of output from the `show interfaces interface-id pruning` command:

Device# `show interfaces gigabitethernet1/0/2 pruning`

Port Vlans pruned for lack of request by neighbor

Device# `show interfaces gigabitethernet1/0/1 trunk`

Port Vlans allowed on trunk

Port Vlans allowed and active in management domain
Gi1/0/1  none
Port  Vlans in spanning tree forwarding state and not pruned
Gi1/0/1  none

This is an example of output from the `show interfaces description` command:

```
Device# show interfaces description

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vl1</td>
<td>admin down</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>Gi0/0</td>
<td>down</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>Gi1/0/1</td>
<td>down</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>down</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>down</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>Gi1/0/4</td>
<td>down</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>Gi1/0/5</td>
<td>down</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>Gi1/0/6</td>
<td>down</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>Gi1/0/7</td>
<td>down</td>
<td>down</td>
<td></td>
</tr>
</tbody>
</table>

<output truncated>
```
show interfaces counters

To display various counters for the switch or for a specific interface, use the `show interfaces counters` command in privileged EXEC mode.

```
show interfaces [interface-id] counters [{errors | etherchannel | module member-number | protocol status | trunk}]
```

**Syntax Description**

- **interface-id**:
  
  (Optional) ID of the physical interface, including type, stack member (stacking-capable switches only) module, and port number.

- **errors**:
  
  (Optional) Displays error counters.

- **etherchannel**:
  
  (Optional) Displays EtherChannel counters, including octets, broadcast packets, multicast packets, and unicast packets received and sent.

- **module member-number**:
  
  (Optional) Displays counters for the specified member.
  
  The range is 1 to 9.
  
  **Note**: In this command, the `module` keyword refers to the stack member number. The module number that is part of the interface ID is always zero.

- **protocol status**:
  
  (Optional) Displays the status of protocols enabled on interfaces.

- **trunk**:
  
  (Optional) Displays trunk counters.

**Note**

Though visible in the command-line help string, the `vlan vlan-id` keyword is not supported.

**Command Default**

None

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you do not enter any keywords, all counters for all interfaces are included.

This is an example of partial output from the `show interfaces counters` command. It displays all counters for the switch.

```
Device# show interfaces counters
Port InOctets InUcastPkts InMcastPkts InBcastPkts
Gi1/0/1 0 0 0 0
Gi1/0/2 0 0 0 0
Gi1/0/3 95285341 43115 1178430 1950
Gi1/0/4 0 0 0 0
```
This is an example of partial output from the `show interfaces counters module` command for module 2. It displays all counters for the specified switch in the module.

```
Device# show interfaces counters module 2
<table>
<thead>
<tr>
<th>Port</th>
<th>InOctets</th>
<th>InUcastPkts</th>
<th>InMcastPkts</th>
<th>InBcastPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>520</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>520</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>520</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/4</td>
<td>520</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

This is an example of partial output from the `show interfaces counters protocol status` command for all interfaces:

```
Device# show interfaces counters protocol status
Protocols allocated:
Vlan1: Other, IP
Vlan20: Other, IP, ARP
Vlan30: Other, IP, ARP
Vlan40: Other, IP, ARP
Vlan50: Other, IP, ARP
Vlan60: Other, IP, ARP
Vlan70: Other, IP, ARP
Vlan80: Other, IP, ARP
Vlan90: Other, IP, ARP
Vlan900: Other, IP, ARP
Vlan3000: Other, IP
Vlan3500: Other, IP
GigabitEthernet1/0/1: Other, IP, ARP, CDP
GigabitEthernet1/0/2: Other, IP
GigabitEthernet1/0/3: Other, IP
GigabitEthernet1/0/4: Other, IP
GigabitEthernet1/0/5: Other, IP
GigabitEthernet1/0/6: Other, IP
GigabitEthernet1/0/7: Other, IP
GigabitEthernet1/0/8: Other, IP
GigabitEthernet1/0/9: Other, IP
GigabitEthernet1/0/10: Other, IP, CDP
```

This is an example of output from the `show interfaces counters trunk` command. It displays trunk counters for all interfaces.

```
Device# show interfaces counters trunk
<table>
<thead>
<tr>
<th>Port</th>
<th>TrunkFramesTx</th>
<th>TrunkFramesRx</th>
<th>WrongEncap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>80678</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/4</td>
<td>82320</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
show interfaces switchport

To display the administrative and operational status of a switching (nonrouting) port, including port blocking and port protection settings, use the show interfaces switchport command in privileged EXEC mode.

```
show interfaces [interface-id] switchport [{module number}]
```

**Syntax Description**
- `interface-id` (Optional) ID of the interface. Valid interfaces include physical ports (including type, stack member for stacking-capable switches, module, and port number) and port channels. The port channel range is 1 to 48.
- `module number` (Optional) Displays switchport configuration of all interfaces on the switch or specified stack member.

This option is not available if you entered a specific interface ID.

**Command Default**
None

**Command Modes**
Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show interface switchport module number` command to display the switch port characteristics of all interfaces on that switch in the stack. If there is no switch with that module number in the stack, there is no output.

This is an example of output from the `show interfaces switchport` command for a port. The table that follows describes the fields in the display.

```
Device# show interfaces gigabitethernet1/0/1 switchport
Name: Gi1/0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: down
Administrative Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 10 (VLAN0010)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: 11-20
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
```

**Interface and Hardware Components**

show interfaces switchport
Capture VLANs Allowed: ALL

Protected: false
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the port name.</td>
</tr>
<tr>
<td>Switchport</td>
<td>Displays the administrative and operational status of the port. In this display, the port is in switchport mode.</td>
</tr>
<tr>
<td>Administrative Mode</td>
<td>Displays the administrative and operational modes.</td>
</tr>
<tr>
<td>Operational Mode</td>
<td></td>
</tr>
<tr>
<td>Administrative Trunking Encapsulation</td>
<td>Displays the administrative and operational encapsulation method and whether trunking negotiation is enabled.</td>
</tr>
<tr>
<td>Operational Trunking Encapsulation</td>
<td></td>
</tr>
<tr>
<td>Negotiation of Trunking</td>
<td></td>
</tr>
<tr>
<td>Access Mode VLAN</td>
<td>Displays the VLAN ID to which the port is configured.</td>
</tr>
<tr>
<td>Trunking Native Mode VLAN</td>
<td>Lists the VLAN ID of the trunk that is in native mode.</td>
</tr>
<tr>
<td>Trunking VLANs Enabled</td>
<td>Lists the allowed VLANs on the trunk. Lists the active VLANs on the trunk.</td>
</tr>
<tr>
<td>Trunking VLANs Active</td>
<td></td>
</tr>
<tr>
<td>Pruning VLANs Enabled</td>
<td>Lists the VLANs that are pruning-eligible.</td>
</tr>
<tr>
<td>Protected</td>
<td>Displays whether or not protected port is enabled (True) or disabled (False) on the interface.</td>
</tr>
<tr>
<td>Unknown unicast blocked</td>
<td>Displays whether or not unknown multicast and unknown unicast traffic is blocked on the interface.</td>
</tr>
<tr>
<td>Unknown multicast blocked</td>
<td></td>
</tr>
<tr>
<td>Voice VLAN</td>
<td>Displays the VLAN ID on which voice VLAN is enabled.</td>
</tr>
<tr>
<td>Appliance trust</td>
<td>Displays the class of service (CoS) setting of the data packets of the IP phone.</td>
</tr>
</tbody>
</table>
show interfaces transceiver

To display the physical properties of a small form-factor pluggable (SFP) module interface, use the `show interfaces transceiver` command in EXEC mode.

```plaintext
show interfaces [interface-id] transceiver [{detail | module number | properties | supported-list | threshold-table}]
```

**Syntax Description**

- `interface-id` (Optional) ID of the physical interface, including type, stack member (stacking-capable switches only) module, and port number.
- `detail` (Optional) Displays calibration properties, including high and low numbers and any alarm information for any Digital Optical Monitoring (DoM)-capable transceiver if one is installed in the switch.
- `module number` (Optional) Limits display to interfaces on module on the switch. This option is not available if you entered a specific interface ID.
- `properties` (Optional) Displays speed, duplex, and inline power settings on an interface.
- `supported-list` (Optional) Lists all supported transceivers.
- `threshold-table` (Optional) Displays alarm and warning threshold table.

**Command Modes**

User EXEC (>)
Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This is an example of output from the `show interfaces interface-id transceiver properties` command:

```plaintext
Device# show interfaces transceiver

If device is externally calibrated, only calibrated values are printed.
NA or N/A: not applicable, Tx: transmit, Rx: receive.
mA: milliamperes, dBm: decibels (milliwatts).

<table>
<thead>
<tr>
<th>Port</th>
<th>Temperature (Celsius)</th>
<th>Voltage (Volts)</th>
<th>Current (mA)</th>
<th>Optical Tx Power (dBm)</th>
<th>Optical Rx Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi5/1/2</td>
<td>42.9</td>
<td>3.28</td>
<td>22.1</td>
<td>-5.4</td>
<td>-8.1</td>
</tr>
<tr>
<td>Te5/1/3</td>
<td>32.0</td>
<td>3.28</td>
<td>19.8</td>
<td>2.4</td>
<td>-4.2</td>
</tr>
</tbody>
</table>

Device# show interfaces gigabitethernet1/1/1 transceiver properties

Name : Gi1/1/1
Administrative Speed: auto
```
Operational Speed: auto
Administrative Duplex: auto
Administrative Power Inline: enable
Operational Duplex: auto
Administrative Auto-MDIX: off
Operational Auto-MDIX: off

This is an example of output from the `show interfaces interface-id transceiver detail` command:

Device# show interfaces gigabitethernet1/1/1 transceiver detail
ITU Channel not available (Wavelength not available),
Transceiver is internally calibrated.
mA:milliamperes, dBm:decibels (milliwatts), N/A:not applicable.
++:high alarm, +:high warning, -:low warning, -- :low alarm.
A2D readouts (if they differ), are reported in parentheses.
The threshold values are uncalibrated.

<table>
<thead>
<tr>
<th>Port</th>
<th>Temperature (Celsius)</th>
<th>High Alarm Threshold (Celsius)</th>
<th>High Warn Threshold (Celsius)</th>
<th>Low Warn Threshold (Celsius)</th>
<th>Low Alarm Threshold (Celsius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/1/1</td>
<td>29.9</td>
<td>74.0</td>
<td>70.0</td>
<td>0.0</td>
<td>-4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Alarm Threshold (Volts)</td>
<td>High Warn Threshold (Volts)</td>
<td>Low Warn Threshold (Volts)</td>
<td>Low Alarm Threshold (Volts)</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Gi1/1/1</td>
<td>3.28</td>
<td>3.60</td>
<td>3.50</td>
<td>3.10</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optical Transmit Power (dBm)</td>
<td>Optical Receive Power (dBm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Gi1/1/1</td>
<td>1.8</td>
<td>7.9</td>
<td>3.9</td>
<td>0.0</td>
<td>-4.0</td>
</tr>
</tbody>
</table>

Device# show interfaces transceiver supported-list
Transceiver Type Cisco p/n min version
supporting DOM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DWDM GBIC</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWDM SFP</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX only WDM GBIC</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWDM XENPAK</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWDM X2</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWDM XFP</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWDM GBIC</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWDM X2</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWDM XFP</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENPAK ZR</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2 ZR</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XFP ZR</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX_only_WDM_XENPAK</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENPAK_ER</td>
<td>10-1888-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2_ER</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XFP_ER</td>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENPAK_LR</td>
<td>10-1838-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This is an example of output from the `show interfaces transceiver threshold-table` command:

<table>
<thead>
<tr>
<th>Device#</th>
<th>show interfaces transceiver threshold-table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optical Tx</td>
</tr>
<tr>
<td>DWDM GBIC</td>
<td>------------</td>
</tr>
<tr>
<td>Min1</td>
<td>-4.00</td>
</tr>
<tr>
<td>Min2</td>
<td>0.00</td>
</tr>
<tr>
<td>Max2</td>
<td>4.00</td>
</tr>
<tr>
<td>Max1</td>
<td>7.00</td>
</tr>
</tbody>
</table>
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transceiver type all</td>
<td>Enters the transceiver type configuration mode.</td>
</tr>
<tr>
<td>monitoring</td>
<td>Enables digital optical monitoring.</td>
</tr>
</tbody>
</table>
show macro auto

To display Auto Smartports macro information, use the `show macro auto` command in user EXEC mode.

```
show macro auto {address-group address-group-name | device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch] | global [event_trigger] | interface [interface_id]}
```

**Syntax Description**

- **address-group [address-group-name]**
  - Displays address-group information.
  - (Optional) `address-group-name`—Displays information for the specified address group.

- **device [access-point] [ip-camera] [lightweight-ap] [media-player] [phone] [router] [switch]**
  - Displays device information about one or more devices.
  - (Optional) `access-point`—Autonomous access point
  - (Optional) `ip-camera`—Cisco IP video surveillance camera
  - (Optional) `lightweight-ap`—Lightweight access point
  - (Optional) `media-player`—Digital media player
  - (Optional) `phone`—Cisco IP phone
  - (Optional) `router`—Cisco router
  - (Optional) `switch`—Cisco switch

- **global [event_trigger]**
  - Displays Auto Smartports information about the switch.
  - (Optional) `event_trigger`—Displays information about the specified event trigger.

- **interface [interface_id]**
  - Displays interface status.
  - (Optional) `interface_id`—Displays information about the specified interface.

**Command Modes**

- User EXEC (`>`)
- Privileged EXEC (`#`)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

Use this command to display the Auto SmartPorts information for the switch. Use the `show macro auto device` command to display the configurable parameters for a device.

Example

This example shows how to use the `show macro auto device` to view the configuration on the switch:

```
Device# show macro auto device
Device:lightweight-ap
 Default Macro:CISCO_LWAP_AUTO_SMARTPORT
 Current Macro:CISCO_LWAP_AUTO_SMARTPORT
 Configurable Parameters:ACCESS_VLAN
 Defaults Parameters:ACCESS_VLAN=1
 Current Parameters:ACCESS_VLAN=1

Device:access-point
 Default Macro:CISCO_AP_AUTO_SMARTPORT
 Current Macro:CISCO_AP_AUTO_SMARTPORT
 Configurable Parameters:NATIVE_VLAN
 Defaults Parameters:NATIVE_VLAN=1
 Current Parameters:NATIVE_VLAN=1

Device:phone
 Default Macro:CISCO_PHONE_AUTO_SMARTPORT
 Current Macro:CISCO_PHONE_AUTO_SMARTPORT
 Configurable Parameters:ACCESS_VLAN VOICE_VLAN
 Defaults Parameters:ACCESS_VLAN=1 VOICE_VLAN=2
 Current Parameters:ACCESS_VLAN=1 VOICE_VLAN=2

Device:router
 Default Macro:CISCO_ROUTER_AUTO_SMARTPORT
 Current Macro:CISCO_ROUTER_AUTO_SMARTPORT
 Configurable Parameters:NATIVE_VLAN
 Defaults Parameters:NATIVE_VLAN=1
 Current Parameters:NATIVE_VLAN=1

Device:switch
 Default Macro:CISCO_SWITCH_AUTO_SMARTPORT
 Current Macro:CISCO_SWITCH_AUTO_SMARTPORT
 Configurable Parameters:NATIVE_VLAN
 Defaults Parameters:NATIVE_VLAN=1
 Current Parameters:NATIVE_VLAN=1

Device:ip-camera
 Default Macro:CISCO_IP_CAMERA_AUTO_SMARTPORT
 Current Macro:CISCO_IP_CAMERA_AUTO_SMARTPORT
 Configurable Parameters:ACCESS_VLAN
 Defaults Parameters:ACCESS_VLAN=1
 Current Parameters:ACCESS_VLAN=1

Device:media-player
 Default Macro:CISCO_DMP_AUTO_SMARTPORT
 Current Macro:CISCO_DMP_AUTO_SMARTPORT
 Configurable Parameters:ACCESS_VLAN
 Defaults Parameters:ACCESS_VLAN=1
 Current Parameters:ACCESS_VLAN=1

This example shows how to use the `show macro auto address-group name` command to view the TEST3 address group configuration on the switch:

```
Device# show macro auto address-group TEST3
MAC Address Group Configuration:
```
<table>
<thead>
<tr>
<th>Group Name</th>
<th>OUI</th>
<th>MAC ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST3</td>
<td>2233</td>
<td>33 0022.0022.0022</td>
</tr>
<tr>
<td>TEST4</td>
<td>2233</td>
<td>34 0022.0022.0022</td>
</tr>
</tbody>
</table>
show memory platform

To display memory statistics of a platform, use the `show memory platform` command in privileged EXEC mode.

```
show memory platform [{compressed-swap | information | page-merging}]
```

Syntax Description

- **compressed-swap** (Optional) Displays platform memory compressed-swap information.
- **information** (Optional) Displays general information about the platform.
- **page-merging** (Optional) Displays platform memory page-merging information.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Free memory is accurately computed and displayed in the Free Memory field of the command output.

Examples

The following is sample output from the `show memory platform` command:

```
Switch# show memory platform

Virtual memory : 12874653696
Pages resident : 627041
Major page faults: 2220
Minor page faults: 2348631

Architecture : mips64
Memory (kB)
  Physical : 3976852
  Total : 3976852
  Used : 2761276
  Free : 1215576
  Active : 2128196
  Inactive : 1581856
  Inact-dirty : 0
  Inact-clean : 0
  Dirty : 0
  AnonPages : 1294984
  Bounce : 0
  Cached : 1978168
  Commit Limit : 1988424
  Committed As : 3343324
  High Total : 0
  High Free : 0
  Low Total : 3976852
  Low Free : 1215576
  Mapped : 516316
  NFS Unstable : 0
  Page Tables : 17124
  Slab : 0
```
The following is sample output from the `show memory platform information` command:

Device# show memory platform information

Virtual memory : 12870438912
Pages resident : 626833
Major page faults: 2222
Minor page faults: 2362455
Architecture : mips64
Memory (kB)
 Physical : 3976852
 Total : 3976852
 Used : 2761224
 Free : 1215628
 Active : 2128060
 Inactive : 1584444
 Inact-dirty : 0
 Inact-clean : 0
 Dirty : 284
 AnonPages : 1294656
 Bounce : 0
 Cached : 1979644
 Commit Limit : 1988424
 Committed As : 3342184
 High Total : 0
 High Free : 0
 Low Total : 3976852
 Low Free : 1215628
 Mapped : 516212
 NFS Unstable : 0
 Page Tables : 17096
 Slab : 0
 VMmalloc Chunk : 1069542588
 VMmalloc Total : 1069547512
 VMmalloc Used : 2588
 Writeback : 0
 HugePages Total: 0
 HugePages Free : 0
 HugePages Rsvd : 0
 HugePage Size : 2048

Swap (kB)
 Total : 0
 Used : 0
 Free : 0
 Cached : 0

Buffers (kB) : 437136

Load Average
 1-Min : 1.04
 5-Min : 1.16
 15-Min : 0.94
Swap (kB)
 Total : 0
 Used : 0
 Free : 0
 Cached : 0

Buffers (kB) : 438228

Load Average
 1-Min : 1.54
 5-Min : 1.27
 15-Min : 0.99
show module

To display module information such as switch number, model number, serial number, hardware revision number, software version, MAC address and so on, use this command in user EXEC or privileged EXEC mode.

show module [{switch-num}]

Syntax Description

switch-num (Optional) Number of the switch.

Command Default

None

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

Release Modification
Cisco IOS XE Fuji 16.9.2 This command was introduced.

Usage Guidelines

Entering the show module command without the switch-num argument is the same as entering the show module all command.

The following example displays information for all modules on a Cisco Catalyst 9300 Series Switch:

Device# show module
Switch Ports Model Serial No. MAC address Hw Ver. Sw Ver.
------ ---- ---- -------- ----------- --------- ------- ------
1 40 C9300-24T F0C2147Q02D b4a8.b9c1.4100 V01 16.10.1
show network-policy profile

To display the network-policy profiles, use the `show network policy profile` command in privileged EXEC mode.

```
show network-policy profile [profile-number] [detail]
```

Syntax Description

- `profile-number` (Optional) Displays the network-policy profile number. If no profile is entered, all network-policy profiles appear.
- `detail` (Optional) Displays detailed status and statistics information.

Command Default

None

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show network-policy profile` command:

```
Device# show network-policy profile
Network Policy Profile 10
  voice vlan 17 cos 4
  Interface:
  none
Network Policy Profile 30
  voice vlan 30 cos 5
  Interface:
  none
Network Policy Profile 36
  voice vlan 4 cos 3
  Interface:
  Interface_id
```
show parser macro

To display the parameters for all configured macros or for one macro on the switch, use the show parser macro command in user EXEC mode.

show parser macro {brief | description [interface interface-id] | name macro-name}

Syntax Description

- **brief** (Optional) Displays the name of each macro.
- **description [interface interface-id]** (Optional) Displays all macro descriptions or the description of a specific interface.
- **name macro-name** (Optional) Displays information about a single macro identified by the macro name.

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This is a partial output example from the show parser macro command. The output for the Cisco-default macros varies depending on the switch platform and the software image running on the switch:

```
Device# show parser macro
Total number of macros = 6
=================================================================
Macro name : cisco-global
Macro type : default global
  # Enable dynamic port error recovery for link state
  # failures
  errdisable recovery cause link-flap
  errdisable recovery interval 60
  <output truncated>
  
  Macro name : cisco-desktop
  Macro type : default interface
  # macro keywords $AVID
  # Basic interface - Enable data VLAN only
  # Recommended value for access vlan (AVID) should not be 1
  switchport access vlan $AVID
  switchport mode access
  <output truncated>

  Macro name : cisco-phone
```
Macro type : default interface
Cisco IP phone + desktop template
macro keywords $AVID $VVID
VoIP enabled interface - Enable data VLAN
and voice VLAN (VVID)
Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access

Macro name : cisco-switch
Macro type : default interface
macro keywords $NVID
Access Uplink to Distribution
Do not apply to EtherChannel/Port Group
Define unique Native VLAN on trunk ports
Recommended value for native vlan (NVID) should not be 1
switchport trunk native vlan $NVID

Macro name : cisco-router
Macro type : default interface
macro keywords $NVID
Access Uplink to Distribution
Define unique Native VLAN on trunk ports
Recommended value for native vlan (NVID) should not be 1
switchport trunk native vlan $NVID

Macro name : snmp
Macro type : customizable
#enable port security, linkup, and linkdown traps
snmp-server enable traps port-security
snmp-server enable traps linkup
snmp-server enable traps linkdown
#set snmp-server host
snmp-server host ADDRESS
#set SNMP trap notifications precedence
snmp-server ip precedence VALUE

This example shows the output from the show parser macro name command:

Device# show parser macro name standard-switch10
Macro name : standard-switch10
Macro type : customizable
macro description standard-switch10
Trust QoS settings on VOIP packets
auto qos voip trust
Allow port channels to be automatically formed
channel-protocol pagp

This example shows the output from the show parser macro brief command:
Device\# **show parser macro brief**

 - default global : cisco-global
 - default interface: cisco-desktop
 - default interface: cisco-phone
 - default interface: cisco-switch
 - default interface: cisco-router
 - customizable : snmp

This example shows the output from the **show parser macro description** command:

Device\# **show parser macro description**

Global Macro(s): cisco-global

<table>
<thead>
<tr>
<th>Interface</th>
<th>Macro Description(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>standard-switch10</td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>this is test macro</td>
</tr>
</tbody>
</table>

This example shows the output from the **show parser macro description interface** command:

Device\# **show parser macro description interface gigabitethernet1/0/2**

<table>
<thead>
<tr>
<th>Interface</th>
<th>Macro Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/2</td>
<td>this is test macro</td>
</tr>
</tbody>
</table>
show platform hardware bluetooth

To display information about Bluetooth interface, use the `show platform hardware bluetooth` command in privileged EXEC mode.

Command Default

None

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.12.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show platform hardware bluetooth` command is to be used when an external USB Bluetooth dongle is connected on the device.

Examples

This example shows how to display the information of the Bluetooth interface using the `show platform hardware bluetooth` command.

```
Device> enable
Device# show platform hardware bluetooth
Controller: 0:1a:7d:da:71:13
Type: Primary
Bus: USB
State: DOWN
Name: 
HCI Version: 
```
show platform hardware fed switch forward interface

To debug forwarding information and to trace the packet path in the hardware forwarding plane, use the `show platform hardware fed switch switch_number forward interface` command. This command simulates a user-defined packet and retrieves the forwarding information from the hardware forwarding plane. A packet is generated on the ingress port based on the packet parameters that you have specified in this command. You can also provide a complete packet from the captured packets stored in a PCAP file.

This topic elaborates only the interface forwarding-specific options, that is, the options available with the `show platform hardware fed switch {switch_num | active | standby} forward interface` command.

```
show platform hardware fed switch {switch_num | active | standby} forward interface interface-type interface-number source-mac-address destination-mac-address {protocol-number | arp | cos | ipv4 | ipv6 | mpls}
```

```
show platform hardware fed switch {switch_num | active | standby} forward interface interface-type interface-number pcap pcap-file-name number packet-number data
```

```
show platform hardware fed switch {switch_num | active | standby} forward interface interface-type interface-number vlan vlan-id source-mac-address destination-mac-address {protocol-number | arp | cos | ipv4 | ipv6 | mpls}
```

Syntax Description

- `switch {switch_num | active | standby}`: The switch on which packet tracing has to be scheduled. The input port should be available on this switch. You have the following options:
 - `switch_num`: ID of the switch on which the ingress port is present.
 - `active`: Indicates the active switch on which the ingress port is present.
 - `standby`: Indicates the standby switch on which the ingress port is present.

 Note: This keyword is not supported.

- `interface interface-type interface-number`: The input interface on which packet trace is simulated.

- `source-mac-address`: The source MAC address of the packet you want to simulate.

- `destination-mac-address`: The MAC address of the destination interface in hexadecimal format.

- `protocol-number`: The number assigned to any L3 protocol.

- `arp`: The Address Resolution Protocol (ARP) parameters.

- `ipv4`: The IPv4 packet parameters.

- `ipv6`: The IPv6 packet parameters.

- `mpls`: The Multiprotocol Label Switching (MPLS) label parameters.
The class of service (CoS) number from 0 to 7 to set priority.

pcap pcap-file-name

Name of the pcap file in internal flash (flash:).
Ensure that the file already exists in flash:.

number packet-number

Specifies the packet number in the pcap file.

vlan vlan-id

VLAN id of the dot1q header in the simulated packet. The range is 1 to 4096.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>The command was enhanced to support MPLS/ARP/VxLAN packet parameters and trace packets captured in a PCAP file.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>The command was enhanced to support data capture across a stack.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Do not use this command unless a technical support representative asks you to. Use this command only when you are working directly with a technical support representative while troubleshooting a problem.

This command supports the following packet types:

- Non-IP packets with any L3 protocol
- ARP packets
- IPv4 packets with any L4 protocol
- IPv4 packets with TCP/UDP/IGMP/ICMP/SCTP payload
- VxLAN packets
- MPLS packets with up to 3 Labels and meta data
- MPLS packets with IPv4/IPv6 payload
- IPv6 packets with TCP/UDP/IGMP/ICMP/SCTP payload

In a stack environment, you can trace packets across the stack irrespective of the number of stack members and topology. The `show platform hardware fed switch switch-number forward interface interface-type interface-number` command consolidates packet-forwarding information of all the stack members on the ingress switch. To achieve this, ensure that the switch number specified in the `switch_num` and `interface-number` arguments are of the input switch and that the number matches.

To trace any particular packet from the captured packets stored in a PCAP file, use the `show platform hardware fed switch forward interface interface-type interface-number pcap pcap-file-name number packet-number data` command.
Example
This is an example of output from the `show platform hardware fed switch {switch_num | active | standby} forward interface` command.

```
Device# show platform hardware fed switch active forward interface gigabitEthernet 1/0/35
0000.0022.0055 0000.0055.0066 ipv4 44.44.0.2 55.55.0.2 udp 1222 3333
```

Show forward is running in the background. After completion, syslog will be generated.

```
*Sep 24 05:57:36.614: %SHFWD-6-PACKET_TRACE_DONE: Switch 1 R0/0: fed: Packet Trace Complete. Execute (show platform hardware fed switch <> forward last summary|detail)
*Sep 24 05:57:36.614: %SHFWD-6-PACKET_TRACE_FLOW_ID: Switch 1 R0/0: fed: Packet Trace Flow id is 15032855361
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor capture interface</td>
<td>Configures monitor capture points specifying an attachment point and the packet flow direction.</td>
</tr>
<tr>
<td>monitor capture start</td>
<td>Starts the capture of packet data at a traffic trace point into a buffer.</td>
</tr>
<tr>
<td>monitor capture stop</td>
<td>Stops the capture of packet data at a traffic trace point.</td>
</tr>
<tr>
<td>monitor capture export</td>
<td>Saves the captured packets in the buffer.</td>
</tr>
<tr>
<td></td>
<td>Use this command to export the monitor capture buffer to a pcap file in flash; that you can use as an input in the <code>show forward with pcap</code>.</td>
</tr>
</tbody>
</table>
show platform resources

To display platform resource information, use the `show platform resources` command in privileged EXEC mode.

```plaintext
show platform resources
```

This command has no arguments or keywords.

Command Modes

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privileged EXEC (#)</td>
<td></td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output of this command displays the used memory, which is total memory minus the accurate free memory.

Example

The following is sample output from the `show platform resources` command:

```
Switch# show platform resources
**State Acronym: H - Healthy, W - Warning, C - Critical

<table>
<thead>
<tr>
<th>Resource</th>
<th>Usage</th>
<th>Max</th>
<th>Warning</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Processor</td>
<td>7.20%</td>
<td>100%</td>
<td>90%</td>
<td>95%</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM</td>
<td>2701MB (69%)</td>
<td>3883MB</td>
<td>90%</td>
<td>95%</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Interface and Hardware Components

show platform resources
show platform software audit

To display the SE Linux Audit logs, use the `show platform software audit` command in privileged EXEC mode.

```
show platform software audit {all | summary | [switch {switch-number | active | standby}] {0 | F0 | R0 | FP | RP} {active}}
```

Syntax Description

- **all**: Shows the audit log from all the slots.
- **summary**: Shows the audit log summary count from all the slots.
- **switch**: Shows the audit logs for a slot on a specific switch.
- **switch-number**: Selects the switch with the specified switch number.
- **switch active**: Selects the active instance of the switch.
- **standby**: Selects the standby instance of the switch.
- **0**: Shows the audit log for the SPA-Inter-Processor slot 0.
- **F0**: Shows the audit log for the Embedded-Service-Processor slot 0.
- **R0**: Shows the audit log for the Route-Processor slot 0.
- **FP active**: Shows the audit log for the active Embedded-Service-Processor slot.
- **RP active**: Shows the audit log for the active Route-Processor slot.

Command Modes

Privileged EXEC (#)

Command History

This command was introduced in the Cisco IOS XE Gibraltar 16.10.1 as a part of the SELinux Permissive Mode feature. The `show platform software audit` command displays the system logs containing the access violation events.

In Cisco IOS XE Gibraltar 16.10.1, operation in a permissive mode is available - with the intent of confining specific components (process or application) of the IOS-XE platform. In the permissive mode, access violation events are detected and system logs are generated, but the event or operation itself is not blocked. The solution operates mainly in an access violation detection mode.

The following is a sample output of the `show software platform software audit summary` command:

```
Device# show platform software audit summary

AUDIT LOG ON switch 1
```

Usage Guidelines

This command offers insights into the security status of the system by measuring the access violations in the SE Linux audit logs. It helps administrators monitor the system's security posture and detect potential security threats. The various syntax options provided allow for detailed analysis, making it a powerful tool for system administrators.
AVC Denial count: 58

The following is a sample output of the `show platform software audit all` command:

```
Device# show platform software audit all

AUDIT LOG ON switch 1

-----------------------------------

---------- START ---------------

```

```
Device# show platform software audit all

AUDIT LOG ON switch 1

-----------------------------------

---------- START ---------------
```

```
Device# show platform software audit all

AUDIT LOG ON switch 1

-----------------------------------

---------- START ---------------
```
The following is a sample output of the `show software platform software audit switch` command:

```
Device# show platform software audit switch active R0

--------- START ---------
type=AVC msg=audit(1539222292.584:100): avc: denied { read } for pid=14017
  comm="mcp_trace_filter" name="crashinfo" dev="rootfs" ino=13667
  scontext=system_u:system_r:polaris_trace_filter_t:s0
  tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0 tclass=lnk_file permissive=1
  type=AVC msg=audit(1539222292.584:100): avc: denied { getattr } for pid=14017
  comm="mcp_trace_filter" path="/mnt/sd1" dev="sda1" ino=2
  scontext=system_u:system_r:polaris_trace_filter_t:s0
  tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539222292.586:101): avc: denied { read } for pid=14028
  comm="ls" path="/tmp/ufs/crashinfo" dev="tmpfs" ino=58407
  scontext=system_u:system_r:polaris_trace_filter_t:s0
  tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539222292.586:101): avc: denied { execute_no_trans } for pid=14028
  comm="ls" name="crashinfo" dev="tmpfs" ino=58407
  scontext=system_u:system_r:polaris_trace_filter_t:s0
  tcontext=system_u:object_r:polaris_ncd_tmp_t:s0 tclass=dir permissive=1
type=AVC msg=audit(1539438624.916:122): avc: denied { execute_no_trans } for pid=8600
  comm="auto_upgrade_se" path="/bin/bash" dev="rootfs" ino=7276
  scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0
  tcontext=system_u:object_r:polaris_auto_upgrade_server_rp_t:s0 tclass=file permissive=1
```
Interface and Hardware Components

show platform software audit
show platform software fed switch punt cpuq rates

To display the rate at which packets are punted, including the drops in the punted path, use the `show platform software fed switch punt cpuq rates` command in privileged EXEC mode.

```
show platform software fed switch {switch-number | active | standby} punt cpuq rates
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch{switch-number</td>
<td>active</td>
</tr>
<tr>
<td>switch-number</td>
<td></td>
</tr>
<tr>
<td>active</td>
<td></td>
</tr>
<tr>
<td>standby</td>
<td></td>
</tr>
</tbody>
</table>

Note This keyword is not supported.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>punt</td>
<td>Specifies the punt information.</td>
</tr>
<tr>
<td>cpuq</td>
<td>Specifies information about CPU receive queue.</td>
</tr>
<tr>
<td>rates</td>
<td>Specifies the rate at which the packets are punted.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output of this command displays the rate in packets per second at intervals of 10 seconds, 1 minute and 5 minutes.

Example

The following is sample output from the `show platform software fed switch active punt cpuq rates` command.

```
Device#show platform software fed switch active punt cpuq rates
Punt Rate CPU Q Statistics

Packets per second averaged over 10 seconds, 1 min and 5 mins
---------------------------------------------------------------
<table>
<thead>
<tr>
<th>Q no</th>
<th>Queue Name</th>
<th>Rx 10s</th>
<th>Rx 1min</th>
<th>Rx 5min</th>
<th>Drop 10s</th>
<th>Drop 1min</th>
<th>Drop 5min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CPU_Q_DOT1X_AUTH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>CPU_Q_L2_CONTROL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CPU_Q_FORUS_TRAFFIC</td>
<td>336</td>
<td>266</td>
<td>320</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
The table below describes the significant fields shown in the display.

Table 12: show platform software fed switch active punt cpuq rates Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue Name</td>
<td>Name of the queue.</td>
</tr>
<tr>
<td>Rx</td>
<td>The rate at which the packets are received per second in 10s, 1 minute and 5 minutes.</td>
</tr>
<tr>
<td>Drop</td>
<td>The rate at which the packets are dropped per second in 10s, 1 minute and 5 minutes.</td>
</tr>
</tbody>
</table>
show platform software fed switch punt packet-capture display

To display packet capture information during high CPU utilization, use the `show platform software fed switch active punt packet-capture display` command in privileged EXEC mode.

`show platform software fed switch active punt packet-capture display { detailed | hexdump }`

| Syntax Description | switch{switch-number | active | standby} | Displays information about a switch. You have the following options:
 | | • active — Displays information relating to the active switch.
 | | • standby — Displays information relating to the standby switch, if available.
 | Note | The standby keyword is not supported.
 |
 | punt | Specifies punt information.
 |
 | packet-capture display | Specifies information about the captured packet.
 |
 | detailed | Specifies detailed information about the captured packet.
 |
 | hex-dump | Specifies information about the captured packet, in hex format.
 |

Command Modes

Privileged EXEC (#)

Command History

Release Modification

Cisco IOS XE Gibraltar 16.10.1 This command was introduced.

Usage Guidelines

The output of this command displays the periodic and persistent logs of CPU-bound packets, inband CPU traffic rates, and running CPU processes when the CPU passes a high CPU utilization threshold.

Examples

The following is a sample output from the `show platform software fed switch active punt packet-capture display detailed` command:

```
Device# show platform software fed switch active punt packet-capture display detailed
Punt packet capturing: disabled. Buffer wrapping: disabled
Total captured so far: 101 packets. Capture capacity: 4096 packets

interface: GigabitEthernet2/0/2 [if-id: 0x000000032] (physical)
ether hdr: dest mac: 0100.0ccc.cccd, src mac: 2c36.f8fc.4884
ether hdr: ethertype: 0x0032

Doppler Frame Descriptor:
```
Packet Data Dump (length: 68 bytes):
01000CCCCCCD2C36 F8FC48840032AAAA 0300000010B0000 00000000012C36F8 FC48800000000080 012C36F8FC488080 0400001400002000F 0071000000020001 244E733E

interface : GigabitEthernet2/0/2 [if-id: 0x00000032] (physical)
ether hdr : dest mac: 0180.c200.0000, src mac: 2c36.f8fc.4884
ether hdr : ethertype: 0x0026

show platform software fed switch punt rates interfaces

To display the overall statistics of punt rate for all the interfaces, use the `show platform software fed switch punt rates interfaces` command in privileged EXEC mode.

```
show platform software fed switch {switch-number | active | standby} punt rates interfaces[interface-id]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch {switch-number</td>
<td>active</td>
</tr>
<tr>
<td>• switch-number</td>
<td></td>
</tr>
<tr>
<td>• active — Displays information relating to the active switch.</td>
<td></td>
</tr>
<tr>
<td>• standby — Displays information relating to the standby switch, if available.</td>
<td></td>
</tr>
<tr>
<td>punt</td>
<td>Specifies the punt information.</td>
</tr>
<tr>
<td>rates</td>
<td>Specifies the rate at which the packets are punted.</td>
</tr>
<tr>
<td>interfaces[interface-id]</td>
<td>(Optional) Displays the overall statistics for an interface and also the per-queue configuration for the interface at an interval of 10 seconds.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output displays the punt rates in packets per second at intervals of 10 seconds, 1 minute and 5 minutes.

Example

The following is sample output from the `show platform software fed switch active punt rates interfaces` command for all the interfaces.

```
Device#show platform software fed switch active punt rates interfaces

Punt Rate on Interfaces Statistics

Packets per second averaged over 10 seconds, 1 min and 5 mins

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>IF_ID</th>
<th>10s</th>
<th>1min</th>
<th>5min</th>
<th>10s</th>
<th>1min</th>
<th>5min</th>
</tr>
</thead>
</table>
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)

206

Interface and Hardware Components

show platform software fed switch punt rates interfaces
The table below describes the significant fields shown in the display.

Table 13: show platform software fed switch active punt rates interfaces Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Name</td>
<td>Name of the physical interface.</td>
</tr>
<tr>
<td>IF_ID</td>
<td>ID of the physical interface.</td>
</tr>
<tr>
<td>Rx</td>
<td>The per second rate at which the packets are received in 10s, 1 minute and 5 minutes.</td>
</tr>
<tr>
<td>Drop</td>
<td>The per second rate at which the packets are dropped in 10s, 1 minute and 5 minutes.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show platform software fed switch active punt rates interfaces interface-id` command for a specific interface.

```
Device#show platform software fed switch active punt rates interfaces 0x31
Punt Rate on Single Interfaces Statistics

Interface : Port-channel1 [if_id: 0x31]

Received          Dropped
-------------      -------
Total : 29617     Total : 0
10 sec average : 0 10 sec average : 0
1 min average : 0  1 min average : 0
5 min average : 0  5 min average : 0

Per CPUQ punt stats on the interface (rate averaged over 10s interval)

<table>
<thead>
<tr>
<th>Q</th>
<th>Queue</th>
<th>Recv</th>
<th>Recv</th>
<th>Drop</th>
<th>Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
<td>Total</td>
<td>Rate</td>
<td>Total</td>
<td>Rate</td>
</tr>
<tr>
<td>0</td>
<td>CPU_Q_DOT1X_AUTH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>CPU_Q_L2_CONTROL</td>
<td>29519</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CPU_Q_FORUS_TRAFFIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>CPU_Q_ICMP_GEN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CPU_Q_ROUTING_CONTROL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>CPU_Q_FORUS_ADDR_RESOLUTION</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>CPU_Q_ICMP_REDIRECT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>CPU_Q_INTER_FED_TRAFFIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>CPU_Q_L2LVX_CONTROL_PKT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>CPU_Q_EWLC_CONTROL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>CPU_Q_EWLC_DATA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>CPU_Q_L2LVX_DATA_PKT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>CPU_Q_BROADCAST</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>CPU_Q_LEARNING_CACHE_OVFL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>CPU_Q_SN_FORWARDING</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>CPU_Q_TOPOLOGY_CONTROL</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>CPU_Q_PROTO_SNOOPING</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>CPU_Q_DHCP_SNOOPING</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>CPU_Q_TRANSIT_TRAFFIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>CPU_Q_RPF_FAILED</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
The table below describes the significant fields shown in the display.

Table 14: show platform software fed switch punt rates interfaces

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue Name</td>
<td>Name of the queue.</td>
</tr>
<tr>
<td>Recv Total</td>
<td>Total number of packets received.</td>
</tr>
<tr>
<td>Recv Rate</td>
<td>Per second rate at which the packets are received.</td>
</tr>
<tr>
<td>Drop Total</td>
<td>Total number of packets dropped.</td>
</tr>
<tr>
<td>Drop Rate</td>
<td>Per second rate at which the packets are dropped.</td>
</tr>
</tbody>
</table>

The table below describes the significant fields shown in the display.
show platform software ilpower

To display the inline power details of all the PoE ports on the device, use the `show platform software ilpower` command in privileged EXEC mode.

```
show platform software ilpower \{ details \ | \ port \{ GigabitEthernet interface-number \} \ | \ system slot-number \}
```

Syntax Description

- **details**
 - Displays inline power details for all the interfaces.

- **port**
 - Displays inline power port configuration.

- **GigabitEthernet interface-number**
 - The GigabitEthernet interface number. Values range from 0 to 9.

- **system slot-number**
 - Displays inline power system configuration.

Command Modes

Privileged EXEC (#)

Command History

Release	**Modification**
Cisco IOS XE Fuji 16.9.2 | The command was introduced.

Examples

The following is sample output from the `show platform software ilpower details` command:

```
Device# show platform software ilpower details
ILP Port Configuration for interface Gi1/0/1
  Initialization Done: Yes
  ILP Supported: Yes
  ILP Enabled: Yes
  POST: Yes
  Detect On: No
  Powered Device Detected: No
  Powered Device Class Done: No
  Cisco Powered Device: No
  Power is On: No
  Power Denied: No
  Powered Device Type: Null
  Powered Device Class: Null
  Power State: NULL
  Current State: NGWC_ILP_DETECTING_S
  Previous State: NGWC_ILP_SHUT_OFF_S
  Requested Power in milli watts: 0
  Short Circuit Detected: 0
  Short Circuit Count: 0
  Cisco Powerd Device Detect Count: 0
  Spare Pair mode: 0
  IEEE Detect: Stopped
  IEEE Short: Stopped
  Link Down: Stopped
  Voltage sense: Stopped
  Spare Pair Architecture: 1
  Signal Pair Power allocation in milli watts: 0
  Spare Pair Power On: 0
  Powered Device power state: 0
  Timer:
```
show platform software ilpower

Power Good: Stopped
Power Denied: Stopped
Cisco Powered Device Detect: Stopped
show platform software memory

To display memory information for a specified switch, use the **show platform software memory** command in privileged EXEC mode.

```
show platform software memory  [{chunk | database | messaging}] process slot
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chunk</td>
</tr>
<tr>
<td>database</td>
</tr>
<tr>
<td>messaging</td>
</tr>
</tbody>
</table>

- **chunk** (Optional) Displays chunk memory information for the specified process.
- **database** (Optional) Displays database memory information for the specified process.
- **messaging** (Optional) Displays messaging memory information for the specified process.

The information displayed is for internal debugging purposes only.
<table>
<thead>
<tr>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>show platform software memory</td>
</tr>
</tbody>
</table>

```plaintext
process
```
Level that is being set. Options include:

- **bt-logger** — The Binary-Tracing Logger process.
- **btrace-manager** — The Btrace Manager process.
- **chassis-manager** — The Chassis Manager process.
- **cli-agent** — The CLI Agent process.
- **cmm** — The CMM process.
- **dbm** — The Database Manager process.
- **dmiauthd** — The DMI Authentication Daemon process.
- **emd** — The Environmental Monitoring process.
- **fed** — The Forwarding Engine Driver process.
- **forwarding-manager** — The Forwarding Manager process.
- **geo** — The Geo Manager process.
- **gnmi** — The GNMI process.
- **host-manager** — The Host Manager process.
- **interface-manager** — The Interface Manager process.
- **iomd** — The Input/Output Module daemon (IOMd) process.
- **ios** — The IOS process.
- **iox-manager** — The IOx Manager process.
- **license-manager** — The License Manager process.
- **logger** — The Logging Manager process.
- **mdt-pubd** — The Model Defined Telemetry Publisher process.
- **ndbman** — The Netconf DataBase Manager process.
- **nesd** — The Network Element Synchronizer Daemon process.
- **nginx** — The Nginx Webserver process.
- **nif_mgr** — The NIF Manager process.
- **platform-mgr** — The Platform Manager process.
- **pluggable-services** — The Pluggable Services process.
- **replication-mgr** — The Replication Manager process.
- **shell-manager** — The Shell Manager process.
- **sif** — The Stack Interface (SIF) Manager process.
- **smd** — The Session Manager process.
- **stack-mgr** — The Stack Manager process.
• **syncfd**—The SyncmDaemon process.
• **table-manager**—The Table Manager Server.
• **thread-test**—The Multithread Manager process.
• **virt-manager**—The Virtualization Manager process.

slot	Hardware slot where the process for which the level is set, is running. Options include:
	• **number**—Number of the SIP slot of the hardware module where the level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.
	• **SIP-slot / SPA-bay**—Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.
	• **F0**—The Embedded Service Processor slot 0.
	• **FP active**—The active Embedded Service Processor.
	• **R0**—The route processor in slot 0.
	• **RP active**—The active route processor.
	• **RP standby**—The standby route processor.
	• **switch <number>**—The switch, with its number specified.
	• **switch active**—The active switch.
	• **switch standby**—The standby switch.
	• **number**—Number of the SIP slot of the hardware module where the level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.
	• **SIP-slot / SPA-bay**—Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.
	• **F0**—The Embedded Service Processor in slot 0.
	• **FP active**—The active Embedded Service Processor.
	• **R0**—The route processor in slot 0.
	• **RP active**—The active route processor.

Command Default
No default behavior or values.

Command Modes
Privileged EXEC (#)
The following is a sample output displaying the abbreviated (brief keyword) memory information for the Forwarding Manager process for Cisco Catalyst 9000 Series ESP slot 0:

```
Device# show platform software memory forwarding-manager switch 1 fp active brief

module allocated requested allocs frees
------------------------------------------------------------------------------
Summary 5702540 5619788 121888 116716
AOM object 1920374 1920310 4 0
AOM links array 880379 880315 4 0
smc_message 819575 819511 4 0
AOM update state 640380 640316 4 0
dpidb-config 208776 203544 351 24
fman-infra-avl 178016 153680 1521 0
AOM batch 152373 152309 4 0
AOM asynchronous conte 128388 128324 4 0
AOM basic data 124824 124760 5 1
eventutil 118939 118299 50 10
AOM tree node 96465 96385 5 0
AOM tree root 72377 72313 4 0
acl 36090 31914 504 243
fman-infra_ipc 35326 24366 115097 114412
AOM uplink update node 32386 32322 4 0
unknown 30528 23808 424 4
uipeer 27232 27152 5 0
fman-infra_qos 26872 24712 164 29
cce-class 19427 15411 251 0
l2 control protocol 15472 12896 325 164
fman-infra_cce 15272 13576 106 0
smc_channel 15223 15159 4 0
unknown 14208 8736 447 105
chunk 12513 12033 33 3
cce_bind 8496 7552 82 23
MATM mac entry 8040 5928 544 412
adj 7064 6312 157 10
route_pfx 6116 5412 157 10
filter_rules 4912 4896 1 0
fman-infra_dpidb 4130 2338 112 0
SMC Buffer 3794 3202 43 6
urpf-list 3028 2100 85 27
lookup 2480 2160 30 10
MATM mac table 2432 1600 148 96
cdllib 1688 1672 1 0
route_tbl 1600 1264 21 0
FNF Flowdef 1492 1460 3 1
acl_ref 1120 1024 8 2
cgm_lib 1120 880 410 395
pbr_if_cfg 1088 976 205 198
FNF Monitor 1048 1032 1 0
pbr_routemap 960 864 18 12
```

The following table describes the significant fields shown in the display.
Table 15: `show platform software memory brief` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Name of submodule.</td>
</tr>
<tr>
<td>allocated</td>
<td>Memory, allocated in bytes.</td>
</tr>
<tr>
<td>requested</td>
<td>Number of bytes requested by application.</td>
</tr>
<tr>
<td>allocs</td>
<td>Number of discrete allocation event attempts.</td>
</tr>
<tr>
<td>frees</td>
<td>Number of free events.</td>
</tr>
</tbody>
</table>
show platform software process list

To display the list of running processes on a platform, use the `show platform software process list` command in privileged EXEC mode.

```
show platform software process list switch {switch-number | active | standby} {0 | F0 | R0} [{name process-name | process-id process-ID | sort memory | summary}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch switch-number</code></td>
<td>Displays information about the switch. Valid values for <code>switch-number</code> argument are from 0 to 9.</td>
</tr>
<tr>
<td><code>active</code></td>
<td>Displays information about the active instance of the switch.</td>
</tr>
<tr>
<td><code>standby</code></td>
<td>Displays information about the standby instance of the switch.</td>
</tr>
<tr>
<td><code>0</code></td>
<td>Displays information about the shared port adapters (SPA) Interface Processor slot 0.</td>
</tr>
<tr>
<td><code>F0</code></td>
<td>Displays information about the Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td><code>R0</code></td>
<td>Displays information about the Route Processor (RP) slot 0.</td>
</tr>
<tr>
<td><code>name process-name</code></td>
<td>(Optional) Displays information about the specified process. Enter the process name.</td>
</tr>
<tr>
<td><code>process-id process-ID</code></td>
<td>(Optional) Displays information about the specified process ID. Enter the process ID.</td>
</tr>
<tr>
<td><code>sort</code></td>
<td>(Optional) Displays information sorted according to processes.</td>
</tr>
<tr>
<td><code>memory</code></td>
<td>(Optional) Displays information sorted according to memory.</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>(Optional) Displays a summary of the process memory of the host device.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXE (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>The command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show platform software process list switch active R0` command:

```
Switch# show platform software process list switch active R0 summary
Total number of processes: 278
  Running : 2
  Sleeping : 276
  Disk sleeping : 0
  Zombies : 0
  Stopped : 0
  Paging : 0
  Up time : 8318
```
The following is sample output from the `show platform software process list switch active R0` command:

```
# show platform software process list switch active R0
Name    Pid   PPid  Group Id  Status  Priority  Size
------------------------------------------------------------------------------
```

```
Idle time        : 0
User time        : 216809
Kernel time      : 78931

Virtual memory   : 12933324800
Pages resident   : 634061
Major page faults: 2228
Minor page faults: 3491744

Architecture     : mips64
Memory (kB)
    Physical : 3976852
    Total   : 3976852
    Used    : 2766952
    Free    : 1209900
    Active  : 2141344
    Inactive: 1589672
    Inact-dirty : 0
    Inact-clean : 0
    Dirty    : 4
    AnonPages: 1306800
    Bounce   : 0
    Cached   : 1984688
    Commit Limit : 1988424
    Committed As : 3358528
    High Total: 0
    High Free : 0
    Low Total : 3976852
    Low Free  : 1209900
    Mapped   : 520528
    NFS Unstable : 0
    Page Tables: 17328
    Slab     : 0
    VMMalloc Chunk : 1069542588
    VMMalloc Total : 1069547512
    VMMalloc Used : 2588
    Writeback : 0
    HugePages Total: 0
    HugePages Free : 0
    HugePages Rsvd : 0
    HugePage Size : 2048

Swap (kB)
    Total : 0
    Used : 0
    Free : 0
    Cached : 0

Buffers (kB) : 439528

Load Average
    1-Min    : 1.13
    5-Min    : 1.18
    15-Min   : 0.92
```
The table below describes the significant fields shown in the displays.

Table 16: show platform software process list Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the command name associated with the process. Different threads in the same process may have different command values.</td>
</tr>
<tr>
<td>Pid</td>
<td>Displays the process ID that is used by the operating system to identify and keep track of the processes.</td>
</tr>
<tr>
<td>PPid</td>
<td>Displays process ID of the parent process.</td>
</tr>
<tr>
<td>Group Id</td>
<td>Displays the group ID</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the process status in human readable form.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Priority</td>
<td>Displays the negated scheduling priority.</td>
</tr>
<tr>
<td>Size</td>
<td>Prior to Cisco IOS XE Gibraltar 16.10.1: Displays Virtual Memory size.</td>
</tr>
<tr>
<td></td>
<td>From Cisco IOS XE Gibraltar 16.10.1 onwards: Displays the Resident Set Size (RSS) that shows how much memory is allocated to that process in the RAM.</td>
</tr>
</tbody>
</table>
show platform software process memory

To display the amount of memory used by each system process, use the **show platform software process memory** command in privileged EXEC mode.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch switch-number</td>
<td>Displays information about the switch. Enter the switch number.</td>
</tr>
<tr>
<td>active</td>
<td>Specifies the active instance of the device.</td>
</tr>
<tr>
<td>standby</td>
<td>Specifies the standby instance of the device.</td>
</tr>
<tr>
<td>0</td>
<td>Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.</td>
</tr>
<tr>
<td>F0</td>
<td>Specifies the Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td>FP</td>
<td>Specifies the Embedded Service Processor (ESP).</td>
</tr>
<tr>
<td>R0</td>
<td>Specifies the Route Processor (RP) slot 0.</td>
</tr>
<tr>
<td>all</td>
<td>Lists all processes.</td>
</tr>
<tr>
<td>sorted</td>
<td>(Optional) Sorts the output based on Resident Set Size (RSS).</td>
</tr>
<tr>
<td>virtual</td>
<td>(Optional) Specifies virtual memory.</td>
</tr>
<tr>
<td>name process-name</td>
<td>Specifies a process name.</td>
</tr>
<tr>
<td>maps</td>
<td>Specifies the memory maps of a process.</td>
</tr>
<tr>
<td>smaps summary</td>
<td>Specifies the smaps summary of a process.</td>
</tr>
<tr>
<td>process-id process-id</td>
<td>Specifies a process identifier.</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC(#)

Examples:

The following is a sample output from the **show platform software process memory active R0 all** command:
The table below describes the significant fields shown in the displays.
Table 17: show platform software process memory Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>Displays the process ID that is used by the operating system to identify and keep track of the processes.</td>
</tr>
<tr>
<td>RSS</td>
<td>Displays the Resident Set Size (in kilobytes (KB)) that shows how much memory is allocated to that process in the RAM.</td>
</tr>
<tr>
<td>PSS</td>
<td>Displays the Proportional Set Size of a process. This is the count of pages it has in memory, where each page is divided by the number of processes sharing it.</td>
</tr>
<tr>
<td>Heap</td>
<td>Displays where all user-allocated memory is located.</td>
</tr>
<tr>
<td>Shared</td>
<td>Shared clean + Shared dirty</td>
</tr>
<tr>
<td>Private</td>
<td>Private clean + Private dirty</td>
</tr>
<tr>
<td>Name</td>
<td>Displays the command name associated with the process. Different threads in the same process may have different command values.</td>
</tr>
</tbody>
</table>
show platform software process slot switch

To display platform software process switch information, use the `show platform software process slot switch` command in privileged EXEC mode.

`show platform software process slot switch {switch-number | active | standby} {0 | F0 | R0} monitor [{cycles no-of-times} [{interval delay} {lines number}]])

Syntax Description

- **switch-number**: Switch number.
- **active**: Specifies the active instance.
- **standby**: Specifies the standby instance.
- **0**: Specifies the shared port adapter (SPA) interface processor slot 0.
- **F0**: Specifies the Embedded Service Processor (ESP) slot 0.
- **R0**: Specifies the Route Processor (RP) slot 0.
- **monitor**: Monitors the running processes.
- **cycles no-of-times** (Optional) Sets the number of times to run monitor command. Valid values are from 1 to 4294967295. The default is 5.
- **interval delay** (Optional) Sets a delay after each. Valid values are from 0 to 300. The default is 3.
- **lines number** (Optional) Sets the number of lines of output displayed. Valid values are from 0 to 512. The default is 0.

Command Modes
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The output of the `show platform software process slot switch` and `show processes cpu platform monitor location` commands display the output of the Linux `top` command. The output of these commands display Free memory and Used memory as displayed by the Linux `top` command. The values displayed for the Free memory and Used memory by these commands do not match the values displayed by the output of other platform-memory related CLIs.

Examples
The following is sample output from the `show platform software process slot monitor` command:

```
Switch# show platform software process slot switch active R0 monitor
```
top - 00:01:52 up 1 day, 11:20, 0 users, load average: 0.50, 0.68, 0.83
Tasks: 311 total, 2 running, 309 sleeping, 0 stopped, 0 zombie
Cpu(s): 7.4%us, 3.3%sy, 0.0%ni, 89.2%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st
Mem: 3976844k total, 3955036k used, 21808k free, 419312k buffers
Swap: 0k total, 0k used, 0k free, 1946764k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
5693 root 20 0 3448 1368 912 R 7 0.0 0:00.07 top
17546 root 20 0 2044m 244m 79m S 7 6.3 186:49.08 fed main event
18662 root 20 0 1806m 678m 263m S 5 17.5 215:32.38 linux_iosd-imag
30276 root 20 0 171m 33m S 5 1.1 125:06.77 repm
17835 root 20 0 935m 74m 63m S 4 1.9 82:28.31 sif_mgr
18534 root 20 0 182m 150m 10m S 2 3.9 8:12.08 smand
1 root 20 0 8440 4740 2184 S 0 0.1 0:09.52 systemd
2 root 20 0 0 0 0 S 0 0.0 0:00.00 kthread
3 root 20 0 0 0 0 S 0 0.0 0:02.86 kdsoftirqd/0
5 root 0 -20 0 0 0 S 0 0.0 0:00.00 kworker/0:0H
7 root RT 0 0 0 0 S 0 0.0 0:01.44 migration/0
8 root 20 0 0 0 0 S 0 0.0 0:00.00 rcu_bh
9 root 20 0 0 0 0 S 0 0.0 0:23.08 rcu_sched
10 root 20 0 0 0 0 S 0 0.0 0:58.04 rcuc/0
11 root 20 0 0 0 0 S 0 0.0 21:35.60 rcuc/1
12 root RT 0 0 0 0 S 0 0.0 0:01.33 migration/1

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show processes cpu platform monitor location</td>
<td>Displays information about the CPU utilization of the IOS-XE processes.</td>
</tr>
</tbody>
</table>
show platform software status control-processor

To display platform software control-processor status, use the `show platform software status control-processor` command in privileged EXEC mode.

```
show platform software status control-processor [brief]
```

Syntax Description
- **brief** (Optional) Displays a summary of the platform control-processor status.

Command Modes
- Privileged EXEC (#)

Command History
- **Release** 16.12.0 This command was introduced.

Examples

The following is sample output from the `show platform memory software status control-processor` command:

```
Switch# show platform software status control-processor

2-RP0: online, statistics updated 7 seconds ago
Load Average: healthy
   1-Min: 1.00, status: healthy, under 5.00
   5-Min: 1.21, status: healthy, under 5.00
   15-Min: 0.90, status: healthy, under 5.00
Memory (kb): healthy
   Total: 3976852
   Used: 2766284 (70%), status: healthy
   Free: 1210568 (30%)  Committed: 3358008 (84%), under 95%
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
   User: 4.40, System: 1.70, Nice: 0.00, Idle: 93.80
   IRQ: 0.00, SIRQ: 0.10, IOWait: 0.00
CPU1: CPU Utilization (percentage of time spent)
   User: 3.80, System: 1.20, Nice: 0.00, Idle: 94.90
   IRQ: 0.00, SIRQ: 0.10, IOWait: 0.00
CPU2: CPU Utilization (percentage of time spent)
   User: 7.00, System: 1.10, Nice: 0.00, Idle: 91.89
   IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU3: CPU Utilization (percentage of time spent)
   User: 4.49, System: 0.69, Nice: 0.00, Idle: 94.80
   IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00

3-RP0: unknown, statistics updated 2 seconds ago
Load Average: healthy
   1-Min: 0.24, status: healthy, under 5.00
   5-Min: 0.27, status: healthy, under 5.00
   15-Min: 0.32, status: healthy, under 5.00
Memory (kb): healthy
   Total: 3976852
   Used: 2706768 (68%), status: healthy
   Free: 1270084 (32%)  Committed: 3299332 (83%), under 95%
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
```
User: 4.50, System: 1.20, Nice: 0.00, Idle: 94.20
IRQ: 0.00, SIRQ: 0.10, IOWait: 0.00
CPU1: CPU Utilization (percentage of time spent)
User: 5.20, System: 0.50, Nice: 0.00, Idle: 94.29
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU2: CPU Utilization (percentage of time spent)
User: 3.60, System: 0.70, Nice: 0.00, Idle: 95.69
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU3: CPU Utilization (percentage of time spent)
User: 3.00, System: 0.60, Nice: 0.00, Idle: 96.39
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00

4-RP0: unknown, statistics updated 2 seconds ago
Load Average: healthy
1-Min: 0.21, status: healthy, under 5.00
5-Min: 0.24, status: healthy, under 5.00
15-Min: 0.24, status: healthy, under 5.00
Memory (kb): healthy
Total: 3976852
Used: 1452404 (37%), status: healthy
Free: 2524448 (63%)
Committed: 1675120 (42%), under 95%
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
User: 2.30, System: 0.40, Nice: 0.00, Idle: 97.30
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU1: CPU Utilization (percentage of time spent)
User: 4.19, System: 0.69, Nice: 0.00, Idle: 95.10
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU2: CPU Utilization (percentage of time spent)
User: 4.79, System: 0.79, Nice: 0.00, Idle: 94.40
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU3: CPU Utilization (percentage of time spent)
User: 2.10, System: 0.40, Nice: 0.00, Idle: 97.50
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00

9-RP0: unknown, statistics updated 4 seconds ago
Load Average: healthy
1-Min: 0.20, status: healthy, under 5.00
5-Min: 0.35, status: healthy, under 5.00
15-Min: 0.35, status: healthy, under 5.00
Memory (kb): healthy
Total: 3976852
Used: 1451328 (36%), status: healthy
Free: 2525524 (64%)
Committed: 1675932 (42%), under 95%
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
User: 1.90, System: 0.50, Nice: 0.00, Idle: 97.60
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU1: CPU Utilization (percentage of time spent)
User: 4.39, System: 0.19, Nice: 0.00, Idle: 95.40
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU2: CPU Utilization (percentage of time spent)
User: 5.70, System: 1.00, Nice: 0.00, Idle: 93.30
IRQ: 0.00, SIRQ: 0.00, IOWait: 0.00
CPU3: CPU Utilization (percentage of time spent)
User: 1.30, System: 0.60, Nice: 0.00, Idle: 98.00
IRQ: 0.00, SIRQ: 0.10, IOWait: 0.00

The following is sample output from the `show platform memory software status control-processor brief` command:
```
Switch# show platform software status control-processor brief

Load Average
Slot  Status  1-Min  5-Min  15-Min
2-RP0  Healthy  1.10  1.21  0.91
3-RP0  Healthy  0.23  0.27  0.31
4-RP0  Healthy  0.11  0.21  0.22
9-RP0  Healthy  0.10  0.30  0.34

Memory (kB)
Slot  Status  Total  Used (Pct)  Free (Pct)  Committed (Pct)
2-RP0  Healthy  3976852  2766956 (70%)  1209896 (30%)  3358352 (84%)
3-RP0  Healthy  3976852  2706824 (68%)  1270028 (32%)  3299276 (83%)
4-RP0  Healthy  3976852  1451888 (37%)  2524964 (63%)  1675076 (42%)
9-RP0  Healthy  3976852  1451580 (37%)  2525272 (63%)  1675952 (42%)

CPU Utilization
Slot  CPU  User  System  Nice  Idle  IRQ  SIRQ  IOwait
2-RP0  0  4.10  2.00  0.00  93.80  0.00  0.10  0.00
     1  4.60  1.00  0.00  94.30  0.00  0.10  0.00
     2  6.50  1.10  0.00  92.40  0.00  0.00  0.00
     3  5.59  1.19  0.00  93.20  0.00  0.00  0.00
3-RP0  0  2.80  1.20  0.00  95.90  0.00  0.10  0.00
     1  4.49  1.29  0.00  94.20  0.00  0.00  0.00
     2  5.30  1.60  0.00  93.10  0.00  0.00  0.00
     3  5.80  1.20  0.00  93.00  0.00  0.00  0.00
4-RP0  0  1.30  0.80  0.00  97.89  0.00  0.00  0.00
     1  1.30  0.20  0.00  98.50  0.00  0.00  0.00
     2  5.60  0.80  0.00  93.59  0.00  0.00  0.00
     3  5.09  0.19  0.00  94.70  0.00  0.00  0.00
9-RP0  0  3.99  0.69  0.00  95.30  0.00  0.00  0.00
     1  2.60  0.70  0.00  96.70  0.00  0.00  0.00
     2  4.49  0.89  0.00  94.60  0.00  0.00  0.00
     3  2.60  0.20  0.00  97.20  0.00  0.00  0.00
```
show platform software thread list

To display the list of threads on a platform, use the `show platform software thread list` command in privileged EXEC mode.

`show platform software thread list switch { switch-number | active | standby } { 0 | F0 | FP active | R0 } pname { cdman | vidman | all } tname { main | pktio | rt | all }`

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch switch-number</code></td>
<td>Displays information about the switch. Enter the switch number.</td>
</tr>
<tr>
<td><code>active</code></td>
<td>Specifies the active instance of the device.</td>
</tr>
<tr>
<td><code>standby</code></td>
<td>Specifies standby instance of the device.</td>
</tr>
<tr>
<td><code>0</code></td>
<td>Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.</td>
</tr>
<tr>
<td><code>F0</code></td>
<td>Specifies the Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td><code>FP active</code></td>
<td>Specifies the active instance of Embedded Service Processor (ESP).</td>
</tr>
<tr>
<td><code>R0</code></td>
<td>Specifies the Route Processor (RP) slot 0.</td>
</tr>
<tr>
<td><code>pname</code></td>
<td>Specifies a process name. The possible values are cdman, vidman, and all.</td>
</tr>
<tr>
<td><code>tname</code></td>
<td>Specifies a thread name. The possible values are main, pktio, rt, and all.</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC(#)

Examples:

The following is sample output from the `show platform software thread list switch active R0 pname cdman tname all` command:

```
Device# show platform software thread list switch active R0 pname cdman tname all

Name  Tid  PPid  Group Id  Core  Vcswch  Nvcswch  Status  Priority
cdman 8407 7295 8407 1 0 0 S 20
```

The table below describes the significant fields shown in the displays.
Table 18: show platform software thread list Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the command name associated with the process. Different threads in the same process may have different command values.</td>
</tr>
<tr>
<td>Tid</td>
<td>Displays the process ID.</td>
</tr>
<tr>
<td>PPid</td>
<td>Displays the process ID of the parent process.</td>
</tr>
<tr>
<td>Group Id</td>
<td>Displays the group ID.</td>
</tr>
<tr>
<td>Core</td>
<td>Displays processor information.</td>
</tr>
<tr>
<td>Vcswch</td>
<td>Displays the number of voluntary context switches.</td>
</tr>
<tr>
<td>Nvcswch</td>
<td>Displays the number of non-voluntary context switches.</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the process status in human readable form.</td>
</tr>
<tr>
<td>Priority</td>
<td>Displays the negated scheduling priority.</td>
</tr>
<tr>
<td>TIME+</td>
<td>Displays the time since the start of the process.</td>
</tr>
<tr>
<td>Size</td>
<td>Displays the Resident Set Size (in kilobytes (KB)) that shows how much memory is allocated to that process in the RAM.</td>
</tr>
</tbody>
</table>
show processes cpu platform

To display information about the CPU utilization of the IOS-XE processes, use the **show processes cpu platform** command in privileged EXEC mode.

show processes cpu platform **[[sorted [1min | 5min | 5sec]] location switch { switch-number | active | standby } { F0 | FP active | R0 | RP active }]**

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorted</td>
<td>(Optional) Displays output sorted based on percentage of CPU usage on a platform.</td>
<td>sorted</td>
</tr>
<tr>
<td>1min</td>
<td>(Optional) Sorts based on 1 minute intervals.</td>
<td>1min</td>
</tr>
<tr>
<td>5min</td>
<td>(Optional) Sorts based on 5 minute intervals.</td>
<td>5min</td>
</tr>
<tr>
<td>5sec</td>
<td>(Optional) Sorts based on 5 second intervals.</td>
<td>5sec</td>
</tr>
<tr>
<td>location</td>
<td>Specifies the Field Replaceable Unit (FRU) location.</td>
<td>location</td>
</tr>
<tr>
<td>switch</td>
<td>Displays information about the switch. Enter the switch number.</td>
<td>switch</td>
</tr>
<tr>
<td>switch-number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>active</td>
<td>Specifies the active instance of the device.</td>
<td>active</td>
</tr>
<tr>
<td>standby</td>
<td>Specifies the standby instance of the device.</td>
<td>standby</td>
</tr>
<tr>
<td>F0</td>
<td>Specifies the Embedded Service Processor (ESP) slot 0.</td>
<td>F0</td>
</tr>
<tr>
<td>FP active</td>
<td>Specifies active instances on the Embedded Service Processor (ESP).</td>
<td>FP active</td>
</tr>
<tr>
<td>R0</td>
<td>Specifies the Route Processor (RP) slot 0.</td>
<td>R0</td>
</tr>
<tr>
<td>RP active</td>
<td>Specifies active instances on the Route Processor (RP).</td>
<td>RP active</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Examples:

The following is sample output from the **show processes cpu platform** command:

```
Device# show processes cpu platform

CPU utilization for five seconds:  1%, one minute: 3%, five minutes: 2%
Core 0: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 2%
Core 1: CPU utilization for five seconds: 2%, one minute: 1%, five minutes: 1%
Core 2: CPU utilization for five seconds: 3%, one minute: 1%, five minutes: 1%
Core 3: CPU utilization for five seconds: 2%, one minute: 5%, five minutes: 2%

<table>
<thead>
<tr>
<th>Pid</th>
<th>PPid</th>
<th>5Sec</th>
<th>1Min</th>
<th>5Min</th>
<th>Status</th>
<th>Size</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>4876</td>
<td>systemd</td>
</tr>
</tbody>
</table>
```
The following is sample output from the `show processes cpu platform sorted 5min location switch 5 R0`

```
Device# show processes cpu platform sorted 5min location switch 5 R0

CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 0: CPU utilization for five seconds: 1%, one minute: 1%, five minutes: 1%
Core 1: CPU utilization for five seconds: 1%, one minute: 1%, five minutes: 1%
Core 2: CPU utilization for five seconds: 1%, one minute: 1%, five minutes: 1%
Core 3: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 1%
Core 4: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 5: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 6: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 7: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%

```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
The following is sample output from the `show processes cpu platform location switch 7 R0` command:

```
Device# show processes cpu platform location switch 7 R0

CPU utilization for five seconds: 3%, one minute: 3%, five minutes: 3%
Core 0: CPU utilization for five seconds: 1%, one minute: 5%, five minutes: 5%
Core 1: CPU utilization for five seconds: 1%, one minute: 11%, five minutes: 5%
Core 2: CPU utilization for five seconds: 22%, one minute: 7%, five minutes: 6%
Core 3: CPU utilization for five seconds: 5%, one minute: 6%, five minutes: 6%
Core 4: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 5: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 6: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 7: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 6%
```

```
<table>
<thead>
<tr>
<th>Pid</th>
<th>PPid</th>
<th>5Sec</th>
<th>1Min</th>
<th>5Min</th>
<th>Status</th>
<th>Size</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>8044</td>
<td>systemd</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kthreadd</td>
</tr>
</tbody>
</table>
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
show processes cpu platform history

To display information about the CPU usage history of a system, use the `show processes cpu platform history` command.

```
show processes cpu platform history [1min | 5min | 5sec | 60min] location
switch [switch-number | active | standby] [0 | F0 | FP active | R0]
```

- **1min**: (Optional) Displays CPU utilization history with 1 minute intervals.
- **5min**: (Optional) Displays CPU utilization history with 5 minute intervals.
- **5sec**: (Optional) Displays CPU utilization history with 5 second intervals.
- **60min**: (Optional) Displays CPU utilization history with 60 minute intervals.
- **location**: Specifies the Field Replaceable Unit (FRU) location.
- **switch switch-number**: Displays information about the switch. Enter the switch number.
- **active**: Specifies the active instance of the device.
- **standby**: Specifies the standby instance of the device.
- **0**: Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.
- **F0**: Specifies the Embedded Service Processor (ESP) slot 0.
- **FP active**: Specifies active instances on the Embedded Service Processor (ESP).
- **R0**: Specifies the Route Processor (RP) slot 0.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Examples:

The following is sample output from the `show processes cpu platform` command:

```
Device# show processes cpu platform
```

234 Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
CPU utilization for five seconds: 1%, one minute: 3%, five minutes: 2%
Core 0: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 2%
Core 1: CPU utilization for five seconds: 2%, one minute: 1%, five minutes: 1%
Core 2: CPU utilization for five seconds: 3%, one minute: 1%, five minutes: 1%
Core 3: CPU utilization for five seconds: 2%, one minute: 5%, five minutes: 2%

<table>
<thead>
<tr>
<th>Pid</th>
<th>PPid</th>
<th>5Sec</th>
<th>1Min</th>
<th>5Min</th>
<th>Status</th>
<th>Size</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>4876</td>
<td>systemd</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kthreadd</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>ksoftirqd/0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kworker/0:0H</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>rcu_sched</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>rcu_bh</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>migration/0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>watchdog/0</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>watchdog/1</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>migration/1</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>ksoftirqd/1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kworker/1:0H</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>watchdog/2</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>migration/2</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>ksoftirqd/2</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kworker/2:0H</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>watchdog/3</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>migration/3</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>ksoftirqd/3</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kworker/3:0</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kworker/3:0H</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kdevtmpfs</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>netns</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>perf</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>khungtaskd</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>writeback</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>7%</td>
<td>8%</td>
<td>8%</td>
<td>S</td>
<td>0</td>
<td>kamd</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>khugepaged</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>crypto</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>bioet</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kbblockd</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>ata_sff</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>rpciod</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>kswapd0</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>vmstat</td>
</tr>
<tr>
<td>65</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>S</td>
<td>0</td>
<td>fsnotify_mark</td>
</tr>
</tbody>
</table>

The following is sample output from the `show processes cpu platform history 5sec` command:

```
Device# show processes cpu platform history 5sec

5 seconds ago, CPU utilization: 0%
10 seconds ago, CPU utilization: 0%
15 seconds ago, CPU utilization: 0%
20 seconds ago, CPU utilization: 0%
25 seconds ago, CPU utilization: 0%
30 seconds ago, CPU utilization: 0%
35 seconds ago, CPU utilization: 0%
40 seconds ago, CPU utilization: 0%
45 seconds ago, CPU utilization: 0%
50 seconds ago, CPU utilization: 0%
55 seconds ago, CPU utilization: 0%
60 seconds ago, CPU utilization: 0%
65 seconds ago, CPU utilization: 0%
70 seconds ago, CPU utilization: 0%
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
75 seconds ago, CPU utilization: 0%
80 seconds ago, CPU utilization: 0%
85 seconds ago, CPU utilization: 0%
90 seconds ago, CPU utilization: 0%
95 seconds ago, CPU utilization: 0%
100 seconds ago, CPU utilization: 0%
105 seconds ago, CPU utilization: 0%
110 seconds ago, CPU utilization: 0%
115 seconds ago, CPU utilization: 0%
120 seconds ago, CPU utilization: 0%
125 seconds ago, CPU utilization: 0%
130 seconds ago, CPU utilization: 0%
135 seconds ago, CPU utilization: 0%
140 seconds ago, CPU utilization: 0%
145 seconds ago, CPU utilization: 0%
150 seconds ago, CPU utilization: 0%
155 seconds ago, CPU utilization: 0%
160 seconds ago, CPU utilization: 0%
165 seconds ago, CPU utilization: 0%
170 seconds ago, CPU utilization: 0%
175 seconds ago, CPU utilization: 0%
180 seconds ago, CPU utilization: 0%
185 seconds ago, CPU utilization: 0%
190 seconds ago, CPU utilization: 0%
195 seconds ago, CPU utilization: 0%
200 seconds ago, CPU utilization: 0%
205 seconds ago, CPU utilization: 0%
210 seconds ago, CPU utilization: 0%
215 seconds ago, CPU utilization: 0%
220 seconds ago, CPU utilization: 0%
225 seconds ago, CPU utilization: 0%
230 seconds ago, CPU utilization: 0%
235 seconds ago, CPU utilization: 0%
240 seconds ago, CPU utilization: 0%
245 seconds ago, CPU utilization: 0%
250 seconds ago, CPU utilization: 0%
show processes cpu platform monitor

To display information about the CPU utilization of the IOS-XE processes, use the `show processes cpu platform monitor` command in privileged EXEC mode.

```
show processes cpu platform monitor location switch active R0
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>Displays information about the Field Replaceable Unit (FRU) location.</td>
</tr>
<tr>
<td>switch</td>
<td>Specifies the switch.</td>
</tr>
<tr>
<td>switch-number</td>
<td>Switch number.</td>
</tr>
<tr>
<td>active</td>
<td>Specifies the active instance.</td>
</tr>
<tr>
<td>standby</td>
<td>Specifies the standby instance.</td>
</tr>
<tr>
<td>0</td>
<td>Specifies the shared port adapter (SPA) interface processor slot 0.</td>
</tr>
<tr>
<td>F0</td>
<td>Specifies the Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td>R0</td>
<td>Specifies the Route Processor (RP) slot 0.</td>
</tr>
</tbody>
</table>

Command Modes

- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output of the `show platform software process slot switch` and `show processes cpu platform monitor location` commands display the output of the Linux `top` command. The output of these commands display Free memory and Used memory as displayed by the Linux `top` command. The values displayed for the Free memory and Used memory by these commands do not match the values displayed by the output of other platform-memory related CLIs.

Examples

The following is sample output from the `show processes cpu monitor location switch active R0` command:

```
Switch# show processes cpu platform monitor location switch active R0

top - 00:04:21 up 1 day, 11:22, 0 users, load average: 0.42, 0.60, 0.78
Tasks: 312 total, 4 running, 308 sleeping, 0 stopped, 0 zombie
Cpu(s): 7.4%us, 3.3%sy, 0.0%ni, 89.2%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st
Mem: 3976844k total, 3956928k used, 19916k free, 419312k buffers
Swap: 0k total, 0k used, 0k free, 1947036k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6294 root 20 0 3448 1368 912 R 9 0.0 0:00.07 top
17546 root 20 0 2044m 244m 79m S 7 6.3 187:02.07 fed main event
30276 root 20 0 171m 42m 33m S 7 1.1 125:15.54 repm
16 root 20 0 0 0 0 S 5 0.0 22:07.92 rcuc/2
21 root 20 0 0 0 0 R 5 0.0 22:13.24 rcuc/3
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
show processes cpu platform monitor

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show platform software process slot switch</td>
<td>Displays platform software process switch information.</td>
</tr>
</tbody>
</table>
show processes memory platform

To display memory usage for each Cisco IOS XE process, use the `show processes memory platform` command in privileged EXEC mode.

```
show processes memory platform [ [ detailed { name process-name | process-id process-ID } [ location | maps [ location ] | smaps [ location ] ] | location | sorted [ location ] ] switch { switch-number | active | standby } { 0 | F0 | R0 } | accounting ]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accounting</td>
<td>(Optional) Displays the top memory allocators for each Cisco IOS XE process.</td>
</tr>
<tr>
<td>detailed</td>
<td>(Optional) Displays detailed memory information for a specified Cisco IOS XE process.</td>
</tr>
<tr>
<td>name process-name</td>
<td>(Optional) Displays the Cisco IOS XE process name. Enter the process name.</td>
</tr>
<tr>
<td>process-id process-ID</td>
<td>(Optional) Displays the Cisco IOS XE process ID. Enter the process ID.</td>
</tr>
<tr>
<td>location</td>
<td>(Optional) Displays information about the Field Replaceable Unit (FRU) location.</td>
</tr>
<tr>
<td>maps</td>
<td>(Optional) Displays memory maps of a process.</td>
</tr>
<tr>
<td>smaps</td>
<td>(Optional) Displays static memory maps of a process.</td>
</tr>
<tr>
<td>sorted</td>
<td>(Optional) Displays the sorted output based on the Resident Set Size (RSS) memory used by Cisco IOS XE process.</td>
</tr>
<tr>
<td>switch switch-number</td>
<td>Displays information about the device.</td>
</tr>
<tr>
<td>active</td>
<td>Displays information about the active instance of the device.</td>
</tr>
<tr>
<td>standby</td>
<td>Displays information about the standby instance of the device.</td>
</tr>
<tr>
<td>0</td>
<td>Displays information about Shared Port Adapter (SPA)-Inter-Processor slot 0.</td>
</tr>
<tr>
<td>F0</td>
<td>Displays information about Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td>R0</td>
<td>Displays information about Route Processor (RP) slot 0.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)
show processes memory platform

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was modified. The keyword accounting was added. The Total column was deleted from the output.</td>
</tr>
</tbody>
</table>

Examples

The following is a sample output from the **show processes memory platform** command:

device# show processes memory platform

System memory: 3976852K total, 2761580K used, 1215272K free,
Lowest: 1215272K

<table>
<thead>
<tr>
<th>Pid</th>
<th>Text</th>
<th>Data</th>
<th>Stack</th>
<th>Dynamic</th>
<th>RSS</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1246</td>
<td>4400</td>
<td>132</td>
<td>1308</td>
<td>4400</td>
<td>systemd</td>
</tr>
<tr>
<td>96</td>
<td>233</td>
<td>2796</td>
<td>132</td>
<td>132</td>
<td>2796</td>
<td>systemd-journal</td>
</tr>
<tr>
<td>105</td>
<td>284</td>
<td>1796</td>
<td>132</td>
<td>176</td>
<td>1796</td>
<td>systemd-udevd</td>
</tr>
<tr>
<td>707</td>
<td>52</td>
<td>2660</td>
<td>132</td>
<td>172</td>
<td>2660</td>
<td>in.telnetd</td>
</tr>
<tr>
<td>744</td>
<td>968</td>
<td>3264</td>
<td>132</td>
<td>1700</td>
<td>3264</td>
<td>brelay.sh</td>
</tr>
<tr>
<td>835</td>
<td>52</td>
<td>2660</td>
<td>132</td>
<td>172</td>
<td>2660</td>
<td>in.telnetd</td>
</tr>
<tr>
<td>863</td>
<td>968</td>
<td>3264</td>
<td>132</td>
<td>1700</td>
<td>3264</td>
<td>brelay.sh</td>
</tr>
<tr>
<td>928</td>
<td>968</td>
<td>3976</td>
<td>132</td>
<td>2312</td>
<td>3976</td>
<td>droputil.sh</td>
</tr>
<tr>
<td>933</td>
<td>968</td>
<td>3976</td>
<td>132</td>
<td>2312</td>
<td>3976</td>
<td>droputil.sh</td>
</tr>
<tr>
<td>934</td>
<td>968</td>
<td>2140</td>
<td>132</td>
<td>528</td>
<td>2140</td>
<td>oom.sh</td>
</tr>
<tr>
<td>936</td>
<td>173</td>
<td>936</td>
<td>132</td>
<td>132</td>
<td>936</td>
<td>xinetd</td>
</tr>
<tr>
<td>945</td>
<td>968</td>
<td>1472</td>
<td>132</td>
<td>132</td>
<td>1472</td>
<td>libvirtd.sh</td>
</tr>
<tr>
<td>947</td>
<td>592</td>
<td>43164</td>
<td>132</td>
<td>3096</td>
<td>43164</td>
<td>repm</td>
</tr>
<tr>
<td>954</td>
<td>45</td>
<td>932</td>
<td>132</td>
<td>132</td>
<td>932</td>
<td>rpcbind</td>
</tr>
<tr>
<td>986</td>
<td>482</td>
<td>3476</td>
<td>132</td>
<td>132</td>
<td>3476</td>
<td>libvirtd</td>
</tr>
<tr>
<td>988</td>
<td>66</td>
<td>940</td>
<td>132</td>
<td>132</td>
<td>940</td>
<td>rpc.statd</td>
</tr>
<tr>
<td>993</td>
<td>968</td>
<td>928</td>
<td>132</td>
<td>132</td>
<td>928</td>
<td>boothelper_evt.</td>
</tr>
<tr>
<td>1017</td>
<td>21</td>
<td>640</td>
<td>132</td>
<td>132</td>
<td>640</td>
<td>notifywait</td>
</tr>
<tr>
<td>1089</td>
<td>102</td>
<td>1200</td>
<td>132</td>
<td>132</td>
<td>1200</td>
<td>rpc.mountd</td>
</tr>
<tr>
<td>1328</td>
<td>9</td>
<td>2940</td>
<td>132</td>
<td>148</td>
<td>2940</td>
<td>rotee</td>
</tr>
<tr>
<td>1353</td>
<td>39</td>
<td>532</td>
<td>132</td>
<td>132</td>
<td>532</td>
<td>sleep</td>
</tr>
</tbody>
</table>

The following is a sample output from the **show processes memory platform accounting** command:

device# show processes memory platform accounting

Hourly Stats

<table>
<thead>
<tr>
<th>process</th>
<th>callsite_ID(bytes)</th>
<th>max_diff_bytes</th>
<th>callsite_ID(calls)</th>
<th>max_diff_calls</th>
<th>tracekey</th>
<th>timestamp(UTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>smand_rp_0</td>
<td>3624155137</td>
<td>172389</td>
<td>3624155138</td>
<td>50</td>
<td>1#3e0e4361082c702e5bf1afbd90e6313</td>
<td>2018-09-04 14:23</td>
</tr>
<tr>
<td>linux_iosd_img_rp_0</td>
<td>3626295305</td>
<td>49188</td>
<td>3624155138</td>
<td>12</td>
<td>1#545420bd869d25eb5ab826182ee5d9ce</td>
<td>2018-09-04 12:03</td>
</tr>
<tr>
<td>btman_rp_0</td>
<td>3624737792</td>
<td>17080</td>
<td>2953915394</td>
<td>64</td>
<td>1#d6888bd9564a34fc049c31ba07a036</td>
<td>2018-09-04 22:29</td>
</tr>
</tbody>
</table>
Interface and Hardware Components

show processes memory platform sorted

The following is a sample output from the `show processes memory platform sorted` command:

```plaintext
device# show processes memory platform sorted
System memory: 3976852K total, 2762884K used, 1213968K free,
Lowest: 1213968K

<table>
<thead>
<tr>
<th>Pid</th>
<th>Text</th>
<th>Data</th>
<th>Stack</th>
<th>Dynamic</th>
<th>RSS</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7885</td>
<td></td>
<td>684864</td>
<td>136</td>
<td>1</td>
<td>684864</td>
<td>linux_iosd-imag</td>
</tr>
<tr>
<td>9655</td>
<td></td>
<td>264964</td>
<td>136</td>
<td>18004</td>
<td>264964</td>
<td>wcm</td>
</tr>
</tbody>
</table>
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
The following is sample output from the `show processes memory platform sorted location switch active R0` command:

device# show processes memory platform sorted location switch active R0
System memory: 3976852K total, 2762884K used, 1213968K free,
Lowest: 1213968K

<table>
<thead>
<tr>
<th>Pid</th>
<th>Text</th>
<th>Data</th>
<th>Stack</th>
<th>Dynamic</th>
<th>RSS</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7885</td>
<td>149848</td>
<td>684864</td>
<td>136</td>
<td>80</td>
<td>684864</td>
<td>linux_iosd-imag</td>
</tr>
<tr>
<td>9655</td>
<td>3787</td>
<td>264964</td>
<td>136</td>
<td>18004</td>
<td>264964</td>
<td>wcm</td>
</tr>
<tr>
<td>17261</td>
<td>324</td>
<td>248588</td>
<td>132</td>
<td>103908</td>
<td>248588</td>
<td>fed main event</td>
</tr>
<tr>
<td>4268</td>
<td>391</td>
<td>102084</td>
<td>136</td>
<td>5596</td>
<td>102084</td>
<td>cli_agent</td>
</tr>
<tr>
<td>4856</td>
<td>357</td>
<td>93388</td>
<td>132</td>
<td>3680</td>
<td>93388</td>
<td>dbm</td>
</tr>
<tr>
<td>17067</td>
<td>1087</td>
<td>77912</td>
<td>136</td>
<td>1796</td>
<td>77912</td>
<td>platform_mgr</td>
</tr>
</tbody>
</table>

!
show processes platform

To display information about the IOS-XE processes running on a platform, use the `show processes platform` command in privileged EXEC mode.

```
show processes platform [detailed name process-name] [location switch {switch-number | active | standby} {0 | F0 | FP active | R0}]
```

<table>
<thead>
<tr>
<th>detailed</th>
<th>(Optional) Displays detailed information of the specified IOS-XE process.</th>
</tr>
</thead>
<tbody>
<tr>
<td>name process-name</td>
<td>(Optional) Specifies the process name.</td>
</tr>
<tr>
<td>location</td>
<td>(Optional) Specifies the Field Replaceable Unit (FRU) location.</td>
</tr>
<tr>
<td>switch switch-number</td>
<td>(Optional) Displays information about the switch.</td>
</tr>
<tr>
<td>active</td>
<td>(Optional) Specifies the active instance of the device.</td>
</tr>
<tr>
<td>standby</td>
<td>(Optional) Specifies standby instance of the device.</td>
</tr>
<tr>
<td>0</td>
<td>Specifies the Shared Port Adapter (SPA) Interface Processor slot 0.</td>
</tr>
<tr>
<td>F0</td>
<td>Specifies the Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td>FP active</td>
<td>Specifies the active instance in the Embedded Service Processor (ESP).</td>
</tr>
<tr>
<td>R0</td>
<td>Specifies the Route Processor (RP) slot 0.</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC(#)

Examples:

The following is sample output from the `show processes platform` command:

```
Device# show processes platform

CPU utilization for five seconds: 1%, one minute: 2%, five minutes: 1%

<table>
<thead>
<tr>
<th>Pid</th>
<th>PPid</th>
<th>Status</th>
<th>Size</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>S</td>
<td>4876</td>
<td>systemd</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>kthread</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>ksoftirqd/0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>kworker/0:0H</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>rcu_sched</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>rcu_bh</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>migration/0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>watchdog/0</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>watchdog/1</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>S</td>
<td>0</td>
<td>migration/1</td>
</tr>
</tbody>
</table>
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches) 243
The table below describes the significant fields shown in the displays.

Table 18: show processes platform Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pid</td>
<td>Displays the process ID.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>PPid</td>
<td>Displays the process ID of the parent process.</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the process status in human readable form.</td>
</tr>
<tr>
<td>Size</td>
<td>Displays the Resident Set Size (in kilobytes (KB)) that shows how much memory is allocated to that process in the RAM.</td>
</tr>
<tr>
<td>Name</td>
<td>Displays the command name associated with the process. Different threads in the same process may have different command values.</td>
</tr>
</tbody>
</table>
To display shell information, use the `show shell` command in user EXEC mode.

```
show shell [{environment | functions [{brief shell_function}] | triggers}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>environment</code></td>
<td>(Optional) Displays shell environment information.</td>
</tr>
</tbody>
</table>
| `functions [brief shell_function]` | (Optional) Displays macro information.
 - **brief**—Names of the shell functions.
 - **shell_function**—Name of a shell function. |
| `triggers` | (Optional) Displays event trigger information. |

Command Modes

- User EXEC (`->`)
- Privileged EXEC (`#`)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to display the shell information for the switch.

Example

This example shows how to use the `show shell triggers` command to view the event triggers in the switch software:

```
Device# term shell
Device# show shell triggers
User defined triggers
----------------------
Built-in triggers
----------------------
Trigger Id: CISCO_CUSTOM_EVENT
Trigger description: Custom macroevent to apply user defined configuration
Trigger environment: User can define the macro
Trigger mapping function: CISCO_CUSTOM_AUTOSMARTPORT

Trigger Id: CISCO_DMP_EVENT
Trigger description: Digital media-player device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - `$ACCESS_VLAN=(1)`
  The value in the parenthesis is a default value
Trigger mapping function: CISCO_DMP_AUTO_SMARTPORT

Trigger Id: CISCO_IPVSC_EVENT
Trigger description: IP-camera device event to apply port configuration
Trigger environment: Parameters that can be set in the shell - `$ACCESS_VLAN=(1)`
  The value in parenthesis is a default value
Trigger mapping function: CISCO_IP_CAMERA_AUTO_SMARTPORT
```
This example shows how to use the `show shell functions` command to view the built-in macros in the switch software:

```
Device# show shell functions
#User defined functions:

#Built-in functions:
function CISCO_AP_AUTO_SMARTPORT () {
    if [[ $LINKUP == YES ]]; then
        conf t
        interface $INTERFACE
        macro description $TRIGGER
        switchport trunk encapsulation dot1q
        switchport trunk native vlan $NATIVE_VLAN
        switchport trunk allowed vlan ALL
    fi
}
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
switchport mode trunk
switchport nonegotiate
auto qos voip trust
mls qos trust cos
if [[$LIMIT == 0]]; then
default srr-queue bandwidth limit
else
srr-queue bandwidth limit $LIMIT
fi
if [[$SW_POE == YES]]; then
 if [[$AP125X == AP125X]]; then
 macro description AP125X
 macro auto port sticky
 power inline port maximum 20000
 fi
fi
fi
exit
end
fi
if [[$LINKUP == NO]]; then
 conf t
 interface $INTERFACE
 no macro description
 no switchport nonegotiate
 no switchport trunk native vlan $NATIVE_VLAN
 no switchport trunk allowed vlan ALL
 no auto qos voip trust
 no mls qos trust cos
 default srr-queue bandwidth limit
 if [[$AUTH_ENABLED == NO]]; then
 no switchport mode
 no switchport trunk encapsulation
 fi
 if [[$STICKY == YES]]; then
 if [[$SW_POE == YES]]; then
 if [[$AP125X == AP125X]]; then
 no macro auto port sticky
 no power inline port maximum
 fi
 fi
 fi
fi
exit
fi
end
}
show system mtu

To display the global maximum transmission unit (MTU) or maximum packet size set for the switch, use the show system mtu command in privileged EXEC mode.

```
show system mtu
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For information about the MTU values and the stack configurations that affect the MTU values, see the **system mtu** command.

Examples

This is an example of output from the show system mtu command:

```
Device# show system mtu
Global Ethernet MTU is 1500 bytes.
```
To automatically run `show` commands that display system information, use the `show tech-support` command in the privilege EXEC mode.

```
show tech-support
c
```

Syntax Description

- **cef** (Optional) Displays CEF related information.
- **cft** (Optional) Displays CFT related information.
- **eigrp** (Optional) Displays EIGRP related information.
- **evc** (Optional) Displays EVC related information.
- **fnf** (Optional) Displays flexible netflow related information.
- **ipc** (Optional) Displays IPC related information.
- **ipmulticast** (Optional) Displays IP multicast related information.
- **ipsec** (Optional) Displays IPSEC related information.
- **isis** (Optional) Displays CLNS and ISIS related information.
- **license** (Optional) Displays license related information.
- **lisp** (Optional) Displays Locator/ID Separation Protocol related information.
- **memory** (Optional) Displays Memory related information.
- **mfib** (Optional) Displays MFIB related information.
- **msrp** (Optional) Displays MSRP related information.
- **mvrp** (Optional) Displays MVRP related information.
- **nat** (Optional) Displays NAT related information.
- **onep** (Optional) Displays ONEP related information.
- **ospf** (Optional) Displays OSPF related information.
- **page** (Optional) Displays the command output on a single page at a time. Use the Return key to display the next line of output or use the space bar to display the next page of information. If not used, the output scrolls (that is, it does not stop for page breaks). Press the `Ctrl-C` keys to stop the command output.
- **password** (Optional) Leaves passwords and other security information in the output. If not used, passwords and other security-sensitive information in the output are replaced with the label "<removed>".
performance-monitor (Optional) Displays Performance Monitor related information.

pki (Optional) Displays PKI related information.

platform (Optional) Displays Platform related information.

qos (Optional) Displays QoS related information.

subscriber (Optional) Displays subscriber related information.

switch-report (Optional) Archives switch report.

vrrp (Optional) Displays VRRP related information.

wccp (Optional) Displays WCCP related information.

Command Modes
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was implemented.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The output from the `show tech-support` command is very long. To better manage this output, you can redirect the output to a file (for example, `show tech-support > filename`) in the local writable storage file system or the remote file system. Redirecting the output to a file also makes sending the output to your Cisco Technical Assistance Center (TAC) representative easier.

You can use one of the following redirection methods:

- `>` filename - Redirects the output to a file.
- `>>` filename - Redirects the output to a file in append mode.
show tech-support bgp

To automatically run show commands that display BGP related system information, use the `show tech-support bgp` command in the privileged EXEC mode.

```
show tech-support bgp [address-family { all | ipv4 [flowspec | multicast | unicast | mdt | mvpn | all | vrf vrf-instance-name] } | ipv6 [flowspec | multicast | mvpn | all | vrf vrf-instance-name] | unicast] | l2vpn [evpn | vpls] | link-state [link-state] | [nsap | rtfilter] | [unicast] | [vpnv4 | vpnv6] [flowspec | multicast | unicast] { all | vrf vrf-instance-name } ] [ detail]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>address-family</code></td>
<td>(Optional) Displays the output for a specified address family.</td>
</tr>
<tr>
<td><code>address-family all</code></td>
<td>(Optional) Displays the output for all address families.</td>
</tr>
<tr>
<td><code>ipv4</code></td>
<td>(Optional) Displays the output for IPv4 address family.</td>
</tr>
<tr>
<td><code>ipv6</code></td>
<td>(Optional) Displays the output for IPv6 address family.</td>
</tr>
<tr>
<td><code>l2vpn</code></td>
<td>(Optional) Displays the output for L2VPN address family.</td>
</tr>
<tr>
<td><code>link-state</code></td>
<td>(Optional) Displays the output for Link State address family.</td>
</tr>
<tr>
<td><code>nsap</code></td>
<td>(Optional) Displays the output for NSAP address family.</td>
</tr>
<tr>
<td><code>rtfilter</code></td>
<td>(Optional) Displays the output for RT Filter address family.</td>
</tr>
<tr>
<td><code>vpnv4</code></td>
<td>(Optional) Displays the output for VPNv4 address family.</td>
</tr>
<tr>
<td><code>vpnv6</code></td>
<td>(Optional) Displays the output for VPNv6 address family.</td>
</tr>
<tr>
<td><code>flowspec</code></td>
<td>(Optional) Displays the flowspec related information for an address family.</td>
</tr>
<tr>
<td><code>multicast</code></td>
<td>(Optional) Displays the multicast related information for an address family.</td>
</tr>
<tr>
<td><code>unicast</code></td>
<td>(Optional) Displays the unicast related information for an address family.</td>
</tr>
<tr>
<td><code>mdt</code></td>
<td>(Optional) Displays the Multicast Distribution Tree (MDT) related information for an address family.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>mvpn</td>
<td>(Optional) Displays the Multicast VPN (MVPN) related information for an address family.</td>
</tr>
<tr>
<td>vrf</td>
<td>Displays the information for a VPN Routing/Forwarding instance.</td>
</tr>
<tr>
<td>evpn</td>
<td>(Optional) Displays the Ethernet VPN (EVPN) related information for an address family.</td>
</tr>
<tr>
<td>vpls</td>
<td>(Optional) Displays the Virtual Private LAN Services (VPLS) related information for an address family.</td>
</tr>
<tr>
<td>vrf-instance-name</td>
<td>Specifies the name of the VPN Routing/Forwarding instance.</td>
</tr>
<tr>
<td>all</td>
<td>Displays the information about all VPN NLRIs.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays the detailed routes information.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

Release	Modification
 | This command was introduced.

Usage Guidelines

The `show tech-support bgp` command is used to display the outputs of various BGP show commands and log them to the show-tech file. The output from the `show tech-support bgp` command is very long. To better manage this output, you can redirect the output to a file (for example, `show tech-support > filename`) in the local writable storage file system or the remote file system. Redirecting the output to a file also makes sending the output to your Cisco Technical Assistance Center (TAC) representative easier.

You can use one of the following redirection methods:

- `>` filename - Redirects the output to a file.
- `>>` filename - Redirects the output to a file in append mode.

The following `show` commands run automatically when the `show tech-support bgp` command is used:

- `show clock`
- `show version`
- `show running-config`
- `show process cpu sorted`
- `show process cpu history`
- `show process memory sorted`

The following `show` commands for a specific address family run automatically when the `show tech-support bgp address-family address-family-name address-family-modifier` command is used:
• show bgp address-family-name address-family-modifier summary
• show bgp address-family-name address-family-modifier detail
• show bgp address-family-name address-family-modifier internal
• show bgp address-family-name address-family-modifier neighbors
• show bgp address-family-name address-family-modifier update-group
• show bgp address-family-name address-family-modifier replication
• show bgp address-family-name address-family-modifier community
• show bgp address-family-name address-family-modifier dampening dampened-paths
• show bgp address-family-name address-family-modifier dampening flap-statistics
• show bgp address-family-name address-family-modifier dampening parameters
• show bgp address-family-name address-family-modifier injected-paths
• show bgp address-family-name address-family-modifier cluster-ids
• show bgp address-family-name address-family-modifier cluster-ids internal
• show bgp address-family-name address-family-modifier peer-group
• show bgp address-family-name address-family-modifier pending-prefixes
• show bgp address-family-name address-family-modifier rib-failure

In addition to the above commands, the following segment routing specific show commands also run when the show tech-support bgp command is used:

• show bgp all binding-sid
• show segment-routing client
• show segment-routing mpls state
• show segment-routing mpls gb
• show segment-routing mpls connected-prefix-sid-map protocol ipv4
• show segment-routing mpls connected-prefix-sid-map protocol backup ipv4
• show mpls traffic-eng tunnel auto-tunnel client bgp
show tech-support diagnostic

To display diagnostic information for technical support, use the show tech-support diagnostic command in privileged EXEC mode.

Syntax Description

This command has no arguments or keywords.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output of this command is very long. To better manage this output, you can redirect the output to a file (for example, show tech-support diagnostic > flash:filename) in the local writable storage file system or remote file system.

Note

For devices that support stacking, this command is executed on every switch that is up. For devices that do not support stacking, this command is executed only on the active switch.

The output of this command displays the output of the following commands:

- show clock
- show version
- show running-config
- show inventory
- show diagnostic bootup level
- show diagnostic status
- show diagnostic content switch all
- show diagnostic result switch all detail
- show diagnostic schedule switch all
- show diagnostic post
- show diagnostic description switch [switch number] test all
- show logging onboard switch [switch number] cli log detail
- show logging onboard switch [switch number] counter detail
- show logging onboard switch [switch number] environment detail
- show logging onboard switch [switch number] message detail
show tech-support diagnostic

- show logging onboard switch [switch number] poe detail
- show logging onboard switch [switch number] status
- show logging onboard switch [switch number] temperature detail
- show logging onboard switch [switch number] uptime detail
- show logging onboard switch [switch number] voltage detail
speed

To specify the speed of a port, use the `speed` command in interface configuration mode. To return to the default value, use the `no` form of this command.

```
speed 10 | 100 | 1000 | 2500 | 5000 | auto  | nonegotiate
```

Syntax Description

- **10**: Specifies that the port runs at 10 Mbps.
- **100**: Specifies that the port runs at 100 Mbps.
- **1000**: Specifies that the port runs at 1000 Mbps. This option is valid and visible only on 10/100/1000 Mb/s ports.
- **2500**: Specifies that the port runs at 2500 Mbps. This option is valid and visible only on multi-Gigabit-supported Ethernet ports.
- **5000**: Specifies that the port runs at 5000 Mbps. This option is valid and visible only on multi-Gigabit-supported Ethernet ports.
- **auto**: Detects the speed at which the port should run, automatically, based on the port at the other end of the link. If you use the `10`, `100`, `1000`, `2500`, or `5000` keyword with the `auto` keyword, the port autonegotiates only at the specified speeds.
- **nonegotiate**: Disables autonegotiation, and the port runs at 1000 Mbps.

Command Default

The default is `auto`.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You cannot configure speed on 10-Gigabit Ethernet ports.

Except for the 1000BASE-T small form-factor pluggable (SFP) modules, you can configure the speed to not negotiate (nonegotiate) when an SFP module port is connected to a device that does not support autonegotiation.

The new keywords, 2500 and 5000 are visible only on multi-Gigabit (m-Gig) Ethernet supporting devices.

If the speed is set to `auto`, the switch negotiates with the device at the other end of the link for the speed setting, and then forces the speed setting to the negotiated value. The duplex setting remains configured on each end of the link, which might result in a duplex setting mismatch.
If both ends of the line support autonegotiation, we highly recommend the default autonegotiation settings. If one interface supports autonegotiation and the other end does not, use the auto setting on the supported side, but set the duplex and speed on the other side.

⚠️ **Caution**

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.

For guidelines on setting the switch speed and duplex parameters, see the “Configuring Interface Characteristics” chapter in the software configuration guide for this release.

Verify your settings using the `show interfaces` privileged EXEC command.

Examples

The following example shows how to set speed on a port to 100 Mbps:

```plaintext
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed 100
```

The following example shows how to set a port to autonegotiate at only 10 Mbps:

```plaintext
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed auto 10
```

The following example shows how to set a port to autonegotiate at only 10 or 100 Mbps:

```plaintext
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# speed auto 10 100
```
start (coap-proxy configuration)

To start CoAP on the switch, use the start command in coap-proxy configuration mode.

```
start
```

Command Modes

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>coap-proxy configuration (config-coap-proxy)</th>
</tr>
</thead>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to start CoAP on the switch.

```
Device(config)# coap proxy
Device(config-coap-proxy)# start
```
stop (coap-proxy configuration)

To stop CoAP on the switch, use the `stop` command in coap-proxy configuration mode.

```
stop
```

Command Modes

coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the `coap proxy` command in global configuration mode.

Example

This example shows how to stop CoAP on the switch.

```
Device(config)# coap proxy
Device(config-coap-proxy)# stop
```
switchport block

To prevent unknown multicast or unicast packets from being forwarded, use the `switchport block` command in interface configuration mode. To allow forwarding unknown multicast or unicast packets, use the `no` form of this command.

```
switchport block {multicast|unicast}
no switchport block {multicast|unicast}
```

Syntax Description

- `multicast` Specifies that unknown multicast traffic should be blocked.

 Note Only pure Layer 2 multicast traffic is blocked. Multicast packets that contain IPv4 or IPv6 information in the header are not blocked.

- `unicast` Specifies that unknown unicast traffic should be blocked.

Command Default

Unknown multicast and unicast traffic is not blocked.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, all traffic with unknown MAC addresses is sent to all ports. You can block unknown multicast or unicast traffic on protected or nonprotected ports. If unknown multicast or unicast traffic is not blocked on a protected port, there could be security issues.

With multicast traffic, the port blocking feature blocks only pure Layer 2 packets. Multicast packets that contain IPv4 or IPv6 information in the header are not blocked.

Blocking unknown multicast or unicast traffic is not automatically enabled on protected ports; you must explicitly configure it.

For more information about blocking packets, see the software configuration guide for this release.

This example shows how to block unknown unicast traffic on an interface:

```
Device(config-if)# switchport block unicast
```

You can verify your setting by entering the `show interfaces interface-id switchport` privileged EXEC command.
To set the global maximum packet size or MTU size for switched packets on Gigabit Ethernet and 10-Gigabit Ethernet ports, use the `system mtu` command in global configuration mode. To restore the global MTU value to its default value, use the `no` form of this command.

```
system mtu bytes
no system mtu
```

Syntax Description

- `bytes` The global MTU size in bytes. The range is 1500 to 9198 bytes; the default is 1500 bytes.

Command Default

The default MTU size for all ports is 1500 bytes.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can verify your setting by entering the `show system mtu` privileged EXEC command.

The switch does not support the MTU on a per-interface basis.

If you enter a value that is outside the allowed range for the specific type of interface, the value is not accepted.

Examples

This example shows how to set the global system MTU size to 6000 bytes:

```
Device(config)# system mtu 6000
Global Ethernet MTU is set to 6000 bytes.
Note: this is the Ethernet payload size, not the total Ethernet frame size, which includes the Ethernet header/trailer and possibly other tags, such as ISL or 802.1q tags.
```
transport (coap-proxy configuration)

To configure transport protocol, use the transport command in coap-proxy configuration mode.

transport {tcp | udp}

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>tcp</th>
<th>udp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies a TCP protocol.</td>
<td>Specifies a UDP protocol.</td>
<td></td>
</tr>
</tbody>
</table>

Command Modes

coap-proxy configuration (config-coap-proxy)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To access coap-proxy configuration mode, enter the coap proxy command in global configuration mode.

Example

This is an example to configure tcp as transport protocol

```
Device(config)# coap proxy
Device(config-coap-proxy)# transport tcp
```
voice-signaling vlan (network-policy configuration)

To create a network-policy profile for the voice-signaling application type, use the `voice-signaling vlan` command in network-policy configuration mode. To delete the policy, use the `no` form of this command.

```plaintext
voice-signaling vlan {vlan-id [ {cos cos-value | dscp dscp-value} ] | dot1p [ {cos l2-priority | dscp dscp} ] | none | untagged}
```

Syntax Description

- **vlan-id** (Optional) The VLAN for voice traffic. The range is 1 to 4094.
- **cos cos-value** (Optional) Specifies the Layer 2 priority class of service (CoS) for the configured VLAN. The range is 0 to 7; the default is 5.
- **dscp dscp-value** (Optional) Specifies the differentiated services code point (DSCP) value for the configured VLAN. The range is 0 to 63; the default is 46.
- **dot1p** (Optional) Configures the phone to use IEEE 802.1p priority tagging and to use VLAN 0 (the native VLAN).
- **none** (Optional) Does not instruct the Cisco IP phone about the voice VLAN. The phone uses the configuration from the phone key pad.
- **untagged** (Optional) Configures the phone to send untagged voice traffic. This is the default for the phone.

Command Default

No network-policy profiles for the voice-signaling application type are defined.

- The default CoS value is 5.
- The default DSCP value is 46.
- The default tagging mode is untagged.

Command Modes

Network-policy profile configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `network-policy profile` global configuration command to create a profile and to enter network-policy profile configuration mode.

The voice-signaling application type is for network topologies that require a different policy for voice signaling than for voice media. This application type should not be advertised if all of the same network policies apply as those advertised in the voice policy TLV.

When you are in network-policy profile configuration mode, you can create the profile for voice-signaling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode.

These profile attributes are contained in the Link Layer Discovery Protocol for Media Endpoint Devices (LLDP-MED) network-policy time-length-value (TLV).
To return to privileged EXEC mode from the network-policy profile configuration mode, enter the `exit` command.

This example shows how to configure voice-signaling for VLAN 200 with a priority 2 CoS:

```
(config)# network-policy profile 1
(config-network-policy)# voice-signaling vlan 200 cos 2
```

This example shows how to configure voice-signaling for VLAN 400 with a DSCP value of 45:

```
(config)# network-policy profile 1
(config-network-policy)# voice-signaling vlan 400 dscp 45
```

This example shows how to configure voice-signaling for the native VLAN with priority tagging:

```
(config-network-policy)# voice-signaling vlan dot1p cos 4
```
voice vlan (network-policy configuration)

To create a network-policy profile for the voice application type, use the voice vlan command in network-policy configuration mode. To delete the policy, use the no form of this command.

```
voice vlan {vlan-id [([cos cos-value | dscp dscp-value] | dot1p [(cos l2-priority | dscp dscp-value)] | none | untagged)
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>(Optional) The VLAN for voice traffic. The range is 1 to 4094.</td>
</tr>
<tr>
<td>cos cos-value</td>
<td>(Optional) Specifies the Layer 2 priority class of service (CoS) for the configured VLAN. The range is 0 to 7; the default is 5.</td>
</tr>
<tr>
<td>dscp dscp-value</td>
<td>(Optional) Specifies the differentiated services code point (DSCP) value for the configured VLAN. The range is 0 to 63; the default is 46.</td>
</tr>
<tr>
<td>dot1p</td>
<td>(Optional) Configures the phone to use IEEE 802.1p priority tagging and to use VLAN 0 (the native VLAN).</td>
</tr>
<tr>
<td>none</td>
<td>(Optional) Does not instruct the Cisco IP phone about the voice VLAN. The phone uses the configuration from the phone key pad.</td>
</tr>
<tr>
<td>untagged</td>
<td>(Optional) Configures the phone to send untagged voice traffic. This is the default for the phone.</td>
</tr>
</tbody>
</table>

Command Default

No network-policy profiles for the voice application type are defined.

The default CoS value is 5.

The default DSCP value is 46.

The default tagging mode is untagged.

Command Modes

Network-policy profile configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the network-policy profile global configuration command to create a profile and to enter network-policy profile configuration mode.

The voice application type is for dedicated IP telephones and similar devices that support interactive voice services. These devices are typically deployed on a separate VLAN for ease of deployment and enhanced security through isolation from data applications.

When you are in network-policy profile configuration mode, you can create the profile for voice by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode.

These profile attributes are contained in the Link Layer Discovery Protocol for Media Endpoint Devices (LLDP-MED) network-policy time-length-value (TLV).
To return to privileged EXEC mode from the network-policy profile configuration mode, enter the `exit` command.

This example shows how to configure the voice application type for VLAN 100 with a priority 4 CoS:

```
(config)# network-policy profile 1
(config-network-policy)# voice vlan 100 cos 4
```

This example shows how to configure the voice application type for VLAN 100 with a DSCP value of 34:

```
(config)# network-policy profile 1
(config-network-policy)# voice vlan 100 dscp 34
```

This example shows how to configure the voice application type for the native VLAN with priority tagging:

```
(config-network-policy)# voice vlan dot1p cos 4
```
voice vlan (network-policy configuration)
PART III

IP Addressing Services

• IP Addressing Services Commands, on page 271
IP Addressing Services Commands

- clear ipv6 access-list, on page 275
- clear ipv6 dhcp, on page 276
- clear ipv6 dhcp binding, on page 277
- clear ipv6 dhcp client, on page 278
- clear ipv6 dhcp conflict, on page 279
- clear ipv6 dhcp relay binding, on page 280
- clear ipv6 eigrp, on page 281
- clear ipv6 mfib counters, on page 282
- clear ipv6 mld counters, on page 283
- clear ipv6 mld traffic, on page 284
- clear ipv6 mtu, on page 285
- clear ipv6 multicast aaa authorization, on page 286
- clear ipv6 nd destination, on page 287
- clear ipv6 nd on-link prefix, on page 288
- clear ipv6 nd router, on page 289
- clear ipv6 neighbors, on page 290
- clear ipv6 ospf, on page 292
- clear ipv6 ospf counters, on page 293
- clear ipv6 ospf events, on page 295
- clear ipv6 pim reset, on page 296
- clear ipv6 pim topology, on page 297
- clear ipv6 pim traffic, on page 298
- clear ipv6 prefix-list, on page 299
- clear ipv6 rip, on page 300
- clear ipv6 route, on page 301
- clear ipv6 spd, on page 302
- fhrp delay, on page 303
- fhrp version vrrp v3, on page 304
- ip address dhcp, on page 305
- ip address pool (DHCP), on page 308
- ip address, on page 309
- ipv6 access-list, on page 311
- ipv6 address-validate, on page 314
• ipv6 cef, on page 315
• ipv6 cef accounting, on page 317
• ipv6 cef distributed, on page 319
• ipv6 cef load-sharing algorithm, on page 321
• ipv6 cef optimize neighbor resolution, on page 322
• ipv6 destination-guard policy, on page 323
• ipv6 dhcp-relay bulk-lease, on page 324
• ipv6 dhcp-relay option vpn, on page 325
• ipv6 dhcp-relay source-interface, on page 326
• ipv6 dhcp binding track ppp, on page 327
• ipv6 dhcp database, on page 328
• ipv6 dhcp iana-route-add, on page 330
• ipv6 dhcp iapd-route-add, on page 331
• ipv6 dhcp-ldra, on page 332
• ipv6 dhcp ping packets, on page 333
• ipv6 dhcp pool, on page 334
• ipv6 dhcp server vrf enable, on page 336
• ipv6 flow monitor, on page 337
• ipv6 general-prefix, on page 338
• ipv6 local policy route-map, on page 340
• ipv6 local pool, on page 342
• ipv6 mld snooping, on page 344
• ipv6 mld ssm-map enable, on page 345
• ipv6 mld state-limit, on page 346
• ipv6 multicast-routing, on page 347
• ipv6 multicast group-range, on page 348
• ipv6 multicast pim-passive-enable, on page 350
• ipv6 nd cache expire, on page 351
• ipv6 nd cache interface-limit (global), on page 352
• ipv6 nd host mode strict, on page 353
• ipv6 nd na glean, on page 354
• ipv6 nd ns-interval, on page 355
• ipv6 nd nud retry, on page 356
• ipv6 nd reachable-time, on page 358
• ipv6 nd resolution data limit, on page 359
• ipv6 nd route-owner, on page 360
• ipv6 neighbor, on page 361
• ipv6 ospf name-lookup, on page 363
• ipv6 pim, on page 364
• ipv6 pim accept-register, on page 365
• ipv6 pim allow-rp, on page 366
• ipv6 pim neighbor-filter list, on page 367
• ipv6 pim rp-address, on page 368
• ipv6 pim rp embedded, on page 371
• ipv6 pim spt-threshold infinity, on page 372
• ipv6 prefix-list, on page 373
IP Addressing Services

- ipv6 source-guard attach-policy, on page 376
- ipv6 source-route, on page 377
- ipv6 spd mode, on page 379
- ipv6 spd queue max-threshold, on page 381
- ipv6 traffic interface-statistics, on page 382
- ipv6 unicast-routing, on page 383
- key chain, on page 384
- key-string (authentication), on page 385
- key, on page 386
- show ip ports all, on page 388
- show ipv6 access-list, on page 390
- show ipv6 destination-guard policy, on page 392
- show ipv6 dhcp, on page 393
- show ipv6 dhcp binding, on page 394
- show ipv6 dhcp conflict, on page 397
- show ipv6 dhcp database, on page 398
- show ipv6 dhcp guard policy, on page 400
- show ipv6 dhcp interface, on page 402
- show ipv6 dhcp relay binding, on page 404
- show ipv6 eigrp events, on page 406
- show ipv6 eigrp interfaces, on page 408
- show ipv6 eigrp topology, on page 410
- show ipv6 eigrp traffic, on page 412
- show ipv6 general-prefix, on page 414
- show ipv6 interface, on page 415
- show ipv6 mfib, on page 423
- show ipv6 mld groups, on page 429
- show ipv6 mld interface, on page 432
- show ipv6 mld snooping, on page 434
- show ipv6 mld ssm-map, on page 436
- show ipv6 mld traffic, on page 438
- show ipv6 mrrib client, on page 440
- show ipv6 mrrib route, on page 442
- show ipv6 mroute, on page 444
- show ipv6 mtu, on page 448
- show ipv6 nd destination, on page 450
- show ipv6 nd on-link prefix, on page 451
- show ipv6 neighbors, on page 452
- show ipv6 ospf, on page 456
- show ipv6 ospf border-routers, on page 460
- show ipv6 ospf event, on page 462
- show ipv6 ospf graceful-restart, on page 465
- show ipv6 ospf interface, on page 467
- show ipv6 ospf request-list, on page 472
- show ipv6 ospf retransmission-list, on page 474
- show ipv6 ospf statistics, on page 476
• show ipv6 ospf summary-prefix, on page 478
• show ipv6 ospf timers rate-limit, on page 479
• show ipv6 ospf traffic, on page 480
• show ipv6 ospf virtual-links, on page 484
• show ipv6 pim anycast-RP, on page 486
• show ipv6 pim bsr, on page 487
• show ipv6 pim df, on page 489
• show ipv6 pim group-map, on page 491
• show ipv6 pim interface, on page 493
• show ipv6 pim join-prune statistic, on page 495
• show ipv6 pim limit, on page 496
• show ipv6 pim neighbor, on page 497
• show ipv6 pim range-list, on page 499
• show ipv6 pim topology, on page 501
• show ipv6 pim traffic, on page 503
• show ipv6 pim tunnel, on page 505
• show ipv6 policy, on page 507
• show ipv6 prefix-list, on page 508
• show ipv6 protocols, on page 510
• show ipv6 rip, on page 512
• show ipv6 routers, on page 517
• show ipv6 rpf, on page 520
• show ipv6 source-guard policy, on page 522
• show ipv6 spd, on page 523
• show ipv6 static, on page 524
• show ipv6 traffic, on page 528
• show key chain, on page 531
• show track, on page 532
• track, on page 534
• vrrp, on page 536
• vrrp description, on page 537
• vrrp preempt, on page 538
• vrrp priority, on page 539
• vrrp timers advertise, on page 540
• vrrs leader, on page 542
clear ipv6 access-list

To reset the IPv6 access list match counters, use the clear ipv6 access-list command in privileged EXEC mode.

```
clear ipv6 access-list [access-list-name]
```

Syntax Description

| access-list-name | (Optional) Name of the IPv6 access list for which to clear the match counters. Names cannot contain a space or quotation mark, or begin with a numeric. |

Command Default

No reset is initiated.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The clear ipv6 access-list command is similar to the clear ip access-list counters command, except that it is IPv6-specific.

The clear ipv6 access-list command used without the access-list-name argument resets the match counters for all IPv6 access lists configured on the router.

This command resets the IPv6 global ACL hardware counters.

Examples

The following example resets the match counters for the IPv6 access list named marketing:

```
# clear ipv6 access-list marketing
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hardware statistics</td>
<td>Enables the collection of hardware statistics.</td>
</tr>
<tr>
<td>ipv6 access-list</td>
<td>Defines an IPv6 access list and enters IPv6 access list configuration mode.</td>
</tr>
<tr>
<td>show ipv6 access-list</td>
<td>Displays the contents of all current IPv6 access lists.</td>
</tr>
</tbody>
</table>
clear ipv6 dhcp

To clear IPv6 Dynamic Host Configuration Protocol (DHCP) information, use the `clear ipv6 dhcp` command in privileged EXEC mode:

```
clear ipv6 dhcp
```

Syntax Description
This command has no arguments or keywords.

Command Modes
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `clear ipv6 dhcp` command deletes DHCP for IPv6 information.

Examples
The following example:

```
# clear ipv6 dhcp
```
clear ipv6 dhcp binding

To delete automatic client bindings from the Dynamic Host Configuration Protocol (DHCP) for IPv6 server binding table, use the **clear ipv6 dhcp binding** command in privileged EXEC mode.

```
clear ipv6 dhcp binding [ipv6-address] [vrf vrf-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-address</td>
<td>(Optional) The address of a DHCP for IPv6 client. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC ("")

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **clear ipv6 dhcp binding** command is used as a server function.

A binding table entry on the DHCP for IPv6 server is automatically:

- Created whenever a prefix is delegated to a client from the configuration pool.
- Updated when the client renews, rebinds, or confirms the prefix delegation.
- Deleted when the client releases all the prefixes in the binding voluntarily, all prefixes’ valid lifetimes have expired, or an administrator runs the **clear ipv6 dhcp binding** command.

If the **clear ipv6 dhcp binding** command is used with the optional **ipv6-address** argument specified, only the binding for the specified client is deleted. If the **clear ipv6 dhcp binding** command is used without the **ipv6-address** argument, then all automatic client bindings are deleted from the DHCP for IPv6 binding table. If the optional **vrf vrf-name** keyword and argument combination is used, only the bindings for the specified VRF are cleared.

Examples

The following example deletes all automatic client bindings from the DHCP for IPv6 server binding table:

```
# clear ipv6 dhcp binding
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 dhcp binding</td>
<td>Displays automatic client bindings from the DHCP for IPv6 server binding table.</td>
</tr>
</tbody>
</table>
clear ipv6 dhcp client

To restart the Dynamic Host Configuration Protocol (DHCP) for IPv6 client on an interface, use the clear ipv6 dhcp client command in privileged EXEC mode.

```
clear ipv6 dhcp client interface-type interface-number
```

Syntax Description

- `interface-type interface-number` Interface type and number. For more information, use the question mark (?) online help function.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

The clear ipv6 dhcp client command restarts the DHCP for IPv6 client on specified interface after first releasing and unconfiguring previously acquired prefixes and other configuration options (for example, Domain Name System [DNS] servers).

Examples

The following example restarts the DHCP for IPv6 client for Ethernet interface 1/0:

```
# clear ipv6 dhcp client Ethernet 1/0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 dhcp interface</td>
<td>Displays DHCP for IPv6 interface information.</td>
</tr>
</tbody>
</table>
clear ipv6 dhcp conflict

To clear an address conflict from the Dynamic Host Configuration Protocol for IPv6 (DHCPv6) server database, use the `clear ipv6 dhcp conflict` command in privileged EXEC mode.

```
clear ipv6 dhcp conflict {*ipv6-address | vrf vrf-name}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Clears all address conflicts.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>Clears the host IPv6 address that contains the conflicting address.</td>
</tr>
<tr>
<td>vrf vrf-name</td>
<td>Specifies a virtual routing and forwarding (VRF) name.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you configure the DHCPv6 server to detect conflicts, it uses ping. The client uses neighbor discovery to detect clients and reports to the server through a DECLINE message. If an address conflict is detected, the address is removed from the pool, and the address is not assigned until the administrator removes the address from the conflict list.

If you use the asterisk (*) character as the address parameter, DHCP clears all conflicts.

If the `vrf vrf-name` keyword and argument are specified, only the address conflicts that belong to the specified VRF will be cleared.

Examples

The following example shows how to clear all address conflicts from the DHCPv6 server database:

```
# clear ipv6 dhcp conflict *
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 dhcp conflict</code></td>
<td>Displays address conflicts found by a DHCPv6 server when addresses are offered to the client.</td>
</tr>
</tbody>
</table>
clear ipv6 dhcp relay binding

To clear an IPv6 address or IPv6 prefix of a Dynamic Host Configuration Protocol (DHCP) for IPv6 relay binding, use the clear ipv6 dhcp relay binding command in privileged EXEC mode.

```
clear ipv6 dhcp relay binding {vrf vrf-name} {*ipv6-address|ipv6-prefix}
clear ipv6 dhcp relay binding {vrf vrf-name} {* ipv6-prefix}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>*</td>
<td>Clears all DHCPv6 relay bindings.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>DHCPv6 address.</td>
</tr>
<tr>
<td>ipv6-prefix</td>
<td>IPv6 prefix.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The clear ipv6 dhcp relay binding command deletes a specific IPv6 address or IPv6 prefix of a DHCP for IPv6 relay binding. If no relay client is specified, no binding is deleted.

Examples

The following example shows how to clear the binding for a client with a specified IPv6 address:

```
# clear ipv6 dhcp relay binding 2001:0DB8:3333:4::5
```

The following example shows how to clear the binding for a client with the VRF name vrf1 and a specified prefix on a Cisco uBR10012 universal broadband device:

```
# clear ipv6 dhcp relay binding vrf vrf1 2001:DB8:0:1::/64
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 dhcp relay binding</td>
<td>Displays DHCPv6 IANA and DHCPv6 IAPD bindings on a relay agent.</td>
</tr>
</tbody>
</table>
clear ipv6 eigrp

To delete entries from Enhanced Interior Gateway Routing Protocol (EIGRP) for IPv6 routing tables, use the clear ipv6 eigrp command in privileged EXEC mode.

```
clear ipv6 eigrp [as-number] [neighbor [ipv6-address | interface-type interface-number]]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-number (Optional) Autonomous system number.</td>
</tr>
<tr>
<td>neighbor (Optional) Deletes neighbor router entries.</td>
</tr>
<tr>
<td>ipv6-address (Optional) IPv6 address of a neighboring router.</td>
</tr>
<tr>
<td>interface-type (Optional) The interface type of the neighbor router.</td>
</tr>
<tr>
<td>interface-number (Optional) The interface number of the neighbor router.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the clear ipv6 eigrp command without any arguments or keywords to clear all EIGRP for IPv6 routing table entries. Use the as-number argument to clear routing table entries on a specified process, and use the neighbor/ipv6-address keyword and argument, or the interface-type interface-number argument, to remove a specific neighbor from the neighbor table.

Examples

The following example removes the neighbor whose IPv6 address is 3FEE:12E1:2AC1:EA32:

```
# clear ipv6 eigrp neighbor 3FEE:12E1:2AC1:EA32
```
clear ipv6 mfib counters

To reset all active Multicast Forwarding Information Base (MFIB) traffic counters, use the **clear ipv6 mfib counters** command in privileged EXEC mode.

```plaintext
clear ipv6 mfib [vrf vrf-name] counters [{group-name | group-address} [{source-address | source-name}]]
```

Syntax Description

- **vrf vrf-name**
 (Optional) Specifies a virtual routing and forwarding (VRF) configuration.

- **group-name | group-address**
 (Optional) IPv6 address or name of the multicast group.

- **source-address | source-name**
 (Optional) IPv6 address or name of the source.

Command Modes
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

After you enable the **clear ipv6 mfib counters** command, you can determine if additional traffic is forwarded by using one of the following show commands that display traffic counters:

- **show ipv6 mfib**
- **show ipv6 mfib active**
- **show ipv6 mfib count**
- **show ipv6 mfib interface**
- **show ipv6 mfib summary**

Examples

The following example clears and resets all MFIB traffic counters:

```
# clear ipv6 mfib counters
```
clear ipv6 mld counters

To clear the Multicast Listener Discovery (MLD) interface counters, use the `clear ipv6 mld counters` command in privileged EXEC mode.

```
clear ipv6 mld [vrf vrf-name] counters [interface-type]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrf vrf-name</code></td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td><code>interface-type</code></td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `clear ipv6 mld counters` command to clear the MLD counters, which keep track of the number of joins and leaves received. If you omit the optional `interface-type` argument, the `clear ipv6 mld counters` command clears the counters on all interfaces.

Examples

The following example clears the counters for Ethernet interface 1/0:

```
# clear ipv6 mld counters Ethernet1/0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 mld interface</code></td>
<td>Displays multicast-related information about an interface.</td>
</tr>
</tbody>
</table>
clear ipv6 mld traffic

To reset the Multicast Listener Discovery (MLD) traffic counters, use the `clear ipv6 mld traffic` command in privileged EXEC mode.

```
clear ipv6 mld [vrf vrf-name] traffic
```

Syntax Description

```
vrf vrf-name (Optional) Specifies a virtual routing and forwarding (VRF) configuration.
```

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Using the `clear ipv6 mld traffic` command will reset all MLD traffic counters.

Examples

The following example resets the MLD traffic counters:

```
# clear ipv6 mld traffic
```

```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 mld traffic</td>
<td>Displays the MLD traffic counters.</td>
</tr>
</tbody>
</table>
```
clear ipv6 mtu

To clear the maximum transmission unit (MTU) cache of messages, use the `clear ipv6 mtu` command in privileged EXEC mode.

```plaintext
clear ipv6 mtu
```

Syntax Description

This command has no arguments or keywords.

Command Default

Messages are not cleared from the MTU cache.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If a router is flooded with ICMPv6 too big messages, the router is forced to create an unlimited number of entries in the MTU cache until all available memory is consumed. Use the `clear ipv6 mtu` command to clear messages from the MTU cache.

Examples

The following example clears the MTU cache of messages:

```plaintext
# clear ipv6 mtu
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 flowset</td>
<td>Configures flow-label marking in 1280-byte or larger packets sent by the router.</td>
</tr>
</tbody>
</table>
clear ipv6 multicast aaa authorization

To clear authorization parameters that restrict user access to an IPv6 multicast network, use the `clear ipv6 multicast aaa authorization` command in privileged EXEC mode.

`clear ipv6 multicast aaa authorization` [interface-type interface-number]

Syntax Description

| interface-type interface-number | Interface type and number. For more information, use the question mark (?) online help function. |

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Using the `clear ipv6 multicast aaa authorization` command without the optional `interface-type` and `interface-number` arguments will clear all authorization parameters on a network.

Examples

The following example clears all configured authorization parameters on an IPv6 network:

```
# clear ipv6 multicast aaa authorization FastEthernet 1/0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa authorization multicast default</td>
<td>Sets parameters that restrict user access to an IPv6 multicast network.</td>
</tr>
</tbody>
</table>
clear ipv6 nd destination

To clear IPv6 host-mode destination cache entries, use the clear ipv6 nd destination command in privileged EXEC mode.

```
clear ipv6 nd destination[vrf vrf-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrf vrf-name</code></td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `clear ipv6 nd destination` command clears IPv6 host-mode destination cache entries. If the `vrf vrf-name` keyword and argument pair is used, then only information about the specified VRF is cleared.

Examples

The following example shows how to clear IPv6 host-mode destination cache entries:

```
# clear ipv6 nd destination
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 nd host mode strict</code></td>
<td>Enables the conformant, or strict, IPv6 host mode.</td>
</tr>
</tbody>
</table>
clear ipv6 nd on-link prefix

To clear on-link prefixes learned through router advertisements (RAs), use the **clear ipv6 nd on-link prefix** command in privileged EXEC mode.

```
clear ipv6 nd on-link prefix[vrf vrf-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **clear ipv6 nd on-link prefix** command to clear locally reachable IPv6 addresses (e.g., on-link prefixes) learned through RAs. If the **vrf** **vrf-name** keyword and argument pair is used, then only information about the specified VRF is cleared.

Examples

The following examples show how to clear on-link prefixes learned through RAs:

```
# clear ipv6 nd on-link prefix
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 nd host mode strict</td>
<td>Enables the conformant, or strict, IPv6 host mode.</td>
</tr>
</tbody>
</table>
clear ipv6 nd router

To clear neighbor discovery (ND) device entries learned through router advertisements (RAs), use the `clear ipv6 nd router` command in privileged EXEC mode.

```
clear ipv6 nd router[vrf vrf-name]
```

SyntaxDescription

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `clear ipv6 nd router` command to clear ND device entries learned through RAs. If the `vrf vrf-name` keyword and argument pair is used, then only information about the specified VRF is cleared.

Examples

The following example shows how to clear neighbor discovery ND device entries learned through RAs:

```
# clear ipv6 nd router
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 nd host mode strict</td>
<td>Enables the conformant, or strict, IPv6 host mode.</td>
</tr>
</tbody>
</table>
clear ipv6 neighbors

To delete all entries in the IPv6 neighbor discovery cache, except static entries and ND cache entries on non-virtual routing and forwarding (VRF) interfaces, use the `clear ipv6 neighbors` command in privileged EXEC mode.

```
clear ipv6 neighbors [{interface type number|ipv6 ipv6-address} | statistics | vrf table-name [{ipv6-address | statistics}]}
```

clear ipv6 neighbors

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface type number</td>
<td>(Optional) Clears the IPv6 neighbor discovery cache in the specified interface.</td>
</tr>
<tr>
<td>ipv6 ipv6-address</td>
<td>(Optional) Clears the IPv6 neighbor discovery cache that matches the specified IPv6 address on the specified interface.</td>
</tr>
<tr>
<td>statistics</td>
<td>(Optional) Clears the IPv6 neighbor discovery entry cache.</td>
</tr>
<tr>
<td>vrf</td>
<td>(Optional) Clears entries for a virtual private network (VPN) routing or forwarding instance.</td>
</tr>
<tr>
<td>table-name</td>
<td>(Optional) Table name or identifier. The value range is from 0x0 to 0xFFFFFFFF (0 to 65535 in decimal).</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `clear ipv6 neighbor` command clears ND cache entries. If the command is issued without the `vrf` keyword, then the command clears ND cache entries on interfaces associated with the default routing table (e.g., those interfaces that do not have a `vrf forwarding` statement). If the command is issued with the `vrf` keyword, then it clears ND cache entries on interfaces associated with the specified VRF.

Examples

The following example deletes all entries, except static entries and ND cache entries on non-VRF interfaces, in the neighbor discovery cache:

```plaintext
# clear ipv6 neighbors
```

The following example clears all IPv6 neighbor discovery cache entries, except static entries and ND cache entries on non-VRF interfaces, on Ethernet interface 0/0:

```plaintext
# clear ipv6 neighbors interface Ethernet 0/0
```

The following example clears a neighbor discovery cache entry for 2001:0DB8:1::1 on Ethernet interface 0/0:

```plaintext
# clear ipv6 neighbors interface Ethernet 0/0 ipv6 2001:0DB8:1::1
```
In the following example, interface Ethernet 0/0 is associated with the VRF named red. Interfaces Ethernet 1/0 and Ethernet 2/0 are associated with the default routing table (because they are not associated with a VRF). Therefore, the **clear ipv6 neighbor** command will clear ND cache entries on interfaces Ethernet 1/0 and Ethernet 2/0 only. In order to clear ND cache entries on interface Ethernet 0/0, the user must issue the **clear ipv6 neighbor vrf** red command.

```plaintext
interface ethernet0/0
  vrf forward red
  ipv6 address 2001:db8:1::1/64

interface ethernet1/0
  ipv6 address 2001:db8:2::1/64

interface ethernet2/0
  ipv6 address 2001:db8:3::1/64
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 neighbor</td>
<td>Configures a static entry in the IPv6 neighbor discovery cache.</td>
</tr>
<tr>
<td>show ipv6 neighbors</td>
<td>Displays IPv6 neighbor discovery cache information.</td>
</tr>
</tbody>
</table>
clear ipv6 ospf

To clear the Open Shortest Path First (OSPF) state based on the OSPF routing process ID, use the clear ipv6 ospf command in privileged EXEC mode.

`clear ipv6 ospf [process-id] {process | force-spf | redistribution}`

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>process-id</td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when enabling the OSPF routing process.</td>
</tr>
<tr>
<td>process</td>
<td>Restarts the OSPF process.</td>
</tr>
<tr>
<td>force-spf</td>
<td>Starts the shortest path first (SPF) algorithm without first clearing the OSPF database.</td>
</tr>
<tr>
<td>redistribution</td>
<td>Clears OSPF route redistribution.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When the `process` keyword is used with the clear ipv6 ospf command, the OSPF database is cleared and repopulated, and then the shortest path first (SPF) algorithm is performed. When the `force-spf` keyword is used with the clear ipv6 ospf command, the OSPF database is not cleared before the SPF algorithm is performed.

Use the `process-id` option to clear only one OSPF process. If the `process-id` option is not specified, all OSPF processes are cleared.

Examples

The following example starts the SPF algorithm without clearing the OSPF database:

```
# clear ipv6 ospf force-spf
```
clear ipv6 ospf counters

To clear the Open Shortest Path First (OSPF) state based on the OSPF routing process ID, use the `clear ipv6 ospf` command in privileged EXEC mode.

Syntax Description

```
clear ipv6 ospf [process-id] counters [neighbor [{neighbor-interface neighbor-id}]]
```

Syntax Description

- `process-id` (Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when enabling the OSPF routing process.
- `neighbor` (Optional) Neighbor statistics per interface or neighbor ID.
- `neighbor-interface` (Optional) Neighbor interface.
- `neighbor-id` (Optional) IPv6 or IP address of the neighbor.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `neighbor neighbor-interface` option to clear counters for all neighbors on a specified interface. If the `neighbor neighbor-interface` option is not used, all OSPF counters are cleared.

Use the `neighbor neighbor-id` option to clear counters at a specified neighbor. If the `neighbor neighbor-id` option is not used, all OSPF counters are cleared.

Examples

The following example provides detailed information on a neighbor router:

```
# show ipv6 ospf neighbor detail
Neighbor 10.0.0.1
  In the area 1 via interface Serial19/0
  Neighbor:interface-id 21, link-local address FE80::A8BB:CCFF:FE00:6F00
  Neighbor priority is 1, State is FULL, 6 state changes
  Options is 0x194AE05
  Dead timer due in 00:00:37
  Neighbor is up for 00:00:15
  Index 1/1/1, retransmission queue length 0, number of retransmission 1
  First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
  Last retransmission scan length is 1, maximum is 1
  Last retransmission scan time is 0 msec, maximum is 0 msec
```

The following example clears all neighbors on the specified interface:

```
# clear ipv6 ospf counters neighbor s19/0
```

The following example now shows that there have been 0 state changes since the `clear ipv6 ospf counters neighbor s19/0` command was used:
show ipv6 ospf neighbor detail
Neighbor 10.0.0.1
 In the area 1 via interface Serial19/0
 Neighbor:interface-id 21, link-local address FE80::A8BB:CCFF:FE00:6F00
 Neighbor priority is 1, State is FULL, 0 state changes
 Options is 0x194AE05
 Dead timer due in 00:00:39
 Neighbor is up for 00:00:43
 Index 1/1/1, retransmission queue length 0, number of retransmission 1
 First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
 Last retransmission scan length is 1, maximum is 1
 Last retransmission scan time is 0 msec, maximum is 0 msec

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 ospf neighbor</td>
<td>Displays OSPF neighbor information on a per-interface basis.</td>
</tr>
</tbody>
</table>
clear ipv6 ospf events

To clear the Open Shortest Path First (OSPF) for IPv6 event log content based on the OSPF routing process ID, use the `clear ipv6 ospf events` command in privileged EXEC mode.

```
clear ipv6 ospf [process-id] events
```

Syntax Description

- **process-id** (Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when enabling the OSPF routing process.

Command Modes

- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the optional `process-id` argument to clear the IPv6 event log content of a specified OSPF routing process. If the `process-id` argument is not used, all event log content is cleared.

Examples

The following example enables the clearing of OSPF for IPv6 event log content for routing process 1:

```
# clear ipv6 ospf 1 events
```
clear ipv6 pim reset

To delete all entries from the topology table and reset the Multicast Routing Information Base (MRIB) connection, use the `clear ipv6 pim reset` command in privileged EXEC mode.

```markdown
**Syntax Description**

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration.
```

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Using the `clear ipv6 pim reset` command breaks the PIM-MRIB connection, clears the topology table, and then reestablishes the PIM-MRIB connection. This procedure forces MRIB resynchronization.

⚠️ **Caution**

Use the `clear ipv6 pim reset` command with caution, as it clears all PIM protocol information from the PIM topology table. Use of the `clear ipv6 pim reset` command should be reserved for situations where PIM and MRIB communication are malfunctioning.

Examples

The following example deletes all entries from the topology table and resets the MRIB connection:

```
# clear ipv6 pim reset
```
clear ipv6 pim topology

To clear the Protocol Independent Multicast (PIM) topology table, use the clear ipv6 pim topology command in privileged EXEC mode.

```
clear ipv6 pim [vrf vrf-name] topology [{group-name|group-address}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>group-name</td>
<td>(Optional) IPv6 address or name of the multicast group.</td>
</tr>
</tbody>
</table>

Command Default

When the command is used with no arguments, all group entries located in the PIM topology table are cleared of PIM protocol information.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command clears PIM protocol information from all group entries located in the PIM topology table. Information obtained from the MRIB table is retained. If a multicast group is specified, only those group entries are cleared.

Examples

The following example clears all group entries located in the PIM topology table:

```
# clear ipv6 pim topology
```
clear ipv6 pim traffic

To clear the Protocol Independent Multicast (PIM) traffic counters, use the **clear ipv6 pim traffic** command in privileged EXEC mode.

```
clear ipv6 pim [vrf vrf-name] traffic
```

Syntax Description

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |

Command Default

When the command is used with no arguments, all traffic counters are cleared.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command clears PIM traffic counters. If the `vrf vrf-name` keyword and argument are used, only those counters are cleared.

Examples

The following example clears all PIM traffic counter:

```
# clear ipv6 pim traffic
```
clear ipv6 prefix-list

To reset the hit count of the IPv6 prefix list entries, use the `clear ipv6 prefix-list` command in privileged EXEC mode.

```
clear ipv6 prefix-list [prefix-list-name] [ipv6-prefix/prefix-length]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefix-list-name</td>
<td>(Optional) The name of the prefix list from which the hit count is to be cleared.</td>
</tr>
<tr>
<td>ipv6-prefix</td>
<td>(Optional) The IPv6 network from which the hit count is to be cleared.</td>
</tr>
<tr>
<td></td>
<td>This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>prefix-length</td>
<td>(Optional) The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.</td>
</tr>
</tbody>
</table>

Command Default

The hit count is automatically cleared for all IPv6 prefix lists.

Command Modes

Privileged EXEC ("")

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `clear ipv6 prefix-list` command is similar to the `clear ip prefix-list` command, except that it is IPv6-specific.

The hit count is a value indicating the number of matches to a specific prefix list entry.

Examples

The following example clears the hit count from the prefix list entries for the prefix list named `first_list` that match the network mask `2001:0DB8::/35`.

```
# clear ipv6 prefix-list first_list 2001:0DB8::/35
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 prefix-list</td>
<td>Creates an entry in an IPv6 prefix list.</td>
</tr>
<tr>
<td>ipv6 prefix-list sequence-number</td>
<td>Enables the generation of sequence numbers for entries in an IPv6 prefix list.</td>
</tr>
<tr>
<td>show ipv6 prefix-list</td>
<td>Displays information about an IPv6 prefix list or prefix list entries.</td>
</tr>
</tbody>
</table>
clear ipv6 rip

To delete routes from the IPv6 Routing Information Protocol (RIP) routing table, use the `clear ipv6 rip` command in privileged EXEC mode.

```
clear ipv6 rip [name][vrf vrf-name]
clear ipv6 rip [name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>(Optional) Name of an IPv6 RIP process.</td>
</tr>
<tr>
<td>vrf</td>
<td>(Optional) Clears information about the specified Virtual Routing and Forwarding (VRF) instance.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When the `name` argument is specified, only routes for the specified IPv6 RIP process are deleted from the IPv6 RIP routing table. If no `name` argument is specified, all IPv6 RIP routes are deleted.

Use the `show ipv6 rip` command to display IPv6 RIP routes.

Use the `clear ipv6 rip name vrf vrf-name` command to delete the specified VRF instances for the specified IPv6 RIP process.

Examples

The following example deletes all the IPv6 routes for the RIP process called one:

```
# clear ipv6 rip one
```

The following example deletes the IPv6 VRF instance, called vrf1 for the RIP process, called one:

```
# clear ipv6 rip one vrf vrf1
```

*Mar 15 12:36:17.022: [Exec]IPv6RT[vrf1]: rip <name>, Delete all next-hops for 2001:DB8::1
*Mar 15 12:36:17.022: [Exec]IPv6RT[vrf1]: rip <name>, Delete 2001:DB8::1 from table

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug ipv6 rip</td>
<td>Displays the current contents of the IPv6 RIP routing table.</td>
</tr>
<tr>
<td>ipv6 rip vrf-mode enable</td>
<td>Enables VRF-aware support for IPv6 RIP.</td>
</tr>
<tr>
<td>show ipv6 rip</td>
<td>Displays the current content of the IPv6 RIP routing table.</td>
</tr>
</tbody>
</table>
clear ipv6 route

To delete routes from the IPv6 routing table, use the `clear ipv6 route` command in privileged EXEC mode.

```
{clear ipv6 route {ipv6-address|ipv6-prefix/prefix-length} | *}
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-address</td>
<td>The address of the IPv6 network to delete from the table. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>ipv6-prefix</td>
<td>The IPv6 network number to delete from the table. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>/ prefix-length</td>
<td>The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.</td>
</tr>
<tr>
<td>*</td>
<td>Clears all IPv6 routes.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `clear ipv6 route` command is similar to the `clear ip route` command, except that it is IPv6-specific.

When the `ipv6-address` or `ipv6-prefix/ prefix-length` argument is specified, only that route is deleted from the IPv6 routing table. When the `*` keyword is specified, all routes are deleted from the routing table (the per-destination maximum transmission unit [MTU] cache is also cleared).

Examples

The following example deletes the IPv6 network 2001:0DB8::/35:

```
# clear ipv6 route 2001:0DB8::/35
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 route</td>
<td>Establishes static IPv6 routes.</td>
</tr>
<tr>
<td>show ipv6 route</td>
<td>Displays the current contents of the IPv6 routing table.</td>
</tr>
</tbody>
</table>
clear ipv6 spd

To clear the most recent Selective Packet Discard (SPD) state transition, use the **clear ipv6 spd** command in privileged EXEC mode.

clear ipv6 spd

Syntax Description

This command has no arguments or keywords.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **clear ipv6 spd** command removes the most recent SPD state transition and any trend historical data.

Examples

The following example shows how to clear the most recent SPD state transition:

```
# clear ipv6 spd
```
fhrp delay

To specify the delay period for the initialization of First Hop Redundancy Protocol (FHRP) clients, use the `fhrp delay` command in interface configuration mode. To remove the delay period specified, use the `no` form of this command.

```
fhrp delay { [minimum] [reload] seconds }
no fhrp delay { [minimum] [reload] seconds }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum</td>
<td>(Optional) Configures the delay period after an interface becomes available.</td>
</tr>
<tr>
<td>reload</td>
<td>(Optional) Configures the delay period after the device reloads.</td>
</tr>
<tr>
<td>seconds</td>
<td>Delay period in seconds. The range is from 0 to 3600.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to specify the delay period for the initialization of FHRP clients:

```
Device(config-if)# fhrp delay minimum 90
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show fhrp</td>
<td>Displays First Hop Redundancy Protocol (FHRP) information.</td>
</tr>
</tbody>
</table>
fhrp version vrrp v3

To enable Virtual Router Redundancy Protocol version 3 (VRRPv3) and Virtual Router Redundancy Service (VRRS) configuration on a device, use the `fhrp version vrrp v3` command in global configuration mode. To disable the ability to configure VRRPv3 and VRRS on a device, use the `no` form of this command.

```
fhrp version vrrp v3
no fhrp version vrrp v3
```

Syntax Description

This command has no keywords or arguments.

Command Default

VRRPv3 and VRRS configuration on a device is not enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When VRRPv3 is in use, VRRP version 2 (VRRPv2) is unavailable.

Examples

In the following example, a tracking process is configured to track the state of an IPv6 object using a VRRPv3 group. VRRP on GigabitEthernet interface 0/0/0 then registers with the tracking process to be informed of any changes to the IPv6 object on the VRRPv3 group. If the IPv6 object state on serial interface VRRPv3 goes down, then the priority of the VRRP group is reduced by 20:

```
Device(config)# fhrp version vrrp v3
Device(config)# interface GigabitEthernet 0/0/0
Device(config-if)# vrrp 1 address-family ipv6
Device(config-if-vrrp)# track 1 decrement 20
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>track (VRRP)</td>
<td>Enables an object to be tracked using a VRRPv3 group.</td>
</tr>
</tbody>
</table>
ip address dhcp

To acquire an IP address on an interface from the DHCP, use the `ip address dhcp` command in interface configuration mode. To remove any address that was acquired, use the `no` form of this command.

```
ip address dhcp [client-id interface-type number] [hostname hostname]
no ip address dhcp [client-id interface-type number] [hostname hostname]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>client-id</td>
<td>(Optional) Specifies the client identifier. By default, the client identifier is an ASCII value. The <code>client-id interface-type number</code> option sets the client identifier to the hexadecimal MAC address of the named interface.</td>
</tr>
<tr>
<td>interface-type</td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>number</td>
<td>(Optional) Interface or subinterface number. For more information about the numbering syntax for your networking device, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>hostname</td>
<td>(Optional) Specifies the hostname.</td>
</tr>
<tr>
<td>hostname</td>
<td>(Optional) Name of the host to be placed in the DHCP option 12 field. This name need not be the same as the hostname entered in global configuration mode.</td>
</tr>
</tbody>
</table>

Command Default
The hostname is the globally configured hostname of the device. The client identifier is an ASCII value.

Command Modes
Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `ip address dhcp` command allows any interface to dynamically learn its IP address by using the DHCP protocol. It is especially useful on Ethernet interfaces that dynamically connect to an Internet service provider (ISP). Once assigned a dynamic address, the interface can be used with the Port Address Translation (PAT) of Cisco IOS Network Address Translation (NAT) to provide Internet access to a privately addressed network attached to the device.

The `ip address dhcp` command also works with ATM point-to-point interfaces and will accept any encapsulation type. However, for ATM multipoint interfaces you must specify Inverse ARP via the `protocol ip inarp` interface configuration command and use only the `aai5nap` encapsulation type.

Some ISPs require that the DHCPDISCOVER message have a specific hostname and client identifier that is the MAC address of the interface. The most typical usage of the `ip address dhcp client-id interface-type number hostname hostname` command is when `interface-type` is the Ethernet interface where the command is configured and `interface-type number` is the hostname provided by the ISP.

A client identifier (DHCP option 61) can be a hexadecimal or an ASCII value. By default, the client identifier is an ASCII value. The `client-id interface-type number` option overrides the default and forces the use of the hexadecimal MAC address of the named interface.
If a Cisco device is configured to obtain its IP address from a DHCP server, it sends a DHCPDISCOVER message to provide information about itself to the DHCP server on the network.

If you use the `ip address dhcp` command with or without any of the optional keywords, the DHCP option 12 field (hostname option) is included in the DISCOVER message. By default, the hostname specified in option 12 will be the globally configured hostname of the device. However, you can use the `ip address dhcp hostname hostname` command to place a different name in the DHCP option 12 field than the globally configured hostname of the device.

The `no ip address dhcp` command removes any IP address that was acquired, thus sending a DHCPRELEASE message.

You might need to experiment with different configurations to determine the one required by your DHCP server. The table below shows the possible configuration methods and the information placed in the DISCOVER message for each method.

Table 20: Configuration Method and Resulting Contents of the DISCOVER Message

<table>
<thead>
<tr>
<th>Configuration Method</th>
<th>Contents of DISCOVER Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip address dhcp</code></td>
<td>The DISCOVER message contains “cisco- mac-address -Eth1” in the client ID field. The <code>mac-address</code> is the MAC address of the Ethernet 1 interface and contains the default hostname of the device in the option 12 field.</td>
</tr>
<tr>
<td><code>ip address dhcp hostname hostname</code></td>
<td>The DISCOVER message contains “cisco- mac-address -Eth1” in the client ID field. The <code>mac-address</code> is the MAC address of the Ethernet 1 interface, and contains <code>hostname</code> in the option 12 field.</td>
</tr>
<tr>
<td><code>ip address dhcp client-id ethernet 1</code></td>
<td>The DISCOVER message contains the MAC address of the Ethernet 1 interface in the client ID field and contains the default hostname of the device in the option 12 field.</td>
</tr>
<tr>
<td><code>ip address dhcp client-id ethernet 1 hostname hostname</code></td>
<td>The DISCOVER message contains the MAC address of the Ethernet 1 interface in the client ID field and contains <code>hostname</code> in the option 12 field.</td>
</tr>
</tbody>
</table>

Examples

In the examples that follow, the command `ip address dhcp` is entered for Ethernet interface 1. The DISCOVER message sent by a device configured as shown in the following example would contain “cisco- mac-address -Eth1” in the client-ID field, and the value abc in the option 12 field.

```
hostname abc
! interface GigabitEthernet 1/0/1
   ip address dhcp
```

The DISCOVER message sent by a device configured as shown in the following example would contain “cisco- mac-address -Eth1” in the client-ID field, and the value def in the option 12 field.

```
hostname abc
! interface GigabitEthernet 1/0/1
   ip address dhcp hostname def
```
The DISCOVER message sent by a device configured as shown in the following example would contain the MAC address of Ethernet interface 1 in the client-id field, and the value abc in the option 12 field.

```
hostname abc
!
interface Ethernet 1
  ip address dhcp client-id GigabitEthernet 1/0/1
```

The DISCOVER message sent by a device configured as shown in the following example would contain the MAC address of Ethernet interface 1 in the client-id field, and the value def in the option 12 field.

```
hostname abc
!
interface Ethernet 1
  ip address dhcp client-id GigabitEthernet 1/0/1 hostname def
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dhcp pool</td>
<td>Configures a DHCP address pool on a Cisco IOS DHCP server and enters DHCP pool configuration mode.</td>
</tr>
</tbody>
</table>
ip address pool (DHCP)

To enable the IP address of an interface to be automatically configured when a Dynamic Host Configuration Protocol (DHCP) pool is populated with a subnet from IP Control Protocol (IPCP) negotiation, use the `ip address pool` command in interface configuration mode. To disable autoconfiguring of the IP address of the interface, use the `no` form of this command.

```
ip address pool name
no ip address pool
```

Syntax Description

- `name` Name of the DHCP pool. The IP address of the interface will be automatically configured from the DHCP pool specified in `name`.

Command Default

IP address pooling is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to automatically configure the IP address of a LAN interface when there are DHCP clients on the attached LAN that should be serviced by the DHCP pool on the device. The DHCP pool obtains its subnet dynamically through IPCP subnet negotiation.

Examples

The following example specifies that the IP address of GigabitEthernet interface 1/0/1 will be automatically configured from the address pool named abc:

```
ip dhcp pool abc
   import all
   origin ipcp
   interface GigabitEthernet 1/0/1
   ip address pool abc
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip interface</td>
<td>Displays the usability status of interfaces configured for IP.</td>
</tr>
</tbody>
</table>
ip address

To set a primary or secondary IP address for an interface, use the `ip address` command in interface configuration mode. To remove an IP address or disable IP processing, use the `no` form of this command.

```
ip address ip-address mask [secondary [vrf vrf-name]]
no ip address ip-address mask [secondary [vrf vrf-name]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip-address</code></td>
<td>IP address.</td>
</tr>
<tr>
<td><code>mask</code></td>
<td>Mask for the associated IP subnet.</td>
</tr>
<tr>
<td><code>secondary</code></td>
<td>(Optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
<tr>
<td><code>vrf</code></td>
<td>(Optional) Name of the VRF table. The <code>vrf-name</code> argument specifies the VRF name of the ingress interface.</td>
</tr>
</tbody>
</table>

Command Default

No IP address is defined for the interface.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

An interface can have one primary IP address and multiple secondary IP addresses. Packets generated by the Cisco IOS software always use the primary IP address. Therefore, all devices and access servers on a segment should share the same primary network number.

Hosts can determine subnet masks using the Internet Control Message Protocol (ICMP) mask request message. Devices respond to this request with an ICMP mask reply message.

You can disable IP processing on a particular interface by removing its IP address with the `no ip address` command. If the software detects another host using one of its IP addresses, it will print an error message on the console.

The optional `secondary` keyword allows you to specify an unlimited number of secondary addresses. Secondary addresses are treated like primary addresses, except the system never generates datagrams other than routing updates with secondary source addresses. IP broadcasts and Address Resolution Protocol (ARP) requests are handled properly, as are interface routes in the IP routing table.

Secondary IP addresses can be used in a variety of situations. The following are the most common applications:

- There may not be enough host addresses for a particular network segment. For example, your subnetting allows up to 254 hosts per logical subnet, but on one physical subnet you need 300 host addresses. Using
secondary IP addresses on the devices or access servers allows you to have two logical subnets using one physical subnet.

- Many older networks were built using Level 2 bridges. The judicious use of secondary addresses can aid in the transition to a subnetted, device-based network. Devices on an older, bridged segment can be easily made aware that many subnets are on that segment.

- Two subnets of a single network might otherwise be separated by another network. This situation is not permitted when subnets are in use. In these instances, the first network is extended, or layered on top of the second network using secondary addresses.

Note

If any device on a network segment uses a secondary address, all other devices on that same segment must also use a secondary address from the same network or subnet. Inconsistent use of secondary addresses on a network segment can very quickly cause routing loops.

Note

When you are routing using the Open Shortest Path First (OSPF) algorithm, ensure that all secondary addresses of an interface fall into the same OSPF area as the primary addresses.

Examples

In the following example, 192.108.1.27 is the primary address and 192.31.7.17 is the secondary address for GigabitEthernet interface 1/0/1:

```
interface GigabitEthernet 1/0/1
ip address 192.108.1.27 255.255.255.0
ip address 192.31.7.17 255.255.255.0 secondary
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>match ip route-source</td>
<td>Specifies a source IP address to match to required route maps that have been set up based on VRF connected routes.</td>
</tr>
<tr>
<td>route-map</td>
<td>Defines the conditions for redistributing routes from one routing protocol into another, or to enable policy routing.</td>
</tr>
<tr>
<td>set vrf</td>
<td>Enables VPN VRF selection within a route map for policy-based routing VRF selection.</td>
</tr>
<tr>
<td>show ip arp</td>
<td>Displays the ARP cache, in which SLIP addresses appear as permanent ARP table entries.</td>
</tr>
<tr>
<td>show ip interface</td>
<td>Displays the usability status of interfaces configured for IP.</td>
</tr>
<tr>
<td>show route-map</td>
<td>Displays static and dynamic route maps.</td>
</tr>
</tbody>
</table>
ipv6 access-list

To define an IPv6 access list and to place the device in IPv6 access list configuration mode, use the `ipv6 access-list` command in global configuration mode. To remove the access list, use the `no` form of this command.

```
ipv6 access-list access-list-name
no ipv6 access-list access-list-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>access-list-name</code></td>
<td>Name of the IPv6 access list. Names cannot contain a space or quotation mark, or begin with a numeric.</td>
</tr>
</tbody>
</table>

Command Default

No IPv6 access list is defined.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 access-list` command is similar to the `ip access-list` command, except that it is IPv6-specific.

The standard IPv6 ACL functionality supports— in addition to traffic filtering based on source and destination addresses— filtering of traffic based on IPv6 option headers and optional, upper-layer protocol type information for finer granularity of control (functionality similar to extended ACLs in IPv4). IPv6 ACLs are defined by using the `ipv6 access-list` command in global configuration mode and their permit and deny conditions are set by using the `deny` and `permit` commands in IPv6 access list configuration mode. Configuring the `ipv6 access-list` command places the device in IPv6 access list configuration mode—the device prompt changes to `Device(config-ipv6-acl)#`. From IPv6 access list configuration mode, permit and deny conditions can be set for the defined IPv6 ACL.

Note

IPv6 ACLs are defined by a unique name (IPv6 does not support numbered ACLs). An IPv4 ACL and an IPv6 ACL cannot share the same name.

For backward compatibility, the `ipv6 access-list` command with the `deny` and `permit` keywords in global configuration mode is still supported; however, an IPv6 ACL defined with deny and permit conditions in global configuration mode is translated to IPv6 access list configuration mode.

Refer to the deny (IPv6) and permit (IPv6) commands for more information on filtering IPv6 traffic based on IPv6 option headers and optional, upper-layer protocol type information. See the "Examples" section for an example of a translated IPv6 ACL configuration.
Every IPv6 ACL has implicit `permit icmp any any nd-na, permit icmp any any nd-ns, and deny ipv6 any any statements` as its last match conditions. (The former two match conditions allow for ICMPv6 neighbor discovery.) An IPv6 ACL must contain at least one entry for the implicit `deny ipv6 any any statement` to take effect. The IPv6 neighbor discovery process makes use of the IPv6 network layer service; therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, makes use of a separate data link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Note
IPv6 prefix lists, not access lists, should be used for filtering routing protocol prefixes.

Use the `ipv6 traffic-filter` interface configuration command with the `access-list-name` argument to apply an IPv6 ACL to an IPv6 interface. Use the `ipv6 access-class` line configuration command with the `access-list-name` argument to apply an IPv6 ACL to incoming and outgoing IPv6 virtual terminal connections to and from the device.

Note
An IPv6 ACL applied to an interface with the `ipv6 traffic-filter` command filters traffic that is forwarded, not originated, by the device.

Note
When using this command to modify an ACL that is already associated with a bootstrap router (BSR) candidate rendezvous point (RP) (see the `ipv6 pim bsr candidate rp` command) or a static RP (see the `ipv6 pim rp-address` command), any added address ranges that overlap the PIM SSM group address range (FF3x::/96) are ignored. A warning message is generated and the overlapping address ranges are added to the ACL, but they have no effect on the operation of the configured BSR candidate RP or static RP commands.

Duplicate remark statements can no longer be configured from the IPv6 access control list. Because each remark statement is a separate entity, each one is required to be unique.

Examples

The following example is from a device running Cisco IOS Release 12.0(23)S or later releases. The example configures the IPv6 ACL list named list1 and places the device in IPv6 access list configuration mode.

```
Device(config)# ipv6 access-list list1
Device(config-ipv6-acl)#
```

The following example is from a device running Cisco IOS Release 12.2(2)T or later releases, 12.0(21)ST, or 12.0(22)S. The example configures the IPv6 ACL named list2 and applies the ACL to outbound traffic on Ethernet interface 0. Specifically, the first ACL entry keeps all packets from the network FEC0::0:2::/64 (packets that have the site-local prefix FEC0::0:2 as the first 64 bits of their source IPv6 address) from exiting out of Ethernet interface 0. The second entry in the ACL permits all other traffic to exit out of Ethernet interface 0. The second entry is necessary because an implicit deny all condition is at the end of each IPv6 ACL.
If the same configuration was entered on a device running Cisco IOS Release 12.0(23)S or later releases, the configuration would be translated into IPv6 access list configuration mode as follows:

```
Device(config)# ipv6 access-list list2 deny FEC0:0:0:2::/64 any
Device(config)# ipv6 access-list list2 permit any any
Device(config)# interface ethernet 0
Device(config-if)# ipv6 traffic-filter list2 out
```

IPv6 is automatically configured as the protocol type in `permit any any` and `deny any any` statements that are translated from global configuration mode to IPv6 access list configuration mode.

IPv6 ACLs defined on a device running Cisco IOS Release 12.2(2)T or later releases, 12.0(21)ST, or 12.0(22)S that rely on the implicit deny condition or specify a `deny any any` statement to filter traffic should contain `permit` statements for link-local and multicast addresses to avoid the filtering of protocol packets (for example, packets associated with the neighbor discovery protocol). Additionally, IPv6 ACLs that use `deny` statements to filter traffic should use a `permit any any` statement as the last statement in the list.

An IPv6 device will not forward to another network an IPv6 packet that has a link-local address as either its source or destination address (and the source interface for the packet is different from the destination interface for the packet).

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>deny (IPv6)</td>
<td>Sets deny conditions for an IPv6 access list.</td>
</tr>
<tr>
<td></td>
<td>ipv6 access-class</td>
<td>Filters incoming and outgoing connections to and from the device based on an IPv6 access list.</td>
</tr>
<tr>
<td></td>
<td>ipv6 pim bsr candidate rp</td>
<td>Configures the candidate RP to send PIM RP advertisements to the BSR.</td>
</tr>
<tr>
<td></td>
<td>ipv6 pim rp-address</td>
<td>Configure the address of a PIM RP for a particular group range.</td>
</tr>
<tr>
<td></td>
<td>ipv6 traffic-filter</td>
<td>Filters incoming or outgoing IPv6 traffic on an interface.</td>
</tr>
<tr>
<td></td>
<td>permit (IPv6)</td>
<td>Sets permit conditions for an IPv6 access list.</td>
</tr>
<tr>
<td></td>
<td>show ipv6 access-list</td>
<td>Displays the contents of all current IPv6 access lists.</td>
</tr>
</tbody>
</table>
ipv6 address-validate

To enable IPv6 address validation, use the `ipv6 address-validate` in global configuration mode. To disable IPv6 address validation, use the `no` form of this command.

`ipv6 address-validate`
`no ipv6 address-validate`

Command Default
This command is enabled by default.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `ipv6 address-validate` command is used to validate whether the interface identifiers in an assigned IPv6 address are a part of the reserved IPv6 interface identifiers range, as specified in RFC5453. If the interface identifiers of the assigned IPv6 address are a part of the reserved range, a new IPv6 address is assigned. Only auto-configured addresses or addresses configured by DHCPv6 are validated.

The `no ipv6-address validate` command disables the IPv6 address validation and allows assigning of IPv6 addresses with interface identifiers that are a part of the reserved IPv6 interface identifiers range. We do not recommend the use of this command.

Examples
The following example shows how to re-enable IPv6 address validation if it is disabled using the no ipv6-address validate command:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 address-validate
```
ipv6 cef

To enable Cisco Express Forwarding for IPv6, use the `ipv6 cef` command in global configuration mode. To disable Cisco Express Forwarding for IPv6, use the `no` form of this command.

```
ipv6 cef
no ipv6 cef
```

Syntax Description

This command has no arguments or keywords.

Command Default

Cisco Express Forwarding for IPv6 is disabled by default.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 cef` command is similar to the `ip cef` command, except that it is IPv6-specific.

The `ipv6 cef` command is not available on the Cisco 12000 series Internet routers because this distributed platform operates only in distributed Cisco Express Forwarding for IPv6 mode.

Note

The `ipv6 cef` command is not supported in interface configuration mode.

Note

Some distributed architecture platforms support both Cisco Express Forwarding for IPv6 and distributed Cisco Express Forwarding for IPv6. When Cisco Express Forwarding for IPv6 is configured on distributed platforms, Cisco Express Forwarding switching is performed by the Route Processor (RP).

Note

You must enable Cisco Express Forwarding for IPv4 by using the `ip cef` global configuration command before enabling Cisco Express Forwarding for IPv6 by using the `ipv6 cef` global configuration command.

Cisco Express Forwarding for IPv6 is advanced Layer 3 IP switching technology that functions the same and offer the same benefits as Cisco Express Forwarding for IPv4. Cisco Express Forwarding for IPv6 optimizes network performance and scalability for networks with dynamic, topologically dispersed traffic patterns, such as those associated with web-based applications and interactive sessions.

Examples

The following example enables standard Cisco Express Forwarding for IPv4 operation and then standard Cisco Express Forwarding for IPv6 operation globally on the.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip route-cache</td>
<td>Controls the use of high-speed switching caches for IP routing.</td>
</tr>
<tr>
<td>show cef</td>
<td>Displays which packets the line cards dropped or displays which packets were not express-forwarded.</td>
</tr>
<tr>
<td>show ipv6 cef</td>
<td>Displays entries in the IPv6 FIB.</td>
</tr>
</tbody>
</table>
ipv6 cef accounting

To enable Cisco Express Forwarding for IPv6 and distributed Cisco Express Forwarding for IPv6 network accounting, use the `ipv6 cef accounting` command in global configuration mode or interface configuration mode. To disable Cisco Express Forwarding for IPv6 network accounting, use the `no` form of this command.

```
ipv6 cef accounting accounting-types
no ipv6 cef accounting accounting-types
```

Specific Cisco Express Forwarding Accounting Information Through Interface Configuration Mode

```
ipv6 cef accounting non-recursive {external | internal}
no ipv6 cef accounting non-recursive {external | internal}
```

Syntax Description

<table>
<thead>
<tr>
<th>accounting-types</th>
<th>The <code>accounting-types</code> argument must be replaced with at least one of the following keywords. Optionally, you can follow this keyword by any or all of the other keywords, but you can use each keyword only once.</th>
</tr>
</thead>
<tbody>
<tr>
<td>load-balance-hash</td>
<td>Enables load balancing hash bucket counters.</td>
</tr>
<tr>
<td>non-recursive</td>
<td>Enables accounting through nonrecursive prefixes.</td>
</tr>
<tr>
<td>per-prefix</td>
<td>Enables express forwarding of the collection of the number of packets and bytes to a destination (or prefix).</td>
</tr>
<tr>
<td>prefix-length</td>
<td>Enables accounting through prefix length.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-recursive</th>
<th>Enables accounting through nonrecursive prefixes. This keyword is optional when used in global configuration mode after another keyword is entered. See the <code>accounting-types</code> argument.</th>
</tr>
</thead>
<tbody>
<tr>
<td>external</td>
<td>Counts input traffic in the nonrecursive external bin.</td>
</tr>
<tr>
<td>internal</td>
<td>Counts input traffic in the nonrecursive internal bin.</td>
</tr>
</tbody>
</table>

Command Default

Cisco Express Forwarding for IPv6 network accounting is disabled by default.

Command Modes

Global configuration (config)

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 cef accounting` command is similar to the `ip cef accounting` command, except that it is IPv6-specific. Configuring Cisco Express Forwarding for IPv6 network accounting enables you to collect statistics on Cisco Express Forwarding for IPv6 traffic patterns in your network.
When you enable network accounting for Cisco Express Forwarding for IPv6 by using the `ipv6 cef accounting` command in global configuration mode, accounting information is collected at the Route Processor (RP) when Cisco Express Forwarding for IPv6 mode is enabled and at the line cards when distributed Cisco Express Forwarding for IPv6 mode is enabled. You can then display the collected accounting information using the `show ipv6 cef` EXEC command.

For prefixes with directly connected next hops, the `non-recursive` keyword enables express forwarding of the collection of packets and bytes through a prefix. This keyword is optional when this command is used in global configuration mode after you enter another keyword on the `ipv6 cef accounting` command.

This command in interface configuration mode must be used in conjunction with the global configuration command. The interface configuration command allows a user to specify two different bins (internal or external) for the accumulation of statistics. The internal bin is used by default. The statistics are displayed through the `show ipv6 cef detail` command.

Per-destination load balancing uses a series of 16 hash buckets into which the set of available paths are distributed. A hash function operating on certain properties of the packet is applied to select a bucket that contains a path to use. The source and destination IP addresses are the properties used to select the bucket for per-destination load balancing. Use the `load-balance-hash` keyword with the `ipv6 cef accounting` command to enable per-hash-bucket counters. Enter the `show ipv6 cef prefix internal` command to display the per-hash-bucket counters.

Examples

The following example enables the collection of Cisco Express Forwarding for IPv6 accounting information for prefixes with directly connected next hops:

```plaintext
(config)# ipv6 cef accounting non-recursive
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip cef accounting</code></td>
<td>Enable Cisco Express Forwarding network accounting (for IPv4).</td>
</tr>
<tr>
<td><code>show cef</code></td>
<td>Displays information about packets forwarded by Cisco Express Forwarding.</td>
</tr>
<tr>
<td><code>show ipv6 cef</code></td>
<td>Displays entries in the IPv6 FIB.</td>
</tr>
</tbody>
</table>
ipv6 cef distributed

To enable distributed Cisco Express Forwarding for IPv6, use the **ipv6 cef distributed** command in global configuration mode. To disable Cisco Express Forwarding for IPv6, use the **no** form of this command.

```
ipv6 cef distributed
no ipv6 cef distributed
```

Syntax Description

This command has no arguments or keywords.

Command Default

Distributed Cisco Express Forwarding for IPv6 is disabled by default.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

The **ipv6 cef distributed** command is similar to the **ip cef distributed** command, except that it is IPv6-specific. Enabling distributed Cisco Express Forwarding for IPv6 globally on the router by using the **ipv6 cef distributed** command in global configuration mode distributes the Cisco Express Forwarding processing of IPv6 packets from the Route Processor (RP) to the line cards of distributed architecture platforms.

Note

To forward distributed Cisco Express Forwarding for IPv6 traffic on the router, configure the forwarding of IPv6 unicast datagrams globally on your router by using the **ipv6 unicast-routing** global configuration command, and configure an IPv6 address and IPv6 processing on an interface by using the **ipv6 address** interface configuration command.

Note

You must enable distributed Cisco Express Forwarding for IPv4 by using the **ip cef distributed** global configuration command before enabling distributed Cisco Express Forwarding for IPv6 by using the **ipv6 cef distributed** global configuration command.

Cisco Express Forwarding is advanced Layer 3 IP switching technology. Cisco Express Forwarding optimizes network performance and scalability for networks with dynamic, topologically dispersed traffic patterns, such as those associated with web-based applications and interactive sessions.

Examples

The following example enables distributed Cisco Express Forwarding for IPv6 operation:

```
(config)# ipv6 cef distributed
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip route-cache</code></td>
<td>Controls the use of high-speed switching caches for IP routing.</td>
</tr>
<tr>
<td><code>show ipv6 cef</code></td>
<td>Displays entries in the IPv6 FIB.</td>
</tr>
</tbody>
</table>
ipv6 cef load-sharing algorithm

To select a Cisco Express Forwarding load-balancing algorithm for IPv6, use the `ipv6 cef load-sharing algorithm` command in global configuration mode. To return to the default universal load-balancing algorithm, use the `no` form of this command.

```
ipv6 cef load-sharing algorithm {original | universal [id]}
no ipv6 cef load-sharing algorithm
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>original</code></td>
<td>Sets the load-balancing algorithm to the original algorithm based on a source and destination hash.</td>
</tr>
<tr>
<td><code>universal</code></td>
<td>Sets the load-balancing algorithm to the universal algorithm that uses a source and destination and an ID hash.</td>
</tr>
<tr>
<td><code>id</code></td>
<td>(Optional) Fixed identifier in hexadecimal format.</td>
</tr>
</tbody>
</table>

Command Default
The universal load-balancing algorithm is selected by default. If you do not configure the fixed identifier for a load-balancing algorithm, the device automatically generates a unique ID.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `ipv6 cef load-sharing algorithm` command is similar to the `ip cef load-sharing algorithm` command, except that it is IPv6-specific.

When the Cisco Express Forwarding for IPv6 load-balancing algorithm is set to universal mode, each device on the network can make a different load-sharing decision for each source-destination address pair.

Examples
The following example shows how to enable the Cisco Express Forwarding original load-balancing algorithm for IPv6:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 cef load-sharing algorithm original
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip cef load-sharing algorithm</code></td>
<td>Selects a Cisco Express Forwarding load-balancing algorithm (for IPv4).</td>
</tr>
</tbody>
</table>
ipv6 cef optimize neighbor resolution

To configure address resolution optimization from Cisco Express Forwarding for IPv6 for directly connected neighbors, use the **ipv6 cef optimize neighbor resolution** command in global configuration mode. To disable address resolution optimization from Cisco Express Forwarding for IPv6 for directly connected neighbors, use the **no** form of this command.

ipv6 cef optimize neighbor resolution
no ipv6 cef optimize neighbor resolution

Syntax Description
This command has no arguments or keywords.

Command Default
If this command is not configured, Cisco Express Forwarding for IPv6 does not optimize the address resolution of directly connected neighbors.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The **ipv6 cef optimize neighbor resolution** command is very similar to the **ip cef optimize neighbor resolution** command, except that it is IPv6-specific.

Use this command to trigger Layer 2 address resolution of neighbors directly from Cisco Express Forwarding for IPv6.

Examples
The following example shows how to optimize address resolution from Cisco Express Forwarding for IPv6 for directly connected neighbors:

```
(config)# ipv6 cef optimize neighbor resolution
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip cef optimize neighbor resolution</td>
<td>Configures address resolution optimization from Cisco Express Forwarding for IPv4 for directly connected neighbors.</td>
</tr>
</tbody>
</table>
ipv6 destination-guard policy

To define a destination guard policy, use the `ipv6 destination-guard policy` command in global configuration mode. To remove the destination guard policy, use the `no` form of this command.

```
ipv6 destination-guard policy [policy-name]
no ipv6 destination-guard policy [policy-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>policy-name</code></td>
<td>(Optional) Name of the destination guard policy.</td>
</tr>
</tbody>
</table>

Command Default

No destination guard policy is defined.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command enters destination-guard configuration mode. The destination guard policies can be used to filter IPv6 traffic based on the destination address to block data traffic from an unknown source.

Examples

The following example shows how to define the name of a destination guard policy:

```
(config)#ipv6 destination-guard policy policy1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 destination-guard policy</code></td>
<td>Displays destination guard information.</td>
</tr>
</tbody>
</table>
ipv6 dhcp-relay bulk-lease

To configure bulk lease query parameters, use the `ipv6 dhcp-relay bulk-lease` command in global configuration mode. To remove the bulk-lease query configuration, use the `no` form of this command.

```
ipv6 dhcp-relay bulk-lease {data-timeout seconds | retry number} [disable]
no ipv6 dhcp-relay bulk-lease [disable]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>data-timeout</td>
<td>(Optional) Bulk lease query data transfer timeout.</td>
</tr>
<tr>
<td>seconds</td>
<td>(Optional) The range is from 60 seconds to 600 seconds. The default is 300 seconds.</td>
</tr>
<tr>
<td>retry</td>
<td>(Optional) Sets the bulk lease query retries.</td>
</tr>
<tr>
<td>number</td>
<td>(Optional) The range is from 0 to 5. The default is 5.</td>
</tr>
<tr>
<td>disable</td>
<td>(Optional) Disables the DHCPv6 bulk lease query feature.</td>
</tr>
</tbody>
</table>

Command Default

Bulk lease query is enabled automatically when the DHCP for IPv6 (DHCPv6) relay agent feature is enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `ipv6 dhcp-relay bulk-lease` command in global configuration mode to configure bulk lease query parameters, such as data transfer timeout and bulk-lease TCP connection retries.

The DHCPv6 bulk lease query feature is enabled automatically when the DHCPv6 relay agent is enabled. The DHCPv6 bulk lease query feature itself cannot be enabled using this command. To disable this feature, use the `ipv6 dhcp-relay bulk-lease` command with the `disable` keyword.

Examples

The following example shows how to set the bulk lease query data transfer timeout to 60 seconds:

```
(config)# ipv6 dhcp-relay bulk-lease data-timeout 60
```
ipv6 dhcp-relay option vpn

To enable the DHCP for IPv6 relay VRF-aware feature, use the `ipv6 dhcp-relay option vpn` command in global configuration mode. To disable the feature, use the `no` form of this command.

```
ipv6 dhcp-relay option vpn
no ipv6 dhcp-relay option vpn
```

Syntax Description

This command has no arguments or keywords.

Command Default

The DHCP for IPv6 relay VRF-aware feature is not enabled on the device.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 dhcp-relay option vpn` command allows the DHCPv6 relay VRF-aware feature to be enabled globally on the device. If the `ipv6 dhcp relay option vpn` command is enabled on a specified interface, it overrides the global `ipv6 dhcp-relay option vpn` command.

Examples

The following example enables the DHCPv6 relay VRF-aware feature globally on the device:

```
(config)# ipv6 dhcp-relay option vpn
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 dhcp relay option vpn</code></td>
<td>Enables the DHCPv6 relay VRF-aware feature on an interface.</td>
</tr>
</tbody>
</table>
ipv6 dhcp-relay source-interface

To configure an interface to use as the source when relaying messages, use the `ipv6 dhcp-relay source-interface` command in global configuration mode. To remove the interface from use as the source, use the `no` form of this command.

```
ipv6 dhcp-relay source-interface  interface-type interface-number
no ipv6 dhcp-relay source-interface  interface-type interface-number
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-type</code></td>
<td>(Optional) Interface type and number that specifies output interface for a destination. If this argument is configured, client messages are forwarded to the destination address through the link to which the output interface is connected.</td>
</tr>
</tbody>
</table>

Command Default

The address of the server-facing interface is used as the IPv6 relay source.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If the configured interface is shut down, or if all of its IPv6 addresses are removed, the relay will revert to its standard behavior.

The interface configuration (using the `ipv6 dhcp relay source-interface` command in interface configuration mode) takes precedence over the global configuration if both have been configured.

Examples

The following example configures the Loopback 0 interface to be used as the relay source:

```
(config)# ipv6 dhcp-relay source-interface loopback 0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 dhcp relay source-interface</code></td>
<td>Enables DHCP for IPv6 service on an interface.</td>
</tr>
</tbody>
</table>
ipv6 dhcp binding track ppp

To configure Dynamic Host Configuration Protocol (DHCP) for IPv6 to release any bindings associated with a PPP connection when that connection closes, use the `ipv6 dhcp binding track ppp` command in global configuration mode. To return to the default behavior, use the `no` form of this command.

```
ipv6 dhcp binding track ppp
no ipv6 dhcp binding track ppp
```

Syntax Description

This command has no arguments or keywords.

Command Default

When a PPP connection closes, the DHCP bindings associated with that connection are not released.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 dhcp binding track ppp` command configures DHCP for IPv6 to automatically release any bindings associated with a PPP connection when that connection is closed. The bindings are released automatically to accommodate subsequent new registrations by providing sufficient resource.

Note

In IPv6 broadband deployment using DHCPv6, you must enable release of prefix bindings associated with a PPP virtual interface using this command. This ensures that DHCPv6 bindings are tracked together with PPP sessions, and in the event of DHCP REBIND failure, the client initiates DHCPv6 negotiation again.

A binding table entry on the DHCP for IPv6 server is automatically:

- Created whenever a prefix is delegated to a client from the configuration pool.
- Updated when the client renews, rebinds, or confirms the prefix delegation.
- Deleted when the client releases all the prefixes in the binding voluntarily, all prefixes’ valid lifetimes have expired, or an administrator clears the binding.

Examples

The following example shows how to release the prefix bindings associated with the PPP:

```
(config)# ipv6 dhcp binding track ppp
```
ipv6 dhcp database

To configure a Dynamic Host Configuration Protocol (DHCP) for IPv6 binding database agent, use the `ipv6 dhcp database` command in global configuration mode. To delete the database agent, use the `no` form of this command.

```
ipv6 dhcp database agent [write-delay seconds] [timeout seconds]
no ipv6 dhcp database agent
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>agent</td>
<td>A flash, local bootflash, compact flash, NVRAM, FTP, TFTP, or Remote Copy Protocol (RCP) uniform resource locator.</td>
</tr>
<tr>
<td>write-delay seconds</td>
<td>(Optional) How often (in seconds) DHCP for IPv6 sends database updates. The default is 300 seconds. The minimum write delay is 60 seconds.</td>
</tr>
<tr>
<td>timeout seconds</td>
<td>(Optional) How long, in seconds, the router waits for a database transfer.</td>
</tr>
</tbody>
</table>

Command Default
Write-delay default is 300 seconds. Timeout default is 300 seconds.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 dhcp database` command specifies DHCP for IPv6 binding database agent parameters. The user may configure multiple database agents.

A binding table entry is automatically created whenever a prefix is delegated to a client from the configuration pool, updated when the client renews, rebinds, or confirms the prefix delegation, and deleted when the client releases all the prefixes in the binding voluntarily, all prefixes’ valid lifetimes have expired, or administrators enable the clear ipv6 dhcp binding command. These bindings are maintained in RAM and can be saved to permanent storage using the `agent` argument so that the information about configuration such as prefixes assigned to clients is not lost after a system reload or power down. The bindings are stored as text records for easy maintenance.

Each permanent storage to which the binding database is saved is called the database agent. A database agent can be a remote host such as an FTP server or a local file system such as NVRAM.

The `write-delay` keyword specifies how often, in seconds, that DHCP sends database updates. By default, DHCP for IPv6 server waits 300 seconds before sending any database changes.

The `timeout` keyword specifies how long, in seconds, the router waits for a database transfer. Infinity is defined as 0 seconds, and transfers that exceed the timeout period are aborted. By default, the DHCP for IPv6 server waits 300 seconds before aborting a database transfer. When the system is going to reload, there is no transfer timeout so that the binding table can be stored completely.

Examples

The following example specifies DHCP for IPv6 binding database agent parameters and stores binding entries in TFTP:

```
```
The following example specifies DHCP for IPv6 binding database agent parameters and stores binding entries in bootflash:

```
(config)# ipv6 dhcp database tftp://10.0.0.1/dhcp-binding
(config)# ipv6 dhcp database bootflash
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 dhcp binding</td>
<td>Deletes automatic client bindings from the DHCP for IPv6 server binding table</td>
</tr>
<tr>
<td>show ipv6 dhcp database</td>
<td>Displays DHCP for IPv6 binding database agent information.</td>
</tr>
</tbody>
</table>
ipv6 dhcp iana-route-add

To add routes for individually assigned IPv6 addresses on a relay or server, use the `ipv6 dhcp iana-route-add` command in global configuration mode. To disable route addition for individually assigned IPv6 addresses on a relay or server, use the `no` form of the command.

```
ipv6 dhcp iana-route-add
no ipv6 dhcp iana-route-add
```

Syntax Description

This command has no arguments or keywords.

Command Default

Route addition for individually assigned IPv6 addresses on a relay or server is disabled by default.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 dhcp iana-route-add` command is disabled by default and has to be enabled if route addition is required. Route addition for Internet Assigned Numbers Authority (IANA) is possible if the client is connected to the relay or server through unnumbered interfaces, and if route addition is enabled with the help of this command.

Examples

The following example shows how to enable route addition for individually assigned IPv6 addresses:

```
Device(config)# ipv6 dhcp iana-route-add
```
ipv6 dhcp iapd-route-add

To enable route addition by Dynamic Host Configuration Protocol for IPv6 (DHCPv6) relay and server for the delegated prefix, use the ipv6 dhcp iapd-route-add command in global configuration mode. To disable route addition, use the no form of the command.

ipv6 dhcp iapd-route-add
no ipv6 dhcp iapd-route-add

Syntax Description
This command has no arguments or keywords.

Command Default
DHCPv6 relay and DHCPv6 server add routes for delegated prefixes by default.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The DHCPv6 relay and the DHCPv6 server add routes for delegated prefixes by default. The presence of this command on a device does not mean that routes will be added on that device. When you configure the command, routes for delegated prefixes will only be added on the first Layer 3 relay and server.

Examples
The following example shows how to enable the DHCPv6 relay and server to add routes for a delegated prefix:

Device(config)# ipv6 dhcp iapd-route-add
To enable Lightweight DHCPv6 Relay Agent (LDRA) functionality on an access node, use the `ipv6 dhcp-ldra` command in global configuration mode. To disable the LDRA functionality, use the `no` form of this command.

```
ipv6 dhcp-ldra {enable | disable}
no ipv6 dhcp-ldra {enable | disable}
```

Syntax Description
- **enable**: Enables LDRA functionality on an access node.
- **disable**: Disables LDRA functionality on an access node.

Command Default
By default, LDRA functionality is not enabled on an access node.

Command Modes
Global configuration (config)

Command History
- **Cisco IOS XE Fuji 16.9.2**: This command was introduced.

Usage Guidelines
You must configure the LDRA functionality globally using the `ipv6 dhcp-ldra` command before configuring it on a VLAN or an access node (such as a Digital Subscriber Link Access Multiplexer [DSLAM] or an Ethernet switch) interface.

Example
The following example shows how to enable the LDRA functionality:

```
(config)# ipv6 dhcp-ldra enable
(config)# exit
```

Note
In the above example, Device denotes an access node.

Related Commands
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 dhcp ldra attach-policy</td>
<td>Enables LDRA functionality on a VLAN.</td>
</tr>
<tr>
<td>ipv6 dhcp-ldra attach-policy</td>
<td>Enables LDRA functionality on an interface.</td>
</tr>
</tbody>
</table>
ipv6 dhcp ping packets

To specify the number of packets a Dynamic Host Configuration Protocol for IPv6 (DHCPv6) server sends to a pool address as part of a ping operation, use the `ipv6 dhcp ping packets` command in global configuration mode. To prevent the server from pinging pool addresses, use the `no` form of this command.

```
ipv6 dhcp ping packets number
```

Syntax Description

| number | The number of ping packets sent before the address is assigned to a requesting client. The valid range is from 0 to 10. |

Command Default

No ping packets are sent before the address is assigned to a requesting client.

Command Modes

Global configuration (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The DHCPv6 server pings a pool address before assigning the address to a requesting client. If the ping is unanswered, the server assumes, with a high probability, that the address is not in use and assigns the address to the requesting client.

Setting the `number` argument to 0 turns off the DHCPv6 server ping operation.

Examples

The following example specifies four ping attempts by the DHCPv6 server before further ping attempts stop:

```
(config)# ipv6 dhcp ping packets 4
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 dhcp conflict</td>
<td>Clears an address conflict from the DHCPv6 server database.</td>
</tr>
<tr>
<td>show ipv6 dhcp conflict</td>
<td>Displays address conflicts found by a DHCPv6 server, or reported through a DECLINE message from a client.</td>
</tr>
</tbody>
</table>
ipv6 dhcp pool

To configure a Dynamic Host Configuration Protocol (DHCP) for IPv6 server configuration information pool and enter DHCP for IPv6 pool configuration mode, use the `ipv6 dhcp pool` command in global configuration mode. To delete a DHCP for IPv6 pool, use the `no` form of this command.

```
ipv6 dhcp pool poolname
no ipv6 dhcp pool poolname
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>poolname</code></td>
<td>User-defined name for the local prefix pool. The pool name can be a symbolic string (such as "Engineering") or an integer (such as 0).</td>
</tr>
</tbody>
</table>

Command Default

DHCP for IPv6 pools are not configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `ipv6 dhcp pool` command to create a DHCP for IPv6 server configuration information pool. When the `ipv6 dhcp pool` command is enabled, the configuration mode changes to DHCP for IPv6 pool configuration mode. In this mode, the administrator can configure pool parameters, such as prefixes to be delegated and Domain Name System (DNS) servers, using the following commands:

- **address prefix** `IPv6-prefix [lifetime {valid-lifetime preferred-lifetime | infinite}]` sets an address prefix for address assignment. This address must be in hexadecimal, using 16-bit values between colons.

- **link-address** `IPv6-prefix` sets a link-address IPv6 prefix. When an address on the incoming interface or a link-address in the packet matches the specified IPv6-prefix, the server uses the configuration information pool. This address must be in hexadecimal, using 16-bit values between colons.

- **vendor-specific** `vendor-id` enables DHCPv6 vendor-specific configuration mode. Specify a vendor identification number. This number is the vendor IANA Private Enterprise Number. The range is 1 to 4294967295. The following configuration command is available:

```
• suboption number sets vendor-specific suboption number. The range is 1 to 65535. You can enter an IPv6 address, ASCII text, or a hex string as defined by the suboption parameters.
```

Note

The `hex` value used under the `suboption` keyword allows users to enter only hex digits (0-f). Entering an `invalid hex` value does not delete the previous configuration.

Once the DHCP for IPv6 configuration information pool has been created, use the `ipv6 dhcp server` command to associate the pool with a server on an interface. If you do not configure an information pool, you need to use the `ipv6 dhcp server interface` configuration command to enable the DHCPv6 server function on an interface.
When you associate a DHCPv6 pool with an interface, only that pool services requests on the associated interface. The pool also services other interfaces. If you do not associate a DHCPv6 pool with an interface, it can service requests on any interface.

Not using any IPv6 address prefix means that the pool returns only configured options.

The `link-address` command allows matching a link-address without necessarily allocating an address. You can match the pool from multiple relays by using multiple link-address configuration commands inside a pool.

Since a longest match is performed on either the address pool information or the link information, you can configure one pool to allocate addresses and another pool on a subprefix that returns only configured options.

Examples

The following example specifies a DHCP for IPv6 configuration information pool named `cisco1` and places the router in DHCP for IPv6 pool configuration mode:

```
(config)# ipv6 dhcp pool cisco1
(config-dhcpv6)#
```

The following example shows how to configure an IPv6 address prefix for the IPv6 configuration pool `cisco1`:

```
(config-dhcpv6)# address prefix 2001:1000::/64
(config-dhcpv6)# end
```

The following example shows how to configure a pool named `engineering` with three link-address prefixes and an IPv6 address prefix:

```
# configure terminal
(config)# ipv6 dhcp pool engineering
(config-dhcpv6)# link-address 2001:1001::/64
(config-dhcpv6)# link-address 2001:1002::/64
(config-dhcpv6)# link-address 2001:2000::/48
(config-dhcpv6)# address prefix 2001:1003::/64
(config-dhcpv6)# end
```

The following example shows how to configure a pool named `350` with vendor-specific options:

```
# configure terminal
(config)# ipv6 dhcp pool 350
(config-dhcpv6)# vendor-specific 9
(config-dhcpv6-vs)# suboption 1 address 1000:235D::1
(config-dhcpv6-vs)# suboption 2 ascii "IP-Phone"
(config-dhcpv6-vs)# end
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 dhcp server</td>
<td>Enables DHCP for IPv6 service on an interface.</td>
</tr>
<tr>
<td>show ipv6 dhcp pool</td>
<td>Displays DHCP for IPv6 configuration pool information.</td>
</tr>
</tbody>
</table>
ipv6 dhcp server vrf enable

To enable the DHCP for IPv6 server VRF-aware feature, use the `ipv6 dhcp server vrf enable` command in global configuration mode. To disable the feature, use the `no` form of this command.

```
ipv6 dhcp server vrf enable
no ipv6 dhcp server vrf enable
```

Syntax Description

This command has no arguments or keywords.

Command Default

The DHCPv6 server VRF-aware feature is not enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 dhcp server option vpn` command allows the DHCPv6 server VRF-aware feature to be enabled globally on a device.

Examples

The following example enables the DHCPv6 server VRF-aware feature globally on a device:

```
(config)# ipv6 dhcp server option vpn
```
ipv6 flow monitor

This command activates a previously created flow monitor by assigning it to the interface to analyze incoming or outgoing traffic.

To activate a previously created flow monitor, use the `ipv6 flow monitor` command. To de-activate a flow monitor, use the `no` form of the command.

```
ipv6 flow monitor ipv6-monitor-name [sampler ipv6-sampler-name] {input | output}
no ipv6 flow monitor ipv6-monitor-name [sampler ipv6-sampler-name] {input | output}
```

Syntax Description

- **ipv6-monitor-name**: Activates a previously created flow monitor by assigning it to the interface to analyze incoming or outgoing traffic.
- **sampler ipv6-sampler-name**: Applies the flow monitor sampler.
- **input**: Applies the flow monitor on input traffic.
- **output**: Applies the flow monitor on output traffic.

Command Default
IPv6 flow monitor is not activated until it is assigned to an interface.

Command Modes
Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You cannot attach a NetFlow monitor to a port channel interface. If both service module interfaces are part of an EtherChannel, you should attach the monitor to both physical interfaces.

This example shows how to apply a flow monitor to an interface:

```
(config)# interface gigabitethernet 1/1/2
(config-if)# ip flow monitor FLOW-MONITOR-1 input
(config-if)# ip flow monitor FLOW-MONITOR-2 output
(config-if)# end
```
ipv6 general-prefix

To define an IPv6 general prefix, use the `ipv6 general-prefix` command in global configuration mode. To remove the IPv6 general prefix, use the `no` form of this command.

```
ipv6 general-prefix prefix-name {ipv6-prefix/prefix-length | 6to4 interface-type interface-number | 6rd interface-type interface-number}
no ipv6 general-prefix prefix-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prefix-name</code></td>
<td>The name assigned to the prefix.</td>
</tr>
<tr>
<td><code>ipv6-prefix</code></td>
<td>The IPv6 network assigned to the general prefix.</td>
</tr>
<tr>
<td></td>
<td>This argument must be in the form documented in RFC 2373 where the address</td>
</tr>
<tr>
<td></td>
<td>is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td></td>
<td>When defining a general prefix manually, specify both the <code>ipv6-prefix</code> and</td>
</tr>
<tr>
<td></td>
<td><code>/prefix-length</code> arguments.</td>
</tr>
<tr>
<td><code>/prefix-length</code></td>
<td>The length of the IPv6 prefix. A decimal value that indicates how many of</td>
</tr>
<tr>
<td></td>
<td>the high-order contiguous bits of the address comprise the prefix (the</td>
</tr>
<tr>
<td></td>
<td>network portion of the address). A slash mark must precede the decimal</td>
</tr>
<tr>
<td></td>
<td>value.</td>
</tr>
<tr>
<td></td>
<td>When defining a general prefix manually, specify both the <code>ipv6-prefix</code> and</td>
</tr>
<tr>
<td></td>
<td><code>/prefix-length</code> arguments.</td>
</tr>
<tr>
<td><code>6to4</code></td>
<td>Allows configuration of a general prefix based on an interface used for</td>
</tr>
<tr>
<td></td>
<td>6to4 tunneling.</td>
</tr>
<tr>
<td></td>
<td>When defining a general prefix based on a 6to4 interface, specify the</td>
</tr>
<tr>
<td></td>
<td><code>6to4</code> keyword and the <code>interface-type interface-number</code> argument.</td>
</tr>
<tr>
<td><code>interface-type</code></td>
<td>Interface type and number. For more information, use the question mark</td>
</tr>
<tr>
<td><code>interface-number</code></td>
<td>online help function.</td>
</tr>
<tr>
<td></td>
<td>When defining a general prefix based on a 6to4 interface, specify the</td>
</tr>
<tr>
<td></td>
<td><code>6to4</code> keyword and the <code>interface-type interface-number</code> argument.</td>
</tr>
<tr>
<td><code>6rd</code></td>
<td>Allows configuration of a general prefix computed from an interface used</td>
</tr>
<tr>
<td></td>
<td>for IPv6 rapid deployment (6RD) tunneling.</td>
</tr>
</tbody>
</table>

Command Default

No general prefix is defined.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `ipv6 general-prefix` command to define an IPv6 general prefix.
A general prefix holds a short prefix, based on which a number of longer, more specific, prefixes can be defined. When the general prefix is changed, all of the more specific prefixes based on it will change, too. This function greatly simplifies network renumbering and allows for automated prefix definition.

More specific prefixes, based on a general prefix, can be used when configuring IPv6 on an interface. When defining a general prefix based on an interface used for 6to4 tunneling, the general prefix will be of the form 2002:a.b.c.d::/48, where "a.b.c.d" is the IPv4 address of the interface referenced.

Examples

The following example manually defines an IPv6 general prefix named my-prefix:

```
(config)# ipv6 general-prefix my-prefix 2001:DB8:2222::/48
```

The following example defines an IPv6 general prefix named my-prefix based on a 6to4 interface:

```
(config)# ipv6 general-prefix my-prefix 6to4 ethernet0
```
ipv6 local policy route-map

To enable local policy-based routing (PBR) for IPv6 packets, use the `ipv6 local policy route-map` command in global configuration mode. To disable local policy-based routing for IPv6 packets, use the `no` form of this command.

`ipv6 local policy route-map route-map-name
no ipv6 local policy route-map route-map-name`

Syntax Description
- `route-map-name` Name of the route map to be used for local IPv6 PBR. The name must match a `route-map-name` value specified by the `route-map` command.

Command Default
IPv6 packets are not policy routed.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Packets originating from a router are not normally policy routed. However, you can use the `ipv6 local policy route-map` command to policy route such packets. You might enable local PBR if you want packets originated at the router to take a route other than the obvious shortest path.

The `ipv6 local policy route-map` command identifies a route map to be used for local PBR. The `route-map` commands each have a list of `match` and `set` commands associated with them. The `match` commands specify the match criteria, which are the conditions under which packets should be policy routed. The `set` commands specify set actions, which are particular policy routing actions to be performed if the criteria enforced by the `match` commands are met. The `no ipv6 local policy route-map` command deletes the reference to the route map and disables local policy routing.

Examples

In the following example, packets with a destination IPv6 address matching that allowed by access list pbr-src-90 are sent to the router at IPv6 address 2001:DB8::1:

```
ipv6 access-list src-90
  permit ipv6 host 2001::90 2001:1000::/64
route-map pbr-src-90 permit 10
  match ipv6 address src-90
  set ipv6 next-hop 2001:DB8::1
ipv6 local policy route-map pbr-src-90
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 policy route-map</td>
<td>Configures IPv6 PBR on an interface.</td>
</tr>
<tr>
<td>match ipv6 address</td>
<td>Specifies an IPv6 access list to be used to match packets for PBR for IPv6.</td>
</tr>
<tr>
<td>match length</td>
<td>Bases policy routing on the Level 3 length of a packet.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>route-map (IP)</td>
<td>Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.</td>
</tr>
<tr>
<td>set default interface</td>
<td>Specifies the default interface to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination.</td>
</tr>
<tr>
<td>set interface</td>
<td>Specifies the default interface to output packets that pass a match clause of a route map for policy routing.</td>
</tr>
<tr>
<td>set ipv6 default next-hop</td>
<td>Specifies an IPv6 default next hop to which matching packets will be forwarded.</td>
</tr>
<tr>
<td>set ipv6 next-hop (PBR)</td>
<td>Indicates where to output IPv6 packets that pass a match clause of a route map for policy routing.</td>
</tr>
<tr>
<td>set ipv6 precedence</td>
<td>Sets the precedence value in the IPv6 packet header.</td>
</tr>
</tbody>
</table>
ipv6 local pool

To configure a local IPv6 prefix pool, use the ipv6 local pool configuration command with the prefix pool name. To disband the pool, use the no form of this command.

```
ipv6 local pool poolname prefix/prefix-length assigned-length [shared] [cache-size size]
no ipv6 local pool poolname
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>poolname</td>
<td>User-defined name for the local prefix pool.</td>
</tr>
<tr>
<td>prefix</td>
<td>IPv6 prefix assigned to the pool.</td>
</tr>
<tr>
<td></td>
<td>This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>/ prefix-length</td>
<td>The length of the IPv6 prefix assigned to the pool. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address).</td>
</tr>
<tr>
<td>assigned-length</td>
<td>Length of prefix, in bits, assigned to the user from the pool. The value of the assigned-length argument cannot be less than the value of the / prefix-length argument.</td>
</tr>
<tr>
<td>shared</td>
<td>(Optional) Indicates that the pool is a shared pool.</td>
</tr>
<tr>
<td>cache-size</td>
<td>(Optional) Specifies the size of the cache.</td>
</tr>
<tr>
<td>size</td>
<td></td>
</tr>
</tbody>
</table>

Command Default

No pool is configured.

Command Modes

Global configuration (global)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

All pool names must be unique.

IPv6 prefix pools have a function similar to IPv4 address pools. Contrary to IPv4, a block of addresses (an address prefix) are assigned and not single addresses.

Prefix pools are not allowed to overlap.

Once a pool is configured, it cannot be changed. To change the configuration, the pool must be removed and recreated. All prefixes already allocated will also be freed.

Examples

This example shows the creation of an IPv6 prefix pool:

```
(config)# ipv6 local pool pool1 2001:0DB8::/29 64
(config)# end
# show ipv6 local pool
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug ipv6 pool</code></td>
<td>Enables IPv6 pool debugging.</td>
</tr>
<tr>
<td><code>peer default ipv6 address pool</code></td>
<td>Specifies the pool from which client prefixes are assigned for PPP links.</td>
</tr>
<tr>
<td><code>prefix-delegation pool</code></td>
<td>Specifies a named IPv6 local prefix pool from which prefixes are delegated to DHCP for IPv6 clients.</td>
</tr>
<tr>
<td><code>show ipv6 local pool</code></td>
<td>Displays information about any defined IPv6 address pools.</td>
</tr>
</tbody>
</table>
ipv6 mld snooping

To enable Multicast Listener Discovery version 2 (MLDv2) protocol snooping globally, use the `ipv6 mld snooping` command in global configuration mode. To disable the MLDv2 snooping globally, use the `no` form of this command.

```
ipv6 mld snooping
no ipv6 mld snooping
```

Syntax Description
This command has no arguments or keywords.

Command Default
This command is enabled.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced on the Supervisor Engine 720.</td>
</tr>
</tbody>
</table>

Usage Guidelines
MLDv2 snooping is supported on the Supervisor Engine 720 with all versions of the Policy Feature Card 3 (PFC3).

To use MLDv2 snooping, configure a Layer 3 interface in the subnet for IPv6 multicast routing or enable the MLDv2 snooping querier in the subnet.

Examples
This example shows how to enable MLDv2 snooping globally:

```
(config)# ipv6 mld snooping
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 mld snooping</td>
<td>Displays MLDv2 snooping information.</td>
</tr>
</tbody>
</table>
ipv6 mld ssm-map enable

To enable the Source Specific Multicast (SSM) mapping feature for groups in the configured SSM range, use the `ipv6 mld ssm-map enable` command in global configuration mode. To disable this feature, use the `no` form of this command.

```
ipv6 mld [vrf vrf-name] ssm-map enable
no ipv6 mld [vrf vrf-name] ssm-map enable
```

Syntax Description

- **vrf vrf-name** (Optional) Specifies a virtual routing and forwarding (VRF) configuration.

Command Default

The SSM mapping feature is not enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 mld ssm-map enable` command enables the SSM mapping feature for groups in the configured SSM range. When the `ipv6 mld ssm-map enable` command is used, SSM mapping defaults to use the Domain Name System (DNS).

SSM mapping is applied only to received Multicast Listener Discovery (MLD) version 1 or MLD version 2 membership reports.

Examples

The following example shows how to enable the SSM mapping feature:

```
(config)# ipv6 mld ssm-map enable
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug ipv6 mld ssm-map</code></td>
<td>Displays debug messages for SSM mapping.</td>
</tr>
<tr>
<td><code>ipv6 mld ssm-map query dns</code></td>
<td>Enables DNS-based SSM mapping.</td>
</tr>
<tr>
<td><code>ipv6 mld ssm-map static</code></td>
<td>Configures static SSM mappings.</td>
</tr>
<tr>
<td><code>show ipv6 mld ssm-map</code></td>
<td>Displays SSM mapping information.</td>
</tr>
</tbody>
</table>
ipv6 mld state-limit

To limit the number of Multicast Listener Discovery (MLD) states globally, use the `ipv6 mld state-limit` command in global configuration mode. To disable a configured MLD state limit, use the `no` form of this command.

```
ipv6 mld [vrf vrf-name] state-limit number
no ipv6 mld [vrf vrf-name] state-limit number
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>vrf-name</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>Maximum number of MLD states allowed on a router. The valid range is from 1 to 64000.</td>
</tr>
</tbody>
</table>

Command Default

No default number of MLD limits is configured. You must configure the number of maximum MLD states allowed globally on a router when you configure this command.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `ipv6 mld state-limit` command to configure a limit on the number of MLD states resulting from MLD membership reports on a global basis. Membership reports sent after the configured limits have been exceeded are not entered in the MLD cache and traffic for the excess membership reports is not forwarded.

Use the `ipv6 mld limit` command in interface configuration mode to configure the per-interface MLD state limit.

Per-interface and per-system limits operate independently of each other and can enforce different configured limits. A membership state will be ignored if it exceeds either the per-interface limit or global limit.

Examples

The following example shows how to limit the number of MLD states on a router to 300:

```
(config)# ipv6 mld state-limit 300
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 mld access-group</code></td>
<td>Enables the performance of IPv6 multicast receiver access control.</td>
</tr>
<tr>
<td><code>ipv6 mld limit</code></td>
<td>Limits the number of MLD states resulting from MLD membership state on a per-interface basis.</td>
</tr>
</tbody>
</table>
ipv6 multicast-routing

To enable multicast routing using Protocol Independent Multicast (PIM) and Multicast Listener Discovery (MLD) on all IPv6-enabled interfaces of the router and to enable multicast forwarding, use the `ipv6 multicast-routing` command in global configuration mode. To stop multicast routing and forwarding, use the `no` form of this command.

```
ipv6 multicast-routing [vrf vrf-name]
no ipv6 multicast-routing
```

Syntax Description

`vrf vrf-name` *(Optional) Specifies a virtual routing and forwarding (VRF) configuration.*

Command Default

Multicast routing is not enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `ipv6 multicast-routing` command to enable multicast forwarding. This command also enables Protocol Independent Multicast (PIM) and Multicast Listener Discovery (MLD) on all IPv6-enabled interfaces of the router being configured.

You can configure individual interfaces before you enable multicast so that you can then explicitly disable PIM and MLD protocol processing on those interfaces, as needed. Use the `no ipv6 pim` or the `no ipv6 mld router` command to disable IPv6 PIM or MLD router-side processing, respectively.

Examples

The following example enables multicast routing and turns on PIM and MLD on all interfaces:

```
(config)# ipv6 multicast-routing
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 pim rp-address</code></td>
<td>Configures the address of a PIM RP for a particular group range.</td>
</tr>
<tr>
<td><code>no ipv6 pim</code></td>
<td>Turns off IPv6 PIM on a specified interface.</td>
</tr>
<tr>
<td><code>no ipv6 mld router</code></td>
<td>Disables MLD router-side processing on a specified interface.</td>
</tr>
</tbody>
</table>
ipv6 multicast group-range

To disable multicast protocol actions and traffic forwarding for unauthorized groups or channels on all the interfaces in a router, use the **ipv6 multicast group-range** command in global configuration mode. To return to the command’s default settings, use the **no** form of this command.

```
ipv6 multicast [vrf vrf-name] group-range [access-list-name]
novipv6 multicast [vrf vrf-name] group-range [access-list-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>access-list-name</td>
<td>(Optional) Name of an access list that contains authenticated subscriber groups and authorized channels that can send traffic to the router.</td>
</tr>
</tbody>
</table>

Command Default

Multicast is enabled for groups and channels permitted by a specified access list and disabled for groups and channels denied by a specified access list.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **ipv6 multicast group-range** command provides an access control mechanism for IPv6 multicast edge routing. The access list specified by the **access-list-name** argument specifies the multicast groups or channels that are to be permitted or denied. For denied groups or channels, the router ignores protocol traffic and actions (for example, no Multicast Listener Discovery (MLD) states are created, no mroute states are created, no Protocol Independent Multicast (PIM) joins are forwarded), and drops data traffic on all interfaces in the system, thus disabling multicast for denied groups or channels.

Using the **ipv6 multicast group-range** global configuration command is equivalent to configuring the MLD access control and multicast boundary commands on all interfaces in the system. However, the **ipv6 multicast group-range** command can be overridden on selected interfaces by using the following interface configuration commands:

- **ipv6 mld access-group access-list-name**
- **ipv6 multicast boundary scope scope-value**

Because the **no ipv6 multicast group-range** command returns the router to its default configuration, existing multicast deployments are not broken.

Examples

The following example ensures that the router disables multicast for groups or channels denied by an access list named list2:

```
(config)# ipv6 multicast group-range list2
```

The following example shows that the command in the previous example is overridden on an interface specified by int2:

```
(config)# interface int2
(config-if)# ipv6 mld access-group list2
(config-if)# ipv6 multicast boundary scope 16.9.2
```
(config)# interface int2
(config-if)# ipv6 mld access-group int-list2

On int2, MLD states are created for groups or channels permitted by int-list2 but are not created for groups or channels denied by int-list2. On all other interfaces, the access-list named list2 is used for access control.

In this example, list2 can be specified to deny all or most multicast groups or channels, and int-list2 can be specified to permit authorized groups or channels only for interface int2.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 mld access-group</td>
<td>Performs IPv6 multicast receiver access control.</td>
</tr>
<tr>
<td>ipv6 multicast boundary scope</td>
<td>Configures a multicast boundary on the interface for a specified scope.</td>
</tr>
</tbody>
</table>
ipv6 multicast pim-passive-enable

To enable the Protocol Independent Multicast (PIM) passive feature on an IPv6 router, use the `ipv6 multicast pim-passive-enable` command in global configuration mode. To disable this feature, use the `no` form of this command.

```
ipv6 multicast pim-passive-enable
no ipv6 multicast pim-passive-enable
```

Syntax Description

This command has no arguments or keywords.

Command Default

PIM passive mode is not enabled on the router.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `ipv6 multicast pim-passive-enable` command to configure IPv6 PIM passive mode on a router. Once PIM passive mode is configured globally, use the `ipv6 pim passive` command in interface configuration mode to configure PIM passive mode on a specific interface.

Examples

The following example configures IPv6 PIM passive mode on a router:

```
(config)# ipv6 multicast pim-passive-enable
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 pim passive</td>
<td>Configures PIM passive mode on a specific interface.</td>
</tr>
</tbody>
</table>
ipv6 nd cache expire

To configure the duration of time before an IPv6 neighbor discovery cache entry expires, use the `ipv6 nd cache expire` command in the interface configuration mode. To remove this configuration, use the `no` form of this command.

```
ipv6 nd cache expire expire-time-in-seconds [refresh]
no ipv6 nd cache expire expire-time-in-seconds [refresh]
```

Syntax Description

- `expire-time-in-seconds` (Optional) The time range is from 1 through 65536 seconds. The default is 14400 seconds or 4 hours.
- `refresh` (Optional) Automatically refreshes the neighbor discovery cache entry.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, a neighbor discovery cache entry is expired and deleted if it remains in the STALE state for 14,400 seconds or 4 hours. The `ipv6 nd cache expire` command allows the expiry time to vary and to trigger auto refresh of an expired entry before the entry is deleted.

When the `refresh` keyword is used, a neighbor discovery cache entry is auto refreshed. The entry moves into the DELAY state and the neighbor unreachability detection process occurs, in which the entry transitions from the DELAY state to the PROBE state after 5 seconds. When the entry reaches the PROBE state, a neighbor solicitation is sent and then retransmitted as per the configuration.

Examples

The following example shows that the neighbor discovery cache entry is configured to expire in 7200 seconds or 2 hours:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/4
Device(config-if)# ipv6 nd cache expire 7200
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 nd na glean</code></td>
<td>Configures neighbor discovery to glean an entry from an unsolicited neighbor advertisement.</td>
</tr>
<tr>
<td><code>ipv6 nd nud retry</code></td>
<td>Configures the number of times neighbor unreachability detection resends neighbor solicitations.</td>
</tr>
<tr>
<td><code>show ipv6 interface</code></td>
<td>Displays the usability status of interfaces that are configured for IPv6.</td>
</tr>
</tbody>
</table>
ipv6 nd cache interface-limit (global)

To configure a neighbor discovery cache limit on all interfaces on the device, use the `ipv6 nd cache interface-limit` command in global configuration mode. To remove the neighbor discovery from all interfaces on the device, use the `no` form of this command.

```
ipv6 nd cache interface-limit size [log rate]
no ipv6 nd cache interface-limit size [log rate]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>size</code></td>
<td>Cache size.</td>
</tr>
<tr>
<td><code>log rate</code></td>
<td>(Optional) Adjustable logging rate, in seconds. The valid values are 0 and 1.</td>
</tr>
</tbody>
</table>

Command Default

Default logging rate for the device is one entry every second.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 nd cache interface-limit` command in global configuration mode imposes a common per-interface cache size limit on all interfaces on the device.

Issuing the `no` or default form of the command will remove the neighbor discovery limit from every interface on the device that was configured using global configuration mode. It will not remove the neighbor discovery limit from any interface configured using the `ipv6 nd cache interface-limit` command in interface configuration mode.

The default (and maximum) logging rate for the device is one entry every second.

Examples

The following example shows how to set a common per-interface cache size limit of 4 seconds on all interfaces on the device:

```
(config)# ipv6 nd cache interface-limit 4
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 nd cache interface-limit (interface)</code></td>
<td>Configures a neighbor discovery cache limit on a specified interface on the device.</td>
</tr>
</tbody>
</table>
ipv6 nd host mode strict

To enable the conformant, or strict, IPv6 host mode, use the **ipv6 nd host mode strict** command in global configuration mode. To reenable conformant, or loose, IPv6 host mode, use the **no** form of this command.

Syntax Description

This command has no arguments or keywords.

Command Default

Nonconformant, or loose, IPv6 host mode is enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The default IPv6 host mode type is loose, or nonconformant. To enable IPv6 strict, or conformant, host mode, use the **ipv6 nd host mode strict** command. You can change between the two IPv6 host modes using the **no** form of this command.

The **ipv6 nd host mode strict** command selects the type of IPv6 host mode behavior and enters interface configuration mode. However, the **ipv6 nd host mode strict** command is ignored if you have configured IPv6 routing with the **ipv6 unicast-routing** command. In this situation, the default IPv6 host mode type, loose, is used.

Examples

The following example shows how to configure the device as a strict IPv6 host and enables IPv6 address autoconfiguration on Ethernet interface 0/0:

```
(config)# ipv6 nd host mode strict
(config-if)# interface ethernet0/0
(config-if)# ipv6 address autoconfig
```

The following example shows how to configure the device as a strict IPv6 host and configures a static IPv6 address on Ethernet interface 0/0:

```
(config)# ipv6 nd host mode strict
(config-if)# interface ethernet0/0
(config-if)# ipv6 address 2001::1/64
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 unicast-routing</td>
<td>Enables the forwarding of IPv6 unicast datagrams.</td>
</tr>
</tbody>
</table>
ipv6 nd na glean

To configure the neighbor discovery to glean an entry from an unsolicited neighbor advertisement, use the `ipv6 nd na glean` command in the interface configuration mode. To disable this feature, use the `no` form of this command.

```
ipv6 nd na glean
no ipv6 nd na glean
```

Command Modes

<table>
<thead>
<tr>
<th>Command Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface configuration</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

IPv6 nodes may emit a multicast unsolicited neighbor advertisement packet following the successful completion of duplicate address detection (DAD). By default, other IPv6 nodes ignore these unsolicited neighbor advertisement packets. The `ipv6 nd na glean` command configures the router to create a neighbor advertisement entry on receipt of an unsolicited neighbor advertisement packet (assuming no such entry already exists and the neighbor advertisement has the link-layer address option). Use of this command allows a device to populate its neighbor advertisement cache with an entry for a neighbor before data traffic exchange with the neighbor.

Examples

The following example shows how to configure neighbor discovery to glean an entry from an unsolicited neighbor advertisement:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/4
Device(config-if)# ipv6 nd na glean
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 nd cache expire</code></td>
<td>Configures the duration of time before an IPv6 neighbor discovery cache entry expires.</td>
</tr>
<tr>
<td><code>ipv6 nd nud retry</code></td>
<td>Configures the number of times neighbor unreachability detection resends neighbor solicitations.</td>
</tr>
<tr>
<td><code>show ipv6 interface</code></td>
<td>Displays the usability status of interfaces that are configured for IPv6.</td>
</tr>
</tbody>
</table>
ipv6 nd ns-interval

To configure the interval between IPv6 neighbor solicitation (NS) retransmissions on an interface, use the `ipv6 nd ns-interval` command in interface configuration mode. To restore the default interval, use the `no` form of this command.

```
ipv6 nd ns-interval milliseconds
no ipv6 nd ns-interval
```

Syntax Description

| milliseconds | The interval between IPv6 neighbor solicit transmissions for address resolution. The acceptable range is from 1000 to 3600000 milliseconds. |

Command Default

0 milliseconds (unspecified) is advertised in router advertisements and the value 1000 is used for the neighbor discovery activity of the router itself.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, using the `ipv6 nd ns-interval` command changes the NS retransmission interval for both address resolution and duplicate address detection (DAD). To specify a different NS retransmission interval for DAD, use the `ipv6 nd dad time` command.

This value will be included in all IPv6 router advertisements sent out this interface. Very short intervals are not recommended in normal IPv6 operation. When a nondefault value is configured, the configured time is both advertised and used by the router itself.

Examples

The following example configures an IPv6 neighbor solicit transmission interval of 9000 milliseconds for Ethernet interface 0/0:

```
(config)# interface ethernet 0/0
(config-if)# ipv6 nd ns-interval 9000
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 nd dad time</code></td>
<td>Configures the NS retransmit interval for DAD separately from the NS retransmit interval for address resolution.</td>
</tr>
<tr>
<td><code>show ipv6 interface</code></td>
<td>Displays the usability status of interfaces configured for IPv6.</td>
</tr>
</tbody>
</table>
ipv6 nd nud retry

To configure the number of times the neighbor unreachability detection process resends neighbor solicitations, use the `ipv6 nd nud retry` command in the interface configuration mode. To disable this feature, use the `no` form of this command.

```
ipv6 nd nud retry base interval max-attempts {final-wait-time}
no ipv6 nd nud retry base interval max-attempts {final-wait-time}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>base</code></td>
<td>The neighbor unreachability detection process base value.</td>
</tr>
<tr>
<td><code>interval</code></td>
<td>The time interval, in milliseconds, between retries. The range is from 1000 to 32000.</td>
</tr>
<tr>
<td><code>max-attempts</code></td>
<td>The maximum number of retry attempts, depending on the base value. The range is from 1 to 128.</td>
</tr>
<tr>
<td><code>final-wait-time</code></td>
<td>The waiting time, in milliseconds, on the last probe. The range is from 1000 to 32000.</td>
</tr>
</tbody>
</table>

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When a device runs neighbor unreachability detection to resolve the neighbor detection entry for a neighbor again, it sends three neighbor solicitation packets 1 second apart. In certain situations, for example, spanning-tree events, or high-traffic events, or end-host reloads), three neighbor solicitation packets that are sent at an interval of 1 second may not be sufficient. To help maintain the neighbor cache in such situations, use the `ipv6 nd nud retry` command to configure exponential timers for neighbor solicitation retransmits.

The maximum number of retry attempts is configured using the `max-attempts` argument. The retransmit interval is calculated with the following formula:

\[t \cdot m^n \]

here,

- \(t \) = Time interval
- \(m \) = Base (1, 2, or 3)
- \(n \) = Current neighbor solicitation number (where the first neighbor solicitation is 0).

Therefore, `ipv6 nd nud retry 3 1000 5` command retransmits at intervals of 1, 3, 9, 27, 81 seconds. If the final wait time is not configured, the entry remains for 243 seconds before it is deleted.
The **ipv6 nd nud retry** command affects only the retransmit rate for the neighbor unreachability detection process, and not for the initial resolution, which uses the default of three neighbor solicitation packets sent 1 second apart.

Examples

The following example shows how to configure a fixed interval of 1 second and three retransmits:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/4
Device(config-if)# ipv6 nd nud retry 1 1000 3
```

The following example shows how to configure a retransmit interval of 1, 2, 4, and 8:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/4
Device(config-if)# ipv6 nd nud retry 2 1000 4
```

The following example shows how to configure the retransmit intervals of 1, 3, 9, 27, 81:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/1/4
Device(config-if)# ipv6 nd nud retry 3 1000 5
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 nd cache expire</td>
<td>Configures the duration of time before an IPv6 neighbor discovery (ND) cache entry expires.</td>
</tr>
<tr>
<td>ipv6 nd na glean</td>
<td>Configures neighbor discovery to glean an entry from an unsolicited neighbor advertisement.</td>
</tr>
<tr>
<td>show ipv6 interface</td>
<td>Displays the usability status of interfaces that are configured for IPv6.</td>
</tr>
</tbody>
</table>
ipv6 nd reachable-time

To configure the amount of time that a remote IPv6 node is considered reachable after some reachability confirmation event has occurred, use the `ipv6 nd reachable-time` command in interface configuration mode. To restore the default time, use the `no` form of this command.

```
ipv6 nd reachable-time milliseconds
no ipv6 nd reachable-time
```

Syntax Description

| milliseconds | The amount of time that a remote IPv6 node is considered reachable (in milliseconds). |

Command Default

0 milliseconds (unspecified) is advertised in router advertisements and the value 30000 (30 seconds) is used for the neighbor discovery activity of the router itself.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The configured time enables the router to detect unavailable neighbors. Shorter configured times enable the router to detect unavailable neighbors more quickly; however, shorter times consume more IPv6 network bandwidth and processing resources in all IPv6 network devices. Very short configured times are not recommended in normal IPv6 operation.

The configured time is included in all router advertisements sent out of an interface so that nodes on the same link use the same time value. A value of 0 means indicates that the configured time is unspecified by this router.

Examples

The following example configures an IPv6 reachable time of 1,700,000 milliseconds for Ethernet interface 0/0:

```
(config)# interface ethernet 0/0
(config-if)# ipv6 nd reachable-time 1700000
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 interface</td>
<td>Displays the usability status of interfaces configured for IPv6.</td>
</tr>
</tbody>
</table>
ipv6 nd resolution data limit

To configure the number of data packets queued pending Neighbor Discovery resolution, use the `ipv6 nd resolution data limit` command in global configuration mode.

```
ipv6 nd resolution data limit number-of-packets
no ipv6 nd resolution data limit number-of-packets
```

Syntax Description

- `number-of-packets`: The number of queued data packets. The range is from 16 to 2048 packets.

Command Default

Queue limit is 16 packets.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 nd resolution data limit` command allows the customer to configure the number of data packets queued pending Neighbor Discovery resolution. IPv6 Neighbor Discovery queues a data packet that initiates resolution for an unresolved destination. Neighbor Discovery will only queue one packet per destination. Neighbor Discovery also enforces a global (per-router) limit on the number of packets queued. Once the global queue limit is reached, further packets to unresolved destinations are discarded. The minimum (and default) value is 16 packets, and the maximum value is 2048.

In most situations, the default value of 16 queued packets pending Neighbor Discovery resolution is sufficient. However, in some high-scalability scenarios in which the router needs to initiate communication with a very large number of neighbors almost simultaneously, then the value may be insufficient. This may lead to loss of the initial packet sent to some neighbors. In most applications, the initial packet is retransmitted, so initial packet loss generally is not a cause for concern. (Note that dropping the initial packet to an unresolved destination is normal in IPv4.) However, there may be some high-scale configurations where loss of the initial packet is inconvenient. In these cases, the customer can use the `ipv6 nd resolution data limit` command to prevent the initial packet loss by increasing the unresolved packet queue size.

Examples

The following example configures the global number of data packets held awaiting resolution to be 32:

```
(config)# ipv6 nd resolution data limit 32
```
ipv6 nd route-owner

To insert Neighbor Discovery-learned routes into the routing table with "ND" status and to enable ND autoconfiguration behavior, use the `ipv6 nd route-owner` command. To remove this information from the routing table, use the no form of this command.

`ipv6 nd route-owner`

Syntax Description
This command has no arguments or keywords.

Command Default
The status of Neighbor Discovery-learned routes is "Static."

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `ipv6 nd route-owner` command inserts routes learned by Neighbor Discovery into the routing table with a status of "ND" rather than "Static" or "Connected."

This global command also enables you to use the `ipv6 nd autoconfig default` or `ipv6 nd autoconfig prefix` commands in interface configuration mode. If the `ipv6 nd route-owner` command is not issued, then the `ipv6 nd autoconfig default` and `ipv6 nd autoconfig prefix` commands are accepted by the router but will not work.

Examples

```
(config)# ipv6 nd route-owner
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 nd autoconfig default</td>
<td>Allows Neighbor Discovery to install a default route to the Neighbor Discovery-derived default router.</td>
</tr>
<tr>
<td>ipv6 nd autoconfig prefix</td>
<td>Uses Neighbor Discovery to install all valid on-link prefixes from RAs received on the interface.</td>
</tr>
</tbody>
</table>
ipv6 neighbor

To configure a static entry in the IPv6 neighbor discovery cache, use the `ipv6 neighbor` command in global configuration mode. To remove a static IPv6 entry from the IPv6 neighbor discovery cache, use the `no` form of this command.

```
ipv6 neighbor ipv6-address interface-type interface-number hardware-address
no ipv6 neighbor ipv6-address interface-type interface-number
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6-address</code></td>
<td>The IPv6 address that corresponds to the local data-link address.</td>
</tr>
<tr>
<td></td>
<td>This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td><code>interface-type</code></td>
<td>The specified interface type. For supported interface types, use the question mark (?) online help function.</td>
</tr>
<tr>
<td><code>interface-number</code></td>
<td>The specified interface number.</td>
</tr>
<tr>
<td><code>hardware-address</code></td>
<td>The local data-link address (a 48-bit address).</td>
</tr>
</tbody>
</table>

Command Default

Static entries are not configured in the IPv6 neighbor discovery cache.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 neighbor` command is similar to the `arp` (global) command.

If an entry for the specified IPv6 address already exists in the neighbor discovery cache--learned through the IPv6 neighbor discovery process--the entry is automatically converted to a static entry.

Use the `show ipv6 neighbors` command to view static entries in the IPv6 neighbor discovery cache. A static entry in the IPv6 neighbor discovery cache can have one of the following states:

- INCMP (Incomplete)--The interface for this entry is down.
- REACH (Reachable)--The interface for this entry is up.

Note

Reachability detection is not applied to static entries in the IPv6 neighbor discovery cache; therefore, the descriptions for the INCMP and REACH states are different for dynamic and static cache entries. See the `show ipv6 neighbors` command for descriptions of the INCMP and REACH states for dynamic cache entries.

The `clear ipv6 neighbors` command deletes all entries in the IPv6 neighbor discovery cache, except static entries. The `no ipv6 neighbor` command deletes a specified static entry from the neighbor discovery cache; the command does not remove dynamic entries--learned from the IPv6 neighbor discovery process--from the...
cache. Disabling IPv6 on an interface by using the `no ipv6 enable` command or the `no ipv6 unnumbered` command deletes all IPv6 neighbor discovery cache entries configured for that interface, except static entries (the state of the entry changes to INCMP).

Static entries in the IPv6 neighbor discovery cache are not modified by the neighbor discovery process.

Note
Static entries for IPv6 neighbors can be configured only on IPv6-enabled LAN and ATM LAN Emulation interfaces.

Examples

The following example configures a static entry in the IPv6 neighbor discovery cache for a neighbor with the IPv6 address 2001:0DB8::45A and link-layer address 0002.7D1A.9472 on Ethernet interface 1:

```
(config)# ipv6 neighbor 2001:0DB8::45A ethernet1 0002.7D1A.9472
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp (global)</td>
<td>Adds a permanent entry in the ARP cache.</td>
</tr>
<tr>
<td>clear ipv6 neighbors</td>
<td>Deletes all entries in the IPv6 neighbor discovery cache, except static entries.</td>
</tr>
<tr>
<td>no ipv6 enable</td>
<td>Disables IPv6 processing on an interface that has not been configured with an explicit IPv6 address.</td>
</tr>
<tr>
<td>no ipv6 unnumbered</td>
<td>Disables IPv6 on an unnumbered interface.</td>
</tr>
<tr>
<td>show ipv6 neighbors</td>
<td>Displays IPv6 neighbor discovery cache information.</td>
</tr>
</tbody>
</table>
ipv6 ospf name-lookup

To display Open Shortest Path First (OSPF) router IDs as Domain Naming System (DNS) names, use the ipv6 ospf name-lookup command in global configuration mode. To stop displaying OSPF router IDs as DNS names, use the no form of this command.

ipv6 ospf name-lookup
no ipv6 ospf name-lookup

Syntax Description
This command has no arguments or keywords.

Command Default
This command is disabled by default.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command makes it easier to identify a router because the router is displayed by name rather than by its router ID or neighbor ID.

Examples
The following example configures OSPF to look up DNS names for use in all OSPF show EXEC command displays:

(config)# ipv6 ospf name-lookup
ipv6 pim

To reenable IPv6 Protocol Independent Multicast (PIM) on a specified interface, use the `ipv6 pim` command in interface configuration mode. To disable PIM on a specified interface, use the `no` form of the command.

```
ipv6 pim
no ipv6 pim
```

Syntax Description
This command has no arguments or keywords.

Command Default
PIM is automatically enabled on every interface.

Command Modes
Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

After a user has enabled the `ipv6 multicast-routing` command, PIM is enabled to run on every interface. Because PIM is enabled on every interface by default, use the `no` form of the `ipv6 pim` command to disable PIM on a specified interface. When PIM is disabled on an interface, it does not react to any host membership notifications from the Multicast Listener Discovery (MLD) protocol.

Examples

The following example turns off PIM on Fast Ethernet interface 1/0:

```
(config)# interface FastEthernet 1/0
(config-if)# no ipv6 pim
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 multicast-routing</code></td>
<td>Enables multicast routing using PIM and MLD on all IPv6-enabled interfaces of the router and enables multicast forwarding.</td>
</tr>
</tbody>
</table>
ipv6 pim accept-register

To accept or reject registers at the rendezvous point (RP), use the `ipv6 pim accept-register` command in global configuration mode. To return to the default value, use the `no` form of this command.

```
ipv6 pim [vrf vrf-name] accept-register {list access-list | route-map map-name}
no ipv6 pim [vrf vrf-name] accept-register {list access-list | route-map map-name}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>list access-list</td>
<td>Defines the access list name.</td>
</tr>
<tr>
<td>route-map map-name</td>
<td>Defines the route map.</td>
</tr>
</tbody>
</table>

Command Default

All sources are accepted at the RP.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `ipv6 pim accept-register` command to configure a named access list or route map with match attributes. When the permit conditions as defined by the `access-list` and `map-name` arguments are met, the register message is accepted. Otherwise, the register message is not accepted, and an immediate register-stop message is returned to the encapsulating designated router.

Examples

The following example shows how to filter on all sources that do not have a local multicast route:

```
ipv6 pim accept-register route-map reg-filter
route-map reg-filter permit 20
  match as-path 101
ip as-path access-list 101 permit
```
ipv6 pim allow-rp

To enable the PIM Allow RP feature for all IP multicast-enabled interfaces in an IPv6 device, use the `ipv6 pim allow-rp` command in global configuration mode. To return to the default value, use the `no` form of this command.

```
ipv6 pim allow-rp [{group-list access-list | rp-list access-list [group-list access-list]}]
no ipv6 pim allow-rp
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group-list</code></td>
<td>(Optional) Identifies an access control list (ACL) of allowed group ranges for PIM Allow RP.</td>
</tr>
<tr>
<td><code>rp-list</code></td>
<td>(Optional) Specifies an ACL for allowed rendezvous-point (RP) addresses for PIM Allow RP.</td>
</tr>
<tr>
<td><code>access-list</code></td>
<td>(Optional) Unique number or name of a standard ACL.</td>
</tr>
</tbody>
</table>

Command Default

PIM Allow RP is disabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to enable the receiving device in an IP multicast network to accept a (*, G) Join from an unexpected (different) RP address.

Before enabling PIM Allow RP, you must first use the `ipv6 pim rp-address` command to define an RP.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 pim rp-address</code></td>
<td>Statically configures the address of a PIM RP for multicast groups.</td>
</tr>
</tbody>
</table>
ipv6 pim neighbor-filter list

To filter Protocol Independent Multicast (PIM) neighbor messages from specific IPv6 addresses, use the `ipv6 pim neighbor-filter list` command in the global configuration mode. To return to the router default, use the `no` form of this command.

```
ipv6 pim [vrf vrf-name] neighbor-filter list access-list
no ipv6 pim [vrf vrf-name] neighbor-filter list access-list
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrf vrf-name</code></td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td><code>access-list</code></td>
<td>Name of an IPv6 access list that denies PIM hello packets from a source.</td>
</tr>
</tbody>
</table>

Command Default

PIM neighbor messages are not filtered.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ipv6 pim neighbor-filter list` command is used to prevent unauthorized routers on the LAN from becoming PIM neighbors. Hello messages from addresses specified in this command are ignored.

Examples

The following example causes PIM to ignore all hello messages from IPv6 address FE80::A8BB:CCFF:FE03:7200:

```
(config)# ipv6 pim neighbor-filter list nbr_filter_acl
(config)# ipv6 access-list nbr_filter_acl
(config-ipv6-acl)# deny ipv6 host FE80::A8BB:CCFF:FE03:7200 any
(config-ipv6-acl)# permit any any
```
ipv6 pim rp-address

To configure the address of a Protocol Independent Multicast (PIM) rendezvous point (RP) for a particular group range, use the `ipv6 pim rp-address` command in global configuration mode. To remove an RP address, use the `no` form of this command.

```
ipv6 pim [vrf vrf-name] rp-address ipv6-address [group-access-list] [bidir]
no ipv6 pim rp-address ipv6-address [group-access-list] [bidir]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vrf vrf-name</th>
<th>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ipv6-address</td>
<td>The IPv6 address of a router to be a PIM RP. The <code>ipv6-address</code> argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td></td>
<td>group-access-list</td>
<td>(Optional) Name of an access list that defines for which multicast groups the RP should be used. If the access list contains any group address ranges that overlap the assigned source-specific multicast (SSM) group address range (FF3x::/96), a warning message is displayed, and the overlapping ranges are ignored. If no access list is specified, the specified RP is used for all valid multicast non-SSM address ranges.</td>
</tr>
<tr>
<td></td>
<td>bidir</td>
<td>(Optional) Indicates that the group range will be used for bidirectional shared-tree forwarding; otherwise, it will be used for sparse-mode forwarding. A single IPv6 address can be configured to be RP only for either bidirectional or sparse-mode group ranges. A single group-range list can be configured to operate either in bidirectional or sparse mode.</td>
</tr>
</tbody>
</table>

Command Default
No PIM RPs are preconfigured. Embedded RP support is enabled by default when IPv6 PIM is enabled (where embedded RP support is provided). Multicast groups operate in PIM sparse mode.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When PIM is configured in sparse mode, you must choose one or more routers to operate as the RP. An RP is a single common root of a shared distribution tree and is statically configured on each router.

Where embedded RP support is available, only the RP needs to be statically configured as the RP for the embedded RP ranges. No additional configuration is needed on other IPv6 PIM routers. The other routers will
discover the RP address from the IPv6 group address. If these routers want to select a static RP instead of the embedded RP, the specific embedded RP group range must be configured in the access list of the static RP.

The RP address is used by first-hop routers to send register packets on behalf of source multicast hosts. The RP address is also used by routers on behalf of multicast hosts that want to become members of a group. These routers send join and prune messages to the RP.

If the optional `group-access-list` argument is not specified, the RP is applied to the entire routable IPv6 multicast group range, excluding SSM, which ranges from FF[X][3-7]:/8 to FF3X:/:96. If the `group-access-list` argument is specified, the IPv6 address is the RP address for the group range specified in the `group-access-list` argument.

You can configure Cisco IOS software to use a single RP for more than one group. The conditions specified by the access list determine which groups the RP can be used for. If no access list is configured, the RP is used for all groups.

A PIM router can use multiple RPs, but only one per group.

Examples

The following example shows how to set the PIM RP address to 2001::10:10 for all multicast groups:

```
(config)# ipv6 pim rp-address 2001::10:10
```

The following example sets the PIM RP address to 2001::10:10 for the multicast group FF04::/64 only:

```
(config)# ipv6 access-list acc-grp-1
(config-ipv6-acl)# permit ipv6 any ff04::/64
(config)# ipv6 pim rp-address 2001::10:10 acc-grp-1
```

The following example shows how to configure a group access list that permits the embedded RP ranges derived from the IPv6 RP address 2001:0DB8:2::2:

```
(config)# ipv6 pim rp-address 2001:0DB8:2::2 embd-ranges
(config)# ipv6 access-list embd-ranges
(config-ipv6-acl)# permit ipv6 any ff73:240:2:2:2::/96
(config-ipv6-acl)# permit ipv6 any ff74:240:2:2:2::/96
(config-ipv6-acl)# permit ipv6 any ff75:240:2:2:2::/96
(config-ipv6-acl)# permit ipv6 any ff76:240:2:2:2::/96
(config-ipv6-acl)# permit ipv6 any ff77:240:2:2:2::/96
(config-ipv6-acl)# permit ipv6 any ff78:240:2:2:2::/96
```

The following example shows how to enable the address 100::1 as the bidirectional RP for the entries multicast range FF::/8:

```
ipv6 pim rp-address 100::1 bidir
```

In the following example, the IPv6 address 200::1 is enabled as the bidirectional RP for the ranges permitted by the access list named `bidir-grps`. The ranges permitted by this list are ff05::/16 and ff06::/16.

```
(config)# ipv6 access-list bidir-grps
(config-ipv6-acl)# permit ipv6 any ff05::/16
(config-ipv6-acl)# permit ipv6 any ff06::/16
(config-ipv6-acl)# exit
(config)# ipv6 pim rp-address 200::1 bidir-grps bidir
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>debug ipv6 pim df-election</strong></td>
<td>Displays debug messages for PIM bidirectional DF-election message processing.</td>
</tr>
<tr>
<td><strong>ipv6 access-list</strong></td>
<td>Defines an IPv6 access list and places the router in IPv6 access list configuration mode.</td>
</tr>
<tr>
<td><strong>show ipv6 pim df</strong></td>
<td>Displays the DF-election state of each interface for each RP.</td>
</tr>
<tr>
<td><strong>show ipv6 pim df winner</strong></td>
<td>Displays the DF-election winner on each interface for each RP.</td>
</tr>
</tbody>
</table>
ipv6 pim rp embedded

To enable embedded rendezvous point (RP) support in IPv6 Protocol Independent Multicast (PIM), use the `ipv6 pim rp-embedded` command in global configuration mode. To disable embedded RP support, use the `no` form of this command.

```
ipv6 pim [vrf vrf-name] rp embedded
no ipv6 pim [vrf vrf-name] rp embedded
```

### Syntax Description

| vrf | vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |

### Command Default
Embedded RP support is enabled by default.

### Command Modes
Global configuration (config)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Because embedded RP support is enabled by default, users will generally use the `no` form of this command to turn off embedded RP support.

The `ipv6 pim rp embedded` command applies only to the embedded RP group ranges ff7X::/16 and ffIx::/16. When the router is enabled, it parses groups in the embedded RP group ranges ff7X::/16 and ffIx::/16, and extracts the RP to be used from the group address.

### Examples

The following example disables embedded RP support in IPv6 PIM:

```
no ipv6 pim rp embedded
```
ipv6 pim spt-threshold infinity

To configure when a Protocol Independent Multicast (PIM) leaf router joins the shortest path tree (SPT) for the specified groups, use the `ipv6 pim spt-threshold infinity` command in global configuration mode. To restore the default value, use the `no` form of this command.

```
ipv6 pim [vrf vrf-name] spt-threshold infinity [group-list access-list-name]
no ipv6 pim spt-threshold infinity
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>group-list access-list-name</td>
<td>(Optional) Indicates to which groups the threshold applies. Must be a standard IPv6 access list name. If the value is omitted, the threshold applies to all groups.</td>
</tr>
</tbody>
</table>

**Command Default**

When this command is not used, the PIM leaf router joins the SPT immediately after the first packet arrives from a new source. Once the router has joined the SPT, configuring the `ipv6 pim spt-threshold infinity` command will not cause it to switch to the shared tree.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Using the `ipv6 pim spt-threshold infinity` command enables all sources for the specified groups to use the shared tree. The `group-list` keyword indicates to which groups the SPT threshold applies.

The `access-list-name` argument refers to an IPv6 access list. When the `access-list-name` argument is specified with a value of 0, or the `group-list` keyword is not used, the SPT threshold applies to all groups. The default setting (that is, when this command is not enabled) is to join the SPT immediately after the first packet arrives from a new source.

**Examples**

The following example configures a PIM last-hop router to stay on the shared tree and not switch to the SPT for the group range ff04::/64:

```
(config)# ipv6 access-list acc-grp-1
(config-ipv6-acl)# permit ipv6 any FF04::/64
(config-ipv6-acl)# exit
(config)# ipv6 pim spt-threshold infinity group-list acc-grp-1
```
ipv6 prefix-list

To create an entry in an IPv6 prefix list, use the `ipv6 prefix-list` command in global configuration mode. To delete the entry, use the `no` form of this command.

```
ipv6 prefix-list list-name [seq seq-number] {deny ipv6-prefix/prefix-length | permit ipv6-prefix/prefix-length | description text} [ge ge-value] [le le-value]
no ipv6 prefix-list list-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>list-name</code></td>
<td>Name of the prefix list.</td>
</tr>
<tr>
<td></td>
<td>• Cannot be the same name as an existing access list.</td>
</tr>
<tr>
<td></td>
<td>• Cannot be the name “detail” or “summary” because they are keywords in the <code>show ipv6 prefix-list</code> command.</td>
</tr>
<tr>
<td><code>seq seq-number</code></td>
<td>(Optional) Sequence number of the prefix list entry being configured.</td>
</tr>
<tr>
<td><code>deny</code></td>
<td>Denies networks that matches the condition.</td>
</tr>
<tr>
<td><code>permit</code></td>
<td>Permits networks that matches the condition.</td>
</tr>
<tr>
<td><code>ipv6-prefix</code></td>
<td>The IPv6 network assigned to the specified prefix list.</td>
</tr>
<tr>
<td></td>
<td>This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td><code>prefix-length</code></td>
<td>The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.</td>
</tr>
<tr>
<td><code>description</code></td>
<td>A description of the prefix list that can be up to 80 characters in length.</td>
</tr>
<tr>
<td><code>text</code></td>
<td></td>
</tr>
<tr>
<td><code>ge ge-value</code></td>
<td>(Optional) Specifies a prefix length greater than or equal to the <code>ipv6-prefix/prefix-length</code> arguments. It is the lowest value of a range of the <code>length</code> (the “from” portion of the length range).</td>
</tr>
<tr>
<td><code>le le-value</code></td>
<td>(Optional) Specifies a prefix length less than or equal to the <code>ipv6-prefix/prefix-length</code> arguments. It is the highest value of a range of the <code>length</code> (the “to” portion of the length range).</td>
</tr>
</tbody>
</table>

**Command Default**

No prefix list is created.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
The `ipv6 prefix-list` command is similar to the `ip prefix-list` command, except that it is IPv6-specific.

To suppress networks from being advertised in updates, use the `distribute-list out` command.

The sequence number of a prefix list entry determines the order of the entries in the list. The router compares network addresses to the prefix list entries. The router begins the comparison at the top of the prefix list, with the entry having the lowest sequence number.

If multiple entries of a prefix list match a prefix, the entry with the lowest sequence number is considered the real match. Once a match or deny occurs, the router does not go through the rest of the prefix list. For efficiency, you may want to put the most common permits or denies near the top of the list, using the `seq-number` argument.

The `show ipv6 prefix-list` command displays the sequence numbers of entries.

IPv6 prefix lists are used to specify certain prefixes or a range of prefixes that must be matched before a permit or deny statement can be applied. Two operand keywords can be used to designate a range of prefix lengths to be matched. A prefix length of less than, or equal to, a value is configured with the `le` keyword. A prefix length greater than, or equal to, a value is specified using the `ge` keyword. The `ge` and `le` keywords can be used to specify the range of the prefix length to be matched in more detail than the usual `prefix-length` argument. For a candidate prefix to match against a prefix list entry three conditions can exist:

- The candidate prefix must match the specified prefix list and prefix length entry.
- The value of the optional `le` keyword specifies the range of allowed prefix lengths from the `prefix-length` argument up to, and including, the value of the `le` keyword.
- The value of the optional `ge` keyword specifies the range of allowed prefix lengths from the value of the `ge` keyword up to, and including, 128.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>An exact match is assumed when the <code>ge</code> or <code>le</code> keywords are not specified. If only one keyword operand is specified then the condition for that keyword is applied, and the other condition is not applied. The <code>prefix-length</code> value must be less than the <code>ge</code> value. The <code>ge</code> value must be less than, or equal to, the <code>le</code> value. The <code>le</code> value must be less than or equal to 128.</td>
</tr>
</tbody>
</table>

Every IPv6 prefix list, including prefix lists that do not have any permit and deny condition statements, has an implicit deny any statement as its last match condition.

The following example denies all routes with a prefix of `::/0`.

```
(config)# ipv6 prefix-list abc deny ::/0
```

The following example permits the prefix `2002::/16`:

```
(config)# ipv6 prefix-list abc permit 2002::/16
```

The following example shows how to specify a group of prefixes to accept any prefixes from prefix `5F00::/48` up to and including prefix `5F00::/64`.

```
(config)# ipv6 prefix-list abc permit 5F00::/48 le 64
```
The following example denies prefix lengths greater than 64 bits in routes that have the prefix 2001:0DB8::/64.

```
(config)# ipv6 prefix-list abc permit 2001:0DB8::/64 le 128
```

The following example permits mask lengths from 32 to 64 bits in all address space.

```
(config)# ipv6 prefix-list abc permit ::/0 ge 32 le 64
```

The following example denies mask lengths greater than 32 bits in all address space.

```
(config)# ipv6 prefix-list abc deny ::/0 ge 32
```

The following example denies all routes with a prefix of 2002::/128.

```
(config)# ipv6 prefix-list abc deny 2002::/128
```

The following example permits all routes with a prefix of ::/0.

```
(config)# ipv6 prefix-list abc permit ::/0
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 prefix-list</td>
<td>Resets the hit count of the IPv6 prefix list entries.</td>
</tr>
<tr>
<td>distribute-list out</td>
<td>Suppresses networks from being advertised in updates.</td>
</tr>
<tr>
<td>ipv6 prefix-list sequence-number</td>
<td>Enables the generation of sequence numbers for entries in an IPv6 prefix list.</td>
</tr>
<tr>
<td>match ipv6 address</td>
<td>Distributes IPv6 routes that have a prefix permitted by a prefix list.</td>
</tr>
<tr>
<td>show ipv6 prefix-list</td>
<td>Displays information about an IPv6 prefix list or IPv6 prefix list entries.</td>
</tr>
</tbody>
</table>
ipv6 source-guard attach-policy

To apply IPv6 source-guard policy on an interface, use the **ipv6 source-guard attach-policy** in interface configuration mode. To remove this source guard from the interface, use the no form of this command.

**ipv6 source-guard attach-policy [source-guard-policy]**

**Syntax Description**

- `source-guard-policy` (Optional) User-defined name of the source guard policy. The policy name can be a symbolic string (such as Engineering) or an integer (such as 0).

**Command Default**

An IPv6 source-guard policy is not applied on the interface.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If no policy is specified using the `source-guard-policy` argument, then the default source-guard policy is applied.

A dependency exists between IPv6 source guard and IPv6 snooping. Whenever IPv6 source guard is configured, when the **ipv6 source-guard attach-policy** command is entered, it verifies that snooping is enabled and issues a warning if it is not. If IPv6 snooping is disabled, the software checks if IPv6 source guard is enabled and sends a warning if it is.

**Examples**

The following example shows how to apply IPv6 source guard on an interface:

```
(config)# interface gigabitethernet 0/0/1
(config-if)# ipv6 source-guard attach-policy mysnoopingpolicy
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ipv6 snooping policy</strong></td>
<td>Configures an IPv6 snooping policy and enters IPv6 snooping configuration mode.</td>
</tr>
</tbody>
</table>
ipv6 source-route

To enable processing of the IPv6 type 0 routing header (the IPv6 source routing header), use the `ipv6 source-route` command in global configuration mode. To disable the processing of this IPv6 extension header, use the `no` form of this command.

```
ipv6 source-route
no ipv6 source-route
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

The `no` version of the `ipv6 source-route` command is the default. When the router receives a packet with a type 0 routing header, the router drops the packet and sends an IPv6 Internet Control Message Protocol (ICMP) error message back to the source and logs an appropriate debug message.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The default was changed to be the `no` version of the `ipv6 source-route` command, which means this functionality is not enabled. Before this change, this functionality was enabled automatically. User who had configured the `no ipv6 source-route` command before the default was changed will continue to see this configuration in their `show config` command output, even though the `no` version of the command is the default.

The `no ipv6 source-route` command (which is the default) prevents hosts from performing source routing using your routers. When the `no ipv6 source-route` command is configured and the router receives a packet with a type 0 source routing header, the router drops the packet and sends an IPv6 ICMP error message back to the source and logs an appropriate debug message.

In IPv6, source routing is performed only by the destination of the packet. Therefore, in order to stop source routing from occurring inside your network, you need to configure an IPv6 access control list (ACL) that includes the following rule:

```
deny ipv6 any any routing
```

The rate at which the router generates all IPv6 ICMP error messages can be limited by using the `ipv6 icmp error-interval` command.

**Examples**

The following example disables the processing of IPv6 type 0 routing headers:

```
no ipv6 source-route
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deny (IPv6)</td>
<td>Sets deny conditions for an IPv6 access list.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>ipv6 icmp error-interval</td>
<td>Configures the interval for IPv6 ICMP error messages.</td>
</tr>
</tbody>
</table>
**ipv6 spd mode**

To configure an IPv6 Selective Packet Discard (SPD) mode, use the `ipv6 spd mode` command in global configuration mode. To remove the IPv6 SPD mode, use the `no` form of this command.

```
ipv6 spd mode {aggressive | tos protocol ospf}
no ipv6 spd mode {aggressive | tos protocol ospf}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggressive</td>
<td>Aggressive drop mode discards incorrectly formatted packets when the IPv6 SPD is in random drop state.</td>
</tr>
<tr>
<td>tos protocol ospf</td>
<td>OSPF mode allows OSPF packets to be handled with SPD priority.</td>
</tr>
</tbody>
</table>

**Command Default**

No IPv6 SPD mode is configured.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The default setting for the IPv6 SPD mode is none, but you may want to use the `ipv6 spd mode` command to configure a mode to be used when a certain SPD state is reached.

The `aggressive` keyword enables aggressive drop mode, which drops deformed packets when IPv6 SPD is in random drop state. The `ospf` keyword enables OSPF mode, in which OSPF packets are handled with SPD priority.

The size of the process input queue governs the SPD state: normal (no drop), random drop, or max. When the process input queue is less than the SPD minimum threshold, SPD takes no action and enters normal state. In the normal state, no packets are dropped. When the input queue reaches the maximum threshold, SPD enters max state, in which normal priority packets are discarded. If the input queue is between the minimum and maximum thresholds, SPD enters the random drop state, in which normal packets may be dropped.

**Examples**

The following example shows how to enable the router to drop deformed packets when the router is in the random drop state:

```
(config)# ipv6 spd mode aggressive
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 spd queue max-threshold</td>
<td>Configures the maximum number of packets in the IPv6 SPD process input queue.</td>
</tr>
<tr>
<td>ipv6 spd queue min-threshold</td>
<td>Configures the minimum number of packets in the IPv6 SPD process input queue.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>show ipv6 spd</td>
<td>Displays the IPv6 SPD configuration.</td>
</tr>
</tbody>
</table>
ipv6 spd queue max-threshold

To configure the maximum number of packets in the IPv6 Selective Packet Discard (SPD) process input queue, use the `ipv6 spd queue max-threshold` command in global configuration mode. To return to the default value, use the `no` form of this command.

```
ipv6 spd queue max-threshold value
no ipv6 spd queue max-threshold
```

**Syntax Description**

| value | Number of packets. The range is from 0 through 65535. |

**Command Default**

No SPD queue maximum threshold value is configured.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `ipv6 spd queue max-threshold` command to configure the SPD queue maximum threshold value.

The size of the process input queue governs the SPD state: normal (no drop), random drop, or max. When the process input queue is less than the SPD minimum threshold, SPD takes no action and enters normal state. In the normal state, no packets are dropped. When the input queue reaches the maximum threshold, SPD enters max state, in which normal priority packets are discarded. If the input queue is between the minimum and maximum thresholds, SPD enters the random drop state, in which normal packets may be dropped.

**Examples**

The following example shows how to set the maximum threshold value of the queue to 60,000:

```
(config)# ipv6 spd queue max-threshold 60000
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 spd queue min-threshold</code></td>
<td>Configures the minimum number of packets in the IPv6 SPD process input queue.</td>
</tr>
<tr>
<td><code>show ipv6 spd</code></td>
<td>Displays the IPv6 SPD configuration.</td>
</tr>
</tbody>
</table>
ipv6 traffic interface-statistics

To collect IPv6 forwarding statistics for all interfaces, use the `ipv6 traffic interface-statistics` command in global configuration mode. To ensure that IPv6 forwarding statistics are not collected for any interface, use the `no` form of this command.

```
ipv6 traffic interface-statistics [unclearable]
no ipv6 traffic interface-statistics [unclearable]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>unclearable</th>
<th>(Optional) IPv6 forwarding statistics are kept for all interfaces, but it is not possible to clear the statistics on any interface.</th>
</tr>
</thead>
</table>

**Command Default**
IPv6 forwarding statistics are collected for all interfaces.

**Command Modes**
Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Using the optional unclearable keyword halves the per-interface statistics storage requirements.

**Examples**
The following example does not allow statistics to be cleared on any interface:

```
(config)# ipv6 traffic interface-statistics unclearable
```
ipv6 unicast-routing

To enable the forwarding of IPv6 unicast datagrams, use the `ipv6 unicast-routing` command in global configuration mode. To disable the forwarding of IPv6 unicast datagrams, use the `no` form of this command.

```
ipv6 unicast-routing
no ipv6 unicast-routing
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

IPv6 unicast routing is disabled.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Configuring the `no ipv6 unicast-routing` command removes all IPv6 routing protocol entries from the IPv6 routing table.

**Examples**

The following example enables the forwarding of IPv6 unicast datagrams:

```
(config)# ipv6 unicast-routing
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 address link-local</td>
<td>Configures an IPv6 link-local address for an interface and enables IPv6 processing on the interface.</td>
</tr>
<tr>
<td>ipv6 address eui-64</td>
<td>Configures an IPv6 address and enables IPv6 processing on an interface using an EUI-64 interface ID in the low-order 64 bits of the address.</td>
</tr>
<tr>
<td>ipv6 enable</td>
<td>Enables IPv6 processing on an interface that has not been configured with an explicit IPv6 address.</td>
</tr>
<tr>
<td>ipv6 unnumbered</td>
<td>Enables IPv6 processing on an interface without assigning an explicit IPv6 address to the interface.</td>
</tr>
<tr>
<td>show ipv6 route</td>
<td>Displays the current contents of the IPv6 routing table.</td>
</tr>
</tbody>
</table>
key chain

To define an authentication key chain needed to enable authentication for routing protocols and enter key-chain configuration mode, use the `key chain` command in global configuration mode. To remove the key chain, use the `no` form of this command.

```
key chain name-of-chain
no key chain name-of-chain
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>name-of-chain</th>
<th>Name of a key chain. A key chain must have at least one key and can have up to 2147483647 keys.</th>
</tr>
</thead>
</table>

**Command Default**

No key chain exists.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must configure a key chain with keys to enable authentication.

Although you can identify multiple key chains, we recommend using one key chain per interface per routing protocol. Upon specifying the `key chain` command, you enter key chain configuration mode.

**Examples**

The following example shows how to specify key chain:

```
Device(config-keychain-key)# key-string chestnut
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept-lifetime</td>
<td>Sets the time period during which the authentication key on a key chain is received as valid.</td>
</tr>
<tr>
<td>key</td>
<td>Identifies an authentication key on a key chain.</td>
</tr>
<tr>
<td>key-string (authentication)</td>
<td>Specifies the authentication string for a key.</td>
</tr>
<tr>
<td>send-lifetime</td>
<td>Sets the time period during which an authentication key on a key chain is valid to be sent.</td>
</tr>
<tr>
<td>show key chain</td>
<td>Displays authentication key information.</td>
</tr>
</tbody>
</table>
key-string (authentication)

To specify the authentication string for a key, use the **key-string**(authentication) command in key chain key configuration mode. To remove the authentication string, use the **no** form of this command.

```
key-string key-string text
no key-string text
```

**Syntax Description**
- **text**: Authentication string that must be sent and received in the packets using the routing protocol being authenticated. The string can contain from 1 to 80 uppercase and lowercase alphanumeric characters.

**Command Default**
No authentication string for a key exists.

**Command Modes**
Key chain key configuration (config-keychain-key)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to specify the authentication string for a key:

```
Device(config-keychain-key)# key-string key1
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept-lifetime</td>
<td>Sets the time period during which the authentication key on a key chain is received as valid.</td>
</tr>
<tr>
<td>key</td>
<td>Identifies an authentication key on a key chain.</td>
</tr>
<tr>
<td>key chain</td>
<td>Defines an authentication key-chain needed to enable authentication for routing protocols.</td>
</tr>
<tr>
<td>send-lifetime</td>
<td>Sets the time period during which an authentication key on a key chain is valid to be sent.</td>
</tr>
<tr>
<td>show key chain</td>
<td>Displays authentication key information.</td>
</tr>
</tbody>
</table>
To identify an authentication key on a key chain, use the `key` command in key-chain configuration mode. To remove the key from the key chain, use the `no` form of this command.

```
key key-id
no key key-id
```

**Syntax Description**

- `key-id`: Identification number of an authentication key on a key chain. The range of keys is from 0 to 2147483647. The key identification numbers need not be consecutive.

**Command Default**

No key exists on the key chain.

**Command Modes**

Key-chain configuration (config-keychain)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

It is useful to have multiple keys on a key chain so that the software can sequence through the keys as they become invalid after time, based on the `accept-lifetime` and `send-lifetime` key chain key command settings.

Each key has its own key identifier, which is stored locally. The combination of the key identifier and the interface associated with the message uniquely identifies the authentication algorithm and Message Digest 5 (MD5) authentication key in use. Only one authentication packet is sent, regardless of the number of valid keys. The software starts looking at the lowest key identifier number and uses the first valid key.

If the last key expires, authentication will continue and an error message will be generated. To disable authentication, you must manually delete the last valid key.

To remove all keys, remove the key chain by using the `no key chain` command.

**Examples**

The following example shows how to specify a key to identify authentication on a key-chain:

```
Device(config-keychain)# key 1
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>accept-lifetime</code></td>
<td>Sets the time period during which the authentication key on a key chain is received as valid.</td>
</tr>
<tr>
<td><code>key chain</code></td>
<td>Defines an authentication key chain needed to enable authentication for routing protocols.</td>
</tr>
<tr>
<td><code>key-string (authentication)</code></td>
<td>Specifies the authentication string for a key.</td>
</tr>
<tr>
<td><code>send-lifetime</code></td>
<td>Sets the time period during which an authentication key on a key chain is valid to be sent.</td>
</tr>
</tbody>
</table>
### Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show key chain</code></td>
<td>Displays authentication key information.</td>
</tr>
</tbody>
</table>
show ip ports all

To display all the open ports on a device, use the **show ip ports all** in user EXEC or privileged EXEC mode.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

No default behavior or values.

**Command Modes**

User EXEC (>)

Privileged EXEC (＃)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command provides a list of all open TCP/IP ports on the system including the ports opened using Cisco networking stack.

To close open ports, you can use one of the following methods:

- Use Access Control List (ACL).
- To close the UDP 2228 port, use the `no l2 traceroute` command.
- To close TCP 80, TCP 443, TCP 6970, TCP 8090 ports, use the `no ip http server` and `no ip http secure-server` commands.

**Examples**

The following is sample output from the **show ip ports all** command:

```
Device# show ip ports all
Proto Local Address Foreign Address State PID/Program Name
TCP Local Address Foreign Address (state)
tcp *:4786 *:* LISTEN 224/[IOS]SMI IBC server process
tcp *:443 *:* LISTEN 286/[IOS]HTTP CORE
tcp *:443 *:* LISTEN 286/[IOS]HTTP CORE
tcp *:80 *:* LISTEN 286/[IOS]HTTP CORE
tcp *:80 *:* LISTEN 286/[IOS]HTTP CORE
udp *:10002 *:* 0/[IOS] Unknown
udp *:2228 10.0.0.0:0 318/[IOS]L2TRACE SERVER
```

The table below describes the significant fields shown in the display

**Table 21: Field Descriptions of show ip ports all**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Transport protocol used.</td>
</tr>
</tbody>
</table>
### Field

| Local Address. | Device IP Address. |
| Foreign Address | Remote or peer address. |
| State | State of the connection. It can be listen, established or connected. |
| PID/Program Name | Process ID or name |

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show tcp brief all</td>
<td>Displays information about TCP connection endpoints.</td>
</tr>
<tr>
<td>show ip sockets</td>
<td>Displays IP sockets information.</td>
</tr>
</tbody>
</table>
show ipv6 access-list

To display the contents of all current IPv6 access lists, use the **show ipv6 access-list** command in user EXEC or privileged EXEC mode.

```
show ipv6 access-list [access-list-name]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list-name</td>
<td>(Optional) Name of access list.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All IPv6 access lists are displayed.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC (&gt;)</td>
<td>Description</td>
</tr>
<tr>
<td>Privileged EXEC (#)</td>
<td>Description</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The <strong>show ipv6 access-list</strong> command provides output similar to the <strong>show ip access-list</strong> command, except that it is IPv6-specific.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following output from the <strong>show ipv6 access-list</strong> command shows IPv6 access lists named inbound, tcptraffic, and outbound:</td>
<td></td>
</tr>
</tbody>
</table>

```
show ipv6 access-list
IPv6 access list inbound
 permit tcp any any eq telnet reflect tcptraffic (15 matches) sequence 20
 permit udp any any reflect udptraffic sequence 30
IPv6 access list tcptraffic (reflexive) (per-user)
 permit tcp host 2001:0DB8:1::1 eq telnet host 2001:0DB8:1::2 eq 11001 timeout 300
 (time left 296) sequence 2
IPv6 access list outbound
 evaluate udptraffic
 evaluate tcptraffic
```

<table>
<thead>
<tr>
<th>Examples</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following sample output shows IPv6 access list information for use with IPSec:</td>
<td></td>
</tr>
</tbody>
</table>

```
show ipv6 access-list
IPv6 access list Tunnel0-head-0-ACL (crypto)
 permit ipv6 any any (34 matches) sequence 1
IPv6 access list Ethernet2/0-ipsecv6-ACL (crypto)
 permit 89 FE80::/10 any (85 matches) sequence 1
```

<table>
<thead>
<tr>
<th>Examples</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The table below describes the significant fields shown in the display.</td>
<td></td>
</tr>
</tbody>
</table>

**Table 22: show ipv6 access-list Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 access list inbound</td>
<td>Name of the IPv6 access list, for example, inbound.</td>
</tr>
</tbody>
</table>
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>permit</td>
<td>Permits any packet that matches the specified protocol type.</td>
</tr>
<tr>
<td>tcp</td>
<td>Transmission Control Protocol. The higher-level (Layer 4) protocol type that the packet must match.</td>
</tr>
<tr>
<td>any</td>
<td>Equal to ::0.</td>
</tr>
<tr>
<td>eq</td>
<td>An equal operand that compares the source or destination ports of TCP or UDP packets.</td>
</tr>
<tr>
<td>reflect</td>
<td>Indicates a reflexive IPv6 access list.</td>
</tr>
<tr>
<td>tcptraffic (8 matches)</td>
<td>The name of the reflexive IPv6 access list and the number of matches for the access list. The <code>clear ipv6 access-list</code> privileged EXEC command resets the IPv6 access list match counters.</td>
</tr>
<tr>
<td>sequence 10</td>
<td>Sequence in which an incoming packet is compared to lines in an access list. Lines in an access list are ordered from first priority (lowest number, for example, 10) to last priority (highest number, for example, 80).</td>
</tr>
<tr>
<td>host 2001:0DB8:1::1</td>
<td>The source IPv6 host address that the source address of the packet must match.</td>
</tr>
<tr>
<td>host 2001:0DB8:1::2</td>
<td>The destination IPv6 host address that the destination address of the packet must match.</td>
</tr>
<tr>
<td>11000</td>
<td>The ephemeral source port number for the outgoing connection.</td>
</tr>
<tr>
<td>timeout 300</td>
<td>The total interval of idle time (in seconds) after which the temporary IPv6 reflexive access list named tcptraffic will time out for the indicated session.</td>
</tr>
<tr>
<td>(time left 243)</td>
<td>The amount of idle time (in seconds) remaining before the temporary IPv6 reflexive access list named tcptraffic is deleted for the indicated session. Additional received traffic that matches the indicated session resets this value to 300 seconds.</td>
</tr>
<tr>
<td>evaluate udptraffic</td>
<td>Indicates the IPv6 reflexive access list named udptraffic is nested in the IPv6 access list named outbound.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 access-list</td>
<td>Resets the IPv6 access list match counters.</td>
</tr>
<tr>
<td>hardware statistics</td>
<td>Enables the collection of hardware statistics.</td>
</tr>
<tr>
<td>show ip access-list</td>
<td>Displays the contents of all current IP access lists.</td>
</tr>
<tr>
<td>show ip prefix-list</td>
<td>Displays information about a prefix list or prefix list entries.</td>
</tr>
<tr>
<td>show ipv6 prefix-list</td>
<td>Displays information about an IPv6 prefix list or IPv6 prefix list entries.</td>
</tr>
</tbody>
</table>
show ipv6 destination-guard policy

To display destination guard information, use the **show ipv6 destination-guard policy** command in privileged EXEC mode.

**show ipv6 destination-guard policy** [policy-name]

**Syntax Description**
- **policy-name** (Optional) Name of the destination guard policy.

**Command Modes**
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the **policy-name** argument is specified, only the specified policy information is displayed. If the **policy-name** argument is not specified, information is displayed for all policies.

**Examples**

The following is sample output from the **show ipv6 destination-guard policy** command when the policy is applied to a VLAN:

```
show ipv6 destination-guard policy poll
Destination guard policy destination:
 enforcement always
 Target: vlan 300
```

The following is sample output from the **show ipv6 destination-guard policy** command when the policy is applied to an interface:

```
show ipv6 destination-guard policy poll
Destination guard policy destination:
 enforcement always
 Target: Gi0/0/1
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 destination-guard policy</td>
<td>Defines the destination guard policy.</td>
</tr>
</tbody>
</table>
show ipv6 dhcp

To display the Dynamic Host Configuration Protocol (DHCP) unique identifier (DUID) on a specified device, use the `show ipv6 dhcp` command in user EXEC or privileged EXEC mode.

```
show ipv6 dhcp
```

**Syntax Description**

This command has no arguments or keywords.

**Command Modes**

User EXEC (>)
Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show ipv6 dhcp` command uses the DUID based on the link-layer address for both client and server identifiers. The device uses the MAC address from the lowest-numbered interface to form the DUID. The network interface is assumed to be permanently attached to the device. Use the `show ipv6 dhcp` command to display the DUID of a device.

**Examples**

The following is sample output from the `show ipv6 dhcp` command. The output is self-explanatory:

```
show ipv6 dhcp
This device's DHCPv6 unique identifier(DUID): 000300010002FCA5DC1C
```
**show ipv6 dhcp binding**

To display automatic client bindings from the Dynamic Host Configuration Protocol (DHCP) for IPv6 server binding table, use the `show ipv6 dhcp binding` command in user EXEC or privileged EXEC mode.

```plaintext
show ipv6 dhcp binding [ipv6-address] [vrf vrf-name]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-address</td>
<td>(Optional) The address of a DHCP for IPv6 client.</td>
</tr>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (>)

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show ipv6 dhcp binding` command displays all automatic client bindings from the DHCP for IPv6 server binding table if the `ipv6-address` argument is not specified. When the `ipv6-address` argument is specified, only the binding for the specified client is displayed.

If the `vrf vrf-name` keyword and argument combination is specified, all bindings that belong to the specified VRF are displayed.

---

**Note**

The `ipv6 dhcp server vrf enable` command must be enabled for the configured VRF to work. If the command is not configured, the output of the `show ipv6 dhcp binding` command will not display the configured VRF; it will only display the default VRF details.

**Examples**

The following sample output displays all automatic client bindings from the DHCP for IPv6 server binding table:

```plaintext
show ipv6 dhcp binding

Client: FE80::A8BB:CCFF:FE00:300
 DUID: 00030001AABBCC000300
 Username : client_1
 Interface: Virtual-Access2.1
 IA PD: IA ID 0x0000001, T1 75, T2 135
 Prefix: 2001:380:E00::/64
 preferred lifetime 150, valid lifetime 300 expires at Dec 06 2007 12:57 PM (262 seconds)
Client: FE80::A8BB:CCFF:FE00:300 (Virtual-Access2.2)
 DUID: 00030001AABBCC000300
 IA PD: IA ID 0x0000001, T1 75, T2 135
 Prefix: 2001:0DB8:E00::/64
```

---

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
preferred lifetime 150, valid lifetime 300
expires at Dec 06 2007 12:58 PM (288 seconds)

The table below describes the significant fields shown in the display.

**Table 23: show ipv6 dhcp binding Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>Address of a specified client.</td>
</tr>
<tr>
<td>DUID</td>
<td>DHCP unique identifier (DUID).</td>
</tr>
<tr>
<td>Virtual-Access2.1</td>
<td>First virtual client. When an IPv6 DHCP client requests two prefixes with</td>
</tr>
<tr>
<td></td>
<td>the same DUID but a different identity association for prefix delegation</td>
</tr>
<tr>
<td></td>
<td>(IAPD) on two different interfaces, these prefixes are considered to be for</td>
</tr>
<tr>
<td></td>
<td>two different clients, and interface information is maintained for both.</td>
</tr>
<tr>
<td>Username: client_1</td>
<td>The username associated with the binding.</td>
</tr>
<tr>
<td>IA PD</td>
<td>Collection of prefixes assigned to a client.</td>
</tr>
<tr>
<td>IA ID</td>
<td>Identifier for this IAPD.</td>
</tr>
<tr>
<td>Prefix</td>
<td>Prefixes delegated to the indicated IAPD on the specified client.</td>
</tr>
<tr>
<td>preferred lifetime,</td>
<td>The preferred lifetime and valid lifetime settings, in seconds, for the</td>
</tr>
<tr>
<td>valid lifetime</td>
<td>specified client.</td>
</tr>
<tr>
<td>Expires at</td>
<td>Date and time at which the valid lifetime expires.</td>
</tr>
<tr>
<td>Virtual-Access2.2</td>
<td>Second virtual client. When an IPv6 DHCP client requests two prefixes with</td>
</tr>
<tr>
<td></td>
<td>the same DUID but different IADIs on two different interfaces, these prefixes</td>
</tr>
<tr>
<td></td>
<td>are considered to be for two different clients, and interface information is</td>
</tr>
<tr>
<td></td>
<td>maintained for both.</td>
</tr>
</tbody>
</table>

When the DHCPv6 pool on the Cisco IOS DHCPv6 server is configured to obtain prefixes for delegation from an authentication, authorization, and accounting (AAA) server, it sends the PPP username from the incoming PPP session to the AAA server for obtaining the prefixes. The PPP username is associated with the binding is displayed in output from the `show ipv6 dhcp binding` command. If there is no PPP username associated with the binding, this field value is displayed as "unassigned."

The following example shows that the PPP username associated with the binding is "client_1":

```
show ipv6 dhcp binding
Client: FE80::2AA:FF:FEBB:CC
 DUID: 0003000100AA00BB00CC
 Username : client_1
 Interface : Virtual-Access2
 IA PD: IA ID 0x00130001, T1 75, T2 135
 Prefix: 2001:0DB8:1:3::/80
 preferred lifetime 150, valid lifetime 300
 expires at Aug 07 2008 05:19 AM (225 seconds)
```

The following example shows that the PPP username associated with the binding is unassigned:
show ipv6 dhcp binding

# show ipv6 dhcp binding

Client: FE80::2AA:FF:FEBB:CC
DUID: 0003000100AA00BB00CC
Username : unassigned
Interface : Virtual-Access2
IA PD: IA ID 0x00130001, T1 150, T2 240
  Prefix: 2001:0DB8:1:1::/80
      preferred lifetime 300, valid lifetime 300
      expires at Aug 11 2008 06:23 AM (233 seconds)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 dhcp server vrf enable</td>
<td>Enables the DHCPv6 server VRF-aware feature.</td>
</tr>
<tr>
<td>clear ipv6 dhcp binding</td>
<td>Deletes automatic client bindings from the DHCP for IPv6 binding table.</td>
</tr>
</tbody>
</table>
show ipv6 dhcp conflict

To display address conflicts found by a Dynamic Host Configuration Protocol for IPv6 (DHCPv6) server when addresses are offered to the client, use the `show ipv6 dhcp conflict` command in privileged EXEC mode.

```
show ipv6 dhcp conflict [ipv6-address] [vrf vrf-name]
```

**Syntax Description**

+ **ipv6-address** (Optional) The address of a DHCP for IPv6 client.
+ **vrf vrf-name** (Optional) Specifies a virtual routing and forwarding (VRF) configuration.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you configure the DHCPv6 server to detect conflicts, it uses ping. The client uses neighbor discovery to detect clients and reports to the server through a DECLINE message. If an address conflict is detected, the address is removed from the pool, and the address is not assigned until the administrator removes the address from the conflict list.

**Examples**

The following is a sample output from the `show ipv6 dhcp conflict` command. This command shows the pool and prefix values for DHCP conflicts:

```
show ipv6 dhcp conflict
Pool 350, prefix 2001:0DB8:1005::/48
 2001:0DB8:1005::10
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 dhcp conflict</td>
<td>Clears an address conflict from the DHCPv6 server database.</td>
</tr>
</tbody>
</table>
show ipv6 dhcp database

To display the Dynamic Host Configuration Protocol (DHCP) for IPv6 binding database agent information, use the `show ipv6 dhcp database` command in user EXEC or privileged EXEC mode.

```
show ipv6 dhcp database [agent-URL]
```

**Syntax Description**

| agent-URL          | (Optional) A flash, NVRAM, FTP, TFTP, or remote copy protocol (RCP) uniform resource locator. |

**Command Modes**

- User EXEC (>
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Fuji</td>
<td></td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Each permanent storage to which the binding database is saved is called the database agent. An agent can be configured using the `ipv6 dhcp database` command. Supported database agents include FTP and TFTP servers, RCP, Flash filesystem, and NVRAM.

The `show ipv6 dhcp database` command displays DHCP for IPv6 binding database agent information. If the `agent-URL` argument is specified, only the specified agent is displayed. If the `agent-URL` argument is not specified, all database agents are shown.

**Examples**

The following is sample output from the `show ipv6 dhcp database` command:

```
show ipv6 dhcp database
Database agent tftp://172.19.216.133/db.tftp:
 write delay: 69 seconds, transfer timeout: 300 seconds
 last written at Jan 09 2003 01:54 PM,
 write timer expires in 56 seconds
 last read at Jan 06 2003 05:41 PM
 successful read times 1
 failed read times 0
 successful write times 3172
 failed write times 2
Database agent nvram:/dhcpv6-binding:
 write delay: 60 seconds, transfer timeout: 300 seconds
 last written at Jan 09 2003 01:54 PM,
 write timer expires in 37 seconds
 last read at never
 successful read times 0
 failed read times 0
 successful write times 3325
 failed write times 0
Database agent flash:/dhcpv6-db:
 write delay: 82 seconds, transfer timeout: 3 seconds
 last written at Jan 09 2003 01:54 PM,
 write timer expires in 50 seconds
 last read at never
```
successful read times 0
failed read times 0
successful write times 2220
failed write times 614

The table below describes the significant fields shown in the display.

Table 24: show ipv6 dhcp database Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database agent</td>
<td>Specifies the database agent.</td>
</tr>
<tr>
<td>Write delay</td>
<td>The amount of time (in seconds) to wait before updating the database.</td>
</tr>
<tr>
<td>transfer timeout</td>
<td>Specifies how long (in seconds) the DHCP server should wait before aborting a database transfer. Transfers that exceed the timeout period are aborted.</td>
</tr>
<tr>
<td>Last written</td>
<td>The last date and time bindings were written to the file server.</td>
</tr>
<tr>
<td>Write timer expires</td>
<td>The length of time, in seconds, before the write timer expires.</td>
</tr>
<tr>
<td>Last read</td>
<td>The last date and time bindings were read from the file server.</td>
</tr>
<tr>
<td>Successful/failed read times</td>
<td>The number of successful or failed read times.</td>
</tr>
<tr>
<td>Successful/failed write times</td>
<td>The number of successful or failed write times.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 dhcp database</td>
<td>Specifies DHCP for IPv6 binding database agent parameters.</td>
</tr>
</tbody>
</table>
show ipv6 dhcp guard policy

To display Dynamic Host Configuration Protocol for IPv6 (DHCPv6) guard information, use the `show ipv6 dhcp guard policy` command in privileged EXEC mode.

```
show ipv6 dhcp guard policy [policy-name]
```

**Syntax Description**

- `policy-name` | (Optional) DHCPv6 guard policy name.

**Command Modes**

- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the `policy-name` argument is specified, only the specified policy information is displayed. If the `policy-name` argument is not specified, information is displayed for all policies.

**Examples**

The following is sample output from the `show ipv6 dhcp guard policy` command:

```
show ipv6 dhcp guard policy

Dhcp guard policy: default
 Device Role: dhcp client
 Target: Et0/3

Dhcp guard policy: test1
 Device Role: dhcp server
 Target: vlan 0 vlan 1 vlan 2 vlan 3 vlan 4
 Max Preference: 200
 Min Preference: 0
 Source Address Match Access List: acl1
 Prefix List Match Prefix List: pfxlist1

Dhcp guard policy: test2
 Device Role: dhcp relay
 Target: Et0/0 Et0/1 Et0/2
```

The table below describes the significant fields shown in the display.

**Table 25: show ipv6 dhcp guard Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Role</td>
<td>The role of the device. The role is either client, server or relay.</td>
</tr>
<tr>
<td>Target</td>
<td>The name of the target. The target is either an interface or a VLAN.</td>
</tr>
</tbody>
</table>
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 dhcp guard policy</td>
<td>Defines the DHCPv6 guard policy name.</td>
</tr>
</tbody>
</table>
show ipv6 dhcp interface

To display Dynamic Host Configuration Protocol (DHCP) for IPv6 interface information, use the `show ipv6 dhcp interface` command in user EXEC or privileged EXEC mode.

```
show ipv6 dhcp interface [type number]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type number</code></td>
<td>(Optional) Interface type and number. For more information, use the question mark (?) online help function.</td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC (`>`)
- Privileged EXEC (`#`)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If no interfaces are specified, all interfaces on which DHCP for IPv6 (client or server) is enabled are shown. If an interface is specified, only information about the specified interface is displayed.

**Examples**

The following is sample output from the `show ipv6 dhcp interface` command. In the first example, the command is used on a router that has an interface acting as a DHCP for IPv6 server. In the second example, the command is used on a router that has an interface acting as a DHCP for IPv6 client:

```
show ipv6 dhcp interface
Ethernet2/1 is in server mode
 Using pool: svr-p1
 Preference value: 20
 Rapid-Commit is disabled
Router2# show ipv6 dhcp interface
Ethernet2/1 is in client mode
 State is OPEN (1)
 List of known servers:
 Address: FE80::202:FF:FEAF:7439, DUID 000300010002FCA17400
 Preference: 20
 IA PD: IA ID 0x000040001, T1 120, T2 192
 Prefix: 3FFE:C00:C18:1::/72
 preferred lifetime 240, valid lifetime 54321
 expires at Nov 08 2002 09:10 AM (54319 seconds)
 Prefix: 3FFE:C00:C18:2::/72
 preferred lifetime 300, valid lifetime 54333
 expires at Nov 08 2002 09:11 AM (54331 seconds)
 Prefix: 3FFE:C00:C18:3::/72
 preferred lifetime 280, valid lifetime 51111
 expires at Nov 08 2002 08:17 AM (51109 seconds)
 DNS server: 1001::1
 DNS server: 1001::2
 Domain name: domain1.net
 Domain name: domain2.net
 Domain name: domain3.net
```
Prefix name is cli-p1
Rapid-Commit is enabled

The table below describes the significant fields shown in the display.

**Table 26: show ipv6 dhcp interface Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet2/1 is in server/client mode</td>
<td>Displays whether the specified interface is in server or client mode.</td>
</tr>
<tr>
<td>Preference value:</td>
<td>The advertised (or default of 0) preference value for the indicated server.</td>
</tr>
<tr>
<td>Prefix name is cli-p1</td>
<td>Displays the IPv6 general prefix pool name, in which prefixes successfully acquired on this interface are stored.</td>
</tr>
<tr>
<td>Using pool: svr-p1</td>
<td>The name of the pool that is being used by the interface.</td>
</tr>
<tr>
<td>State is OPEN</td>
<td>State of the DHCP for IPv6 client on this interface. &quot;Open&quot; indicates that configuration information has been received.</td>
</tr>
<tr>
<td>List of known servers</td>
<td>Lists the servers on the interface.</td>
</tr>
<tr>
<td>Address, DUID</td>
<td>Address and DHCP unique identifier (DUID) of a server heard on the specified interface.</td>
</tr>
<tr>
<td>Rapid commit is disabled</td>
<td>Displays whether the <strong>rapid-commit</strong> keyword has been enabled on the interface.</td>
</tr>
</tbody>
</table>

The following example shows the DHCP for IPv6 relay agent configuration on FastEthernet interface 0/0, and use of the **show ipv6 dhcp interface** command displays relay agent information on FastEthernet interface 0/0:

```
(config-if)# ipv6 dhcp relay destination FE80::250:A2FF:FEBF:A056 FastEthernet0/1
show ipv6 dhcp interface FastEthernet 0/0
FastEthernet0/0 is in relay mode
Relay destinations:
FE80::250:A2FF:FEBF:A056 via FastEthernet0/1
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ipv6 dhcp client pd</strong></td>
<td>Enables the DHCP for IPv6 client process and enables requests for prefix delegation through a specified interface.</td>
</tr>
<tr>
<td><strong>ipv6 dhcp relay destination</strong></td>
<td>Specifies a destination address to which client messages are forwarded and enables DHCP for IPv6 relay service on the interface.</td>
</tr>
<tr>
<td><strong>ipv6 dhcp server</strong></td>
<td>Enables DHCP for IPv6 service on an interface.</td>
</tr>
</tbody>
</table>
**show ipv6 dhcp relay binding**

To display DHCPv6 Internet Assigned Numbers Authority (IANA) and DHCPv6 Identity Association for Prefix Delegation (IAPD) bindings on a relay agent, use the `show ipv6 dhcp relay binding` command in user EXEC or privileged EXEC mode.

```
show ipv6 dhcp relay binding [vrf vrf-name]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>vrf vrf-name</th>
<th>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</th>
</tr>
</thead>
</table>

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the `vrf vrf-name` keyword-argument pair is specified, all bindings belonging to the specified VRF are displayed.

**Note**

Only the DHCPv6 IAPD bindings on a relay agent are displayed on the Cisco uBR10012 and Cisco uBR7200 series universal broadband devices.

**Examples**

The following is sample output from the `show ipv6 dhcp relay binding` command:

```
Device# show ipv6 dhcp relay binding
```

The following example shows output from the `show ipv6 dhcp relay binding` command with a specified VRF name on a Cisco uBR10012 universal broadband device:

```
Device# show ipv6 dhcp relay binding vrf vrf1
Prefix: 2001:DB8:0:1::/64 (Bundle100.600)
 DUID: 000300010023BED94D31
 IAID: 3201912114
 lifetime: 600
```

The table below describes the significant fields shown in the display.

**Table 27: show ipv6 dhcp relay binding Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>IPv6 prefix for DHCP.</td>
</tr>
</tbody>
</table>
DHCPUniqueIdentifier (DUID) for the IPv6 relay binding.
IdentityAssociationIdentification (IAID) for DHCP.
Lifetime of the prefix, in seconds.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUID</td>
<td>DHCP Unique Identifier (DUID) for the IPv6 relay binding.</td>
</tr>
<tr>
<td>IAID</td>
<td>Identity Association Identification (IAID) for DHCP.</td>
</tr>
<tr>
<td>lifetime</td>
<td>Lifetime of the prefix, in seconds.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 dhcp relay binding</td>
<td>Clears a specific IPv6 address or IPv6 prefix of a DHCP for IPv6 relay binding.</td>
</tr>
<tr>
<td>debug ipv6 dhcp relay</td>
<td>Enables debugging for IPv6 DHCP relay agent.</td>
</tr>
<tr>
<td>debug ipv6 dhcp relay bulk-lease</td>
<td>Enables bulk lease query debugging for IPv6 DHCP relay agent.</td>
</tr>
</tbody>
</table>
show ipv6 eigrp events

To display Enhanced Interior Gateway Routing Protocol (EIGRP) events logged for IPv6, use the `show ipv6 eigrp events` command in user EXEC or privileged EXEC mode.

```
show ipv6 eigrp events [{{errmsg | sia} | [event-num-start event-num-end] | type}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>errmsg</td>
<td>(Optional) Displays error messages being logged.</td>
</tr>
<tr>
<td>sia</td>
<td>(Optional) Displays Stuck In Active (SIA) messages.</td>
</tr>
<tr>
<td>event-num-start</td>
<td>(Optional) Starting number of the event range. The range is from 1 to 4294967295.</td>
</tr>
<tr>
<td>event-num-end</td>
<td>(Optional) Ending number of the event range. The range is from 1 to 4294967295.</td>
</tr>
<tr>
<td>type</td>
<td>(Optional) Displays event types being logged.</td>
</tr>
</tbody>
</table>

**Command Default**

If no event range is specified, information for all IPv6 EIGRP events is displayed.

**Command Modes**

User EXEC (>)

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show ipv6 eigrp events` command is used to analyze a network failure by the Cisco support team and is not intended for general use. This command provides internal state information about EIGRP and how it processes route notifications and changes.

**Examples**

The following is sample output from the `show ipv6 eigrp events` command. The fields are self-explanatory.

```
show ipv6 eigrp events
Event information for AS 65535:
1 00:56:41.719 State change: Successor Origin Local origin
2 00:56:41.719 Metric set: 2555:5555::/32 4294967295
3 00:56:41.719 Poison squashed: 2555:5555::/32 lost if
4 00:56:41.719 Poison squashed: 2555:5555::/32 rt gone
5 00:56:41.719 Route installing: 2555:5555::/32 FE80::ABCD:4:EF00:1
6 00:56:41.719 RDB delete: 2555:5555::/32 FE80::ABCD:4:EF00:2
7 00:56:41.719 Send reply: 2555:5555::/32 FE80::ABCD:4:EF00:1
8 00:56:41.719 Find FS: 2555:5555::/32 4294967295
9 00:56:41.719 Free reply status: 2555:5555::/32
10 00:56:41.719 Clr handle num/bits: 0 0x0
11 00:56:41.719 Clr handle dest/cnt: 2555:5555::/32 0
12 00:56:41.719 Rcv reply met/succ met: 4294967295 4294967295
13 00:56:41.719 Rcv reply dest/nh: 2555:5555::/32 FE80::ABCD:4:EF00:2
14 00:56:41.687 Send reply: 2555:5555::/32 FE80::ABCD:4:EF00:2
15 00:56:41.687 Rcv query met/succ met: 4294967295 4294967295
```
IP Addressing Services

16 00:56:41.687 Rcv query dest/nh: 2555:5555::/32 FE80::ABCD:4:EF00:2
17 00:56:41.687 State change: Local origin Successor Origin
18 00:56:41.687 Metric set: 2555:5555::/32 4294967295
19 00:56:41.687 Active net/peers: 2555:5555::/32 65536
20 00:56:41.687 FC not sat Dmin/met: 4294967295 2588160
21 00:56:41.687 Find FS: 2555:5555::/32 2588160
22 00:56:41.687 Rcv query met/succ met: 4294967295 4294967295
23 00:56:41.687 Rcv query dest/nh: 2555:5555::/32 FE80::ABCD:4:EF00:1
24 00:56:41.659 Change queue emptied, entries: 1
25 00:56:41.659 Metric set: 2555:5555::/32 2588160

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 eigrp</td>
<td>Deletes entries from EIGRP for IPv6 routing tables.</td>
</tr>
<tr>
<td>debug ipv6 eigrp</td>
<td>Displays information about EIGRP for IPv6 protocol.</td>
</tr>
<tr>
<td>ipv6 eigrp</td>
<td>Enables EIGRP for IPv6 on a specified interface.</td>
</tr>
</tbody>
</table>
show ipv6 eigrp interfaces

To display information about interfaces configured for the Enhanced Interior Gateway Routing Protocol (EIGRP) in IPv6 topologies, use the `show ipv6 eigrp interfaces` command in user EXEC or privileged EXEC mode.

```
show ipv6 eigrp [as-number] interfaces [type number] [detail]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-number</td>
<td>(Optional) Autonomous system number.</td>
</tr>
<tr>
<td>type</td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>number</td>
<td>(Optional) Interface number. For more information about the numbering syntax for your networking device, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed interface information.</td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC (>
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ipv6 eigrp interfaces` command to determine the interfaces on which EIGRP is active and to get information about EIGRP processes related to those interfaces. The optional `type number` argument and the `detail` keyword can be entered in any order.

- If an interface is specified, only that interface is displayed. Otherwise, all interfaces on which EIGRP is running are displayed.
- If an autonomous system is specified, only the routing process for the specified autonomous system is displayed. Otherwise, all EIGRP processes are displayed.

**Examples**

The following is sample output from the `show ipv6 eigrp interfaces` command:

```
show ipv6 eigrp 1 interfaces

IPv6-EIGRP interfaces for process 1
Interface Peers Un/Reliable SRTT Un/Reliable Flow Timer Routes
Et0/0 0 0/0 0 0/10 0 0
```

The following is sample output from the `show ipv6 eigrp interfaces detail` command:

```
show ipv6 eigrp interfaces detail

IPv6-EIGRP interfaces for process 1
Interface Peers Un/Reliable SRTT Un/Reliable Flow Timer Routes
Et0/0 0 0/0 0 0/10 0 0
```
Hello interval is 5 sec
Next xmit serial <none>
Un/reliable mcasts: 0/0 Un/reliable ucasts: 0/0
Mcast exceptions: 0 CR packets: 0 ACKs suppressed: 0
Retransmissions sent: 0 Out-of-sequence rcvd: 0
Authentication mode is not set

The following sample output from the **show ipv6 eigrp interface detail** command displays detailed information about a specific interface on which the **no ipv6 next-hop self** command is configured with the **no-ecmp-mode** option:

```
Device# show ipv6 eigrp interfaces detail tunnel 0

EIGRP-IPv6 Interfaces for AS(1)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Peers</th>
<th>Un/Reliable</th>
<th>Mean SRTT</th>
<th>Pacing Time</th>
<th>Multicast</th>
<th>Pending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tu0/0</td>
<td>2</td>
<td>0/0</td>
<td>29</td>
<td>0/0</td>
<td>136</td>
<td>0</td>
</tr>
</tbody>
</table>
Hello-interval is 5, Hold-time is 15
Split-horizon is disabled
Next xmit serial <none>
Packetized sent/expedited: 48/1
Hello's sent/expedited: 13119/49
Un/reliable mcasts: 0/20 Un/reliable ucasts: 31/398
Mcast exceptions: 5 CR packets: 5 ACKs suppressed: 1
Retransmissions sent: 355 Out-of-sequence rcvd: 6
Next-hop-self disabled, next-hop info forwarded, **ECMP mode Enabled**
Topology-ids on interface - 0
Authentication mode is not set

The table below describes the significant fields shown in the displays.

Table 28: show ipv6 eigrp interfaces Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface over which EIGRP is configured.</td>
</tr>
<tr>
<td>Peers</td>
<td>Number of directly connected EIGRP neighbors.</td>
</tr>
<tr>
<td>Xmit Queue Un/Reliable</td>
<td>Number of packets remaining in the Unreliable and Reliable transmit queues.</td>
</tr>
<tr>
<td>Mean SRTT</td>
<td>Mean smooth round-trip time (SRTT) interval (in seconds).</td>
</tr>
<tr>
<td>Pacing Time Un/Reliable</td>
<td>Pacing time (in seconds) used to determine when EIGRP packets (unreliable and reliable) should be sent out of the interface.</td>
</tr>
<tr>
<td>Multicast Flow Timer</td>
<td>Maximum number of seconds in which the device will send multicast EIGRP packets.</td>
</tr>
<tr>
<td>Pending Routes</td>
<td>Number of routes in the transmit queue waiting to be sent.</td>
</tr>
<tr>
<td>Hello interval is 5 sec</td>
<td>Length (in seconds) of the hello interval.</td>
</tr>
</tbody>
</table>
show ipv6 eigrp topology

To display Enhanced Interior Gateway Routing Protocol (EIGRP) IPv6 topology table entries, use the show ipv6 eigrp topology command in user EXEC or privileged EXEC mode.

```
show ipv6 eigrp topology [{as-number ipv6-address}] [{active | all-links | pending | summary | zero-successors}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-number</td>
<td>(Optional) Autonomous system number.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>(Optional) IPv6 address.</td>
</tr>
<tr>
<td>active</td>
<td>(Optional) Displays only active entries in the EIGRP topology table.</td>
</tr>
<tr>
<td>all-links</td>
<td>(Optional) Displays all entries in the EIGRP topology table (including nonfeasible-successor sources).</td>
</tr>
<tr>
<td>pending</td>
<td>(Optional) Displays all entries in the EIGRP topology table that are either waiting for an update from a neighbor or waiting to reply to a neighbor.</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays a summary of the EIGRP topology table.</td>
</tr>
<tr>
<td>zero-successors</td>
<td>(Optional) Displays the available routes that have zero successors.</td>
</tr>
</tbody>
</table>

Command Modes

- User EXEC (````)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If this command is used without any keywords or arguments, only routes that are feasible successors are displayed. The `show ipv6 eigrp topology` command can be used to determine Diffusing Update Algorithm (DUAL) states and to debug possible DUAL problems.

Examples

The following is sample output from the `show ipv6 eigrp topology` command. The fields in the display are self-explanatory.

```
# show ipv6 eigrp topology
IPv6-EIGRP Topology Table for AS(1)/ID(2001:0DB8:10::/64)
Codes: P = Passive, A = Active, U = Update, Q = Query, R = Reply,
r = reply Status, s = sia Status
P 2001:0DB8:3::/64, 1 successors, FD is 281600
via Connected, Ethernet1/0
```

The following sample output from the `show ipv6 eigrp topology prefix` command displays ECMP mode information when the `no ipv6 next-hop-self` command is configured without the `no-ecmp-mode` option in the EIGRP topology. The ECMP mode provides information about the path that is being
advertised. If there is more than one successor, the top most path will be advertised as the default path over all interfaces, and the message “ECMP Mode: Advertise by default” will be displayed in the output. If any path other than the default path is advertised, the message “ECMP Mode: Advertise out <Interface name>” will be displayed. The fields in the display are self-explanatory.

```
# show ipv6 eigrp topology 2001:DB8:10::1/128
```

EIGRP-IPv6 Topology Entry for AS(1)/ID(192.0.2.100) for 2001:DB8:10::1/128
State is Passive, Query origin flag is 1, 2 Successor(s), FD is 284160
Descriptor Blocks:
FE80::A8BB:CCFF:FE01:2E01 (Tunnel0), from FE80::A8BB:CCFF:FE01:2E01, Send flag is 0x0
Composite metric is (284160/281600), route is Internal
Vector metric:
Minimum bandwidth is 10000 Kbit
Total delay is 1100 microseconds
Reliability is 255/255
Load is ½55
Minimum MTU is 1400
Hop count is 1
Originating router is 10.10.1.1
ECMP Mode: Advertise by default
FE80::A8BB:CCFF:FE01:3E01 (Tunnel1), from FE80::A8BB:CCFF:FE01:3E01, Send flag is 0x0
Composite metric is (284160/281600), route is Internal
Vector metric:
Minimum bandwidth is 10000 Kbit
Total delay is 1100 microseconds
Reliability is 255/255
Load is ½55
Minimum MTU is 1400
Hop count is 1
Originating router is 10.10.2.2
ECMP Mode: Advertise out Tunnel1

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show eigrp address-family topology</td>
<td>Displays entries in the EIGRP topology table.</td>
</tr>
</tbody>
</table>
show ipv6 eigrp traffic

To display the number of Enhanced Interior Gateway Routing Protocol (EIGRP) for IPv6 packets sent and received, use the `show ipv6 eigrp traffic` command in user EXEC or privileged EXEC mode.

```
  show ipv6 eigrp traffic [as-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-number</td>
<td>(Optional) Autonomous system number.</td>
</tr>
</tbody>
</table>

Command Modes

- User EXEC (>
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show ipv6 eigrp traffic` command to provide information on packets received and sent.

Examples

The following is sample output from the `show ipv6 eigrp traffic` command:

```
# show ipv6 eigrp traffic
IPv6-EIGRP Traffic Statistics for process 9
 Hellos sent/received: 218/205
 Updates sent/received: 7/23
 Queries sent/received: 2/0
 Replies sent/received: 0/2
 Acks sent/received: 21/14
```

The table below describes the significant fields shown in the display.

Table 29: show ipv6 eigrp traffic Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>process 9</td>
<td>Autonomous system number specified in the <code>ipv6 router eigrp</code> command.</td>
</tr>
<tr>
<td>Hellos sent/received</td>
<td>Number of hello packets sent and received.</td>
</tr>
<tr>
<td>Updates sent/received</td>
<td>Number of update packets sent and received.</td>
</tr>
<tr>
<td>Queries sent/received</td>
<td>Number of query packets sent and received.</td>
</tr>
<tr>
<td>Replies sent/received</td>
<td>Number of reply packets sent and received.</td>
</tr>
<tr>
<td>Acks sent/received</td>
<td>Number of acknowledgment packets sent and received.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>ipv6 router eigrp</td>
<td>Configures the EIGRP for IPv6 routing process.</td>
</tr>
</tbody>
</table>
show ipv6 general-prefix

To display information on IPv6 general prefixes, use the `show ipv6 general-prefix` command in user EXEC or privileged EXEC mode.

```
show ipv6 general-prefix
```

Syntax Description

This command has no arguments or keywords.

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show ipv6 general-prefix` command to view information on IPv6 general prefixes.

Examples

The following example shows an IPv6 general prefix called my-prefix, which has been defined based on a 6to4 interface. The general prefix is also being used to define an address on interface loopback42.

```
# show ipv6 general-prefix
IPv6 Prefix my-prefix, acquired via 6to4
2002:B0B:B0B::/48
Loopback42 (Address command)
```

The table below describes the significant fields shown in the display.

Table 30: show ipv6 general-prefix Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Prefix</td>
<td>User-defined name of the IPv6 general prefix.</td>
</tr>
<tr>
<td>Acquired via</td>
<td>The general prefix has been defined based on a 6to4 interface. A general prefix can also be defined manually or acquired using DHCP for IPv6 prefix delegation.</td>
</tr>
<tr>
<td>2002:B0B:B0B::/48</td>
<td>The prefix value for this general prefix.</td>
</tr>
<tr>
<td>Loopback42 (Address command)</td>
<td>List of interfaces where this general prefix is used.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 general-prefix</td>
<td>Defines a general prefix for an IPv6 address manually.</td>
</tr>
</tbody>
</table>
show ipv6 interface

To display the usability status of interfaces configured for IPv6, use the `show ipv6 interface` command in user EXEC or privileged EXEC mode.

```
show ipv6 interface [brief] [type number] [prefix]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>brief</td>
<td>(Optional) Displays a brief summary of IPv6 status and configuration for each interface.</td>
</tr>
<tr>
<td>type</td>
<td>(Optional) The interface type about which to display information.</td>
</tr>
<tr>
<td>number</td>
<td>(Optional) The interface number about which to display information.</td>
</tr>
<tr>
<td>prefix</td>
<td>(Optional) Prefix generated from a local IPv6 prefix pool.</td>
</tr>
</tbody>
</table>

Command Default

All IPv6 interfaces are displayed.

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show ipv6 interface` command provides output similar to the `show ip interface` command, except that it is IPv6-specific.

Use the `show ipv6 interface` command to validate the IPv6 status of an interface and its configured addresses. The `show ipv6 interface` command also displays the parameters that IPv6 is using for operation on this interface and any configured features.

If the interface’s hardware is usable, the interface is marked up. If the interface can provide two-way communication for IPv6, the line protocol is marked up.

If you specify an optional interface type and number, the command displays information only about that specific interface. For a specific interface, you can enter the `prefix` keyword to see the IPv6 neighbor discovery (ND) prefixes that are configured on the interface.

Interface Information for a Specific Interface with IPv6 Configured

The `show ipv6 interface` command displays information about the specified interface.

```
(config)# show ipv6 interface ethernet0/0
Ethernet0/0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::A8BB:CCFF:FE00:6700
No Virtual link-local address(es):
Global unicast address(es):
  2001::1, subnet is 2001::/64 [DUP]
  2001::A8BB:CCFF:FE00:6700, subnet is 2001::/64 [EUI]
  2001:100::1, subnet is 2001:100::/64
```
Joined group address(es):
- FF02::1
- FF02::2
- FF02::1:FF00:1
- FF02::1:FF00:6700

MTU is 1500 bytes

ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachable are sent
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds (using 30000)
ND advertised reachable time is 0 (unspecified)
ND advertised retransmit interval is 0 (unspecified)
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium

Hosts use stateless autoconfig for addresses.

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0/0 is up, line protocol is up</td>
<td>Indicates whether the interface hardware is active (whether line signal is present) and whether it has been taken down by an administrator. If the interface hardware is usable, the interface is marked "up." For an interface to be usable, both the interface hardware and line protocol must be up.</td>
</tr>
<tr>
<td>line protocol is up, down (down is not shown in sample output)</td>
<td>Indicates whether the software processes that handle the line protocol consider the line usable (that is, whether keepalives are successful or IPv6 CP has been negotiated). If the interface can provide two-way communication, the line protocol is marked up. For an interface to be usable, both the interface hardware and line protocol must be up.</td>
</tr>
<tr>
<td>IPv6 is enabled, stalled, disabled (stalled and disabled are not shown in sample output)</td>
<td>Indicates that IPv6 is enabled, stalled, or disabled on the interface. If IPv6 is enabled, the interface is marked "enabled." If duplicate address detection processing identified the link-local address of the interface as being a duplicate address, the processing of IPv6 packets is disabled on the interface and the interface is marked "stalled." If IPv6 is not enabled, the interface is marked "disabled."</td>
</tr>
<tr>
<td>link-local address</td>
<td>Displays the link-local address assigned to the interface.</td>
</tr>
<tr>
<td>Global unicast address(es):</td>
<td>Displays the global unicast addresses assigned to the interface.</td>
</tr>
<tr>
<td>Joined group address(es):</td>
<td>Indicates the multicast groups to which this interface belongs.</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit of the interface.</td>
</tr>
<tr>
<td>ICMP error messages</td>
<td>Specifies the minimum interval (in milliseconds) between error messages sent on this interface.</td>
</tr>
<tr>
<td>ICMP redirects</td>
<td>The state of Internet Control Message Protocol (ICMP) IPv6 redirect messages on the interface (the sending of the messages is enabled or disabled).</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND DAD</td>
<td>The state of duplicate address detection on the interface (enabled or disabled).</td>
</tr>
<tr>
<td>number of DAD attempts:</td>
<td>Number of consecutive neighbor solicitation messages that are sent on the interface while duplicate address detection is performed.</td>
</tr>
<tr>
<td>ND reachable time</td>
<td>Displays the neighbor discovery reachable time (in milliseconds) assigned to this interface.</td>
</tr>
<tr>
<td>ND advertised reachable time</td>
<td>Displays the neighbor discovery reachable time (in milliseconds) advertised on this interface.</td>
</tr>
<tr>
<td>ND advertised retransmit interval</td>
<td>Displays the neighbor discovery retransmit interval (in milliseconds) advertised on this interface.</td>
</tr>
<tr>
<td>ND router advertisements</td>
<td>Specifies the interval (in seconds) for neighbor discovery router advertisements (RAs) sent on this interface and the amount of time before the advertisements expire.</td>
</tr>
<tr>
<td></td>
<td>As of Cisco IOS Release 12.4(2)T, this field displays the default router preference (DRP) value sent by this device on this interface.</td>
</tr>
<tr>
<td>ND advertised default router</td>
<td>The DRP for the device on a specific interface.</td>
</tr>
<tr>
<td>preference is Medium</td>
<td></td>
</tr>
</tbody>
</table>

The `show ipv6 interface` command displays information about attributes that may be associated with an IPv6 address assigned to the interface.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANY</td>
<td>Anycast. The address is an anycast address, as specified when configured using the <code>ipv6 address</code> command.</td>
</tr>
<tr>
<td>CAL</td>
<td>Calendar. The address is timed and has valid and preferred lifetimes.</td>
</tr>
<tr>
<td>DEP</td>
<td>Deprecated. The timed address is deprecated.</td>
</tr>
<tr>
<td>DUP</td>
<td>Duplicate. The address is a duplicate, as determined by duplicate address detection (DAD). To re-attampt DAD, the user must use the <code>shutdown</code> or <code>no shutdown</code> command on the interface.</td>
</tr>
<tr>
<td>EUI</td>
<td>EUI-64 based. The address was generated using EUI-64.</td>
</tr>
<tr>
<td>OFF</td>
<td>Offlink. The address is offlink.</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>OOD</td>
<td>Overly optimistic DAD. DAD will not be performed for this address. This attribute applies to virtual addresses.</td>
</tr>
<tr>
<td>PRE</td>
<td>Preferred. The timed address is preferred.</td>
</tr>
<tr>
<td>TEN</td>
<td>Tentative. The address is in a tentative state per DAD.</td>
</tr>
<tr>
<td>UNA</td>
<td>Unactivated. The virtual address is not active and is in a standby state.</td>
</tr>
<tr>
<td>VIRT</td>
<td>Virtual. The address is virtual and is managed by HSRP, VRRP, or GLBP.</td>
</tr>
</tbody>
</table>

show ipv6 interface Command Using the brief Keyword

The following is sample output from the `show ipv6 interface` command when entered with the `brief` keyword:

```
# show ipv6 interface brief
Ethernet0 is up, line protocol is up
  [up/up] unassigned
Ethernet1 is up, line protocol is up
  2001:0DB8:1000::/29
  [up/up]
Ethernet2 is up, line protocol is up
  2001:0DB8:2000::/29
  [up/up]
Ethernet3 is up, line protocol is up
  2001:0DB8:3000::/29
  [up/up]
Ethernet4 is up, line protocol is down
  2001:0DB8:4000::/29
  [administratively down/down]
Ethernet5 is up, line protocol is down
  2001:123::210:7BFF:FEC2:ACD8
Interface Status IPv6 Address
Ethernet0 up 3FFE:C00:0:1:260:3EFF:FE11:6770
Ethernet1 up unassigned
Ethernet2 up 3FFE:C00:0:2:260:3EFF:FE11:6772
Ethernet3 up administratively down unassigned
Ethernet4 up administratively down unassigned
Ethernet5 up administratively down unassigned
Serial10 up unnumbered (Ethernet0)
Tunnel10 up 3FFE:700:20:1::12
```

IPv6 Interface with ND Prefix Configured

This sample output shows the characteristics of an interface that has generated a prefix from a local IPv6 prefix pool:

```
# show ipv6 interface Ethernet 0/0 prefix
interface Ethernet0/0
ipv6 address 2001:0DB8::1/64
ipv6 address 2001:0DB8::2/64
```
ipv6 nd prefix 2001:0DB8:2::/64
ipv6 nd prefix 2001:0DB8:3::/64 2592000 604800 off-link
end

IPv6 Prefix Advertisements Ethernet0/0
Codes: A - Address, P - Prefix-Advertisement, O - Pool
U - Per-user prefix, D - Default
N - Not advertised, C - Calendar

default [LA] Valid lifetime 2592000, preferred lifetime 604800
AD 2001:0DB8:1::/64 [LA] Valid lifetime 2592000, preferred lifetime 604800
APD 2001:0DB8:2::/64 [LA] Valid lifetime 2592000, preferred lifetime 604800
P 2001:0DB8:3::/64 [A] Valid lifetime 2592000, preferred lifetime 604800

The default prefix shows the parameters that are configured using the ipv6 nd prefix default command.

IPv6 Interface with DRP Configured

This sample output shows the state of the DRP preference value as advertised by this device through an interface:

```
# show ipv6 interface gigabitethernet 0/1
GigabitEthernet0/1 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::130
Description: Management network (dual stack)
Global unicast address(es):
  FEC0:240:104:1000::130, subnet is FEC0:240:104:1000::/64
Joined group address(es):
  FF02::1
  FF02::2
  FF02::1:FF00:130
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Low
Hosts use stateless autoconfig for addresses.
```

IPv6 Interface with HSRP Configured

When HSRP IPv6 is first configured on an interface, the interface IPv6 link-local address is marked unactive (UNA) because it is no longer advertised, and the HSRP IPv6 virtual link-local address is added to the virtual link-local address list with the UNA and tentative DAD (TEN) attributes set. The interface is also programmed to listen for the HSRP IPv6 multicast address.

This sample output shows the status of UNA and TEN attributes, when HSRP IPv6 is configured on an interface:

```
# show ipv6 interface ethernet 0/0
Ethernet0/0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::2::2 [UNA]
Virtual link-local address(es):
```
FE80::205:73FF:FEA0:1 [UNA/TEN]
Global unicast address(es):
 2001:2::2, subnet is 2001:2::/64
Joined group address(es):
 FF02::1
 FF02::2
 FF02::66
 FF02::1:FF00:2
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ND DAD is enabled, number of DAD attempts: 1

After the HSRP group becomes active, the UNA and TEN attributes are cleared, and the overly optimistic DAD (OOD) attribute is set. The solicited node multicast address for the HSRP virtual IPv6 address is also added to the interface.

This sample output shows the status of UNA, TEN and OOD attributes, when HSRP group is activated:

```
# show ipv6 interface ethernet 0/0
Ethernet0/0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80:2::2 [UNA]
Virtual link-local address(es):
  FE80::205:73FF:FEA0:1 [UNA/TEN]
Global unicast address(es):
  2001:2::2, subnet is 2001:2::/64
Joined group address(es):
  FF02::1
  FF02::2
  FF02::66
  FF02::1:FF00:2
  FF02::1:FFA0:1
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
```

The table below describes additional significant fields shown in the displays for the `show ipv6 interface` command with HSRP configured.

Table 32: show ipv6 interface Command with HSRP Configured Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 is enabled, link-local address is FE80:2::2 [UNA]</td>
<td>The interface IPv6 link-local address is marked UNA because it is no longer advertised.</td>
</tr>
<tr>
<td>FE80::205:73FF:FEA0:1 [UNA/TEN]</td>
<td>The virtual link-local address list with the UNA and TEN attributes set.</td>
</tr>
<tr>
<td>FF02::66</td>
<td>HSRP IPv6 multicast address.</td>
</tr>
<tr>
<td>FE80::205:73FF:FEA0:1 [OPT]</td>
<td>HSRP becomes active, and the HSRP virtual address marked OPT.</td>
</tr>
<tr>
<td>FF02::1:FFA0:1</td>
<td>HSRP solicited node multicast address.</td>
</tr>
</tbody>
</table>
IPv6 Interface with Minimum RA Interval Configured

When you enable Mobile IPv6 on an interface, you can configure a minimum interval between IPv6 router advertisement (RA) transmissions. The `show ipv6 interface` command output reports the minimum RA interval, when configured. If the minimum RA interval is not explicitly configured, then it is not displayed.

In the following example, the maximum RA interval is configured as 100 seconds, and the minimum RA interval is configured as 60 seconds on Ethernet interface 1/0:

```
(config-if)# ipv6 nd ra-interval 100 60
```

Subsequent use of the `show ipv6 interface` then displays the interval as follows:

```
(config)# show ipv6 interface ethernet 1/0
Ethernet1/0 is administratively down, line protocol is down
IPv6 is enabled, link-local address is FE80::A8BB:CCFF:FE00:5A01 [TEN]
No Virtual link-local address(es):
No global unicast address is configured
Joined group address(es):
   FF02::1
   FF02::2
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachable errors are sent
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 60 to 100 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Hosts use stateless autoconfig for addresses.

In the following example, the maximum RA interval is configured as 100 milliseconds (ms), and the minimum RA interval is configured as 60 ms on Ethernet interface 1/0:

```
(config)# show ipv6 interface ethernet 1/0
Ethernet1/0 is administratively down, line protocol is down
IPv6 is enabled, link-local address is FE80::A8BB:CCFF:FE00:5A01 [TEN]
No Virtual link-local address(es):
No global unicast address is configured
Joined group address(es):
 FF02::1
 FF02::2
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachable errors are sent
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 60 to 100 milliseconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Hosts use stateless autoconfig for addresses.
```
The table below describes additional significant fields shown in the displays for the `show ipv6 interface` command with minimum RA interval information configured.

**Table 33: show ipv6 interface Command with Minimum RA Interval Information Configuration Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND router advertisements are sent every 60 to 100 seconds</td>
<td>ND RAs are sent at an interval randomly selected from a value between the minimum and maximum values. In this example, the minimum value is 60 seconds, and the maximum value is 100 seconds.</td>
</tr>
<tr>
<td>ND router advertisements are sent every 60 to 100 milliseconds</td>
<td>ND RAs are sent at an interval randomly selected from a value between the minimum and maximum values. In this example, the minimum value is 60 ms, and the maximum value is 100 ms.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 nd prefix</code></td>
<td>Configures which IPv6 prefixes are included in IPv6 router advertisements.</td>
</tr>
<tr>
<td><code>ipv6 nd ra interval</code></td>
<td>Configures the interval between IPv6 RA transmissions on an interface.</td>
</tr>
<tr>
<td><code>show ip interface</code></td>
<td>Displays the usability status of interfaces configured for IP.</td>
</tr>
</tbody>
</table>
show ipv6 mfib

To display the forwarding entries and interfaces in the IPv6 Multicast Forwarding Information Base (MFIB), use the `show ipv6 mfib` command in user EXEC or privileged EXEC mode.

```
show ipv6 mfib [vrf vrf-name] [all | linkscope | verbose | group-address-name | ipv6-prefix / prefix-length | source-address-name | interface | status | summary]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>all</td>
<td>(Optional) Displays all forwarding entries and interfaces in the IPv6 MFIB.</td>
</tr>
<tr>
<td>linkscope</td>
<td>(Optional) Displays the link-local groups.</td>
</tr>
<tr>
<td>verbose</td>
<td>(Optional) Provides additional information, such as the MAC encapsulation header and platform-specific information.</td>
</tr>
<tr>
<td>ipv6-prefix</td>
<td>(Optional) The IPv6 network assigned to the interface. The default IPv6 prefix is 128. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>/ prefix-length</td>
<td>(Optional) The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.</td>
</tr>
<tr>
<td>group-address-name</td>
<td>(Optional) IPv6 address or name of the multicast group.</td>
</tr>
<tr>
<td>source-address-name</td>
<td>(Optional) IPv6 address or name of the multicast group.</td>
</tr>
<tr>
<td>interface</td>
<td>(Optional) Interface settings and status.</td>
</tr>
<tr>
<td>status</td>
<td>(Optional) General settings and status.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (>)

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ipv6 mfib` command to display MFIB entries; and forwarding interfaces, and their traffic statistics. This command can be enabled on virtual IP (VIP) if the router is operating in distributed mode.

A forwarding entry in the MFIB has flags that determine the default forwarding and signaling behavior to use for packets matching the entry. The entry also has per-interface flags that further specify the forwarding
behavior for packets received or forwarded on specific interfaces. The table below describes the MFIB forwarding entries and interface flags.

### Table 34: MFIB Entries and Interface Flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Forward--Data is forwarded out of this interface.</td>
</tr>
<tr>
<td>A</td>
<td>Accept--Data received on this interface is accepted for forwarding.</td>
</tr>
<tr>
<td>IC</td>
<td>Internal copy--Deliver to the router a copy of the packets received or forwarded on this interface.</td>
</tr>
<tr>
<td>NS</td>
<td>Negate signal--Reverse the default entry signaling behavior for packets received on this interface.</td>
</tr>
<tr>
<td>DP</td>
<td>Do not preserve--When signaling the reception of a packet on this interface, do not preserve a copy of it (discard it instead).</td>
</tr>
<tr>
<td>SP</td>
<td>Signal present--The reception of a packet on this interface was just signaled.</td>
</tr>
<tr>
<td>S</td>
<td>Signal--By default, signal the reception of packets matching this entry.</td>
</tr>
<tr>
<td>C</td>
<td>Perform directly connected check for packets matching this entry. Signal the reception if packets were originated by a directly connected source.</td>
</tr>
</tbody>
</table>

### Examples

The following example displays the forwarding entries and interfaces in the MFIB. The router is configured for fast switching, and it has a receiver joined to FF05::1 on Ethernet1/1 and a source (2001::1:1:20) sending on Ethernet1/2:

```
show ipv6 mfib
IP Multicast Forwarding Information Base
Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag, AR - Activity Required, D - Drop
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
Interface Flags: A - Accept, F - Forward, NS - Negate Signalling
 IC - Internal Copy, NP - Not platform switched
 SP - Signal Present
Interface Counts: FS Pkt Count/PS Pkt Count
(*,FF00::/8) Flags: C
 Forwarding: 0/0/0/0, Other: 0/0/0
 Tunnel0 Flags: NS
(*,FF00::/15) Flags: D
 Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF05:::1) Flags: C
 Forwarding: 2/0/100/0, Other: 0/0/0
 Tunnel0 Flags: A NS
 Ethernet1/1 Flags: F NS
 Pkts: 3/2
(2001::1:1:200,FF05:::1) Flags:
 Forwarding: 5/0/100/0, Other: 0/0/0
 Ethernet1/2 Flags: A
 Ethernet1/1 Flags: F NS
 Pkts: 3/2
(*,FF10::/15) Flags: D
 Forwarding: 0/0/0/0, Other: 0/0/0
```

The table below describes the significant fields shown in the display.
## Table 35: `show ipv6 mfib` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Flags</td>
<td>Information about the entry.</td>
</tr>
<tr>
<td>Forwarding Counts</td>
<td>Statistics on the packets that are received from and forwarded to at least one interface.</td>
</tr>
<tr>
<td>Pkt Count</td>
<td>Total number of packets received and forwarded since the creation of the multicast forwarding state to which this counter applies.</td>
</tr>
<tr>
<td>Pkts per second</td>
<td>Number of packets received and forwarded per second.</td>
</tr>
<tr>
<td>Avg Pkt Size</td>
<td>Total number of bytes divided by the total number of packets for this multicast forwarding state. There is no direct display for the total number of bytes. You can calculate the total number of bytes by multiplying the average packet size by the packet count.</td>
</tr>
<tr>
<td>Kbits per second</td>
<td>Bytes per second divided by packets per second divided by 1000.</td>
</tr>
<tr>
<td>Other counts</td>
<td>Statistics on the received packets. These counters include statistics about the packets received and forwarded and packets received but not forwarded.</td>
</tr>
<tr>
<td>Interface Flags</td>
<td>Information about the interface.</td>
</tr>
<tr>
<td>Interface Counts</td>
<td>Interface statistics.</td>
</tr>
</tbody>
</table>

The following example shows forwarding entries and interfaces in the MFIB, with a group address of FF03:1::1 specified:

```
show ipv6 mfib FF03:1::1
IP Multicast Forwarding Information Base
Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag,
 AR - Activity Required, D - Drop
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
Interface Flags: A - Accept, F - Forward, NS - Negate Signalling
 IC - Internal Copy, NP - Not platform switched
 SP - Signal Present
Interface Counts: FS Pkt Count/PS Pkt Count
 *(FF03:1::1) Flags:C
 Forwarding: 0/0/0/0, Other: 0/0/0/0
 Tunnell Flags:A NS
 GigabitEthernet5/0.25 Flags:F NS
 Pkts: 0/0
 GigabitEthernet5/0.24 Flags:F NS
 Pkts: 0/0
 *(5002:1::2,FF03:1::1) Flags:
 Forwarding: 71505/0/50/0, Other: 42/0/42
 GigabitEthernet5/0 Flags:A
 GigabitEthernet5/0.19 Flags:F NS
 Pkts: 239/24
 GigabitEthernet5/0.20 Flags:F NS
 Pkts: 239/24
 GigabitEthernet5/0.21 Flags:F NS
 Pkts: 238/24
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
The following example shows forwarding entries and interfaces in the MFIB, with a group address of FF03:1::1 and a source address of 5002:1::2 specified:

```
show ipv6 mfib FF03:1::1 5002:1::2
```

```
IP Multicast Forwarding Information Base
Entry Flags:C - Directly Connected, S - Signal, IA - Inherit A flag, AR - Activity Required, D - Drop
Forwarding Counts:Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts:Total/RPF failed/ Other drops
Interface Flags:A - Accept, F - Forward, NS - Negate Signalling
 IC - Internal Copy, NP - Not platform switched
 SP - Signal Present
Interface Counts:FS Pkt Count/PS Pkt Count
(5002:1::2,FF03:1::1) Flags:
 Forwarding:71505/0/50/0, Other:42/0/42
 GigabitEthernet5/0 Flags:A
 GigabitEthernet5/0.19 Flags:F NS
 Pkts:239/24
 GigabitEthernet5/0.20 Flags:F NS
 Pkts:239/24
```

The following example shows forwarding entries and interfaces in the MFIB, with a group address of FF03:1::1 and a default prefix of 128:

```
show ipv6 mfib FF03:1::1/128
```

```
IP Multicast Forwarding Information Base
Entry Flags:C - Directly Connected, S - Signal, IA - Inherit A flag, AR - Activity Required, D - Drop
Forwarding Counts:Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts:Total/RPF failed/ Other drops
Interface Flags:A - Accept, F - Forward, NS - Negate Signalling
 IC - Internal Copy, NP - Not platform switched
 SP - Signal Present
Interface Counts:FS Pkt Count/PS Pkt Count
(*,FF03:1::1) Flags:C
 Forwarding:0/0/0/0, Other:0/0/0
 Tunnell Flags:A NS
 GigabitEthernet5/0.25 Flags:F NS
 Pkts:0/0
 GigabitEthernet5/0.24 Flags:F NS
 Pkts:0/0
```

The following example shows forwarding entries and interfaces in the MFIB, with a group address of FFE0 and a prefix of 15:

```
show ipv6 mfib FFE0::/15
```

```
```
IP Multicast Forwarding Information Base

Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag, AR - Activity Required, K - Keepalive

Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second

Other counts: Total/RPF failed/Other drops

Interface Flags: A - Accept, F - Forward, NS - Negate Signalling
IC - Internal Copy, NP - Not platform switched
SP - Signal Present

Interface Counts: FS Pkt Count/PS Pkt Count

(*,FFE0::/15) Flags: D
Forwarding: 0/0/0/0, Other: 0/0/0/0

The following example shows output of the `show ipv6 mfib` command used with the `verbose` keyword. It shows forwarding entries and interfaces in the MFIB and additional information such as the MAC encapsulation header and platform-specific information.

```
show ipv6 mfib ff33::1:1 verbose
```

IP Multicast Forwarding Information Base

Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag, AR - Activity Required, K - Keepalive

Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second

Other counts: Total/RPF failed/Other drops

Platform per slot HW-Forwarding Counts: Pkt Count/Byte Count

Platform flags: HF - Forwarding entry, HB - Bridge entry, HD - NonRPF Drop entry, NP - Not platform switchable, RPL - RPF-ltl linkage, MCG - Mcast change, ERR - S/w Error Flag, RTY - In RetryQ, LP - L3 pending, MP - Met pending, AP - ACL pending

Interface Flags: A - Accept, F - Forward, NS - Negate Signalling
IC - Internal Copy, NP - Not platform switched
SP - Signal Present

Interface Counts: Distributed FS Pkt Count/FS Pkt Count/PS Pkt Count

(10::2,FF33::1:1) Flags: K
RP Forwarding: 0/0/0/0, Other: 0/0/0
LC Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwd: 0/0/0/0, Other: NA/NA/NA
Slot 6: HW Forwarding: 0/0, Platform Flags: HF RPL
Slot 1: HW Forwarding: 0/0, Platform Flags: HF RPL
Vlan10 Flags: A
Vlan30 Flags: F NS
Pkts: 0/0/0 MAC: 33330001000100D0FFFE180086DD

The table below describes the fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform flags</td>
<td>Information about the platform.</td>
</tr>
<tr>
<td>Platform per slot HW-Forwarding Counts</td>
<td>Total number of packets per bytes forwarded.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 mfib active</code></td>
<td>Displays the rate at which active sources are sending to multicast groups.</td>
</tr>
<tr>
<td><code>show ipv6 mfib count</code></td>
<td>Displays summary traffic statistics from the MFIB about the group and source.</td>
</tr>
<tr>
<td><code>show ipv6 mfib interface</code></td>
<td>Displays information about IPv6 multicast-enabled interfaces and their forwarding status.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>show ipv6 mfib status</code></td>
<td>Displays the general MFIB configuration and operational status.</td>
</tr>
<tr>
<td><code>show ipv6 mfib summary</code></td>
<td>Displays summary information about the number of IPv6 MFIB entries (including link-local groups) and interfaces.</td>
</tr>
</tbody>
</table>
show ipv6 mld groups

To display the multicast groups that are directly connected to the router and that were learned through Multicast Listener Discovery (MLD), use the `show ipv6 mld groups` command in user EXEC or privileged EXEC mode.

```
show ipv6 mld [vrf vrf-name] groups [link-local] [{group-namegroup-address} [interface-type interface-number] [{detail | explicit}]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>link-local</td>
<td>(Optional) Displays the link-local groups.</td>
</tr>
<tr>
<td>group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>interface-type interface-number</td>
<td>(Optional) Interface type and number.</td>
</tr>
<tr>
<td>detail</td>
<td></td>
</tr>
<tr>
<td>explicit</td>
<td></td>
</tr>
</tbody>
</table>

### Command Modes

User EXEC (>)

Privileged EXEC (#)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

If you omit all optional arguments, the `show ipv6 mld groups` command displays by group address and interface type and number all directly connected multicast groups, including link-local groups (where the `link-local` keyword is not available) used.

### Examples

The following is sample output from the `show ipv6 mld groups` command. It shows all of the groups joined by Fast Ethernet interface 2/1, including link-local groups used by network protocols.

```
show ipv6 mld groups FastEthernet 2/1
MLD Connected Group Membership
Group Address Interface Uptime Expires
FF02::2 FastEthernet2/1 3d18h never
FF02::D FastEthernet2/1 3d18h never
FF02::16 FastEthernet2/1 3d18h never
FF02::1:FF00:1 FastEthernet2/1 3d18h 00:00:27
FF02::1:FF00:79 FastEthernet2/1 3d18h never
FF02::1:FF23:83C2 FastEthernet2/1 3d18h 00:00:22
FF02::1:FFAF:2C39 FastEthernet2/1 3d18h never
FF02::1:FFAF::1 FastEthernet2/1 3d18h 00:00:26
```

The following is sample output from the `show ipv6 mld groups` command using the `detail` keyword:
# show ipv6 mld groups detail
Interface: Ethernet2/1/1
Group: FF33::1:1:1
Uptime: 00:00:11
Router mode: INCLUDE
Host mode: INCLUDE
Last reporter: FE80::250:54FF:FE60:3B14

Group source list:
<table>
<thead>
<tr>
<th>Source Address</th>
<th>Uptime</th>
<th>Expires</th>
<th>Fwd</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004:4::6</td>
<td>00:00:11</td>
<td>00:04:08</td>
<td>Yes</td>
<td>Remote Ac 4</td>
</tr>
</tbody>
</table>

The following is sample output from the `show ipv6 mld groups` command using the `explicit` keyword:

# show ipv6 mld groups explicit
Ethernet1/0, FF05::1
Up:00:43:11 EXCLUDE(0/1) Exp:00:03:17
Host Address FF80::A8BB:CCFF:FE00:800
Mode: EXCLUDE

Ethernet1/0, FF05::6
Up:00:42:22 INCLUDE(1/0) Exp:not used
Host Address FF80::A8BB:CCFF:FE00:800
Mode: INCLUDE
300::1
300::2
300::3
Ethernet1/0 - Interface

The table below describes the significant fields shown in the display.

**Table 37: show ipv6 mld groups Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>Address of the multicast group.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface through which the group is reachable.</td>
</tr>
<tr>
<td>Uptime</td>
<td>How long (in hours, minutes, and seconds) this multicast group has been known.</td>
</tr>
<tr>
<td>Expires</td>
<td>How long (in hours, minutes, and seconds) until the entry is removed from the MLD groups table. The expiration timer shows &quot;never&quot; if the router itself has joined the group, and the expiration timer shows &quot;not used&quot; when the router mode of the group is INCLUDE. In this situation, the expiration timers on the source entries are used.</td>
</tr>
<tr>
<td>Last reporter:</td>
<td>Last host to report being a member of the multicast group.</td>
</tr>
</tbody>
</table>
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags Ac 4</td>
<td>Flags counted toward the MLD state limits configured.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 mld query-interval</td>
<td>Configures the frequency at which the Cisco IOS software sends MLD host-query messages.</td>
</tr>
</tbody>
</table>
**show ipv6 mld interface**

To display multicast-related information about an interface, use the `show ipv6 mld interface` command in user EXEC or privileged EXEC mode.

```
show ipv6 mld [vrf vrf-name] interface [type number]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrf vrf-name</code></td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td><code>type number</code></td>
<td>(Optional) Interface type and number.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (>

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you omit the optional `type` and `number` arguments, the `show ipv6 mld interface` command displays information about all interfaces.

**Examples**

The following is sample output from the `show ipv6 mld interface` command for Ethernet interface 2/1/1:

```
show ipv6 mld interface Ethernet 2/1/1
Global State Limit : 2 active out of 2 max
Loopback0 is administratively down, line protocol is down
 Internet address is ::/0
 .
 .
Ethernet2/1/1 is up, line protocol is up
 Internet address is FE80::260:3EFF:FE86:5649/10
 MLD is enabled on interface
 Current MLD version is 2
 MLD query interval is 125 seconds
 MLD querier timeout is 255 seconds
 MLD max query response time is 10 seconds
 Last member query response interval is 1 seconds
 Interface State Limit : 2 active out of 3 max
 State Limit permit access list:
 MLD activity: 83 joins, 63 leaves
 MLD querying router is FE80::260:3EFF:FE86:5649 (this system)
```

The table below describes the significant fields shown in the display.

**Table 38: show ipv6 mld interface Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global State Limit: 2 active out of 2 max</td>
<td>Two globally configured MLD states are active.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Ethernet2/1/1 is up, line protocol is up</td>
<td>Interface type, number, and status.</td>
</tr>
<tr>
<td>Internet address is...</td>
<td>Internet address of the interface and subnet mask being applied to the interface.</td>
</tr>
<tr>
<td>MLD is enabled in interface</td>
<td>Indicates whether Multicast Listener Discovery (MLD) has been enabled on the interface with the <code>ipv6 multicast-routing</code> command.</td>
</tr>
<tr>
<td>Current MLD version is 2</td>
<td>The current MLD version.</td>
</tr>
<tr>
<td>MLD query interval is 125 seconds</td>
<td>Interval (in seconds) at which the Cisco IOS software sends MLD query messages, as specified with the <code>ipv6 mld query-interval</code> command.</td>
</tr>
<tr>
<td>MLD querier timeout is 255 seconds</td>
<td>The length of time (in seconds) before the router takes over as the querier for the interface, as specified with the <code>ipv6 mld query-timeout</code> command.</td>
</tr>
<tr>
<td>MLD max query response time is 10 seconds</td>
<td>The length of time (in seconds) that hosts have to answer an MLD Query message before the router deletes their group, as specified with the <code>ipv6 mld query-max-response-time</code> command.</td>
</tr>
<tr>
<td>Last member query response interval is 1</td>
<td>Used to calculate the maximum response code inserted in group and source-specific query. Also used to tune the &quot;leave latency&quot; of the link. A lower value results in reduced time to detect the last member leaving the group.</td>
</tr>
<tr>
<td>Interface State Limit: 2 active out of 3</td>
<td>Two out of three configured interface states are active.</td>
</tr>
<tr>
<td>State Limit permit access list: change</td>
<td>Activity for the state permit access list.</td>
</tr>
<tr>
<td>MLD activity: 83 joins, 63 leaves</td>
<td>Number of groups joins and leaves that have been received.</td>
</tr>
<tr>
<td>MLD querying router is</td>
<td>IPv6 address of the querying router.</td>
</tr>
<tr>
<td>FE80::260:3EFF:FE86:5649 (this system)</td>
<td></td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 mld join-group</code></td>
<td>Configures MLD reporting for a specified group and source.</td>
</tr>
<tr>
<td><code>ipv6 mld query-interval</code></td>
<td>Configures the frequency at which the Cisco IOS software sends MLD host-query messages.</td>
</tr>
</tbody>
</table>
show ipv6 mld snooping

Use the **show ipv6 mld snooping** command in EXEC mode to display IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping configuration of the switch or the VLAN.

**show ipv6 mld snooping [vlan vlan-id]**

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>vlan vlan-id</strong></td>
<td>(Optional) Specify a VLAN; the range is 1 to 1001 and 1006 to 4094.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (>)

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to display MLD snooping configuration for the switch or for a specific VLAN.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6` global configuration command and reload the switch.

**Examples**

This is an example of output from the `show ipv6 mld snooping vlan` command. It shows snooping characteristics for a specific VLAN.

```shell
show ipv6 mld snooping vlan 100
Global MLD Snooping configuration:

MLD snooping : Enabled
MLDv2 snooping (minimal) : Enabled
Listener message suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000
Vlan 100:

MLD snooping : Disabled
MLDv1 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000
```

This is an example of output from the `show ipv6 mld snooping` command. It displays snooping characteristics for all VLANs on the switch.
show ipv6 mld snooping
Global MLD Snooping configuration:
-------------------------------------------
MLD snooping : Enabled
MLDv2 snooping (minimal) : Enabled
Listener message suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000

Vlan 1:
--------
MLD snooping : Disabled
MLDv1 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
Robustness variable : 1
Last listener query count : 2
Last listener query interval : 1000

Vlan 951:
--------
MLD snooping : Disabled
MLDv1 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 mld snooping</td>
<td>Enables and configures MLD snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td>sdm prefer</td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
</tbody>
</table>
show ipv6 mld ssm-map

To display Source Specific Multicast (SSM) mapping information, use the show ipv6 mld ssm-map static command in user EXEC or privileged EXEC mode.

**show ipv6 mld ssm-map [vrf vrf-name] ssm-map [source-address]**

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>source-address</td>
<td>(Optional) Source address associated with an MLD membership for a group identified by the access list.</td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the optional source-address argument is not used, all SSM mapping information is displayed.

**Examples**

The following example shows all SSM mappings for the router:

```
show ipv6 mld ssm-map
SSM Mapping : Enabled
DNS Lookup : Enabled
```

The following examples show SSM mapping for the source address 2001:0DB8::1:

```
show ipv6 mld ssm-map 2001:0DB8::1
Group address : 2001:0DB8::1
Group mode ssm : TRUE
Database : STATIC
Source list : 2001:0DB8::2
 2001:0DB8::3
```

```
Router# show ipv6 mld ssm-map 2001:0DB8::2
Group address : 2001:0DB8::2
Group mode ssm : TRUE
Database : DNS
Source list : 2001:0DB8::3
 2001:0DB8::1
```

The table below describes the significant fields shown in the displays.

**Table 39: show ipv6 mld ssm-map Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM Mapping</td>
<td>The SSM mapping feature is enabled.</td>
</tr>
</tbody>
</table>
The DNS lookup feature is automatically enabled when the SSM mapping feature is enabled.

Group address identified by a specific access list.

The identified group is functioning in SSM mode.

The router is configured to determine source addresses by checking static SSM mapping configurations.

The router is configured to determine source addresses using DNS-based SSM mapping.

Source address associated with a group identified by the access list.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Lookup</td>
<td>The DNS lookup feature is automatically enabled when the SSM mapping feature is enabled.</td>
</tr>
<tr>
<td>Group address</td>
<td>Group address identified by a specific access list.</td>
</tr>
<tr>
<td>Group mode ssm : TRUE</td>
<td>The identified group is functioning in SSM mode.</td>
</tr>
<tr>
<td>Database : STATIC</td>
<td>The router is configured to determine source addresses by checking static SSM mapping configurations.</td>
</tr>
<tr>
<td>Database : DNS</td>
<td>The router is configured to determine source addresses using DNS-based SSM mapping.</td>
</tr>
<tr>
<td>Source list</td>
<td>Source address associated with a group identified by the access list.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug ipv6 mld ssm-map</td>
<td>Displays debug messages for SSM mapping.</td>
</tr>
<tr>
<td>ipv6 mld ssm-map enable</td>
<td>Enables the SSM mapping feature for groups in the configured SSM range.</td>
</tr>
<tr>
<td>ipv6 mld ssm-map query dns</td>
<td>Enables DNS-based SSM mapping.</td>
</tr>
<tr>
<td>ipv6 mld ssm-map static</td>
<td>Configures static SSM mappings.</td>
</tr>
</tbody>
</table>
show ipv6 mld traffic

To display the Multicast Listener Discovery (MLD) traffic counters, use the `show ipv6 mld traffic` command in user EXEC or privileged EXEC mode.

```
show ipv6 mld [vrf vrf-name] traffic
```

**Syntax Description**

- **Syntax:**
  - `vrf vrf-name` (Optional) Specifies a virtual routing and forwarding (VRF) configuration.

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ipv6 mld traffic` command to check if the expected number of MLD protocol messages have been received and sent.

**Examples**

The following example displays the MLD protocol messages received and sent.

```
show ipv6 mld traffic

MLD Traffic Counters
Elapsed time since counters cleared:00:00:21

Received Sent
Valid MLD Packets 3 1
Queries 10
Reports 2 1
Leaves 0 0
Mtrace packets 0 0
Errors:
Malformed Packets 0
Bad Checksums 0
Martian source 0
Packets Received on MLD-disabled Interface 0
```

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed time since counters cleared</td>
<td>Indicates the amount of time (in hours, minutes, and seconds) since the counters cleared.</td>
</tr>
<tr>
<td>Valid MLD packets</td>
<td>Number of valid MLD packets received and sent.</td>
</tr>
<tr>
<td>Queries</td>
<td>Number of valid queries received and sent.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------------------------</td>
</tr>
<tr>
<td>Reports</td>
<td>Number of valid reports received and sent.</td>
</tr>
<tr>
<td>Leaves</td>
<td>Number of valid leaves received and sent.</td>
</tr>
<tr>
<td>Mtrace packets</td>
<td>Number of multicast trace packets received and sent.</td>
</tr>
<tr>
<td>Errors</td>
<td>Types of errors and the number of errors that have occurred.</td>
</tr>
</tbody>
</table>
show ipv6 mrib client

To display information about the clients of the Multicast Routing Information Base (MRIB), use the `show ipv6 mrib client` command in user EXEC or privileged EXEC mode.

```
show ipv6 mrib [vrf vrf-name] client [filter] [name {client-name | client-name : client-id}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>filter</td>
<td>(Optional) Displays information about MRIB flags that each client owns and that each client is interested in.</td>
</tr>
<tr>
<td>name</td>
<td>(Optional) The name of a multicast routing protocol that acts as a client of MRIB, such as MLD and PIM.</td>
</tr>
<tr>
<td>client-name : client-id</td>
<td>The name and ID of a multicast routing protocol that acts as a client of MRIB, such as MLD and PIM. The colon is required.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (`>`)  
Privileged EXEC (`#`)  

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `filter` keyword to display information about the MRIB flags each client owns and the flags in which each client is interested.

**Examples**

The following is sample output from the `show ipv6 mrib client` command:

```
show ipv6 mrib client
IP MRIB client-connections
igmp:145 (connection id 0)
pim:146 (connection id 1)
mfib ipv6:3 (connection id 2)
slot 3 mfib ipv6 rp agent:16 (connection id 3)
slot 1 mfib ipv6 rp agent:16 (connection id 4)
slot 0 mfib ipv6 rp agent:16 (connection id 5)
slot 4 mfib ipv6 rp agent:16 (connection id 6)
slot 2 mfib ipv6 rp agent:16 (connection id 7)
```

The table below describes the significant fields shown in the display.
### Table 41: show ipv6 mrib client Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>igmp:145 (connection id 0)</td>
<td>Client ID (client name:process ID)</td>
</tr>
<tr>
<td>pim:146 (connection id 1)</td>
<td></td>
</tr>
<tr>
<td>mfib ipv6:3 (connection id 2)</td>
<td></td>
</tr>
<tr>
<td>mfib ipv6 rp agent:16 (cid 3)</td>
<td></td>
</tr>
</tbody>
</table>
show ipv6 mrib route

To display Multicast Routing Information Base (MRIB) route information, use the `show ipv6 mrib route` command in user EXEC or privileged EXEC mode.

```
show ipv6 mrib [vrf vrf-name] route [[link-local] summary | [{source-addresssource-name | *} [groupname-or-address prefix-length]]]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>vrf vrf-name</th>
<th>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>link-local</td>
<td>(Optional) Displays the link-local groups.</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays the number of MRIB entries (including link-local groups) and interfaces present in the MRIB table.</td>
</tr>
<tr>
<td>source address-or-name</td>
<td>(Optional) IPv6 address or name of the source.</td>
</tr>
<tr>
<td>*</td>
<td>(Optional) Displays all MRIB route information.</td>
</tr>
<tr>
<td>groupname-or-address</td>
<td>(Optional) IPv6 address or name of the multicast group.</td>
</tr>
<tr>
<td>prefix-length</td>
<td>(Optional) IPv6 prefix length.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (`>`)

Privileged EXEC (`#`)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

All entries are created by various clients of the MRIB, such as Multicast Listener Discovery (MLD), Protocol Independent Multicast (PIM), and Multicast Forwarding Information Base (MFIB). The flags on each entry or interface serve as a communication mechanism between various clients of the MRIB. The entries reveal how PIM sends register messages for new sources and the action taken.

The `summary` keyword shows the count of all entries, including link-local entries.

The interface flags are described in the table below.

**Table 42: Description of Interface Flags**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Forward--Data is forwarded out of this interface</td>
</tr>
<tr>
<td>A</td>
<td>Accept--Data received on this interface is accepted for forwarding</td>
</tr>
<tr>
<td>IC</td>
<td>Internal copy</td>
</tr>
<tr>
<td>NS</td>
<td>Negate signal</td>
</tr>
</tbody>
</table>
Special entries in the MRIB indicate exceptions from the normal behavior. For example, no signaling or notification is necessary for arriving data packets that match any of the special group ranges. The special group ranges are as follows:

- Undefined scope (FFX0::/16)
- Node local groups (FFX1::/16)
- Link-local groups (FFX2::/16)
- Source Specific Multicast (SSM) groups (FF3X::/32).

For all the remaining (usually sparse-mode) IPv6 multicast groups, a directly connected check is performed and the PIM notified if a directly connected source arrives. This procedure is how PIM sends register messages for new sources.

### Examples

The following is sample output from the `show ipv6 mrib route` command using the `summary` keyword:

```
show ipv6 mrib route summary
MRIB Route-DB Summary
 No. of (*,G) routes = 52
 No. of (S,G) routes = 0
 No. of Route x Interfaces (RxI) = 10
```

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of (*, G) routes</td>
<td>Number of shared tree routes in the MRIB.</td>
</tr>
<tr>
<td>No. of (S, G) routes</td>
<td>Number of source tree routes in the MRIB.</td>
</tr>
<tr>
<td>No. of Route x Interfaces (RxI)</td>
<td>Sum of all the interfaces on each MRIB route entry.</td>
</tr>
</tbody>
</table>
show ipv6 mroute

To display the information in the PIM topology table in a format similar to the show ip mroute command, use the show ipv6 mroute command in user EXEC or privileged EXEC mode.

show ipv6 mroute [vrf vrf-name] [{link-local | [group-name | group-address [{source-address | source-name}]}]}] [summary] [count]

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>link-local</td>
<td>(Optional) Displays the link-local groups.</td>
</tr>
<tr>
<td>group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>source-address</td>
<td>source-name</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays a one-line, abbreviated summary of each entry in the IPv6 multicast routing table.</td>
</tr>
<tr>
<td>count</td>
<td>(Optional) Displays statistics from the Multicast Forwarding Information Base (MFIB) about the group and source, including number of packets, packets per second, average packet size, and bytes per second.</td>
</tr>
</tbody>
</table>

Command Default

The show ipv6 mroute command displays all groups and sources.

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The IPv6 multicast implementation does not have a separate mroute table. For this reason, the show ipv6 mroute command enables you to display the information in the PIM topology table in a format similar to the show ip mroute command.

If you omit all optional arguments and keywords, the show ipv6 mroute command displays all the entries in the PIM topology table (except link-local groups where the link-local keyword is available).

The Cisco IOS software populates the PIM topology table by creating (S,G) and (*,G) entries based on PIM protocol messages, MLD reports, and traffic. The asterisk (*) refers to all source addresses, the "S" refers to a single source address, and the "G" is the destination multicast group address. In creating (S, G) entries, the software uses the best path to that destination group found in the unicast routing table (that is, through Reverse Path Forwarding [RPF]).

Use the show ipv6 mroute command to display the forwarding status of each IPv6 multicast route.

Examples

The following is sample output from the show ipv6 mroute command:
The following is sample output from the `show ipv6 mroute` command with the `summary` keyword:

```
show ipv6 mroute ff07::1 summary
Multicast Routing Table
Flags:D - Dense, S - Sparse, B - Bidir Group, s - SSM Group,
 C - Connected, L - Local, I - Received Source Specific Host Report,
 P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set,
 J - Join SPT
Timers:Uptime/Expires
Interface state:Interface, State
(*, FF07::1), 00:04:55/00:02:36, RP 2001:0DB8:6::6, OIF count:1, flags:S
Incoming interface:Tunnel5
RPF nbr:6:6:6::6
Outgoing interface list:
 POS4/0, Forward, 00:02:17/00:01:12
(2001:0DB8:999::99, FF07::1), 00:02:17/00:01:12, OIF count:1, flags:SFT
Incoming interface:POS1/0
RPF nbr:2001:0DB8:999::99
Outgoing interface list:
 POS4/0, Forward, 00:02:17/00:03:27
```

The following is sample output from the `show ipv6 mroute` command with the `count` keyword:

```
show ipv6 mroute ff07::1 count
IP Multicast Statistics
71 routes, 24 groups, 0.04 average sources per group
Forwarding Counts:Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts:Total/RPF failed/Other drops(OIF-null, rate-limit etc)
Group:FF07::1
RP-tree:
 RP Forwarding:0/0/0/0, Other:0/0/0/0
 LC Forwarding:0/0/0/0, Other:0/0/0/0
Source:2001:0DB8:999::99,
 RP Forwarding:0/0/0/0, Other:0/0/0/0
 LC Forwarding:0/0/0/0, Other:0/0/0/0
 HW Forwd: 20000/0/92/0, Other:0/0/0/0
Tot. shown:Source count:1, pkt count:20000
```

The table below describes the significant fields shown in the display.
### Table 44: show ipv6 mroute Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Flags:</strong></td>
<td>Provides information about the entry.</td>
</tr>
<tr>
<td></td>
<td>• S--sparse. Entry is operating in sparse mode.</td>
</tr>
<tr>
<td></td>
<td>• s--SSM group. Indicates that a multicast group is within the SSM range of IP addresses. This flag is reset if the SSM range changes.</td>
</tr>
<tr>
<td></td>
<td>• C--connected. A member of the multicast group is present on the directly connected interface.</td>
</tr>
<tr>
<td></td>
<td>• L--local. The router itself is a member of the multicast group.</td>
</tr>
<tr>
<td></td>
<td>• I--received source specific host report. Indicates that an (S, G) entry was created by an (S, G) report. This flag is set only on the designated router (DR).</td>
</tr>
<tr>
<td></td>
<td>• P--pruned. Route has been pruned. The Cisco IOS software keeps this information so that a downstream member can join the source.</td>
</tr>
<tr>
<td></td>
<td>• R--RP-bit set. Indicates that the (S, G) entry is pointing toward the RP. This is typically prune state along the shared tree for a particular source.</td>
</tr>
<tr>
<td></td>
<td>• F--register flag. Indicates that the software is registering for a multicast source.</td>
</tr>
<tr>
<td></td>
<td>• T--SPT-bit set. Indicates that packets have been received on the shortest path source tree.</td>
</tr>
<tr>
<td></td>
<td>• J--join SPT. For (<em>, G) entries, indicates that the rate of traffic flowing down the shared tree is exceeding the SPT-Threshold value set for the group. (The default SPT-Threshold setting is 0 kbps.) When the J - Join shortest path tree (SPT) flag is set, the next (S, G) packet received down the shared tree triggers an (S, G) join in the direction of the source, thereby causing the router to join the source tree. The default SPT-Threshold value of 0 kbps is used for the group, and the J - Join SPT flag is always set on (</em>, G) entries and is never cleared. The router immediately switches to the shortest path source tree when traffic from a new source is received</td>
</tr>
<tr>
<td><strong>Timers:</strong></td>
<td>&quot;Uptime&quot; indicates per interface how long (in hours, minutes, and seconds) the entry has been in the IPv6 multicast routing table. &quot;Expires&quot; indicates per interface how long (in hours, minutes, and seconds) until the entry will be removed from the IPv6 multicast routing table.</td>
</tr>
<tr>
<td>Uptime/Expires</td>
<td></td>
</tr>
<tr>
<td><strong>Interface state:</strong></td>
<td>Indicates the state of the incoming or outgoing interface.</td>
</tr>
<tr>
<td></td>
<td>• Interface. Indicates the type and number of the interface listed in the incoming or outgoing interface list.</td>
</tr>
<tr>
<td></td>
<td>• Next-Hop. &quot;Next-Hop&quot; specifies the IP address of the downstream neighbor.</td>
</tr>
<tr>
<td></td>
<td>• State/Mode. &quot;State&quot; indicates that packets will either be forwarded, pruned, or null on the interface depending on whether there are restrictions due to access lists. &quot;Mode&quot; indicates that the interface is operating in sparse mode.</td>
</tr>
</tbody>
</table>
Entry in the IPv6 multicast routing table. The entry consists of the IPv6 address of the source router followed by the IPv6 address of the multicast group. An asterisk (*) in place of the source router indicates all sources.

Entries in the first format are referred to as (*, G) or "star comma G" entries. Entries in the second format are referred to as (S, G) or "S comma G" entries; (*, G) entries are used to build (S, G) entries.

RP Address of the RP router.

flags: Information set by the MRIB clients on this MRIB entry.

Incoming interface: Expected interface for a multicast packet from the source. If the packet is not received on this interface, it is discarded.

RPF nbr IP address of the upstream router to the RP or source.

Outgoing interface list: Interfaces through which packets will be forwarded. For (S,G) entries, this list will not include the interfaces inherited from the (*,G) entry.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(*, FF07::1) and (2001:0DB8:999::99)</td>
<td>Entry in the IPv6 multicast routing table. The entry consists of the IPv6 address of the source router followed by the IPv6 address of the multicast group. An asterisk (<em>) in place of the source router indicates all sources. Entries in the first format are referred to as (</em>, G) or &quot;star comma G&quot; entries. Entries in the second format are referred to as (S, G) or &quot;S comma G&quot; entries; (*, G) entries are used to build (S, G) entries.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ipv6 multicast-routing</strong></td>
<td>Enables multicast routing using PIM and MLD on all IPv6-enabled interfaces of the router and enables multicast forwarding.</td>
</tr>
<tr>
<td><strong>show ipv6 mroute</strong></td>
<td>Displays the forwarding entries and interfaces in the IPv6 MFIB.</td>
</tr>
</tbody>
</table>
show ipv6 mtu

To display maximum transmission unit (MTU) cache information for IPv6 interfaces, use the `show ipv6 mtu` command in user EXEC or privileged EXEC mode.

```
show ipv6 mtu [vrf vrfname]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf</td>
<td>(Optional) Displays an IPv6 Virtual Private Network (VPN) routing/forwarding instance (VRF).</td>
</tr>
<tr>
<td>vrfname</td>
<td>(Optional) Name of the IPv6 VRF.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (>)

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `vrf` keyword and `vrfname` argument allow you to view MTUs related to a specific VRF.

**Examples**

The following is sample output from the `show ipv6 mtu` command:

```
show ipv6 mtu
MTU Since Destination Address
1400 00:04:21 5000:1::3
1280 00:04:50 FE80::203:A0FF:FED6:141D
```

The following is sample output from the `show ipv6 mtu` command using the `vrf` keyword and `vrfname` argument. This example provides information about the VRF named vrfname1:

```
show ipv6 mtu vrf vrfname1
MTU Since Source Address Destination Address
1300 00:00:04 2001:0DB8:2 2001:0DB8:7
```

The table below describes the significant fields shown in the display.

**Table 45: show ipv6 mtu Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTU</td>
<td>MTU, which was contained in the Internet Control Message Protocol (ICMP) packet-too-big message, used for the path to the destination address.</td>
</tr>
<tr>
<td>Since</td>
<td>Age of the entry since the ICMP packet-too-big message was received.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Address contained in the received ICMP packet-too-big message. Packets originating from this router to this address should be no bigger than the given MTU.</td>
</tr>
</tbody>
</table>
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 mtu</td>
<td>Sets the MTU size of IPv6 packets sent on an interface.</td>
</tr>
</tbody>
</table>
show ipv6 nd destination

To display information about IPv6 host-mode destination cache entries, use the `show ipv6 nd destination` command in user EXEC or privileged EXEC mode.

```
show ipv6 nd destination[vrf vrf-name][interface-type interface-number]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>interface-type</td>
<td>(Optional) Specifies the Interface type.</td>
</tr>
<tr>
<td>interface-number</td>
<td>(Optional) Specifies the Interface number.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (>)
Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ipv6 nd destination` command to display information about IPv6 host-mode destination cache entries. If the `vrf vrf-name` keyword and argument pair is used, then only information about the specified VRF is displayed. If the `interface-type` and `interface-number` arguments are used, then only information about the specified interface is displayed.

**Examples**

```
show ipv6 nd destination
IPv6 ND destination cache (table: default)
Code: R - Redirect
 2001::1 [8]
 via FE80::A8BB:CCFF:FE00:5B00/Ethernet0/0
```

The following table describes the significant fields shown in the display.

**Table 46: show ipv6 nd destination Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: R - Redirect</td>
<td>Destinations learned through redirect.</td>
</tr>
<tr>
<td>2001::1 [8]</td>
<td>The value displayed in brackets is the time, in seconds, since the destination cache entry was last used.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 nd host mode strict</td>
<td>Enables the conformant, or strict, IPv6 host mode.</td>
</tr>
</tbody>
</table>
show ipv6 nd on-link prefix

To display information about on-link prefixes learned through router advertisements (RAs), use the `show ipv6 nd on-link prefix` command in user EXEC or privileged EXEC mode.

```
show ipv6 nd on-link prefix[vrf vrf-name][interface-type interface-number]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>interface-type</td>
<td>(Optional) Specifies the Interface type.</td>
</tr>
<tr>
<td>interface-number</td>
<td>(Optional) Specifies the Interface number.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (>)

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ipv6 nd on-link prefix` command to display information about on-link prefixes learned through RAs.

Prefixes learned from an RA may be inspected using the `show ipv6 nd on-link prefix` command. If the `vrf vrf-name` keyword and argument pair is used, then only information about the specified VRF is displayed. If the `interface-type` and `interface-number` arguments are used, then only information about the specified interface is displayed.

**Examples**

The following example displays information about on-link prefixes learned through RAs:

```
show ipv6 nd on-link prefix
IPv6 ND on-link Prefix (table: default), 2 prefixes
Code: A - Autonomous Address Config
A 2001::/64 [2591994/604794]
 router FE80::A8BB:CCFF:FE00:5A00/Ethernet0/0
2001:1:2::/64 [2591994/604794]
 router FE80::A8BB:CCFF:FE00:5A00/Ethernet0/0
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 nd host mode strict</td>
<td>Enables the conformant, or strict, IPv6 host mode.</td>
</tr>
</tbody>
</table>
show ipv6 neighbors

To display IPv6 neighbor discovery (ND) cache information, use the `show ipv6 neighbors` command in user EXEC or privileged EXEC mode.

```
show ipv6 neighbors [interface-type interface-number ipv6-address ipv6-hostname | statistics]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-type</code></td>
<td>(Optional) Specifies the type of the interface from which IPv6 neighbor information is to be displayed.</td>
</tr>
<tr>
<td><code>interface-number</code></td>
<td>(Optional) Specifies the number of the interface from which IPv6 neighbor information is to be displayed.</td>
</tr>
<tr>
<td><code>ipv6-address</code></td>
<td>(Optional) Specifies the IPv6 address of the neighbor.</td>
</tr>
<tr>
<td></td>
<td>This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td><code>ipv6-hostname</code></td>
<td>(Optional) Specifies the IPv6 hostname of the remote networking device.</td>
</tr>
<tr>
<td><code>statistics</code></td>
<td>(Optional) Displays ND cache statistics.</td>
</tr>
</tbody>
</table>

**Command Default**

All IPv6 ND cache entries are listed.

**Command Modes**

User EXEC (`~`)  
Privileged EXEC (`#`)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When the `interface-type` and `interface-number` arguments are not specified, cache information for all IPv6 neighbors is displayed. Specifying the `interface-type` and `interface-number` arguments displays only cache information about the specified interface.

Specifying the `statistics` keyword displays ND cache statistics.

The following is sample output from the `show ipv6 neighbors` command when entered with an interface type and number:

```
show ipv6 neighbors ethernet 2
IPv6 Address Age Link-layer Addr State Interface
2000::4:4:2 0 0003.a0d6.141e REACH Ethernet2
FE80::203:A0FF:FED6:141E 0 0003.a0d6.141e REACH Ethernet2
3001::4:45a - 0002.7d1a.9472 REACH Ethernet2
```

The following is sample output from the `show ipv6 neighbors` command when entered with an IPv6 address:
### show ipv6 neighbors

```
show ipv6 neighbors 2000:0:0:4::2
IPv6 Address Age Link-layer Addr State Interface
2000:0:0:4::2 0 0003.a0d6.141e REACH Ethernet2
```

The table below describes the significant fields shown in the displays.

**Table 47: show ipv6 neighbors Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Address</td>
<td>IPv6 address of neighbor or interface.</td>
</tr>
<tr>
<td>Age</td>
<td>Time (in minutes) since the address was confirmed to be reachable. A hyphen (-) indicates a static entry.</td>
</tr>
<tr>
<td>Link-layer Addr</td>
<td>MAC address. If the address is unknown, a hyphen (-) is displayed.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the neighbor cache entry. Following are the states for dynamic entries in the IPv6 neighbor discovery cache:</td>
</tr>
<tr>
<td></td>
<td>• INCMP (Incomplete)—Address resolution is being performed on the entry. A neighbor solicitation message has been sent to the solicited-node multicast address of the target, but the corresponding neighbor advertisement message has not yet been received.</td>
</tr>
<tr>
<td></td>
<td>• REACH (Reachable)—Positive confirmation was received within the last ReachableTime milliseconds that the forward path to the neighbor was functioning properly. While in REACH state, the device takes no special action as packets are sent.</td>
</tr>
<tr>
<td></td>
<td>• STALE—More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly. While in STALE state, the device takes no action until a packet is sent.</td>
</tr>
<tr>
<td></td>
<td>• DELAY—More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly. A packet was sent within the last DELAY_FIRST_PROBE_TIME seconds. If no reachability confirmation is received within DELAY_FIRST_PROBE_TIME seconds of entering the DELAY state, send a neighbor solicitation message and change the state to PROBE.</td>
</tr>
<tr>
<td></td>
<td>• PROBE—A reachability confirmation is actively sought by resending neighbor solicitation messages every RetransTimer milliseconds until a reachability confirmation is received.</td>
</tr>
<tr>
<td></td>
<td>• ?? ???--Unknown state.</td>
</tr>
</tbody>
</table>

Following are the possible states for static entries in the IPv6 neighbor discovery cache:

- INCMP (Incomplete)—The interface for this entry is down.
- REACH (Reachable)—The interface for this entry is up.

**Note** Reachability detection is not applied to static entries in the IPv6 neighbor discovery cache; therefore, the descriptions for the INCMP (Incomplete) and REACH (Reachable) states are different for dynamic and static cache entries.

| Interface | Interface from which the address was reachable. |
The following is sample output from the `show ipv6 neighbors` command with the `statistics` keyword:

```
show ipv6 neighbor statistics

IPv6 ND Statistics
Entries 2, High-water 2, Gleaned 1, Scavenged 0
Entry States
 INCMP 0 REACH 0 STA 2 GLEAN 0 DELAY 0 PROBE 0
Resolutions (INCMP)
 Requested 1, timeouts 0, resolved 1, failed 0
 In-progress 0, High-water 1, Throttled 0, Data discards 0
Resolutions (PROBE)
 Requested 3, timeouts 0, resolved 3, failed 0
```

The table below describes the significant fields shown in this display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>Total number of ND neighbor entries in the ND cache.</td>
</tr>
<tr>
<td>High-Water</td>
<td>Maximum amount (so far) of ND neighbor entries in ND cache.</td>
</tr>
<tr>
<td>Gleaned</td>
<td>Number of ND neighbor entries gleaned (that is, learned from a neighbor NA or other ND packet).</td>
</tr>
<tr>
<td>Scavenged</td>
<td>Number of stale ND neighbor entries that have timed out and been removed from the cache.</td>
</tr>
<tr>
<td>Entry States</td>
<td>Number of ND neighbor entries in each state.</td>
</tr>
</tbody>
</table>
| Resolutions (INCMP) | Statistics for neighbor resolutions attempted in INCMP state (that is, resolutions prompted by a data packet). Details about the resolutions attempted in INCMP state are follows:  
  • Requested--Total number of resolutions requested.  
  • Timeouts--Number of timeouts during resolutions.  
  • Resolved--Number of successful resolutions.  
  • Failed--Number of unsuccessful resolutions.  
  • In-progress--Number of resolutions in progress.  
  • High-water--Maximum number (so far) of resolutions in progress.  
  • Throttled--Number of times resolution request was ignored due to maximum number of resolutions in progress limit.  
  • Data discards--Number of data packets discarded that are awaiting neighbor resolution. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolutions (PROBE)</td>
<td>Statistics for neighbor resolutions attempted in PROBE state (that is, re-resolutions of existing entries prompted by a data packet):</td>
</tr>
<tr>
<td></td>
<td>• Requested--Total number of resolutions requested.</td>
</tr>
<tr>
<td></td>
<td>• Timeouts--Number of timeouts during resolutions.</td>
</tr>
<tr>
<td></td>
<td>• Resolved--Number of successful resolutions.</td>
</tr>
<tr>
<td></td>
<td>• Failed--Number of unsuccessful resolutions.</td>
</tr>
</tbody>
</table>
show ipv6 ospf

To display general information about Open Shortest Path First (OSPF) routing processes, use the `show ipv6 ospf` command in user EXEC or privileged EXEC mode.

```
show ipv6 ospf [process-id] [area-id] [rate-limit]
```

**Syntax Description**
- **process-id** *(Optional)* Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.
- **area-id** *(Optional)* Area ID. This argument displays information about a specified area only.
- **rate-limit** *(Optional)* Rate-limited link-state advertisements (LSAs). This keyword displays LSAs that are currently being rate limited, together with the remaining time to the next generation.

**Command Modes**
- User EXEC (>)
- Privileged EXEC (##)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**show ipv6 ospf Output Example**

The following is sample output from the `show ipv6 ospf` command:

```
show ipv6 ospf
Routing Process "ospfv3 1" with ID 10.10.10.1
SPF schedule delay 5 secs, Hold time between two SPF s 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of areas in this device is 1. 1 normal 0 stub 0 nssa
Area BACKBONE(0)
 Number of interfaces in this area is 1
 MD5 Authentication, SPI 1000
 SPF algorithm executed 2 times
 Number of LSA 5. Checksum Sum 0x02A005
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0
```

The table below describes the significant fields shown in the display.
show ipv6 ospf Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing process &quot;ospfv3 1&quot; with ID 10.0.0.1</td>
<td>Process ID and OSPF device ID.</td>
</tr>
<tr>
<td>LSA group pacing timer</td>
<td>Configured LSA group pacing timer (in seconds).</td>
</tr>
<tr>
<td>Interface flood pacing timer</td>
<td>Configured LSA flood pacing timer (in milliseconds).</td>
</tr>
<tr>
<td>Retransmission pacing timer</td>
<td>Configured LSA retransmission pacing timer (in milliseconds).</td>
</tr>
<tr>
<td>Number of areas</td>
<td>Number of areas in device, area addresses, and so on.</td>
</tr>
</tbody>
</table>

show ipv6 ospf With Area Encryption Example

The following sample output shows the show ipv6 ospf command with area encryption information:

```
show ipv6 ospf
Routing Process "ospfv3 1" with ID 10.0.0.1
It is an area border device
SPF schedule delay 5 secs, Hold time between two SPF 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x0000000
Number of areas in this device is 2. 2 normal 0 stub 0 nssa
Reference bandwidth unit is 100 mbps
Area BACKBONE(0)
 Number of interfaces in this area is 2
 SPF algorithm executed 3 times
 Number of LSA 31. Checksum Sum 0x107493
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 20
 Flood list length 0
Area 1
 Number of interfaces in this area is 2
 NULL Encryption SHA-1 Auth, SPI 1001
 SPF algorithm executed 7 times
 Number of LSA 20. Checksum Sum 0x095E6A
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0
```

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 1</td>
<td>Subsequent fields describe area 1.</td>
</tr>
</tbody>
</table>
The following example displays the configuration values for SPF and LSA throttling timers:

```bash
show ipv6 ospf
Routing Process "ospfv3 1" with ID 10.9.4.1
Event-log enabled, Maximum number of events: 1000, Mode: cyclic
It is an autonomous system boundary device
Redistributing External Routes from,
 ospf 2
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPF(s) 10000 msecs
Maximum wait time between two consecutive SPF(s) 10000 msecs
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
```

The table below describes the significant fields shown in the display.

**Table 51: show ipv6 ospf with SPF and LSA Throttling Timer Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial SPF schedule delay</td>
<td>Delay time of SPF calculations.</td>
</tr>
<tr>
<td>Minimum hold time between two consecutive SPF(s)</td>
<td>Minimum hold time between consecutive SPF calculations.</td>
</tr>
<tr>
<td>Maximum wait time between two consecutive SPF(s)</td>
<td>Maximum hold time between consecutive SPF calculations.</td>
</tr>
<tr>
<td>Minimum LSA interval 5 secs</td>
<td>Minimum time interval (in seconds) between link-state advertisements.</td>
</tr>
<tr>
<td>Minimum LSA arrival 1000 msecs</td>
<td>Maximum arrival time (in milliseconds) of link-state advertisements.</td>
</tr>
</tbody>
</table>

The following example shows information about LSAs that are currently being rate limited:

```bash
show ipv6 ospf rate-limit
List of LSAs that are in rate limit Queue
 LSID: 0.0.0.0 Type: 0x2001 Adv Rtr: 10.55.55.55 Due in: 00:00:00.500
 LSID: 0.0.0.0 Type: 0x2009 Adv Rtr: 10.55.55.55 Due in: 00:00:00.500
```

The table below describes the significant fields shown in the display.

**Table 52: show ipv6 ospf rate-limit Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSAID</td>
<td>Link-state ID of the LSA.</td>
</tr>
<tr>
<td>Type</td>
<td>Description of the LSA.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>ID of the advertising device.</td>
</tr>
<tr>
<td>Due in:</td>
<td>Remaining time until the generation of the next event.</td>
</tr>
</tbody>
</table>
show ipv6 ospf border-routers

To display the internal Open Shortest Path First (OSPF) routing table entries to an Area Border Router (ABR) and Autonomous System Boundary Router (ASBR), use the `show ipv6 ospf border-routers` command in user EXEC or privileged EXEC mode.

```
show ip ospf [process-id] border-routers
```

**Syntax Description**

| process-id | (Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled. |

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show ipv6 ospf border-routers` command:

```
show ipv6 ospf border-routers

OSPFv3 Process 1 internal Routing Table
Codes: i - Intra-area route, I - Inter-area route
i 172.16.4.4 [2] via FE80::205:5FFF:FED3:5808, FastEthernet0/0, ABR, Area 1, SPF 13
i 172.16.4.4 [1] via FE80::205:5FFF:FED3:5406, POS4/0, ABR, Area 0, SPF 8
i 172.16.3.3 [1] via FE80::205:5FFF:FED3:5808, FastEthernet0/0, ASBR, Area 1, SPF 3
```

The table below describes the significant fields shown in the display.

**Table 53: show ipv6 ospf border-routers Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i - Intra-area route, I - Inter-area route</td>
<td>The type of this route.</td>
</tr>
<tr>
<td>172.16.4.4, 172.16.3.3</td>
<td>Router ID of the destination router.</td>
</tr>
<tr>
<td>[2], [1]</td>
<td>Metric used to reach the destination router.</td>
</tr>
<tr>
<td>FastEthernet0/0, POS4/0</td>
<td>The interface on which the IPv6 OSPF protocol is configured.</td>
</tr>
<tr>
<td>ABR</td>
<td>Area border router.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ASBR</td>
<td>Autonomous system boundary router.</td>
</tr>
<tr>
<td>Area 0, Area 1</td>
<td>The area ID of the area from which this route is learned.</td>
</tr>
<tr>
<td>SPF 13, SPF 8, SPF 3</td>
<td>The internal number of the shortest path first (SPF) calculation that installs this route.</td>
</tr>
</tbody>
</table>
**show ipv6 ospf event**

To display detailed information about IPv6 Open Shortest Path First (OSPF) events, use the *show ipv6 ospf event* command in privileged EXEC mode.

```
show ipv6 ospf [process-id] event [{generic | interface | lsa | neighbor | reverse | rib | spf}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>process-id</strong></td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.</td>
</tr>
<tr>
<td><strong>generic</strong></td>
<td>(Optional) Generic information regarding OSPF for IPv6 events.</td>
</tr>
<tr>
<td><strong>interface</strong></td>
<td>(Optional) Interface state change events, including old and new states.</td>
</tr>
<tr>
<td><strong>lsa</strong></td>
<td>(Optional) LSA arrival and LSA generation events.</td>
</tr>
<tr>
<td><strong>neighbor</strong></td>
<td>(Optional) Neighbor state change events, including old and new states.</td>
</tr>
<tr>
<td><strong>reverse</strong></td>
<td>(Optional) Keyword to allow the display of events in reverse-from the latest to the oldest or from oldest to the latest.</td>
</tr>
<tr>
<td><strong>rib</strong></td>
<td>(Optional) Routing Information Base (RIB) update, delete, and redistribution events.</td>
</tr>
<tr>
<td><strong>spf</strong></td>
<td>(Optional) Scheduling and SPF run events.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

An OSPF event log is kept for every OSPF instance. If you enter no keywords with the *show ipv6 ospf event* command, all information in the OSPF event log is displayed. Use the keywords to filter specific information.

**Examples**

The following example shows scheduling and SPF run events, LSA arrival and LSA generation events, in order from the oldest events to the latest generated events:

```
show ipv6 ospf event spf lsa reverse
```

```
OSPFv3 Router with ID (10.0.0.1) (Process ID 1)
1 *Sep 29 11:59:18.367: Rcv Changed Type-0x2009 LSA, LSID 10.0.0.0, Adv-Rtr 192.168.0.1, Seq# 80007699, Age 3600
3 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type P
4 *Sep 29 11:59:18.367: Rcv Changed Type-0x2001 LSA, LSID 10.0.0.0, Adv-Rtr 192.168.0.1, Seq# 80007699, Age 2
5 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.0.0.0, LSA type R
6 *Sep 29 11:59:18.367: Rcv Changed Type-0x2002 LSA, LSID 10.1.0.1, Adv-Rtr 192.168.0.1, Seq# 80007699, Age 3600
8 *Sep 29 11:59:18.367: Schedule SPF, Area 0, Change in LSID 10.1.0.1, LSA type N
```
The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPFv3 Router with ID (10.0.0.1) (Process ID 1)</td>
<td>Process ID and OSPF router ID.</td>
</tr>
<tr>
<td>Rcv Changed Type-0x2009 LSA</td>
<td>Description of newly arrived LSA.</td>
</tr>
<tr>
<td>LSID</td>
<td>Link-state ID of the LSA.</td>
</tr>
<tr>
<td>Adv-Rtr</td>
<td>ID of the advertising router.</td>
</tr>
<tr>
<td>Seq#</td>
<td>Link state sequence number (detects old or duplicate link state advertisements).</td>
</tr>
<tr>
<td>Age</td>
<td>Link state age (in seconds).</td>
</tr>
<tr>
<td>Schedule SPF</td>
<td>Enables SPF to run.</td>
</tr>
<tr>
<td>Area</td>
<td>OSPF area ID.</td>
</tr>
<tr>
<td>Change in LSID</td>
<td>Changed link-state ID of the LSA.</td>
</tr>
<tr>
<td>LSA type</td>
<td>LSA type.</td>
</tr>
</tbody>
</table>
show ipv6 ospf event
show ipv6 ospf graceful-restart

To display Open Shortest Path First for IPv6 (OSPFv3) graceful restart information, use the `show ipv6 ospf graceful-restart` command in privileged EXEC mode.

```bash
show ipv6 ospf graceful-restart
```

**Syntax Description**

This command has no arguments or keywords.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ipv6 ospf graceful-restart` command to discover information about the OSPFv3 graceful restart feature.

**Examples**

The following example displays OSPFv3 graceful restart information:

```bash
show ipv6 ospf graceful-restart
Routing Process "ospf 1"
Graceful Restart enabled
 restart-interval limit: 120 sec, last restart 00:00:15 ago (took 36 secs)
 Graceful Restart helper support enabled
 Router status : Active
 Router is running in SSO mode
 OSPF restart state : NO_RESTART
 Router ID 10.1.1.1, checkpoint Router ID 10.0.0.0
```

The table below describes the significant fields shown in the display.

**Table 55: show ipv6 ospf graceful-restart Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing Process &quot;ospf 1&quot;</td>
<td>The OSPFv3 routing process ID.</td>
</tr>
<tr>
<td>Graceful Restart enabled</td>
<td>The graceful restart feature is enabled on this router.</td>
</tr>
<tr>
<td>restart-interval limit: 120 sec</td>
<td>The restart-interval limit.</td>
</tr>
<tr>
<td>last restart 00:00:15 ago (took 36 secs)</td>
<td>How long ago the last graceful restart occurred, and how long it took to occur.</td>
</tr>
<tr>
<td>Graceful Restart helper support enabled</td>
<td>Graceful restart helper mode is enabled. Because graceful restart mode is also enabled on this router, you can identify this router as being graceful-restart capable. A router that is graceful-restart-aware cannot be configured in graceful-restart mode.</td>
</tr>
</tbody>
</table>
This router is in active, as opposed to standby, mode. Router status: Active

The router is in stateful switchover mode. Router is running in SSO mode

The current OSPFv3 restart state. OSPF restart state: NO_RESTART

The IPv6 addresses of the current router and the checkpoint router. Router ID 10.1.1.1, checkpoint Router ID 10.0.0.0

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 ospf interface</td>
<td>Displays OSPFv3-related interface information.</td>
</tr>
</tbody>
</table>
show ipv6 ospf interface

To display Open Shortest Path First (OSPF)-related interface information, use the `show ipv6 ospf interface` command in user EXEC or privileged mode.

```
show ipv6 ospf [process-id] [area-id] interface [type number] [brief]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>process-id</td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.</td>
</tr>
<tr>
<td>area-id</td>
<td>(Optional) Displays information about a specified area only.</td>
</tr>
<tr>
<td>type number</td>
<td>(Optional) Interface type and number.</td>
</tr>
<tr>
<td>brief</td>
<td>(Optional) Displays brief overview information for OSPF interfaces, states, addresses and masks, and areas on the router.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (`>`)
Privileged EXEC (`#`)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

**show ipv6 ospf interface Standard Output Example**

The following is sample output from the `show ipv6 ospf interface` command:

```
show ipv6 ospf interface
ATM3/0 is up, line protocol is up
 Link Local Address 2001:0DB1:205:5FFF:FED3:5808, Interface ID 13
 Area 1, Process ID 1, Instance ID 0, Router ID 172.16.3.3
 Network Type POINT_TO_POINT, Cost: 1
 Transmit Delay is 1 sec, State POINT_TO_POINT,
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:06
 Index 1/2/2, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 12, maximum is 12
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 172.16.4.4
 Suppress hello for 0 neighbor(s)
 FastEthernet0/0 is up, line protocol is up
 Link Local Address 2001:0DB1:205:5FFF:FED3:5808, Interface ID 3
 Area 1, Process ID 1, Instance ID 0, Router ID 172.16.3.3
 Network Type BROADCAST, Cost: 1
 Transmit Delay is 1 sec, State BDR, Priority 1
 Designated Router (ID) 172.16.6.6, local address 2001:0DB1:205:5FFF:FED3:6408
 Backup Designated router (ID) 172.16.3.3, local address 2001:0DB1:205:5FFF:FED3:5808
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:05
Index 1/1/1, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 12, maximum is 12
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 172.16.6.6 (Designated Router)
Suppress hello for 0 neighbor(s)

The table below describes the significant fields shown in the display.

**Table 56: show ipv6 ospf interface Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM3/0</td>
<td>Status of the physical link and operational status of protocol.</td>
</tr>
<tr>
<td>Link Local Address</td>
<td>Interface IPv6 address.</td>
</tr>
<tr>
<td>Area 1, Process ID 1, Instance ID 0, Router ID 172.16.3.3</td>
<td>The area ID, process ID, instance ID, and router ID of the area from which this route is learned.</td>
</tr>
<tr>
<td>Network Type POINT_TO_POINT, Cost: 1</td>
<td>Network type and link-state cost.</td>
</tr>
<tr>
<td>Transmit Delay</td>
<td>Transmit delay, interface state, and router priority.</td>
</tr>
<tr>
<td>Designated Router</td>
<td>Designated router ID and respective interface IP address.</td>
</tr>
<tr>
<td>Backup Designated router</td>
<td>Backup designated router ID and respective interface IP address.</td>
</tr>
<tr>
<td>Timer intervals configured</td>
<td>Configuration of timer intervals.</td>
</tr>
<tr>
<td>Hello</td>
<td>Number of seconds until the next hello packet is sent out this interface.</td>
</tr>
<tr>
<td>Neighbor Count</td>
<td>Count of network neighbors and list of adjacent neighbors.</td>
</tr>
</tbody>
</table>

**Cisco IOS Release 12.2(33)SRB Example**

The following is sample output of the `show ipv6 ospf interface` command when the `brief` keyword is entered.

```
show ipv6 ospf interface brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>PID</th>
<th>Area</th>
<th>Intf ID</th>
<th>Cost</th>
<th>State</th>
<th>Nbrs</th>
<th>F/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL0</td>
<td>6</td>
<td>0</td>
<td>21</td>
<td>65535</td>
<td>DOWN</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>Se1/0</td>
<td>6</td>
<td>0</td>
<td>14</td>
<td>64</td>
<td>P2P</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>Lo1</td>
<td>6</td>
<td>0</td>
<td>20</td>
<td>1</td>
<td>LOOP</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>Se2/0</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>62</td>
<td>P2P</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>Tu0</td>
<td>1000</td>
<td>0</td>
<td>19</td>
<td>11111</td>
<td>DOWN</td>
<td>0/0</td>
<td></td>
</tr>
</tbody>
</table>
```
OSPF with Authentication on the Interface Example

The following is sample output from the `show ipv6 ospf interface` command with authentication enabled on the interface:

```
show ipv6 ospf interface
Ethernet0/0 is up, line protocol is up
 Link Local Address 2001:0DB1:A8BB:CCFF:FE00:6E00, Interface ID 2
 Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1
 Network Type BROADCAST, Cost:10
 MD5 Authentication SPI 500, secure socket state UP (errors:0)
 Transmit Delay is 1 sec, State BDR, Priority 1
 Designated Router (ID) 10.11.11.1, local address 2001:0DB1:A8BB:CCFF:FE00:6F00
 Backup Designated router (ID) 10.10.10.1, local address
 2001:0DB1:A8BB:CCFF:FE00:6E00
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:01
 Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 10.11.11.1 (Designated Router)
 Suppress hello for 0 neighbor(s)
```

OSPF with Null Authentication Example

The following is sample output from the `show ipv6 ospf interface` command with null authentication configured on the interface:

```
show ipv6 ospf interface
Ethernet0/0 is up, line protocol is up
 Link Local Address 2001:0DB1:A8BB:CCFF:FE00:6E00, Interface ID 2
 Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1
 Network Type BROADCAST, Cost:10
 Authentication NULL
 Transmit Delay is 1 sec, State BDR, Priority 1
 Designated Router (ID) 10.11.11.1, local address 2001:0DB1:A8BB:CCFF:FE00:6F00
 Backup Designated router (ID) 10.10.10.1, local address
 2001:0DB1:A8BB:CCFF:FE00:6E00
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:03
 Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 10.11.11.1 (Designated Router)
 Suppress hello for 0 neighbor(s)
```

OSPF with Authentication for the Area Example

The following is sample output from the `show ipv6 ospf interface` command with authentication configured for the area:

```
show ipv6 ospf interface
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
Ethernet0/0 is up, line protocol is up  
Link Local Address 2001:0DB1:A8BB:CCFF:FE00:6E00, Interface ID 2  
Area 0, Process ID 1, Instance ID 0, Router ID 10.10.10.1  
Network Type BROADCAST, Cost:10  
MD5 Authentication (Area) SPI 1000, secure socket state UP (errors:0)  
Transmit Delay is 1 sec, State BDR, Priority 1  
Designated Router (ID) 10.11.11.1, local address 2001:0DB1:A8BB:CCFF:FE00:6F00  
Backup Designated router (ID) 10.10.10.1, local address FE80::A8BB:CCFF:FE00:6E00  
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5  
Hello due in 00:00:03  
Index 1/1/1, flood queue length 0  
Next 0x0(0)/0x0(0)/0x0(0)  
Last flood scan length is 1, maximum is 1  
Last flood scan time is 0 msec, maximum is 0 msec  
Neighbor Count is 1, Adjacent neighbor count is 1  
Adjacent with neighbor 10.11.11.1 (Designated Router)  
Suppress hello for 0 neighbor(s)  

OSPF with Dynamic Cost Example  
The following display shows sample output from the `show ipv6 ospf interface` command when the OSPF cost dynamic is configured:  

```  
show ipv6 ospf interface serial 2/0
Serial2/0 is up, line protocol is up
Link Local Address 2001:0DB1:A8BB:CCFF:FE00:100, Interface ID 10
Area 1, Process ID 1, Instance ID 0, Router ID 172.1.1.1
Network Type POINT_TO_MULTIPOINT, Cost: 64 (dynamic), Cost Hysteresis: 200
Cost Weights: Throughput 100, Resources 20, Latency 80, L2-factor 100
Transmit Delay is 1 sec, State POINT_TO_MULTIPOINT,
Timer intervals configured, Hello 30, Dead 120, Wait 120, Retransmit 5
Hello due in 00:00:19
Index 1/2/3, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)
```

OSPF Graceful Restart Example  
The following display shows sample output from the `show ipv6 ospf interface` command when the OSPF graceful restart feature is configured:  

```  
show ipv6 ospf interface
Ethernet0/0 is up, line protocol is up
Link Local Address FE80::A8BB:CCFF:FE00:300, Interface ID 2
Area 0, Process ID 1, Instance ID 0, Router ID 10.3.3.3
Network Type POINT_TO_POINT, Cost: 10
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Graceful Restart p2p timeout in 00:00:19
Hello due in 00:00:02
Graceful Restart helper support enabled
Index 1/1/1, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
```
Example of an Enabled Protocol

The following display shows that the OSPF interface is enabled for Bidirectional Forwarding Detection (BFD):

```
show ipv6 ospf interface
Serial10/0 is up, line protocol is up
 Link Local Address FE80::A8BB:CCFF:FE00:6500, Interface ID 42
 Area 1, Process ID 1, Instance ID 0, Router ID 10.0.0.1
 Network Type POINT_TO_POINT, Cost: 64
 Transmit Delay is 1 sec, State POINT_TO_POINT, BFD enabled
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:07
 Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 10.1.0.1
 Suppress hello for 0 neighbor(s)
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 ospf graceful-restart</td>
<td>Displays OSPFv3 graceful restart information.</td>
</tr>
</tbody>
</table>
show ipv6 ospf request-list

To display a list of all link-state advertisements (LSAs) requested by a router, use the `show ipv6 ospf request-list` command in user EXEC or privileged EXEC mode.

```
show ipv6 ospf [process-id] [area-id] request-list [neighbor] [interface] [interface-neighbor]
```

**Syntax Description**

- **process-id** (Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the Open Shortest Path First (OSPF) routing process is enabled.
- **area-id** (Optional) Displays information only about a specified area.
- **neighbor** (Optional) Displays the list of all LSAs requested by the router from this neighbor.
- **interface** (Optional) Displays the list of all LSAs requested by the router from this interface.
- **interface-neighbor** (Optional) Displays the list of all LSAs requested by the router on this interface, from this neighbor.

**Command Modes**

User EXEC (>)

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The information displayed by the `show ipv6 ospf request-list` command is useful in debugging OSPF routing operations.

**Examples**

The following example shows information about the LSAs requested by the router:

```
show ipv6 ospf request-list

OSPFv3 Router with ID (192.168.255.5) (Process ID 1)
Neighbor 192.168.255.2, interface Ethernet0/0 address
FE80::A8BB:CCFF:FE00:6600

Type LS ID ADV RTR SEg NO Age Checksum
1 0.0.0.0 192.168.255.5 0x800000C2 1 0x0014C5
1 0.0.0.0 192.168.255.2 0x800000C8 0 0x000BCA
1 0.0.0.0 192.168.255.1 0x800000C5 1 0x008CD1
2 0.0.0.3 192.168.255.3 0x800000A9 774 0x0058C0
2 0.0.0.2 192.168.255.3 0x800000B7 1 0x003A63
```

The table below describes the significant fields shown in the display.
### Table 57: `show ipv6 ospf request-list` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPFv3 Router with ID (192.168.255.5) (Process ID 1)</td>
<td>Identification of the router for which information is displayed.</td>
</tr>
<tr>
<td>Interface Ethernet0/0</td>
<td>Interface for which information is displayed.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of LSA.</td>
</tr>
<tr>
<td>LS ID</td>
<td>Link-state ID of the LSA.</td>
</tr>
<tr>
<td>ADV RTR</td>
<td>IP address of advertising router.</td>
</tr>
<tr>
<td>Seq NO</td>
<td>Sequence number of LSA.</td>
</tr>
<tr>
<td>Age</td>
<td>Age of LSA (in seconds).</td>
</tr>
<tr>
<td>Checksum</td>
<td>Checksum of LSA.</td>
</tr>
</tbody>
</table>
show ipv6 ospf retransmission-list

To display a list of all link-state advertisements (LSAs) waiting to be re-sent, use the `show ipv6 ospf retransmission-list` command in user EXEC or privileged EXEC mode.

```
show ipv6 ospf [process-id] [area-id] retransmission-list [neighbor] [interface] [interface-neighbor]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>process-id</code></td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.</td>
</tr>
<tr>
<td><code>area-id</code></td>
<td>(Optional) Displays information only about a specified area.</td>
</tr>
<tr>
<td><code>neighbor</code></td>
<td>(Optional) Displays the list of all LSAs waiting to be re-sent for this neighbor.</td>
</tr>
<tr>
<td><code>interface</code></td>
<td>(Optional) Displays the list of all LSAs waiting to be re-sent on this interface.</td>
</tr>
<tr>
<td><code>interface neighbor</code></td>
<td>(Optional) Displays the list of all LSAs waiting to be re-sent on this interface, from this neighbor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>User EXEC (&gt;)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Privileged EXEC (#)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

| Usage Guidelines | The information displayed by the `show ipv6 ospf retransmission-list` command is useful in debugging Open Shortest Path First (OSPF) routing operations. |

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following is sample output from the <code>show ipv6 ospf retransmission-list</code> command:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code># show ipv6 ospf retransmission-list</code></td>
<td><code>OSPFv3 Router with ID (192.168.255.2) (Process ID 1)</code></td>
</tr>
<tr>
<td></td>
<td><code>Neighbor 192.168.255.1, interface Ethernet0/0</code></td>
</tr>
<tr>
<td></td>
<td><code>Link state retransmission due in 3759 msec, Queue length 1</code></td>
</tr>
<tr>
<td></td>
<td><code>Type LS ID ADV RTR Seq NO Age Checksum</code></td>
</tr>
<tr>
<td></td>
<td><code>0x2001 0 192.168.255.2 0x80000222 1 0x00AE52</code></td>
</tr>
</tbody>
</table>

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPFv3 Router with ID (192.168.255.2) (Process ID 1)</td>
<td>Identification of the router for which information is displayed.</td>
</tr>
<tr>
<td><strong>Field</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Interface Ethernet0/0</td>
<td>Interface for which information is displayed.</td>
</tr>
<tr>
<td>Link state retransmission due in</td>
<td>Length of time before next link-state transmission.</td>
</tr>
<tr>
<td>Queue length</td>
<td>Number of elements in the retransmission queue.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of LSA.</td>
</tr>
<tr>
<td>LS ID</td>
<td>Link-state ID of the LSA.</td>
</tr>
<tr>
<td>ADV RTR</td>
<td>IP address of advertising router.</td>
</tr>
<tr>
<td>Seq NO</td>
<td>Sequence number of the LSA.</td>
</tr>
<tr>
<td>Age</td>
<td>Age of LSA (in seconds).</td>
</tr>
<tr>
<td>Checksum</td>
<td>Checksum of LSA.</td>
</tr>
</tbody>
</table>
**show ipv6 ospf statistics**

To display Open Shortest Path First for IPv6 (OSPFv6) shortest path first (SPF) calculation statistics, use the `show ipv6 ospf statistics` command in user EXEC or privileged EXEC mode.

`show ipv6 ospf statistics [detail]`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>detail</th>
<th>(Optional) Displays statistics separately for each OSPF area and includes additional, more detailed statistics.</th>
</tr>
</thead>
</table>

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show ipv6 ospf statistics` command provides important information about SPF calculations and the events that trigger them. This information can be meaningful for both OSPF network maintenance and troubleshooting. For example, entering the `show ipv6 ospf statistics` command is recommended as the first troubleshooting step for link-state advertisement (LSA) flapping.

**Examples**

The following example provides detailed statistics for each OSPFv6 area:

```
show ipv6 ospf statistics detail
Area 0: SPF algorithm executed 3 times
SPF 1 executed 00:06:57 ago, SPF type Full
SPF calculation time (in msec):
 SPT Prefix D-Int Sum D-Sum Ext D-Ext Total
 0 0 0 0 0 0 0
RIB manipulation time (in msec):
 RIB Update RIB Delete
 0 0
LSIDs processed R:1 N:0 Prefix:0 SN:0 SA:0 X7:0
Change record R N SN SA L
LSAs changed 1
 Changed LSAs. Recorded is Advertising Router, LSID and LS type:
 10.2.2.2/0(R)
SPF 2 executed 00:06:47 ago, SPF type Full
SPF calculation time (in msec):
 SPT Prefix D-Int Sum D-Sum Ext D-Ext Total
 0 0 0 0 0 0 0
RIB manipulation time (in msec):
 RIB Update RIB Delete
 0 0
LSIDs processed R:1 N:0 Prefix:1 SN:0 SA:0 X7:0
Change record R L P
LSAs changed 4
 Changed LSAs. Recorded is Advertising Router, LSID and LS type:
 10.2.2.2/2(L) 10.2.2.2/0(R) 10.2.2.2/2(L) 10.2.2.2/0(F)
```
The table below describes the significant fields shown in the display.

**Table 59: show ipv6 ospf statistics Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>OSPF area ID.</td>
</tr>
<tr>
<td>SPF</td>
<td>Number of SPF algorithms executed in the OSPF area. The number increases by one for each SPF algorithm that is executed in the area.</td>
</tr>
<tr>
<td>Executed ago</td>
<td>Time in milliseconds that has passed between the start of the SPF algorithm execution and the current time.</td>
</tr>
<tr>
<td>SPF type</td>
<td>SPF type can be Full or Incremental.</td>
</tr>
<tr>
<td>SPT</td>
<td>Time in milliseconds required to compute the first stage of the SPF algorithm (to build a short path tree). The SPT time plus the time required to process links to stub networks equals the Intra time.</td>
</tr>
<tr>
<td>Ext</td>
<td>Time in milliseconds for the SPF algorithm to process external and not so stubby area (NSSA) LSAs and to install external and NSSA routes in the routing table.</td>
</tr>
<tr>
<td>Total</td>
<td>Total duration time in milliseconds for the SPF algorithm process.</td>
</tr>
<tr>
<td>LSIDs processed</td>
<td>Number of LSAs processed during the SPF calculation:</td>
</tr>
<tr>
<td></td>
<td>• N--Network LSA.</td>
</tr>
<tr>
<td></td>
<td>• R--Router LSA.</td>
</tr>
<tr>
<td></td>
<td>• SA--Summary Autonomous System Boundary Router (ASBR) (SA) LSA.</td>
</tr>
<tr>
<td></td>
<td>• SN--Summary Network (SN) LSA.</td>
</tr>
<tr>
<td></td>
<td>• Stub--Stub links.</td>
</tr>
<tr>
<td></td>
<td>• X7--External Type-7 (X7) LSA.</td>
</tr>
</tbody>
</table>
show ipv6 ospf summary-prefix

To display a list of all summary address redistribution information configured under an OSPF process, use the `show ipv6 ospf summary-prefix` command in user EXEC or privileged EXEC mode.

```
show ipv6 ospf [process-id] summary-prefix
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>process-id</td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when the OSPF routing process is enabled.</td>
</tr>
</tbody>
</table>

### Command Modes

- User EXEC (`->`)
- Privileged EXEC (`#`)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `process-id` argument can be entered as a decimal number or as an IPv6 address format.

### Examples

The following is sample output from the `show ipv6 ospf summary-prefix` command:

```
show ipv6 ospf summary-prefix

OSPFv3 Process 1, Summary-prefix
FEC0::/24 Metric 16777215, Type 0, Tag 0
```

The table below describes the significant fields shown in the display.

### Table 60: show ipv6 ospf summary-prefix Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPFv3 Process</td>
<td>Process ID of the router for which information is displayed.</td>
</tr>
<tr>
<td>Metric</td>
<td>Metric used to reach the destination router.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of link-state advertisement (LSA).</td>
</tr>
<tr>
<td>Tag</td>
<td>LSA tag.</td>
</tr>
</tbody>
</table>
show ipv6 ospf timers rate-limit

To display all of the link-state advertisements (LSAs) in the rate limit queue, use the show ipv6 ospf timers rate-limit command in privileged EXEC mode.

show ipv6 ospf timers rate-limit

Syntax Description

This command has no arguments or keywords.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the show ipv6 ospf timers rate-limit command to discover when LSAs in the queue will be sent.

Examples

show ipv6 ospf timers rate-limit Output Example

The following is sample output from the show ipv6 ospf timers rate-limit command:

```
show ipv6 ospf timers rate-limit
List of LSAs that are in rate limit Queue
 LSAID: 0.0.0.0 Type: 0x2001 Adv Rtr: 55.55.55.55 Due in: 00:00:00.500
 LSAID: 0.0.0.0 Type: 0x2009 Adv Rtr: 55.55.55.55 Due in: 00:00:00.500
```

The table below describes the significant fields shown in the display.

Table 61: show ipv6 ospf timers rate-limit Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSAID</td>
<td>ID of the LSA.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of LSA.</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>ID of the advertising router.</td>
</tr>
<tr>
<td>Due in:</td>
<td>When the LSA is scheduled to be sent (in hours:minutes:seconds).</td>
</tr>
</tbody>
</table>
show ipv6 ospf traffic

To display IPv6 Open Shortest Path First Version 3 (OSPFv3) traffic statistics, use the `show ipv6 ospf traffic` command in privileged EXEC mode.

```
show ipv6 ospf [process-id] traffic [interface-type interface-number]
```

**Syntax Description**

- `process-id` (Optional) OSPF process ID for which you want traffic statistics (for example, queue statistics, statistics for each interface under the OSPF process, and per OSPF process statistics).
- `interface-type interface-number` (Optional) Type and number associated with a specific OSPF interface.

**Command Default**

When the `show ipv6 ospf traffic` command is entered without any arguments, global OSPF traffic statistics are displayed, including queue statistics for each OSPF process, statistics for each interface, and per OSPF process statistics.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can limit the displayed traffic statistics to those for a specific OSPF process by entering a value for the `process-id` argument, or you can limit output to traffic statistics for a specific interface associated with an OSPF process by entering values for the `interface-type` and `interface-number` arguments. To reset counters and clear statistics, use the `clear ipv6 ospf traffic` command.

**Examples**

The following example shows the display output for the `show ipv6 ospf traffic` command for OSPFv3:

```
show ipv6 ospf traffic
OSPFV3 statistics:
 Rcvd: 32 total, 0 checksum errors
 10 hello, 7 database desc, 2 link state req
 9 link state updates, 4 link state acks
 0 LSA ignored
 Sent: 45 total, 0 failed
 17 hello, 12 database desc, 2 link state req
 8 link state updates, 6 link state acks
OSPFV3 Router with ID (10.1.1.4) (Process ID 6)
OSPFV3 queues statistic for process ID 6
 Hello queue size 0, no limit, max size 2
 Router queue size 0, limit 200, drops 0, max size 2
Interface statistics:
 Interface Serial2/0
OSPFV3 packets received/sent
 Type Packets Bytes
 RX Invalid 0 0
 RX Hello 5 196
 RX DB des 4 172
```
### OSPFv3 packets received/sent

<table>
<thead>
<tr>
<th>Type</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX Invalid</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RX Hello</td>
<td>6</td>
<td>240</td>
</tr>
<tr>
<td>RX DB des</td>
<td>3</td>
<td>144</td>
</tr>
<tr>
<td>RX LS req</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>RX LS upd</td>
<td>5</td>
<td>372</td>
</tr>
<tr>
<td>RX LS ack</td>
<td>2</td>
<td>152</td>
</tr>
<tr>
<td>RX Total</td>
<td>17</td>
<td>960</td>
</tr>
<tr>
<td>TX Failed</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TX Hello</td>
<td>11</td>
<td>420</td>
</tr>
<tr>
<td>TX DB des</td>
<td>9</td>
<td>312</td>
</tr>
<tr>
<td>TX LS req</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>TX LS upd</td>
<td>5</td>
<td>376</td>
</tr>
<tr>
<td>TX LS ack</td>
<td>3</td>
<td>148</td>
</tr>
<tr>
<td>TX Total</td>
<td>29</td>
<td>1308</td>
</tr>
</tbody>
</table>

### OSPFv3 header errors
- Length 0, Checksum 0, Version 0, No Virtual Link 0,
- Area Mismatch 0, Self Originated 0, Duplicate ID 0,
- Instance ID 0, Hello 0, MTU Mismatch 0,
- Nbr Ignored 0, Authentication 0,

### OSPFv3 LSA errors
- Type 0, Length 0, Data 0, Checksum 0,
- Interface Ethernet0/0

### OSPFv3 packets received/sent

<table>
<thead>
<tr>
<th>Type</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX Invalid</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RX Hello</td>
<td>11</td>
<td>436</td>
</tr>
<tr>
<td>RX DB des</td>
<td>7</td>
<td>316</td>
</tr>
<tr>
<td>RX LS req</td>
<td>2</td>
<td>104</td>
</tr>
<tr>
<td>RX LS upd</td>
<td>9</td>
<td>692</td>
</tr>
<tr>
<td>RX LS ack</td>
<td>4</td>
<td>264</td>
</tr>
<tr>
<td>RX Total</td>
<td>33</td>
<td>1812</td>
</tr>
<tr>
<td>TX Failed</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TX Hello</td>
<td>19</td>
<td>724</td>
</tr>
<tr>
<td>TX DB des</td>
<td>12</td>
<td>456</td>
</tr>
<tr>
<td>TX LS req</td>
<td>2</td>
<td>104</td>
</tr>
<tr>
<td>TX LS upd</td>
<td>8</td>
<td>628</td>
</tr>
<tr>
<td>TX LS ack</td>
<td>6</td>
<td>296</td>
</tr>
<tr>
<td>TX Total</td>
<td>47</td>
<td>2208</td>
</tr>
</tbody>
</table>

### OSPFv3 header errors
- Length 0, Checksum 0, Version 0, No Virtual Link 0,
- Area Mismatch 0, Self Originated 0, Duplicate ID 0,
- Instance ID 0, Hello 0, MTU Mismatch 0,
- Nbr Ignored 0, Authentication 0,
OSPFv3 LSA errors
Type 0, Length 0, Data 0, Checksum 0,

The network administrator wants to start collecting new statistics, resetting the counters and clearing the traffic statistics by entering the **clear ipv6 ospf traffic** command as follows:

```
clear ipv6 ospf traffic
```

The table below describes the significant fields shown in the display.

**Table 62: show ipv6 ospf traffic Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPFv3 statistics</td>
<td>Traffic statistics accumulated for all OSPF processes running on the router. To ensure compatibility with the <code>show ipv6 ospf traffic</code> command, only checksum errors are displayed. Identifies the route map name.</td>
</tr>
<tr>
<td>OSPFv3 queues statistic for process ID</td>
<td>Queue statistics specific to Cisco IOS software.</td>
</tr>
<tr>
<td>Hello queue</td>
<td>Statistics for the internal Cisco IOS queue between the packet switching code (process IP Input) and the OSPF hello process for all received OSPF packets.</td>
</tr>
<tr>
<td>Router queue</td>
<td>Statistics for the internal Cisco IOS queue between the OSPF hello process and the OSPF router for all received OSPF packets except OSPF hellos.</td>
</tr>
<tr>
<td>queue size</td>
<td>Actual size of the queue.</td>
</tr>
<tr>
<td>queue limit</td>
<td>Maximum allowed size of the queue.</td>
</tr>
<tr>
<td>queue max size</td>
<td>Maximum recorded size of the queue.</td>
</tr>
<tr>
<td>Interface statistics</td>
<td>Per-interface traffic statistics for all interfaces that belong to the specific OSPFv3 process ID.</td>
</tr>
<tr>
<td>OSPFv3 packets received/sent</td>
<td>Number of OSPFv3 packets received and sent on the interface, sorted by packet types.</td>
</tr>
<tr>
<td>OSPFv3 header errors</td>
<td>Packet appears in this section if it was discarded because of an error in the header of an OSPFv3 packet. The discarded packet is counted under the appropriate discard reason.</td>
</tr>
<tr>
<td>OSPFv3 LSA errors</td>
<td>Packet appears in this section if it was discarded because of an error in the header of an OSPF link-state advertisement (LSA). The discarded packet is counted under the appropriate discard reason.</td>
</tr>
<tr>
<td>Summary traffic statistics for process ID</td>
<td>Summary traffic statistics accumulated for an OSPFv3 process.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The OSPF process ID is a unique value assigned to the OSPFv3 process in the configuration.</td>
</tr>
<tr>
<td></td>
<td>The value for the received errors is the sum of the OSPFv3 header errors that are detected by the OSPFv3 process, unlike the sum of the checksum errors that are listed in the global OSPF statistics.</td>
</tr>
</tbody>
</table>
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip ospf traffic</td>
<td>Clears OSPFv2 traffic statistics.</td>
</tr>
<tr>
<td>clear ipv6 ospf traffic</td>
<td>Clears OSPFv3 traffic statistics.</td>
</tr>
<tr>
<td>show ip ospf traffic</td>
<td>Displays OSPFv2 traffic statistics.</td>
</tr>
</tbody>
</table>
show ipv6 ospf virtual-links

To display parameters and the current state of Open Shortest Path First (OSPF) virtual links, use the `show ipv6 ospf virtual-links` command in user EXEC or privileged EXEC mode.

`show ipv6 ospf virtual-links`

**Syntax Description**

This command has no arguments or keywords.

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The information displayed by the `show ipv6 ospf virtual-links` command is useful in debugging OSPF routing operations.

**Examples**

The following is sample output from the `show ipv6 ospf virtual-links` command:

```
show ipv6 ospf virtual-links
Virtual Link OSPF_VL0 to router 172.16.6.6 is up
 Interface ID 27, IPv6 address FEC0:6666:6666::
 Run as demand circuit
 DoNotAge LSA allowed.
 Transit area 2, via interface ATM3/0, Cost of using 1
 Transmit Delay is 1 sec, State POINT_TO_POINT,
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Hello due in 00:00:06
```

The table below describes the significant fields shown in the display.

**Table 63: show ipv6 ospf virtual-links Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Link OSPF_VL0 to router 172.16.6.6 is up</td>
<td>Specifies the OSPF neighbor, and if the link to that neighbor is up or down.</td>
</tr>
<tr>
<td>Interface ID</td>
<td>Interface ID and IPv6 address of the router.</td>
</tr>
<tr>
<td>Transit area 2</td>
<td>The transit area through which the virtual link is formed.</td>
</tr>
<tr>
<td>via interface ATM3/0</td>
<td>The interface through which the virtual link is formed.</td>
</tr>
<tr>
<td>Cost of using 1</td>
<td>The cost of reaching the OSPF neighbor through the virtual link.</td>
</tr>
<tr>
<td>Transmit Delay is 1 sec</td>
<td>The transmit delay (in seconds) on the virtual link.</td>
</tr>
<tr>
<td>State POINT_TO_POINT</td>
<td>The state of the OSPF neighbor.</td>
</tr>
</tbody>
</table>
The various timer intervals configured for the link.

When the next hello is expected from the neighbor.

The following sample output from the `show ipv6 ospf virtual-links` command has two virtual links. One is protected by authentication, and the other is protected by encryption.

```bash
show ipv6 ospf virtual-links
Virtual Link OSPFv3_VL1 to router 10.2.0.1 is up
 Interface ID 69, IPv6 address 2001:0DB8:11:0:A8BB:CCFF:FE00:6A00
 Run as demand circuit
 DoNotAge LSA allowed.
 Transit area 1, via interface Serial12/0, Cost of using 64
 NULL encryption SHA-1 auth SPI 3944, secure socket UP (errors: 0)
 Transmit Delay is 1 sec, State POINT_TO_POINT,
 Timer intervals configured, Hello 2, Dead 10, Wait 40, Retransmit 5
 Adjacency State FULL (Hello suppressed)
 Index 1/2/4, retransmission queue length 0, number of retransmission 1
 First 0x00(0)/0x00(0)/0x00(0) Next 0x00(0)/0x00(0)/0x00(0)
 Last retransmission scan length is 1, maximum is 1
 Last retransmission scan time is 0 msec, maximum is 0 msec
Virtual Link OSPFv3_VL0 to router 10.1.0.1 is up
 Interface ID 67, IPv6 address 2001:0DB8:13:0:A8BB:CCFF:FE00:6700
 Run as demand circuit
 DoNotAge LSA allowed.
 Transit area 1, via interface Serial11/0, Cost of using 128
 MD5 authentication SPI 940, secure socket UP (errors: 0)
 Transmit Delay is 1 sec, State POINT_TO_POINT,
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 Adjacency State FULL (Hello suppressed)
 Index 1/1/3, retransmission queue length 0, number of retransmission 1
 First 0x00(0)/0x00(0)/0x00(0) Next 0x00(0)/0x00(0)/0x00(0)
 Last retransmission scan length is 1, maximum is 1
 Last retransmission scan time is 0 msec, maximum is 0 msec
```
show ipv6 pim anycast-RP

To verify IPv6 PIM anycast RP operation, use the `show ipv6 pim anycast-RP` command in user EXEC or privileged EXEC mode.

```
show ipv6 pim anycast-RP rp-address
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rp-address</code></td>
<td>RP address to be verified.</td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC (`>`)
- Privileged EXEC (`#`)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Examples**

```
show ipv6 pim anycast-rp 110::1:1:1
Anycast RP Peers For 110::1:1:1 Last Register/Register-Stop received
 20::1:1:1 00:00:00/00:00:00
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 pim anycast-RP</td>
<td>Configures the address of the PIM RP for an anycast group range.</td>
</tr>
</tbody>
</table>
show ipv6 pim bsr

To display information related to Protocol Independent Multicast (PIM) bootstrap router (BSR) protocol processing, use the `show ipv6 pim bsr` command in user EXEC or privileged EXEC mode.

```plaintext
show ipv6 pim [vrf vrf-name] bsr {election | rp-cache | candidate-rp}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>election</td>
<td>Displays BSR state, BSR election, and bootstrap message (BSM)-related timers.</td>
</tr>
<tr>
<td>rp-cache</td>
<td>Displays candidate rendezvous point (C-RP) cache learned from unicast C-RP announcements on the elected BSR.</td>
</tr>
<tr>
<td>candidate-rp</td>
<td>Displays C-RP state on devices that are configured as C-RPs.</td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC (>
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ipv6 pim bsr` command to display details of the BSR election-state machine, C-RP advertisement state machine, and the C-RP cache. Information on the C-RP cache is displayed only on the elected BSR device, and information on the C-RP state machine is displayed only on a device configured as a C-RP.

**Examples**

The following example displays BSM election information:

```plaintext
show ipv6 pim bsr election
PIMv2 BSR information
BSR Election Information
Scope Range List: ff00::/8
This system is the Bootstrap Router (BSR)
BSR Address: 60::1:1:4
Uptime: 00:11:55, BSR Priority: 0, Hash mask length: 126
RPF: FE80::A8BB:CCFF:FE03:C400, Ethernet0/0
BS Timer: 00:00:07
This system is candidate BSR
Candidate BSR address: 60::1:1:4, priority: 0, hash mask length: 126
```

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope Range List</td>
<td>Scope to which this BSR information applies.</td>
</tr>
</tbody>
</table>
The following example displays information that has been learned from various C-RPs at the BSR. In this example, two candidate RPs have sent advertisements for the FF00::/8 or the default IPv6 multicast range:

```
show ipv6 pim bsr rp-cache
PIMv2 BSR C-RP Cache
BSR Candidate RP Cache
Group(s) FF00::/8, RP count 2
 RP 10::1:1:3
 Priority 192, Holdtime 150
 Uptime: 00:12:36, expires: 00:01:55
 RP 20::1:1:1
 Priority 192, Holdtime 150
 Uptime: 00:12:36, expires: 00:01:5
```

The following example displays information about the C-RP. This RP has been configured without a specific scope value, so the RP will send C-RP advertisements to all BSRs about which it has learned through BSMs it has received.

```
show ipv6 pim bsr candidate-rp
PIMv2 C-RP information
 Candidate RP: 10::1:1:3
 All Learnt Scoped Zones, Priority 192, Holdtime 150
 Advertisement interval 60 seconds
 Next advertisement in 00:00:33
```

The following example confirms that the IPv6 C-BSR is PIM-enabled. If PIM is disabled on an IPv6 C-BSR interface, or if a C-BSR or C-RP is configured with the address of an interface that does not have PIM enabled, the `show ipv6 pim bsr` command used with the `election` keyword would display that information instead.

```
show ipv6 pim bsr election
PIMv2 BSR information
 BSR Election Information
 Scope Range List: ff00::/8
 BSR Address: 2001:DB8:1:1:2
 Uptime: 00:02:42, BSR Priority: 34, Hash mask length: 28
 RPF: FE80::20:1:2, Ethernet1/0
 BS Timer: 00:01:27
```
show ipv6 pim df

To display the designated forwarder (DF)-election state of each interface for each rendezvous point (RP), use the `show ipv6 pim df` command in user EXEC or privileged EXEC mode.

`show ipv6 pim [vrf vrf-name] df [interface-type interface-number] [rp-address]`

### Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>interface-type</td>
<td>(Optional) Interface type and number. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>interface-number</td>
<td></td>
</tr>
<tr>
<td>rp-address</td>
<td>(Optional) RP IPv6 address.</td>
</tr>
</tbody>
</table>

### Command Default

If no interface or RP address is specified, all DFs are displayed.

### Command Modes

- User EXEC (>
- Privileged EXEC (#)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use the `show ipv6 pim df` command to display the state of the DF election for each RP on each Protocol Independent Multicast (PIM)-enabled interface if the bidirectional multicast traffic is not flowing as expected.

### Examples

The following example displays the DF-election states:

```plaintext
show ipv6 pim df
Interface DF State Timer Metrics
Ethernet0/0 Winner 4s 8ms [120/2]
 RP :200::1
Ethernet1/0 Lose 0s 0ms [inf/inf]
 RP :200::1
```

The following example shows information on the RP:

```plaintext
show ipv6 pim df
Interface DF State Timer Metrics
Ethernet0/0 None:RP LAN 0s 0ms [inf/inf]
 RP :200::1
Ethernet1/0 Winner 7s 600ms [0/0]
 RP :200::1
Ethernet2/0 Winner 9s 8ms [0/0]
 RP :200::1
```

The table below describes the significant fields shown in the display.
**show ipv6 pim df Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface type and number that is configured to run PIM.</td>
</tr>
<tr>
<td>DF State</td>
<td>The state of the DF election on the interface. The state can be:</td>
</tr>
<tr>
<td></td>
<td>• Offer</td>
</tr>
<tr>
<td></td>
<td>• Winner</td>
</tr>
<tr>
<td></td>
<td>• Backoff</td>
</tr>
<tr>
<td></td>
<td>• Lose</td>
</tr>
<tr>
<td></td>
<td>• None:RP LAN</td>
</tr>
<tr>
<td></td>
<td>The None:RP LAN state indicates that no DF election is taking place on this LAN because the RP is directly connected to this LAN.</td>
</tr>
<tr>
<td>Timer</td>
<td>DF election timer.</td>
</tr>
<tr>
<td>Metrics</td>
<td>Routing metrics to the RP announced by the DF.</td>
</tr>
<tr>
<td>RP</td>
<td>The IPv6 address of the RP.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>debug ipv6 pim df-election</strong></td>
<td>Displays debug messages for PIM bidirectional DF-election message processing.</td>
</tr>
<tr>
<td><strong>ipv6 pim rp-address</strong></td>
<td>Configures the address of a PIM RP for a particular group range.</td>
</tr>
<tr>
<td><strong>show ipv6 pim df winner</strong></td>
<td>Displays the DF-election winner on each interface for each RP.</td>
</tr>
</tbody>
</table>
show ipv6 pim group-map

To display an IPv6 Protocol Independent Multicast (PIM) group mapping table, use the `show ipv6 pim group-map` command in user EXEC or privileged EXEC mode.

```
{show ipv6 pim [vrf vrf-name] group-map [{group-name group-address}] [{group-range group-mask}] [info-source {bsr | default | embedded-rp | static}]}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrf vrf-name</code></td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>`group-name</td>
<td>group-address`</td>
</tr>
<tr>
<td>`group-range</td>
<td>group-mask`</td>
</tr>
<tr>
<td><code>info-source</code></td>
<td></td>
</tr>
<tr>
<td><code>bsr</code></td>
<td></td>
</tr>
<tr>
<td><code>default</code></td>
<td></td>
</tr>
<tr>
<td><code>embedded-rp</code></td>
<td></td>
</tr>
<tr>
<td><code>static</code></td>
<td></td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC (>
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ipv6 pim group-map` command to find all group mappings installed by a given source of information, such as BSR or static configuration.

You can also use this command to find which group mapping a router at a specified IPv6 group address is using by specifying a group address, or to find an exact group mapping entry by specifying a group range and mask length.

**Examples**

The following is sample output from the `show ipv6 pim group-map` command:

```
show ipv6 pim group-map
FF33::/32*
 SSM
 Info source:Static
 Uptime:00:08:32, Groups:0
FF34::/32*
 SSM
```
The table below describes the significant fields shown in the display.

### Table 66: show ipv6 pim group-map Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>Address of the RP router if the protocol is sparse mode or bidir.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol used: sparse mode (SM), Source Specific Multicast (SSM), link-local (LL), or NOROUTE (NO).</td>
</tr>
<tr>
<td></td>
<td>LL is used for the link-local scoped IPv6 address range (ff[0-f]2::/16). LL is treated as a separate protocol type, because packets received with these destination addresses are not forwarded, but the router might need to receive and process them.</td>
</tr>
<tr>
<td></td>
<td>NOROUTE or NO is used for the reserved and node-local scoped IPv6 address range (ff[0-f][0-1]::/16). These addresses are nonroutable, and the router does not need to process them.</td>
</tr>
<tr>
<td>Groups</td>
<td>How many groups are present in the topology table from this range.</td>
</tr>
<tr>
<td>Info source</td>
<td>Mappings learned from a specific source; in this case, static configuration.</td>
</tr>
<tr>
<td>Uptime</td>
<td>The uptime for the group mapping displayed.</td>
</tr>
</tbody>
</table>

The following example displays the group mappings learned from BSRs that exist in the PIM group-to-RP or mode-mapping cache. The example shows the address of the BSR from which the group mappings have been learned and the associated timeout.

```
Router# show ipv6 pim group-map info-source bsr
FF00::/8*
 SM, RP: 20::1:1:1
 RPF: Et1/0, FE80::A8BB:CCFF:FE03:C202
 Info source: BSR From: 60::1:1:4(00:01:42), Priority: 192
 Uptime: 00:19:51, Groups: 0
FF00::/8*
 SM, RP: 10::1:1:3
 RPF: Et0/0, FE80::A8BB:CCFF:FE03:C102
 Info source: BSR From: 60::1:1:4(00:01:42), Priority: 192
 Uptime: 00:19:51, Groups: 0
```
show ipv6 pim interface

To display information about interfaces configured for Protocol Independent Multicast (PIM), use the show ipv6 pim interface command in privileged EXEC mode.

```
show ipv6 pim [vrf vrf-name] interface [state-on] [state-off] [type number]
```

**Syntax Description**
- `vrf vrf-name` (Optional) Specifies a virtual routing and forwarding (VRF) configuration.
- `state-on` (Optional) Displays interfaces with PIM enabled.
- `state-off` (Optional) Displays interfaces with PIM disabled.
- `type number` (Optional) Interface type and number.

**Command Modes**
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The `show ipv6 pim interface` command is used to check if PIM is enabled on an interface, the number of neighbors, and the designated router (DR) on the interface.

**Examples**
The following is sample output from the `show ipv6 pim interface` command using the `state-on` keyword:

```
show ipv6 pim interface state-on
Interface PIM Nbr Hello DR Count Intvl Prior
 on 0 30 1
Ethernet0 Address:FE80::208:20FF:FE08:D7FF
 DR :this system
POS1/0 Address:FE80::208:20FF:FE08:D554
 DR :this system
POS4/0 Address:FE80::208:20FF:FE08:D554
 DR :this system
POS4/1 Address:FE80::208:20FF:FE08:D554
 DR :this system
Loopback0 Address:FE80::208:20FF:FE08:D554
 DR :this system
```

The table below describes the significant fields shown in the display.
Table 67: show ipv6 pim interface Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface type and number that is configured to run PIM.</td>
</tr>
<tr>
<td>PIM</td>
<td>Whether PIM is enabled on an interface.</td>
</tr>
<tr>
<td>Nbr Count</td>
<td>Number of PIM neighbors that have been discovered through this interface.</td>
</tr>
<tr>
<td>Hello Intvl</td>
<td>Frequency, in seconds, of PIM hello messages.</td>
</tr>
<tr>
<td>DR</td>
<td>IP address of the designated router (DR) on a network.</td>
</tr>
<tr>
<td>Address</td>
<td>Interface IP address of the next-hop router.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show ipv6 pim interface` command, modified to display passive interface information:

```
(config)# show ipv6 pim interface gigabitethernet0/0/0

Interface PIM Nbr Hello DR BFD
Count Intvl Prior
GigabitEthernet0/0/0 on/P 0 30 1 On
Address: FE80::A8BB:CCFF:FE00:9100
DR : this system
```

The table below describes the significant change shown in the display.

Table 68: show ipv6 pim interface Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM</td>
<td>Whether PIM is enabled on an interface. When PIM passive mode is used, a &quot;P&quot; is displayed in the output.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 pim neighbor</td>
<td>Displays the PIM neighbors discovered by the Cisco IOS software.</td>
</tr>
</tbody>
</table>
show ipv6 pim join-prune statistic

To display the average join-prune aggregation for the most recently aggregated 1000, 10,000, and 50,000 packets for each interface, use the `show ipv6 pim join-prune statistic` command in user EXEC or privileged EXEC mode.

```
show ipv6 pim [vrf vrf-name] join-prune statistic [interface-type]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrf vrf-name</code></td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td><code>interface-type</code></td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
</tbody>
</table>

**Command Modes**

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC (&gt;)</td>
<td></td>
</tr>
<tr>
<td>Privileged EXEC (#)</td>
<td></td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When Protocol Independent Multicast (PIM) sends multiple joins and prunes simultaneously, it aggregates them into a single packet. The `show ipv6 pim join-prune statistic` command displays the average number of joins and prunes that were aggregated into a single packet over the last 1000 PIM join-prune packets, over the last 10,000 PIM join-prune packets, and over the last 50,000 PIM join-prune packets.

**Examples**

The following example provides the join/prune aggregation on Ethernet interface 0/0/0:

```
show ipv6 pim join-prune statistic Ethernet0/0/0
PIM Average Join/Prune Aggregation for last (1K/10K/50K) packets
Interface Transmitted Received
Ethernet0/0/0 0 / 0 / 0 1 / 0 / 0
```

The table below describes the significant fields shown in the display.

**Table 69: show ipv6 pim join-prune statistics Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface from which the specified packets were transmitted or on which they were received.</td>
</tr>
<tr>
<td>Transmitted</td>
<td>The number of packets transmitted on the interface.</td>
</tr>
<tr>
<td>Received</td>
<td>The number of packets received on the interface.</td>
</tr>
</tbody>
</table>
show ipv6 pim limit

To display Protocol Independent Multicast (PIM) interface limit, use the **show ipv6 pim limit** command in privileged EXEC mode.

```
show ipv6 pim [vrf vrf-name] limit [interface]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>interface</td>
<td>(Optional) Specific interface for which limit information is provided.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **show ipv6 pim limit** command checks interface statistics for limits. If the optional *interface* argument is enabled, only information for the specified interface is shown.

**Examples**

The following example displays PIM interface limit information:

```
show ipv6 pim limit
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 multicast limit</td>
<td>Configures per-interface mroute state limiters in IPv6.</td>
</tr>
<tr>
<td>ipv6 multicast limit cost</td>
<td>Applies a cost to mroutes that match per interface mroute state limiters in IPv6.</td>
</tr>
</tbody>
</table>
show ipv6 pim neighbor

To display the Protocol Independent Multicast (PIM) neighbors discovered by the Cisco software, use the show ipv6 pim neighbor command in privileged EXEC mode.

```
show ipv6 pim [vrf vrf-name] neighbor [detail] [[interface-type interface-number | count]]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays the additional addresses of the neighbors learned, if any, through the routable address hello option.</td>
</tr>
<tr>
<td>interface-type interface-number</td>
<td>(Optional) Interface type and number.</td>
</tr>
<tr>
<td>count</td>
<td>(Optional) Displays neighbor counts on each interface.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The show ipv6 pim neighbor command displays which routers on the LAN are configured for PIM.

**Examples**

The following is sample output from the show ipv6 pim neighbor command using the detail keyword to identify the additional addresses of the neighbors learned through the routable address hello option:

```
show ipv6 pim neighbor detail
Neighbor Address(es) Interface Uptime Expires DR pri Bidir
FE80::A8BB:CCFF:FE00:401 Ethernet0/0 01:34:16 00:01:16 1 B
 60::1:1:3
FE80::A8BB:CCFF:FE00:501 Ethernet0/0 01:34:15 00:01:18 1 B
 60::1:1:4
```

The table below describes the significant fields shown in the display.

**Table 70: show ipv6 pim neighbor Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor addresses</td>
<td>IPv6 address of the PIM neighbor.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface type and number on which the neighbor is reachable.</td>
</tr>
<tr>
<td>Uptime</td>
<td>How long (in hours, minutes, and seconds) the entry has been in the PIM neighbor table.</td>
</tr>
</tbody>
</table>
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expires</td>
<td>How long (in hours, minutes, and seconds) until the entry will be removed from the IPv6 multicast routing table.</td>
</tr>
<tr>
<td>DR</td>
<td>Indicates that this neighbor is a designated router (DR) on the LAN.</td>
</tr>
<tr>
<td>pri</td>
<td>DR priority used by this neighbor.</td>
</tr>
<tr>
<td>Bidir</td>
<td>The neighbor is capable of PIM in bidirectional mode.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 pim interfaces</code></td>
<td>Displays information about interfaces configured for PIM.</td>
</tr>
</tbody>
</table>
**show ipv6 pim range-list**

To display information about IPv6 multicast range lists, use the `show ipv6 pim range-list` command in privileged EXEC mode.

```
show ipv6 pim [vrf vrf-name] range-list [config] [rp-address | rp-name]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>config</td>
<td>(Optional) The client. Displays the range lists configured on the router.</td>
</tr>
<tr>
<td>rp-address</td>
<td>rp-name</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show ipv6 pim range-list` command displays IPv6 multicast range lists on a per-client and per-mode basis. A client is the entity from which the specified range list was learned. The clients can be config, and the modes can be Source Specific Multicast (SSM) or sparse mode (SM).

**Examples**

The following is sample output from the `show ipv6 pim range-list` command:

```
show ipv6 pim range-list
config SSM Exp:never Learnt from :::
FF33::/32 Up:00:26:33
FF34::/32 Up:00:26:33
FF35::/32 Up:00:26:33
FF36::/32 Up:00:26:33
FF37::/32 Up:00:26:33
FF38::/32 Up:00:26:33
FF39::/32 Up:00:26:33
FF3A::/32 Up:00:26:33
FF3B::/32 Up:00:26:33
FF3C::/32 Up:00:26:33
FF3D::/32 Up:00:26:33
FF3E::/32 Up:00:26:33
FF3F::/32 Up:00:26:33
config SM RP:40::1:1:1 Exp:never Learnt from :::
FF13::/64 Up:00:03:50
config SM RP:40::1:1:3 Exp:never Learnt from :::
FF09::/64 Up:00:03:50
```

The table below describes the significant fields shown in the display.
### Table 71: `show ipv6 pim range-list` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config</td>
<td>Config is the client.</td>
</tr>
<tr>
<td>SSM</td>
<td>Protocol being used.</td>
</tr>
<tr>
<td>FF33::/32</td>
<td>Group range.</td>
</tr>
<tr>
<td>Up:</td>
<td>Uptime.</td>
</tr>
</tbody>
</table>
**show ipv6 pim topology**

To display Protocol Independent Multicast (PIM) topology table information for a specific group or all groups, use the `show ipv6 pim topology` command in user EXEC or privileged EXEC mode.

```
show ipv6 pim [vrf vrf-name] topology [{group-name | group-address [{source-address | source-name}] | link-local}] route-count [detail]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>group-name</td>
<td>(Optional) IPv6 address or name of the multicast group.</td>
</tr>
<tr>
<td>group-address</td>
<td>(Optional) IPv6 address or name of the multicast group.</td>
</tr>
<tr>
<td>source-address</td>
<td>(Optional) IPv6 address or name of the source.</td>
</tr>
<tr>
<td>source-name</td>
<td>(Optional) IPv6 address or name of the source.</td>
</tr>
<tr>
<td>link-local</td>
<td>(Optional) Displays the link-local groups.</td>
</tr>
<tr>
<td>route-count</td>
<td>(Optional) Displays the number of routes in PIM topology table.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC (>)

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command shows the PIM topology table for a given group--(*, G), (S, G), and (S, G) Rendezvous Point Tree (RPT)--as internally stored in a PIM topology table. The PIM topology table may have various entries for a given group, each with its own interface list. The resulting forwarding state is maintained in the Multicast Routing Information Base (MRIB) table, which shows which interface the data packet should be accepted on and which interfaces the data packet should be forwarded to for a given (S, G) entry. Additionally, the Multicast Forwarding Information Base (MFIB) table is used during forwarding to decide on per-packet forwarding actions.

The `route-count` keyword shows the count of all entries, including link-local entries.

PIM communicates the contents of these entries through the MRIB, which is an intermediary for communication between multicast routing protocols (such as PIM), local membership protocols (such as Multicast Listener Discovery [MLD]), and the multicast forwarding engine of the system.

For example, an interface is added to the (*, G) entry in PIM topology table upon receipt of an MLD report or PIM (*, G) join message. Similarly, an interface is added to the (S, G) entry upon receipt of the MLD INCLUDE report for the S and G or PIM (S, G) join message. Then PIM installs an (S, G) entry in the MRIB with the immediate olist (from (S, G)) and the inherited olist (from (*, G)). Therefore, the proper forwarding state for a given entry (S, G) can be seen only in the MRIB or the MFIB, not in the PIM topology table.

**Examples**

The following is sample output from the `show ipv6 pim topology` command:

```
show ipv6 pim topology
```

IP PIM Multicast Topology Table

Entry state: (*/S,G) [RPT/SPT] Protocol Uptime Info
Entry flags: KAT - Keep Alive Timer, AA - Assume Alive, PA - Probe Alive,
RA - Really Alive, LH - Last Hop, DSS - Don't Signal Sources,
RR - Register Received, SR - Sending Registers, E - MSDP External,
DCC - Don't Check Connected

Interface state: Name, Uptime, Fwd, Info
Interface flags: LI - Local Interest, LD - Local Dissinterest,
II - Internal Interest, ID - Internal Dissinterest,
LH - Last Hop, AS - Assert, AB - Admin Boundary

(*,FF05::1)
SM UP: 02:26:56 JP: Join (now) Flags: LH
RP: 40::1:1:2
RPF: Ethernet1/1, FE81::1
Ethernet0/1 02:26:56 fwd LI LH

(50::1:1:200,FF05::1)
SM UP: 00:00:07 JP: Null (never) Flags:
RPF: Ethernet1/1, FE80::30:1:4
Ethernet1/1 00:00:07 off LI

The table below describes the significant fields shown in the display.

Table 72: show ipv6 pim topology Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry flags: KAT</td>
<td>The keepalive timer (KAT) associated with a source is used to keep track of two intervals while the source is alive. When a source first becomes active, the first-hop router sets the keepalive timer to 3 minutes and 30 seconds, during which time it does not probe to see if the source is alive. Once this timer expires, the router enters the probe interval and resets the timer to 65 seconds, during which time the router assumes the source is alive and starts probing to determine if it actually is. If the router determines that the source is alive, the router exits the probe interval and resets the keepalive timer to 3 minutes and 30 seconds. If the source is not alive, the entry is deleted at the end of the probe interval.</td>
</tr>
<tr>
<td>AA, PA</td>
<td>The assume alive (AA) and probe alive (PA) flags are set when the router is in the probe interval for a particular source.</td>
</tr>
<tr>
<td>RR</td>
<td>The register received (RR) flag is set on the (S, G) entries on the Route Processor (RP) as long as the RP receives registers from the source Designated Router (DR), which keeps the source state alive on the RP.</td>
</tr>
<tr>
<td>SR</td>
<td>The sending registers (SR) flag is set on the (S, G) entries on the DR as long as it sends registers to the RP.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 mrib client</td>
<td>Displays information about the clients of the MRIB.</td>
</tr>
<tr>
<td>show ipv6 mrib route</td>
<td>Displays MRIB route information.</td>
</tr>
</tbody>
</table>
show ipv6 pim traffic

To display the Protocol Independent Multicast (PIM) traffic counters, use the show ipv6 pim traffic command in user EXEC or privileged EXEC mode.

show ipv6 pim [vrf vrf-name] traffic

Syntax Description

| vrf vrf-name | (Optional) Specifies a virtual routing and forwarding (VRF) configuration. |

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the show ipv6 pim traffic command to check if the expected number of PIM protocol messages have been received and sent.

Examples

The following example shows the number of PIM protocol messages received and sent.

```
show ipv6 pim traffic
PIM Traffic Counters
Elapsed time since counters cleared:00:05:29

Received Sent
Valid PIM Packets 22 22
Hello 22 22
Join-Prune 0 0
Register 0 0
Register Stop 0 0
Assert 0 0
Bidir DF Election 0 0
Errors:
Malformed Packets 0
Bad Checksums 0
Send Errors 0
Packet Sent on Loopback Errors 0
Packets Received on PIM-disabled Interface 0
Packets Received with Unknown PIM Version 0
```

The table below describes the significant fields shown in the display.

Table 73: show ipv6 pim traffic Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed time since counters cleared</td>
<td>Indicates the amount of time (in hours, minutes, and seconds) since the</td>
</tr>
<tr>
<td></td>
<td>counters cleared.</td>
</tr>
<tr>
<td>Valid PIM Packets</td>
<td>Number of valid PIM packets received and sent.</td>
</tr>
</tbody>
</table>
### show ipv6 pim traffic

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello</td>
<td>Number of valid hello messages received and sent.</td>
</tr>
<tr>
<td>Join-Prune</td>
<td>Number of join and prune announcements received and sent.</td>
</tr>
<tr>
<td>Register</td>
<td>Number of PIM register messages received and sent.</td>
</tr>
<tr>
<td>Register Stop</td>
<td>Number of PIM register stop messages received and sent.</td>
</tr>
<tr>
<td>Assert</td>
<td>Number of asserts received and sent.</td>
</tr>
</tbody>
</table>
show ipv6 pim tunnel

To display information about the Protocol Independent Multicast (PIM) register encapsulation and de-encapsulation tunnels on an interface, use the `show ipv6 pim tunnel` command in privileged EXEC mode.

```
show ipv6 pim [vrf vrf-name] tunnel [interface-type interface-number]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>interface-type interface-number</td>
<td>(Optional) Tunnel interface type and number.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you use the `show ipv6 pim tunnel` command without the optional `interface` keyword, information about the PIM register encapsulation and de-encapsulation tunnel interfaces is displayed.

The PIM encapsulation tunnel is the register tunnel. An encapsulation tunnel is created for every known rendezvous point (RP) on each router. The PIM decapsulation tunnel is the register decapsulation tunnel. A decapsulation tunnel is created on the RP for the address that is configured to be the RP address.

**Examples**

The following is sample output from the `show ipv6 pim tunnel` command on the RP:

```
show ipv6 pim tunnel
Tunnel0*
 Type : PIM Encap
 RP : 100::1
 Source : 100::1
Tunnel0*
 Type : PIM Decap
 RP : 100::1
 Source : -
```

The following is sample output from the `show ipv6 pim tunnel` command on a non-RP:

```
show ipv6 pim tunnel
Tunnel0*
 Type : PIM Encap
 RP : 100::1
 Source : 2001::1:1:1
```

The table below describes the significant fields shown in the display.

**Table 74: show ipv6 pim tunnel Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel0*</td>
<td>Name of the tunnel.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Type</td>
<td>Type of tunnel. Can be PIM encapsulation or PIM de-encapsulation.</td>
</tr>
<tr>
<td>source</td>
<td>Source address of the router that is sending encapsulating registers to the RP.</td>
</tr>
</tbody>
</table>
show ipv6 policy

To display the IPv6 policy-based routing (PBR) configuration, use the `show ipv6 policy` command in user EXEC or privileged EXEC mode.

```
show ipv6 policy
```

**Syntax Description**
This command has no arguments or keywords.

**Command Modes**
User EXEC (>)
Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
IPv6 policy matches will be counted on route maps, as is done in IPv4. Therefore, IPv6 policy matches can also be displayed on the `show route-map` command.

**Examples**
The following example displays the PBR configuration:

```
show ipv6 policy

Interface Routemap
Ethernet0/0 src-1

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface type and number that is configured to run Protocol-Independent Multicast (PIM).</td>
</tr>
<tr>
<td>Routemap</td>
<td>The name of the route map on which IPv6 policy matches were counted.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show route-map</td>
<td>Displays all route maps configured or only the one specified.</td>
</tr>
</tbody>
</table>
show ipv6 prefix-list

To display information about an IPv6 prefix list or IPv6 prefix list entries, use the `show ipv6 prefix-list` command in user EXEC or privileged EXEC mode.

```
show ipv6 prefix-list [detail | summary] [list-name]
```

```
show ipv6 prefix-list list-name ipv6-prefix/prefix-length [longer | first-match]
```

```
show ipv6 prefix-list list-name seq seq-num
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`detail</td>
<td>summary`</td>
</tr>
<tr>
<td><code>list-name</code></td>
<td>(Optional) The name of a specific IPv6 prefix list.</td>
</tr>
<tr>
<td><code>ipv6-prefix</code></td>
<td>All prefix list entries for the specified IPv6 network. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td><code>/ prefix-length</code></td>
<td>The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.</td>
</tr>
<tr>
<td><code>longer</code></td>
<td>(Optional) Displays all entries of an IPv6 prefix list that are more specific than the given <code>ipv6-prefix / prefix-length</code> values.</td>
</tr>
<tr>
<td><code>first-match</code></td>
<td>(Optional) Displays the entry of an IPv6 prefix list that matches the given <code>ipv6-prefix / prefix-length</code> values.</td>
</tr>
<tr>
<td><code>seq seq-num</code></td>
<td>The sequence number of the IPv6 prefix list entry.</td>
</tr>
</tbody>
</table>

Command Default
Displays information about all IPv6 prefix lists.

Command Modes
User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `show ipv6 prefix-list` command provides output similar to the `show ip prefix-list` command, except that it is IPv6-specific.

Examples
The following example shows the output of the `show ipv6 prefix-list` command with the `detail` keyword:

```
# show ipv6 prefix-list detail
ipv6 prefix-list 6to4:
    count: 1, range entries: 0, sequences: 5 - 5, refcount: 2
```
seq 5 permit 2002::/16 (hit count: 313, refcount: 1)
ipv6 prefix-list aggregate:
 count: 2, range entries: 2, sequences: 5 – 10, refcount: 30
seq 5 deny 3FFE:C00::/24 ge 25 (hit count: 568, refcount: 1)
seq 10 permit ::/0 le 48 (hit count: 31310, refcount: 1)

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix list with the latest deletion/insertion:</td>
<td>Prefix list that was last modified.</td>
</tr>
<tr>
<td>count</td>
<td>Number of entries in the list.</td>
</tr>
<tr>
<td>range entries</td>
<td>Number of entries with matching range.</td>
</tr>
<tr>
<td>sequences</td>
<td>Sequence number for the prefix entry.</td>
</tr>
<tr>
<td>refcount</td>
<td>Number of objects currently using this prefix list.</td>
</tr>
<tr>
<td>seq</td>
<td>Entry number in the list.</td>
</tr>
<tr>
<td>permit, deny</td>
<td>Granting status.</td>
</tr>
<tr>
<td>hit count</td>
<td>Number of matches for the prefix entry.</td>
</tr>
</tbody>
</table>

The following example shows the output of the `show ipv6 prefix-list` command with the `summary` keyword:

```bash
# show ipv6 prefix-list summary
ipv6 prefix-list 6to4:
  count: 1, range entries: 0, sequences: 5 – 5, refcount: 2
ipv6 prefix-list aggregate:
  count: 2, range entries: 2, sequences: 5 – 10, refcount: 30
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 prefix-list</td>
<td>Resets the hit count of the prefix list entries.</td>
</tr>
<tr>
<td>distribute-list in</td>
<td>Filters networks received in updates.</td>
</tr>
<tr>
<td>distribute-list out</td>
<td>Suppresses networks from being advertised in updates.</td>
</tr>
<tr>
<td>ipv6 prefix-list</td>
<td>Creates an entry in an IPv6 prefix list.</td>
</tr>
<tr>
<td>ipv6 prefix-list description</td>
<td>Adds a text description of an IPv6 prefix list.</td>
</tr>
<tr>
<td>match ipv6 address</td>
<td>Distributes IPv6 routes that have a prefix permitted by a prefix list.</td>
</tr>
<tr>
<td>remark (prefix-list)</td>
<td>Adds a comment for an entry in a prefix list.</td>
</tr>
</tbody>
</table>
show ipv6 protocols

To display the parameters and the current state of the active IPv6 routing protocol processes, use the `show ipv6 protocols` command in user EXEC or privileged EXEC mode.

```
show ipv6 protocols [summary]
```

Syntax Description

<table>
<thead>
<tr>
<th>summary</th>
<th>(Optional) Displays the configured routing protocol process names.</th>
</tr>
</thead>
</table>

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The information displayed by the `show ipv6 protocols` command is useful in debugging routing operations.

Examples

The following sample output from the `show ipv6 protocols` command displays Intermediate System-to-Intermediate System (IS-IS) routing protocol information:

```
# show ipv6 protocols

IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "static"
IPv6 Routing Protocol is "isis"

Interfaces:
  Ethernet0/0/3
  Ethernet0/0/1
  Serial1/0/1
  Loopback1 (Passive)
  Loopback2 (Passive)
  Loopback3 (Passive)
  Loopback4 (Passive)
  Loopback5 (Passive)

Redistribution:
  Redistributing protocol static at level 1
Inter-area redistribution
  Redistributing L1 into L2 using prefix-list word
Address Summarization:
  L2: 33::/16 advertised with metric 0
  L2: 44::/16 advertised with metric 20
  L2: 66::/16 advertised with metric 10
  L2: 77::/16 advertised with metric 10
```

The table below describes the significant fields shown in the display.
Table 76: show ipv6 protocols Field Descriptions for IS-IS Processes

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Routing Protocol is</td>
<td>Specifies the IPv6 routing protocol used.</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Specifies the interfaces on which the IPv6 IS-IS protocol is configured.</td>
</tr>
<tr>
<td>Redistribution</td>
<td>Lists the protocol that is being redistributed.</td>
</tr>
<tr>
<td>Inter-area redistribution</td>
<td>Lists the IS-IS levels that are being redistributed into other levels.</td>
</tr>
<tr>
<td>using prefix-list</td>
<td>Names the prefix list used in the interarea redistribution.</td>
</tr>
<tr>
<td>Address Summarization</td>
<td>Lists all the summary prefixes. If the summary prefix is being advertised,</td>
</tr>
<tr>
<td></td>
<td>"advertised with metric x" will be displayed after the prefix.</td>
</tr>
</tbody>
</table>
show ipv6 rip

To display information about current IPv6 Routing Information Protocol (RIP) processes, use the `show ipv6 rip` command in user EXEC or privileged EXEC mode.

```
show ipv6 rip [name] [vrf vrf-name][{database | next-hops}]
show ipv6 rip [name] [{database | next-hops}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>(Optional) Name of the RIP process. If the name is not entered, details of all configured RIP processes are displayed.</td>
</tr>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Displays information about the specified Virtual Routing and Forwarding (VRF) instance.</td>
</tr>
<tr>
<td>database</td>
<td>(Optional) Displays information about entries in the specified RIP IPv6 routing table.</td>
</tr>
<tr>
<td>next-hops</td>
<td>(Optional) Displays information about the next hop addresses for the specified RIP IPv6 process. If no RIP process name is specified, the next-hop addresses for all RIP IPv6 processes are displayed.</td>
</tr>
</tbody>
</table>

Command Default

Information about all current IPv6 RIP processes is displayed.

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show ipv6 rip` command:

```
# show ipv6 rip
RIP process "one", port 521, multicast-group FF02::9, pid 55
  Administrative distance is 25. Maximum paths is 4
  Updates every 30 seconds, expire after 180
  Holddown lasts 0 seconds, garbage collect after 120
  Split horizon is on; poison reverse is off
  Default routes are not generated
  Periodic updates 8883, trigger updates 2
  Interfaces:
    Ethernet2
  Redistribution:
  RIP process "two", port 521, multicast-group FF02::9, pid 61
  Administrative distance is 120. Maximum paths is 4
  Updates every 30 seconds, expire after 180
  Holddown lasts 0 seconds, garbage collect after 120
  Split horizon is on; poison reverse is off
  Default routes are not generated
```
The table below describes the significant fields shown in the display.

Table 77: show ipv6 rip Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP process</td>
<td>The name of the RIP process.</td>
</tr>
<tr>
<td>port</td>
<td>The port that the RIP process is using.</td>
</tr>
<tr>
<td>multicast-group</td>
<td>The IPv6 multicast group of which the RIP process is a member.</td>
</tr>
<tr>
<td>pid</td>
<td>The process identification number (pid) assigned to the RIP process.</td>
</tr>
<tr>
<td>Administrative distance</td>
<td>Used to rank the preference of sources of routing information. Connected routes have an administrative distance of 1 and are preferred over the same route learned by a protocol with a larger administrative distance value.</td>
</tr>
<tr>
<td>Updates</td>
<td>The value (in seconds) of the update timer.</td>
</tr>
<tr>
<td>expire</td>
<td>The interval (in seconds) in which updates expire.</td>
</tr>
<tr>
<td>Holddown</td>
<td>The value (in seconds) of the hold-down timer.</td>
</tr>
<tr>
<td>garbage collect</td>
<td>The value (in seconds) of the garbage-collect timer.</td>
</tr>
<tr>
<td>Split horizon</td>
<td>The split horizon state is either on or off.</td>
</tr>
<tr>
<td>poison reverse</td>
<td>The poison reverse state is either on or off.</td>
</tr>
<tr>
<td>Default routes</td>
<td>The origination of a default route into RIP. Default routes are either generated or not generated.</td>
</tr>
<tr>
<td>Periodic updates</td>
<td>The number of RIP update packets sent on an update timer.</td>
</tr>
<tr>
<td>trigger updates</td>
<td>The number of RIP update packets sent as triggered updates.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show ipv6 rip database` command.

```
# show ipv6 rip one database

RIP process "one", local RIB
2001:72D:1000::/64, metric 2
    Ethernet2/2001:DB8:0:ABCD::1, expires in 168 secs
2001:72D:2000::/64, metric 2, installed
    Ethernet2/2001:DB8:0:ABCD::1, expires in 168 secs
2001:72D:3000::/64, metric 2, installed
    Ethernet2/2001:DB8:0:ABCD::1, expires in 168 secs
    Ethernet1/2001:DB8::1, expires in 120 secs
2001:72D:4000::/64, metric 16, expired, [advertise 119/hold 0]
    Ethernet2/2001:DB8:0:ABCD::1
3004::/64, metric 2 tag 2A, installed
    Ethernet2/2001:DB8:0:ABCD::1, expires in 168 secs
```
The table below describes the significant fields shown in the display.

Table 78: show ipv6rip database Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP process</td>
<td>The name of the RIP process.</td>
</tr>
<tr>
<td>2001:72D:1000::/64</td>
<td>The IPv6 route prefix.</td>
</tr>
<tr>
<td>metric</td>
<td>Metric for the route.</td>
</tr>
<tr>
<td>installed</td>
<td>Route is installed in the IPv6 routing table.</td>
</tr>
<tr>
<td>Ethernet2/2001:DB8:0:ABCD::1</td>
<td>Interface and LL next hop through which the IPv6 route was learned.</td>
</tr>
<tr>
<td>expires in</td>
<td>The interval (in seconds) before the route expires.</td>
</tr>
<tr>
<td>advertise</td>
<td>For an expired route, the value (in seconds) during which the route will be advertised as expired.</td>
</tr>
<tr>
<td>hold</td>
<td>The value (in seconds) of the hold-down timer.</td>
</tr>
<tr>
<td>tag</td>
<td>Route tag.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show ipv6 rip next-hops` command:

```
# show ipv6 rip one next-hops
RIP process "one", Next Hops
  FE80::210:7BFF:FEC2:ACCF/Ethernet4/2 [1 routes]
  FE80::210:7BFF:FEC2:B286/Ethernet4/2 [2 routes]
```

The table below describes the significant fields shown in the display.

Table 78: show ipv6 rip next-hops Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP process</td>
<td>The name of the RIP process.</td>
</tr>
<tr>
<td>2001:DB8:0:1::1/Ethernet4/2</td>
<td>The next-hop address and interface through which it was learned. Next hops are either the addresses of IPv6 RIP neighbors from which we have learned routes or explicit next hops received in IPv6 RIP advertisements.</td>
</tr>
<tr>
<td>Note</td>
<td>An IPv6 RIP neighbor may choose to advertise all its routes with an explicit next hop. In this case the address of the neighbor would not appear in the next hop display.</td>
</tr>
<tr>
<td>[1 routes]</td>
<td>The number of routes in the IPv6 RIP routing table using the specified next hop.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show ipv6 rip vrf` command:

```
# show ipv6 rip vrf red
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
RIP VRF "red", port 521, multicast-group 2001:DB8::/32, pid 295
Administrative distance is 120. Maximum paths is 16
Updates every 30 seconds, expire after 180
Holddown lasts 0 seconds, garbage collect after 120
Split horizon is on; poison reverse is off
Default routes are not generated
Periodic updates 99, trigger updates 3
Full Advertisement 0, Delayed Events 0

Interfaces:
Ethernet0/1
Loopback2
Redistribution: None

The table below describes the significant fields shown in the display.

Table B8: show ipv6 rip vrf Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP VRF</td>
<td>The name of the RIP VRF.</td>
</tr>
<tr>
<td>port</td>
<td>The port that the RIP process is using.</td>
</tr>
<tr>
<td>multicast-group</td>
<td>The IPv6 multicast group of which the RIP process is a member.</td>
</tr>
<tr>
<td>Administrative distance</td>
<td>Used to rank the preference of sources of routing information. Connected routes have an administrative distance of 1 and are preferred over the same route learned by a protocol with a larger administrative distance value.</td>
</tr>
<tr>
<td>Updates</td>
<td>The value (in seconds) of the update timer.</td>
</tr>
<tr>
<td>expires after</td>
<td>The interval (in seconds) in which updates expire.</td>
</tr>
<tr>
<td>Holddown</td>
<td>The value (in seconds) of the hold-down timer.</td>
</tr>
<tr>
<td>garbage collect</td>
<td>The value (in seconds) of the garbage-collect timer.</td>
</tr>
<tr>
<td>Split horizon</td>
<td>The split horizon state is either on or off.</td>
</tr>
<tr>
<td>poison reverse</td>
<td>The poison reverse state is either on or off.</td>
</tr>
<tr>
<td>Default routes</td>
<td>The origination of a default route into RIP. Default routes are either generated or not generated.</td>
</tr>
<tr>
<td>Periodic updates</td>
<td>The number of RIP update packets sent on an update timer.</td>
</tr>
<tr>
<td>trigger updates</td>
<td>The number of RIP update packets sent as triggered updates.</td>
</tr>
</tbody>
</table>

The following is sample output from `show ipv6 rip vrf next-hops` command:

```
Device# show ipv6 rip vrf blue next-hops
RIP VRF "blue", local RIB
AAAAA::/64, metric 2, installed
Ethernet0/0/FE80::A8BB:CCFF:FE00::?C00, expires in 177 secs
```
Table 81: show ipv6 rip vrf next-hops Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP VRF</td>
<td>The name of the RIP VRF.</td>
</tr>
<tr>
<td>metric</td>
<td>Metric for the route.</td>
</tr>
<tr>
<td>installed</td>
<td>Route is installed in the IPv6 routing table.</td>
</tr>
<tr>
<td>Ethernet0/0/FE80::A8BB:CCFF:FE00:7C00</td>
<td>The next hop address and interface through which it was learned. Next hops are either the addresses of IPv6 RIP neighbors from which we have learned routes, or explicit next hops received in IPv6 RIP advertisements. Note: An IPv6 RIP neighbor may choose to advertise all its routes with an explicit next hop. In this case the address of the neighbor would not appear in the next hop display.</td>
</tr>
<tr>
<td>expires in</td>
<td>The interval (in seconds) before the route expires.</td>
</tr>
</tbody>
</table>

The following is sample output from `show ipv6 rip vrf database` command:

```
# show ipv6 rip vrf blue database
RIP VRF "blue", Next Hops
  FE80::A8BB:CCFF:FE00:7C00/Ethernet0/0 [1 paths]
```

Table 82: show ipv6 rip vrf database Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP VRF</td>
<td>The name of the RIP VRF.</td>
</tr>
<tr>
<td>FE80::A8BB:CCFF:FE00:7C00/Ethernet0/0</td>
<td>Interface and LL next hop through which the IPv6 route was learned.</td>
</tr>
<tr>
<td>1 paths</td>
<td>Indicates the number of unique paths to this router that exist in the routing table.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 rip</td>
<td>Deletes routes from the IPv6 RIP routing table.</td>
</tr>
<tr>
<td>debug ipv6 rip</td>
<td>Displays the current contents of the IPv6 RIP routing table.</td>
</tr>
<tr>
<td>ipv6 rip vrf-mode enable</td>
<td>Enables VRF-aware support for IPv6 RIP.</td>
</tr>
</tbody>
</table>
show ipv6 routers

To display IPv6 router advertisement (RA) information received from on-link devices, use the `show ipv6 routers` command in user EXEC or privileged EXEC mode.

```bash
show ipv6 routers [interface-type interface-number][conflicts][vrf vrf-name][detail]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-type</td>
<td>(Optional) Specifies the Interface type.</td>
</tr>
<tr>
<td>interface-number</td>
<td>(Optional) Specifies the Interface number.</td>
</tr>
<tr>
<td>conflicts</td>
<td>(Optional) Displays RAs that differ from the RAs configured for a specified interface.</td>
</tr>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a virtual routing and forwarding (VRF) configuration.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Provides detail about the eligibility of the neighbor for election as the default device.</td>
</tr>
</tbody>
</table>

Command Default

When an interface is not specified, on-link RA information is displayed for all interface types. (The term *on-link* refers to a locally reachable address on the link.)

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Devices that advertise parameters that differ from the RA parameters configured for the interface on which the RAs are received are marked as conflicting.

Examples

The following is sample output from the `show ipv6 routers` command when entered without an IPv6 interface type and number:

```bash
# show ipv6 routers
Device FE80::83B3:60A4 on Tunnel5, last update 3 min
    Hops 0, Lifetime 6000 sec, AddrFlag=0, OtherFlag=0
    Reachable time 0 msec, Retransmit time 0 msec
    Prefix 3FFE:C00:8007::800:207C:4E37/96 autoconfig
        Valid lifetime -1, preferred lifetime -1
Device FE80::290:27FF:FE8C:B709 on Tunnel157, last update 0 min
    Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0
    Reachable time 0 msec, Retransmit time 0 msec
```

The following sample output shows a single neighboring device that is advertising a high default device preference and is indicating that it is functioning as a Mobile IPv6 home agent on this link.

```bash
# show ipv6 routers
```
IPV6 ND Routers (table: default)
Device FE80::100 on Ethernet0/0, last update 0 min
Hops 64, Lifetime 50 sec, AddrFlag=0, OtherFlag=0, MTU=1500
HomeAgentFlag=1, Preference=High
Reachable time 0 msec, Retransmit time 0 msec
Prefix 2001::100 onlink autoconfig
Valid lifetime 2592000, preferred lifetime 604800

The following table describes the significant fields shown in the displays.

Table 83: show ipv6 routers Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hops</td>
<td>The configured hop limit value for the RA.</td>
</tr>
<tr>
<td>Lifetime</td>
<td>The configured lifetime value for the RA. A value of 0 indicates that the device is not a default device. A value other than 0 indicates that the device is a default device.</td>
</tr>
<tr>
<td>AddrFlag</td>
<td>If the value is 0, the RA received from the device indicates that addresses are not configured using the stateful autoconfiguration mechanism. If the value is 1, the addresses are configured using this mechanism.</td>
</tr>
<tr>
<td>OtherFlag</td>
<td>If the value is 0, the RA received from the device indicates that information other than addresses is not obtained using the stateful autoconfiguration mechanism. If the value is 1, other information is obtained using this mechanism. (The value of OtherFlag can be 1 only if the value of AddrFlag is 1.)</td>
</tr>
<tr>
<td>MTU</td>
<td>The maximum transmission unit (MTU).</td>
</tr>
<tr>
<td>HomeAgentFlag=1</td>
<td>The value can be either 0 or 1. A value of 1 indicates that the device from which the RA was received is functioning as a mobile IPv6 home agent on this link, and a value of 0 indicates it is not functioning as a mobile IPv6 home agent on this link.</td>
</tr>
<tr>
<td>Preference=High</td>
<td>The DRP value, which can be high, medium, or low.</td>
</tr>
<tr>
<td>Retransmit time</td>
<td>The configured RetransTimer value. The time value to be used on this link for neighbor solicitation transmissions, which are used in address resolution and neighbor unreachability detection. A value of 0 means the time value is not specified by the advertising device.</td>
</tr>
<tr>
<td>Prefix</td>
<td>A prefix advertised by the device. Also indicates if on-link or autoconfig bits were set in the RA message.</td>
</tr>
<tr>
<td>Valid lifetime</td>
<td>The length of time (in seconds) relative to the time the advertisement is sent that the prefix is valid for the purpose of on-link determination. A value of -1 (all ones, 0xffffffff) represents infinity.</td>
</tr>
<tr>
<td>preferred lifetime</td>
<td>The length of time (in seconds) relative to the time the advertisements is sent that addresses generated from the prefix via address autoconfiguration remain valid. A value of -1 (all ones, 0xffffffff) represents infinity.</td>
</tr>
</tbody>
</table>

When the `interface-type` and `interface-number` arguments are specified, RA details about that specific interface are displayed. The following is sample output from the `show ipv6 routers` command when entered with an interface type and number:
show ipv6 routers tunnel 5

Device FE80::83B3:60A4 on Tunnel5, last update 5 min
- Hops 0, Lifetime 6000 sec, AddrFlag=0, OtherFlag=0
- Reachable time 0 msec, Retransmit time 0 msec
- Prefix 3FFE:C00:8007::800:207C:4E37/96 autoconfig
 - Valid lifetime -1, preferred lifetime -1

Entering the `conflicts` keyword with the `show ipv6 routers` command displays information for devices that are advertising parameters different from the parameters configured for the interface on which the advertisements are being received, as the following sample output shows:

show ipv6 routers conflicts

Device FE80::203:FDFF:FE34:7039 on Ethernet1, last update 1 min, CONFLICT
- Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0
- Reachable time 0 msec, Retransmit time 0 msec
- Prefix 2003::/64 onlink autoconfig
 - Valid lifetime -1, preferred lifetime -1
Device FE80::201:42FF:FECA:A5C on Ethernet1, last update 0 min, CONFLICT
- Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0
- Reachable time 0 msec, Retransmit time 0 msec
- Prefix 2001::/64 onlink autoconfig
 - Valid lifetime -1, preferred lifetime -1

Use of the `detail` keyword provides information about the preference rank of the device, its eligibility for election as default device, and whether the device has been elected:

show ipv6 routers detail

Device FE80::A8BB:CCFF:FE00:5B00 on Ethernet0/0, last update 0 min
- Rank 0x811 (eligible), Default Router
- Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0, MTU=1500
- HomeAgentFlag=0, Preference=Medium, trustlevel = 0
- Reachable time 0 (unspecified), Retransmit time 0 (unspecified)
- Prefix 2001::/64 onlink autoconfig
 - Valid lifetime 2592000, preferred lifetime 604800
show ipv6 rpf

To check Reverse Path Forwarding (RPF) information for a given unicast host address and prefix, use the **show ipv6 rpf** command in user EXEC or privileged EXEC mode.

```
show ipv6 rpf [source-vrf [access-list] | vrf receiver-vrf [source-vrf [access-list] | select]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-vrf</td>
<td>Name or address of the virtual routing and forwarding (VRF) on which lookups are to be performed.</td>
</tr>
<tr>
<td>receiver-vrf</td>
<td>Name or address of the VRF in which the lookups originate.</td>
</tr>
<tr>
<td>access-list</td>
<td>Name or address of access control list (ACL) to be applied to the group-based VRF selection policy.</td>
</tr>
<tr>
<td>vrf</td>
<td>Displays information about the VRF instance.</td>
</tr>
<tr>
<td>select</td>
<td>Displays group-to-VRF mapping information.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC (>)
Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **show ipv6 rpf** command displays information about how IPv6 multicast routing performs Reverse Path Forwarding (RPF). Because the router can find RPF information from multiple routing tables (for example, unicast Routing Information Base [RIB], or static mroutes), the **show ipv6 rpf** command to display the source from which the information is retrieved.

Examples

The following example displays RPF information for the unicast host with the IPv6 address of 2001::1:1:2:

```
# show ipv6 rpf 2001::1:1:2
RPF information for 2001::1:1:2
   RPF interface:Ethernet3/2
   RPF neighbor:FE80::40:1:3
   RPF route/mask:2000::/64
   RPF type:Unicast
   RPF recursion count:0
   Metric preference:110
   Metric:30
```

The table below describes the significant fields shown in the display.
Table 84: show ipv6 rpf Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPF information for 2001::1:1:2</td>
<td>Source address that this information concerns.</td>
</tr>
<tr>
<td>RPF interface:Ethernet3/2</td>
<td>For the given source, the interface from which the router expects to get</td>
</tr>
<tr>
<td></td>
<td>packets.</td>
</tr>
<tr>
<td>RPF neighbor:FE80::40:1:3</td>
<td>For the given source, the neighbor from which the router expects to get</td>
</tr>
<tr>
<td></td>
<td>packets.</td>
</tr>
<tr>
<td>RPF route/mask:20::/64</td>
<td>Route number and mask that matched against this source.</td>
</tr>
<tr>
<td>RPF type:Unicast</td>
<td>Routing table from which this route was obtained, either unicast, or static</td>
</tr>
<tr>
<td></td>
<td>mroutes.</td>
</tr>
<tr>
<td>RPF recursion count</td>
<td>Indicates the number of times the route is recursively resolved.</td>
</tr>
<tr>
<td>Metric preference:110</td>
<td>The preference value used for selecting the unicast routing metric to the</td>
</tr>
<tr>
<td></td>
<td>Route Processor (RP) announced by the designated forwarder (DF).</td>
</tr>
<tr>
<td>Metric:30</td>
<td>Unicast routing metric to the RP announced by the DF.</td>
</tr>
</tbody>
</table>
show ipv6 source-guard policy

To display the IPv6 source-guard policy configuration, use the `show ipv6 source-guard policy` command in user EXEC or privileged EXEC mode.

`show ipv6 source-guard policy[source-guard-policy]`

Syntax Description

| source-guard-policy | User-defined name of the snooping policy. The policy name can be a symbolic string (such as Engineering) or an integer (such as 0). |

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show ipv6 source-guard policy` command displays the IPv6 source-guard policy configuration, as well as all the interfaces on which the policy is applied. The command also displays IPv6 prefix guard information if the IPv6 prefix guard feature is enabled on the device.

Examples

```
# show ipv6 source-guard policy policy1

Policy policy1 configuration:
data-glean
prefix-guard
address-guard

Policy policy1 is applied on the following targets:
Target      Type       Policy   Feature       Target range
Et0/0       PORT      policy1  source-guard  vlan all
vlan 100    VLAN      policy1  source-guard  vlan all
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 source-guard attach-policy</code></td>
<td>Applies IPv6 source guard on an interface.</td>
</tr>
<tr>
<td><code>ipv6 source-guard policy</code></td>
<td>Defines an IPv6 source-guard policy name and enters source-guard policy configuration mode.</td>
</tr>
</tbody>
</table>
show ipv6 spd

To display the IPv6 Selective Packet Discard (SPD) configuration, use the `show ipv6 spd` command in privileged EXEC mode.

```
show ipv6 spd
```

Syntax Description

This command has no arguments or keywords.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show ipv6 spd` command to display the SPD configuration, which may provide useful troubleshooting information.

Examples

The following is sample output from the `show ipv6 spd` command:

```
# show ipv6 spd
Current mode: normal
Queue max threshold: 74, Headroom: 100, Extended Headroom: 10
IPv6 packet queue: 0
```

The table below describes the significant fields shown in the display.

Table 85: show ipv6 spd Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current mode: normal</td>
<td>The current SPD state or mode.</td>
</tr>
<tr>
<td>Queue max threshold: 74</td>
<td>The process input queue maximum.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 spd queue max-threshold</td>
<td>Configures the maximum number of packets in the SPD process input queue.</td>
</tr>
</tbody>
</table>
show ipv6 static

To display the current contents of the IPv6 routing table, use the **show ipv6 static** command in user EXEC or privileged EXEC mode.

```
show ipv6 static [{ipv6-address | ipv6-prefix/prefix-length}] [{interface type number | recursive}] [detail]
```

Syntax Description

- **ipv6-address** *(Optional)* Provides routing information for a specific IPv6 address.
 This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.

- **ipv6-prefix** *(Optional)* Provides routing information for a specific IPv6 network.
 This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.

- **/prefix-length** *(Optional)* The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

- **interface** *(Optional)* Name of an interface.

- **type** *(Optional, but required if the interface keyword is used)* Interface type. For a list of supported interface types, use the question mark (?) online help function.

- **number** *(Optional, but required if the interface keyword is used)* Interface number. For specific numbering syntax for supported interface types, use the question mark (?) online help function.

- **recursive** *(Optional)* Allows the display of recursive static routes only.

- **detail** *(Optional)* Specifies the following additional information:
 - For valid recursive routes, the output path set and maximum resolution depth.
 - For invalid recursive routes, the reason why the route is not valid.
 - For invalid direct or fully specified routes, the reason why the route is not valid.

Command Default

All IPv6 routing information for all active routing tables is displayed.

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
The **show ipv6 static** command provides output similar to the **show ip route** command, except that it is IPv6-specific.

When the *ipv6-address* or *ipv6-prefix/prefix-length* argument is specified, a longest match lookup is performed from the routing table and only route information for that address or network is displayed. Only the information matching the criteria specified in the command syntax is displayed. For example, when the *type number* arguments are specified, only the specified interface-specific routes are displayed.

Examples

show ipv6 static Command with No Options Specified in the Command Syntax: Example

When no options specified in the command, those routes installed in the IPv6 Routing Information Base (RIB) are marked with an asterisk, as shown in the following example:

```bash
# show ipv6 static
IPv6 Static routes
Code: * - installed in RIB
* 3000::/16, interface Ethernet1/0, distance 1
* 4000::/16, via nexthop 2001:1::1, distance 1
  5000::/16, interface Ethernet3/0, distance 1
* 5555::/16, via nexthop 4000::1, distance 1
  5555::/16, via nexthop 9999::1, distance 1
* 5555::/16, interface Ethernet2/0, distance 1
* 6000::/16, via nexthop 2007::1, interface Ethernet1/0, distance 1
```

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>via nexthop</td>
<td>Specifies the address of the next hop in the path to the remote network.</td>
</tr>
<tr>
<td>distance 1</td>
<td>Indicates the administrative distance to the specified route.</td>
</tr>
</tbody>
</table>

show ipv6 static Command with the IPv6 Address and Prefix: Example

When the *ipv6-address* or *ipv6-prefix/prefix-length* argument is specified, only information about static routes for that address or network is displayed. The following is sample output from the **show ipv6 route** command when entered with the IPv6 prefix 2001:200::/35:

```bash
# show ipv6 static 2001:200::/35
IPv6 Static routes
Code: * - installed in RIB
* 2001:200::/35, via nexthop 4000::1, distance 1
  2001:200::/35, via nexthop 9999::1, distance 1
* 2001:200::/35, interface Ethernet2/0, distance 1
```
show ipv6 static interface Command: Example

When an interface is supplied, only those static routes with the specified interface as the outgoing interface are displayed. The interface keyword may be used with or without the IPv6 address and prefix specified in the command statement.

```
# show ipv6 static interface ethernet 3/0
```

IPv6 Static routes Code: * - installed in RIB 5000::/16, interface Ethernet3/0, distance 1

show ipv6 static recursive Command: Example

When the recursive keyword is specified, only recursive static routes are displayed:

```
# show ipv6 static recursive
```

IPv6 Static routes Code: * - installed in RIB * 4000::/16, via nexthop 2001:1::1, distance 1 * 5555::/16, via nexthop 4000::1, distance 1 5555::/16, via nexthop 9999::1, distance 1

show ipv6 static detail Command: Example

When the detail keyword is specified, the following additional information is displayed:

- For valid recursive routes, the output path set and maximum resolution depth.
- For invalid recursive routes, the reason why the route is not valid.
- For invalid direct or fully specified routes, the reason why the route is not valid.

```
# show ipv6 static detail
```

IPv6 Static routes
Code: * - installed in RIB
* 3000::/16, interface Ethernet1/0, distance 1
* 4000::/16, via nexthop 2001:1::1, distance 1
 Resolves to 1 paths (max depth 1)
 via Ethernet1/0
 5000::/16, interface Ethernet3/0, distance 1
 Interface is down
* 5555::/16, via nexthop 4000::1, distance 1
 Resolves to 1 paths (max depth 2)
 via Ethernet1/0
 5555::/16, via nexthop 9999::1, distance 1
 Route does not fully resolve
* 5555::/16, interface Ethernet2/0, distance 1
* 6000::/16, via nexthop 2007::1, interface Ethernet1/0, distance 1

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ipv6 route</td>
<td>Establishes a static IPv6 route.</td>
</tr>
<tr>
<td></td>
<td>show ip route</td>
<td>Displays the current state of the routing table.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>show ipv6 interface</td>
<td>Displays IPv6 interface information.</td>
<td></td>
</tr>
<tr>
<td>show ipv6 route summary</td>
<td>Displays the current contents of the IPv6 routing table in summary format.</td>
<td></td>
</tr>
<tr>
<td>show ipv6 tunnel</td>
<td>Displays IPv6 tunnel information.</td>
<td></td>
</tr>
</tbody>
</table>
show ipv6 traffic

To display statistics about IPv6 traffic, use the `show ipv6 traffic` command in user EXEC or privileged EXEC mode.

```
show ipv6 traffic [interface[interface  type number]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface</code></td>
<td>(Optional) All interfaces. IPv6 forwarding statistics for all interfaces on which IPv6 forwarding statistics are being kept will be displayed.</td>
</tr>
<tr>
<td><code>interface type number</code></td>
<td>(Optional) Specified interface. Interface statistics that have occurred since the statistics were last cleared on the specific interface are displayed.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC (>)

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show ipv6 traffic` command provides output similar to the `show ip traffic` command, except that it is IPv6-specific.

Examples

The following is sample output from the `show ipv6 traffic` command:

```
# show ipv6 traffic
IPv6 statistics:
Rcvd: 0 total, 0 local destination
  0 source-routed, 0 truncated
  0 format errors, 0 hop count exceeded
  0 bad header, 0 unknown option, 0 bad source
  0 unknown protocol, 0 not a device
  0 fragments, 0 total reassembled
  0 reassembly timeouts, 0 reassembly failures
  0 unicast RPF drop, 0 suppressed RPF drop
Sent: 0 generated, 0 forwarded
  0 fragmented into 0 fragments, 0 failed
  0 encapsulation failed, 0 no route, 0 too big
Mcast: 0 received, 0 sent
ICMP statistics:
Rcvd: 0 input, 0 checksum errors, 0 too short
  0 unknown info type, 0 unknown error type
  unreachable: 0 routing, 0 admin, 0 neighbor, 0 address, 0 port
  parameter: 0 error, 0 header, 0 option
  0 hopcount expired, 0 reassembly timeout,0 too big
  0 echo request, 0 echo reply
  0 group query, 0 group report, 0 group reduce
  0 device solicit, 0 device advert, 0 redirects
```

The following is sample output for the `show ipv6 interface` command without IPv6 CEF running:
show ipv6 interface ethernet 0/1/1

Ethernet0/1/1 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::203:FDFF:FE49:9
Description: sat-2900a f0/12
Global unicast address(es):
 7::7, subnet is 7::/32
Joined group address(es):
 FF02::1
 FF02::2
 FF02::1:FF00:7
 FF02::1:FF49:9
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
Input features: RPF
Unicast RPF access-list MINI
 Process Switching:
 0 verification drops
 0 suppressed verification drops
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds

The following is sample output for the show ipv6 interface command with IPv6 CEF running:

show ipv6 traffic

The table below describes the significant fields shown in the display.

Table 87: show ipv6 traffic Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-routed</td>
<td>Number of source-routed packets.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
truncated | Number of truncated packets.
format errors | Errors that can result from checks performed on header fields, the version number, and packet length.
not a device | Message sent when IPv6 unicast routing is not enabled.
0 unicast RPF drop, 0 suppressed RPF drop | Number of unicast and suppressed reverse path forwarding (RPF) drops.
failed | Number of failed fragment transmissions.
encapsulation failed | Failure that can result from an unresolved address or try-and-queue packet.
no route | Counted when the software discards a datagram it did not know how to route.
unreach | Unreachable messages received are as follows:
 • routing--Indicates no route to the destination.
 • admin--Indicates that communication with the destination is administratively prohibited.
 • neighbor--Indicates that the destination is beyond the scope of the source address. For example, the source may be a local site or the destination may not have a route back to the source.
 • address--Indicates that the address is unreachable.
 • port--Indicates that the port is unreachable.
Unicast RPF access-list MINI | Unicast RPF access-list in use.
Process Switching | Displays process RPF counts, such as verification and suppressed verification drops.
CEF Switching | Displays CEF switching counts, such as verification drops and suppressed verification drops.
show key chain

To display the keychain, use the `show key chain` command.

```
show key chain  [name-of-chain]
```

Syntax Description

| name-of-chain | (Optional) Name of the key chain to display, as named in the key chain command. |

Command Default

If the command is used without any parameters, then it lists out all the key chains.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show key chain` command:

```
show key chain
Device# show key chain

Key-chain AuthenticationGLBP:
  key 1 -- text "Thisisasecretkey"
  accept lifetime (always valid) - (always valid) [valid now]
  send lifetime (always valid) - (always valid) [valid now]
Key-chain glbp2:
  key 100 -- text "abc123"
  accept lifetime (always valid) - (always valid) [valid now]
  send lifetime (always valid) - (always valid) [valid now]
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>key-string</td>
<td>Specifies the authentication string for a key.</td>
</tr>
<tr>
<td>send-lifetime</td>
<td>Sets the time period during which an authentication key on a key chain is valid to be sent.</td>
</tr>
</tbody>
</table>
show track

To display information about objects that are tracked by the tracking process, use the `show track` command in privileged EXEC mode.

```
show track [object-number | brief | application | brief | interface | brief | ip | route | brief | sla | brief | ipv6 | route | brief | list | route | brief | resolution | ip | ipv6 | stub-object | brief | summary | timers]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>object-number</code></td>
<td>(Optional) Object number that represents the object to be tracked. The range is from 1 to 1000.</td>
</tr>
<tr>
<td><code>brief</code></td>
<td>(Optional) Displays a single line of information related to the preceding argument or keyword.</td>
</tr>
<tr>
<td><code>application</code></td>
<td>(Optional) Displays tracked application objects.</td>
</tr>
<tr>
<td><code>interface</code></td>
<td>(Optional) Displays tracked interface objects.</td>
</tr>
<tr>
<td><code>ip route</code></td>
<td>(Optional) Displays tracked IP route objects.</td>
</tr>
<tr>
<td><code>ip sla</code></td>
<td>(Optional) Displays tracked IP SLA objects.</td>
</tr>
<tr>
<td><code>ipv6 route</code></td>
<td>(Optional) Displays tracked IPv6 route objects.</td>
</tr>
<tr>
<td><code>list</code></td>
<td>(Optional) Displays the list of boolean objects.</td>
</tr>
<tr>
<td><code>resolution</code></td>
<td>(Optional) Displays resolution of tracked parameters.</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>(Optional) Displays the summary of the specified object.</td>
</tr>
<tr>
<td><code>timers</code></td>
<td>(Optional) Displays polling interval timers.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to display information about objects that are tracked by the tracking process. When no arguments or keywords are specified, information for all objects is displayed.

A maximum of 1000 objects can be tracked. Although 1000 tracked objects can be configured, each tracked object uses CPU resources. The amount of available CPU resources on a device is dependent upon variables such as traffic load and how other protocols are configured and run. The ability to use 1000 tracked objects is dependent upon the available CPU. Testing should be conducted on site to ensure that the service works under the specific site traffic conditions.
The following example shows information about the state of IP routing on the interface that is being tracked:

Device# show track 1

Track 1
Interface GigabitEthernet 1/0/1 ip routing
IP routing is Down (no IP addr)
1 change, last change 00:01:08

The table below describes the significant fields shown in the displays.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track</td>
<td>Object number that is being tracked.</td>
</tr>
<tr>
<td>Interface GigabitEthernet 1/0/1 ip routing</td>
<td>Interface type, interface number, and object that is being tracked.</td>
</tr>
<tr>
<td>IP routing is</td>
<td>State value of the object, displayed as Up or Down. If the object is down, the reason is displayed.</td>
</tr>
<tr>
<td>1 change, last change</td>
<td>Number of times that the state of a tracked object has changed and the time (in hh:mm:ss) since the last change.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show track resolution</td>
<td>Displays the resolution of tracked parameters.</td>
</tr>
<tr>
<td>track interface</td>
<td>Configures an interface to be tracked and enters tracking configuration mode.</td>
</tr>
<tr>
<td>track ip route</td>
<td>Tracks the state of an IP route and enters tracking configuration mode.</td>
</tr>
</tbody>
</table>
track

To configure an interface to be tracked where the Gateway Load Balancing Protocol (GLBP) weighting changes based on the state of the interface, use the `track` command in global configuration mode. To remove the tracking, use the `no` form of this command.

```
track object-number interface type number {line-protocol | ip routing | ipv6 routing}
no track object-number interface type number {line-protocol | ip routing | ipv6 routing}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object-number</td>
<td>Object number in the range from 1 to 1000 representing the interface to be tracked.</td>
</tr>
<tr>
<td>interface type number</td>
<td>Interface type and number to be tracked.</td>
</tr>
<tr>
<td>line-protocol</td>
<td>Tracks whether the interface is up.</td>
</tr>
<tr>
<td>ip routing</td>
<td>Tracks whether IP routing is enabled, an IP address is configured on the interface, and the interface state is up, before reporting to GLBP that the interface is up.</td>
</tr>
<tr>
<td>ipv6 routing</td>
<td>Tracks whether IPv6 routing is enabled, an IP address is configured on the interface, and the interface state is up, before reporting to GLBP that the interface is up.</td>
</tr>
</tbody>
</table>

Command Default
The state of the interfaces is not tracked.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `track` command in conjunction with the `glbp weighting` and `glbp weighting track` commands to configure parameters for an interface to be tracked. If a tracked interface on a GLBP device goes down, the weighting for that device is reduced. If the weighting falls below a specified minimum, the device will lose its ability to act as an active GLBP virtual forwarder.

A maximum of 1000 objects can be tracked. Although 1000 tracked objects can be configured, each tracked object uses CPU resources. The amount of available CPU resources on a device is dependent upon variables such as traffic load and how other protocols are configured and run. The ability to use 1000 tracked objects is dependent upon the available CPU. Testing should be conducted on site to ensure that the service works under the specific site traffic conditions.

Examples

In the following example, TenGigabitEthernet interface 0/0/1 tracks whether GigabitEthernet interfaces 1/0/1 and 1/0/3 are up. If either of the GigabitEthernet interfaces goes down, the GLBP weighting is reduced by the default value of 10. If both GigabitEthernet interfaces go down, the GLBP weighting will fall below the lower threshold and the device will no longer be an active forwarder. To resume its role as an active forwarder, the device must have both tracked interfaces back up, and the weighting must rise above the upper threshold.

```
Device(config)# track 1 interface GigabitEthernet 1/0/1 line-protocol
```
```plaintext
Device(config-track)# exit
Device(config)# track 2 interface GigabitEthernet 1/0/3 line-protocol
Device(config)# exit
Device(config)# interface TenGigabitEthernet 0/0/1
Device(config-if)# ip address 10.21.8.32 255.255.255.0
Device(config-if)# glbp 10 weighting 110 lower 95 upper 105
Device(config-if)# glbp 10 weighting track 1
Device(config-if)# glbp 10 weighting track 2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>glbp weighting</td>
<td>Specifies the initial weighting value of a GLBP gateway.</td>
</tr>
<tr>
<td>glbp weighting track</td>
<td>Specifies an object to be tracked that affects the weighting of a GLBP gateway.</td>
</tr>
</tbody>
</table>
vrrp

To create a Virtual Router Redundancy Protocol version 3 (VRRPv3) group and enter VRRPv3 group configuration mode, use the `vrrp`. To remove the VRRPv3 group, use the `no` form of this command.

```plaintext
vrrp group-id address-family {ipv4 | ipv6}
no vrrp group-id address-family {ipv4 | ipv6}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>group-id</th>
<th>Virtual router group number. The range is from 1 to 255.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>address-family</td>
<td>Specifies the address-family for this VRRP group.</td>
</tr>
<tr>
<td></td>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address.</td>
</tr>
<tr>
<td></td>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address.</td>
</tr>
</tbody>
</table>

Command Default: None

Command Modes: Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Examples

The following example shows how to create a VRRPv3 group and enter VRRP configuration mode:

```plaintext
Device(config-if)# vrrp 3 address-family ipv4
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timers advertise</td>
<td>Sets the advertisement timer in milliseconds.</td>
</tr>
</tbody>
</table>
vrrp description

To assign a description to the Virtual Router Redundancy Protocol (VRRP) group, use the `vrrp description` command in interface configuration mode. To remove the description, use the `no` form of this command.

```
description text
no description
```

Syntax Description

| text | Text (up to 80 characters) that describes the purpose or use of the group. |

Command Default

There is no description of the VRRP group.

Command Modes

VRRP configuration (config-if-vrrp)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example enables VRRP. VRRP group 1 is described as Building A – Marketing and Administration.

```
Device(config-if-vrrp)# description Building A - Marketing and Administration
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrrp</td>
<td>Creates a VRRPv3 group and enters VRRPv3 group configuration mode.</td>
</tr>
</tbody>
</table>
vrrp preempt

To configure the device to take over as master virtual router for a Virtual Router Redundancy Protocol (VRRP) group if it has higher priority than the current master virtual router, use the `preempt` command in VRRP configuration mode. To disable this function, use the `no` form of this command.

```
preempt [delay minimum seconds]
no preempt
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>delay minimum</code> seconds</td>
<td>(Optional) Number of seconds that the device will delay before issuing an advertisement claiming master ownership. The default delay is 0 seconds.</td>
</tr>
</tbody>
</table>

Command Default

This command is enabled.

Command Modes

VRRP configuration (config-if-vrrp)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, the device being configured with this command will take over as master virtual router for the group if it has a higher priority than the current master virtual router. You can configure a delay, which will cause the VRRP device to wait the specified number of seconds before issuing an advertisement claiming master ownership.

Note

The device that is the IP address owner will preempt, regardless of the setting of this command.

Examples

The following example configures the device to preempt the current master virtual router when its priority of 200 is higher than that of the current master virtual router. If the device preempts the current master virtual router, it waits 15 seconds before issuing an advertisement claiming it is the master virtual router.

```
Device(config-if-vrrp)# preempt delay minimum 15
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrrp</td>
<td>Creates a VRRPv3 group and enters VRRPv3 group configuration mode.</td>
</tr>
<tr>
<td>priority</td>
<td>Sets the priority level of the device within a VRRP group.</td>
</tr>
</tbody>
</table>
vrrp priority

To set the priority level of the device within a Virtual Router Redundancy Protocol (VRRP) group, use the `priority` command in interface configuration mode. To remove the priority level of the device, use the `no` form of this command.

```
priority level
no priority level
```

Syntax Description

| `level` | Priority of the device within the VRRP group. The range is from 1 to 254. The default is 100. |

Command Default

The priority level is set to the default value of 100.

Command Modes

VRRP configuration (config-if-vrrp)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to control which device becomes the master virtual router.

Examples

The following example configures the device with a priority of 254:

```
Device(config-if-vrrp)# priority 254
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrrp</code></td>
<td>Creates a VRRPv3 group and enters VRRPv3 group configuration mode.</td>
</tr>
<tr>
<td><code>vrrp preempt</code></td>
<td>Configures the device to take over as master virtual router for a VRRP group if it has higher priority than the current master virtual router.</td>
</tr>
</tbody>
</table>
vrrp timers advertise

To configure the interval between successive advertisements by the master virtual router in a Virtual Router Redundancy Protocol (VRRP) group, use the `timers advertise` command in VRRP configuration mode. To restore the default value, use the `no` form of this command.

```
timers advertise [msec] interval
no timers advertise [msec] interval
```

Syntax Description

- **group**: Virtual router group number. The group number range is from 1 to 255.
- **msec**: (Optional) Changes the unit of the advertisement time from seconds to milliseconds. Without this keyword, the advertisement interval is in seconds.
- **interval**: Time interval between successive advertisements by the master virtual router. The unit of the interval is in seconds, unless the `msec` keyword is specified. The default is 1 second. The valid range is 1 to 255 seconds. When the `msec` keyword is specified, the valid range is 50 to 999 milliseconds.

Command Default
The default interval of 1 second is configured.

Command Modes
VRRP configuration (config-if-vrrp)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The advertisements being sent by the master virtual router communicate the state and priority of the current master virtual router.

The `vrrp timers advertise` command configures the time between successive advertisement packets and the time before other routers declare the master router to be down. Routers or access servers on which timer values are not configured can learn timer values from the master router. The timers configured on the master router always override any other timer settings. All routers in a VRRP group must use the same timer values. If the same timer values are not set, the devices in the VRRP group will not communicate with each other and any misconfigured device will change its state to master.

Examples
The following example shows how to configure the master virtual router to send advertisements every 4 seconds:

```
Device(config-if-vrrp)# timers advertise 4
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrrp</td>
<td>Creates a VRRPv3 group and enters VRRPv3 group configuration mode.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>timers learn</td>
<td>Configures the device, when it is acting as backup virtual router for a VRRP group, to learn the advertisement interval used by the master virtual router.</td>
</tr>
</tbody>
</table>
To specify a leader’s name to be registered with Virtual Router Redundancy Service (VRRS), use the `vrrs leader` command. To remove the specified VRRS leader, use the `no` form of this command.

```
vrrs leader vrrs-leader-name
no vrrs leader vrrs-leader-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrrs-leader-name</td>
<td>Name of VRRS Tag to lead.</td>
</tr>
</tbody>
</table>

Command Default

A registered VRRS name is unavailable by default.

Command Modes

VRRP configuration (config-if-vrrp)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example specifies a leader's name to be registered with VRRS:

```
Device(config-if-vrrp)# vrrs leader leader-1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrrp</td>
<td>Creates a VRRP group and enters VRRP configuration mode.</td>
</tr>
</tbody>
</table>
PART IV

IP Multicast Routing

• IP Multicast Routing Commands, on page 545
IP Multicast Routing Commands

- clear ip mfib counters, on page 547
- clear ip mroutes, on page 548
- clear ip pim snooping vlan, on page 549
- ip igmp filter, on page 550
- ip igmp max-groups, on page 551
- ip igmp profile, on page 553
- ip igmp snooping, on page 554
- ip igmp snooping last-member-query-count, on page 555
- ip igmp snooping querier, on page 557
- ip igmp snooping report-suppression, on page 559
- ip igmp snooping vlan mrouters, on page 560
- ip igmp snooping vlan, on page 561
- ip multicast auto-enable, on page 562
- ip multicast-routing, on page 563
- ip pim accept-register, on page 564
- ip pim bsr-candidate, on page 565
- ip pim rp-candidate, on page 567
- ip pim send-rp-announce, on page 568
- ip pim snooping, on page 570
- ip pim snooping dr-flood, on page 571
- ip pim snooping vlan, on page 572
- ip pim spt-threshold, on page 573
- match message-type, on page 574
- match service-type, on page 575
- match service-instance, on page 576
- mrouter, on page 577
- service-policy-query, on page 579
- service-policy, on page 580
- show ip igmp filter, on page 581
- show ip igmp profile, on page 582
- show ip igmp snooping, on page 583
- show ip igmp snooping groups, on page 585
- show ip igmp snooping mrouters, on page 586
• show ip igmp snooping querier, on page 587
• show ip pim autorp, on page 589
• show ip pim bsr-router, on page 590
• show ip pim bsr, on page 591
• show ip pim snooping, on page 592
• show ip pim tunnel, on page 595
• show platform software fed switch ip multicast, on page 597
clear ip mfib counters

To clear all the active IPv4 Multicast Forwarding Information Base (MFIB) traffic counters, use the `clear ip mfib counters` command in privileged EXEC mode.

```
clear ip mfib [global | vrf *] counters [group-address] [hostname | source-address]
```

Syntax Description

- `global` (Optional) Resets the IP MFIB cache to the global default configuration.
- `vrf *` (Optional) Clears the IP MFIB cache for all VPN routing and forwarding instances.
- `group-address` (Optional) Limits the active MFIB traffic counters to the indicated group address.
- `hostname` (Optional) Limits the active MFIB traffic counters to the indicated host name.
- `source-address` (Optional) Limits the active MFIB traffic counters to the indicated source address.

Command Default

None

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to reset all the active MFIB traffic counters for all the multicast tables:

```
# clear ip mfib counters
```

The following example shows how to reset the IP MFIB cache counters to the global default configuration:

```
# clear ip mfib global counters
```

The following example shows how to clear the IP MFIB cache for all the VPN routing and forwarding instances:

```
# clear ip mfib vrf * counters
```
clear ip mroute

To delete the entries in the IP multicast routing table, use the `clear ip mroute` command in privileged EXEC mode.

```
clear ip mroute [vrf vrf-name] { * | ip-address | group-address } [hostname | source-address]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies the name that is assigned to the multicast VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>*</td>
<td>Specifies all Multicast routes.</td>
</tr>
<tr>
<td>ip-address</td>
<td>Multicast routes for the IP address.</td>
</tr>
<tr>
<td>group-address</td>
<td>Multicast routes for the group address.</td>
</tr>
<tr>
<td>hostname</td>
<td>(Optional) Multicast routes for the host name.</td>
</tr>
<tr>
<td>source-address</td>
<td>(Optional) Multicast routes for the source address.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `group-address` variable specifies one of the following:

- Name of the multicast group as defined in the DNS hosts table or with the `ip host` command.
- IP address of the multicast group in four-part, dotted notation.

If you specify a group name or address, you can also enter the source argument to specify a name or address of a multicast source that is sending to the group. A source does not need to be a member of the group.

Example

The following example shows how to delete all the entries from the IP multicast routing table:

```
# clear ip mroute *
```

The following example shows how to delete all the sources on the 228.3.0.0 subnet that are sending to the multicast group 224.2.205.42 from the IP multicast routing table. This example shows how to delete all sources on network 228.3, not individual sources:

```
# clear ip mroute 224.2.205.42 228.3.0.0
```
clear ip pim snooping vlan

To delete the Protocol Independent Multicast (PIM) snooping entries on a specific VLAN, use the `clear ip pim snooping vlan` command in user EXEC or privileged EXEC mode.

```
clear ip pim snooping vlan vlan-id [neighbor | statistics | mroute [{source-ipgroup-ip}]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-id</code></td>
<td>VLAN ID. Valid values are from 1—4094.</td>
</tr>
<tr>
<td><code>neighbor</code></td>
<td>Deletes all the neighbors.</td>
</tr>
<tr>
<td><code>statistics</code></td>
<td>Deletes information about the VLAN statistics.</td>
</tr>
<tr>
<td><code>mroute</code></td>
<td>Deletes the mroute entries in the specified group and the source IP address.</td>
</tr>
<tr>
<td><code>group-addr</code></td>
<td></td>
</tr>
<tr>
<td><code>src-addr</code></td>
<td></td>
</tr>
</tbody>
</table>

Command Default

This command has no default settings.

Command Modes

User EXEC
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to clear the IP PIM-snooping entries on a specific VLAN:

```
Router# clear ip pim snooping vlan 1001
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip pim snooping</code></td>
<td>Enables PIM snooping globally.</td>
</tr>
<tr>
<td><code>show ip pim snooping</code></td>
<td>Displays information about IP PIM snooping.</td>
</tr>
</tbody>
</table>
ip igmp filter

To control whether or not all the hosts on a Layer 2 interface can join one or more IP multicast groups by applying an Internet Group Management Protocol (IGMP) profile to the interface, use the ip igmp filter interface configuration command on the stack or on a standalone. To remove the specified profile from the interface, use the no form of this command.

```
ip igmp filter profile number
no ip igmp filter
```

Syntax Description
- `profile number` IGMP profile number to be applied. The range is 1—4294967295.

Command Default
No IGMP filters are applied.

Command Modes
Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You can apply IGMP filters only to Layer 2 physical interfaces; you cannot apply IGMP filters to routed ports, switch virtual interfaces (SVIs), or ports that belong to an EtherChannel group.

An IGMP profile can be applied to one or more port interfaces, but one port can have only one profile applied to it.

Example
You can verify your setting by using the `show running-config` command in privileged EXEC mode and by specifying an interface.
ip igmp max-groups

To set the maximum number of Internet Group Management Protocol (IGMP) groups that a Layer 2 interface can join or to configure the IGMP throttling action when the maximum number of entries is in the forwarding table, use the `ip igmp max-groups` interface configuration command on the stack or on a standalone. To set the maximum back to the default, which is to have no maximum limit, or to return to the default throttling action, which is to drop the report, use the `no` form of this command.

```
ip igmp max-groups { max number | action { deny | replace } }
no ip igmp max-groups { max number | action }
```

Syntax Description

- **max number**

 Maximum number of IGMP groups that an interface can join. The range is 0—4294967294. The default is no limit.

- **action deny**

 Drops the next IGMP join report when the maximum number of entries is in the IGMP snooping forwarding table. This is the default action.

- **action replace**

 Replaces the existing group with the new group for which the IGMP report was received when the maximum number of entries is in the IGMP snooping forwarding table.

Command Default

The default maximum number of groups is no limit.

After the learns the maximum number of IGMP group entries on an interface, the default throttling action is to drop the next IGMP report that the interface receives and to not add an entry for the IGMP group to the interface.

Command Modes

Interface configuration

Command History

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
```

Usage Guidelines

You can use this command only on Layer 2 physical interfaces and on logical EtherChannel interfaces. You cannot set IGMP maximum groups for routed ports, switch virtual interfaces (SVIs), or ports that belong to an EtherChannel group.

Follow these guidelines when configuring the IGMP throttling action:

- If you configure the throttling action as deny, and set the maximum group limit, the entries that were previously in the forwarding table are not removed, but are aged out. After these entries are aged out, when the maximum number of entries is in the forwarding table, the drops the next IGMP report received on the interface.

- If you configure the throttling action as replace, and set the maximum group limitation, the entries that were previously in the forwarding table are removed. When the maximum number of entries is in the forwarding table, the replaces a randomly selected multicast entry with the received IGMP report.

- When the maximum group limitation is set to the default (no maximum), entering the `ip igmp max-groups { deny | replace }` command has no effect.
Example

The following example shows how to limit the number of IGMP groups that a port can join to 25:

```
(config)# interface gigabitethernet1/0/2
(config-if)# ip igmp max-groups 25
```

The following example shows how to configure the `ip igmp max-groups` command to replace the existing group with the new group for which the IGMP report was received when the maximum number of entries is in the forwarding table:

```
(config)# interface gigabitethernet2/0/1
(config-if)# ip igmp max-groups action replace
```

You can verify your setting by using the `show running-config` privileged EXEC command and by specifying an interface.
ip igmp profile

To create an Internet Group Management Protocol (IGMP) profile and enter IGMP profile configuration mode, use the `ip igmp profile` global configuration command on the stack or on a standalone. From this mode, you can specify the configuration of the IGMP profile to be used for filtering IGMP membership reports from a switch port. To delete the IGMP profile, use the `no` form of this command.

```
ip igmp profile  profile number
no ip igmp profile  profile number
```

Syntax Description

- `profile number` The IGMP profile number being configured. The range is from 1—4294967295.

Command Default

No IGMP profiles are defined. When configured, the default action for matching an IGMP profile is to deny matching addresses.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you are in IGMP profile configuration mode, you can create a profile by using these commands:

- `deny`—Specifies that matching addresses are denied; this is the default condition.
- `exit`—Exits from igmp-profile configuration mode.
- `no`—Negates a command or resets to its defaults.
- `permit`—Specifies that matching addresses are permitted.
- `range`—Specifies a range of IP addresses for the profile. This can be a single IP address or a range with a start and an end address.

When entering a range, enter the low IP multicast address, a space, and the high IP multicast address.

You can apply an IGMP profile to one or more Layer 2 interfaces, but each interface can have only one profile applied to it.

Example

The following example shows how to configure IGMP profile 40, which permits the specified range of IP multicast addresses:

```
(config)# ip igmp profile 40
(config-igmp-profile)# permit
(config-igmp-profile)# range 233.1.1.1 233.255.255.255
```

You can verify your settings by using the `show ip igmp profile` command in privileged EXEC mode.
ip igmp snooping

To globally enable Internet Group Management Protocol (IGMP) snooping on the router or to enable it on a per-VLAN basis, use the **ip igmp snooping** global configuration command on the stack or on a standalone router. To return to the default setting, use the **no** form of this command.

```plaintext
ip igmp snooping [vlan vlan-id]
no ip igmp snooping [vlan vlan-id]
```

Syntax Description

- **vlan vlan-id** (Optional) Enables IGMP snooping on the specified VLAN. Ranges are 1—1001 and 1006—4094.

Command Default

IGMP snooping is globally enabled on the router.

IGMP snooping is enabled on VLAN interfaces.

Command Modes

Global configuration

Command History

- **Release**
 - Cisco IOS XE Fuji 16.9.2
- **Modification**
 - This command was introduced.

Usage Guidelines

When IGMP snooping is enabled globally, it is enabled in all of the existing VLAN interfaces. When IGMP snooping is globally disabled, it is disabled on all of the existing VLAN interfaces.

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping.

Example

The following example shows how to globally enable IGMP snooping:

```
(config)# ip igmp snooping
```

The following example shows how to enable IGMP snooping on VLAN 1:

```
(config)# ip igmp snooping vlan 1
```

You can verify your settings by entering the `show ip igmp snooping` command in privileged EXEC mode.
ip igmp snooping last-member-query-count

To configure how often Internet Group Management Protocol (IGMP) snooping will send query messages in response to receiving an IGMP leave message, use the `ip igmp snooping last-member-query-count` command in global configuration mode. To set `count` to the default value, use the `no` form of this command.

```
ip igmp snooping [vlan vlan-id] last-member-query-count count
no ip igmp snooping [vlan vlan-id] last-member-query-count count
```

Syntax Description

- `vlan vlan-id` (Optional) Sets the count value on a specific VLAN ID. The range is from 1—1001. Do not enter leading zeroes.
- `count` Interval at which query messages are sent, in milliseconds. The range is from 1—7. The default is 2.

Command Default

A query is sent every 2 milliseconds.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When a multicast host leaves a group, the host sends an IGMP leave message. To check if this host is the last to leave the group, IGMP query messages are sent when the leave message is seen until the `last-member-query-interval` timeout period expires. If no response is received to the last-member queries before the timeout period expires, the group record is deleted.

Use the `ip igmp snooping last-member-query-interval` command to configure the timeout period.

When both IGMP snooping immediate-leave processing and the query count are configured, immediate-leave processing takes precedence.

Note

Do not set the count to 1 because the loss of a single packet (the query packet from the to the host or the report packet from the host to the) may result in traffic forwarding being stopped even if the receiver is still there. Traffic continues to be forwarded after the next general query is sent by the , but the interval during which a receiver may not receive the query could be as long as 1 minute (with the default query interval).

The leave latency in Cisco IOS software may increase by up to 1 last-member query interval (LMQI) value when the is processing more than one leave within an LMQI. In such a scenario, the average leave latency is determined by the \((\text{count} + 0.5) \times \text{LMQI}\). The result is that the default leave latency can range from 2.0 to 3.0 seconds with an average of 2.5 seconds under a lower load of IGMP leave processing. The leave latency under load for the minimum LMQI value of 100 milliseconds and a count of 1 is from 100 to 200 milliseconds, with an average of 150 milliseconds. This is done to limit the impact of higher rates of IGMP leave messages.
Example

The following example shows how to set the last member query count to 5:

```
(config)# ip igmp snooping last-member-query-count 5
```
ip igmp snooping querier

To globally enable the Internet Group Management Protocol (IGMP) querier function in Layer 2 networks, use the `ip igmp snooping querier` global configuration command. Use the command with keywords to enable and configure the IGMP querier feature on a VLAN interface. To return to the default settings, use the `no` form of this command.

```
ip igmp snooping [vlan vlan-id] querier [address ip-address | max-response-time response-time | query-interval interval-count | tcn query {count count | interval interval} | timer expiry expiry-time | version version]
```

```
no ip igmp snooping [vlan vlan-id] querier [address | max-response-time | query-interval | tcn query {count | interval} | timer expiry | version]
```

Syntax Description

- `vlan vlan-id` (Optional) Enables IGMP snooping and the IGMP querier function on the specified VLAN. Ranges are 1—1001 and 1006—4094.
- `address ip-address` (Optional) Specifies a source IP address. If you do not specify an IP address, the querier tries to use the global IP address configured for the IGMP querier.
- `max-response-time response-time` (Optional) Sets the maximum time to wait for an IGMP querier report. The range is 1—25 seconds.
- `query-interval interval-count` (Optional) Sets the interval between IGMP queriers. The range is 1—18000 seconds.
- `tcn query {count | interval} | timer expiry expiry-time | version version`

Command Default

The IGMP snooping querier feature is globally disabled on the .

When enabled, the IGMP snooping querier disables itself if it detects IGMP traffic from a multicast router.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Use this command to enable IGMP snooping to detect the IGMP version and IP address of a device that sends IGMP query messages, which is also called a querier.

By default, the IGMP snooping querier is configured to detect devices that use IGMP Version 2 (IGMPv2), but does not detect clients that are using IGMP Version 1 (IGMPv1). You can manually configure the `max-response-time` value when devices use IGMPv2. You cannot configure the max-response-time when devices use IGMPv1. (The value cannot be configured, and is set to zero).

Non-RFC-compliant devices running IGMPv1 might reject IGMP general query messages that have a non-zero value as the `max-response-time` value. If you want the devices to accept the IGMP general query messages, configure the IGMP snooping querier to run IGMPv1.

VLAN IDs 1002—1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping.

Example

The following example shows how to globally enable the IGMP snooping querier feature:

```
(config)# ip igmp snooping querier
```

The following example shows how to set the IGMP snooping querier maximum response time to 25 seconds:

```
(config)# ip igmp snooping querier max-response-time 25
```

The following example shows how to set the IGMP snooping querier interval time to 60 seconds:

```
(config)# ip igmp snooping querier query-interval 60
```

The following example shows how to set the IGMP snooping querier TCN query count to 25:

```
(config)# ip igmp snooping querier tcn count 25
```

The following example shows how to set the IGMP snooping querier timeout value to 60 seconds:

```
(config)# ip igmp snooping querier timer expiry 60
```

The following example shows how to set the IGMP snooping querier feature to Version 2:

```
(config)# ip igmp snooping querier version 2
```

You can verify your settings by entering the `show ip igmp snooping` privileged EXEC command.
ip igmp snooping report-suppression

To enable Internet Group Management Protocol (IGMP) report suppression, use the ip igmp snooping report-suppression global configuration command on the stack or on a standalone. To disable IGMP report suppression, and to forward all IGMP reports to multicast routers, use the no form of this command.

```
ip igmp snooping report-suppression
no ip igmp snooping report-suppression
```

Syntax Description

This command has no arguments or keywords.

Command Default

IGMP report suppression is enabled.

Command Modes

Global configuration

Command History

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
```

Usage Guidelines

IGMP report suppression is supported only when the multicast query has IGMPv1 and IGMPv2 reports. This feature is not supported when the query includes IGMPv3 reports.

The uses IGMP report suppression to forward only one IGMP report per multicast router query to multicast devices. When IGMP report suppression is enabled (the default), the sends the first IGMP report from all the hosts for a group to all the multicast routers. The does not send the remaining IGMP reports for the group to the multicast routers. This feature prevents duplicate reports from being sent to the multicast devices.

If the multicast router query includes requests only for IGMPv1 and IGMPv2 reports, the forwards only the first IGMPv1 or IGMPv2 report from all the hosts for a group to all of the multicast routers. If the multicast router query also includes requests for IGMPv3 reports, the forwards all IGMPv1, IGMPv2, and IGMPv3 reports for a group to the multicast devices.

If you disable IGMP report suppression by entering the no ip igmp snooping report-suppression command, all IGMP reports are forwarded to all of the multicast routers.

Example

The following example shows how to disable report suppression:

```
(config)# no ip igmp snooping report-suppression
```

You can verify your settings by entering the show ip igmp snooping command in privileged EXEC mode.
ip igmp snooping vlan mrouter

To add a multicast router port, use the `ip igmp snooping mrouter` global configuration command on the stack or on a standalone. To return to the default settings, use the `no` form of this command.

Command Default
By default, there are no multicast router ports.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
VLAN IDs 1002—1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping.
The configuration is saved in NVRAM.

Example
The following example shows how to configure a port as a multicast router port:

```
(config)# ip igmp snooping vlan 1 mrouter interface gigabitethernet1/0/2
```
You can verify your settings by entering the `show ip igmp snooping` privileged EXEC command.
ip igmp snooping vlan static

To enable Internet Group Management Protocol (IGMP) snooping and to statically add a Layer 2 port as a member of a multicast group, use the `ip igmp snooping vlan static` global configuration command on the stack or on a standalone. To remove the port specified as members of a static multicast group, use the `no` form of this command.

```
ip igmp snooping vlan  vlan-id  static  ip-address  interface  interface-id
no  ip igmp snooping vlan  vlan-id  static  ip-address  interface  interface-id
```

Syntax Description
- **vlan-id**: Enables IGMP snooping on the specified VLAN. Ranges are 1—1001 and 1006—4094.
- **ip-address**: Adds a Layer 2 port as a member of a multicast group with the specified group IP address.
- **interface interface-id**: Specifies the interface of the member port. The `interface-id` has these options:
 - `fastethernet interface number`—A Fast Ethernet IEEE 802.3 interface.
 - `gigabitethernet interface number`—A Gigabit Ethernet IEEE 802.3z interface.
 - `tengigabitethernet interface number`—A 10-Gigabit Ethernet IEEE 802.3z interface.
 - `port-channel interface number`—A channel interface. The range is 0—128.

Command Default
By default, no ports are statically configured as members of a multicast group.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping.

The configuration is saved in NVRAM.

Example
The following example shows how to statically configure a host on an interface:

```
(config)# ip igmp snooping vlan 1 static 224.2.4.12 interface gigabitEthernet1/0/1

Configuring port gigabitethernet1/0/1 on group 224.2.4.12

You can verify your settings by entering the `show ip igmp snooping` command in privileged EXEC mode.
```
ip multicast auto-enable

To support authentication, authorization, and accounting (AAA) enabling of IP multicast, use the `ip multicast auto-enable` command. This command allows multicast routing to be enabled dynamically on dialup interfaces using AAA attributes from a RADIUS server. To disable IP multicast for AAA, use the `no` form of this command.

```
ip multicast auto-enable
no ip multicast auto-enable
```

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example
The following example shows how to enable AAA on IP multicast:

```
(config)# ip multicast auto-enable
```
ip multicast-routing

To enable IP multicast routing, use the **ip multicast-routing** command in global configuration mode. To disable IP multicast routing, use the **no** form of this command.

```
ip multicast-routing [vrf vrf-name]
no ip multicast-routing [vrf vrf-name]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>vrf (Optional) Enables IP multicast routing for the Multicast VPN routing and forwarding (MVRF) instance specified for the vrf-name argument.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>IP multicast routing is disabled.</th>
</tr>
</thead>
</table>

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When IP multicast routing is disabled, the Cisco IOS XE software does not forward any multicast packets.

Note

For IP multicast, after enabling IP multicast routing, PIM must be configured on all interfaces. Disabling IP multicast routing does not remove PIM; PIM still must be explicitly removed from the interface configurations.

Examples

The following example shows how to enable IP multicast routing:

```
Device> enable
Device# configure terminal
Device(config)# ip multicast-routing
```

The following example shows how to enable IP multicast routing on a specific VRF:

```
Device(config)# ip multicast-routing vrf vrf1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim</td>
<td>Enables PIM on an interface.</td>
</tr>
</tbody>
</table>
ip pim accept-register

To configure a candidate rendezvous point (RP) switch to filter Protocol Independent Multicast (PIM) register messages, use the `ip pim accept-register` command in global configuration mode. To disable this function, use the `no` form of this command.

```
   ip pim [vrf vrf-name] accept-register {list access-list}
   no ip pim [vrf vrf-name] accept-register
```

Syntax Description

- `vrf vrf-name` (Optional) Configures a PIM register filter on candidate RPs for (S, G) traffic associated with the multicast Virtual Private Network (VPN) routing and forwarding (MVRF) instance specified for the `vrf-name` argument.

- `list access-list` Specifies the `access-list` argument as a number or name that defines the (S, G) traffic in PIM register messages to be permitted or denied. The range is 100—199 and the expanded range is 2000—2699. An IP-named access list can also be used.

Command Default

No PIM register filters are configured.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to prevent unauthorized sources from registering with the RP. If an unauthorized source sends a register message to the RP, the RP will immediately send back a register-stop message.

The access list provided for the `ip pim accept-register` command should only filters IP source addresses and IP destination addresses. Filtering on other fields (for example, IP protocol or UDP port number) will not be effective and may cause undesired traffic to be forwarded from the RP down the shared tree to multicast group members. If more complex filtering is required, use the `ip multicast boundary` command instead.

Example

The following example shows how to permit register packets for a source address sending to any group range, with the exception of source address 172.16.10.1 sending to the SSM group range (232.0.0.0/8). These are denied. These statements should be configured on all candidate RPs because candidate RPs will receive PIM registers from first-hop routers or switches.

```
   (config)# ip pim accept-register list ssm-range
   (config)# ip access-list extended ssm-range
   (config-ext-nacl)# deny ip any 232.0.0.0 0.255.255.255
   (config-ext-nacl)# permit ip any any
```
ip pim bsr-candidate

To configure the switch to be a candidate BSR, use the `ip pim bsr-candidate` command in global configuration mode. To remove the switch as a candidate BSR, use the `no form` of this command.

```
ip pim [vrf vrf-name] bsr-candidate interface-id [hash-mask-length] [priority]
no ip pim [vrf vrf-name] bsr-candidate
```

Syntax Description

- **vrf vrf-name** (Optional) Configures the switch to be a candidate BSR for the Multicast Virtual Private Network (MVPN) routing and forwarding (MVRF) instance specified for the `vrf-name` argument.

- **interface-id** ID of the interface on which the BSR address is derived to make it a candidate. This interface must be enabled for Protocol Independent Multicast (PIM) using the `ip pim` command. Valid interfaces include physical ports, port channels, and VLANs.

- **hash-mask-length** (Optional) Length of a mask (32 bits maximum) that is to be ANDed with the group address before the PIMv2 hash function is called. All groups with the same seed hash correspond to the same rendezvous point (RP). For example, if this value is 24, only the first 24 bits of the group addresses matter. The hash mask length allows one RP to be used for multiple groups. The default hash mask length is 0.

- **priority** (Optional) Priority of the candidate BSR (C-BSR). The range is from 0 to 255. The default priority is 0. The C-BSR with the highest priority value is preferred.

Command Default

The switch is not configured to announce itself as a candidate BSR.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The interface specified for this command must be enabled for Protocol Independent Multicast (PIM) using the `ip pim` command.

This command configures the switch to send BSR messages to all of its PIM neighbors, with the address of the designated interface as the BSR address.

This command should be configured on backbone switches that have good connectivity to all parts of the PIM domain.

The BSR mechanism is specified in RFC 2362. Candidate RP (C-RP) switches unicast C-RP advertisement packets to the BSR. The BSR then aggregates these advertisements in BSR messages, which it regularly multicasts with a TTL of 1 to the ALL-PIM-ROUTERS group address, 224.0.0.13. The multicasting of these messages is handled by hop-by-hop RPF flooding; so, no pre-existing IP multicast routing setup is required (unlike with AutoRP). In addition, the BSR does not preselect the designated RP for a particular group range (unlike AutoRP); instead, each switch that receives BSR messages will elect RPs for group ranges based on the information in the BSR messages.

Cisco always accepts and process BSR messages. There is no command to disable this function.
Cisco performs the following steps to determine which C-RP is used for a group:

- A long match lookup is performed on the group prefix that is announced by the BSR C-RPs.
- If more than one BSR-learned C-RP is found by the longest match lookup, the C-RP with the lowest priority (configured with the `ip pim rp-candidate` command) is preferred.
- If more than one BSR-learned C-RP has the same priority, the BSR hash function is used to select the RP for a group.
- If more than one BSR-learned C-RP returns the same hash value derived from the BSR hash function, the BSR C-RP with the highest IP address is preferred.

Example

The following example shows how to configure the IP address of the on Gigabit Ethernet interface 1/0/0 to be a BSR C-RP with a hash mask length of 0 and a priority of 192:

```
(config)# ip pim bsr-candidate GigabitEthernet1/0/0 0 192
```
ip pim rp-candidate

To configure the switch to advertise itself to the BSR as a Protocol Independent Multicast (PIM) Version 2 (PIMv2) candidate rendezvous point (C-RP), use the `ip pim rp-candidate` command in global configuration mode. To remove the switch as a C-RP, use the `no` form of this command.

```
ip pim [vrf vrf-name] rp-candidate interface-id [group-list access-list-number]
no ip pim [vrf vrf-name] rp-candidate interface-id [group-list access-list-number]
```

Syntax Description

- `vrf vrf-name` (Optional) Configures the switch to advertise itself to the BSR as PIMv2 C-RP for the Multicast Virtual Private Network (MVPN) routing and forwarding (MVRF) instance specified for the `vrf-name` argument.

- `interface-id` ID of the interface whose associated IP address is advertised as a candidate RP address. Valid interfaces include physical ports, port channels, and VLANs.

- `group-list access-list-number` (Optional) Specifies the standard IP access list number that defines the group prefixes that are advertised in association with the RP address.

Command Default

The switch is not configured to announce itself to the BSR as a PIMv2 C-RP.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to configure the switch to send PIMv2 messages so that it advertises itself as a candidate RP to the BSR.

This command should be configured on backbones that have good connectivity to all parts of the PIM domain. The IP address associated with the interface specified by `interface-id` will be advertised as the C-RP address.

The interface specified for this command must be enabled for Protocol Independent Multicast (PIM) using the `ip pim` command.

If the optional `group-list` keyword and `access-list-number` argument are configured, the group prefixes defined by the standard IP access list will also be advertised in association with the RP address.

Example

The following example shows how to configure the switch to advertise itself as a C-RP to the BSR in its PIM domain. The standard access list number 4 specifies the group prefix associated with the RP that has the address identified by Gigabit Ethernet interface 1/0/1.

```
(config)# ip pim rp-candidate GigabitEthernet1/0/1 group-list 4
```
ip pim send-rp-announce

To use Auto-RP to configure groups for which the device will act as a rendezvous point (RP), use the ip pim send-rp-announce command in global configuration mode. To unconfigure the device as an RP, use the no form of this command.

```
ip pim [vrf vrf-name] send-rp-announce interface-id scope ttl-value [group-list access-list-number] [interval seconds]
no ip pim [vrf vrf-name] send-rp-announce interface-id
```

Syntax Description

- `vrf vrf-name`: (Optional) Use Auto-RP to configure groups for which the device will act as a rendezvous point (RP) for the vrf-name argument.

- `interface-id`: Enter the interface ID of the interface that identifies the RP address. Valid interfaces include physical ports, port channels, and VLANs.

- `scope ttl-value`: Specifies the time-to-live (TTL) value in hops that limits the number of Auto-RP announcements. Enter a hop count that is high enough to ensure that the RP-announce messages reach all the mapping agents in the network. There is no default setting. The range is 1—255.

- `group-list access-list-number`: (Optional) Specifies the standard IP access list number that defines the group prefixes that are advertised in association with the RP address. Enter an IP standard access list number from 1—99. If no access list is configured, the RP is used for all groups.

- `interval seconds`: (Optional) Specifies the interval between RP announcements, in seconds. The total hold time of the RP announcements is automatically set to three times the value of the interval. The default interval is 60 seconds. The range is 1—16383.

Command Default

Auto-RP is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enter this command on the device that you want to be an RP. When you are using Auto-RP to distribute group-to-RP mappings, this command causes the router to send an Auto-RP announcement message to the well-known group CISCO-RP-ANNOUNCE (224.0.1.39). This message announces the router as a candidate RP for the groups in the range described by the access list.

Use this command with the `bidir` keyword when you want bidirectional forwarding and you are using Auto-RP to distribute group-to-RP mappings. Other options are as follows:

- If you are using the PIM Version 2 bootstrap router (PIMv2 BSR) mechanism to distribute group-to-RP mappings, use the `bidir` keyword with the ip pim rp-candidate command.
- If you are not distributing group-to-RP mappings using either Auto-RP or the PIMv2 BSR mechanism, use the `bidir` keyword with the `ip pim rp-address` command.

Example

The following example shows how to configure the device to send RP announcements out all Protocol Independent Multicast (PIM)-enabled interfaces for a maximum of 31 hops. The IP address by which the switch wants to be identified as RP is the IP address associated with Gigabit Ethernet interface 1/0/1 at an interval of 120 seconds:

```
Device(config)# ip pim send-rp-announce GigabitEthernet1/0/1 scope 31 group-list 5 interval 120
```
ip pim snooping

To enable Protocol Independent Multicast (PIM) snooping globally, use the `ip pim snooping` command in global configuration mode. To disable PIM snooping globally, use the `no` form of this command.

```
ip pim snooping
no ip pim snooping
```

Syntax Description

This command has no arguments or keywords.

Command Default

PIM snooping is not enabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

PIM snooping is not supported on groups that use the reserved MAC address range, for example, 0100.5e00.00xx, as an alias.

When you disable PIM snooping globally, PIM snooping is disabled on all the VLANs.

Examples

The following example shows how to enable PIM snooping globally:

```
ip pim snooping
```

The following example shows how to disable PIM snooping globally:

```
no ip pim snooping
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip pim snooping</td>
<td>Deletes PIM snooping on an interface.</td>
</tr>
<tr>
<td>show ip pim snooping</td>
<td>Displays information about IP PIM snooping.</td>
</tr>
</tbody>
</table>
ip pim snooping dr-flood

To enable flooding of packets to the designated router, use the `ip pim snooping dr-flood` command in global configuration mode. To disable the flooding of packets to the designated router, use the `no` form of this command.

```
ip pim snooping dr-flood
no ip pim snooping dr-flood
```

Syntax Description

This command has no arguments or keywords.

Command Default

The flooding of packets to the designated router is enabled by default.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

PIM snooping is not supported on groups that use the reserved MAC address range, for example, 0100.5e00.00xx, as an alias.

Enter the `no ip pim snooping dr-flood` command only on switches that have no designated routers attached. The designated router is programmed automatically in the (S,G) O-list.

Examples

The following example shows how to enable flooding of packets to the designated router:

```
ip pim snooping dr-flood
```

The following example shows how to disable flooding of packets to the designated router:

```
o ip pim snooping dr-flood
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip pim snooping</td>
<td>Deletes PIM snooping on an interface.</td>
</tr>
<tr>
<td>show ip pim snooping</td>
<td>Displays information about IP PIM snooping.</td>
</tr>
</tbody>
</table>
ip pim snooping vlan

To enable Protocol Independent Multicast (PIM) snooping on an interface, use the `ip pim snooping vlan` command in global configuration mode. To disable PIM snooping on an interface, use the `no` form of this command.

`ip pim snooping vlan vlan-id`

`no ip pim snooping vlan vlan-id`

Syntax Description

- `vlan-id` VLAN ID value. The range is 1—1001. Do not enter leading zeroes.

Command Default

PIM snooping is disabled on an interface.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

PIM snooping is not supported on groups that use the reserved MAC address range, for example, 0100.5e00.00xx, as an alias.

This command automatically configures the VLAN if it is not already configured. The configuration is saved in NVRAM.

Examples

This example shows how to enable PIM snooping on a VLAN interface:

`Router(config)# ip pim snooping vlan 2`

This example shows how to disable PIM snooping on a VLAN interface:

`Router(config)# no ip pim snooping vlan 2`

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear ip pim snooping</code></td>
<td>Deletes PIM snooping on an interface.</td>
</tr>
<tr>
<td><code>ip pim snooping</code></td>
<td>Enables PIM snooping globally.</td>
</tr>
<tr>
<td><code>show ip pim snooping</code></td>
<td>Displays information about IP PIM snooping.</td>
</tr>
</tbody>
</table>
ip pim spt-threshold

To specify the threshold that must be reached before moving to shortest-path tree (spt), use the **ip pim spt-threshold** command in global configuration mode. To remove the threshold, use the **no** form of this command.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim {kbps</td>
<td>infinity} [group-list access-list]</td>
</tr>
<tr>
<td>infinity</td>
<td>Specifies that all the sources for the specified group use the shared tree, never switching to the source tree.</td>
</tr>
<tr>
<td>group-list access-list</td>
<td>(Optional) Specifies an access list number or a specific access list that you have created by name. If the value is 0 or if the group-list access-list option is not used, the threshold applies to all the groups.</td>
</tr>
</tbody>
</table>

Command Default

Switches to the PIM shortest-path tree (spt).

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to make all the sources for access list 16 use the shared tree:

```
(config)# ip pim spt-threshold infinity group-list 16
```
match message-type

To set a message type to match a service list, use the `match message-type` command.

`match message-type {announcement | any | query}`

| Syntax Description | announcement | Allows only service advertisements or announcements for the .
| any | Allows any match type.
| query | Allows only a query from the client for a certain in the network.

Command Default

None

Command Modes

Service list configuration.

Command History

Release Modification

- This command was introduced.

Usage Guidelines

Multiple service maps of the same name with different sequence numbers can be created, and the evaluation of the filters will be ordered on the sequence number. Service lists are an ordered sequence of individual statements, with each one having a permit or deny result. The evaluation of a service list consists of a list scan in a predetermined order, and an evaluation of the criteria of each statement that matches. A list scan is stopped once the first statement match is found and a permit/deny action associated with the statement match is performed. The default action after scanning through the entire list is to deny.

Note

It is not possible to use the `match` command if you have used the `service-list mdns-sd service-list-name query` command. The `match` command can be used only for the `permit` or `deny` option.

Example

The following example shows how to set the announcement message type to be matched:

```
(config-mdns-sd-sl)# match message-type announcement
```
match service-type

To set the value of the mDNS service type string to match, use the `match service-type` command.

```
match service-type  line
```

Syntax Description

- `line` Regular expression to match the service type in packets.

Command Default

None

Command Modes

Service list configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

It is not possible to use the `match` command if you have used the `service-list mdns-sd service-list-name query` command. The `match` command can be used only for the `permit` or `deny` option.

Example

The following example shows how to set the value of the mDNS service type string to match:

```
(config-mdns-sd-sl)# match service-type _ipp._tcp
```
match service-instance

To set a service instance to match a service list, use the `match service-instance` command.

```
match service-instance  line
```

Syntax Description

- `line` Regular expression to match the service instance in packets.

Command Default

None

Command Modes

Service list configuration

Command History

- **Release**
 - Modification
 - This command was introduced.

Usage Guidelines

It is not possible to use the `match` command if you have used the `service-list mdns-sd service-list-name query` command. The `match` command can be used only for the `permit` or `deny` option.

Example

The following example shows how to set the service instance to match:

```
(config-mdns-sd-sl)# match service-instance servInst 1
```
To query which neighboring multicast routers or multilayer switches are acting as peers, use the `mrinfo` command in user EXEC or privileged EXEC mode.

```
mrinfo [vrf route-name] [hostname | address] [interface-id]
```

Syntax Description

- `vrf route-name` (Optional) Specifies the VPN routing or forwarding instance.
- `hostname | address` (Optional) Domain Name System (DNS) name or IP address of the multicast router or multilayer switch to query. If omitted, the switch queries itself.
- `interface-id` (Optional) Interface ID.

Command Default

The command is disabled.

Command Modes

User EXEC

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `mrinfo` command is the original tool of the multicast backbone (MBONE) to determine which neighboring multicast routers or switches are peering with multicast routers or switches. Cisco routers supports `mrinfo` requests from Cisco IOS Release 10.2.

You can query a multicast router or multilayer switch using the `mrinfo` command. The output format is identical to the multicast routed version of the Distance Vector Multicast Routing Protocol (DVMRP). (The `mrouted` software is the UNIX software that implements DVMRP.)

Example

The following is the sample output from the `mrinfo` command:

```
# mrinfo
vrf 192.0.1.0
192.31.7.37 (barrnet-gw.cisco.com) [version cisco 11.1] [flags: PMSA]:
  192.31.7.37 -> 192.31.7.34 (sj-wall-2.cisco.com) [1/0/pim]
  192.31.7.37 -> 192.31.7.47 (dirtylab-gw-2.cisco.com) [1/0/pim]
  192.31.7.37 -> 192.31.7.44 (dirtylab-gw-1.cisco.com) [1/0/pim]
```
The flags indicate the following:

- P: prune-capable
- M: mtrace-capable
- S: Simple Network Management Protocol-capable
- A: Auto RP capable
service-policy-query

To configure the service-list query periodicity, use the service-policy-query command. To delete the configuration, use the no form of this command.

```
service-policy-query [service-list-query-name service-list-query-periodicity]
no service-policy-query
```

Syntax Description

- `service-list-query-name`: Service-list query periodicity.
- `service-list-query-periodicity`: (Optional) Service-list query periodicity.

Command Default

Disabled.

Command Modes

mDNS configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Since there are devices that do not send unsolicited announcements and to force such devices the learning of services and to keep them refreshed in the cache, this command contains an active query feature that ensures that the services listed in the active query list are queried.

Example

This example shows how to configure service list query periodicity:

```
(config-mdns)# service-policy-query sl-query1 100
```
service-policy

To apply a filter on incoming or outgoing service-discovery information on a service list, use the `service-policy` command. To remove the filter, use the `no` form of this command.

```
service-policy service-policy-name {IN | OUT}
no service-policy service-policy-name {IN | OUT}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>Applies a filter on incoming service-discovery information.</td>
</tr>
<tr>
<td>OUT</td>
<td>Applies a filter on outgoing service-discovery information.</td>
</tr>
</tbody>
</table>

Command Default

Disabled.

Command Modes

mDNS configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to apply a filter on incoming service-discovery information on a service list:

```
(config-mdns)# service-policy serv-pol1 IN
```
show ip igmp filter

To display Internet Group Management Protocol (IGMP) filter information, use the **show ip igmp filter** command in privileged EXEC mode.

```
show ip igmp [vrf vrf-name] filter
```

Syntax Description

- `vrf vrf-name` (Optional) Supports the multicast VPN routing and forwarding (VRF) instance.

Command Default

IGMP filters are enabled by default.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **show ip igmp filter** command displays information about all filters defined on the.

Example

The following example shows the sample output from the **show ip igmp filter** command:

```
# show ip igmp filter

IGMP filter enabled
```
show ip igmp profile

To display all the configured Internet Group Management Protocol (IGMP) profiles or a specified IGMP profile, use the `show ip igmp profile` command in privileged EXEC mode.

```
show ip igmp [vrf vrf-name] profile [profile number]
```

Syntax Description

- `vrf vrf-name` (Optional) Supports the multicast VPN routing and forwarding (VRF) instance.
- `profile number` (Optional) IGMP profile number to be displayed. The range is 1 to 4294967295. If no profile number is entered, all the IGMP profiles are displayed.

Command Default

IGMP profiles are undefined by default.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

None

Examples

The following example shows the output of the `show ip igmp profile` command for profile number 40 on the :

```
# show ip igmp profile 40
IGMP Profile 40
   permit
   range 233.1.1.1 233.255.255.255
```

The following example shows the output of the `show ip igmp profile` command for all the profiles configured on the :

```
# show ip igmp profile

IGMP Profile 3
   range 230.9.9.0 230.9.9.0
IGMP Profile 4
   permit
   range 229.9.9.0 229.255.255.255
```
show ip igmp snooping

To display the Internet Group Management Protocol (IGMP) snooping configuration of the VLAN, use the `show ip igmp snooping` command in user EXEC or privileged EXEC mode.

```
show ip igmp snooping [groups | mrouter | querier] [vlan vlan-id] [detail]
```

Syntax Description

- **groups** (Optional) Displays the IGMP snooping multicast table.
- **mrouter** (Optional) Displays the IGMP snooping multicast router ports.
- **querier** (Optional) Displays the configuration and operation information for the IGMP querier.
- **vlan vlan-id** (Optional) Specifies a VLAN; the range is 1 to 1001 and 1006 to 4094.
- **detail** (Optional) Displays operational state information.

Command Default

None

Command Modes

- User EXEC
- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

VLAN IDs 1002—1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping. Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain "output" do not appear, but the lines that contain "Output" appear.

Examples

The following is a sample output from the `show ip igmp snooping vlan 1` command. It shows snooping characteristics for a specific VLAN:

```
# show ip igmp snooping vlan 1

Global IGMP Snooping configuration:
------------------------------------
IGMP snooping : Enabled
IGMPv3 snooping (minimal) : Enabled
Report suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000

Vlan 1:
-------
IGMP snooping : Enabled
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
IGMPv2 immediate leave: Disabled
Multicast router learning mode: pim-dvmrp
CGMP interoperability mode: IGMP_ONLY
Robustness variable: 2
Last member query count: 2
Last member query interval: 1000

The following is a sample output from the `show ip igmp snooping` command. It displays snooping characteristics for all the VLANs on the:

```
# show ip igmp snooping

Global IGMP Snooping configuration:
-----------------------------------------------
IGMP snooping: Enabled
IGMPv3 snooping (minimal): Enabled
Report suppression: Enabled
TCN solicit query: Disabled
TCN flood query count: 2
Robustness variable: 2
Last member query count: 2
Last member query interval: 1000

Vlan 1:
------
IGMP snooping: Enabled
IGMPv2 immediate leave: Disabled
Multicast router learning mode: pim-dvmrp
CGMP interoperability mode: IGMP_ONLY
Robustness variable: 2
Last member query count: 2
Last member query interval: 1000

Vlan 2:
------
IGMP snooping: Enabled
IGMPv2 immediate leave: Disabled
Multicast router learning mode: pim-dvmrp
CGMP interoperability mode: IGMP_ONLY
Robustness variable: 2
Last member query count: 2
Last member query interval: 1000
```
show ip igmp snooping groups

To display the Internet Group Management Protocol (IGMP) snooping multicast table for the or the multicast information, use the `show ip igmp snooping groups` command in privileged EXEC mode.

Command Modes
- Privileged EXEC
- User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `|exclude output`, the lines that contain "output" do not appear, but the lines that contain "Output" appear.

Examples

The following is a sample output from the `show ip igmp snooping groups` command without any keywords. It displays the multicast table for the.

```
# show ip igmp snooping groups
Vlan  Group  Type  Version  Port List
----------------------------------------
 1    224.1.4.4  igmp          Gi1/0/11
 1    224.1.4.5  igmp          Gi1/0/11
 2    224.0.1.40  igmp  v2     Gi1/0/15
104   224.1.4.2  igmp  v2     Gi2/0/1, Gi2/0/2
104   224.1.4.3  igmp  v2     Gi2/0/1, Gi2/0/2
```

The following is a sample output from the `show ip igmp snooping groups count` command. It displays the total number of multicast groups on the.

```
# show ip igmp snooping groups count
Total number of multicast groups: 2
```

The following is a sample output from the `show ip igmp snooping groups vlan vlan-id ip-address` command. It shows the entries for the group with the specified IP address:

```
# show ip igmp snooping groups vlan 104 224.1.4.2
Vlan  Group  Type  Version  Port List
----------------------------------------
104   224.1.4.2  igmp  v2     Gi2/0/1, Gi1/0/15
```
show ip igmp snooping mrouter

To display the Internet Group Management Protocol (IGMP) snooping dynamically learned and manually configured multicast router ports for the or for the specified multicast VLAN, use the `show ip igmp snooping mrouter` command in privileged EXEC mode.

```
show ip igmp snooping mrouter  [vlan  vlan-id]
```

Syntax Description

- `vlan vlan-id` (Optional) Specifies a VLAN; Ranges are from 1—1001 and 1006—4094.

Command Modes

- User EXEC
- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

VLAN IDs 1002—1005 are reserved for Token Ring and FDDI VLANs, and cannot be used in IGMP snooping.

When multicast VLAN registration (MVR) is enabled, the `show ip igmp snooping mrouter` command displays MVR multicast router information and IGMP snooping information.

Expressions are case sensitive, for example, if you enter | exclude output, the lines that contain "output" do not appear, but the lines that contain "Output" appear.

Example

The following is a sample output from the `show ip igmp snooping mrouter` command. It shows how to display multicast router ports on the:

```
# show ip igmp snooping mrouter
Vlan    ports
----    -----
  1    Gi2/0/1(dYNAMIC)
```
show ip igmp snooping querier

To display the configuration and operation information for the IGMP querier that is configured on a, use the show ip igmp snooping querier command in user EXEC mode.

```
show ip igmp snooping querier [vlan vlan-id] [detail]
```

Syntax Description
- `vlan vlan-id` (Optional) Specifies a VLAN; Ranges are from 1—1001 and 1006—4094.
- `detail` (Optional) Displays detailed IGMP querier information.

Command Modes
- User EXEC
- Privileged EXEC

Command History
- **Release** Cisco IOS XE Fuji 16.9.2
- **Modification** This command was introduced.

Usage Guidelines
- Use the `show ip igmp snooping querier` command to display the IGMP version and the IP address of a detected device, also called a querier, that sends IGMP query messages. A subnet can have multiple multicast routers but only one IGMP querier. In a subnet running IGMPv2, one of the multicast routers is elected as the querier. The querier can be a Layer 3.
- The `show ip igmp snooping querier` command output also shows the VLAN and the interface on which the querier was detected. If the querier is the , the output shows the Port field as Router. If the querier is a router, the output shows the port number on which the querier was detected in the Port field.
- The `show ip igmp snooping querier detail` user EXEC command is similar to the `show ip igmp snooping querier` command. However, the `show ip igmp snooping querier` command displays only the device IP address most recently detected by the querier.
- The `show ip igmp snooping querier detail` command displays the device IP address most recently detected by the querier and this additional information:
 - The elected IGMP querier in the VLAN
 - The configuration and operational information pertaining to the querier (if any) that is configured in the VLAN
- Expressions are case sensitive, for example, if you enter `| exclude output`, the lines that contain "output" do not appear, but the lines that contain "Output" appear.

Examples

The following is a sample output from the `show ip igmp snooping querier` command:

```
> show ip igmp snooping querier
Vlan  IP Address  IGMP Version  Port
-----------------------------------------
 1  172.20.50.11  v3           Gi1/0/1
 2  172.20.40.20  v2  Router
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
The following is a sample output from the **show ip igmp snooping querier detail** command:

```plaintext
> show ip igmp snooping querier detail

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>IGMP Version</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1.1.1</td>
<td>v2</td>
<td>Fa8/0/1</td>
</tr>
</tbody>
</table>

Global IGMP querier status

admin state : Enabled
admin version : 2
source IP address : 0.0.0.0
query-interval (sec) : 60
max-response-time (sec) : 10
querier-timeout (sec) : 120
tcn query count : 2
tcn query interval (sec) : 10

Vlan 1: IGMP querier status

elected querier is 1.1.1.1 on port Fa8/0/1

admin state : Enabled
admin version : 2
source IP address : 10.1.1.65
query-interval (sec) : 60
max-response-time (sec) : 10
querier-timeout (sec) : 120
tcn query count : 2
tcn query interval (sec) : 10
operational state : Non-Querier
operational version : 2
tcn query pending count : 0
```
show ip pim autorp

To display global information about auto-rp, use the **show ip pim autorp** command in privileged EXEC mode.

show ip pim autorp

Syntax Description

This command has no arguments or keywords.

Command Default

Auto RP is enabled by default.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command displays whether auto-rp is enabled or disabled.

Example

The following command output shows that Auto RP is enabled:

```bash
# show ip pim autorp

AutoRP Information:
  AutoRP is enabled.
  RP Discovery packet MTU is 0.
  224.0.1.40 is joined on GigabitEthernet1/0/1.

PIM AutoRP Statistics: Sent/Received
  RP Announce: 0/0, RP Discovery: 0/0
```
show ip pim bsr-router

To display information related to Protocol Independent Multicast (PIM) bootstrap router (BSR) protocol processing, use the `show ip pim bsr-router` command in user EXEC or privileged EXEC mode.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command Modes

User EXEC

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

In addition to Auto RP, the BSR RP method can be configured. After the BSR RP method is configured, this command displays the BSR router information.

The following is sample output from the `show ip pim bsr-router` command:

```
# show ip pim bsr-router

PIMv2 Bootstrap information
This system is the Bootstrap Router (BSR)
  BSR address: 172.16.143.28
  Uptime: 04:37:59, BSR Priority: 4, Hash mask length: 30
  Next bootstrap message in 00:00:03 seconds

  Next Cand_RP_advertisement in 00:00:03 seconds.
    RP: 172.16.143.28(Ethernet0), Group acl: 6
```
show ip pim bsr

To display information related to Protocol Independent Multicast (PIM) bootstrap router (BSR) protocol processing, use the `show ip pim bsr` command in user EXEC or privileged EXEC mode.

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command Modes
User EXEC
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
In addition to Auto RP, the BSR RP method can be configured. After the BSR RP method is configured, this command displays the BSR router information.

The following is sample output from the `show ip pim bsr` command:

```
# show ip pim bsr

PIMv2 Bootstrap information
This system is the Bootstrap Router (BSR)
  BSR address: 172.16.143.28
  Uptime: 04:37:59, BSR Priority: 4, Hash mask length: 30
  Next bootstrap message in 00:00:03 seconds

Next Cand_RP_advertisement in 00:00:03 seconds.
  RP: 172.16.143.28(Ethernet0), Group acl: 6
```
show ip pim snooping

To display the information about IP PIM snooping, use the show ip pim snooping command in user EXEC or privileged EXEC mode.

Global Status
show ip pim snooping

VLAN Status
show ip pim snooping vlan vlan-id [{neighbor | statistics | mroute [source-ipgroup-ip]}]

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan vlan-id</td>
<td>Displays information for a specific VLAN; Valid values are from 1—4094.</td>
</tr>
<tr>
<td>neighbor</td>
<td>(Optional) Displays information about the neighbor database.</td>
</tr>
<tr>
<td>statistics</td>
<td>(Optional) Displays information about the VLAN statistics.</td>
</tr>
<tr>
<td>mroute</td>
<td>(Optional) Displays information about the mroute database.</td>
</tr>
<tr>
<td>source-ip</td>
<td>(Optional) Source IP address.</td>
</tr>
<tr>
<td>group-ip</td>
<td>(Optional) Group IP address.</td>
</tr>
</tbody>
</table>

Command Default
This command has no default settings.

Command Modes
User EXEC Privileged EXEC

Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to display information about the global status:

Router# show ip pim snooping

Global runtime mode: Enabled
Global admin mode : Enabled
DR Flooding status : Disabled
SGR-Prune Suppression: Enabled
Number of user enabled VLANs: 1
User enabled VLANs: 1001

This example shows how to display information about a specific VLAN:

Router# show ip pim snooping vlan 1001

4 neighbors (0 DR priority incapable, 4 Bi-dir incapable)
5000 mroutes, 0 mac entries
DR is 10.10.10.4
RP DF Set:
QinQ snooping : Disabled
This example shows how to display information about the neighbor database for a specific VLAN:

Router# `show ip pim snooping vlan 1001 neighbor`

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Mac address</th>
<th>Port</th>
<th>Uptime/Expires</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.2</td>
<td>000a.f330.344a</td>
<td>Po128</td>
<td>02:52:27/00:01:41</td>
<td></td>
</tr>
<tr>
<td>10.10.10.1</td>
<td>000a.f330.334a</td>
<td>Hu1/0/7</td>
<td>04:54:14/00:01:38</td>
<td></td>
</tr>
<tr>
<td>10.10.10.4</td>
<td>000a.f330.3c00</td>
<td>Hu1/0/1</td>
<td>04:53:45/00:01:34</td>
<td>DR</td>
</tr>
</tbody>
</table>

This example shows how to display the detailed statistics for a specific VLAN:

Router# `show ip pim snooping vlan 1001 statistics`

PIMv2 statistics:
- Total: 56785
- Process Enqueue: 56785
- Process PIMv2 input queue current outstanding: 0
- Process PIMv2 input queue max size reached: 110
- Error - Global Process State not RUNNING: 0
- Error - Process Enqueue: 0
- Error - Drops: 0
- Error - Bad packet floods: 0
- Error - IP header generic error: 0
- Error - IP header payload len too long: 0
- Error - IP header payload len too short: 0
- Error - IP header checksum: 0
- Error - IP header dest ip not 224.0.0.13: 0
- Error - PIM header payload len too short: 0
- Error - PIM header checksum: 0
- Error - PIM header checksum in Registers: 0
- Error - PIM header version not 2: 0

This example shows how to display information about the mroute database for all the mrouters in a specific VLAN:

Router# `show ip pim snooping vlan 10 mroute`

Flags: J/P - (*,G) Join/Prune, j/p - (S,G) Join/Prune
- SGR-P - (S,G,R) Prune

VLAN 1001: 5000 mroutes
- (*, 225.0.1.0), 00:14:54/00:02:59
 Downstream ports: Po128
 Upstream ports: Hu1/0/7
 Outgoing ports: Hu1/0/7 Po128
- (11.11.11.10, 225.0.1.0), 00:14:54/00:02:59
 Downstream ports: Po128
 Upstream ports: Hu1/0/7
 Outgoing ports:
- (11.11.11.10, 225.0.5.0), 00:14:53/00:02:57
 Downstream ports: Po128
 Upstream ports: Hu1/0/7
 Outgoing ports:
- (11.11.11.10, 225.0.5.0), 00:14:53/00:02:57
 Downstream ports: Po128
 Upstream ports: Hu1/0/7
 Outgoing ports:
show ip pim snooping

Downstream ports:
Upstream ports: Hu1/0/7
Outgoing ports:
Number of matching mroutes found: 4

This example shows how to display information about the PIM mroute for a specific source address:

Router# show ip pim snooping vlan 10 mroute 172.16.100.100
(*, 172.16.100.100), 00:16:36/00:02:36
10.10.10.1->10.10.10.2, 00:16:36/00:02:36, J
Downstream ports: 3/12
Upstream ports: 3/13
Outgoing ports: 3/12 3/13

This example shows how to display information about the PIM mroute for a specific source and group address:

Router# show ip pim snooping vlan 10 mroute 192.168.0.0 172.16.10.10
(192.168.0.0, 172.16.10.10), 00:03:04/00:00:25
10.10.10.1->10.10.10.2, 00:03:04/00:00:25, J
Downstream ports: 3/12
Upstream ports: 3/13
Outgoing ports: 3/12 3/13

The table below describes the significant fields shown in the display.

Table 89: show ip pim snooping Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstream ports</td>
<td>Ports on which PIM joins were received.</td>
</tr>
<tr>
<td>Upstream ports</td>
<td>Ports towards RP and source.</td>
</tr>
<tr>
<td>Outgoing ports</td>
<td>List of all upstream and downstream ports for the multicast flow.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip pim snooping vlan</td>
<td>Deletes PIM snooping on an interface.</td>
</tr>
<tr>
<td>ip pim snooping</td>
<td>Enables PIM snooping globally.</td>
</tr>
<tr>
<td>ip pim snooping vlan</td>
<td>Enables PIM snooping on an interface.</td>
</tr>
</tbody>
</table>
show ip pim tunnel

To display information about the Protocol Independent Multicast (PIM) register encapsulation and decapsulation tunnels on an interface, use the `show ip pim tunnel` command.

```
show ip pim [vrf vrf-name] tunnel [Tunnel interface-number | verbose]
```

Syntax Description

- `vrf vrf-name` (Optional) Specifies a virtual routing and forwarding (VRF) configuration.
- `Tunnel interface-number` (Optional) Specifies the tunnel interface number.
- `verbose` (Optional) Provides additional information, such as the MAC encapsulation header and platform-specific information.

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show ip pim tunnel` to display information about PIM tunnel interfaces.

PIM tunnel interfaces are used by the IPv4 Multicast Forwarding Information Base (MFIB) for the PIM sparse mode (PIM-SM) registration process. Two types of PIM tunnel interfaces are used by the the IPv4 MFIB:

- A PIM encapsulation tunnel (PIM Encap Tunnel)
- A PIM decapsulation tunnel (PIM Decap Tunnel)

The PIM Encap Tunnel is dynamically created whenever a group-to-rendezvous point (RP) mapping is learned (through auto-RP, bootstrap router (BSR), or static RP configuration). The PIM Encap Tunnel is used to encapsulate multicast packets sent by first-hop designated routers (DRs) that have directly connected sources.

Similar to the PIM Encap Tunnel, the PIM Decap Tunnel interface is dynamically created—but it is created only on the RP whenever a group-to-RP mapping is learned. The PIM Decap Tunnel interface is used by the RP to decapsulate PIM register messages.

Note

PIM tunnels will not appear in the running configuration.

The following syslog message appears when a PIM tunnel interface is created:

```
* %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel<interface_number>, changed state to up
```

The following is sample output from the `show ip pim tunnel` taken from an RP. The output is used to verify the PIM Encap and Decap Tunnel on the RP:
show ip pim tunnel

Tunnel0
 Type : PIM Encap
 RP : 70.70.70.1*
 Source: 70.70.70.1
Tunnel1*
 Type : PIM Decap
 RP : 70.70.70.1*
 Source: -R2#

Note
The asterisk (*) indicates that the router is the RP. The RP will always have a PIM Encap and Decap Tunnel interface.
show platform software fed switch ip multicast

To display platform-dependent IP multicast tables and other information, use the **show platform software fed switch ip multicast** command in privileged EXEC mode.

```
show platform software fed switch {switch-number | active | standby} ip multicast {groups | hardware[detail] | interfaces | retry}
```

Syntax Description

- **switch {switch-number | active | standby}**
 - The device for which you want to display information.
 - **active**—Displays information for the active switch.
 - **standby**—Displays information for the standby switch, if available.

- **groups**
 - Displays the IP multicast routes per group.

- **hardware [detail]**
 - Displays the IP multicast routes loaded into hardware. The optional **detail** keyword is used to show the port members in the destination index and route index.

- **interfaces**
 - Displays the IP multicast interfaces.

- **retry**
 - Displays the IP multicast routes in the retry queue.

Command Modes

- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Example

The following example shows how to display platform IP multicast routes per group:

```
# show platform software fed active ip multicast groups

Total Number of entries:3
MROUTE ENTRY vrf 0 (*, 224.0.0.0)
Token: 0x0000001f6 flags: C
No RPF interface.
Number of OIF: 0
Flags: 0x10 Pkts : 0
OIF Details: No OIF interface.

DI details
----------
Handle:0x603cf7f8 Res-Type:ASIC_RSC_DI Asic-Num:255
Feature-ID:AL_FID_L3_MULTICAST_IPV4 Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1
```
Hardware Indices/Handles: index0:0x51f6 index1:0x51f6

Cookie length 56
0x0 0x0

Detailed Resource Information (ASIC# 0)
--
al_rsc_di
RM:index = 0x51f6
RM:pmap = 0x0
RM:cmi = 0x0
RM:rcp_pmap = 0x0
RM:force data copy = 0
RM:remote cpu copy = 0
RM:remote data copy = 0
RM:local cpu copy = 0
RM:local data copy = 0

al_rsc_cmi
RM:index = 0x51f6
RM:cti_lo[0] = 0x0
RM:cti_lo[1] = 0x0
RM:cti_lo[2] = 0x0
RM:cpu_q_vpn[0] = 0x0
RM:cpu_q_vpn[1] = 0x0
RM:cpu_q_vpn[2] = 0x0
RM:npu_index = 0x0
RM:strip_seg = 0x0
RM:copy_seg = 0x0

Detailed Resource Information (ASIC# 1)
--
al_rsc_di
RM:index = 0x51f6
RM:pmap = 0x0
RM:cmi = 0x0
RM:rcp_pmap = 0x0
RM:force data copy = 0
RM:remote cpu copy = 0
RM:remote data copy = 0
RM:local cpu copy = 0
RM:local data copy = 0

al_rsc_cmi
RM:index = 0x51f6
RM:cti_lo[0] = 0x0
RM:cti_lo[1] = 0x0
RM:cti_lo[2] = 0x0
RM:cpu_q_vpn[0] = 0x0
RM:cpu_q_vpn[1] = 0x0
RM:cpu_q_vpn[2] = 0x0
RM:npu_index = 0x0
RM:strip_seg = 0x0
RM:copy_seg = 0x0

<output truncated>
PART V

Layer 2/3

• Layer 2/3 Commands, on page 601
Layer 2/3 Commands

- channel-group, on page 603
- channel-protocol, on page 606
- clear lacp, on page 607
- clear pagp, on page 608
- clear spanning-tree counters, on page 609
- clear spanning-tree detected-protocols, on page 610
- debug etherchannel, on page 611
- debug lacp, on page 612
- debug pagp, on page 613
- debug platform pm, on page 614
- debug platform udld, on page 615
- debug spanning-tree, on page 616
- interface port-channel, on page 618
- lacp max-bundle, on page 620
- lacp port-priority, on page 621
- lacp rate, on page 622
- lacp system-priority, on page 623
- pagp learn-method, on page 624
- pagp port-priority, on page 626
- port-channel, on page 627
- port-channel auto, on page 628
- port-channel load-balance, on page 629
- port-channel load-balance extended, on page 631
- port-channel min-links, on page 632
- rep admin vlan, on page 633
- rep block port, on page 634
- rep isl-age-timer, on page 636
- rep isl-retries, on page 637
- rep preempt delay, on page 638
- rep preempt segment, on page 639
- rep segment, on page 640
- rep stcn, on page 642
- show etherchannel, on page 643
- show interfaces rep detail, on page 646
- show lacp, on page 647
- show pagp, on page 651
- show platform etherchannel, on page 653
- show platform pm, on page 654
- show rep topology, on page 655
- show udld, on page 657
- switchport, on page 661
- switchport access vlan, on page 662
- switchport mode, on page 663
- switchport nonegotiate, on page 665
- switchport voice vlan, on page 666
- udld, on page 669
- udld port, on page 671
- udld reset, on page 673
channel-group

To assign an Ethernet port to an EtherChannel group, or to enable an EtherChannel mode, or both, use the channel-group command in interface configuration mode. To remove an Ethernet port from an EtherChannel group, use the no form of this command.

channel-group channel-group-number mode {active | auto [non-silent] | desirable [non-silent] | on | passive}
no channel-group

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-group-number</td>
<td>Channel group number. The range is 1 to 128.</td>
</tr>
<tr>
<td>mode</td>
<td>Specifies the EtherChannel mode.</td>
</tr>
<tr>
<td>active</td>
<td>Unconditionally enables Link Aggregation Control Protocol (LACP).</td>
</tr>
<tr>
<td>auto</td>
<td>Enables the Port Aggregation Protocol (PAgP) only if a PAgP device is detected.</td>
</tr>
<tr>
<td>non-silent</td>
<td>(Optional) Configures the interface for nonsilent operation when connected to a partner that is PAgP-capable. Use in PAgP mode with the auto or desirable keyword when traffic is expected from the other device.</td>
</tr>
<tr>
<td>desirable</td>
<td>Unconditionally enables PAgP.</td>
</tr>
<tr>
<td>on</td>
<td>Enables the on mode.</td>
</tr>
<tr>
<td>passive</td>
<td>Enables LACP only if a LACP device is detected.</td>
</tr>
</tbody>
</table>

Command Default

No channel groups are assigned.
No mode is configured.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For Layer 2 EtherChannels, the channel-group command automatically creates the port-channel interface when the channel group gets its first physical port. You do not have to use the interface port-channel command
in global configuration mode to manually create a port-channel interface. If you create the port-channel interface first, the channel-group-number can be the same as the port-channel-number, or you can use a new number. If you use a new number, the channel-group command dynamically creates a new port channel.

Although it is not necessary to disable the IP address that is assigned to a physical port that is part of a channel group, we strongly recommend that you do so.

You create Layer 3 port channels by using the interface port-channel command followed by the no switchport interface configuration command. Manually configure the port-channel logical interface before putting the interface into the channel group.

After you configure an EtherChannel, configuration changes that you make on the port-channel interface apply to all the physical ports assigned to the port-channel interface. Configuration changes applied to the physical port affect only the port where you apply the configuration. To change the parameters of all ports in an EtherChannel, apply configuration commands to the port-channel interface, for example, spanning-tree commands or commands to configure a Layer 2 EtherChannel as a trunk.

Active mode places a port into a negotiating state in which the port initiates negotiations with other ports by sending LACP packets. A channel is formed with another port group in either the active or passive mode.

Auto mode places a port into a passive negotiating state in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. A channel is formed only with another port group in desirable mode. When auto is enabled, silent operation is the default.

Desirable mode places a port into an active negotiating state in which the port starts negotiations with other ports by sending PAgP packets. An EtherChannel is formed with another port group that is in the desirable or auto mode. When desirable is enabled, silent operation is the default.

If you do not specify non-silent with the auto or desirable mode, silent is assumed. The silent mode is used when the switch is connected to a device that is not PAgP-capable and rarely, if ever, sends packets. An example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port prevents that port from ever becoming operational. However, it allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission. Both ends of the link cannot be set to silent.

In on mode, a usable EtherChannel exists only when both connected port groups are in the on mode.

Use care when using the on mode. This is a manual configuration, and ports on both ends of the EtherChannel must have the same configuration. If the group is misconfigured, packet loss or spanning-tree loops can occur.

Passive mode places a port into a negotiating state in which the port responds to received LACP packets but does not initiate LACP packet negotiation. A channel is formed only with another port group in active mode.

Do not configure an EtherChannel in both the PAgP and LACP modes. EtherChannel groups running PAgP and LACP can coexist on the same switch or on different switches in the stack (but not in a cross-stack configuration). Individual EtherChannel groups can run either PAgP or LACP, but they cannot interoperate.

If you set the protocol by using the channel-protocol interface configuration command, the setting is not overridden by the channel-group interface configuration command.

Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an IEEE 802.1x port. If you try to enable IEEE 802.1x authentication on an EtherChannel port, an error message appears, and IEEE 802.1x authentication is not enabled.

Do not configure a secure port as part of an EtherChannel or configure an EtherChannel port as a secure port.
For a complete list of configuration guidelines, see the “Configuring EtherChannels” chapter in the software configuration guide for this release.

Caution

Do not enable Layer 3 addresses on the physical EtherChannel ports. Do not assign bridge groups on the physical EtherChannel ports because it creates loops.

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two static-access ports in VLAN 10 to channel 5 with the PAgP mode desirable:

```
Device# configure terminal
Device(config)# interface range GigabitEthernet 2/0/1 - 2
Device(config-if-range)# switchport mode access
Device(config-if-range)# switchport access vlan 10
Device(config-if-range)# channel-group 5 mode desirable
Device(config-if-range)# end
```

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two static-access ports in VLAN 10 to channel 5 with the LACP mode active:

```
Device# configure terminal
Device(config)# interface range GigabitEthernet 2/0/1 - 2
Device(config-if-range)# switchport mode access
Device(config-if-range)# switchport access vlan 10
Device(config-if-range)# channel-group 5 mode active
Device(config-if-range)# end
```

This example shows how to configure a cross-stack EtherChannel in a switch stack. It uses LACP passive mode and assigns two ports on stack member 2 and one port on stack member 3 as static-access ports in VLAN 10 to channel 5:

```
Device# configure terminal
Device(config)# interface range GigabitEthernet 2/0/4 - 5
Device(config-if-range)# switchport mode access
Device(config-if-range)# switchport access vlan 10
Device(config-if-range)# channel-group 5 mode passive
Device(config-if-range)# exit
Device(config)# interface GigabitEthernet 3/0/3
Device(config-if)# switchport mode access
Device(config-if)# switchport access vlan 10
Device(config-if)# channel-group 5 mode passive
Device(config-if)# exit
```

You can verify your settings by entering the `show running-config` privileged EXEC command.
channel-protocol

To restrict the protocol used on a port to manage channeling, use the `channel-protocol` command in interface configuration mode. To return to the default setting, use the `no` form of this command.

```
channel-protocol {lacp | pagp}
no channel-protocol
```

Syntax Description

+ **lacp**: Configures an EtherChannel with the Link Aggregation Control Protocol (LACP).
+ **pagp**: Configures an EtherChannel with the Port Aggregation Protocol (PAgP).

Command Default

No protocol is assigned to the EtherChannel.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `channel-protocol` command only to restrict a channel to LACP or PAgP. If you set the protocol by using the `channel-protocol` command, the setting is not overridden by the `channel-group` command in interface configuration mode.

You must use the `channel-group` command in interface configuration mode to configure the EtherChannel parameters. The `channel-group` command also can set the mode for the EtherChannel.

You cannot enable both the PAgP and LACP modes on an EtherChannel group. PAgP and LACP are not compatible; both ends of a channel must use the same protocol.

This example shows how to specify LACP as the protocol that manages the EtherChannel:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# channel-protocol lacp
```

You can verify your settings by entering the `show etherchannel [channel-group-number] protocol` command in privileged EXEC mode.
clear lacp

To clear Link Aggregation Control Protocol (LACP) channel-group counters, use the `clear lacp` command in privileged EXEC mode.

```
clear lacp [channel-group-number] counters
```

Syntax Description

- `channel-group-number` (Optional) Channel group number. The range is 1 to 128.
- `counters` Clears traffic counters.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can clear all counters by using the `clear lacp counters` command, or you can clear only the counters for the specified channel group by using the `clear lacp channel-group-number counters` command.

This example shows how to clear all channel-group information:

```
Device> enable
Device# clear lacp counters
```

This example shows how to clear LACP traffic counters for group 4:

```
Device> enable
Device# clear lacp 4 counters
```

You can verify that the information was deleted by entering the `show lacp counters` or the `show lacp channel-group-number counters` command in privileged EXEC mode.
clear pagp

To clear the Port Aggregation Protocol (PAgP) channel-group information, use the `clear pagp` command in privileged EXEC mode.

```
clear pagp [channel-group-number] counters
```

Syntax Description

- `channel-group-number` (Optional) Channel group number. The range is 1 to 128.
- `counters` Clears traffic counters.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can clear all counters by using the `clear pagp counters` command, or you can clear only the counters for the specified channel group by using the `clear pagp channel-group-number counters` command.

This example shows how to clear all channel-group information:

```
Device> enable
Device# clear pagp counters
```

This example shows how to clear PAgP traffic counters for group 10:

```
Device> enable
Device# clear pagp 10 counters
```

You can verify that the information was deleted by entering the `show pagp` command in privileged EXEC mode.
clear spanning-tree counters

To clear the spanning-tree counters, use the `clear spanning-tree counters` command in privileged EXEC mode.

```
clear spanning-tree counters [interface interface-id]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>(Optional) Clears all spanning-tree counters on the specified interface. Valid interfaces include physical ports, VLANs, and port channels. The VLAN range is 1 to 4094.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If the `interface-id` value is not specified, spanning-tree counters are cleared for all interfaces.

This example shows how to clear spanning-tree counters for all interfaces:

```
Device> enable
Device# clear spanning-tree counters
```
clear spanning-tree detected-protocols

To restart the protocol migration process and force renegotiation with neighboring devices on the interface, use the clear spanning-tree detected-protocols command in privileged EXEC mode.

clear spanning-tree detected-protocols [interface interface-id]

Syntax Description

- **interface interface-id** (Optional) Restarts the protocol migration process on the specified interface. Valid interfaces include physical ports, VLANs, and port channels. The VLAN range is 1 to 4094.

Command Modes

- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A device running the rapid per-VLAN spanning-tree plus (rapid-PVST+) protocol or the Multiple Spanning Tree Protocol (MSTP) supports a built-in protocol migration method that enables it to interoperate with legacy IEEE 802.1D devices. If a rapid-PVST+ or an MSTP device receives a legacy IEEE 802.1D configuration bridge protocol data unit (BPDU) with the protocol version set to 0, the device sends only IEEE 802.1D BPDPUs on that port. A multiple spanning-tree (MST) device can also detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (Version 3) associated with a different region, or a rapid spanning-tree (RST) BPDU (Version 2).

The device does not automatically revert to the rapid-PVST+ or the MSTP mode if it no longer receives IEEE 802.1D BPDPUs because it cannot learn whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. Use the clear spanning-tree detected-protocols command in this situation.

This example shows how to restart the protocol migration process on a port:

```
Device> enable
Device# clear spanning-tree detected-protocols interface gigabitethernet2/0/1
```
debug etherchannel

To enable debugging of EtherChannels, use the `debug etherchannel` command in privileged EXEC mode. To disable debugging, use the `no` form of the command.

```
debug etherchannel [{all | detail | error | event | idb }]
no debug etherchannel [{all | detail | error | event | idb }]
```

Syntax Description

- `all` (Optional) Displays all EtherChannel debug messages.
- `detail` (Optional) Displays detailed EtherChannel debug messages.
- `error` (Optional) Displays EtherChannel error debug messages.
- `event` (Optional) Displays EtherChannel event messages.
- `idb` (Optional) Displays PAgP interface descriptor block debug messages.

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `undebugetherchannel` command is the same as the `no debug etherchannel` command.

Note: Although the `linecard` keyword is displayed in the command-line help, it is not supported.

This example shows how to display all EtherChannel debug messages:

```
Device> enable
Device# debug etherchannel all
```

This example shows how to display debug messages related to EtherChannel events:

```
Device> enable
Device# debug etherchannel event
```
debug lacp

To enable debugging of Link Aggregation Control Protocol (LACP) activity, use the `debug lacp` command in privileged EXEC mode. To disable LACP debugging, use the `no` form of this command.

```bash
debug lacp [all | event | fsm | misc | packet]
no debug lacp [all | event | fsm | misc | packet]
```

Syntax Description

- `all` (Optional) Displays all LACP debug messages.
- `event` (Optional) Displays LACP event debug messages.
- `fsm` (Optional) Displays messages about changes within the LACP finite state machine.
- `misc` (Optional) Displays miscellaneous LACP debug messages.
- `packet` (Optional) Displays the receiving and transmitting LACP control packets.

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC

Command History

- **Release** Cisco IOS XE Fuji 16.9.2
- **Modification** This command was introduced.

Usage Guidelines

The `undebug etherchannel` command is the same as the `no debug etherchannel` command.

This example shows how to display all LACP debug messages:

```bash
Device> enable
Device# debug LACP all
```

This example shows how to display debug messages related to LACP events:

```bash
Device> enable
Device# debug LACP event
```
debug pagp

To enable debugging of Port Aggregation Protocol (PAgP) activity, use the debug pagp command in privileged EXEC mode. To disable PAgP debugging, use the no form of this command.

```
debug pagp [{all | dual-active | event | fsm | misc | packet}]
no debug pagp [{all | dual-active | event | fsm | misc | packet}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>(Optional) Displays all PAgP debug messages.</td>
</tr>
<tr>
<td>dual-active</td>
<td>(Optional) Displays dual-active detection messages.</td>
</tr>
<tr>
<td>event</td>
<td>(Optional) Displays PAgP event debug messages.</td>
</tr>
<tr>
<td>fsm</td>
<td>(Optional) Displays messages about changes within the PAgP finite state machine.</td>
</tr>
<tr>
<td>misc</td>
<td>(Optional) Displays miscellaneous PAgP debug messages.</td>
</tr>
<tr>
<td>packet</td>
<td>(Optional) Displays the receiving and transmitting PAgP control packets.</td>
</tr>
</tbody>
</table>

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The undebug pagp command is the same as the no debug pagp command.

This example shows how to display all PAgP debug messages:

```
Device> enable
Device# debug pagp all
```

This example shows how to display debug messages related to PAgP events:

```
Device> enable
Device# debug pagp event
```
debug platform pm

To enable debugging of the platform-dependent port manager software module, use the `debug platform pm` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug platform pm {all | counters | errdisable | fec | if-numbers | l2-control | link-status | platform | pm-vectors [detail] | ses | vlans}
no debug platform pm {all | counters | errdisable | fec | if-numbers | l2-control | link-status | platform | pm-vectors [detail] | ses | vlans}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Displays all port manager debug messages.</td>
</tr>
<tr>
<td><code>counters</code></td>
<td>Displays counters for remote procedure call (RPC) debug messages.</td>
</tr>
<tr>
<td><code>errdisable</code></td>
<td>Displays error-disabled-related events debug messages.</td>
</tr>
<tr>
<td><code>fec</code></td>
<td>Displays forwarding equivalence class (FEC) platform-related events debug messages.</td>
</tr>
<tr>
<td><code>if-numbers</code></td>
<td>Displays interface-number translation event debug messages.</td>
</tr>
<tr>
<td><code>l2-control</code></td>
<td>Displays Layer 2 control infra debug messages.</td>
</tr>
<tr>
<td><code>link-status</code></td>
<td>Displays interface link-detection event debug messages.</td>
</tr>
<tr>
<td><code>platform</code></td>
<td>Displays port manager function event debug messages.</td>
</tr>
<tr>
<td><code>pm-vectors</code></td>
<td>Displays port manager vector-related event debug messages.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>(Optional) Displays vector-function details.</td>
</tr>
<tr>
<td><code>ses</code></td>
<td>Displays service expansion shelf (SES) related event debug messages.</td>
</tr>
<tr>
<td><code>vlans</code></td>
<td>Displays VLAN creation and deletion event debug messages.</td>
</tr>
</tbody>
</table>

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `undebug platform pm` command is the same as the `no debug platform pm` command.

This example shows how to display debug messages related to the creation and deletion of VLANs:

```
Device> enable
Device# debug platform pm vlans
```
debug platform udld

To enable debugging of the platform-dependent UniDirectional Link Detection (UDLD) software, use the `debug platform udld` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug platform udld [{error | event}] [switch switch-number]
no debug platform udld [{error | event}] [switch switch-number]
```

Syntax Description

- **error** (Optional) Displays error condition debug messages.
- **event** (Optional) Displays UDLD-related platform event debug messages.
- **switch switch-number** (Optional) Displays UDLD debug messages for the specified stack member.

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `undebug platform udld` command is the same as the `no debug platform udld` command.

When you enable debugging on a switch stack, it is enabled only on the active switch. To enable debugging on a stack member, you can start a session from the active switch by using the `session switch-number` command in privileged EXEC mode. Then enter the `debug` command at the command-line prompt of the stack member.
debug spanning-tree

To enable debugging of spanning-tree activities, use the debug spanning-tree command in EXEC mode. To disable debugging, use the no form of this command.

debug spanning-tree {all | backbonefast | bpdu | bpdu-opt | config | etherchannel | events | exceptions | general | ha | mstp | pvst+ | root | snmp | synchronization | switch | uplinkfast}

Syntax Description:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Displays all spanning-tree debug messages.</td>
</tr>
<tr>
<td>backbonefast</td>
<td>Displays BackboneFast-event debug messages.</td>
</tr>
<tr>
<td>bpdu</td>
<td>Displays spanning-tree bridge protocol data unit (BPDU) debug messages.</td>
</tr>
<tr>
<td>bpdu-opt</td>
<td>Displays optimized BPDU handling debug messages.</td>
</tr>
<tr>
<td>config</td>
<td>Displays spanning-tree configuration change debug messages.</td>
</tr>
<tr>
<td>etherchannel</td>
<td>Displays EtherChannel-support debug messages.</td>
</tr>
<tr>
<td>events</td>
<td>Displays spanning-tree topology event debug messages.</td>
</tr>
<tr>
<td>exceptions</td>
<td>Displays spanning-tree exception debug messages.</td>
</tr>
<tr>
<td>general</td>
<td>Displays general spanning-tree activity debug messages.</td>
</tr>
<tr>
<td>ha</td>
<td>Displays high-availability spanning-tree debug messages.</td>
</tr>
<tr>
<td>mstp</td>
<td>Debugs Multiple Spanning Tree Protocol (MSTP) events.</td>
</tr>
<tr>
<td>pvst+</td>
<td>Displays per-VLAN spanning-tree plus (PVST+) event debug messages.</td>
</tr>
<tr>
<td>root</td>
<td>Displays spanning-tree root-event debug messages.</td>
</tr>
<tr>
<td>snmp</td>
<td>Displays spanning-tree Simple Network Management Protocol (SNMP) handling debug messages.</td>
</tr>
<tr>
<td>switch</td>
<td>Displays switch shim command debug messages. This shim is the software module that is the interface between the generic Spanning Tree Protocol (STP) code and the platform-specific code of various device platforms.</td>
</tr>
<tr>
<td>synchronization</td>
<td>Displays the spanning-tree synchronization event debug messages.</td>
</tr>
<tr>
<td>uplinkfast</td>
<td>Displays UplinkFast-event debug messages.</td>
</tr>
</tbody>
</table>
Debugging is disabled.

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `undebug spanning-tree` command is the same as the `no debug spanning-tree` command.

When you enable debugging on a stack, it is enabled only on the active switch. To enable debugging on the standby switch, start a session from the active switch by using the `session switch-number` command in privileged EXEC mode. Enter the `debug` command at the command-line prompt of the standby switch.

To enable debugging on the standby switch without first starting a session on the active switch, use the `remote command switch-number LINE` command in privileged EXEC mode.

This example shows how to display all spanning-tree debug messages:

```
Device> enable
Device# debug spanning-tree all
```
interface port-channel

To access or create a port channel, use the **interface port-channel** command in global configuration mode. Use the **no** form of this command to remove the port channel.

```plaintext
interface port-channel port-channel-number
no interface port-channel
```

Syntax Description

- **port-channel-number** Channel group number. The range is 1 to 128.

Command Default

No port channel logical interfaces are defined.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For Layer 2 EtherChannels, you do not have to create a port-channel interface before assigning physical ports to a channel group. Instead, you can use the **channel-group** command in interface configuration mode, which automatically creates the port-channel interface when the channel group obtains its first physical port. If you create the port-channel interface first, the **channel-group-number** can be the same as the **port-channel-number**, or you can use a new number. If you use a new number, the **channel-group** command dynamically creates a new port channel.

You create Layer 3 port channels by using the **interface port-channel** command followed by the **no switchport** command in interface configuration mode. You should manually configure the port-channel logical interface before putting the interface into the channel group.

Only one port channel in a channel group is allowed.

Caution

- When using a port-channel interface as a routed port, do not assign Layer 3 addresses on the physical ports that are assigned to the channel group.

Caution

- Do not assign bridge groups on the physical ports in a channel group used as a Layer 3 port channel interface because it creates loops. You must also disable spanning tree.

Follow these guidelines when you use the **interface port-channel** command:

- If you want to use the Cisco Discovery Protocol (CDP), you must configure it on the physical port and not on the port channel interface.

- Do not configure a port that is an active member of an EtherChannel as an IEEE 802.1x port. If IEEE 802.1x is enabled on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.
For a complete list of configuration guidelines, see the “Configuring EtherChannels” chapter in the software configuration guide for this release.

This example shows how to create a port channel interface with a port channel number of 5:

```
Device> enable
Device# configure terminal
Device(config)# interface port-channel 5
```

You can verify your setting by entering either the `show running-config` in privileged EXEC mode or the `show etherchannel channel-group-number detail` command in privileged EXEC mode.
lacp max-bundle

To define the maximum number of active LACP ports allowed in a port channel, use the `lacp max-bundle` command in interface configuration mode. To return to the default setting, use the `no` form of this command.

```
lacp max-bundle max_bundle_number
no lacp max-bundle
```

Syntax Description

- `max_bundle_number`: The maximum number of active LACP ports in the port channel. The range is 1 to 8. The default is 8.

Command Modes

Interface configuration

Command History

- **Release**: Cisco IOS XE Fuji 16.9.2
- **Modification**: This command was introduced.

Usage Guidelines

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in hot-standby mode. When there are more than eight ports in an LACP channel group, the device on the controlling end of the link uses port priorities to determine which ports are bundled into the channel and which ports are put in hot-standby mode. Port priorities on the other device (the noncontrolling end of the link) are ignored.

The `lacp max-bundle` command must specify a number greater than the number specified by the `port-channel min-links` command.

Use the `show etherchannel summary` command in privileged EXEC mode to see which ports are in the hot-standby mode (denoted with an H port-state flag in the output display).

This example shows how to specify a maximum of five active LACP ports in port channel 2:

```
Device> enable
Device# configure terminal
Device(config)# interface port-channel 2
Device(config-if)# lacp max-bundle 5
```
lacr port-priority

To configure the port priority for the Link Aggregation Control Protocol (LACP), use the `lacr port-priority` command in interface configuration mode. To return to the default setting, use the `no` form of this command.

```
lacr port-priority  priority
no  lacr port-priority
```

Syntax Description

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Command Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>priority</code> Port priority for LACP. The range is 1 to 65535.</td>
<td>Interface configuration</td>
</tr>
</tbody>
</table>

Command Default

The default is 32768.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `lacr port-priority` command in interface configuration mode determines which ports are bundled and which ports are put in hot-standby mode when there are more than eight ports in an LACP channel group.

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.

In port-priority comparisons, a numerically lower value has a higher priority: When there are more than eight ports in an LACP channel group, the eight ports with the numerically lowest values (highest priority values) for LACP port priority are bundled into the channel group, and the lower-priority ports are put in hot-standby mode. If two or more ports have the same LACP port priority (for example, they are configured with the default setting of 65535), then an internal value for the port number determines the priority.

The LACP port priorities are only effective if the ports are on the device that controls the LACP link. See the `lacr system-priority` command in global configuration mode for determining which device controls the link.

Use the `show lacp internal` command in privileged EXEC mode to display LACP port priorities and internal port number values.

For information about configuring LACP on physical ports, see the configuration guide for this release.

This example shows how to configure the LACP port priority on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# lacr port-priority 1000
```

You can verify your settings by entering the `show lacp [channel-group-number] internal` command in privileged EXEC mode.
lacp rate

To set the rate at which Link Aggregation Control Protocol (LACP) control packets are ingressed to an LACP-supported interface, use the `lacp rate` command in interface configuration mode. To return to the default settings, use the `no` form of this command.

```
lacp rate [normal | fast]
no lacp rate
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>Specifies that LACP control packets are ingressed at the normal rate, every 30 seconds after the link is bundled.</td>
</tr>
<tr>
<td>fast</td>
<td>Specifies that LACP control packets are ingressed at the fast rate, once every 1 second.</td>
</tr>
</tbody>
</table>

Command Default

The default ingress rate for control packets is 30 seconds after the link is bundled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to modify the duration of LACP timeout. The LACP timeout value on Cisco switch is three times the LACP rate that is configured on the interface. Using the `lacp rate` command, you can select the LACP timeout value for a switch to be either 90 seconds or 3 seconds.

This command is supported only on LACP-enabled interfaces.

This example shows how to specify the fast (1 second) ingress rate on interface GigabitEthernet 0/0:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitEthernet 0/0
Device(config-if)# lacp rate fast
```
lACP system-priority

To configure the system priority for the Link Aggregation Control Protocol (LACP), use the `lacp system-priority` command in global configuration mode on the device. To return to the default setting, use the `no` form of this command.

```plaintext
lacp system-priority priority
no lacp system-priority
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>priority</code></td>
<td>System priority for LACP. The range is 1 to 65535.</td>
</tr>
</tbody>
</table>

Command Default

The default is 32768.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `lacp system-priority` command determines which device in an LACP link controls port priorities.

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode. When there are more than eight ports in an LACP channel group, the device on the controlling end of the link uses port priorities to determine which ports are bundled into the channel and which ports are put in hot-standby mode. Port priorities on the other device (the noncontrolling end of the link) are ignored.

In priority comparisons, numerically lower values have a higher priority. Therefore, the system with the numerically lower value (higher priority value) for LACP system priority becomes the controlling system. If both devices have the same LACP system priority (for example, they are both configured with the default setting of 32768), the LACP system ID (the device MAC address) determines which device is in control.

The `lacp system-priority` command applies to all LACP EtherChannels on the device.

Use the `show etherchannel summary` command in privileged EXEC mode to see which ports are in the hot-standby mode (denoted with an H port-state flag in the output display).

This example shows how to set the LACP system priority:

```plaintext
Device> enable
Device# configure terminal
Device(config)# lacp system-priority 20000
```

You can verify your settings by entering the `show lacp sys-id` command in privileged EXEC mode.
pagp learn-method

To learn the source address of incoming packets received from an EtherChannel port, use the `pagp learn-method` command in interface configuration mode. To return to the default setting, use the `no` form of this command.

```
pagp learn-method {aggregation-port | physical-port}
no pagp learn-method
```

Syntax Description

- `aggregation-port`: Specifies address learning on the logical port channel. The device sends packets to the source using any port in the EtherChannel. This setting is the default. With aggregation-port learning, it is not important on which physical port the packet arrives.

- `physical-port`: Specifies address learning on the physical port within the EtherChannel. The device sends packets to the source using the same port in the EtherChannel from which it learned the source address. The other end of the channel uses the same port in the channel for a particular destination MAC or IP address.

Command Default

The default is aggregation-port (logical port channel).

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The learn method must be configured the same at both ends of the link. The device supports address learning only on aggregate ports even though the `physical-port` keyword is provided in the command-line interface (CLI). The `pagp learn-method` and the `pagp port-priority` commands in interface configuration mode have no effect on the device hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports.

When the link partner to the device is a physical learner, we recommend that you configure the device as a physical-port learner by using the `pagp learn-method physical-port` command in interface configuration mode. We also recommend that you set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` command in global configuration mode. Use the `pagp learn-method` command in interface configuration mode only in this situation.

This example shows how to set the learning method to learn the address on the physical port within the EtherChannel:

```
Device> enable
Device# configure terminal
Device(config)# interface port-channel 2
Device(config-if)# pagp learn-method physical-port
```

This example shows how to set the learning method to learn the address on the port channel within the EtherChannel:

```
Device> enable
Device# configure terminal
```
Device(config)# interface port-channel 2
Device(config-if)# pagp learn-method aggregation-port

You can verify your settings by entering either the `show running-config` command in privileged EXEC mode or the `show pagp channel-group-number internal` command in privileged EXEC mode.
pagp port-priority

To select a port over which all Port Aggregation Protocol (PAgP) traffic through the EtherChannel is sent, use the `pagp port-priority` command in interface configuration mode. If all unused ports in the EtherChannel are in hot-standby mode, they can be placed into operation if the currently selected port and link fails. To return to the default setting, use the `no` form of this command.

```
pagp port-priority priority
no pagp port-priority
```

Syntax Description
- `priority`: Priority number. The range is from 0 to 255.

Command Default
The default is 128.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The physical port with the highest priority that is operational and has membership in the same EtherChannel is the one selected for PAgP transmission.

The device supports address learning only on aggregate ports even though the `physical-port` keyword is provided in the command-line interface (CLI). The `pagp learn-method` and the `pagp port-priority` commands in interface configuration mode have no effect on the device hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner to the device is a physical learner, we recommend that you configure the device as a physical-port learner by using the `pagp learn-method physical-port` command in interface configuration mode. We also recommend that you set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` command in global configuration mode. Use the `pagp learn-method` command in interface configuration mode only in this situation.

This example shows how to set the port priority to 200:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# pagp port-priority 200
```

You can verify your setting by entering the `show running-config` command in privileged EXEC mode or the `show pagp channel-group-number internal` command in privileged EXEC mode.
port-channel

To convert the auto created EtherChannel into a manual channel and adding configuration on the EtherChannel, use the **port-channel** command in privileged EXEC mode.

```
port-channel { channel-group-number persistent | persistent }
```

Syntax Description

- **channel-group-number**: Channel group number. The range is 1 to 128.
- **persistent**: Converts the auto created EtherChannel into a manual channel and allows you to add configuration on the EtherChannel.

Command Modes

Privileged EXEC

Command History

- **Release**: Cisco IOS XE Fuji 16.9.2
- **Modification**: This command was introduced.

Usage Guidelines

You can use the **show etherchannel summary** command in privileged EXEC mode to display the EtherChannel information.

Examples

This example shows how to convert the auto created EtherChannel into a manual channel:

```
Device> enable
Device# port-channel 1 persistent
```
port-channel auto

To enable the auto-LAG feature on a switch globally, use the **port-channel auto** command in global configuration mode. To disable the auto-LAG feature on the switch globally, use **no** form of this command.

```
port-channel auto
no port-channel auto
```

Command Default

By default, the auto-LAG feature is disabled globally and is enabled on all port interfaces.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can use the **show etherchannel auto** command in privileged EXEC mode to verify if the EtherChannel was created automatically.

Examples

This example shows how to enable the auto-LAG feature on the switch:

```
Device> enable
Device# configure terminal
Device(config)# port-channel auto
```
port-channel load-balance

To set the load-distribution method among the ports in the EtherChannel, use the `port-channel load-balance` command in global configuration mode. To reset the load-balancing mechanism to the default setting, use the `no` form of this command.

```
no port-channel load-balance
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dst-ip</code></td>
<td>Specifies load distribution based on the destination host IP address.</td>
</tr>
<tr>
<td><code>dst-mac</code></td>
<td>Specifies load distribution based on the destination host MAC address.</td>
</tr>
<tr>
<td><code>dst-mixed-ip-port</code></td>
<td>Specifies load distribution based on the destination IPv4 or IPv6 address and the TCP/UDP (Layer 4) port number.</td>
</tr>
<tr>
<td><code>dst-port</code></td>
<td>Specifies load distribution based on the destination TCP/UDP (Layer 4) port number for both IPv4 and IPv6.</td>
</tr>
<tr>
<td><code>extended</code></td>
<td>Sets extended load balance methods among the ports in the EtherChannel.</td>
</tr>
<tr>
<td><code>src-dst-ip</code></td>
<td>Specifies load distribution based on the source and destination host IP address.</td>
</tr>
<tr>
<td><code>src-dst-mac</code></td>
<td>Specifies load distribution based on the source and destination host MAC address.</td>
</tr>
<tr>
<td><code>src-dst-mixed-ip-port</code></td>
<td>Specifies load distribution based on the source and destination host IP address and TCP/UDP (layer 4) port number.</td>
</tr>
<tr>
<td><code>src-dst-port</code></td>
<td>Specifies load distribution based on the source and destination TCP/UDP (Layer 4) port number.</td>
</tr>
<tr>
<td><code>src-ip</code></td>
<td>Specifies load distribution based on the source host IP address.</td>
</tr>
<tr>
<td><code>src-mac</code></td>
<td>Specifies load distribution based on the source MAC address.</td>
</tr>
<tr>
<td><code>src-mixed-ip-port</code></td>
<td>Specifies load distribution based on the source host IP address and TCP/UDP (Layer 4) port number.</td>
</tr>
<tr>
<td><code>src-port</code></td>
<td>Specifies load distribution based on the TCP/UDP (Layer 4) port number.</td>
</tr>
</tbody>
</table>

Command Default

The default value is `src-mac`.

Command Modes

Global configuration (config)
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can verify your setting by entering either the `show running-config` command in privileged EXEC mode or the `show etherchannel load-balance` command in privileged EXEC mode.

Examples

The following example shows how to set the load-distribution method to dst-mac:

```
Device> enable
Device# configure terminal
Device(config)# port-channel load-balance dst-mac
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show etherchannel load-balance</td>
<td>Displays information about EtherChannel load balancing.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the running configuration.</td>
</tr>
</tbody>
</table>
port-channel load-balance extended

To set combinations of load-distribution methods among the ports in the EtherChannel, use the `port-channel load-balance extended` command in global configuration mode. To reset the extended load-balancing mechanism to the default setting, use the `no` form of this command.

`port-channel load-balance extended [{dst-ip | dst-mac | dst-port | ipv6-label | l3-proto | src-ip | src-mac | src-port}]`

`no port-channel load-balance extended`

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dst-ip</code></td>
<td>(Optional) Specifies load distribution based on the destination host IP address.</td>
</tr>
<tr>
<td><code>dst-mac</code></td>
<td>(Optional) Specifies load distribution based on the destination host MAC address. Packets to the same destination are sent on the same port, but packets to different destinations are sent on different ports in the channel.</td>
</tr>
<tr>
<td><code>dst-port</code></td>
<td>(Optional) Specifies load distribution based on the destination TCP/UDP (Layer 4) port number for both IPv4 and IPv6.</td>
</tr>
<tr>
<td><code>ipv6-label</code></td>
<td>(Optional) Specifies load distribution based on the source MAC address and IPv6 flow label.</td>
</tr>
<tr>
<td><code>l3-proto</code></td>
<td>(Optional) Specifies load distribution based on the source MAC address and Layer 3 protocols.</td>
</tr>
<tr>
<td><code>src-ip</code></td>
<td>(Optional) Specifies load distribution based on the source host IP address.</td>
</tr>
<tr>
<td><code>src-mac</code></td>
<td>(Optional) Specifies load distribution based on the source MAC address. Packets from different hosts use different ports in the channel, but packets from the same host use the same port.</td>
</tr>
<tr>
<td><code>src-port</code></td>
<td>(Optional) Specifies load distribution based on the TCP/UDP (Layer 4) port number.</td>
</tr>
</tbody>
</table>

Command Default

The default is `src-mac`.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can verify your setting by entering either the `show running-config` command in privileged EXEC mode or the `show etherchannel load-balance` command in privileged EXEC mode.

Examples

This example shows how to set the extended load-distribution method:

```
Device> enable
Device# configure terminal
Device(config)# port-channel load-balance extended dst-ip dst-mac src-ip
```
port-channel min-links

To define the minimum number of LACP ports that must be bundled in the link-up state and bundled in the EtherChannel in order that a port channel becomes active, use the *port-channel min-links* command in interface configuration mode. To return to the default setting, use the *no* form of this command.

```
port-channel min-links min_links_number
no port-channel min-links
```

Syntax Description

- `min_links_number`: The minimum number of active LACP ports in the port channel. The range is 2 to 8. The default is 1.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in hot-standby mode. When there are more than eight ports in an LACP channel group, the device on the controlling end of the link uses port priorities to determine which ports are bundled into the channel and which ports are put in hot-standby mode. Port priorities on the other device (the noncontrolling end of the link) are ignored.

The *port-channel min-links* command must specify a number less than the number specified by the *lacp max-bundle* command.

Use the *show etherchannel summary* command in privileged EXEC mode to see which ports are in the hot-standby mode (denoted with an H port-state flag in the output display).

This example shows how to specify a minimum of three active LACP ports before port channel 2 becomes active:

```
Device> enable
Device# configure terminal
Device(config)# interface port-channel 2
Device(config-if)# port-channel min-links 3
```
rep admin vlan

To configure a Resilient Ethernet Protocol (REP) administrative VLAN for the REP to transmit hardware flood layer (HFL) messages, use the `rep admin vlan` command in global configuration mode. To return to the default configuration with VLAN 1 as the administrative VLAN, use the `no` form of this command.

```
rep admin vlan vlan-id
no rep admin vlan
```

Syntax Description
- `vlan-id`: 48-bit static MAC address.

Command Modes
- Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The range of the REP administrative VLAN is from 1 to 4094.

There can be only one administrative VLAN on a device and on a segment.

Verify your settings by entering the `show interfaces rep detail` command in privileged EXEC mode.

Examples
The following example shows how to configure VLAN 100 as the REP administrative VLAN:

```
Device> enable
Device# configure terminal
Device(config)# rep admin vlan 100
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces rep detail</code></td>
<td>Displays detailed REP configuration and status for all the interfaces or the specified interface, including the administrative VLAN.</td>
</tr>
</tbody>
</table>
rep block port

To configure Resilient Ethernet Protocol (REP) VLAN load balancing on a REP primary edge port, use the `rep block port` command in interface configuration mode. To return to the default configuration with VLAN 1 as the administrative VLAN, use the `no` form of this command.

```
rep block port {id port-id | neighbor-offset | preferred} vlan {vlan-list | all}
no rep block port {id port-id | neighbor-offset | preferred}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>id port-id</code></td>
<td>Specifies the VLAN blocking alternate port by entering the unique port ID, which is automatically generated when REP is enabled. The REP port ID is a 16-character hexadecimal value.</td>
</tr>
<tr>
<td><code>neighbor-offset</code></td>
<td>VLAN blocking alternate port by entering the offset number of a neighbor. The range is from -256 to +256. A value of 0 is invalid.</td>
</tr>
<tr>
<td><code>preferred</code></td>
<td>Selects the regular segment port previously identified as the preferred alternate port for VLAN load balancing.</td>
</tr>
<tr>
<td><code>vlan</code></td>
<td>Identifies the VLANs to be blocked.</td>
</tr>
<tr>
<td><code>vlan-list</code></td>
<td>VLAN ID or range of VLAN IDs to be displayed. Enter a VLAN ID from 1 to 4094, or a range or sequence of VLANs (such as 1-3, 22, and 41-44) to be blocked.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Blocks all the VLANs.</td>
</tr>
</tbody>
</table>

Command Default

The default behavior after you enter the `rep preempt segment` command in privileged EXEC (for manual preemption) is to block all the VLANs at the primary edge port. This behavior remains until you configure the `rep block port` command.

If the primary edge port cannot determine which port is to be the alternate port, the default action is no preemption and no VLAN load balancing.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you select an alternate port by entering an offset number, this number identifies the downstream neighbor port of an edge port. The primary edge port has an offset number of 1; positive numbers above 1 identify downstream neighbors of the primary edge port. Negative numbers identify the secondary edge port (offset number -1) and its downstream neighbors.

Note

Do not enter an offset value of 1 because that is the offset number of the primary edge port itself.

If you have configured a preempt delay time by entering the `rep preempt delay seconds` command in interface configuration mode and a link failure and recovery occurs, VLAN load balancing begins after the configured
preemption time period elapses without another link failure. The alternate port specified in the load-balancing configuration blocks the configured VLANs and unblocks all the other segment ports. If the primary edge port cannot determine the alternate port for VLAN balancing, the default action is no preemption.

Each port in a segment has a unique port ID. To determine the port ID of a port, enter the `show interfaces interface-id rep detail` command in privileged EXEC mode.

Examples

The following example shows how to configure REP VLAN load balancing:

```
Device> enable
Device# configure terminal
Device(config)# interface TenGigabitEthernet 4/1
Device(config-if)# rep block port id 0009001818D68700 vlan 1-100
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show interfaces rep detail</code></td>
<td>Displays detailed REP configuration and status for all the interfaces or the specified interface, including the administrative VLAN.</td>
</tr>
</tbody>
</table>
rep lsl-age-timer

To configure the Resilient Ethernet Protocol (REP) link status layer (LSL) age-out timer value, use the `rep lsl-age-timer` command in interface configuration mode. To restore the default age-out timer value, use the `no` form of this command.

```
rep lsl-age-timer milliseconds
no rep lsl-age-timer milliseconds
```

Syntax Description

- `milliseconds` REP LSL age-out timer value, in milliseconds (ms). The range is from 120 to 10000 in multiples of 40.

Command Default

The default LSL age-out timer value is 5 ms.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

While configuring REP configurable timers, we recommend that you configure the REP LSL number of retries first and then configure the REP LSL age-out timer value.

Examples

The following example shows how to configure a REP LSL age-out timer value:

```
Device> enable
Device# configure terminal
Device(config)# interface TenGigabitEthernet 4/1
Device(config-if)# rep segment 1 edge primary
Device(config-if)# rep lsl-age-timer 2000
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface interface-type interface-name</code></td>
<td>Specifies a physical interface or port channel to receive STCNs.</td>
</tr>
<tr>
<td><code>rep segment</code></td>
<td>Enables REP on an interface and assigns a segment ID.</td>
</tr>
</tbody>
</table>
rep lsl-retries

To configure the REP link status layer (LSL) number of retries, use the `rep lsl-retries` command in interface configuration mode. To restore the default number of retries, use the `no` form of this command.

```
rep lsl-retries number-of-retries
no rep lsl-retries number-of-retries
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number-of-retries</code></td>
<td>Number of LSL retries. The range of retries is from 3 to 10.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The default number of LSL retries is 5.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface configuration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td></td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The <code>rep lsl-retries</code> command is used to configure the number of retries before the REP link is disabled. While configuring REP configurable timers, we recommend that you configure the REP LSL number of retries first and then configure the REP LSL age-out timer value.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to configure REP LSL retries.

```
Device> enable
Device# configure terminal
Device(config)# interface TenGigabitEthernet 4/1
Device(config-if)# rep segment 2 edge primary
```
rep preempt delay

To configure a waiting period after a segment port failure and recovery before Resilient Ethernet Protocol (REP) VLAN load balancing is triggered, use the `rep preempt delay` command in interface configuration mode. To remove the configured delay, use the `no` form of this command.

```
rep preempt delay seconds
no rep preempt delay
```

Syntax Description

- `seconds` Number of seconds to delay REP preemption. The range is from 15 to 300 seconds. The default is manual preemption without delay.

Command Default

REP preemption delay is not set. The default is manual preemption without delay.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enter this command on the REP primary edge port.

Enter this command and configure a preempt time delay for VLAN load balancing to be automatically triggered after a link failure and recovery.

If VLAN load balancing is configured after a segment port failure and recovery, the REP primary edge port starts a delay timer before VLAN load balancing occurs. Note that the timer restarts after each link failure. When the timer expires, the REP primary edge port alerts the alternate port to perform VLAN load balancing (configured by using the `rep block port` command in interface configuration mode) and prepares the segment for the new topology. The configured VLAN list is blocked at the alternate port, and all other VLANs are blocked at the primary edge port.

You can verify your settings by entering the `show interfaces rep` command.

Examples

The following example shows how to configure a REP preemption time delay of 100 seconds on the primary edge port:

```
Device> enable
Device# configure terminal
Device(config)# interface TenGigabitEthernet 4/1
Device(config-if)# rep preempt delay 100
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rep block port</code></td>
<td>Configures VLAN load balancing.</td>
</tr>
<tr>
<td><code>show interfaces rep detail</code></td>
<td>Displays detailed REP configuration and status for all the interfaces or the specified interface, including the administrative VLAN.</td>
</tr>
</tbody>
</table>
rep preempt segment

To manually start Resilient Ethernet Protocol (REP) VLAN load balancing on a segment, use the `rep preempt segment` command in privileged EXEC mode.

`rep preempt segment segment-id`

Syntax Description

- `segment-id`: ID of the REP segment. The range is from 1 to 1024.

Command Default

Manual preemption is the default behavior.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enter this command on the segment, which has the primary edge port on the device.

Ensure that all the other segment configurations are completed before setting preemption for VLAN load balancing. When you enter the `rep preempt segment segment-id` command, a confirmation message appears before the command is executed because preemption for VLAN load balancing can disrupt the network.

If you do not enter the `rep preempt delay seconds` command in interface configuration mode on the primary edge port to configure a preemption time delay, the default configuration is to manually trigger VLAN load balancing on the segment.

Enter the `show rep topology` command in privileged EXEC mode to see which port in the segment is the primary edge port.

If you do not configure VLAN load balancing, entering the `rep preempt segment segment-id` command results in the default behavior, that is, the primary edge port blocks all the VLANs.

You can configure VLAN load balancing by entering the `rep block port` command in interface configuration mode on the REP primary edge port before you manually start preemption.

Examples

The following example shows how to manually trigger REP preemption on segment 100:

```
Device> enable
Device# rep preempt segment 100
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rep block port</code></td>
<td>Configures VLAN load balancing.</td>
</tr>
<tr>
<td><code>rep preempt delay</code></td>
<td>Configures a waiting period after a segment port failure and recovery before REP VLAN load balancing is triggered.</td>
</tr>
<tr>
<td><code>show rep topology</code></td>
<td>Displays REP topology information for a segment or for all the segments.</td>
</tr>
</tbody>
</table>
rep segment

To enable Resilient Ethernet Protocol (REP) on an interface and to assign a segment ID to the interface, use the `rep segment` command in interface configuration mode. To disable REP on the interface, use the `no` form of this command.

```
rep segment segment-id [edge [no-neighbor] [primary] ] [preferred]
no rep segment
```

Syntax Description

- **segment-id** Segment for which REP is enabled. Assign a segment ID to the interface. The range is from 1 to 1024.
- **edge** (Optional) Configures the port as an edge port. Each segment has only two edge ports.
- **no-neighbor** (Optional) Specifies the segment edge as one with no external REP neighbor.
- **primary** (Optional) Specifies that the port is the primary edge port where you can configure VLAN load balancing. A segment has only one primary edge port.
- **preferred** (Optional) Specifies that the port is the preferred alternate port or the preferred port for VLAN load balancing.

Note Configuring a port as a preferred port does not guarantee that it becomes the alternate port; it merely gives it a slight edge among equal contenders. The alternate port is usually a previously failed port.

Command Default

REP is disabled on the interface.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

REP ports must be a Layer 2 IEEE 802.1Q port or a 802.1AD port. You must configure two edge ports on each REP segment, a primary edge port and a secondary edge port.

If REP is enabled on two ports on a device, both the ports must be either regular segment ports or edge ports. REP ports follow these rules:

- If only one port on a device is configured in a segment, that port should be an edge port.
- If two ports on a device belong to the same segment, both the ports must be regular segment ports.
- If two ports on a device belong to the same segment, and one is configured as an edge port and one as a regular segment port (a misconfiguration), the edge port is treated as a regular segment port.

Caution

REP interfaces come up in a blocked state and remain in a blocked state until notified that it is safe to unblock. Be aware of this to avoid sudden connection losses.
When REP is enabled on an interface, the default is for that port to be a regular segment port.

Examples

The following example shows how to enable REP on a regular (nonedge) segment port:

```
Device> enable
Device# configure terminal
Device(config)# interface TenGigabitEthernet 4/1
Device(config-if)# rep segment 100
```

The following example shows how to enable REP on a port and identify the port as the REP primary edge port:

```
Device> enable
Device# configure terminal
Device(config)# interface TenGigabitEthernet 4/1
Device(config-if)# rep segment 100 edge primary
```

The following example shows how to enable REP on a port and identify the port as the REP secondary edge port:

```
Device> enable
Device# configure terminal
Device(config)# interface TenGigabitEthernet 4/1
Device(config-if)# rep segment 100 edge
```

The following example shows how to enable REP as an edge no-neighbor port:

```
Device> enable
Device# configure terminal
Device(config)# interface TenGigabitEthernet 4/1
Device(config-if)# rep segment 1 edge no-neighbor primary
```
rep stcn

To configure a Resilient Ethernet Protocol (REP) edge port to send segment topology change notifications (STCNs) to another interface or to other segments, use the `rep stcn` command in interface configuration mode. To disable the task of sending STCNs to the interface or to the segment, use the `no` form of this command.

```
rep stcn {interface interface-id | segment segment-id-list}
no rep stcn {interface | segment}
```

Syntax Description
- `interface interface-id`: Specifies a physical interface or port channel to receive STCNs.
- `segment segment-id-list`: Specifies one REP segment or a list of REP segments to receive STCNs. The segment range is from 1 to 1024. You can also configure a sequence of segments, for example, 3 to 5, 77, 100.

Command Default
Transmission of STCNs to other interfaces or segments is disabled.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You can verify your settings by entering the `show interfaces rep detail` command in privileged EXEC mode.

Examples
The following example shows how to configure a REP edge port to send STCNs to segments 25 to 50:

```
Device> enable
Device# configure terminal
Device(config)# interface TenGigabitEthernet 4/1
Device(config-if)# rep stcn segment 25-50
```
show etherchannel

To display EtherChannel information for a channel, use the `show etherchannel` command in user EXEC mode.

```
show etherchannel [{channel-group-number | {detail | port | port-channel | protocol | summary }}] |
    [{detail | load-balance | port | port-channel | protocol | summary}]
```

Syntax Description

- **channel-group-number** (Optional) Channel group number. The range is 1 to 128.
- **detail** (Optional) Displays detailed EtherChannel information.
- **load-balance** (Optional) Displays the load-balance or frame-distribution scheme among ports in the port channel.
- **port** (Optional) Displays EtherChannel port information.
- **port-channel** (Optional) Displays port-channel information.
- **protocol** (Optional) Displays the protocol that is being used in the channel.
- **summary** (Optional) Displays a one-line summary per channel group.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not specify a channel group number, all channel groups are displayed.

In the output, the passive port list field is displayed only for Layer 3 port channels. This field means that the physical port, which is still not up, is configured to be in the channel group (and indirectly is in the only port channel in the channel group).

This is an example of output from the `show etherchannel channel-group-number detail` command:

```
Device> show etherchannel 1 detail
Group state = L2
Ports: 2 Maxports = 16
Port-channels: 1 Max Port-channels = 16
Protocol: LACP

Port: Gi1/0/1
-------------------
Port state = Up Mstr In-Bndl
Channel group = 1 Mode = Active Gcchange = -
Port-channel = Po1GC = - Pseudo port-channel = Po1
Port index = 0 Load = 0x00 Protocol = LACP

Flags: S - Device is sending Slow LACPDUs
A - Device is in active mode.
F - Device is sending fast LACFDU
P - Device is in passive mode.
```
Local information:

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Key</th>
<th>Key</th>
<th>Number</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0x101</td>
<td>0x3D</td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>A</td>
<td>bndl</td>
<td>32768</td>
<td>0x0</td>
<td>0x1</td>
<td>0x0</td>
<td>0x3D</td>
</tr>
</tbody>
</table>

Age of the port in the current state: 01d:20h:06m:04s

Port-channels in the group:

Port-channel: Po1 (Primary Aggregator)

Age of the Port-channel = 01d:20h:20m:26s
Logical slot/port = 10/1 Number of ports = 2
HotStandBy port = null
Port state = Port-channel Ag-Inuse
Protocol = LACP

Ports in the Port-channel:

<table>
<thead>
<tr>
<th>Index</th>
<th>Load</th>
<th>Port</th>
<th>EC state</th>
<th>No of bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>Gi1/0/1</td>
<td>Active</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>Gi1/0/2</td>
<td>Active</td>
<td>0</td>
</tr>
</tbody>
</table>

Time since last port bundled: 01d:20h:24m:44s Gi1/0/2

This is an example of output from the `show etherchannel channel-group-number summary` command:

Device> show etherchannel 1 summary
Flags: D - down P - in port-channel
I - stand-alone s - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
u - unsuitable for bundling
U - In use f - failed to allocate aggregator
d - default port

Number of channel-groups in use: 1
Number of aggregators: 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Port-channel</th>
<th>Protocol</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Po1(SU)</td>
<td>LACP</td>
<td>Gi1/0/1(P) Gi1/0/2(P)</td>
</tr>
</tbody>
</table>

This is an example of output from the `show etherchannel channel-group-number port-channel` command:

Device> show etherchannel 1 port-channel
Port-channels in the group:

Port-channel: Po1 (Primary Aggregator)

Age of the Port-channel = 01d:20h:24m:50s
Logical slot/port = 10/1 Number of ports = 2
Logical slot/port = 10/1 Number of ports = 2
Port state = Port-channel Ag-Inuse
Protocol = LACP

Ports in the Port-channel:
This is an example of output from `show etherchannel protocol` command:

```
Device# show etherchannel protocol
Channel-group listing:
-----------------------
Group: 1
        ----------
Protocol: LACP
Group: 2
        ----------
Protocol: PAgP
```
show interfaces rep detail

To display detailed Resilient Ethernet Protocol (REP) configuration and status for all interfaces or a specified interface, including the administrative VLAN, use the `show interfaces rep detail` command in privileged EXEC mode.

```
show interfaces [interface-id] rep detail
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-id</td>
<td>(Optional) Physical interface used to display the port ID.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enter this command on a segment edge port to send STCNs to one or more segments or to an interface.

You can verify your settings by entering the `show interfaces rep detail` command in privileged EXEC mode.

Examples

The following example shows how to display the REP configuration and status for a specified interface;

```
Device> enable
Device# show interfaces TenGigabitEthernet4/1 rep detail

TenGigabitEthernet4/1 REP enabled
Segment-id: 3 (Primary Edge)
PortID: 03010015FA66FF80
Preferred flag: No
Operational Link Status: TWO_WAY
Current Key: 02040015FA66FF804050
Port Role: Open
Blocked VLAN: <empty>
Admin-vlan: 1
Preempt Delay Timer: disabled
Configured Load-balancing Block Port: none
Configured Load-balancing Block VLAN: none
STCN Propagate to: none
LSL PDU rx: 999, tx: 652
HFL PDU rx: 0, tx: 0
BPA TLV rx: 500, tx: 4
BPA (STCN, LSL) TLV rx: 0, tx: 0
BPA (STCN, HFL) TLV rx: 0, tx: 0
EPA-ELECTION TLV rx: 6, tx: 5
EPA-COMMAND TLV rx: 0, tx: 0
EPA-INFO TLV rx: 135, tx: 136
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep admin vlan</td>
<td>Configures a REP administrative VLAN for the REP to transmit HFL messages.</td>
</tr>
</tbody>
</table>
show lACP

To display Link Aggregation Control Protocol (LACP) channel-group information, use the `show lACP` command in user EXEC mode.

```
show lACP [channel-group-number] {counters | internal | neighbor | sys-id}
```

Syntax Description
- `channel-group-number` (Optional) Channel group number. The range is 1 to 128.
- `counters` Displays traffic information.
- `internal` Displays internal information.
- `neighbor` Displays neighbor information.
- `sys-id` Displays the system identifier that is being used by LACP. The system identifier consists of the LACP system priority and the device MAC address.

Command Modes
- User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can enter any `show lACP` command to display the active channel-group information. To display specific channel information, enter the `show lACP` command with a channel-group number.

If you do not specify a channel group, information for all channel groups appears.

You can enter the `channel-group-number` to specify a channel group for all keywords except `sys-id`.

This is an example of output from the `show lACP counters` user EXEC command. The table that follows describes the fields in the display.

```
Device> show lACP counters

LACPDUs Marker Marker LACPDUs
Port SentRecv SentRecv SentRecv SentRecv SentRecv

Channel group: 1
Gi2/0/1 19 10 0 0 0 0 0
Gi2/0/2 14 6 0 0 0 0 0
```

Table 90: show lACP counters Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACPDUs Sent and Recv</td>
<td>The number of LACP packets sent and received by a port.</td>
</tr>
<tr>
<td>Marker Sent and Recv</td>
<td>The number of LACP marker packets sent and received by a port.</td>
</tr>
</tbody>
</table>
show lacp

This is an example of output from the **show lacp internal** command:

```
Device> show lacp 1 internal
Flags: S - Device is requesting Slow LACPDUs
       F - Device is requesting Fast LACPDUs
       A - Device is in Active mode    P - Device is in Passive mode

Channel group 1

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Admin Key</th>
<th>Oper Key</th>
<th>Port Number</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/1</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x3</td>
<td>0x3</td>
<td>0x4</td>
<td>0x3D</td>
</tr>
<tr>
<td>Gi2/0/2</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x3</td>
<td>0x3</td>
<td>0x5</td>
<td>0x3D</td>
</tr>
</tbody>
</table>
```

The following table describes the fields in the display:

Table 91: show lacp internal Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>State of the specific port. These are the allowed values:</td>
</tr>
<tr>
<td></td>
<td>• — — Port is in an unknown state.</td>
</tr>
<tr>
<td></td>
<td>• bndl—Port is attached to an aggregator and bundled with other ports.</td>
</tr>
<tr>
<td></td>
<td>• susp—Port is in a suspended state; it is not attached to any aggregator.</td>
</tr>
<tr>
<td></td>
<td>• hot-sby—Port is in a hot-standby state.</td>
</tr>
<tr>
<td></td>
<td>• indiv—Port is incapable of bundling with any other port.</td>
</tr>
<tr>
<td></td>
<td>• indep—Port is in an independent state (not bundled but able to handle data traffic. In this case, LACP is not running on the partner port).</td>
</tr>
<tr>
<td></td>
<td>• down—Port is down.</td>
</tr>
<tr>
<td>LACP Port Priority</td>
<td>Port priority setting. LACP uses the port priority to put ports in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating.</td>
</tr>
</tbody>
</table>
Field | Description
---|---
Admin Key | Administrative key assigned to this port. LACP automatically generates an administrative key value as a hexadecimal number. The administrative key defines the ability of a port to aggregate with other ports. A port’s ability to aggregate with other ports is determined by the port physical characteristics (for example, data rate and duplex capability) and configuration restrictions that you establish.
Oper Key | Runtime operational key that is being used by this port. LACP automatically generates this value as a hexadecimal number.
Port Number | Port number.
Port State | State variables for the port, encoded as individual bits within a single octet with these meanings:
- bit0: LACP_Activity
- bit1: LACP_Timeout
- bit2: Aggregation
- bit3: Synchronization
- bit4: Collecting
- bit5: Distributing
- bit6: Defaulted
- bit7: Expired

Note: In the list above, bit7 is the MSB and bit0 is the LSB.

This is an example of output from the `show lacp neighbor` command:

```
Device> show lacp neighbor
Flags:  S - Device is sending Slow LACPDUς  F - Device is sending Fast LACPDUς
        A - Device is in Active mode       P - Device is in Passive mode

Channel group 3 neighbors

<table>
<thead>
<tr>
<th>Partner</th>
<th>System ID</th>
<th>Port Number</th>
<th>Age</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/1</td>
<td>32768,0007.eb49.5e80</td>
<td>0x3C</td>
<td>19s</td>
<td>SP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partner</th>
<th>Port Priority</th>
<th>Oper Key</th>
<th>Port State</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACP Partner</td>
<td>32768</td>
<td>0x3</td>
<td>0x3C</td>
</tr>
</tbody>
</table>

Partner’s information:
```
This is an example of output from the `show lacp sys-id` command:

Device> `show lacp sys-id`
32765,0002.4b29.3a00

The system identification is made up of the system priority and the system MAC address. The first two bytes are the system priority, and the last six bytes are the globally administered individual MAC address associated to the system.
show pagp

To display Port Aggregation Protocol (PAgP) channel-group information, use the `show pagp` command in EXEC mode.

```
show pagp [channel-group-number] {counters | dual-active | internal | neighbor}
```

Syntax Description

- **channel-group-number** (Optional) Channel group number. The range is 1 to 128.
- **counters** Displays traffic information.
- **dual-active** Displays the dual-active status.
- **internal** Displays internal information.
- **neighbor** Displays neighbor information.

Command Modes

User EXEC

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can enter any `show pagp` command to display the active channel-group information. To display the nonactive information, enter the `show pagp` command with a channel-group number.

Examples

This is an example of output from the `show pagp 1 counters` command:

```
Device> show pagp 1 counters

Information Flush
Port Sent Recv Sent Recv
----------------------------------------
Channel group: 1
Gi1/0/1 45 42 0 0
Gi1/0/2 45 41 0 0
```

This is an example of output from the `show pagp dual-active` command:

```
Device> show pagp dual-active
PAgP dual-active detection enabled: Yes
PAgP dual-active version: 1.1

Channel group 1

<table>
<thead>
<tr>
<th>Port</th>
<th>Dual-Active</th>
<th>Partner</th>
<th>Partner</th>
<th>Partner</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Detect</td>
<td>Capable</td>
<td>Name</td>
<td>Port</td>
<td>Version</td>
</tr>
<tr>
<td>Gi1/0/1</td>
<td>No</td>
<td>-p2</td>
<td>Gi3/0/3</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>No</td>
<td>-p2</td>
<td>Gi3/0/4</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
```

<output truncated>

This is an example of output from the `show pagp 1 internal` command:
Device> **show pagp 1 internal**

Flags:
S - Device is sending Slow hello.
C - Device is in Consistent state.
A - Device is in Auto mode.

Timers:
H - Hello timer is running.
Q - Quit timer is running.
S - Switching timer is running.
I - Interface timer is running.

Channel group 1

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Timers</th>
<th>Hello Interval</th>
<th>Partner Count</th>
<th>PAgP Priority</th>
<th>Learning Method Ifindex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>SC</td>
<td>U6/S7</td>
<td>H</td>
<td>30s</td>
<td>1</td>
<td>128</td>
<td>Any</td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>SC</td>
<td>U6/S7</td>
<td>H</td>
<td>30s</td>
<td>1</td>
<td>128</td>
<td>Any</td>
</tr>
</tbody>
</table>

This is an example of output from the **show pagp 1 neighbor** command:

Device> **show pagp 1 neighbor**

Flags:
S - Device is sending Slow hello.
C - Device is in Consistent state.
A - Device is in Auto mode.
P - Device learns on physical port.

Channel group 1 neighbors

<table>
<thead>
<tr>
<th>Port</th>
<th>Partner Name</th>
<th>Device ID</th>
<th>Partner Port</th>
<th>Age</th>
<th>Flags</th>
<th>Cap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>-p2</td>
<td>0002.4b29.4600</td>
<td>Gi01/1</td>
<td>9s</td>
<td>SC</td>
<td>10001</td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>-p2</td>
<td>0002.4b29.4600</td>
<td>Gi1/0/2</td>
<td>24s</td>
<td>SC</td>
<td>10001</td>
</tr>
</tbody>
</table>
show platform etherchannel

To display platform-dependent EtherChannel information, use the **show platform etherchannel** command in privileged EXEC mode.

```
show platform etherchannel channel-group-number {group-mask | load-balance mac src-mac dst-mac [ip src-ip dst-ip [port src-port dst-port]]} [switch switch-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-group-number</td>
<td>Channel group number. The range is 1 to 128.</td>
</tr>
<tr>
<td>group-mask</td>
<td>Displays EtherChannel group mask.</td>
</tr>
<tr>
<td>load-balance</td>
<td>Tests EtherChannel load-balance hash algorithm.</td>
</tr>
<tr>
<td>mac src-mac dst-mac</td>
<td>Specifies the source and destination MAC addresses.</td>
</tr>
<tr>
<td>ip src-ip dst-ip</td>
<td>(Optional) Specifies the source and destination IP addresses.</td>
</tr>
<tr>
<td>port src-port dst-port</td>
<td>(Optional) Specifies the source and destination layer port numbers.</td>
</tr>
<tr>
<td>switch switch-number</td>
<td>(Optional) Specifies the stack member.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command only when you are working directly with a technical support representative while troubleshooting a problem.

Do not use this command unless a technical support representative asks you to do so.
show platform pm

To display platform-dependent port manager information, use the **show platform pm** command in privileged EXEC mode.

```
show platform pm {etherchannel channel-group-number group-mask | interface-numbers | port-data interface-id | port-state}
```

Syntax Description

- **etherchannel channel-group-number group-mask**

 Displays the EtherChannel group-mask table for the specified channel group. The range is 1 to 128.

- **interface-numbers**

 Displays interface numbers information.

- **port-data interface-id**

 Displays port data information for the specified interface.

- **port-state**

 Displays port state information.

Command Modes

- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

- Use this command only when you are working directly with your technical support representative while troubleshooting a problem.

- Do not use this command unless your technical support representative asks you to do so.
show rep topology

To display Resilient Ethernet Protocol (REP) topology information for a segment or for all the segments, including the primary and secondary edge ports in the segment, use the **show rep topology** command in privileged EXEC mode.

show rep topology [segment segment-id] [archive] [detail]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>segment segment-id</td>
<td>(Optional) Specifies the segment for which to display the REP topology information. The segment-id range is from 1 to 1024.</td>
</tr>
<tr>
<td>archive</td>
<td>(Optional) Displays the previous topology of the segment. This keyword is useful for troubleshooting a link failure.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed REP topology information.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is a sample output from the **show rep topology** command:

```
Device# show rep topology

REP Segment 1
BridgeName  PortName  Edge Role
--------------  ----------  ---- ----
10.64.106.63  Te5/4   Pri  Open
10.64.106.228  Te3/4   Open
10.64.106.228  Te3/3   Open
10.64.106.67  Te4/3   Open
10.64.106.67  Te4/4   Alt
10.64.106.63  Te4/4   Sec  Open

REP Segment 3
BridgeName  PortName  Edge Role
--------------  ----------  ---- ----
10.64.106.63  Gi50/1   Pri  Open
SVT_3400_2   Gi0/3   Open
SVT_3400_2   Gi0/4   Open
10.64.106.68  Gi40/2   Open
10.64.106.68  Gi40/1   Open
10.64.106.63  Gi50/2   Sec  Alt
```

The following is a sample output from the **show rep topology detail** command:

```
Device# show rep topology detail

REP Segment 1
10.64.106.63, Te5/4 (Primary Edge)  
  Open Port, all vlans forwarding
  Bridge MAC: 0005.9b2e.1700
  Port Number: 010
```
Port Priority: 000
Neighbor Number: 1 / [-6]
10.64.106.228, Te3/4 (Intermediate)
Open Port, all vlans forwarding
Bridge MAC: 0005.9b1b.1f20
Port Number: 010
Port Priority: 000
Neighbor Number: 2 / [-5]
10.64.106.228, Te3/3 (Intermediate)
Open Port, all vlans forwarding
Bridge MAC: 0005.9b1b.1f20
Port Number: 00E
Port Priority: 000
Neighbor Number: 3 / [-4]
10.64.106.67, Te4/3 (Intermediate)
Open Port, all vlans forwarding
Bridge MAC: 0005.9b2e.1800
Port Number: 008
Port Priority: 000
Neighbor Number: 4 / [-3]
10.64.106.67, Te4/4 (Intermediate)
Alternate Port, some vlans blocked
Bridge MAC: 0005.9b2e.1800
Port Number: 00A
Port Priority: 000
Neighbor Number: 5 / [-2]
10.64.106.63, Te4/4 (Secondary Edge)
Open Port, all vlans forwarding
Bridge MAC: 0005.9b2e.1700
Port Number: 00A
Port Priority: 000
Neighbor Number: 6 / [-1]
show udld

To display UniDirectional Link Detection (UDLD) administrative and operational status for all ports or the specified port, use the `show udld` command in user EXEC mode.

```
show udld [Auto-Template | Capwap | GigabitEthernet | GroupVI | InternalInterface | Loopback | Null | Port-channel | TenGigabitEthernet | Tunnel | Vlan] interface_number
show udld neighbors
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-Template</td>
<td>(Optional) Displays UDLD operational status of the auto-template interface. The range is from 1 to 999.</td>
</tr>
<tr>
<td>Capwap</td>
<td>(Optional) Displays UDLD operational status of the CAPWAP interface. The range is from 0 to 2147483647.</td>
</tr>
<tr>
<td>GigabitEthernet</td>
<td>(Optional) Displays UDLD operational status of the GigabitEthernet interface. The range is from 0 to 9.</td>
</tr>
<tr>
<td>GroupVI</td>
<td>(Optional) Displays UDLD operational status of the group virtual interface. The range is from 1 to 255.</td>
</tr>
<tr>
<td>InternalInterface</td>
<td>(Optional) Displays UDLD operational status of the internal interface. The range is from 0 to 9.</td>
</tr>
<tr>
<td>Loopback</td>
<td>(Optional) Displays UDLD operational status of the loopback interface. The range is from 0 to 2147483647.</td>
</tr>
<tr>
<td>Null</td>
<td>(Optional) Displays UDLD operational status of the null interface.</td>
</tr>
<tr>
<td>Port-channel</td>
<td>(Optional) Displays UDLD operational status of the Ethernet channel interfaces. The range is from 1 to 128.</td>
</tr>
<tr>
<td>TenGigabitEthernet</td>
<td>(Optional) Displays UDLD operational status of the Ten Gigabit Ethernet interface. The range is from 0 to 9.</td>
</tr>
<tr>
<td>Tunnel</td>
<td>(Optional) Displays UDLD operational status of the tunnel interface. The range is from 0 to 2147483647.</td>
</tr>
<tr>
<td>Vlan</td>
<td>(Optional) Displays UDLD operational status of the VLAN interface. The range is from 1 to 4095.</td>
</tr>
<tr>
<td></td>
<td>(Optional) ID of the interface and port number. Valid interfaces include physical ports, VLANs, and port channels.</td>
</tr>
<tr>
<td>neighbors</td>
<td>(Optional) Displays neighbor information only.</td>
</tr>
</tbody>
</table>

Command Modes

- User EXEC
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not enter an interface ID, administrative and operational UDLD status for all interfaces appear.

This is an example of output from the `show udld interface-id` command. For this display, UDLD is enabled on both ends of the link, and UDLD detects that the link is bidirectional. The table that follows describes the fields in this display.

```
Device> show udld gigabitethernet2/0/1
Interface gi2/0/1
---
Port enable administrative configuration setting: Follows device default
Port enable operational state: Enabled
Current bidirectional state: Bidirectional
Current operational state: Advertisement - Single Neighbor detected
Message interval: 60
Time out interval: 5
Entry 1
Expiration time: 146
Device ID: 1
Current neighbor state: Bidirectional
Device name: Switch-A
Port ID: Gi2/0/1
Neighbor echo 1 device: Switch-B
Neighbor echo 1 port: Gi2/0/2
Message interval: 5
CDP Device name: Switch-A
```

Table 92: show udld Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface on the local device configured for UDLD.</td>
</tr>
<tr>
<td>Port enable administrative configuration setting</td>
<td>How UDLD is configured on the port. If UDLD is enabled or disabled, the port enable configuration setting is the same as the operational enable state. Otherwise, the enable operational setting depends on the global enable setting.</td>
</tr>
<tr>
<td>Port enable operational state</td>
<td>Operational state that shows whether UDLD is actually running on this port.</td>
</tr>
<tr>
<td>Current bidirectional state</td>
<td>The bidirectional state of the link. An unknown state appears if the link is down or if it is connected to an UDLD-incapable device. A bidirectional state appears if the link is a normal two-way connection to a UDLD-capable device. All other values mean miswiring.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Current operational state</td>
<td>The current phase of the UDLD state machine. For a normal bidirectional link, the state machine is most often in the Advertisement phase.</td>
</tr>
<tr>
<td>Message interval</td>
<td>How often advertisement messages are sent from the local device. Measured in seconds.</td>
</tr>
<tr>
<td>Time out interval</td>
<td>The time period, in seconds, that UDLD waits for echoes from a neighbor device during the detection window.</td>
</tr>
<tr>
<td>Entry 1</td>
<td>Information from the first cache entry, which contains a copy of echo information received from the neighbor.</td>
</tr>
<tr>
<td>Expiration time</td>
<td>The amount of time in seconds remaining before this cache entry is aged out.</td>
</tr>
<tr>
<td>Device ID</td>
<td>The neighbor device identification.</td>
</tr>
<tr>
<td>Current neighbor state</td>
<td>The neighbor’s current state. If both the local and neighbor devices are running UDLD normally, the neighbor state and local state should be bidirectional. If the link is down or the neighbor is not UDLD-capable, no cache entries appear.</td>
</tr>
<tr>
<td>Device name</td>
<td>The device name or the system serial number of the neighbor. The system serial number appears if the device name is not set or is set to the default (Switch).</td>
</tr>
<tr>
<td>Port ID</td>
<td>The neighbor port ID enabled for UDLD.</td>
</tr>
<tr>
<td>Neighbor echo 1 device</td>
<td>The device name of the neighbors’ neighbor from which the echo originated.</td>
</tr>
<tr>
<td>Neighbor echo 1 port</td>
<td>The port number ID of the neighbor from which the echo originated.</td>
</tr>
<tr>
<td>Message interval</td>
<td>The rate, in seconds, at which the neighbor is sending advertisement messages.</td>
</tr>
<tr>
<td>CDP device name</td>
<td>The CDP device name or the system serial number. The system serial number appears if the device name is not set or is set to the default (Switch).</td>
</tr>
</tbody>
</table>

This is an example of output from the `show udld neighbors` command:

```
Device> enable
Device# show udld neighbors
Port  Device Name  Device ID  Port-ID  OperState
-------- -------------------- ---------- -------- --------------
Gi2/0/1  Switch-A 1  Gi2/0/1  Bidirectional
```
show udld

Gi3/0/1 Switch-A 2 Gi3/0/1 Bidirectional
switchport

To put an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration, use the `switchport` command in interface configuration mode. To put an interface in Layer 3 mode, use the `no` form of this command.

```
switchport
no switchport
```

Command Default

By default, all interfaces are in Layer 2 mode.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `no switchport` command (without parameters) to set the interface to the routed-interface status and to erase all Layer 2 configurations. You must use this command before assigning an IP address to a routed port.

Entering the `no switchport` command shuts the port down and then reenables it, which might generate messages on the device to which the port is connected.

When you put an interface that is in Layer 2 mode into Layer 3 mode (or the reverse), the previous configuration information related to the affected interface might be lost, and the interface is returned to its default configuration.

Note

If an interface is configured as a Layer 3 interface, you must first enter the `switchport` command to configure the interface as a Layer 2 port. Then you can enter the `switchport access vlan` and `switchport mode` commands.

The `switchport` command is not used on platforms that do not support Cisco-routed ports. All physical ports on such platforms are assumed to be Layer 2-switched interfaces.

You can verify the port status of an interface by entering the `show running-config` privileged EXEC command.

Examples

This example shows how to cause an interface to cease operating as a Layer 2 port and become a Cisco-routed port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# no switchport
```

This example shows how to cause the port interface to cease operating as a Cisco-routed port and convert to a Layer 2 switched interface:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# switchport
```
switchport access vlan

To configure a port as a static-access port, use the `switchport access vlan` command in interface configuration mode. To reset the access mode to the default VLAN mode for the device, use the `no` form of this command.

```
switchport access vlan {vlan-id }
no switchport access vlan
```

Syntax Description

- `vlan-id` VLAN ID of the access mode VLAN; the range is 1 to 4094.

Command Default

The default access VLAN and trunk interface native VLAN is a default VLAN corresponding to the platform or interface hardware.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The port must be in access mode before the `switchport access vlan` command can take effect.

If the switchport mode is set to `access vlan vlan-id`, the port operates as a member of the specified VLAN. An access port can be assigned to only one VLAN.

The `no switchport access` command resets the access mode VLAN to the appropriate default VLAN for the device.

Examples

This example shows how to change a switched port interface that is operating in access mode to operate in VLAN 2 instead of the default VLAN:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# switchport access vlan 2
```
switchport mode

To configure the VLAN membership mode of a port, use the `switchport mode` command in interface configuration mode. To reset the mode to the appropriate default for the device, use the `no` form of this command.

```
switchport mode {access | dynamic | {auto | desirable} | trunk}
noswitchport mode {access | dynamic | {auto | desirable} | trunk}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access</td>
<td>Sets the port to access mode (either static-access or dynamic-access depending on the setting of the <code>switchport access vlan</code> interface configuration command). The port is set to access unconditionally and operates as a nontrunking, single VLAN interface that sends and receives nonencapsulated (non-tagged) frames. An access port can be assigned to only one VLAN.</td>
</tr>
<tr>
<td>dynamic auto</td>
<td>Sets the port trunking mode dynamic parameter to auto to specify that the interface convert the link to a trunk link. This is the default switchport mode.</td>
</tr>
<tr>
<td>dynamic desirable</td>
<td>Sets the port trunking mode dynamic parameter to desirable to specify that the interface actively attempt to convert the link to a trunk link.</td>
</tr>
<tr>
<td>trunk</td>
<td>Sets the port to trunk unconditionally. The port is a trunking VLAN Layer 2 interface. The port sends and receives encapsulated (tagged) frames that identify the VLAN of origination. A trunk is a point-to-point link between two switches or between a switch and a router.</td>
</tr>
</tbody>
</table>

Command Default

The default mode is `dynamic auto`.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A configuration that uses the `access` or `trunk` keywords takes effect only when you configure the port in the appropriate mode by using the `switchport mode` command. The static-access and trunk configuration are saved, but only one configuration is active at a time.

When you enter `access` mode, the interface changes to permanent nontrunking mode and negotiates to convert the link into a nontrunk link even if the neighboring interface does not agree to the change.

When you enter `trunk` mode, the interface changes to permanent trunking mode and negotiates to convert the link into a trunk link even if the interface connecting to it does not agree to the change.

When you enter `dynamic auto` mode, the interface converts the link to a trunk link if the neighboring interface is set to `trunk` or `desirable` mode.

When you enter `dynamic desirable` mode, the interface becomes a trunk interface if the neighboring interface is set to `trunk`, `desirable`, or `auto` mode.
To autonegotiate trunking, the interfaces must be in the same VLAN Trunking Protocol (VTP) domain. Trunk negotiation is managed by the Dynamic Trunking Protocol (DTP), which is a point-to-point protocol. However, some internetworking devices might forward DTP frames improperly, which could cause misconfigurations. To avoid this problem, configure interfaces connected to devices that do not support DTP to not forward DTP frames, which turns off DTP.

- If you do not intend to trunk across those links, use the `switchport mode access` command in interface configuration mode to disable trunking.
- To enable trunking to a device that does not support DTP, use the `switchport mode trunk` and `switchport nonegotiate` commands in interface configuration mode to cause the interface to become a trunk but to not generate DTP frames.

Access ports and trunk ports are mutually exclusive.

The IEEE 802.1x feature interacts with switchport modes in these ways:

- If you try to enable IEEE 802.1x on a trunk port, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to trunk, the port mode is not changed.
- If you try to enable IEEE 802.1x on a port set to `dynamic auto` or `dynamic desirable`, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to `dynamic auto` or `dynamic desirable`, the port mode is not changed.
- If you try to enable IEEE 802.1x on a dynamic-access (VLAN Query Protocol [VQP]) port, an error message appears, and IEEE 802.1x is not enabled. If you try to change an IEEE 802.1x-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.

You can verify your settings by entering the `show interfaces interface-id switchport` command in privileged EXEC mode and examining information in the `Administrative Mode` and `Operational Mode` rows.

Examples

This example shows how to configure a port for access mode:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# switchport mode access
```

This example shows how set the port to dynamic desirable mode:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# switchport mode dynamic desirable
```

This example shows how to configure a port for trunk mode:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# switchport mode trunk
```
switchport nonegotiate

To specify that Dynamic Trunking Protocol (DTP) negotiation packets are not sent on the Layer 2 interface, use the `switchport nonegotiate` command in interface configuration mode. Use the `no` form of this command to return to the default setting.

```
switchport nonegotiate
no switchport nonegotiate
```

Command Default

The default is to use DTP negotiation to learn the trunking status.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `no switchport nonegotiate` command removes nonegotiate status.

This command is valid only when the interface switchport mode is access or trunk (configured by using the `switchport mode access` or the `switchport mode trunk` interface configuration command). This command returns an error if you attempt to execute it in dynamic (auto or desirable) mode.

Internetworking devices that do not support DTP might forward DTP frames improperly and cause misconfigurations. To avoid this problem, turn off DTP by using the `switchport nonegotiate` command to configure the interfaces connected to devices that do not support DTP to not forward DTP frames.

When you enter the `switchport nonegotiate` command, DTP negotiation packets are not sent on the interface. The device does or does not trunk according to the `mode` parameter: `access` or `trunk`.

- If you do not intend to trunk across those links, use the `switchport mode access` interface configuration command to disable trunking.

- To enable trunking on a device that does not support DTP, use the `switchport mode trunk` and `switchport nonegotiate` interface configuration commands to cause the interface to become a trunk but not generate DTP frames.

This example shows how to cause a port to refrain from negotiating trunking mode and to act as a trunk or access port (depending on the mode set):

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# switchport nonegotiate
```

You can verify your setting by entering the `show interfaces interface-id switchport` command in privileged EXEC mode.

Layer 2/3

switchport nonegotiate
switchport voice vlan

To configure voice VLAN on the port, use the `switchport voice vlan` command in interface configuration mode. To return to the default setting, use the `no` form of this command.

```
switchport voice vlan { vlan-id | dot1p | none | untagged | name vlan_name }
```

Syntax Description

- **vlan-id**
 - The VLAN to be used for voice traffic. The range is 1 to 4094. By default, the IP phone forwards the voice traffic with an IEEE 802.1Q priority of 5.

- **dot1p**
 - Configures the telephone to use IEEE 802.1p priority tagging and uses VLAN 0 (the native VLAN). By default, the Cisco IP phone forwards the voice traffic with an IEEE 802.1p priority of 5.

- **none**
 - Does not instruct the IP telephone about the voice VLAN. The telephone uses the configuration from the telephone key pad.

- **untagged**
 - Configures the telephone to send untagged voice traffic. This is the default for the telephone.

- **name vlan_name**
 - (Optional) Specifies the VLAN name to be used for voice traffic. You can enter up to 128 characters.

Command Default

- The default is not to automatically configure the telephone (`none`).
- The telephone default is not to tag frames.

Command Modes

- Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You should configure voice VLAN on Layer 2 access ports.

You must enable Cisco Discovery Protocol (CDP) on the switch port connected to the Cisco IP phone for the device to send configuration information to the phone. CDP is enabled by default globally and on the interface.

When you enter a VLAN ID, the IP phone forwards voice traffic in IEEE 802.1Q frames, tagged with the specified VLAN ID. The device puts IEEE 802.1Q voice traffic in the voice VLAN.

When you select `dot1p`, `none`, or `untagged`, the device puts the indicated voice traffic in the access VLAN.

In all configurations, the voice traffic carries a Layer 2 IP precedence value. The default is 5 for voice traffic.

When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to 2. When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN, but not on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the Cisco IP phone.
If any type of port security is enabled on the access VLAN, dynamic port security is automatically enabled on the voice VLAN.

You cannot configure static secure MAC addresses in the voice VLAN.

The Port Fast feature is automatically enabled when voice VLAN is configured. When you disable voice VLAN, the Port Fast feature is not automatically disabled.

This example show how to first populate the VLAN database by associating a VLAN ID with a VLAN name, and then configure the VLAN (using the name) on an interface, in the access mode:
You can also verify your configuration by entering the `show interfaces interface-id switchport` in privileged EXEC command and examining information in the Voice VLAN: row.

Part 1 - Making the entry in the VLAN database:

```
Device> enable
Device# configure terminal
Device(config)# vlan 55
Device(config-vlan)# name test
Device(config-vlan)# end
```

Part 2 - Checking the VLAN database:

```
Device> enable
Device# show vlan id 55
VLAN Name Status Ports
----- -------------------------------- --------- -------------------------------
55 test active
VLAN Type SAID MTU Parent RIngNo BridgeNo Stp BrgdMode Trans1 Trans2
----- ----- ------ ---- ----- ------ -------- --- -------- ------ ------
55 enet 100055 1500 - - - - - 0 0
Remote SPAN VLAN
Disabled
Primary Secondary Type Ports
--------- --------- ----------------- ------------------------------------------
```

Part 3- Assigning VLAN to the interface by using the name of the VLAN:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet3/1/1
Device(config-if)# switchport mode access
Device(config-if)# switchport voice vlan name test
Device(config-if)# end
Device#
```

Part 4 - Verifying configuration:

```
Device> enable
Device# show running-config
interface gigabitethernet3/1/1
Building configuration...
Current configuration : 113 bytes
!
interface GigabitEthernet3/1/1
switchport voice vlan 55
switchport mode access
Switch#
```

Part 5 - Also can be verified in interface switchport:

```
Device> enable
Device# show interface GigabitEthernet3/1/1 switchport
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
Name: Gi3/1/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: 55 (test)
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none
udld

To enable aggressive or normal mode in the UniDirectional Link Detection (UDLD) and to set the configurable message timer time, use the `udld` command in global configuration mode. To disable aggressive or normal mode UDLD on all fiber-optic ports, use the `no` form of the command.

```
udld {aggressive | enable | message time message-timer-interval}
no udld {aggressive | enable | message}
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggressive</td>
<td>Enables UDLD in aggressive mode on all fiber-optic interfaces.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables UDLD in normal mode on all fiber-optic interfaces.</td>
</tr>
<tr>
<td>message time message-timer-interval</td>
<td>Configures the period of time between UDLD probe messages on ports that are in the advertisement phase and are determined to be bidirectional. The range is 1 to 90 seconds. The default is 15 seconds.</td>
</tr>
</tbody>
</table>

Command Default

UDLD is disabled on all interfaces.
The message timer is set at 15 seconds.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

UDLD supports two modes of operation: normal (the default) and aggressive. In normal mode, UDLD detects unidirectional links due to disconnected interfaces on fiber-optic connections. In aggressive mode, UDLD also detects unidirectional links due to one-way traffic on fiber-optic and twisted-pair links and due to disconnected interfaces on fiber-optic links.

If you change the message time between probe packets, you are making a compromise between the detection speed and the CPU load. By decreasing the time, you can make the detection-response faster but increase the load on the CPU.

This command affects fiber-optic interfaces only. Use the `udld` interface configuration command to enable UDLD on other interface types.

You can use these commands to reset an interface shut down by UDLD:

- The `udld reset` privileged EXEC command to reset all interfaces shut down by UDLD.
- The `shutdown` and `no shutdown` interface configuration commands.
- The `no udld enable` global configuration command followed by the `udld {aggressive | enable}` global configuration command to reenable UDLD globally.
- The `no udld port` interface configuration command followed by the `udld port` or `udld port aggressive` interface configuration command to reenable UDLD on the specified interface.
- The `errdisable recovery cause udld` and `errdisable recovery interval interval` global configuration commands to automatically recover from the UDLD error-disabled state.
This example shows how to enable UDLD on all fiber-optic interfaces:

Device> enable
Device# configure terminal
Device(config)# udld enable

You can verify your setting by entering the `show udld` command in privileged EXEC mode.
udld port

To enable UniDirectional Link Detection (UDLD) on an individual interface or to prevent a fiber-optic interface from being enabled by the `udld` command in global configuration mode, use the `udld port` command in interface configuration mode. To return to the `udld` command setting in global configuration mode or to disable UDLD if entered for a nonfiber-optic port, use the `no` form of this command.

```plaintext
udld port [aggressive]
no udld port [aggressive]
```

Syntax Description

- **aggressive** (Optional) Enables UDLD in aggressive mode on the specified interface.

Command Default

- On fiber-optic interfaces, UDLD is disabled and fiber-optic interfaces enable UDLD according to the state of the `udld enable` or `udld aggressive` command global configuration mode.

- On nonfiber-optic interfaces, UDLD is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A UDLD-capable port cannot detect a unidirectional link if it is connected to a UDLD-incapable port of another device.

UDLD supports two modes of operation: normal (the default) and aggressive. In normal mode, UDLD detects unidirectional links due to disconnected interfaces on fiber-optic connections. In aggressive mode, UDLD also detects unidirectional links due to one-way traffic on fiber-optic and twisted-pair links and due to disconnected interfaces on fiber-optic links.

To enable UDLD in normal mode, use the `udld port` command in interface configuration mode. To enable UDLD in aggressive mode, use the `udld port aggressive` command in interface configuration mode.

Use the `no udld port` command on fiber-optic ports to return control of UDLD to the `udld enable` global configuration command or to disable UDLD on nonfiber-optic ports.

Use the `udld port aggressive` command on fiber-optic ports to override the setting of the `udld enable` or `udld aggressive` command in global configuration mode. Use the `no` form on fiber-optic ports to remove this setting and to return control of UDLD enabling to the `udld` command in global configuration mode or to disable UDLD on nonfiber-optic ports.

You can use these commands to reset an interface shut down by UDLD:

- The `udld reset` command in privileged EXEC mode resets all interfaces shut down by UDLD.
- The `shutdown` and `no shutdown` command in interface configuration mode.
- The `no udld enable` command in global configuration mode, followed by the `udld {aggressive | enable}` command in global configuration mode reenables UDLD globally.
- The `no udld port` command in interface configuration mode, followed by the `udld port` or `udld port aggressive` command in interface configuration mode reenables UDLD on the specified interface.
• The `errdisablerecovery cause udld` and `errdisablerecovery interval` interval commands in global configuration mode automatically recover from the UDLD error-disabled state.

This example shows how to enable UDLD on an port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet6/0/1
Device(config-if)# udld port
```

This example shows how to disable UDLD on a fiber-optic interface despite the setting of the `udld` command in global configuration mode:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet6/0/1
Device(config-if)# no udld port
```

You can verify your settings by entering the `show running-config` or the `show udld interface` command in privileged EXEC mode.
udld reset

To reset all interfaces disabled by UniDirectional Link Detection (UDLD) and permit traffic to begin passing through them again (though other features, such as spanning tree, Port Aggregation Protocol (PAgP), and Dynamic Trunking Protocol (DTP) still have their normal effects, if enabled), use the `udld reset` command in privileged EXEC mode.

udld reset

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If the interface configuration is still enabled for UDLD, these ports begin to run UDLD again and are disabled for the same reason if the problem has not been corrected.

This example shows how to reset all interfaces disabled by UDLD:

```
Device> enable
Device# udld reset
1 ports shutdown by UDLD were reset.
```
udld reset
PART VI

Network Management

- Network Management Commands, on page 677
- Flexible NetFlow Commands, on page 745
Network Management Commands

- ip wccp, on page 679
- map platform-type, on page 681
- match platform-type, on page 682
- monitor session destination, on page 683
- monitor session filter, on page 687
- monitor session source, on page 689
- show class-map type control subscriber, on page 691
- show ip sla statistics, on page 692
- show monitor, on page 694
- show parameter-map type subscriber attribute-to-service, on page 696
- show platform software fed switch ip wccp, on page 697
- show platform software swspan, on page 699
- snmp ifmib ifindex persist, on page 701
- snmp-server enable traps, on page 702
- snmp-server enable traps bridge, on page 705
- snmp-server enable traps bulkstat, on page 706
- snmp-server enable traps call-home, on page 707
- snmp-server enable traps cef, on page 708
- snmp-server enable traps cpu, on page 709
- snmp-server enable traps envmon, on page 710
- snmp-server enable traps errdisable, on page 711
- snmp-server enable traps flash, on page 712
- snmp-server enable traps isis, on page 713
- snmp-server enable traps license, on page 714
- snmp-server enable traps mac-notification, on page 715
- snmp-server enable traps ospf, on page 716
- snmp-server enable traps pim, on page 717
- snmp-server enable traps port-security, on page 718
- snmp-server enable traps power-ethernet, on page 719
- snmp-server enable traps snmp, on page 720
- snmp-server enable traps storm-control, on page 721
- snmp-server enable traps stpx, on page 722
- snmp-server enable traps transceiver, on page 723
• snmp-server enable traps vrfmib, on page 724
• snmp-server enable traps vstack, on page 725
• snmp-server engineID, on page 726
• snmp-server group, on page 727
• snmp-server host, on page 731
• snmp-server user, on page 736
• snmp-server view, on page 740
• switchport mode access, on page 742
• switchport voice vlan, on page 743
ip wccp

To enable the web cache service, and specify the service number that corresponds to a dynamic service that is defined by the application engine, use the `ip wccp` global configuration command on the device. Use the `no` form of this command to disable the service.

```
ip wccp {web-cache | service-number} [group-address groupaddress] [group-list access-list] [redirect-list access-list] [password encryption-number password]
no ip wccp {web-cache | service-number} [group-address groupaddress] [group-list access-list] [redirect-list access-list] [password encryption-number password]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>web-cache</td>
<td>Specifies the web-cache service (WCCP Version 1 and Version 2).</td>
</tr>
<tr>
<td>service-number</td>
<td>Dynamic service identifier, which means the service definition is dictated by the cache. The dynamic service number can be from 0 to 254. The maximum number of services is 256, which includes the web-cache service specified with the <code>web-cache</code> keyword.</td>
</tr>
<tr>
<td>group-address groupaddress</td>
<td>(Optional) Specifies the multicast group address used by the device and the application engines to participate in the service group.</td>
</tr>
<tr>
<td>group-list access-list</td>
<td>(Optional) If a multicast group address is not used, specifies a list of valid IP addresses that correspond to the application engines that are participating in the service group.</td>
</tr>
<tr>
<td>redirect-list access-list</td>
<td>(Optional) Specifies the redirect service for specific hosts or specific packets from hosts.</td>
</tr>
<tr>
<td>password encryption-number password</td>
<td>(Optional) Specifies an encryption number. The range is 0 to 7. Use 0 for not encrypted, and use 7 for proprietary. Also, specifies a password name up to seven characters in length. The device combines the password with the MD5 authentication value to create security for the connection between the device and the application engine. By default, no password is configured, and no authentication is performed.</td>
</tr>
</tbody>
</table>

Command Default

WCCP services are not enabled on the device.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

WCCP transparent caching bypasses Network Address Translation (NAT) when Cisco Express Forwarding switching is enabled. To work around this situation, configure WCCP transparent caching in the outgoing direction, enable Cisco Express Forwarding switching on the content engine interface, and specify the `ip wccp web-cache redirect out` command. Configure WCCP in the incoming direction on the inside interface by...
specifying the `ip wccp redirect exclude in` command on the router interface facing the cache. This configuration prevents the redirection of any packets arriving on that interface.

You can also include a redirect list when configuring a service group. The specified redirect list will deny packets with a NAT (source) IP address and prevent redirection.

This command instructs a device to enable or disable support for the specified service number or the web-cache service name. A service number can be from 0 to 254. Once the service number or name is enabled, the router can participate in the establishment of a service group.

When the `no ip wccp` command is entered, the device terminates participation in the service group, deallocates space if none of the interfaces still have the service configured, and terminates the WCCP task if no other services are configured.

The keywords following the `web-cache` keyword and the `service-number` argument are optional and may be specified in any order, but only may be specified once.

Example

The following example configures a web cache, the interface connected to the application engine or the server, and the interface connected to the client:

```
Device(config)# ip wccp web-cache
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# no switchport
Device(config-if)# ip address 172.20.10.30 255.255.255.0
Device(config-if)# no shutdown
Device(config-if)# exit
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# no switchport
Device(config-if)#
Device(config)# interface gigabitethernet1/0/3
Device(config-if)#
```

```
*Dec 6 13:11:29.507: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/3, changed state to down

Device(config-if)# ip address 175.20.20.10 255.255.255.0
Device(config-if)# no shutdown
Device(config-if)# ip wccp web-cache redirect in
Device(config-if)# ip wccp web-cache group-listen
Device(config-if)# exit
```
map platform-type

To set the parameter map attribute filter criteria to platform type, use the `map platform-type` command in parameter-map filter mode. To remove this criteria, use the `no` form of this command.

```
map-number map platform-type { eq | not-eq | regex } platform-type
no map-number map platform-type { eq | not-eq | regex } platform-type
```

<table>
<thead>
<tr>
<th>map-number</th>
<th>Specifies the parameter map number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>Specifies the filter type name is equal to the platform type name.</td>
</tr>
<tr>
<td>not-eq</td>
<td>Specifies the filter type name is not equal to the platform type name.</td>
</tr>
<tr>
<td>regex</td>
<td>Specifies the filter type name is a regular expression.</td>
</tr>
<tr>
<td>platform-type</td>
<td>Specifies the platform type for the parameter map attribute filter criteria.</td>
</tr>
</tbody>
</table>

Command Default

This command is disabled by default.

Command Modes

Parameter map filter mode (config-parameter-map-filter)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.12.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to set the parameter map attribute filter criteria to platform type:

```
Device> enable
Device# configure terminal
Device(config)# parameter-map type subscriber attribute-to-service Aironet-Policy-para
Device(config-parameter-map-filter)# 10 map platform-type eq C9xxx
```
match platform-type

To evaluate control classes based on the platform type, use the `match platform-type` command in control class-map filter mode. To remove this condition, use the `no` form of this command.

```
match platform-type  platform-name
no match platform-type  platform-name
```

Syntax Description

- `platform-name` Specifies the name of the platform.

Command Default

This command is disabled by default.

Command Modes

Control class-map filter mode (config-filter-control-classmap)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.12.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to set the class map filter to match platform type:

```
Device> enable
Device# configure terminal
Device(config)# class-map type control subscriber match-all DOT1X_NO_AGENT
Device(config-filter-control-classmap)# match platform-type C9xxx
```
monitor session destination

To start a new Switched Port Analyzer (SPAN) session or Remote SPAN (RSPAN) destination session, to enable ingress traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance), and to add or delete interfaces or VLANs to or from an existing SPAN or RSPAN session, use the **monitor session destination** global configuration command. To remove the SPAN or RSPAN session or to remove destination interfaces from the SPAN or RSPAN session, use the **no** form of this command.

```plaintext
monitor session session-number destination {interface interface-id [, | - ] [encapsulation {replicate | dot1q}] [ingress {dot1q | untagged}] } | {remote} vlan vlan-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>session-number</td>
<td>Specifies the destination or source interface for a SPAN or RSPAN session. Valid interfaces are physical ports (including type, stack member, module, and port number). For source interface, port channel is also a valid interface type, and the valid range is 1 to 128.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>(Optional) Specifies a series of interfaces or VLANs, or separates a range of interfaces or VLANs from a previous range. Enter a space before and after the comma.</td>
</tr>
<tr>
<td>,</td>
<td>(Optional) Specifies a range of interfaces or VLANs. Enter a space before and after the hyphen.</td>
</tr>
<tr>
<td>-</td>
<td>(Optional) Specifies that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged). These keywords are valid only for local SPAN. For RSPAN, the RSPAN VLAN ID overwrites the original VLAN ID; therefore, packets are always sent untagged. The encapsulation options are ignored with the no form of the command.</td>
</tr>
<tr>
<td>encapsulation replicate</td>
<td>Specifies that the destination interface accepts the source interface incoming packets with IEEE 802.1Q encapsulation. These keywords are valid only for local SPAN. For RSPAN, the RSPAN VLAN ID overwrites the original VLAN ID; therefore, packets are always sent untagged. The encapsulation options are ignored with the no form of the command.</td>
</tr>
<tr>
<td>encapsulation dot1q</td>
<td>Specifies that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged). These keywords are valid only for local SPAN. For RSPAN, the RSPAN VLAN ID overwrites the original VLAN ID; therefore, packets are always sent untagged. The encapsulation options are ignored with the no form of the command.</td>
</tr>
</tbody>
</table>
ingress
Enables ingress traffic forwarding.

dot1q
(Optional) Accepts incoming packets with IEEE 802.1Q encapsulation with the specified VLAN as the default VLAN.

untagged
(Optional) Accepts incoming packets with untagged encapsulation with the specified VLAN as the default VLAN.

isl
Specifies ingress forwarding using ISL encapsulation.

remote
Specifies the remote VLAN for an RSPAN source or destination session. The range is 2 to 1001 and 1006 to 4094.

The RSPAN VLAN cannot be VLAN 1 (the default VLAN) or VLAN IDs 1002 to 1005 (reserved for Token Ring and FDDI VLANs).

vlan vlan-id
Sets the default VLAN for ingress traffic when used with only the ingress keyword.

Command Default

No monitor sessions are configured.

If **encapsulation replicate** is not specified on a local SPAN destination port, packets are sent in native form with no encapsulation tag.

Ingress forwarding is disabled on destination ports.

You can specify **all**, **local**, **range session-range**, or **remote** with the **no monitor session** command to clear all SPAN and RSPAN, all local SPAN, a range, or all RSPAN sessions.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A SPAN or RSPAN destination must be a physical port.

You can have a maximum of 64 destination ports on a switch or a switch stack.

Each session can include multiple ingress or egress source ports or VLANs, but you cannot combine source ports and source VLANs in a single session. Each session can include multiple destination ports.

When you use VLAN-based SPAN (VSPAN) to analyze network traffic in a VLAN or set of VLANs, all active ports in the source VLANs become source ports for the SPAN or RSPAN session. Trunk ports are included as source ports for VSPAN, and only packets with the monitored VLAN ID are sent to the destination port.

You can monitor traffic on a single port or VLAN or on a series or range of ports or VLANs. You select a series or range of interfaces or VLANs by using the [, | -] options.
If you specify a series of VLANs or interfaces, you must enter a space before and after the comma. If you specify a range of VLANs or interfaces, you must enter a space before and after the hyphen (-).

EtherChannel ports can be configured as SPAN or RSPAN destination ports. A physical port that is a member of an EtherChannel group can be used as a destination port, but it cannot participate in the EtherChannel group while it is as a SPAN destination.

A port used as a destination port cannot be a SPAN or RSPAN source, nor can a port be a destination port for more than one session at a time.

You can enable IEEE 802.1x authentication on a port that is a SPAN or RSPAN destination port; however, IEEE 802.1x authentication is disabled until the port is removed as a SPAN destination. If IEEE 802.1x authentication is not available on the port, the switch returns an error message. You can enable IEEE 802.1x authentication on a SPAN or RSPAN source port.

If ingress traffic forwarding is enabled for a network security device, the destination port forwards traffic at Layer 2.

Destination ports can be configured to function in these ways:

- When you enter `monitor session session_number destination interface interface-id` with no other keywords, egress encapsulation is untagged, and ingress forwarding is not enabled.

- When you enter `monitor session session_number destination interface interface-id ingress`, egress encapsulation is untagged; ingress encapsulation depends on the keywords that follow—`dot1q` or `untagged`.

- When you enter `monitor session session_number destination interface interface-id encapsulation replicate` with no other keywords, egress encapsulation replicates the source interface encapsulation; ingress forwarding is not enabled. (This applies to local SPAN only; RSPAN does not support encapsulation replication.)

- When you enter `monitor session session_number destination interface interface-id encapsulation replicate ingress`, egress encapsulation replicates the source interface encapsulation; ingress encapsulation depends on the keywords that follow—`dot1q` or `untagged`. (This applies to local SPAN only; RSPAN does not support encapsulation replication.)

You can verify your settings by entering the `show monitor` privileged EXEC command. You can display SPAN, RSPAN, FSPAN, and FRSPAN configuration on the switch by entering the `show running-config` privileged EXEC command. SPAN information appears near the end of the output.

Examples

This example shows how to create a local SPAN session 1 to monitor both sent and received traffic on source port 1 on stack member 1 to destination port 2 on stack member 2:

```
Device(config)# monitor session 1 source interface gigabitethernet1/0/1 both
Device(config)# monitor session 1 destination interface gigabitethernet1/0/2
```

This example shows how to delete a destination port from an existing local SPAN session:

```
Device(config)# no monitor session 2 destination interface gigabitethernet1/0/2
```
This example shows how to configure RSPAN source session 1 to monitor a source interface and to configure the destination RSPAN VLAN 900:

Device(config)# monitor session 1 source interface gigabitethernet1/0/1
Device(config)# monitor session 1 destination remote vlan 900
Device(config)# end

This example shows how to configure an RSPAN destination session 10 in the switch receiving the monitored traffic:

Device(config)# monitor session 10 source remote vlan 900
Device(config)# monitor session 10 destination interface gigabitethernet1/0/2

This example shows how to configure the destination port for ingress traffic on VLAN 5 by using a security device that supports IEEE 802.1Q encapsulation. Egress traffic replicates the source; ingress traffic uses IEEE 802.1Q encapsulation.

Device(config)# monitor session 2 destination interface gigabitethernet1/0/2 encapsulation dot1q ingress dot1q vlan 5

This example shows how to configure the destination port for ingress traffic on VLAN 5 by using a security device that does not support encapsulation. Egress traffic and ingress traffic are untagged.

Device(config)# monitor session 2 destination interface gigabitethernet1/0/2 ingress untagged vlan 5
monitor session filter

To start a new flow-based SPAN (FSPAN) session or flow-based RSPAN (FRSPAN) source or destination session, or to limit (filter) SPAN source traffic to specific VLANs, use the `monitor session filter` global configuration command. To remove filters from the SPAN or RSPAN session, use the `no` form of this command.

```
monitor session session-number filter { vlan vlan-id [, | -] }
no monitor session session-number filter { vlan vlan-id [, | -] }
```

Syntax Description

- `session-number
 Specifies a list of VLANs as filters on trunk source ports to limit SPAN source traffic to specific VLANs. The `vlan-id` range is 1 to 4094.

- `vlan vlan-id
 (Optional) Specifies a series of VLANs, or separates a range of VLANs from a previous range. Enter a space before and after the comma.

- `|
 (Optional) Specifies a range of VLANs. Enter a space before and after the hyphen.

Command Default

No monitor sessions are configured.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can monitor traffic on a single VLAN or on a series or range of ports or VLANs. You select a series or range of VLANs by using the `[| -]` options.

If you specify a series of VLANs, you must enter a space before and after the comma. If you specify a range of VLANs, you must enter a space before and after the hyphen (`-`).

VLAN filtering refers to analyzing network traffic on a selected set of VLANs on trunk source ports. By default, all VLANs are monitored on trunk source ports. You can use the `monitor session session-number filter vlan vlan-id` command to limit SPAN traffic on trunk source ports to only the specified VLANs.

VLAN monitoring and VLAN filtering are mutually exclusive. If a VLAN is a source, VLAN filtering cannot be enabled. If VLAN filtering is configured, a VLAN cannot become a source.

You can verify your settings by entering the `show monitor` privileged EXEC command. You can display SPAN, RSPAN, FSPAN, and FRSPAN configuration on the switch by entering the `show running-config` privileged EXEC command. SPAN information appears near the end of the output.

Examples

This example shows how to limit SPAN traffic in an existing session only to specific VLANs:
Switch(config)# monitor session 1 filter vlan 100 - 110

This example shows how to create a local SPAN session 1 to monitor both sent and received traffic on source port 1 on stack member 1 to destination port 2 on stack member 2 and to filter IPv4 traffic using access list number 122 in an FSPAN session:

Device(config)# monitor session 1 source interface gigabitethernet1/0/1 both
Device(config)# monitor session 1 destination interface gigabitethernet1/0/2
Device(config)# monitor session 1 filter ip access-group 122
monitor session source

To start a new Switched Port Analyzer (SPAN) session or Remote SPAN (RSPAN) source session, or to add or delete interfaces or VLANs to or from an existing SPAN or RSPAN session, use the **monitor session source** global configuration command. To remove the SPAN or RSPAN session or to remove source interfaces from the SPAN or RSPAN session, use the **no** form of this command.

```
monitor session session_number source {interface interface-id [,,|-] [both | rx | tx] | [remote] vlan vlan-id [, , |-] [both | rx | tx] }

no monitor session session_number source {interface interface-id [,,|-] [both | rx | tx] | [remote] vlan vlan-id [, , |-] [both | rx | tx] }
```

Syntax Description

- **session_number**

 Specifies the source interface for a SPAN or RSPAN session. Valid interfaces are physical ports (including type, stack member, module, and port number). For source interface, port channel is also a valid interface type, and the valid range is 1 to 48.

- **interface interface-id**

 Specifies a series of interfaces or VLANs, or separates a range of interfaces or VLANs from a previous range. Enter a space before and after the comma.

- **,**

 (Optional) Specifies a series of interfaces or VLANs, or separates a range of interfaces or VLANs from a previous range. Enter a space before and after the comma.

- **-**

 (Optional) Specifies a range of interfaces or VLANs. Enter a space before and after the hyphen.

- **both | rx | tx**

 (Optional) Specifies the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both transmitted and received traffic.

- **remote**

 (Optional) Specifies the remote VLAN for an RSPAN source or destination session. The range is 2 to 1001 and 1006 to 4094.

 The RSPAN VLAN cannot be VLAN 1 (the default VLAN) or VLAN IDs 1002 to 1005 (reserved for Token Ring and FDDI VLANs).

- **vlan vlan-id**

 When used with only the **ingress** keyword, sets default VLAN for ingress traffic.

Command Default

No monitor sessions are configured.

On a source interface, the default is to monitor both received and transmitted traffic.

On a trunk interface used as a source port, all VLANs are monitored.

Command Modes

Global configuration
This command was introduced.

Traffic that enters or leaves source ports or source VLANs can be monitored by using SPAN or RSPAN. Traffic routed to source ports or source VLANs cannot be monitored.

A source can be a physical port, a port channel, or a VLAN.

Each session can include multiple ingress or egress source ports or VLANs, but you cannot combine source ports and source VLANs in a single session. Each session can include multiple destination ports.

When you use VLAN-based SPAN (VSPAN) to analyze network traffic in a VLAN or set of VLANs, all active ports in the source VLANs become source ports for the SPAN or RSPAN session. Trunk ports are included as source ports for VSPAN, and only packets with the monitored VLAN ID are sent to the destination port.

You can monitor traffic on a single port or VLAN or on a series or range of ports or VLANs. You select a series or range of interfaces or VLANs by using the [, | -] options.

If you specify a series of VLANs or interfaces, you must enter a space before and after the comma. If you specify a range of VLANs or interfaces, you must enter a space before and after the hyphen (-).

You can monitor individual ports while they participate in an EtherChannel, or you can monitor the entire EtherChannel bundle by specifying the \texttt{port-channel} number as the RSPAN source interface.

A port used as a destination port cannot be a SPAN or RSPAN source, nor can a port be a destination port for more than one session at a time.

You can enable IEEE 802.1x authentication on a SPAN or RSPAN source port.

You can verify your settings by entering the \texttt{show monitor} privileged EXEC command. You can display SPAN, RSPAN, FSPAN, and FRSPAN configuration on the switch by entering the \texttt{show running-config} privileged EXEC command. SPAN information appears near the end of the output.

\textbf{Examples}

This example shows how to create a local SPAN session 1 to monitor both sent and received traffic on source port 1 on stack member 1 to destination port 2 on stack member 2:

\begin{verbatim}
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1 both
Switch(config)# monitor session 1 destination interface gigabitethernet1/0/2
\end{verbatim}

This example shows how to configure RSPAN source session 1 to monitor multiple source interfaces and to configure the destination RSPAN VLAN 900.

\begin{verbatim}
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# monitor session 1 source interface port-channel 2 tx
Switch(config)# monitor session 1 destination remote vlan 900
Switch(config)# end
\end{verbatim}
show class-map type control subscriber

To display class map statistics for the configured control policies, use the `show class-map type control subscriber` command in privileged EXEC mode.

```
show class-map type control subscriber {all | name control-class-name}
```

Syntax Description

- **all**
 - Displays class map statistics for all control policies.

- **name control-class-name**
 - Displays class map statistics for the specified control policy.

Command Modes

- Privileged EXEC (#)

Command History

- **Release**
 - Cisco IOS XE Fuji 16.9.1
- **Modification**
 - This command was introduced.

Examples

The following is a sample output of the `show class-map type control subscriber name control-class-name` command:

```
Device# show class-map type control subscriber name platform

Class-map        Action          Exec  Hit  Miss  Comp
---------------  ---------------  -----  ---  ----  ----
match-all platform match platform-type C9xxx  0    0    0    0

Key:
"Exec" - The number of times this line was executed
"Hit" - The number of times this line evaluated to TRUE
"Miss" - The number of times this line evaluated to FALSE
"Comp" - The number of times this line completed the execution of its condition without a need to continue on to the end
```
show ip sla statistics

To display current or aggregated operational status and statistics of all Cisco IOS IP Service Level Agreement (SLA) operations or a specified operation, use the show ip sla statistics command in user EXEC or privileged EXEC mode.

Syntax Description

- **operation-number** (Optional) Number of the operation for which operational status and statistics are displayed. Accepted values are from 1 to 2147483647.
- **details** (Optional) Specifies detailed output.
- **aggregated** (Optional) Specifies the IP SLA aggregated statistics.

Command Default

Displays output for all running IP SLA operations.

Command Modes

- User EXEC
- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the show ip sla statistics to display the current state of IP SLA operations, including how much life the operation has left, whether the operation is active, and the completion time. The output also includes the monitoring data returned for the last (most recently completed) operation. This generated operation ID is displayed when you use the show ip sla configuration command for the base multicast operation, and as part of the summary statistics for the entire operation.

Enter the show command for a specific operation ID to display details for that one responder.

Examples

The following is sample output from the show ip sla statistics command:

```
Device# show ip sla statistics

Current Operational State
Entry Number: 3
Modification Time: *22:15:43.000 UTC Sun Feb 11 2001
Diagnostics Text:
Last Time this Entry was Reset: Never
Number of Octets in use by this Entry: 1332
Number of Operations Attempted: 2
Current Seconds Left in Life: 3511
Operational State of Entry: active
Latest Completion Time (milliseconds): 544
Latest Oper Sense: ok
Latest Sense Description: 200 OK
```
Total RTT: 544
DNS RTT: 12
TCP Connection RTT: 28
HTTP Transaction RTT: 504
HTTP Message Size: 9707
show monitor

To display information about all Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) sessions, use the `show monitor` command in EXEC mode.

```
show monitor [session {session_number | all | local | range list | remote} | [detail]]
```

Syntax Description

- **session**
 - (Optional) Displays information about specified SPAN sessions.

- **session_number**
 - (Optional) Displays all SPAN sessions.

- **all**
 - (Optional) Displays only local SPAN sessions.

- **local**
 - (Optional) Displays a range of SPAN sessions, where `range` is the range of valid sessions. The range is either a single session or a range of sessions described by two numbers, the lower one first, separated by a hyphen. Do not enter any spaces between comma-separated parameters or in hyphen-specified ranges.

- **range list**
 - (Optional) Displaysonly remote SPAN sessions.

- **remote**
 - (Optional) Displays detailed information about the specified sessions.

Command Modes

- User EXEC
- Privileged EXEC

Command History

- **Release**
- **Modification**
 - Cisco IOS XE Fuji 16.9.2
 - This command was introduced.

Usage Guidelines

The output is the same for the `show monitor` command and the `show monitor session all` command.

Examples

This is an example of output for the `show monitor` user EXEC command:

```
Device# show monitor
Session 1
---------
Type : Local Session
```
Source Ports:
RX Only: Gi4/0/1
Both: Gi4/0/2-3,Gi4/0/5-6
Destination Ports: Gi4/0/20
Encapsulation: Replicate
Ingress: Disabled
Session 2

Type: Remote Source Session
Source VLANs:
TX Only: 10
Both: 1-9
Dest RSPAN VLAN: 105

This is an example of output for the show monitor user EXEC command for local SPAN source session 1:

Device# show monitor session 1
Session 1

Type: Local Session
Source Ports:
RX Only: Gi4/0/1
Both: Gi4/0/2-3,Gi4/0/5-6
Destination Ports: Gi4/0/20
Encapsulation: Replicate
Ingress: Disabled

This is an example of output for the show monitor session all user EXEC command when ingress traffic forwarding is enabled:

Device# show monitor session all
Session 1

Type: Local Session
Source Ports:
Both: Gi4/0/2
Destination Ports: Gi4/0/3
Encapsulation: Native
Ingress: Enabled, default VLAN = 5
Ingress encap: DOT1Q
Session 2

Type: Local Session
Source Ports:
Both: Gi4/0/8
Destination Ports: Gi4/0/12
Encapsulation: Replicate
Ingress: Enabled, default VLAN = 4
Ingress encap: Untagged
show parameter-map type subscriber attribute-to-service

To display parameter map statistics, use the `show parameter-map type subscriber attribute-to-service` command in privileged EXEC mode.

```
show parameter-map type subscriber attribute-to-service {all | name parameter-map-name}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>name parameter-map-name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Displays statistics for all parameter maps.</td>
<td>Displays statistics for the specified parameter map.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (\#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is a sample output of the `show parameter-map type subscriber attribute-to-service name parameter-map-name` command:

```
Device# show parameter-map type subscriber attribute-to-service name platform

Parameter-map name: platform
Map: 10 platform-type regex "C9xxx"
  Action(s):
    10 interface-template critical
```
show platform software fed switch ip wccp

To display platform-dependent Web Cache Communication Protocol (WCCP) information, use the **show platform software fed switch ip wccp** privileged EXEC command.

```
show platform software fed switch{switch-number|active|standby}ip wccp{cache-engines |interfaces |service-groups}
```

Syntax Description

- **switch** *(switch_num | active | standby)*
 - The device for which you want to display information.
 - *switch_num*—Enter the switch ID. Displays information for the specified switch.
 - *active*—Displays information for the active switch.
 - *standby*—Displays information for the standby switch, if available.

- **cache-engines**
 - Displays WCCP cache engines.

- **interfaces**
 - Displays WCCP interfaces.

- **service-groups**
 - Displays WCCP service groups.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

This command is available only if your device is running the IP Services feature set.

The following example displays WCCP interfaces:

```
Device# show platform software fed switch 1 ip wccp interfaces

WCCP Interface Info

**** WCCP Interface: Port-channel13 iif_id: 000000000000007c (#SG:3), VRF: 0 Ingress WCCP
****
port_handle:0x20000f9

List of Service Groups on this interface:
* Service group id:90 vrf_id:0 (ref count:24)
  type: Dynamic Open service  prot: PROT_TCP  14_type: Dest ports  priority: 35
  Promiscuous mode (no ports).
```
* Service group id:70 vrf_id:0 (ref count:24)
type: Dynamic Open service prot: PROT_TCP l4_type: Dest ports priority: 35
Promiscuous mode (no ports).

* Service group id:60 vrf_id:0 (ref count:24)
type: Dynamic Open service prot: PROT_TCP l4_type: Dest ports priority: 35
Promiscuous mode (no ports).

**** WCCP Interface: Port-channel14 iif_id: 000000000000007e (#SG:3), VRF: 0 Ingress WCCP

port_handle:0x880000fa

List of Service Groups on this interface:
* Service group id:90 vrf_id:0 (ref count:24)
type: Dynamic Open service prot: PROT_TCP l4_type: Dest ports priority: 35
Promiscuous mode (no ports).

* Service group id:70 vrf_id:0 (ref count:24)
type: Dynamic Open service prot: PROT_TCP l4_type: Dest ports priority: 35
Promiscuous mode (no ports).
<output truncated>
show platform software swspan

To display switched port analyzer (SPAN) information, use the **show platform software swspan** command in privileged EXEC mode.

```
show platform software swspan  
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch</td>
<td>Displays information about the switch.</td>
</tr>
<tr>
<td>F0</td>
<td>Displays information about the Embedded Service Processor (ESP) slot 0.</td>
</tr>
<tr>
<td>FP</td>
<td>Displays information about the ESP.</td>
</tr>
<tr>
<td>active</td>
<td>Displays information about the active instance of the ESP or the Route Processor (RP).</td>
</tr>
<tr>
<td>counters</td>
<td>Displays the SWSPAN message counters.</td>
</tr>
<tr>
<td>R0</td>
<td>Displays information about the RP slot 0.</td>
</tr>
<tr>
<td>RP</td>
<td>Displays information about the RP.</td>
</tr>
<tr>
<td>destination sess-id session-ID</td>
<td>Displays information about the specified destination session.</td>
</tr>
<tr>
<td>source sess-id session-ID</td>
<td>Displays information about the specified source session.</td>
</tr>
</tbody>
</table>

Command Modes

- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced in a release prior to Cisco IOS XE Denali 16.1.1.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If the session number does not exist or if the SPAN session is a remote destination session, the command output will display the following message "% Error: No Information Available."

Examples

The following is sample output from the **show platform software swspan FP active source** command:

```
Switch# show platform software swspan FP active source sess-id 0

Showing SPAN source detail info

Session ID : 0
Intf Type : PORT
Port dpidx : 30
PD Sess ID : 1
Session Type : Local
Direction : Ingress
Filter Enabled : No
ACL Configured : No
AOM Object id : 579
AOM Object Status : Done
```
Parent AOM object Id : 118
Parent AOM object Status : Done

Session ID : 9
Intf Type : PORT
Port dpidx : 8
PD Sess ID : 0
Session Type : Local
Direction : Ingress
Filter Enabled : No
ACL Configured : No
AOM Object id : 578
AOM Object Status : Done
Parent AOM object Id : 70
Parent AOM object Status : Done

The following is sample output from the show platform software swspan RP active destination command:

Switch# show platform software swspan RP active destination

Showing SPAN destination table summary info

Sess-id IF-type IF-id Sess-type

1 PORT 19 Remote
snmp ifmib ifindex persist

To globally enable ifIndex values to persist, which will remain constant across reboots, for use by the Simple Network Management Protocol (SNMP), use the `snmp ifmib ifindex persist` command in global configuration mode. To globally disable ifIndex persistence, use the `no` form of this command.

```
Device(config)# snmp ifmib ifindex persist
```

Syntax Description

This command has no arguments or keywords.

Command Default

The ifIndex persistence on a device is disabled.

Command Modes

Global configuration (config)

Usage Guidelines

The `snmp ifmib ifindex persist` command does not override an interface-specific configuration. The interface-specific configuration of ifIndex persistence is configured with the `snmp ifindex persist` and `snmp ifindex clear` commands in interface configuration mode.

The `snmp ifmib ifindex persist` command enables ifIndex persistence for all interfaces on a routing device by using the ifDescr and ifIndex entries in the ifIndex table of interface MIB (IF-MIB).

IfIndex persistence means that the ifIndex values in the IF-MIB persist across reboots, allowing for the consistent identification of specific interfaces that use SNMP.

If ifIndex persistence was previously disabled for a specific interface by using the `no snmp ifindex persist` command, ifIndex persistence will remain disabled for that interface.

Examples

The following example shows how to enable ifIndex persistence for all interfaces:

```
Device(config)# snmp ifmib ifindex persist
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp ifindex clear</code></td>
<td>Clears any previously configured <code>snmp ifIndex</code> commands issued in interface configuration mode for a specific interface.</td>
</tr>
<tr>
<td><code>snmp ifindex persist</code></td>
<td>Enables ifIndex values that persist across reboots (ifIndex persistence) in the IF-MIB.</td>
</tr>
</tbody>
</table>
snmp-server enable traps

To enable the device to send Simple Network Management Protocol (SNMP) notifications for various traps or inform requests to the network management system (NMS), use the `snmp-server enable traps` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```plaintext
snmp-server enable traps [ auth-framework ] [ sec-violation ] | bridge | call-home | cluster | config | config-copy | config-ctid | copy-config | cpu | dot1x | energywise | entity | envmon | errdisable | event-manager | flash | fru-ctrl | license | mac-notification | port-security | power-ethernet | rep | snmp | stackwise | storm-control | stpx | syslog | transceiver | tty | vlan-membership | vlancreate | vlandelete | vstack | vtp ]
no snmp-server enable traps [ auth-framework ] [ sec-violation ] | bridge | call-home | cluster | config | config-copy | config-ctid | copy-config | cpu | dot1x | energywise | entity | envmon | errdisable | event-manager | flash | fru-ctrl | license | mac-notification | port-security | power-ethernet | rep | snmp | stackwise | storm-control | stpx | syslog | transceiver | tty | vlan-membership | vlancreate | vlandelete | vstack | vtp ]
```

Syntax Description

- `auth-framework` (Optional) Enables SNMP CISCO-AUTH-FRAMEWORK-MIB traps.
- `sec-violation` (Optional) Enables SNMP camSecurityViolationNotif notifications.
- `bridge` (Optional) Enables SNMP STP Bridge MIB traps.*
- `call-home` (Optional) Enables SNMP CISCO-CALLHOME-MIB traps.*
- `cluster` (Optional) Enables SNMP cluster traps.
- `config` (Optional) Enables SNMP configuration traps.
- `config-copy` (Optional) Enables SNMP configuration copy traps.
- `config-ctid` (Optional) Enables SNMP configuration CTID traps.
- `copy-config` (Optional) Enables SNMP copy-configuration traps.
- `cpu` (Optional) Enables CPU notification traps.*
- `dot1x` (Optional) Enables SNMP dot1x traps.*
- `energywise` (Optional) Enables SNMP energywise traps.*
- `entity` (Optional) Enables SNMP entity traps.
- `envmon` (Optional) Enables SNMP environmental monitor traps.*
- `errdisable` (Optional) Enables SNMP errdisable notification traps.*
- `event-manager` (Optional) Enables SNMP Embedded Event Manager traps.
- `flash` (Optional) Enables SNMP FLASH notification traps.*
fru-ctrl (Optional) Generates entity field-replaceable unit (FRU) control traps. In a device stack, this trap refers to the insertion or removal of a device in the stack.

license (Optional) Enables license traps.*

mac-notification (Optional) Enables SNMP MAC Notification traps.*

port-security (Optional) Enables SNMP port security traps.*

power-ethernet (Optional) Enables SNMP power Ethernet traps.*

rep (Optional) Enables SNMP Resilient Ethernet Protocol traps.

snmp (Optional) Enables SNMP traps.*

stackwise (Optional) Enables SNMP stackwise traps.*

storm-control (Optional) Enables SNMP storm-control trap parameters.*

stpx (Optional) Enables SNMP STPX MIB traps.*

syslog (Optional) Enables SNMP syslog traps.

transceiver (Optional) Enables SNMP transceiver traps.*

tty (Optional) Sends TCP connection traps. This is enabled by default.

vlan-membership (Optional) Enables SNMP VLAN membership traps.

vlancreate (Optional) Enables SNMP VLAN-created traps.

vlandelete (Optional) Enables SNMP VLAN-deleted traps.

vstack (Optional) Enables SNMP Smart Install traps.*

vtp (Optional) Enables VLAN Trunking Protocol (VTP) traps.

Command Default

The sending of SNMP traps is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The command options marked with an asterisk in the table above have subcommands. For more information on these subcommands, see the Related Commands section below.

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

When supported, use the `snmp-server enable traps` command to enable sending of traps or informs.
Though visible in the command-line help strings, the **fru-ctrl**, **insertion**, and **removal** keywords are not supported on the device. The **snmp-server enable informs** global configuration command is not supported. To enable the sending of SNMP inform notifications, use the **snmp-server enable traps** global configuration command combined with the **snmp-server host host-addr informs** global configuration command.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate **snmp-server enable traps** command for each trap type.

Examples

This example shows how to enable more than one type of SNMP trap:

```
Device(config)# snmp-server enable traps cluster
Device(config)# snmp-server enable traps config
Device(config)# snmp-server enable traps vtp
```
snmp-server enable traps bridge

To generate STP bridge MIB traps, use the `snmp-server enable traps bridge` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps bridge [newroot] [topologychange]
no snmp-server enable traps bridge [newroot] [topologychange]
```

Syntax Description

- `newroot` (Optional) Enables SNMP STP bridge MIB new root traps.
- `topologychange` (Optional) Enables SNMP STP bridge MIB topology change traps.

Command Default
The sending of bridge SNMP traps is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to send bridge new root traps to the NMS:

```
Device(config)# snmp-server enable traps bridge newroot
```
snmp-server enable traps bulkstat

To enable data-collection-MIB traps, use the `snmp-server enable traps bulkstat` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps bulkstat [collection | transfer]
no snmp-server enable traps bulkstat [collection | transfer]
```

Syntax Description

- `transfer` (Optional) Enables data-collection-MIB transfer traps.

Command Default
The sending of data-collection-MIB traps is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command.

If no trap types are specified, all trap types are sent.

Note
Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples
This example shows how to generate data-collection-MIB collection traps:

```
Device(config)# snmp-server enable traps bulkstat collection
```
snmp-server enable traps call-home

To enable SNMP CISCO-CALLHOME-MIB traps, use the `snmp-server enable traps call-home` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps call-home [message-send-fail | server-fail]
no snmp-server enable traps call-home [message-send-fail | server-fail]
```

Syntax Description

- **message-send-fail** (Optional) Enables SNMP message-send-fail traps.
- **server-fail** (Optional) Enables SNMP server-fail traps.

Command Default

The sending of SNMP CISCO-CALLHOME-MIB traps is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to generate SNMP message-send-fail traps:

```
Device(config)# snmp-server enable traps call-home message-send-fail
```
snmp-server enable traps cef

To enable SNMP Cisco Express Forwarding (CEF) traps, use the `snmp-server enable traps cef` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps cef [inconsistency | peer-fib-state-change | peer-state-change | resource-failure]
no snmp-server enable traps cef [inconsistency | peer-fib-state-change | peer-state-change | resource-failure]
```

Syntax Description

- `inconsistency` (Optional) Enables SNMP CEF Inconsistency traps.
- `peer-fib-state-change` (Optional) Enables SNMP CEF Peer FIB State change traps.
- `peer-state-change` (Optional) Enables SNMP CEF Peer state change traps.
- `resource-failure` (Optional) Enables SNMP CEF Resource Failure traps.

Command Default
The sending of SNMP CEF traps is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note
Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to generate SNMP CEF inconsistency traps:

```
Device(config)# snmp-server enable traps cef inconsistency
```
snmp-server enable traps cpu

To enable CPU notifications, use the `snmp-server enable traps cpu` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps cpu [threshold]
no snmp-server enable traps cpu [threshold]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th><code>threshold</code> (Optional) Enables CPU threshold notification.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>The sending of CPU notifications is disabled.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Global configuration</th>
</tr>
</thead>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to generate CPU threshold notifications:

```
Device(config)# snmp-server enable traps cpu threshold
```
snmp-server enable traps envmon

To enable SNMP environmental traps, use the `snmp-server enable traps envmon` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps envmon [fan] [shutdown] [status] [supply] [temperature]
no snmp-server enable traps envmon [fan] [shutdown] [status] [supply] [temperature]
```

Syntax Description

- **fan** (Optional) Enables fan traps.
- **shutdown** (Optional) Enables environmental monitor shutdown traps.
- **status** (Optional) Enables SNMP environmental status-change traps.
- **supply** (Optional) Enables environmental monitor power-supply traps.
- **temperature** (Optional) Enables environmental monitor temperature traps.

Command Default

The sending of environmental SNMP traps is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to generate fan traps:

```
Device(config)# snmp-server enable traps envmon fan
```
snmp-server enable traps errdisable

To enable SNMP notifications of error-disabling, use the `snmp-server enable traps errdisable` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps errdisable [notification-rate number-of-notifications]
no snmp-server enable traps errdisable [notification-rate number-of-notifications]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>notification-rate</code></td>
<td>(Optional) Specifies number of notifications per minute as the notification rate. Accepted values are from 0 to 10000.</td>
</tr>
<tr>
<td><code>number-of-notifications</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The sending of SNMP notifications of error-disabling is disabled.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Global configuration</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the host (NMS) that receives the traps by using the <code>snmp-server host</code> global configuration command. If no trap types are specified, all trap types are sent.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Informs are not supported in SNMPv1.</td>
<td></td>
</tr>
</tbody>
</table>

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

<table>
<thead>
<tr>
<th>Examples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>This example shows how to set the number SNMP notifications of error-disabling to 2:</td>
<td></td>
</tr>
</tbody>
</table>

```
Device(config)# snmp-server enable traps errdisable notification-rate 2
```
snmp-server enable traps flash

To enable SNMP flash notifications, use the `snmp-server enable traps flash` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps flash [insertion] [removal]
no snmp-server enable traps flash [insertion] [removal]
```

Syntax Description

- **insertion** (Optional) Enables SNMP flash insertion notifications.
- **removal** (Optional) Enables SNMP flash removal notifications.

Command Default
The sending of SNMP flash notifications is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to generate SNMP flash insertion notifications:

```
Device(config)# snmp-server enable traps flash insertion
```
snmp-server enable traps isis

To enable intermediate system-to-intermediate system (IS-IS) link-state routing protocol traps, use the **snmp-server enable traps isis** command in global configuration mode. Use the **no** form of this command to return to the default setting.

```
snmp-server enable traps isis [errors | state-change]
no snmp-server enable traps isis [errors | state-change]
```

Syntax Description

- **errors**
 (Optional) Enables IS-IS error traps.
- **state-change**
 (Optional) Enables IS-IS state change traps.

Command Default

The sending of IS-IS traps is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the **snmp-server host** global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate **snmp-server enable traps** command for each trap type.

Examples

This example shows how to generate IS-IS error traps:

```
Device(config)# snmp-server enable traps isis errors
```
snmp-server enable traps license

To enable license traps, use the `snmp-server enable traps license` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps license [deploy] [error] [usage]
no snmp-server enable traps license [deploy] [error] [usage]
```

Syntax Description
- `deploy` (Optional) Enables license deployment traps.
- `error` (Optional) Enables license error traps.
- `usage` (Optional) Enables license usage traps.

Command Default
The sending of license traps is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note
Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples
This example shows how to generate license deployment traps:

```
Device(config)# snmp-server enable traps license deploy
```
snmp-server enable traps mac-notification

To enable SNMP MAC notification traps, use the **snmp-server enable traps mac-notification** command in global configuration mode. Use the **no** form of this command to return to the default setting.

```
snmp-server enable traps mac-notification [change] [move] [threshold]
no snmp-server enable traps mac-notification [change] [move] [threshold]
```

Syntax Description

- **change** (Optional) Enables SNMP MAC change traps.
- **move** (Optional) Enables SNMP MAC move traps.
- **threshold** (Optional) Enables SNMP MAC threshold traps.

Command Default
The sending of SNMP MAC notification traps is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the **snmp-server host** global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate **snmp-server enable traps** command for each trap type.

Examples

This example shows how to generate SNMP MAC notification change traps:

```
Device(config)# snmp-server enable traps mac-notification change
```
snmp-server enable traps ospf

To enable SNMP Open Shortest Path First (OSPF) traps, use the `snmp-server enable traps ospf` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```plaintext
snmp-server enable traps ospf [cisco-specific | errors | lsa | rate-limit rate-limit-time
max-number-of-traps | retransmit | state-change]

no snmp-server enable traps ospf [cisco-specific | errors | lsa | rate-limit rate-limit-time
max-number-of-traps | retransmit | state-change]
```

Syntax Description

- **cisco-specific** (Optional) Enables Cisco-specific traps.
- **errors** (Optional) Enables error traps.
- **lsa** (Optional) Enables link-state advertisement (LSA) traps.
- **rate-limit** (Optional) Enables rate-limit traps.
- **rate-limit-time** (Optional) Specifies window of time in seconds for rate-limit traps. Accepted values are 2 to 60.
- **max-number-of-traps** (Optional) Specifies maximum number of rate-limit traps to be sent in window time.
- **retransmit** (Optional) Enables packet-retransmit traps.
- **state-change** (Optional) Enables state-change traps.

Command Default
The sending of OSPF SNMP traps is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note
Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to enable LSA traps:

```plaintext
Device(config)# snmp-server enable traps ospf lsa
```
snmp-server enable traps pim

To enable SNMP Protocol-Independent Multicast (PIM) traps, use the `snmp-server enable traps pim` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps pim [invalid-pim-message] [neighbor-change] [rp-mapping-change]
no snmp-server enable traps pim [invalid-pim-message] [neighbor-change] [rp-mapping-change]
```

Syntax Description

- `invalid-pim-message` (Optional) Enables invalid PIM message traps.
- `neighbor-change` (Optional) Enables PIM neighbor-change traps.
- `rp-mapping-change` (Optional) Enables rendezvous point (RP)-mapping change traps.

Command Default

The sending of PIM SNMP traps is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to enable invalid PIM message traps:

```
Device(config)# snmp-server enable traps pim invalid-pim-message
```
snmp-server enable traps port-security

To enable SNMP port security traps, use the snmp-server enable traps port-security command in global configuration mode. Use the no form of this command to return to the default setting.

```
snmp-server enable traps port-security [trap-rate value]
no snmp-server enable traps port-security [trap-rate value]
```

Syntax Description

- `trap-rate` (Optional) Sets the maximum number of port-security traps sent per second. The range is from 0 to 1000; the default is 0 (no limit imposed; a trap is sent at every occurrence).

Command Default
The sending of port security SNMP traps is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the snmp-server host global configuration command. If no trap types are specified, all trap types are sent.

Note
Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate snmp-server enable traps command for each trap type.

Examples

This example shows how to enable port-security traps at a rate of 200 per second:

```
Device(config)# snmp-server enable traps port-security trap-rate 200
```
snmp-server enable traps power-ethernet

To enable SNMP power-over-Ethernet (PoE) traps, use the `snmp-server enable traps power-ethernet` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps power-ethernet {group number | police}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group number</code></td>
<td>Enables inline power group-based traps for the specified group number. Accepted values are from 1 to 9.</td>
</tr>
<tr>
<td><code>police</code></td>
<td>Enables inline power policing traps.</td>
</tr>
</tbody>
</table>

Command Default

The sending of power-over-Ethernet SNMP traps is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to enable power-over-Ethernet traps for group 1:

```
Device(config)# snmp-server enable traps poower-over-ethernet group 1
```
snmp-server enable traps snmp

To enable SNMP traps, use the `snmp-server enable traps snmp` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps snmp [authentication] [coldstart] [linkdown] [linkup] [warmstart]
no snmp-server enable traps snmp [authentication] [coldstart] [linkdown] [linkup] [warmstart]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication</td>
<td>(Optional) Enables authentication traps.</td>
</tr>
<tr>
<td>coldstart</td>
<td>(Optional) Enables cold start traps.</td>
</tr>
<tr>
<td>linkdown</td>
<td>(Optional) Enables linkdown traps.</td>
</tr>
<tr>
<td>linkup</td>
<td>(Optional) Enables linkup traps.</td>
</tr>
<tr>
<td>warmstart</td>
<td>(Optional) Enables warmstart traps.</td>
</tr>
</tbody>
</table>

Command Default

The sending of SNMP traps is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to enable a warmstart SNMP trap:

```
Device(config)# snmp-server enable traps snmp warmstart
```
snmp-server enable traps storm-control

To enable SNMP storm-control trap parameters, use the `snmp-server enable traps storm-control` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps storm-control [trap-rate number-of-minutes]
no snmp-server enable traps storm-control [trap-rate]
```

Syntax Description

- `trap-rate` *(Optional)* Specifies the SNMP storm-control trap rate in minutes. Accepted values are from 0 to 1000.
- `number-of-minutes`

Command Default

The sending of SNMP storm-control trap parameters is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to set the SNMP storm-control trap rate to 10 traps per minute:

```
Device(config)# snmp-server enable traps storm-control trap-rate 10
```
snmp-server enable traps stpx

To enable SNMP STPXMIB traps, use the `snmp-server enable traps stpx` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps stpx [inconsistency] [loop-inconsistency] [root-inconsistency]
no snmp-server enable traps stpx [inconsistency] [loop-inconsistency] [root-inconsistency]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inconsistency</td>
<td>(Optional) Enables SNMP STPXMIB inconsistency update traps.</td>
</tr>
<tr>
<td>loop-inconsistency</td>
<td>(Optional) Enables SNMP STPXMIB loop inconsistency update traps.</td>
</tr>
<tr>
<td>root-inconsistency</td>
<td>(Optional) Enables SNMP STPXMIB root inconsistency update traps.</td>
</tr>
</tbody>
</table>

Command Default
The sending of SNMP STPXMIB traps is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note
Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples
This example shows how to generate SNMP STPXMIB inconsistency update traps:

```
Device(config)# snmp-server enable traps stpx inconsistency
```
snmp-server enable traps transceiver

To enable SNMP transceiver traps, use the `snmp-server enable traps transceiver` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
    snmp-server enable traps transceiver {all}
    no snmp-server enable traps transceiver {all}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>(Optional) Enables all SNMP transceiver traps.</td>
</tr>
</tbody>
</table>

Command Default

The sending of SNMP transceiver traps is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note

Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to set all SNMP transceiver traps:

```
Device(config)# snmp-server enable traps transceiver all
```
snmp-server enable traps vrfmib

To allow SNMP vrfmib traps, use the `snmp-server enable traps vrfmib` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps vrfmib [vnet-trunk-down | vnet-trunk-up | vrf-down | vrf-up]
no snmp-server enable traps vrfmib [vnet-trunk-down | vnet-trunk-up | vrf-down | vrf-up]
```

Syntax Description
- `vnet-trunk-down` (Optional) Enables vrfmib trunk down traps.
- `vnet-trunk-up` (Optional) Enables vrfmib trunk up traps.
- `vrf-down` (Optional) Enables vrfmib vrf down traps.
- `vrf-up` (Optional) Enables vrfmib vrf up traps.

Command Default
The sending of SNMP vrfmib traps is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note
Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples
This example shows how to generate vrfmib trunk down traps:

```
Device(config)# snmp-server enable traps vrfmib vnet-trunk-down
```
snmp-server enable traps vstack

To enable SNMP smart install traps, use the `snmp-server enable traps vstack` command in global configuration mode. Use the `no` form of this command to return to the default setting.

```
snmp-server enable traps vstack [addition] [failure] [lost] [operation]
no snmp-server enable traps vstack [addition] [failure] [lost] [operation]
```

Syntax Description

- `addition` (Optional) Enables client added traps.
- `failure` (Optional) Enables file upload and download failure traps.
- `lost` (Optional) Enables client lost trap.
- `operation` (Optional) Enables operation mode change traps.

Command Default
The sending of SNMP smart install traps is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Specify the host (NMS) that receives the traps by using the `snmp-server host` global configuration command. If no trap types are specified, all trap types are sent.

Note
Informs are not supported in SNMPv1.

To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

Examples

This example shows how to generate SNMP Smart Install client-added traps:

```
Device(config)# snmp-server enable traps vstack addition
```
snmp-server engineID

To configure a name for either the local or remote copy of SNMP, use the `snmp-server engineID` command in global configuration mode.

```
snmp-server engineID { local engineid-string | remote ip-address [udp-port port-number] engineid-string }
```

Syntax Description

- **local engineid-string**: Specifies a 24-character ID string with the name of the copy of SNMP. You need not specify the entire 24-character engine ID if it has trailing zeros. Specify only the portion of the engine ID up to the point where only zeros remain in the value.

- **remote ip-address**: Specifies the remote SNMP copy. Specify the `ip-address` of the device that contains the remote copy of SNMP.

- **udp-port port-number**: (Optional) Specifies the User Datagram Protocol (UDP) port on the remote device. The default is 162.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

None

Examples

The following example configures a local engine ID of 123400000000000000000000:

```
Device(config)# snmp-server engineID local 1234
```
snmp-server group

To configure a new Simple Network Management Protocol (SNMP) group, use the **snmp-server group** command in global configuration mode. To remove a specified SNMP group, use the **no** form of this command.

```
snmp-server group group-name {v1 | v2c | v3 {auth | noauth | priv}} [context context-name] [match {exact | prefix}] [read read-view] [write write-view] [notify notify-view] [access [ipv6 named-access-list] [{acl-number acl-name}]]

no snmp-server group group-name {v1 | v2c | v3 {auth | noauth | priv}} [context context-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group-name</td>
<td>Name of the group.</td>
</tr>
<tr>
<td>v1</td>
<td>Specifies that the group is using the SNMPv1 security model. SNMPv1 is the least secure of the possible SNMP security models.</td>
</tr>
<tr>
<td>v2c</td>
<td>Specifies that the group is using the SNMPv2c security model. The SNMPv2c security model allows informs to be transmitted and supports 64-character strings.</td>
</tr>
<tr>
<td>v3</td>
<td>Specifies that the group is using the SNMPv3 security model. SNMPv3 is the most secure of the supported security models. It allows you to explicitly configure authentication characteristics.</td>
</tr>
<tr>
<td>auth</td>
<td>Specifies authentication of a packet without encrypting it.</td>
</tr>
<tr>
<td>noauth</td>
<td>Specifies no authentication of a packet.</td>
</tr>
<tr>
<td>priv</td>
<td>Specifies authentication of a packet with encryption.</td>
</tr>
<tr>
<td>context</td>
<td>(Optional) Specifies the SNMP context to associate with this SNMP group and its views.</td>
</tr>
<tr>
<td>context-name</td>
<td>(Optional) Context name.</td>
</tr>
<tr>
<td>match</td>
<td>(Optional) Specifies an exact context match or matches only the context prefix.</td>
</tr>
<tr>
<td>exact</td>
<td>(Optional) Matches the exact context.</td>
</tr>
<tr>
<td>prefix</td>
<td>(Optional) Matches only the context prefix.</td>
</tr>
<tr>
<td>read</td>
<td>(Optional) Specifies a read view for the SNMP group. This view enables you to view only the contents of the agent.</td>
</tr>
<tr>
<td>read-view</td>
<td>(Optional) String of a maximum of 64 characters that is the name of the view. The default is that the read-view is assumed to be every object belonging to the Internet object identifier (OID) space (1.3.6.1), unless the read option is used to override this state.</td>
</tr>
<tr>
<td>write</td>
<td>(Optional) Specifies a write view for the SNMP group. This view enables you to enter data and configure the contents of the agent.</td>
</tr>
</tbody>
</table>

`snmp-server group`

<table>
<thead>
<tr>
<th>write-view</th>
<th>(Optional) String of a maximum of 64 characters that is the name of the view. The default is that nothing is defined for the write view (that is, the null OID). You must configure write access.</th>
</tr>
</thead>
<tbody>
<tr>
<td>notify</td>
<td>(Optional) Specifies a notify view for the SNMP group. This view enables you to specify a notify, inform, or trap.</td>
</tr>
<tr>
<td>notify-view</td>
<td>(Optional) String of a maximum of 64 characters that is the name of the view.</td>
</tr>
<tr>
<td></td>
<td>By default, nothing is defined for the notify view (that is, the null OID) until the <code>snmp-server host</code> command is configured. If a view is specified in the <code>snmp-server group</code> command, any notifications in that view that are generated will be sent to all users associated with the group (provided a SNMP server host configuration exists for the user).</td>
</tr>
<tr>
<td></td>
<td>Cisco recommends that you let the software autogenerate the notify view. See the “Configuring Notify Views” section in this document.</td>
</tr>
<tr>
<td>access</td>
<td>(Optional) Specifies a standard access control list (ACL) to associate with the group.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies an IPv6 named access list. If both IPv6 and IPv4 access lists are indicated, the IPv6 named access list must appear first in the list.</td>
</tr>
<tr>
<td>named-access-list</td>
<td>(Optional) Name of the IPv6 access list.</td>
</tr>
<tr>
<td>acl-number</td>
<td>(Optional) The acl-number argument is an integer from 1 to 99 that identifies a previously configured standard access list.</td>
</tr>
<tr>
<td>acl-name</td>
<td>(Optional) The acl-name argument is a string of a maximum of 64 characters that is the name of a previously configured standard access list.</td>
</tr>
</tbody>
</table>

Command Default

No SNMP server groups are configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.8.1a</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When a community string is configured internally, two groups with the name public are autogenerated, one for the v1 security model and the other for the v2c security model. Similarly, deleting a community string will delete a v1 group with the name public and a v2c group with the name public.

No default values exist for authentication or privacy algorithms when you configure the `snmp-server group` command. Also, no default passwords exist. For information about specifying a Message Digest 5 (MD5) password, see the documentation of the `snmp-server user` command.

Configuring Notify Views

The notify-view option is available for two reasons:

- If a group has a notify view that is set using SNMP, you may need to change the notify view.
• The `snmp-server host` command may have been configured before the `snmp-server group` command. In this case, you must either reconfigure the `snmp-server host` command, or specify the appropriate notify view.

Specifying a notify view when configuring an SNMP group is not recommended, for the following reasons:

• The `snmp-server host` command autogenerates a notify view for the user, and then adds it to the group associated with that user.

• Modifying the group’s notify view will affect all users associated with that group.

Instead of specifying the notify view for a group as part of the `snmp-server group` command, use the following commands in the order specified:

1. `snmp-server user`—Configures an SNMP user.
2. `snmp-server group`—Configures an SNMP group, without adding a notify view.
3. `snmp-server host`—Autogenerates the notify view by specifying the recipient of a trap operation.

SNMP Contexts

SNMP contexts provide VPN users with a secure way of accessing MIB data. When a VPN is associated with a context, that VPN’s specific MIB data exists in that context. Associating a VPN with a context enables service providers to manage networks with multiple VPNs. Creating and associating a context with a VPN enables a provider to prevent the users of one VPN from accessing information about users of other VPNs on the same networking device.

Use this command with the `context context-name` keyword and argument to associate a read, write, or notify SNMP view with an SNMP context.

Create an SNMP Group

The following example shows how to create the SNMP server group “public,” allowing read-only access for all objects to members of the standard named access list “lmnop”:

```
Device(config)# snmp-server group public v2c access lmnop
```

Remove an SNMP Server Group

The following example shows how to remove the SNMP server group “public” from the configuration:

```
Device(config)# no snmp-server group public v2c
```

Associate an SNMP Server Group with Specified Views

The following example shows SNMP context “A” associated with the views in SNMPv2c group “GROUP1”:

```
Device(config)# snmp-server context A
Device(config)# snmp mib community commA
```
Device(config)# snmp mib community-map commA context A target-list commAVpn
Device(config)# snmp-server group GROUP1 v2c context A read viewA write viewA notify viewB

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show snmp group</td>
<td>Displays the names of groups on the device and the security model, the status of the different views, and the storage type of each group.</td>
</tr>
<tr>
<td>snmp mib community-map</td>
<td>Associates a SNMP community with an SNMP context, engine ID, security name, or VPN target list.</td>
</tr>
<tr>
<td>snmp-server host</td>
<td>Specifies the recipient of a SNMP notification operation.</td>
</tr>
<tr>
<td>snmp-server user</td>
<td>Configures a new user to a SNMP group.</td>
</tr>
</tbody>
</table>
snmp-server host

To specify the recipient (host) of a Simple Network Management Protocol (SNMP) notification operation, use the `snmp-server host` global configuration command on the device. Use the `no` form of this command to remove the specified host.

```
snmp-server host (host-addr) [vrf vrf-instance] [informs | traps] [version {1 | 2c | 3} {auth | noauth | priv} ] [community-string [notification-type]]
no snmp-server host (host-addr) [vrf vrf-instance] [informs | traps] [version {1 | 2c | 3} {auth | noauth | priv} ] [community-string [notification-type]]
```

Syntax Description

- **host-addr**
 Name or Internet address of the host (the targeted recipient).

- **vrf vrf-instance**
 (Optional) Specifies the virtual private network (VPN) routing instance and name for this host.

- **informs | traps**
 (Optional) Sends SNMP traps or informs to this host.

- **version 1 | 2c | 3**
 (Optional) Specifies the version of the SNMP used to send the traps.
 - 1—SNMPv1. This option is not available with informs.
 - 2c—SNMPv2C.
 - 3—SNMPv3. One of the authorization keywords (see next table row) must follow the Version 3 keyword.

- **auth | noauth | priv**
 (Optional)—Enables Message Digest 5 (MD5) and Secure Hash Algorithm (SHA) packet authentication.
 - noauth (Default)—The noAuthNoPriv security level. This is the default if the auth | noauth | priv keyword choice is not specified.
 - priv (Optional)—Enables Data Encryption Standard (DES) packet encryption (also called privacy).

- **community-string**
 Password-like community string sent with the notification operation. Though you can set this string by using the `snmp-server host` command, we recommend that you define this string by using the `snmp-server community` global configuration command before using the `snmp-server host` command.

Note
The `@` symbol is used for delimiting the context information. Avoid using the `@` symbol as part of the SNMP community string when configuring this command.
notification-type (Optional) Type of notification to be sent to the host. If no type is specified, all notifications are sent. The notification type can be one or more of the these keywords:

- **auth-framework**—Sends SNMP CISCO-AUTH-FRAMEWORK-MIB traps.
- **bridge**—Sends SNMP Spanning Tree Protocol (STP) bridge MIB traps.
- **bulkstat**—Sends Data-Collection-MIB Collection notification traps.
- **call-home**—Sends SNMP CISCO-CALLHOME-MIB traps.
- **cef**—Sends SNMP CEF traps.
- **config**—Sends SNMP configuration traps.
- **config-copy**—Sends SNMP config-copy traps.
- **config-ctid**—Sends SNMP config-ctid traps.
- **copy-config**—Sends SNMP copy configuration traps.
- **cpu**—Sends CPU notification traps.
- **cpu threshold**—Sends CPU threshold notification traps.
- **entity**—Sends SNMP entity traps.
• **envmon**—Sends environmental monitor traps.
• **errdisable**—Sends SNMP errdisable notification traps.
• **event-manager**—Sends SNMP Embedded Event Manager traps.
• **flash**—Sends SNMP FLASH notifications.
• **flowmon**—Sends SNMP flowmon notification traps.
• **ipmulticast**—Sends SNMP IP multicast routing traps.
• **ipsla**—Sends SNMP IP SLA traps.
• **license**—Sends license traps.
• **local-auth**—Sends SNMP local auth traps.
• **mac-notification**—Sends SNMP MAC notification traps.
• **pim**—Sends SNMP Protocol-Independent Multicast (PIM) traps.
• **power-ethernet**—Sends SNMP power Ethernet traps.
• **snmp**—Sends SNMP-type traps.
• **storm-control**—Sends SNMP storm-control traps.
• **stpx**—Sends SNMP STP extended MIB traps.
• **syslog**—Sends SNMP syslog traps.
• **transceiver**—Sends SNMP transceiver traps.
• **tty**—Sends TCP connection traps.
• **vlan-membership**—Sends SNMP VLAN membership traps.
• **vlancreate**—Sends SNMP VLAN-created traps.
• **vlandelete**—Sends SNMP VLAN-deleted traps.
• **vrfmib**—Sends SNMP vrfmib traps.
• **vtp**—Sends SNMP VLAN Trunking Protocol (VTP) traps.
• **wireless**—Sends wireless traps.

Command Default

This command is disabled by default. No notifications are sent.

If you enter this command with no keywords, the default is to send all trap types to the host. No informs are sent to this host.

If no **version** keyword is present, the default is Version 1.

If Version 3 is selected and no authentication keyword is entered, the default is the **noauth** (noAuthNoPriv) security level.
Though visible in the command-line help strings, the fru-ctrl keyword is not supported.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

SNMP notifications can be sent as traps or inform requests. Traps are unreliable because the receiver does not send acknowledgments when it receives traps. The sender cannot determine if the traps were received. However, an SNMP entity that receives an inform request acknowledges the message with an SNMP response PDU. If the sender never receives the response, the inform request can be sent again, so that informs are more likely to reach their intended destinations.

However, informs consume more resources in the agent and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request must be held in memory until a response is received or the request times out. Traps are also sent only once, but an inform might be retried several times. The retries increase traffic and contribute to a higher overhead on the network.

If you do not enter an `snmp-server host` command, no notifications are sent. To configure the to send SNMP notifications, you must enter at least one `snmp-server host` command. If you enter the command with no keywords, all trap types are enabled for the host. To enable multiple hosts, you must enter a separate `snmp-server host` command for each host. You can specify multiple notification types in the command for each host.

If a local user is not associated with a remote host, the does not send informs for the auth (authNoPriv) and the priv (authPriv) authentication levels.

When multiple `snmp-server host` commands are given for the same host and kind of notification (trap or inform), each succeeding command overwrites the previous command. Only the last `snmp-server host` command is in effect. For example, if you enter an `snmp-server host inform` command for a host and then enter another `snmp-server host inform` command for the same host, the second command replaces the first.

The `snmp-server host` command is used with the `snmp-server enable traps` global configuration command. Use the `snmp-server enable traps` command to specify which SNMP notifications are sent globally. For a host to receive most notifications, at least one `snmp-server enable traps` command and the `snmp-server host` command for that host must be enabled. Some notification types cannot be controlled with the `snmp-server enable traps` command. For example, some notification types are always enabled. Other notification types are enabled by a different command.

The no `snmp-server host` command with no keywords disables traps, but not informs, to the host. To disable informs, use the no `snmp-server host informs` command.

Examples

This example shows how to configure a unique SNMP community string named comaccess for traps and prevent SNMP polling access with this string through access-list 10:

```
(config)# snmp-server community comaccess ro 10
(config)# snmp-server host 172.20.2.160 comaccess
(config)# access-list 10 deny any
```
This example shows how to send the SNMP traps to the host specified by the name myhost.cisco.com. The community string is defined as comaccess:

```
(config)# snmp-server enable traps
(config)# snmp-server host myhost.cisco.com comaccess snmp
```

This example shows how to enable the to send all traps to the host myhost.cisco.com by using the community string public:

```
(config)# snmp-server enable traps
(config)# snmp-server host myhost.cisco.com public
```

You can verify your settings by entering the `show running-config` privileged EXEC command.
To configure a new user to a Simple Network Management Protocol (SNMP) group, use the `snmp-server user` command in global configuration mode. To remove a user from an SNMP group, use the `no` form of this command.

```
snmp-server user username group-name [remote host [udp-port port] [vrf vrf-name]] {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password]} [access [ipv6 acl] [priv {des | 3des | aes {128 | 192 | 256} } privpassword] [acl-number acl-name]]
```

```
o snmp-server user username group-name [remote host [udp-port port] [vrf vrf-name]] {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password]} [access [ipv6 acl] [priv {des | 3des | aes {128 | 192 | 256} } privpassword] [acl-number acl-name]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>Name of the user on the host that connects to the agent.</td>
</tr>
<tr>
<td><code>group-name</code></td>
<td>Name of the group to which the user belongs.</td>
</tr>
<tr>
<td><code>remote</code></td>
<td>(Optional) Specifies a remote SNMP entity to which the user belongs, and the hostname or IPv6 address or IPv4 IP address of that entity. If both an IPv6 address and IPv4 IP address are being specified, the IPv6 host must be listed first.</td>
</tr>
<tr>
<td><code>host</code></td>
<td>(Optional) Name or IP address of the remote SNMP host.</td>
</tr>
<tr>
<td><code>udp-port</code></td>
<td>(Optional) Specifies the User Datagram Protocol (UDP) port number of the remote host.</td>
</tr>
<tr>
<td><code>port</code></td>
<td>(Optional) Integer value that identifies the UDP port. The default is 162.</td>
</tr>
<tr>
<td><code>vrf</code></td>
<td>(Optional) Specifies an instance of a routing table.</td>
</tr>
<tr>
<td><code>vrf-name</code></td>
<td>(Optional) Name of the Virtual Private Network (VPN) routing and forwarding (VRF) table to use for storing data.</td>
</tr>
<tr>
<td><code>v1</code></td>
<td>Specifies that SNMPv1 should be used.</td>
</tr>
<tr>
<td><code>v2c</code></td>
<td>Specifies that SNMPv2c should be used.</td>
</tr>
<tr>
<td><code>v3</code></td>
<td>Specifies that the SNMPv3 security model should be used. Allows the use of the <code>encrypted</code> keyword or <code>auth</code> keyword or both.</td>
</tr>
<tr>
<td><code>encrypted</code></td>
<td>(Optional) Specifies whether the password appears in encrypted format.</td>
</tr>
<tr>
<td><code>auth</code></td>
<td>(Optional) Specifies which authentication level should be used.</td>
</tr>
<tr>
<td><code>md5</code></td>
<td>(Optional) Specifies the HMAC-MD5-96 authentication level.</td>
</tr>
<tr>
<td><code>sha</code></td>
<td>(Optional) Specifies the HMAC-SHA-96 authentication level.</td>
</tr>
<tr>
<td><code>auth-password</code></td>
<td>(Optional) String (not to exceed 64 characters) that enables the agent to receive packets from the host.</td>
</tr>
<tr>
<td><code>access</code></td>
<td>(Optional) Specifies an Access Control List (ACL) to be associated with this SNMP user.</td>
</tr>
<tr>
<td><code>ipv6</code></td>
<td>(Optional) Specifies an IPv6 named access list to be associated with this SNMP user.</td>
</tr>
</tbody>
</table>
Command Default

See the table in the “Usage Guidelines” section for default behaviors for encryption, passwords, and access lists.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.8.1a</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To configure a remote user, specify the IP address or port number for the remote SNMP agent of the device where the user resides. Also, before you configure remote users for a particular agent, configure the SNMP engine ID, using the `snmp-server engineID` command with the `remote` keyword. The remote agent’s SNMP engine ID is needed when computing the authentication and privacy digests from the password. If the remote engine ID is not configured first, the configuration command will fail.

For the `privpassword` and `auth-password` arguments, the minimum length is one character; the recommended length is at least eight characters, and should include both letters and numbers. The recommended maximum length is 64 characters.

The table below describes the default user characteristics for encryption, passwords, and access lists.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nacl</code></td>
<td>(Optional) Name of the ACL. IPv4, IPv6, or both IPv4 and IPv6 access lists may be specified. If both are specified, the IPv6 named access list must appear first in the statement.</td>
</tr>
<tr>
<td><code>priv</code></td>
<td>(Optional) Specifies the use of the User-based Security Model (USM) for SNMP version 3 for SNMP message level security.</td>
</tr>
<tr>
<td><code>des</code></td>
<td>(Optional) Specifies the use of the 56-bit Digital Encryption Standard (DES) algorithm for encryption.</td>
</tr>
<tr>
<td><code>3des</code></td>
<td>(Optional) Specifies the use of the 168-bit 3DES algorithm for encryption.</td>
</tr>
<tr>
<td><code>aes</code></td>
<td>(Optional) Specifies the use of the Advanced Encryption Standard (AES) algorithm for encryption.</td>
</tr>
<tr>
<td><code>128</code></td>
<td>(Optional) Specifies the use of a 128-bit AES algorithm for encryption.</td>
</tr>
<tr>
<td><code>192</code></td>
<td>(Optional) Specifies the use of a 192-bit AES algorithm for encryption.</td>
</tr>
<tr>
<td><code>256</code></td>
<td>(Optional) Specifies the use of a 256-bit AES algorithm for encryption.</td>
</tr>
<tr>
<td><code>privpassword</code></td>
<td>(Optional) String (not to exceed 64 characters) that specifies the privacy user password.</td>
</tr>
<tr>
<td><code>acl-number</code></td>
<td>(Optional) Integer in the range from 1 to 99 that specifies a standard access list of IP addresses.</td>
</tr>
<tr>
<td><code>acl-name</code></td>
<td>(Optional) String (not to exceed 64 characters) that is the name of a standard access list of IP addresses.</td>
</tr>
</tbody>
</table>
Table 93: snmp-server user Default Descriptions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access lists</td>
<td>Access from all IP access lists is permitted.</td>
</tr>
<tr>
<td>Encryption</td>
<td>Not present by default. The <code>encrypted</code> keyword is used to specify that the passwords are message digest algorithm 5 (MD5) digests and not text passwords.</td>
</tr>
<tr>
<td>Passwords</td>
<td>Assumed to be text strings.</td>
</tr>
<tr>
<td>Remote users</td>
<td>All users are assumed to be local to this SNMP engine unless you specify they are remote with the <code>remote</code> keyword.</td>
</tr>
</tbody>
</table>

SNMP passwords are localized using the SNMP engine ID of the authoritative SNMP engine. For informs, the authoritative SNMP agent is the remote agent. You need to configure the remote agent’s SNMP engine ID in the SNMP database before you can send proxy requests or informs to it.

Note

Changing the engine ID after configuring the SNMP user, does not allow to remove the user. To remove the user, you need to first reconfigure the SNMP user.

Working with Passwords and Digests

No default values exist for authentication or privacy algorithms when you configure the command. Also, no default passwords exist. The minimum length for a password is one character, although Cisco recommends using at least eight characters for security. The recommended maximum length of a password is 64 characters. If you forget a password, you cannot recover it and will need to reconfigure the user. You can specify either a plain-text password or a localized MD5 digest.

If you have the localized MD5 or Secure Hash Algorithm (SHA) digest, you can specify that string instead of the plain-text password. The digest should be formatted as aa:bb:cc:dd where aa, bb, and cc are hexadecimal values. Also, the digest should be exactly 16 octets long.

Examples

The following example shows how to add the user abcd to the SNMP server group named public. In this example, no access list is specified for the user, so the standard named access list applied to the group applies to the user.

```
Device(config)# snmp-server user abcd public v2c
```

The following example shows how to add the user abcd to the SNMP server group named public. In this example, access rules from the standard named access list qrst apply to the user.

```
Device(config)# snmp-server user abcd public v2c access qrst
```

In the following example, the plain-text password cisco123 is configured for the user abcd in the SNMP server group named public:

```
Device(config)# snmp-server user abcd public v3 auth md5 cisco123
```
When you enter a `show running-config` command, a line for this user will be displayed. To learn if this user has been added to the configuration, use the `show snmp user` command.

Note

The `show running-config` command does not display any of the active SNMP users created in authPriv or authNoPriv mode, though it does display the users created in noAuthNoPriv mode. To display any active SNMPv3 users created in authPriv, authNoPrv, or noAuthNoPriv mode, use the `show snmp user` command.

If you have the localized MD5 or SHA digest, you can specify that string instead of the plain-text password. The digest should be formatted as aa:bb:cc:dd where aa, bb, and cc are hexadecimal values. Also, the digest should be exactly 16 octets long.

In the following example, the MD5 digest string is used instead of the plain-text password:

```
```

In the following example, the user abcd is removed from the SNMP server group named public:

```
Device(config)# no snmp-server user abcd public v2c
```

In the following example, the user abcd from the SNMP server group named public specifies the use of the 168-bit 3DES algorithm for privacy encryption with secure3des as the password.

```
Device(config)# snmp-server user abcd public priv v2c 3des secure3des
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server user</td>
<td>Displays information on each SNMP username in the group username table.</td>
<td></td>
</tr>
<tr>
<td>show snmp user</td>
<td>Displays the contents of the currently running configuration file or the configuration for a specific interface, or map class information.</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the identification of the local SNMP engine and all remote engines that have been configured on the device.</td>
<td></td>
</tr>
</tbody>
</table>
snmp-server view

To create or update a view entry, use the `snmp-server view` command in global configuration mode. To remove the specified Simple Network Management Protocol (SNMP) server view entry, use the `no` form of this command.

```plaintext
snmp-server view view-name oid-tree  {included | excluded}
no snmp-server view view-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>view-name</code></td>
<td>Label for the view record that you are updating or creating. The name is used to reference the record.</td>
</tr>
<tr>
<td><code>oid-tree</code></td>
<td>Object identifier of the ASN.1 subtree to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as <code>system</code>. Replace a single subidentifier with the asterisk () wildcard to specify a subtree family; for example 1.3..4.</td>
</tr>
<tr>
<td><code>included</code></td>
<td>Configures the OID (and subtree OIDs) specified in <code>oid-tree</code> argument to be included in the SNMP view.</td>
</tr>
<tr>
<td><code>excluded</code></td>
<td>Configures the OID (and subtree OIDs) specified in <code>oid-tree</code> argument to be explicitly excluded from the SNMP view.</td>
</tr>
</tbody>
</table>

Command Default

No view entry exists.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.8.1a</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Other SNMP commands require an SNMP view as an argument. You use this command to create a view to be used as arguments for other commands.

Two standard predefined views can be used when a view is required, instead of defining a view. One is *everything*, which indicates that the user can see all objects. The other is *restricted*, which indicates that the user can see three groups: system, snmpStats, and snmpParties. The predefined views are described in RFC 1447.

The first `snmp-server` command that you enter enables SNMP on your routing device.

Examples

The following example creates a view that includes all objects in the MIB-II subtree:

```plaintext
snmp-server view mib2 mib-2 included
```

The following example creates a view that includes all objects in the MIB-II system group and all objects in the Cisco enterprise MIB:
The following example creates a view that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interfaces group:

```
snmp-server view root_view system included
snmp-server view root_view cisco included
```

In the following example, the USM, VACM, and Community MIBs are explicitly included in the view “test” with all other MIBs under the root parent “internet”:

```
! -- include all MIBs under the parent tree "internet"
snmp-server view test internet included
! -- include snmpUsmMIB
snmp-server view test 1.3.6.1.6.3.15 included
! -- include snmpVacmMIB
snmp-server view test 1.3.6.1.6.3.16 included
! -- exclude snmpCommunityMIB
snmp-server view test 1.3.6.1.6.3.18 excluded
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server community</td>
<td>Sets up the community access string to permit access to the SNMP protocol.</td>
</tr>
<tr>
<td>snmp-server manager</td>
<td>Starts the SNMP manager process.</td>
</tr>
</tbody>
</table>
switchport mode access

To set the interface as a nontrunking nontagged single-VLAN Ethernet interface, use the `switchport mode access` command in template configuration mode. Use the `no` form of this command to return to the default setting.

```
switchport mode access
no switchport mode access
```

Syntax Description

- `switchport mode access` Sets the interface as a nontrunking nontagged single-VLAN Ethernet interface.

Command Default

An access port can carry traffic in one VLAN only. By default, an access port carries traffic for VLAN1.

Command Modes

Template configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to set a single-VLAN interface

```
Device(config-template)# switchport mode access
```
switchport voice vlan

To specify to forward all voice traffic through the specified VLAN, use the `switchport voice vlan` command in template configuration mode. Use the `no` form of this command to return to the default setting.

```
switchport voice vlan vlan_id
no switchport voice vlan
```

Syntax Description

switchport voice vlan vlan_id
Specifies to forward all voice traffic through the specified VLAN.

Command Default

You can specify a value from 1 to 4094.

Command Modes

Template configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to specify to forward all voice traffic through the specified VLAN.

```
Device(config-template)# switchport voice vlan 20
```
switchport voice vlan
Flexible NetFlow Commands

- cache, on page 747
- clear flow exporter, on page 749
- clear flow monitor, on page 750
- collect, on page 752
- collect counter, on page 753
- collect interface, on page 754
- collect timestamp absolute, on page 755
- collect transport tep flags, on page 756
- datalink flow monitor, on page 757
- debug flow exporter, on page 758
- debug flow monitor, on page 759
- debug flow record, on page 760
- debug sampler, on page 761
- description, on page 762
- destination, on page 763
- dscp, on page 764
- export-protocol netflow-v9, on page 765
- export-protocol netflow-v5, on page 766
- exporter, on page 767
- flow exporter, on page 768
- flow monitor, on page 769
- flow record, on page 770
- ip flow monitor, on page 771
- ipv6 flow monitor, on page 773
- match datalink dot1q priority, on page 775
- match datalink dot1q vlan, on page 776
- match datalink ethertype, on page 777
- match datalink mac, on page 778
- match datalink vlan, on page 779
- match flow cts, on page 780
- match flow direction, on page 781
- match interface, on page 782
- match ipv4, on page 783
• match ipv4 destination address, on page 784
• match ipv4 source address, on page 785
• match ipv4 ttl, on page 786
• match ipv6, on page 787
• match ipv6 destination address, on page 788
• match ipv6 hop-limit, on page 789
• match ipv6 source address, on page 790
• match transport, on page 791
• match transport icmp ipv4, on page 792
• match transport icmp ipv6, on page 793
• mode random 1 out-of, on page 794
• option, on page 795
• record, on page 797
• sampler, on page 798
• show flow exporter, on page 799
• show flow interface, on page 801
• show flow monitor, on page 803
• show flow record, on page 808
• show sampler, on page 809
• source, on page 811
• template data timeout, on page 813
• transport, on page 814
• ttl, on page 815
To configure a flow cache parameter for a flow monitor, use the `cache` command in flow monitor configuration mode. To remove a flow cache parameter for a flow monitor, use the `no` form of this command.

```
cache {timeout {active | inactive | update} seconds | type normal}
no cache {timeout {active | inactive | update} | type}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>Specifies the flow timeout.</td>
</tr>
<tr>
<td>active</td>
<td>Specifies the active flow timeout.</td>
</tr>
<tr>
<td>inactive</td>
<td>Specifies the inactive flow timeout.</td>
</tr>
<tr>
<td>update</td>
<td>Specifies the update timeout for a permanent flow cache.</td>
</tr>
<tr>
<td>seconds</td>
<td>The timeout value in seconds. The range is 30 to 604800 (7 days) for a normal flow cache. For a permanent flow cache the range is 1 to 604800 (7 days).</td>
</tr>
<tr>
<td>type</td>
<td>Specifies the type of the flow cache.</td>
</tr>
<tr>
<td>normal</td>
<td>Configures a normal cache type. The entries in the flow cache will be aged out according to the <code>timeout active</code> <code>seconds</code> and <code>timeout inactive</code> <code>seconds</code> settings. This is the default cache type.</td>
</tr>
</tbody>
</table>

Command Default

The default flow monitor flow cache parameters are used.

The following flow cache parameters for a flow monitor are enabled:

- Cache type: normal
- Active flow timeout: 1800 seconds

Command Modes

Flow monitor configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Each flow monitor has a cache that it uses to store all the flows it monitors. Each cache has various configurable elements, such as the time that a flow is allowed to remain in it. When a flow times out, it is removed from the cache and sent to any exporters that are configured for the corresponding flow monitor.

The `cache timeout active` command controls the aging behavior of the normal type of cache. If a flow has been active for a long time, it is usually desirable to age it out (starting a new flow for any subsequent packets in the flow). This age out process allows the monitoring application that is receiving the exports to remain up to date. By default, this timeout is 1800 seconds (30 minutes), but it can be adjusted according to system requirements. A larger value ensures that long-lived flows are accounted for in a single flow record; a smaller value results in a shorter delay between starting a new long-lived flow and exporting some data for it. When you change the active flow timeout, the new timeout value takes effect immediately.
The **cache timeout inactive** command also controls the aging behavior of the normal type of cache. If a flow has not seen any activity for a specified amount of time, that flow will be aged out. By default, this timeout is 15 seconds, but this value can be adjusted depending on the type of traffic expected. If a large number of short-lived flows is consuming many cache entries, reducing the inactive timeout can reduce this overhead. If a large number of flows frequently get aged out before they have finished collecting their data, increasing this timeout can result in better flow correlation. When you change the inactive flow timeout, the new timeout value takes effect immediately.

The **cache timeout update** command controls the periodic updates sent by the permanent type of cache. This behavior is similar to the active timeout, except that it does not result in the removal of the cache entry from the cache. By default, this timer value is 1800 seconds (30 minutes).

The **cache type normal** command specifies the normal cache type. This is the default cache type. The entries in the cache will be aged out according to the **timeout active** seconds and **timeout inactive** seconds settings. When a cache entry is aged out, it is removed from the cache and exported via any exporters configured for the monitor associated with the cache.

To return a cache to its default settings, use the **default cache** flow monitor configuration command.

Note

When a cache becomes full, new flows will not be monitored.

The following example shows how to configure the active timeout for the flow monitor cache:

```
Device(config)# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)# cache timeout active 4800
```

The following example shows how to configure the inactive timer for the flow monitor cache:

```
Device(config)# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)# cache timeout inactive 30
```

The following example shows how to configure the permanent cache update timeout:

```
Device(config)# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)# cache timeout update 5000
```

The following example shows how to configure a normal cache:

```
Device(config)# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)# cache type normal
```
clear flow exporter

To clear the statistics for a Flexible Netflow flow exporter, use the **clear flow exporter** command in privileged EXEC mode.

clear flow exporter **\[[[name] exporter-name] statistics

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>name</th>
<th>(Optional) Specifies the name of a flow exporter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>exporter-name</td>
<td>(Optional) Name of a flow exporter that was previously configured.</td>
<td></td>
</tr>
<tr>
<td>statistics</td>
<td>Clears the flow exporter statistics.</td>
<td></td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **clear flow exporter** command removes all statistics from the flow exporter. These statistics will not be exported and the data gathered in the cache will be lost.

You can view the flow exporter statistics by using the **show flow exporter statistics** privileged EXEC command.

Examples

The following example clears the statistics for all of the flow exporters configured on the device:

```
Device# clear flow exporter statistics
```

The following example clears the statistics for the flow exporter named FLOW-EXPORTER-1:

```
Device# clear flow exporter FLOW-EXPORTER-1 statistics
```
clear flow monitor

To clear a flow monitor cache or flow monitor statistics and to force the export of the data in the flow monitor cache, use the clear flow monitor command in privileged EXEC mode.

```
clear flow monitor [name] monitor-name [[cache] force-export | statistics]
```

Syntax Description

- **name**: Specifies the name of a flow monitor.
- **monitor-name**: Name of a flow monitor that was previously configured.
- **cache**: (Optional) Clears the flow monitor cache information.
- **force-export**: (Optional) Forces the export of the flow monitor cache statistics.
- **statistics**: (Optional) Clears the flow monitor statistics.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The clear flow monitor cache command removes all entries from the flow monitor cache. These entries will not be exported and the data gathered in the cache will be lost.

Note

The statistics for the cleared cache entries are maintained.

The clear flow monitor force-export command removes all entries from the flow monitor cache and exports them using all flow exporters assigned to the flow monitor. This action can result in a short-term increase in CPU usage. Use this command with caution.

The clear flow monitor statistics command clears the statistics for this flow monitor.

Note

The current entries statistic will not be cleared by the clear flow monitor statistics command because this is an indicator of how many entries are in the cache and the cache is not cleared with this command.

You can view the flow monitor statistics by using the show flow monitor statistics privileged EXEC command.

Examples

The following example clears the statistics and cache entries for the flow monitor named FLOW-MONITOR-1:

```
Device# clear flow monitor name FLOW-MONITOR-1
```

The following example clears the statistics and cache entries for the flow monitor named FLOW-MONITOR-1 and forces an export:
Device# clear flow monitor name FLOW-MONITOR-1 force-export

The following example clears the cache for the flow monitor named FLOW-MONITOR-1 and forces an export:
Device# clear flow monitor name FLOW-MONITOR-1 cache force-export

The following example clears the statistics for the flow monitor named FLOW-MONITOR-1:
Device# clear flow monitor name FLOW-MONITOR-1 statistics
collect

To configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record, use the `collect` command in flow record configuration mode.

```
collect {counter | interface | timestamp | transport}
```

Syntax Description

- **counter**: Configures the number of bytes or packets in a flow as a non-key field for a flow record. For more information, see `collect counter`.
- **interface**: Configures the input and output interface name as a non-key field for a flow record. For more information, see `collect interface`.
- **timestamp**: Configures the absolute time of the first seen or last seen packet in a flow as a non-key field for a flow record. For more information, see `collect timestamp absolute`.
- **transport**: Enables the collecting of transport TCP flags from a flow record. For more information, see `collect transport tcp flags`.

Command Default
Non-key fields are not configured for the flow monitor record.

Command Modes
Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Fuji 16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases, the values for non-key fields are taken from only the first packet in the flow.

The `collect` commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases the values for non-key fields are taken from only the first packet in the flow.

Note

Although it is visible in the command-line help string, the `flow username` keyword is not supported.

The following example configures the total number of bytes in the flows as a non-key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# collect counter bytes long
```
collect counter

To configure the number of bytes or packets in a flow as a non-key field for a flow record, use the `collect counter` command in flow record configuration mode. To disable the use of the number of bytes or packets in a flow (counters) as a non-key field for a flow record, use the `no` form of this command.

```
collect counter {bytes layer2 long | bytes long | packets long}
no collect counter {bytes layer2 long | bytes long | packets long}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes layer2 long</td>
<td>Configures the number of Layer 2 bytes seen in a flow as a non-key field, and enables collecting the total number of Layer 2 bytes from the flow using a 64-bit counter.</td>
</tr>
<tr>
<td>bytes long</td>
<td>Configures the number of bytes seen in a flow as a non-key field, and enables collecting the total number of bytes from the flow using a 64-bit counter.</td>
</tr>
<tr>
<td>packets long</td>
<td>Configures the number of packets seen in a flow as a non-key field and enables collecting the total number of packets from the flow using a 64-bit counter.</td>
</tr>
</tbody>
</table>

Command Default
The number of bytes or packets in a flow is not configured as a non-key field.

Command Modes
Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `collect counter bytes long` command configures a 64-bit counter for the number of bytes seen in a flow. The `collect counter packets long` command configures a 64-bit counter that will be incremented for each packet seen in the flow. It is unlikely that a 64-bit counter will ever restart at 0.

To return this command to its default settings, use the `no collect counter` or `default collect counter` flow record configuration command.

The following example configures the total number of bytes in the flows as a non-key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# collect counter bytes long
```

The following example configures the total number of packets from the flows as a non-key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# collect counter packets long
```
To configure the input and output interface name as a non-key field for a flow record, use the `collect interface` command in flow record configuration mode. To disable the use of the input and output interface as a non-key field for a flow record, use the `no` form of this command.

```
collect interface {input | output}
no collect interface {input | output}
```

Syntax Description
- `input` Configures the input interface name as a non-key field and enables collecting the input interface from the flows.
- `output` Configures the output interface name as a non-key field and enables collecting the output interface from the flows.

Command Default
The input and output interface names are not configured as a non-key field.

Command Modes
Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The Flexible NetFlow `collect` commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases, the values for non-key fields are taken from only the first packet in the flow.

To return this command to its default settings, use the `no collect interface` or `default collect interface` flow record configuration command.

The following example configures the output interface as a non-key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# collect interface output
```

The following example configures the input interface as a non-key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# collect interface input
```
collect timestamp absolute

To configure the absolute time of the first seen or last seen packet in a flow as a non-key field for a flow record, use the `collect timestamp absolute` command in flow record configuration mode. To disable the use of the first seen or last seen packet in a flow as a non-key field for a flow record, use the `no` form of this command.

```
collect timestamp absolute {first | last}
no collect timestamp absolute {first | last}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>Configures the absolute time of the first seen packet in a flow as a non-key field and enables collecting time stamps from the flows.</td>
</tr>
<tr>
<td>last</td>
<td>Configures the absolute time of the last seen packet in a flow as a non-key field and enables collecting time stamps from the flows.</td>
</tr>
</tbody>
</table>

Command Default
The absolute time field is not configured as a non-key field.

Command Modes
Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `collect` commands are used to configure non-key fields for the flow monitor record and to enable capturing the values in the fields for the flow created with the record. The values in non-key fields are added to flows to provide additional information about the traffic in the flows. A change in the value of a non-key field does not create a new flow. In most cases the values for non-key fields are taken from only the first packet in the flow.

The following example configures time stamps based on the absolute time of the first seen packet in a flow as a non-key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# collect timestamp absolute first
```

The following example configures time stamps based on the absolute time of the last seen packet in a flow as a non-key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# collect timestamp absolute last
```
collect transport tcp flags

To enable the collecting of transport TCP flags from a flow, use the **collect transport tcp flags** command in flow record configuration mode. To disable the collecting of transport TCP flags from the flow, use the **no** form of this command.

```
collect transport tcp flags
no collect transport tcp flags
```

Syntax Description

This command has no arguments or keywords.

Command Default

The transport layer fields are not configured as a non-key field.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The values of the transport layer fields are taken from all packets in the flow. You cannot specify which TCP flag to collect. You can only specify to collect transport TCP flags. All TCP flags will be collected with this command. The following transport TCP flags are collected:

- **ack**—TCP acknowledgement flag
- **cwr**—TCP congestion window reduced flag
- **ece**—TCP ECN echo flag
- **fin**—TCP finish flag
- **psh**—TCP push flag
- **rst**—TCP reset flag
- **syn**—TCP synchronize flag
- **urg**—TCP urgent flag

To return this command to its default settings, use the **no collect collect transport tcp flags** or default **collect collect transport tcp flags** flow record configuration command.

The following example collects the TCP flags from a flow:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# collect transport tcp flags
```
datalink flow monitor

To apply a Flexible NetFlow flow monitor to an interface, use the **datalink flow monitor** command in interface configuration mode. To disable a Flexible NetFlow flow monitor, use the **no** form of this command.

```
datalink flow monitor monitor-name {input | output | sampler sampler-name}
no datalink flow monitor monitor-name {input | output | sampler sampler-name}
```

Syntax Description

- **monitor-name**: Name of the flow monitor to apply to the interface.
- **sampler sampler-name**: Enables the specified flow sampler for the flow monitor.
- **input**: Monitors traffic that the switch receives on the interface.
- **output**: Monitors traffic that the switch sends on the interface.

Command Default

A flow monitor is not enabled.

Command Modes

Interface configuration

Command History

- **Release**: Cisco IOS XE Fuji 16.9.2
- **Modification**: This command was introduced.

Usage Guidelines

Before you apply a flow monitor to an interface with the **datalink flow monitor** command, you must have already created the flow monitor using the **flow monitor** global configuration command and the flow sampler using the **sampler** global configuration command.

To enable a flow sampler for the flow monitor, you must have already created the sampler.

Note

The **datalink flow monitor** command only monitors non-IPv4 and non-IPv6 traffic. To monitor IPv4 traffic, use the **ip flow monitor** command. To monitor IPv6 traffic, use the **ipv6 flow monitor** command.

This example shows how to enable Flexible NetFlow datalink monitoring on an interface:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# datalink flow monitor FLOW-MONITOR-1 sampler FLOW-SAMPLER-1 input
```
debug flow exporter

To enable debugging output for Flexible Netflow flow exporters, use the `debug flow exporter` command in privileged EXEC mode. To disable debugging output, use the `no` form of this command.

```
debug flow exporter [name exporter-name] [error | event | packets number]
no debug flow exporter [name exporter-name] [error | event | packets number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>name</code></td>
<td>(Optional) Specifies the name of a flow exporter.</td>
</tr>
<tr>
<td><code>exporter-name</code></td>
<td>(Optional) The name of a flow exporter that was previously configured.</td>
</tr>
<tr>
<td><code>error</code></td>
<td>(Optional) Enables debugging for flow exporter errors.</td>
</tr>
<tr>
<td><code>event</code></td>
<td>(Optional) Enables debugging for flow exporter events.</td>
</tr>
<tr>
<td><code>packets</code></td>
<td>(Optional) Enables packet-level debugging for flow exporters.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>(Optional) The number of packets to debug for packet-level debugging of flow exporters. The range is 1 to 65535.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example indicates that a flow exporter packet has been queued for process send:

```
Device# debug flow exporter
```
debug flow monitor

To enable debugging output for Flexible NetFlow flow monitors, use the `debug flow monitor` command in privileged EXEC mode. To disable debugging output, use the `no` form of this command.

```
debug flow monitor [{error | [name] monitor-name [{cache [error | error | packets packets}]}]
no debug flow monitor [{error | [name] monitor-name [{cache [error | error | packets packets}]}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>error</code></td>
<td>(Optional) Enables debugging for flow monitor errors for all flow monitors or for the specified flow monitor.</td>
</tr>
<tr>
<td><code>name</code></td>
<td>(Optional) Specifies the name of a flow monitor.</td>
</tr>
<tr>
<td><code>monitor-name</code></td>
<td>(Optional) Name of a flow monitor that was previously configured.</td>
</tr>
<tr>
<td><code>cache</code></td>
<td>(Optional) Enables debugging for the flow monitor cache.</td>
</tr>
<tr>
<td><code>cache error</code></td>
<td>(Optional) Enables debugging for flow monitor cache errors.</td>
</tr>
<tr>
<td><code>packets</code></td>
<td>(Optional) Enables packet-level debugging for flow monitors.</td>
</tr>
<tr>
<td><code>packets</code></td>
<td>(Optional) Number of packets to debug for packet-level debugging of flow monitors. The range is 1 to 65535.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

- **Release**
 - Cisco IOS XE Fuji 16.9.2 This command was introduced.

Examples

The following example shows that the cache for FLOW-MONITOR-1 was deleted:

```
Device# debug flow monitor FLOW-MONITOR-1 cache
May 21 21:53:02.839: FLOW MON: 'FLOW-MONITOR-1' deleted cache
```
debug flow record

To enable debugging output for Flexible NetFlow flow records, use the `debug flow record` command in privileged EXEC mode. To disable debugging output, use the `no` form of this command.

```
debug flow record [{[[name] record-name | options {sampler-table} | [{[detailed | error]}]}]
no debug flow record [{[[name] record-name | options {sampler-table} | [{[detailed | error]}]}]
```

Syntax Description
- `name` (Optional) Specifies the name of a flow record.
- `record-name` (Optional) Name of a user-defined flow record that was previously configured.
- `options` (Optional) Includes information on other flow record options.
- `sampler-table` (Optional) Includes information on the sampler tables.
- `detailed` (Optional) Displays detailed information.
- `error` (Optional) Displays errors only.

Command Modes
- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example enables debugging for the flow record:

```
Device# debug flow record FLOW-record-1
```
debug sampler

To enable debugging output for Flexible NetFlow samplers, use the `debug sampler` command in privileged EXEC mode. To disable debugging output, use the `no` form of this command.

```
debug sampler [{detailed | error | [name] sampler-name [{detailed | error | sampling samples}]]
no debug sampler [{detailed | error | [name] sampler-name [{detailed | error | sampling}]}]
```

Syntax Description
- `detailed` (Optional) Enables detailed debugging for sampler elements.
- `error` (Optional) Enables debugging for sampler errors.
- `name` (Optional) Specifies the name of a sampler.
- `sampler-name` (Optional) Name of a sampler that was previously configured.
- `sampling samples` (Optional) Enables debugging for sampling and specifies the number of samples to debug.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following sample output shows that the debug process has obtained the ID for the sampler named `SAMPLER-1`:

```
Device# debug sampler detailed
*May 28 04:14:30.883: Sampler: Sampler(SAMPLER-1: flow monitor FLOW-MONITOR-1 (ip,Et1/0,0)
get ID succeeded:1
*May 28 04:14:30.971: Sampler: Sampler(SAMPLER-1: flow monitor FLOW-MONITOR-1 (ip,Et0/0,0)
get ID succeeded:1
```
To configure a description for a flow monitor, flow exporter, or flow record, use the `description` command in the appropriate configuration mode. To remove a description, use the `no` form of this command.

```
description  description
no description  description
```

Syntax Description
- `description` Text string that describes the flow monitor, flow exporter, or flow record.

Command Default
The default description for a flow sampler, flow monitor, flow exporter, or flow record is "User defined."

Command Modes
The following command modes are supported:
- Flow exporter configuration
- Flow monitor configuration
- Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
To return this command to its default setting, use the `no description` or `default description` command in the appropriate configuration mode.

The following example configures a description for a flow monitor:
```
Device(config)# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)# description Monitors traffic to 172.16.0.1 255.255.0.0
```
destination

To configure an export destination for a flow exporter, use the destination command in flow exporter configuration mode. To remove an export destination for a flow exporter, use the no form of this command.

```
destination {hostname ip-address} vrf vrf-label
no destination {hostname ip-address} vrf vrf-label
```

Syntax Description

- `hostname` Hostname of the device to which you want to send the NetFlow information.
- `ip-address` IPv4 address of the workstation to which you want to send the NetFlow information.
- `vrf` (Optional) Specifies that the export data packets are to be sent to the named Virtual Private Network (VPN) routing and forwarding (VRF) instance for routing to the destination, instead of to the global routing table.
- `vrf-label` Name of the VRF instance.

Command Default

An export destination is not configured.

Command Modes

Flow exporter configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Each flow exporter can have only one destination address or hostname.

When you configure a hostname instead of the IP address for the device, the hostname is resolved immediately and the IPv4 address is stored in the running configuration. If the hostname-to-IP-address mapping that was used for the original Domain Name System (DNS) name resolution changes dynamically on the DNS server, the device does not detect this, and the exported data continues to be sent to the original IP address, resulting in a loss of data.

To return this command to its default setting, use the `no destination` or `default destination` command in flow exporter configuration mode.

The following example shows how to configure the networking device to export the Flexible NetFlow cache entry to a destination system:

```
Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# destination 10.0.0.4
```

The following example shows how to configure the networking device to export the Flexible NetFlow cache entry to a destination system using a VRF named VRF-1:

```
Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# destination 172.16.0.2 vrf VRF-1
```
To configure a differentiated services code point (DSCP) value for flow exporter datagrams, use the `dscp` command in flow exporter configuration mode. To remove a DSCP value for flow exporter datagrams, use the `no` form of this command.

```
dscp  dscp
no dscp  dscp
```

Syntax Description
- `dscp` DSCP to be used in the DSCP field in exported datagrams. The range is 0 to 63. The default is 0.

Command Default
The differentiated services code point (DSCP) value is 0.

Command Modes
Flow exporter configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
To return this command to its default setting, use the `no dscp` or `default dscp` flow exporter configuration command.

The following example sets 22 as the value of the DSCP field in exported datagrams:

```
Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# dscp 22
```
export-protocol netflow-v9

To configure NetFlow Version 9 export as the export protocol for a Flexible NetFlow exporter, use the export-protocol netflow-v9 command in flow exporter configuration mode.

export-protocol netflow-v9

Syntax Description
This command has no arguments or keywords.

Command Default
NetFlow Version 9 is enabled.

Command Modes
Flow exporter configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The device does not support NetFlow v5 export format, only NetFlow v9 export format is supported.

The following example configures NetFlow Version 9 export as the export protocol for a NetFlow exporter:

```
Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# export-protocol netflow-v9
```
export-protocol netflow-v5

To configure NetFlow Version 5 export as the export protocol for a Flexible NetFlow exporter, use the `export-protocol netflow-v5` command in flow exporter configuration mode.

Syntax Description

This command has no arguments or keywords.

Command Default

NetFlow Version 5 is enabled.

Command Modes

Flow exporter configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
exporter

To add a flow exporter for a flow monitor, use the exporter command in the appropriate configuration mode. To remove a flow exporter for a flow monitor, use the no form of this command.

`exporter exporter-name`
`no exporter exporter-name`

Syntax Description

- `exporter-name` Name of a flow exporter that was previously configured.

Command Default

An exporter is not configured.

Command Modes

Flow monitor configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must have already created a flow exporter by using the flow exporter command before you can apply the flow exporter to a flow monitor with the exporter command.

To return this command to its default settings, use the `no exporter` or `default exporter` flow monitor configuration command.

Examples

The following example configures an exporter for a flow monitor:

```
Device(config)# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)# exporter EXPORTER-1
```
flow exporter

To create a Flexible NetFlow flow exporter, or to modify an existing Flexible NetFlow flow exporter, and enter Flexible NetFlow flow exporter configuration mode, use the `flow exporter` command in global configuration mode. To remove a Flexible NetFlow flow exporter, use the `no` form of this command.

```
flow exporter exporter-name
no flow exporter exporter-name
```

Syntax Description
- `exporter-name` Name of the flow exporter that is being created or modified.

Command Default
Flexible NetFlow flow exporters are not present in the configuration.

Command Modes
Global configuration

Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Flow exporters export the data in the flow monitor cache to a remote system, such as a server running NetFlow collector, for analysis and storage. Flow exporters are created as separate entities in the configuration. Flow exporters are assigned to flow monitors to provide data export capability for the flow monitors. You can create several flow exporters and assign them to one or more flow monitors to provide several export destinations. You can create one flow exporter and apply it to several flow monitors.

Examples
The following example creates a flow exporter named FLOW-EXPORTER-1 and enters Flexible NetFlow flow exporter configuration mode:

```
Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)#
```
flow monitor

To create a flow monitor, or to modify an existing flow monitor, and enter flow monitor configuration mode, use the `flow monitor` command in global configuration mode. To remove a flow monitor, use the `no` form of this command.

```
flow monitor monitor-name
no flow monitor monitor-name
```

Syntax Description
- `monitor-name` Name of the flow monitor that is being created or modified.

Command Default
Flexible NetFlow flow monitors are not present in the configuration.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Flow monitors are the Flexible NetFlow component that is applied to interfaces to perform network traffic monitoring. Flow monitors consist of a flow record and a cache. You add the record to the flow monitor after you create the flow monitor. The flow monitor cache is automatically created at the time the flow monitor is applied to the first interface. Flow data is collected from the network traffic during the monitoring process based on the key and nonkey fields in the flow monitor's record and stored in the flow monitor cache.

Examples
The following example creates a flow monitor named FLOW-MONITOR-1 and enters flow monitor configuration mode:

```
Device(config)# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)#
```
flow record

To create a Flexible NetFlow flow record, or to modify an existing Flexible NetFlow flow record, and enter Flexible NetFlow flow record configuration mode, use the flow record command in global configuration mode. To remove a Flexible NetFlow record, use the no form of this command.

```
flow record record-name
no flow record record-name
```

Syntax Description
- `record-name` Name of the flow record that is being created or modified.

Command Default
A Flexible NetFlow flow record is not configured.

Command Modes
Global configuration

Command History
```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
```

Usage Guidelines
A flow record defines the keys that Flexible NetFlow uses to identify packets in the flow, as well as other fields of interest that Flexible NetFlow gathers for the flow. You can define a flow record with any combination of keys and fields of interest. The device supports a rich set of keys. A flow record also defines the types of counters gathered per flow. You can configure 64-bit packet or byte counters.

Examples
The following example creates a flow record named FLOW-RECORD-1, and enters Flexible NetFlow flow record configuration mode:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)#
```
ip flow monitor

To enable a Flexible NetFlow flow monitor for IPv4 traffic that the device is receiving or forwarding, use the `ip flow monitor` command in interface configuration mode. To disable a flow monitor, use the `no` form of this command.

```
ip flow monitor  monitor-name [sampler sampler-name]  {input | output}
no ip flow monitor  monitor-name [sampler sampler-name]  {input | output}
```

Syntax Description

- `monitor-name` Name of the flow monitor to apply to the interface.
- `sampler sampler-name` (Optional) Enables the specified flow sampler for the flow monitor.
- `input` Monitors IPv4 traffic that the device receives on the interface.
- `output` Monitors IPv4 traffic that the device transmits on the interface.

Command Default

A flow monitor is not enabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| Cisco IOS XE Fuji 16.9.2 | This command was introduced.

Usage Guidelines

Before you can apply a flow monitor to an interface with the `ip flow monitor` command, you must have already created the flow monitor using the `flow monitor` global configuration command.

When you add a sampler to a flow monitor, only packets that are selected by the named sampler will be entered into the cache to form flows. Each use of a sampler causes separate statistics to be stored for that usage.

You cannot add a sampler to a flow monitor after the flow monitor has been enabled on the interface. You must first remove the flow monitor from the interface and then enable the same flow monitor with a sampler.

Note

The statistics for each flow must be scaled to give the expected true usage. For example, with a 1 in 100 sampler it is expected that the packet and byte counters will have to be multiplied by 100.

The following example enables a flow monitor for monitoring input traffic:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip flow monitor FLOW-MONITOR-1 input
```

The following example enables the same flow monitor on the same interface for monitoring input and output traffic:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip flow monitor FLOW-MONITOR-1 input
Device(config-if)# ip flow monitor FLOW-MONITOR-1 output
```
The following example enables two different flow monitors on the same interface for monitoring input and output traffic:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip flow monitor FLOW-MONITOR-1 input
Device(config-if)# ip flow monitor FLOW-MONITOR-2 output
```

The following example enables the same flow monitor on two different interfaces for monitoring input and output traffic:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip flow monitor FLOW-MONITOR-1 input
Device(config-if)# exit
Device(config)# interface gigabitethernet2/0/3
Device(config-if)# ip flow monitor FLOW-MONITOR-1 output
```

The following example enables a flow monitor for monitoring input traffic, with a sampler to limit the input packets that are sampled:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip flow monitor FLOW-MONITOR-1 sampler SAMPLER-1 input
```

The following example shows what happens when you try to add a sampler to a flow monitor that has already been enabled on an interface without a sampler:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip flow monitor FLOW-MONITOR-1 sampler SAMPLER-2 input
% Flow Monitor: Flow Monitor 'FLOW-MONITOR-1' is already on in full mode and cannot be enabled with a sampler.
```

The following example shows how to remove a flow monitor from an interface so that it can be enabled with the sampler:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# no ip flow monitor FLOW-MONITOR-1 input
Device(config-if)# ip flow monitor FLOW-MONITOR-1 sampler SAMPLER-2 input
```
ipv6 flow monitor

To enable a flow monitor for IPv6 traffic that the device is receiving or forwarding, use the `ipv6 flow monitor` command in interface configuration mode. To disable a flow monitor, use the `no` form of this command.

```
ipv6 flow monitor  monitor-name [sampler sampler-name] {input | output}
no ipv6 flow monitor  monitor-name [sampler sampler-name] {input | output}
```

Syntax Description

- `monitor-name`: Name of the flow monitor to apply to the interface.
- `sampler sampler-name`: (Optional) Enables the specified flow sampler for the flow monitor.
- `input`: Monitors IPv6 traffic that the device receives on the interface.
- `output`: Monitors IPv6 traffic that the device transmits on the interface.

Command Default

A flow monitor is not enabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before you can apply a flow monitor to the interface with the `ipv6 flow monitor` command, you must have already created the flow monitor using the `flow monitor` global configuration command.

When you add a sampler to a flow monitor, only packets that are selected by the named sampler will be entered into the cache to form flows. Each use of a sampler causes separate statistics to be stored for that usage.

You cannot add a sampler to a flow monitor after the flow monitor has been enabled on the interface. You must first remove the flow monitor from the interface and then enable the same flow monitor with a sampler.

Note

The statistics for each flow must be scaled to give the expected true usage. For example, with a 1 in 100 sampler it is expected that the packet and byte counters will have to be multiplied by 100.

The following example enables a flow monitor for monitoring input traffic:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ipv6 flow monitor FLOW-MONITOR-1 input
```

The following example enables the same flow monitor on the same interface for monitoring input and output traffic:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ipv6 flow monitor FLOW-MONITOR-1 input
Device(config-if)# ipv6 flow monitor FLOW-MONITOR-1 output
```
The following example enables two different flow monitors on the same interface for monitoring input and output traffic:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ipv6 flow monitor FLOW-MONITOR-1 input
Device(config-if)# ipv6 flow monitor FLOW-MONITOR-2 output
```

The following example enables the same flow monitor on two different interfaces for monitoring input and output traffic:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ipv6 flow monitor FLOW-MONITOR-1 input
Device(config-if)# exit
Device(config)# interface gigabitethernet2/0/3
Device(config-if)# ipv6 flow monitor FLOW-MONITOR-1 output
```

The following example enables a flow monitor for monitoring input traffic, with a sampler to limit the input packets that are sampled:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ipv6 flow monitor FLOW-MONITOR-1 sampler SAMPLER-1 input
```

The following example shows what happens when you try to add a sampler to a flow monitor that has already been enabled on an interface without a sampler:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ipv6 flow monitor FLOW-MONITOR-1 sampler SAMPLER-2 input
% Flow Monitor: Flow Monitor 'FLOW-MONITOR-1' is already on in full mode and cannot be enabled with a sampler.
```

The following example shows how to remove a flow monitor from an interface so that it can be enabled with the sampler:

```
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# no ipv6 flow monitor FLOW-MONITOR-1 input
Device(config-if)# ipv6 flow monitor FLOW-MONITOR-1 sampler SAMPLER-2 input
```
match datalink dot1q priority

To configure the 802.1Q (dot1q) priority value as a key field for a flow record, use the `match datalink dot1q priority` command in flow record configuration mode. To disable the use of the priority as a key field for a flow record, use the `no` form of this command.

```
match datalink dot1q priority
no match datalink dot1q priority
```

Syntax Description

This command has no arguments or keywords.

Command Default

The priority field is not configured as a key field.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The observation point of the `match datalink dot1q priority` command is the interface to which the flow monitor that contains the flow record with the command is applied.

The following example configures the 802.1Q priority as a key field for a flow record:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match datalink dot1q priority
```
match datalink dot1q vlan

To configure the 802.1Q (dot1q) VLAN value as a key field for a flow record, use the `match datalink dot1q vlan` command in flow record configuration mode. To disable the use of the 802.1Q VLAN value as a key field for a flow record, use the `no` form of this command.

```
match datalink dot1q vlan {input | output}
no match datalink dot1q vlan {input | output}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>input</code></td>
<td>Configures the VLAN ID of traffic being received by the device as a key field.</td>
</tr>
<tr>
<td><code>output</code></td>
<td>Configures the VLAN ID of traffic being transmitted by the device as a key field.</td>
</tr>
</tbody>
</table>

Command Default

The 802.1Q VLAN ID is not configured as a key field.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The input and output keywords of the `match datalink dot1q vlan` command are used to specify the observation point that is used by the `match datalink dot1q vlan` command to create flows based on the unique 802.1q VLAN IDs in the network traffic.

The following example configures the 802.1Q VLAN ID of traffic being received by the device as a key field for a flow record:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match datalink dot1q vlan input
```
match datalink ethertype

To configure the EtherType of the packet as a key field for a flow record, use the **match datalink ethertype** command in flow record configuration mode. To disable the EtherType of the packet as a key field for a flow record, use the **no** form of this command.

match datalink ethertype

no match datalink ethertype

Syntax Description

This command has no arguments or keywords.

Command Default

The EtherType of the packet is not configured as a key field.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the **match** command.

When you configure the EtherType of the packet as a key field for a flow record using the **match datalink ethertype** command, the traffic flow that is created is based on the type of flow monitor that is assigned to the interface:

- When a datalink flow monitor is assigned to an interface using the **datalink flow monitor** interface configuration command, it creates unique flows for different Layer 2 protocols.

- When an IP flow monitor is assigned to an interface using the **ip flow monitor** interface configuration command, it creates unique flows for different IPv4 protocols.

- When an IPv6 flow monitor is assigned to an interface using the **ipv6 flow monitor** interface configuration command, it creates unique flows for different IPv6 protocols.

To return this command to its default settings, use the **no match datalink ethertype** or **default match datalink ethertype** flow record configuration command.

The following example configures the EtherType of the packet as a key field for a Flexible NetFlow flow record:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match datalink ethertype
```
match datalink mac

To configure the use of MAC addresses as a key field for a flow record, use the `match datalink mac` command in flow record configuration mode. To disable the use of MAC addresses as a key field for a flow record, use the `no` form of this command.

```plaintext
match datalink mac {destination address {input | output} | source address {input | output}}
no match datalink mac {destination address {input | output} | source address {input | output}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination address</td>
<td>Configures the use of the destination MAC address as a key field.</td>
</tr>
<tr>
<td>input</td>
<td>Specifies the MAC address of input packets.</td>
</tr>
<tr>
<td>output</td>
<td>Specifies the MAC address of output packets.</td>
</tr>
<tr>
<td>source address</td>
<td>Configures the use of the source MAC address as a key field.</td>
</tr>
</tbody>
</table>

Command Default

MAC addresses are not configured as a key field.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The `input` and `output` keywords are used to specify the observation point that is used by the `match datalink mac` command to create flows based on the unique MAC addressees in the network traffic.

Note

When a datalink flow monitor is assigned to an interface or VLAN record, it creates flows only for non-IPv6 or non-IPv4 traffic.

To return this command to its default settings, use the `no match datalink mac` or `default match datalink mac` flow record configuration command.

The following example configures the use of the source MAC addresses of packets that are transmitted by the device as a key field for a flow record:

```plaintext
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match datalink mac source address output
```

The following example configures the use of the destination MAC address of packets that are received by the device as a key field for a flow record:

```plaintext
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match datalink mac destination address input
```
match datalink vlan

To configure the VLAN ID as a key field for a flow record, use the `match datalink vlan` command in flow record configuration mode. To disable the use of the VLAN ID value as a key field for a flow record, use the `no` form of this command.

```
match datalink vlan {input | output}
no match datalink vlan {input | output}
```

Syntax Description

- `input` Configures the VLAN ID of traffic being received by the device as a key field.
- `output` Configures the VLAN ID of traffic being transmitted by the device as a key field.

Command Default
The VLAN ID is not configured as a key field.

Command Modes
Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The `input` and `output` keywords of the `match datalink vlan` command are used to specify the observation point that is used by the `match datalink vlan` command to create flows based on the unique VLAN IDs in the network traffic.

The following example configures the VLAN ID of traffic being received by the device as a key field for a flow record:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match datalink vlan input
```
match flow cts

To configure CTS source group tag and destination group tag for a flow record, use the `match flow cts` command in flow record configuration mode. To disable the group tag as key field for a flow record, use the `no` form of this command.

```plaintext
match flow cts {source | destination} group-tag
no match flow cts {source | destination} group-tag
```

Syntax Description
- `cts destination group-tag`: Configures the CTS destination field group as a key field.
- `cts source group-tag`: Configures the CTS source field group as a key field.

Command Default
The CTS destination or source field group, flow direction and the flow sampler ID are not configured as key fields.

Command Modes
Flexible NetFlow flow record configuration (config-flow-record)
Policy inline configuration (config-if-policy-inline)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>The command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The following example configures the source group-tag as a key field:

```plaintext
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match flow cts source group-tag
```
match flow direction

To configure the flow direction as key fields for a flow record, use the `match flow direction` command in flow record configuration mode. To disable the use of the flow direction as key fields for a flow record, use the `no` form of this command.

```
match flow direction
no match flow direction
```

Syntax Description

This command has no arguments or keywords.

Command Default

The flow direction is not configured as key fields.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The `match flow direction` command captures the direction of the flow as a key field. This feature is most useful when a single flow monitor is configured for input and output flows. It can be used to find and eliminate flows that are being monitored twice, once on input and once on output. This command can help to match up pairs of flows in the exported data when the two flows are flowing in opposite directions.

The following example configures the direction the flow was monitored in as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match flow direction
```
match interface

To configure the input and output interfaces as key fields for a flow record, use the `match interface` command in flow record configuration mode. To disable the use of the input and output interfaces as key fields for a flow record, use the `no` form of this command.

```
match interface {input | output}
no match interface {input | output}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>input</code> Configures the input interface as a key field.</td>
</tr>
<tr>
<td><code>output</code> Configures the output interface as a key field.</td>
</tr>
</tbody>
</table>

Command Default
The input and output interfaces are not configured as key fields.

Command Modes
Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The following example configures the input interface as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match interface input
```

The following example configures the output interface as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match interface output
```
match ipv4

To configure one or more of the IPv4 fields as a key field for a flow record, use the **match ipv4** command in flow record configuration mode. To disable the use of one or more of the IPv4 fields as a key field for a flow record, use the **no** form of this command.

match ipv4 \{destination address | protocol | source address | tos | ttl | version\}

no match ipv4 \{destination address | protocol | source address | tos | ttl | version\}

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination address</td>
<td>Configures the IPv4 destination address as a key field. For more information see match ipv4 destination address.</td>
</tr>
<tr>
<td>protocol</td>
<td>Configures the IPv4 protocol as a key field.</td>
</tr>
<tr>
<td>source address</td>
<td>Configures the IPv4 destination address as a key field. For more information see match ipv4 source address.</td>
</tr>
<tr>
<td>tos</td>
<td>Configures the IPv4 ToS as a key field.</td>
</tr>
<tr>
<td>ttl</td>
<td>Configures the IPv4 time-to-live (TTL) field as a key field for a flow record. For more information see match ipv4 ttl.</td>
</tr>
<tr>
<td>version</td>
<td>Configures the IP version from IPv4 header as a key field.</td>
</tr>
</tbody>
</table>

Command Default

The use of one or more of the IPv4 fields as a key field for a user-defined flow record is not enabled.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the **match** command.

The following example configures the IPv4 protocol as a key field:

```
Device(config) # flow record FLOW-RECORD-1
Device(config-flow-record) # match ipv4 protocol
```
match ipv4 destination address

To configure the IPv4 destination address as a key field for a flow record, use the `match ipv4 destination address` command in flow record configuration mode. To disable the IPv4 destination address as a key field for a flow record, use the `no` form of this command.

```
match ipv4 destination address
no match ipv4 destination address
```

Syntax Description

This command has no arguments or keywords.

Command Default

The IPv4 destination address is not configured as a key field.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

To return this command to its default settings, use the `no match ipv4 destination address` or `default match ipv4 destination address` flow record configuration command.

The following example configures the IPv4 destination address as a key field for a flow record:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match ipv4 destination address
```
match ipv4 source address

To configure the IPv4 source address as a key field for a flow record, use the **match ipv4 source address** command in flow record configuration mode. To disable the use of the IPv4 source address as a key field for a flow record, use the **no** form of this command.

Syntax Description
This command has no arguments or keywords.

Command Default
The IPv4 source address is not configured as a key field.

Command Modes
Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the **match** command.

To return this command to its default settings, use the **no match ipv4 source address** or **default match ipv4 source address** flow record configuration command.

The following example configures the IPv4 source address as a key field:

```bash
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match ipv4 source address
```
match ipv4 ttl

To configure the IPv4 time-to-live (TTL) field as a key field for a flow record, use the `match ipv4 ttl` command in flow record configuration mode. To disable the use of the IPv4 TTL field as a key field for a flow record, use the `no` form of this command.

```
match ipv4 ttl
no match ipv4 ttl
```

Syntax Description

This command has no arguments or keywords.

Command Default

The IPv4 time-to-live (TTL) field is not configured as a key field.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match ipv4 ttl` command.

The following example configures IPv4 TTL as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match ipv4 ttl
```
match ipv6

To configure one or more of the IPv6 fields as a key field for a flow record, use the `match ipv6` command in flow record configuration mode. To disable the use of one or more of the IPv6 fields as a key field for a flow record, use the `no` form of this command.

```
match ipv6 {destination address | hop-limit | protocol | source address | traffic-class | version}
no match ipv6 {destination address | hop-limit | protocol | source address | traffic-class | version}
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination address</td>
<td>Configures the IPv4 destination address as a key field. For more information see <code>match ipv6 destination address</code>.</td>
</tr>
<tr>
<td>hop-limit</td>
<td>Configures the IPv6 hop limit as a key field. For more information see <code>match ipv6 hop limit</code>.</td>
</tr>
<tr>
<td>protocol</td>
<td>Configures the IPv6 protocol as a key field.</td>
</tr>
<tr>
<td>source address</td>
<td>Configures the IPv4 destination address as a key field. For more information see <code>match ipv6 source address</code>.</td>
</tr>
<tr>
<td>traffic-class</td>
<td>Configures the IPv6 traffic class as a key field.</td>
</tr>
<tr>
<td>version</td>
<td>Configures the IPv6 version from IPv6 header as a key field.</td>
</tr>
</tbody>
</table>

Command Default

The IPv6 fields are not configured as a key field.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The following example configures the IPv6 protocol field as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match ipv6 protocol
```
match ipv6 destination address

To configure the IPv6 destination address as a key field for a flow record, use the **match ipv6 destination address** command in flow record configuration mode. To disable the IPv6 destination address as a key field for a flow record, use the **no** form of this command.

match ipv6 destination address

no match ipv6 destination address

Syntax Description

This command has no arguments or keywords.

Command Default

The IPv6 destination address is not configured as a key field.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the **match** command.

To return this command to its default settings, use the **no match ipv6 destination address** or **default match ipv6 destination address** flow record configuration command.

The following example configures the IPv6 destination address as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match ipv6 destination address
```
match ipv6 hop-limit

To configure the IPv6 hop limit as a key field for a flow record, use the `match ipv6 hop-limit` command in flow record configuration mode. To disable the use of a section of an IPv6 packet as a key field for a flow record, use the `no` form of this command.

```plaintext
match ipv6 hop-limit
no match ipv6 hop-limit
```

Syntax Description
This command has no arguments or keywords.

Command Default
The use of the IPv6 hop limit as a key field for a user-defined flow record is not enabled by default.

Command Modes
Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
A flow record requires at least one field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The following example configures the hop limit of the packets in the flow as a key field:

```plaintext
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match ipv6 hop-limit
```
match ipv6 source address

To configure the IPv6 source address as a key field for a flow record, use the `match ipv6 source address` command in flow record configuration mode. To disable the use of the IPv6 source address as a key field for a flow record, use the `no` form of this command.

Syntax Description

This command has no arguments or keywords.

Command Default

The IPv6 source address is not configured as a key field.

Command Modes

Flow record configuration

Command History

- **Release**
 - Cisco IOS XE Fuji 16.9.2 This command was introduced.

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

To return this command to its default settings, use the `no match ipv6 source address` or `default match ipv6 source address` flow record configuration command.

The following example configures an IPv6 source address as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match ipv6 source address
```
match transport

To configure one or more of the transport fields as a key field for a flow record, use the `match transport` command in flow record configuration mode. To disable the use of one or more of the transport fields as a key field for a flow record, use the `no` form of this command.

```
match transport {destination-port | icmp ipv4 | icmp ipv6 | igmp type | source-port}
no match transport {destination-port | icmp ipv4 | icmp ipv6 | igmp type | source-port}
```

Syntax Description

- `destination-port` Configures the transport destination port as a key field.
- `icmp ipv4` Configures the ICMP IPv4 type field and the code field as key fields. For more information see, `match transport icmp ipv4`, on page 792.
- `icmp ipv6` Configures the ICMP IPv6 type field and the code field as key fields. For more information see, `match transport icmp ipv6`, on page 793.
- `igmp type` Configures time stamps based on the system uptime as a key field.
- `source-port` Configures the transport source port as a key field.

Command Default

The transport fields are not configured as a key field.

Command Modes

Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The following example configures the destination port as a key field:

```
(config)# flow record FLOW-RECORD-1
(config-flow-record)# match transport destination-port
```

The following example configures the source port as a key field:

```
(config)# flow record FLOW-RECORD-1
(config-flow-record)# match transport source-port
```
match transport icmp ipv4

To configure the ICMP IPv4 type field and the code field as key fields for a flow record, use the `match transport icmp ipv4` command in flow record configuration mode. To disable the use of the ICMP IPv4 type field and code field as key fields for a flow record, use the `no` form of this command.

```
mmatch transport icmp ipv4 {code | type}
nomatch transport icmp ipv4 {code | type}
```

Syntax Description
- **code**: Configures the IPv4 ICMP code as a key field.
- **type**: Configures the IPv4 ICMP type as a key field.

Command Default
The ICMP IPv4 type field and the code field are not configured as key fields.

Command Modes
Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The following example configures the IPv4 ICMP code field as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match transport icmp ipv4 code
```

The following example configures the IPv4 ICMP type field as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match transport icmp ipv4 type
```
match transport icmp ipv6

To configure the ICMP IPv6 type field and the code field as key fields for a flow record, use the `match transport icmp ipv6` command in flow record configuration mode. To disable the use of the ICMP IPv6 type field and code field as key fields for a flow record, use the `no` form of this command.

```
match transport icmp ipv6 {code | type}
no match transport icmp ipv6 {code | type}
```

Syntax Description

- `code` Configures the IPv6 ICMP code as a key field.
- `type` Configures the IPv6 ICMP type as a key field.

Command Default
The ICMP IPv6 type field and the code field are not configured as key fields.

Command Modes
Flow record configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A flow record requires at least one key field before it can be used in a flow monitor. The key fields distinguish flows, with each flow having a unique set of values for the key fields. The key fields are defined using the `match` command.

The following example configures the IPv6 ICMP code field as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match transport icmp ipv6 code
```

The following example configures the IPv6 ICMP type field as a key field:

```
Device(config)# flow record FLOW-RECORD-1
Device(config-flow-record)# match transport icmp ipv6 type
```
mode random 1 out-of

To enable random sampling and to specify the packet interval for a Flexible NetFlow sampler, use the `mode random 1 out-of` command in sampler configuration mode. To remove the packet interval information for a Flexible NetFlow sampler, use the `no` form of this command.

```
mode random 1 out-of window-size
no mode
```

Syntax Description

- `window-size` Specifies the window size from which to select packets. The range is 2 to 1024.

Command Default

The mode and the packet interval for a sampler are not configured.

Command Modes

Sampler configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A total of four unique samplers are supported on the device. Packets are chosen in a manner that should eliminate any bias from traffic patterns and counter any attempt by users to avoid monitoring.

Note

The `deterministic` keyword is not supported, even though it is visible in the command-line help string.

Examples

The following example enables random sampling with a window size of 1000:

```
Device(config)# sampler SAMPLER-1
Device(config-sampler)# mode random 1 out-of 1000
```
option

To configure optional data parameters for a flow exporter for Flexible NetFlow, use the `option` command in flow exporter configuration mode. To remove optional data parameters for a flow exporter, use the `no` form of this command.

```
option {exporter-stats | interface-table | sampler-table} [{timeout seconds}]
no option {exporter-stats | interface-table | sampler-table}
```

Syntax Description

- `exporter-stats`: Configures the exporter statistics option for flow exporters.
- `interface-table`: Configures the interface table option for flow exporters.
- `sampler-table`: Configures the export sampler table option for flow exporters.
- `timeout seconds`: (Optional) Configures the option resend time in seconds for flow exporters. The range is 1 to 86400. The default is 600.

Command Default
The timeout is 600 seconds. All other optional data parameters are not configured.

Command Modes
Flow exporter configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `option exporter-stats` command causes the periodic sending of the exporter statistics, including the number of records, bytes, and packets sent. This command allows the collector to estimate packet loss for the export records it receives. The optional timeout alters the frequency at which the reports are sent.

The `option interface-table` command causes the periodic sending of an options table, which allows the collector to map the interface SNMP indexes provided in the flow records to interface names. The optional timeout can alter the frequency at which the reports are sent.

The `option sampler-table` command causes the periodic sending of an options table, which details the configuration of each sampler and allows the collector to map the sampler ID provided in any flow record to a configuration that it can use to scale up the flow statistics. The optional timeout can alter the frequency at which the reports are sent.

To return this command to its default settings, use the `no option` or `default option` flow exporter configuration command.

The following example shows how to enable the periodic sending of the sampler option table, which allows the collector to map the sampler ID to the sampler type and rate:

```
Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# option sampler-table
```

The following example shows how to enable the periodic sending of the exporter statistics, including the number of records, bytes, and packets sent:
The following example shows how to enable the periodic sending of an options table, which allows the collector to map the interface SNMP indexes provided in the flow records to interface names:

```
Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# option exporter-stats

Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# option interface-table
```
record

To add a flow record for a Flexible NetFlow flow monitor, use the `record` command in flow monitor configuration mode. To remove a flow record for a Flexible NetFlow flow monitor, use the `no` form of this command.

```
record record-name
no record
```

Syntax Description
- `record-name` Name of a user-defined flow record that was previously configured.

Command Default
A flow record is not configured.

Command Modes
Flow monitor configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Each flow monitor requires a record to define the contents and layout of its cache entries. The flow monitor can use one of the wide range of predefined record formats, or advanced users may create their own record formats.

Note
You must use the `no ip flow monitor` command to remove a flow monitor from all of the interfaces to which you have applied it before you can modify the parameters for the `record` command for the flow monitor.

Examples
The following example configures the flow monitor to use FLOW-RECORD-1:

```
Device(config)# flow monitor FLOW-MONITOR-1
Device(config-flow-monitor)# record FLOW-RECORD-1
```
sampler

To create a Flexible Netflow flow sampler, or to modify an existing Flexible Netflow flow sampler, and to enter Flexible Netflow sampler configuration mode, use the `sampler` command in global configuration mode. To remove a sampler, use the `no` form of this command.

```
sampler  sampler-name
no sampler  sampler-name
```

Syntax Description

- `sampler-name` Name of the flow sampler that is being created or modified.

Command Default

Flexible Netflow flow samplers are not configured.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Flow samplers are used to reduce the load placed by Flexible Netflow on the networking device to monitor traffic by limiting the number of packets that are analyzed. You configure a rate of sampling that is 1 out of a range of 2-1024 packets. Flow samplers are applied to interfaces in conjunction with a flow monitor to implement sampled Flexible Netflow.

To enable flow sampling, you configure the record that you want to use for traffic analysis and assign it to a flow monitor. When you apply a flow monitor with a sampler to an interface, the sampled packets are analyzed at the rate specified by the sampler and compared with the flow record associated with the flow monitor. If the analyzed packets meet the criteria specified by the flow record, they are added to the flow monitor cache.

Examples

The following example creates a flow sampler name SAMPLER-1:

```
Device(config)# sampler SAMPLER-1
Device(config-sampler)#
```
show flow exporter

To display flow exporter status and statistics, use the `show flow exporter` command in privileged EXEC mode.

```
show flow exporter [{broker [{detail | picture}] | export-ids netflow-v9 | [name] exporter-name [{statistics | templates}] | statistics | templates}]
```

Syntax Description

- **broker** (Optional) Displays information about the state of the broker for the Flexible NetFlow flow exporter.
- **detail** (Optional) Displays detailed information about the flow exporter broker.
- **picture** (Optional) Displays a picture of the broker state.
- **export-ids netflow-v9** (Optional) Displays the NetFlow Version 9 export fields that can be exported and their IDs.
- **name** (Optional) Specifies the name of a flow exporter.
- **exporter-name** (Optional) Name of a flow exporter that was previously configured.
- **statistics** (Optional) Displays statistics for all flow exporters or for the specified flow exporter.
- **templates** (Optional) Displays template information for all flow exporters or for the specified flow exporter.

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example displays the status and statistics for all of the flow exporters configured on a device:

```
Device# show flow exporter
Flow Exporter FLOW-EXPORTER-1:
  Description: Exports to the datacenter
  Export protocol: NetFlow Version 9
  Transport Configuration:
    Destination IP address: 192.168.0.1
    Source IP address: 192.168.0.2
    Transport Protocol: UDP
    Destination Port: 9995
    Source Port: 55864
    DSCP: 0x0
    TTL: 255
    Output Features: Used
```

This table describes the significant fields shown in the display:
Table 94: show flow exporter Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Exporter</td>
<td>The name of the flow exporter that you configured.</td>
</tr>
<tr>
<td>Description</td>
<td>The description that you configured for the exporter, or the default description User defined.</td>
</tr>
<tr>
<td>Transport Configuration</td>
<td>The transport configuration fields for this exporter.</td>
</tr>
<tr>
<td>Destination IP address</td>
<td>The IP address of the destination host.</td>
</tr>
<tr>
<td>Source IP address</td>
<td>The source IP address used by the exported packets.</td>
</tr>
<tr>
<td>Transport Protocol</td>
<td>The transport layer protocol used by the exported packets.</td>
</tr>
<tr>
<td>Destination Port</td>
<td>The destination UDP port to which the exported packets are sent.</td>
</tr>
<tr>
<td>Source Port</td>
<td>The source UDP port from which the exported packets are sent.</td>
</tr>
<tr>
<td>DSCP</td>
<td>The differentiated services code point (DSCP) value.</td>
</tr>
<tr>
<td>TTL</td>
<td>The time-to-live value.</td>
</tr>
<tr>
<td>Output Features</td>
<td>Specifies whether the output-features command, which causes the output features to be run on Flexible NetFlow export packets, has been used or not.</td>
</tr>
</tbody>
</table>

The following example displays the status and statistics for all of the flow exporters configured on a device:

```
Device# show flow exporter name FLOW-EXPORTER-1 statistics
Flow Exporter FLOW-EXPORTER-1:
  Packet send statistics (last cleared 2w6d ago):
    Successfully sent: 0 (0 bytes)
```
show flow interface

To display the Flexible Netflow configuration and status for an interface, use the show flow interface command in privileged EXEC mode.

```
show flow interface [type number]
```

Syntax Description
- `type` (Optional) The type of interface on which you want to display Flexible Netflow accounting configuration information.
- `number` (Optional) The number of the interface on which you want to display Flexible Netflow accounting configuration information.

Command Modes
- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example displays the Flexible Netflow accounting configuration on Ethernet interfaces 0/0 and 0/1:

```
Device# show flow interface gigabitethernet1/0/1

Interface Ethernet1/0
monitor: FLOW-MONITOR-1
direction: Output
traffic(ip): on

Device# show flow interface gigabitethernet1/0/2

Interface Ethernet0/0
monitor: FLOW-MONITOR-1
direction: Input
traffic(ip): sampler SAMPLER-2#
```

The table below describes the significant fields shown in the display.

Table 95: show flow interface Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface to which the information applies.</td>
</tr>
<tr>
<td>monitor</td>
<td>The name of the flow monitor that is configured on the interface.</td>
</tr>
<tr>
<td>direction</td>
<td>The direction of traffic that is being monitored by the flow monitor.</td>
</tr>
<tr>
<td></td>
<td>The possible values are:</td>
</tr>
<tr>
<td></td>
<td>• Input—Traffic is being received by the interface.</td>
</tr>
<tr>
<td></td>
<td>• Output—Traffic is being transmitted by the interface.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>traffic(ip)</td>
<td>Indicates if the flow monitor is in normal mode or sampler mode.</td>
</tr>
<tr>
<td></td>
<td>The possible values are:</td>
</tr>
<tr>
<td></td>
<td>• on—The flow monitor is in normal mode.</td>
</tr>
<tr>
<td></td>
<td>• sampler—The flow monitor is in sampler mode (the name of the sampler will be included in the display).</td>
</tr>
</tbody>
</table>
show flow monitor

To display the status and statistics for a Flexible NetFlow flow monitor, use the `show flow monitor` command in privileged EXEC mode.

```
show flow monitor 
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>broker</td>
<td>(Optional) Displays information about the state of the broker for the flow monitor</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed information about the flow monitor broker.</td>
</tr>
<tr>
<td>picture</td>
<td>(Optional) Displays a picture of the broker state.</td>
</tr>
<tr>
<td>name</td>
<td>(Optional) Specifies the name of a flow monitor.</td>
</tr>
<tr>
<td>monitor-name</td>
<td>(Optional) Name of a flow monitor that was previously configured.</td>
</tr>
<tr>
<td>cache</td>
<td>(Optional) Displays the contents of the cache for the flow monitor.</td>
</tr>
<tr>
<td>format</td>
<td>(Optional) Specifies the use of one of the format options for formatting the display output.</td>
</tr>
<tr>
<td>csv</td>
<td>(Optional) Displays the flow monitor cache contents in comma-separated variables (CSV) format.</td>
</tr>
<tr>
<td>record</td>
<td>(Optional) Displays the flow monitor cache contents in record format.</td>
</tr>
<tr>
<td>table</td>
<td>(Optional) Displays the flow monitor cache contents in table format.</td>
</tr>
<tr>
<td>provisioning</td>
<td>(Optional) Displays the flow monitor provisioning information.</td>
</tr>
<tr>
<td>statistics</td>
<td>(Optional) Displays the statistics for the flow monitor.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `cache` keyword uses the record format by default. The uppercase field names in the display output of the `show flow monitor monitor-name cache` command are key fields that Flexible NetFlow uses to differentiate flows. The lowercase field names in the display output of the `show flow monitor monitor-name cache` command are nonkey fields from which Flexible NetFlow collects values as additional data for the cache.

Examples

The following example displays the status for a flow monitor:

```
Device# show flow monitor FLOW-MONITOR-1
Flow Monitor FLOW-MONITOR-1:
    Description:    Used for basic traffic analysis
```
Flow Record: flow-record-1
Flow Exporter: flow-exporter-1
flow-exporter-2
Cache:
Type: normal
Status: allocated
Size: 4096 entries / 311316 bytes
Inactive Timeout: 15 secs
Active Timeout: 1800 secs
Update Timeout: 1800 secs

This table describes the significant fields shown in the display.

Table 96: show flow monitor monitor-name Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Monitor</td>
<td>Name of the flow monitor that you configured.</td>
</tr>
<tr>
<td>Description</td>
<td>Description that you configured or the monitor, or the default description User defined.</td>
</tr>
<tr>
<td>Flow Record</td>
<td>Flow record assigned to the flow monitor.</td>
</tr>
<tr>
<td>Flow Exporter</td>
<td>Exporters that are assigned to the flow monitor.</td>
</tr>
<tr>
<td>Cache</td>
<td>Information about the cache for the flow monitor.</td>
</tr>
<tr>
<td>Type</td>
<td>Flow monitor cache type.</td>
</tr>
<tr>
<td></td>
<td>The possible values are:</td>
</tr>
<tr>
<td></td>
<td>• immediate—Flows are expired immediately.</td>
</tr>
<tr>
<td></td>
<td>• normal—Flows are expired normally.</td>
</tr>
<tr>
<td></td>
<td>• Permanent—Flows are never expired.</td>
</tr>
<tr>
<td>Status</td>
<td>Status of the flow monitor cache.</td>
</tr>
<tr>
<td></td>
<td>The possible values are:</td>
</tr>
<tr>
<td></td>
<td>• allocated—The cache is allocated.</td>
</tr>
<tr>
<td></td>
<td>• being deleted—The cache is being deleted.</td>
</tr>
<tr>
<td></td>
<td>• not allocated—The cache is not allocated.</td>
</tr>
<tr>
<td>Size</td>
<td>Current cache size.</td>
</tr>
<tr>
<td>Inactive Timeout</td>
<td>Current value for the inactive timeout in seconds.</td>
</tr>
<tr>
<td>Active Timeout</td>
<td>Current value for the active timeout in seconds.</td>
</tr>
<tr>
<td>Update Timeout</td>
<td>Current value for the update timeout in seconds.</td>
</tr>
</tbody>
</table>

The following example displays the status, statistics, and data for the flow monitor named FLOW-MONITOR-1:
Device# `show flow monitor FLOW-MONITOR-1 cache`

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache type</td>
<td>Flow monitor cache type. The value is always normal, as it is the only supported cache type.</td>
</tr>
<tr>
<td>Cache Size</td>
<td>Number of entries in the cache.</td>
</tr>
<tr>
<td>Current entries</td>
<td>Number of entries in the cache that are in use.</td>
</tr>
<tr>
<td>Flows added</td>
<td>Flows added to the cache since the cache was created.</td>
</tr>
<tr>
<td>Flows aged</td>
<td>Flows expired from the cache since the cache was created.</td>
</tr>
<tr>
<td>Active timeout</td>
<td>Current value for the active timeout in seconds.</td>
</tr>
<tr>
<td>Inactive timeout</td>
<td>Current value for the inactive timeout in seconds.</td>
</tr>
<tr>
<td><code>DATALINK MAC SOURCE ADDRESS INPUT</code></td>
<td>MAC source address of input packets.</td>
</tr>
<tr>
<td><code>DATALINK MAC DESTINATION ADDRESS INPUT</code></td>
<td>MAC destination address of input packets.</td>
</tr>
<tr>
<td><code>IPV6 SOURCE ADDRESS</code></td>
<td>IPv6 source address.</td>
</tr>
<tr>
<td><code>IPV6 DESTINATION ADDRESS</code></td>
<td>IPv6 destination address.</td>
</tr>
<tr>
<td><code>TRNS SOURCE PORT</code></td>
<td>Source port for the transport protocol.</td>
</tr>
<tr>
<td><code>TRNS DESTINATION PORT</code></td>
<td>Destination port for the transport protocol.</td>
</tr>
</tbody>
</table>

This table describes the significant fields shown in the display.

Table 97: show flow monitor monitor-name cache Field Descriptions
Field Description

- **IP VERSION**: IP version.
- **IP PROTOCOL**: Protocol number.
- **IP TOS**: IP type of service (ToS) value.
- **IP TTL**: IP time-to-live (TTL) value.
- **tcp flags**: Value of the TCP flags.
- **counter bytes**: Number of bytes that have been counted.
- **counter packets**: Number of packets that have been counted.

The following example displays the status, statistics, and data for the flow monitor named `FLOW-MONITOR-1` in a table format:

```
Device# show flow monitor FLOW-MONITOR-1 cache format table
Cache type: Normal (Platform cache)
Cache size: Unknown
Current entries: 1

Flows added: 3
Flows aged: 2
- Active timeout (300 secs) 2

DATALINK MAC SRC ADDR INPUT DATALINK MAC DST ADDR INPUT IPV6 SRC ADDR IPV6 DST ADDR
TRNS SRC PORT TRNS DST PORT IP VERSION IP PROT IP TOS IP TTL tcp flags bytes long
pkts long
--------------------------- --------------------------- --------------------------- ---------------------------
0000.0000.1000 6400.F125.59E6 2001:DB8::1 2001:DB8:1::1
1111 2222 6 6 0x05 11 0x20 132059538
1158417
```

The following example displays the status, statistics, and data for the flow monitor named `FLOW-MONITOR-IPv6` (the cache contains IPv6 data) in record format:

```
Device# show flow monitor name FLOW-MONITOR-IPv6 cache format record
Cache type: Normal (Platform cache)
Cache size: Unknown
Current entries: 1

Flows added: 3
Flows aged: 2
- Active timeout (300 secs) 2

DATALINK MAC SOURCE ADDRESS INPUT: 0000.0000.1000
DATALINK MAC DESTINATION ADDRESS INPUT: 6400.F125.59E6
IPV6 SOURCE ADDRESS: 2001::2
IPV6 DESTINATION ADDRESS: 2002::2
TRNS SOURCE PORT: 1111
TRNS DESTINATION PORT: 2222
IP VERSION: 6
IP PROTOCOL: 6
IP TOS: 0x05
IP TTL: 11
tcp flags: 0x20
```
counter bytes long: 132059538
counter packets long: 1158417

The following example displays the status and statistics for a flow monitor:

Device# show flow monitor FLOW-MONITOR-1 statistics
Cache type: Normal (Platform cache)
Cache size: Unknown
Current entries: 1

Flows added: 3
Flows aged: 2
 - Active timeout { 300 secs} 2
show flow record

To display the status and statistics for a Flexible Netflow flow record, use the `show flow record` command in privileged EXEC mode.

```
show flow record [{broker [detail | picture]} | {name record-name}]
```

Syntax Description

- **broker** (Optional) Displays information about the state of the broker for the Flexible NetFlow flow record.
- **detail** (Optional) Displays detailed information about the flow record broker.
- **picture** (Optional) Displays a picture of the broker state.
- **name** (Optional) Displays the name of a flow record.
- **record-name** (Optional) Specifies the name of a user-defined flow record that was previously configured.

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example displays the status and statistics for FLOW-RECORD-1:

```
Device# show flow record FLOW-RECORD-1
flow record FLOW-RECORD-1:
Description: User defined
No. of users: 0
Total field space: 24 bytes
Fields:
  match ipv6 destination address
  match transport source-port
  collect interface input
```
show sampler

To display the status and statistics for a Flexible NetFlow sampler, use the **show sampler** command in privileged EXEC mode.

```
show sampler [ {broker [{detail | picture}] | name sampler-name}]
```

Syntax Description

- **broker** (Optional) Displays information about the state of the broker for the Flexible NetFlow sampler.
- **detail** (Optional) Displays detailed information about the sampler broker.
- **picture** (Optional) Displays a picture of the broker state.
- **name** (Optional) Specifies the name of a sampler.
- **sampler-name** (Optional) Name of a sampler that was previously configured.

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example displays the status and statistics for all of the flow samplers configured:

```
Device# show sampler
Sampler SAMPLER-1:
  ID: 2083940135
  export ID: 0
  Description: User defined
  Type: Invalid (not in use)
  Rate: 1 out of 32
  Samples: 0
  Requests: 0
  Users (0):

Sampler SAMPLER-2:
  ID: 3800923489
  export ID: 1
  Description: User defined
  Type: random
  Rate: 1 out of 100
  Samples: 1
  Requests: 124
  Users (1):
    flow monitor FLOW-MONITOR-1 (datalink,vlan1) 0 out of 0
```

This table describes the significant fields shown in the display.
Table 98: show sampler Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>ID number of the flow sampler.</td>
</tr>
<tr>
<td>Export ID</td>
<td>ID of the flow sampler export.</td>
</tr>
<tr>
<td>Description</td>
<td>Description that you configured for the flow sampler, or the default description User defined.</td>
</tr>
<tr>
<td>Type</td>
<td>Sampling mode that you configured for the flow sampler.</td>
</tr>
<tr>
<td>Rate</td>
<td>Window size (for packet selection) that you configured for the flow sampler. The range is 2 to 32768.</td>
</tr>
<tr>
<td>Samples</td>
<td>Number of packets sampled since the flow sampler was configured or the device was restarted. This is equivalent to the number of times a positive response was received when the sampler was queried to determine if the traffic needed to be sampled. See the explanation of the Requests field in this table.</td>
</tr>
<tr>
<td>Requests</td>
<td>Number of times the flow sampler was queried to determine if the traffic needed to be sampled.</td>
</tr>
<tr>
<td>Users</td>
<td>Interfaces on which the flow sampler is configured.</td>
</tr>
</tbody>
</table>
source

To configure the source IP address interface for all of the packets sent by a Flexible Netflow flow exporter, use the source command in flow exporter configuration mode. To remove the source IP address interface for all of the packets sent by a Flexible Netflow flow exporter, use the no form of this command.

source interface-type interface-number
no source

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-type</td>
<td>Type of interface whose IP address you want to use for the source IP address of the packets sent by a Flexible Netflow flow exporter.</td>
</tr>
<tr>
<td>interface-number</td>
<td>Interface number whose IP address you want to use for the source IP address of the packets sent by a Flexible Netflow flow exporter.</td>
</tr>
</tbody>
</table>

Command Default

The IP address of the interface over which the Flexible Netflow datagram is transmitted is used as the source IP address.

Command Modes

Flow exporter configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The benefits of using a consistent IP source address for the datagrams that Flexible Netflow sends include the following:

- The source IP address of the datagrams exported by Flexible Netflow is used by the destination system to determine from which device the Flexible Netflow data is arriving. If your network has two or more paths that can be used to send Flexible Netflow datagrams from the device to the destination system and you do not specify the source interface from which the source IP address is to be obtained, the device uses the IP address of the interface over which the datagram is transmitted as the source IP address of the datagram. In this situation the destination system might receive Flexible Netflow datagrams from the same device, but with different source IP addresses. When the destination system receives Flexible Netflow datagrams from the same device with different source IP addresses, the destination system treats the Flexible Netflow datagrams as if they were being sent from different devices. To avoid having the destination system treat the Flexible Netflow datagrams as if they were being sent from different devices, you must configure the destination system to aggregate the Flexible Netflow datagrams it receives from all of the possible source IP addresses in the device into a single Flexible Netflow flow.

- If your device has multiple interfaces that can be used to transmit datagrams to the destination system, and you do not configure the source command, you will have to add an entry for the IP address of each interface into any access lists that you create for permitting Flexible Netflow traffic. Creating and maintaining access lists for permitting Flexible Netflow traffic from known sources and blocking it from unknown sources is easier when you limit the source IP address for Flexible Netflow datagrams to a single IP address for each device that is exporting Flexible Netflow traffic.
The interface that you configure as the source interface must have an IP address configured, and it must be up.

Caution

When a transient outage occurs on the interface that you configured with the source command, the Flexible Netflow exporter reverts to the default behavior of using the IP address of the interface over which the datagrams are being transmitted as the source IP address for the datagrams. To avoid this problem, use a loopback interface as the source interface because loopback interfaces are not subject to the transient outages that can occur on physical interfaces.

Tip

To return this command to its default settings, use the no source or default source flow exporter configuration command.

Examples

The following example shows how to configure Flexible Netflow to use a loopback interface as the source interface for NetFlow traffic:

Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# source loopback 0
template data timeout

To specify a timeout period for resending flow exporter template data, use the `template data timeout` command in flow exporter configuration mode. To remove the template resend timeout for a flow exporter, use the `no` form of this command.

```
template data timeout seconds
no template data timeout seconds
```

Syntax Description

<table>
<thead>
<tr>
<th>seconds</th>
<th>Timeout value in seconds. The range is 1 to 86400. The default is 600.</th>
</tr>
</thead>
</table>

Command Default

The default template resend timeout for a flow exporter is 600 seconds.

Command Modes

Flow exporter configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Flow exporter template data describes the exported data records. Data records cannot be decoded without the corresponding template. The `template data timeout` command controls how often those templates are exported.

To return this command to its default settings, use the `no template data timeout` or `default template data timeout` flow record exporter command.

The following example configures resending templates based on a timeout of 1000 seconds:

```
Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# template data timeout 1000
```
transport

To configure the transport protocol for a flow exporter for Flexible Netflow, use the transport command in flow exporter configuration mode. To remove the transport protocol for a flow exporter, use the no form of this command.

transport udp udp-port
no transport udp udp-port

Syntax Description
udp udp-port Specifies User Datagram Protocol (UDP) as the transport protocol and the UDP port number.

Command Default
Flow exporters use UDP on port 9995.

Command Modes
Flow exporter configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
To return this command to its default settings, use the no transport or default transport flow exporter configuration command.

The following example configures UDP as the transport protocol and a UDP port number of 250:

Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# transport udp 250
To configure the time-to-live (TTL) value, use the `ttl` command in flow exporter configuration mode. To remove the TTL value, use the `no` form of this command.

```
ttl ttl
no ttl ttl
```

Syntax Description

- `ttl` Time-to-live (TTL) value for exported datagrams. The range is 1 to 255. The default is 255.

Command Default

Flow exporters use a TTL of 255.

Command Modes

Flow exporter configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To return this command to its default settings, use the `no ttl` or `default ttl` flow exporter configuration command.

The following example specifies a TTL of 15:

```
Device(config)# flow exporter FLOW-EXPORTER-1
Device(config-flow-exporter)# ttl 15
```
PART VII

QoS

• QoS Commands, on page 819
QoS Commands

- auto qos classify, on page 820
- auto qos trust, on page 822
- auto qos video, on page 829
- auto qos voip, on page 839
- class, on page 853
- class-map, on page 855
- debug auto qos, on page 857
- match (class-map configuration), on page 858
- policy-map, on page 861
- priority, on page 863
- queue-buffers ratio, on page 865
- queue-limit, on page 866
- random-detect cos, on page 868
- random-detect cos-based, on page 869
- random-detect dscp, on page 870
- random-detect dscp-based, on page 872
- random-detect precedence, on page 873
- random-detect precedence-based, on page 875
- service-policy (Wired), on page 876
- set, on page 878
- show auto qos, on page 884
- show class-map, on page 886
- show platform hardware fed switch, on page 887
- show platform software fed switch qos, on page 890
- show platform software fed switch qos qsb, on page 891
- show policy-map, on page 894
- show tech-support qos, on page 896
- trust device, on page 898
auto qos classify

To automatically configure quality of service (QoS) classification for untrusted devices within a QoS domain, use the `auto qos classify` command in interface configuration mode. To return to the default setting, use the `no` form of this command.

```
auto qos classify [police]
no auto qos classify [police]
```

Syntax Description
- `police` (Optional) Configure QoS policing for untrusted devices.

Command Default
Auto-QoS classify is disabled on the port.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use this command to configure the QoS for trusted interfaces within the QoS domain. The QoS domain includes the device, the network interior, and edge devices that can classify incoming traffic for QoS.

When auto-QoS is enabled, it uses the ingress packet label to categorize traffic, to assign packet labels, and to configure the ingress and egress queues.

Auto-QoS configures the device for connectivity with a trusted interface. The QoS labels of incoming packets are trusted. For nonrouted ports, the CoS value of the incoming packets is trusted. For routed ports, the DSCP value of the incoming packet is trusted.

To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. You can fine-tune the auto-QoS configuration after you enable auto-QoS.

Note
The device applies the auto-QoS-generated commands as if the commands were entered from the command-line interface (CLI). An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the device without saving the current configuration to memory. If the generated commands fail to be applied, the previous running configuration is restored.

After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes `AutoQoS` in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map.
To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the `debug auto qos` privileged EXEC command to enable auto-QoS debugging.

The following policy maps and class maps are created and applied when running the `auto qos classify` and `auto qos classify police` commands:

Policy maps (For the `auto qos classify police` command):
- AutoQos-4.0-Classify-Police-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- AutoQos-4.0-Multimedia-Conf-Class (match-any)
- AutoQos-4.0-Bulk-Data-Class (match-any)
- AutoQos-4.0-Transaction-Class (match-any)
- AutoQos-4.0-Scavanger-Class (match-any)
- AutoQos-4.0-Signaling-Class (match-any)
- AutoQos-4.0-Default-Class (match-any)
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

To disable auto-QoS on a port, use the `no auto qos classify` interface configuration command. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the `no auto qos classify` command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

Examples

This example shows how to enable auto-QoS classification of an untrusted device and police traffic:

You can verify your settings by entering the `show auto qos interface interface-id` privileged EXEC command.
auto qos trust

To automatically configure quality of service (QoS) for trusted interfaces within a QoS domain, use the `auto qos trust` command in interface configuration mode. To return to the default setting, use the `no` form of this command.

```
auto qos trust {cos | dscp}
no auto qos trust {cos | dscp}
```

Syntax Description
- `cos` Trusts the CoS packet classification.
- `dscp` Trusts the DSCP packet classification.

Command Default
Auto-QoS trust is disabled on the port.

Command Modes
Interface configuration

Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use this command to configure the QoS for trusted interfaces within the QoS domain. The QoS domain includes the device, the network interior, and edge devices that can classify incoming traffic for QoS. When auto-QoS is enabled, it uses the ingress packet label to categorize traffic, to assign packet labels, and to configure the ingress and egress queues.

Table 99: Traffic Types, Packet Labels, and Queues

<table>
<thead>
<tr>
<th></th>
<th>VOIP Data Traffic</th>
<th>VOIP Control Traffic</th>
<th>Routing Protocol Traffic</th>
<th>STP 1 BPDU 2 Traffic</th>
<th>Real-Time Video Traffic</th>
<th>All Other Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP 3</td>
<td>46</td>
<td>24, 26</td>
<td>48</td>
<td>56</td>
<td>34</td>
<td>–</td>
</tr>
<tr>
<td>CoS 4</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>–</td>
</tr>
</tbody>
</table>

1. STP = Spanning Tree Protocol
2. BPDU = bridge protocol data unit
3. DSCP = Differentiated Services Code Point
4. CoS = class of service
The device applies the auto-QoS-generated commands as if the commands were entered from the command-line interface (CLI). An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the device without saving the current configuration to memory. If the generated commands fail to be applied, the previous running configuration is restored.

Note

After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes AutoQoS in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map.

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the `debug auto qos` privileged EXEC command to enable auto-QoS debugging.

The following policy maps and class maps are created and applied when running the `auto qos trust cos` command:

Policy maps:
- AutoQos-4.0-Trust-Cos-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

The following policy maps and class maps are created and applied when running the `auto qos trust dscp` command:

Policy maps:
- AutoQos-4.0-Trust-Dscp-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- class-default (match-any)
To disable auto-QoS on a port, use the **no auto qos trust** interface configuration command. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the **no auto qos trust** command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

Examples

This example shows how to enable auto-QoS for a trusted interface with specific CoS classification.

```
Device(config)# interface gigabitethernet1/0/17
Device(config-if)# auto qos trust cos
Device(config-if)# end
Device# show policy-map interface gigabitethernet1/0/17

Gigabitethernet1/0/17
Service-policy input: AutoQos-4.0-Trust-Cos-Input-Policy

Class-map: class-default (match-any)
  0 packets
  Match: any
  0 packets, 0 bytes
  5 minute rate 0 bps
  QoS Set
    cos cos table AutoQos-4.0-Trust-Cos-Table

Service-policy output: AutoQos-4.0-Output-Policy

queue stats for all priority classes:
  Queueing
  priority level 1
  (total drops) 0
  (bytes output) 0

Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
  0 packets
  Match: dscp cs4 (32) cs5 (40) ef (46)
    0 packets, 0 bytes
    5 minute rate 0 bps
  Match: cos 5
    0 packets, 0 bytes
    5 minute rate 0 bps
  Priority: 30% (300000 kbps), burst bytes 7500000,
  Priority Level: 1
```
Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
 0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
queue-limit dscp 16 percent 80
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100

(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
 0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 4
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
 0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 2
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
 0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 1
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

(total drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10
This example shows how to enable auto-QoS for a trusted interface with specific DSCP classification.

```
Device(config)# interface gigabitethernet1/0/18
Device(config-if)# auto qos trust dscp
Device(config-if)# end
Device#show policy-map interface gigabitethernet1/0/18
Gigabitethernet1/0/18

Service-policy input: AutoQos-4.0-Trust-Dscp-Input-Policy

    Class-map: class-default (match-any)
    0 packets
    Match: any
    0 packets, 0 bytes
    5 minute rate 0 bps

QoS Set
    dscp dscp table AutoQos-4.0-Trust-Dscp-Table

Service-policy output: AutoQos-4.0-Output-Policy

queue stats for all priority classes:
    Queueing
    priority level 1
    (total drops) 0
```
(bytes output) 0

Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 5
 0 packets, 0 bytes
 5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1

Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 3
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
queue-limit dscp 16 percent 80
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100
(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 4
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 2
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
 0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 1
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
 (total drops) 0
 (bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
 (total drops) 0
 (bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
 (total drops) 0
 (bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: class-default (match-any)
0 packets
Match: any
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
 (total drops) 0
 (bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25

You can verify your settings by entering the `show auto qos interface interface-id` privileged EXEC command.
auto qos video

To automatically configure quality of service (QoS) for video within a QoS domain, use the `auto qos video` command in interface configuration mode. Use the `no` form of this command to return to the default setting.

```
auto qos video { cts | ip-camera | media-player }
no auto qos video { cts | ip-camera | media-player }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cts</td>
<td>Specifies a port connected to a Cisco TelePresence System and automatically configures QoS for video.</td>
</tr>
<tr>
<td>ip-camera</td>
<td>Specifies a port connected to a Cisco IP camera and automatically configures QoS for video.</td>
</tr>
<tr>
<td>media-player</td>
<td>Specifies a port connected to a CDP-capable Cisco digital media player and automatically configures QoS for video.</td>
</tr>
</tbody>
</table>

Command Default

Auto-QoS video is disabled on the port.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to configure the QoS appropriate for video traffic within the QoS domain. The QoS domain includes the device, the network interior, and edge devices that can classify incoming traffic for QoS. When auto-QoS is enabled, it uses the ingress packet label to categorize traffic, to assign packet labels, and to configure the ingress and egress queues. For more information, see the queue tables at the end of this section.

Auto-QoS configures the device for video connectivity to a Cisco TelePresence system, a Cisco IP camera, or a Cisco digital media player.

To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. You can fine-tune the auto-QoS configuration after you enable auto-QoS.

The device applies the auto-QoS-generated commands as if the commands were entered from the command-line interface (CLI). An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the device without saving the current configuration to memory. If the generated commands fail to be applied, the previous running configuration is restored.

If this is the first port on which you have enabled auto-QoS, the auto-QoS-generated global configuration commands are executed followed by the interface configuration commands. If you enable auto-QoS on another port, only the auto-QoS-generated interface configuration commands for that port are executed.

After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes `AutoQoS` in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy.
map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map.

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the `debug auto qos` privileged EXEC command to enable auto-QoS debugging.

The following policy maps and class maps are created and applied when running the `auto qos video ets` command:

Policy maps:
- AutoQos-4.0-Trust-Cos-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

The following policy maps and class maps are created and applied when running the `auto qos video ip-camera` command:

Policy maps:
- AutoQos-4.0-Trust-Dscp-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
The following policy maps and class maps are created and applied when running the **auto qos video media-player** command:

Policy maps:
- AutoQos-4.0-Trust-Dscp-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)

To disable auto-QoS on a port, use the **no auto qos video** interface configuration command. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled, and you enter the **no auto qos video** command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

Table 100: Traffic Types, Packet Labels, and Queues

<table>
<thead>
<tr>
<th>VOIP Data Traffic</th>
<th>VOIP Control Traffic</th>
<th>Routing Protocol Traffic</th>
<th>STP BPDU Traffic</th>
<th>Real-Time Video Traffic</th>
<th>All Other Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP⁵**</td>
<td>46</td>
<td>24, 26</td>
<td>48</td>
<td>56</td>
<td>34</td>
</tr>
<tr>
<td>CoS⁸</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

| | ⁵ STP = Spanning Tree Protocol | ⁶ BPDU = bridge protocol data unit | ⁷ DSCP = Differentiated Services Code Point | ⁸ CoS = class of service |

Examples

The following is an example of the **auto qos video cts** command and the applied policies and class maps:

```
Device(config)# interface gigabitethernet1/0/12
Device(config-if)# auto qos video cts
Device(config-if)# end
Device# show policy-map interface gigabitethernet1/0/12
Gigabitethernet1/0/12
```
Service-policy input: AutoQos-4.0-Trust-Cos-Input-Policy

Class-map: class-default (match-any)
0 packets
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set:
cos cos table AutoQos-4.0-Trust-Cos-Table

Service-policy output: AutoQos-4.0-Output-Policy

queue stats for all priority classes:
Queueing
priority level 1
(total drops) 0
(bytes output) 0

Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
0 packets, 0 bytes
5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1

Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
queue-limit dscp 16 percent 80
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 4
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 2
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

 (total drops) 0
 (bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 1
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

 (total drops) 0
 (bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

 (total drops) 0
 (bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

 (total drops) 0
 (bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: class-default (match-any)
0 packets
Match: any
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

 (total drops) 0
The following is an example of the **auto qos video ip-camera** command and the applied policies and class maps:

```
Device(config)# interface gigabitethernet1/0/9
Device(config-if)# auto qos video ip-camera
Device(config-if)# end
Device# show policy-map interface gigabitethernet1/0/9
```

Gigabitethernet1/0/9

Service-policy input: AutoQos-4.0-Trust-Dscp-Input-Policy

Class-map: class-default (match-any)
 0 packets
 Match: any
 0 packets, 0 bytes
 5 minute rate 0 bps
 QoS Set
 dscp dscp table AutoQos-4.0-Trust-Dscp-Table

Service-policy output: AutoQos-4.0-Output-Policy

queue stats for all priority classes:
 Queueing
 priority level 1
 (total drops) 0
 (bytes output) 0

Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
 0 packets
 Match: dscp cs4 (32) cs5 (40) ef (46)
 0 packets, 0 bytes
 5 minute rate 0 bps
 Match: cos 5
 0 packets, 0 bytes
 5 minute rate 0 bps
 Priority: 30% (300000 kbps), burst bytes 7500000,
 Priority Level: 1

Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
 0 packets
 Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
 0 packets, 0 bytes
 5 minute rate 0 bps
 Match: cos 3
 0 packets, 0 bytes
 5 minute rate 0 bps
 Queueing
 queue-limit dscp 16 percent 80
 queue-limit dscp 24 percent 90
 queue-limit dscp 48 percent 100
 queue-limit dscp 56 percent 100

 (total drops) 0
 (bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 4
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 2
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 1
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
(totals drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
(totals drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
The following is an example of the **auto qos video media-player** command and the applied policies and class maps.

```
Device(config)# interface gigabitethernet1/0/7
Device(config-if)# auto qos video media-player
Device(config-if)# end
Device# show policy-map interface gigabitethernet1/0/7

interface gigabitethernet1/0/7

Service-policy input: AutoQos-4.0-Trust-Dscp-Input-Policy

Class-map: class-default (match-any)
  0 packets
  Match: any
  0 packets, 0 bytes
  5 minute rate 0 bps
Queueing

(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
  0 packets
  Match: dscp cs4 (32) cs5 (40) ef (46)
  0 packets, 0 bytes
  5 minute rate 0 bps
Queueing

(totals drops) 0
(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
```text
Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
  0 packets
  Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
      0 packets, 0 bytes
      5 minute rate 0 bps
  Match: cos 3
      0 packets, 0 bytes
      5 minute rate 0 bps
Queueing
  queue-limit dscp 16 percent 80
  queue-limit dscp 24 percent 90
  queue-limit dscp 48 percent 100
  queue-limit dscp 56 percent 100
  (total drops) 0
  (bytes output) 0
  bandwidth remaining 10%
  queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
  0 packets
  Match: dscp af41 (34) af42 (36) af43 (38)
      0 packets, 0 bytes
      5 minute rate 0 bps
  Match: cos 4
      0 packets, 0 bytes
      5 minute rate 0 bps
Queueing
  (total drops) 0
  (bytes output) 0
  bandwidth remaining 10%
  queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
  0 packets
  Match: dscp af21 (18) af22 (20) af23 (22)
      0 packets, 0 bytes
      5 minute rate 0 bps
  Match: cos 2
      0 packets, 0 bytes
      5 minute rate 0 bps
Queueing
  (total drops) 0
  (bytes output) 0
  bandwidth remaining 10%
  queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
  0 packets
  Match: dscp af11 (10) af12 (12) af13 (14)
      0 packets, 0 bytes
      5 minute rate 0 bps
  Match: cos 1
      0 packets, 0 bytes
      5 minute rate 0 bps
Queueing
  (total drops) 0
  (bytes output) 0
  bandwidth remaining 4%
```
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
 0 packets
 Match: dscp cs1 (8)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

 (total drops) 0
 (bytes output) 0
 bandwidth remaining 1%
 queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
 0 packets
 Match: dscp af31 (26) af32 (28) af33 (30)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

 (total drops) 0
 (bytes output) 0
 bandwidth remaining 10%
 queue-buffers ratio 10

Class-map: class-default (match-any)
 0 packets
 Match: any
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

 (total drops) 0
 (bytes output) 0
 bandwidth remaining 25%
 queue-buffers ratio 25

You can verify your settings by entering the `show auto qos video interface interface-id` privileged EXEC command.
auto qos voip

To automatically configure quality of service (QoS) for voice over IP (VoIP) within a QoS domain, use the `auto qos voip` command in interface configuration mode. Use the `no` form of this command to return to the default setting.

```
auto qos voip {cisco-phone | cisco-softphone | trust}
no auto qos voip {cisco-phone | cisco-softphone | trust}
```

Syntax Description

- **cisco-phone** Specifies a port connected to a Cisco IP phone, and automatically configures QoS for VoIP. The QoS labels of incoming packets are trusted only when the telephone is detected.
- **cisco-softphone** Specifies a port connected to a device running the Cisco SoftPhone, and automatically configures QoS for VoIP.
- **trust** Specifies a port connected to a trusted device, and automatically configures QoS for VoIP. The QoS labels of incoming packets are trusted. For nonrouted ports, the CoS value of the incoming packet is trusted. For routed ports, the DSCP value of the incoming packet is trusted.

Command Default

Auto-QoS is disabled on the port.

When auto-QoS is enabled, it uses the ingress packet label to categorize traffic, to assign packet labels, and to configure the ingress and egress queues.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to configure the QoS appropriate for VoIP traffic within the QoS domain. The QoS domain includes the device, the network interior, and edge devices that can classify incoming traffic for QoS.

Auto-QoS configures the device for VoIP with Cisco IP phones on device and routed ports and for devices running the Cisco SoftPhone application. These releases support only Cisco IP SoftPhone Version 1.3(3) or later. Connected devices must use Cisco Call Manager Version 4 or later.

To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. You can fine-tune the auto-QoS configuration after you enable auto-QoS.
The device applies the auto-QoS-generated commands as if the commands were entered from the command-line interface (CLI). An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the device without saving the current configuration to memory. If the generated commands fail to be applied, the previous running configuration is restored.

If this is the first port on which you have enabled auto-QoS, the auto-QoS-generated global configuration commands are executed followed by the interface configuration commands. If you enable auto-QoS on another port, only the auto-QoS-generated interface configuration commands for that port are executed.

When you enter the `auto qos voip cisco-phone` interface configuration command on a port at the edge of the network that is connected to a Cisco IP phone, the device enables the trusted boundary feature. The device uses the Cisco Discovery Protocol (CDP) to detect the presence of a Cisco IP phone. When a Cisco IP phone is detected, the ingress classification on the port is set to trust the QoS label received in the packet. The device also uses policing to determine whether a packet is in or out of profile and to specify the action on the packet. If the packet does not have a DSCP value of 24, 26, or 46 or is out of profile, the device changes the DSCP value to 0. When a Cisco IP phone is absent, the ingress classification is set to not trust the QoS label in the packet. The policing is applied to those traffic matching the policy-map classification before the device enables the trust boundary feature.

- When you enter the `auto qos voip cisco-softphone` interface configuration command on a port at the edge of the network that is connected to a device running the Cisco SoftPhone, the device uses policing to decide whether a packet is in or out of profile and to specify the action on the packet. If the packet does not have a DSCP value of 24, 26, or 46 or is out of profile, the device changes the DSCP value to 0.
- When you enter the `auto qos voip trust` interface configuration command on a port connected to the network interior, the device trusts the CoS value for nonrouted ports or the DSCP value for routed ports in ingress packets (the assumption is that traffic has already been classified by other edge devices).

You can enable auto-QoS on static, dynamic-access, and voice VLAN access, and trunk ports. When enabling auto-QoS with a Cisco IP phone on a routed port, you must assign a static IP address to the IP phone.

When a device running Cisco SoftPhone is connected to a device or routed port, the device supports only one Cisco SoftPhone application per port.

After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes AutoQoS in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map.

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the `debug auto qos` privileged EXEC command to enable auto-QoS debugging.

The following policy maps and class maps are created and applied when running the `auto qos voip trust` command:

Policy maps:
The following policy maps and class maps are created and applied when running the `auto qos voip cisco-softphone` command:

Policy maps:
- AutoQos-4.0-CiscoSoftPhone-Input-Policy
- AutoQos-4.0-Output-Policy

Class maps:
- AutoQos-4.0-Voip-Data-Class (match-any)
- AutoQos-4.0-Voip-Signal-Class (match-any)
- AutoQos-4.0-Multimedia-Conf-Class (match-any)
- AutoQos-4.0-Bulk-Data-Class (match-any)
- AutoQos-4.0-Transaction-Class (match-any)
- AutoQos-4.0-Scavanger-Class (match-any)
- AutoQos-4.0-Signaling-Class (match-any)
- AutoQos-4.0-Default-Class (match-any)
- class-default (match-any)
- AutoQos-4.0-Output-Priority-Queue (match-any)
- AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
- AutoQos-4.0-Output-Trans-Data-Queue (match-any)
- AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
- AutoQos-4.0-Output-Scavenger-Queue (match-any)
- AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
The following policy maps and class maps are created and applied when running the `auto qos voip cisco-phone` command:

Policy maps:
- service-policy input AutoQos-4.0-CiscoPhone-Input-Policy
- service-policy output AutoQos-4.0-Output-Policy

Class maps:
- class AutoQos-4.0-Voip-Data-CiscoPhone-Class
- class AutoQos-4.0-Voip-Signal-CiscoPhone-Class
- class AutoQos-4.0-Default-Class

To disable auto-QoS on a port, use the `no auto qos voip` interface configuration command. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the `no auto qos voip` command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

The device configures egress queues on the port according to the settings in this table.

Table 101: Auto-QoS Configuration for the Egress Queues

<table>
<thead>
<tr>
<th>Egress Queue</th>
<th>Queue Number</th>
<th>CoS-to-Queue Map</th>
<th>Queue Weight (Bandwidth)</th>
<th>Queue (Buffer) Size for Gigabit-Capable Ports</th>
<th>Queue (Buffer) Size for 10/100 Ethernet Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority (shaped)</td>
<td>1</td>
<td>4, 5</td>
<td>Up to 100 percent</td>
<td>25 percent</td>
<td>15 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>2</td>
<td>2, 3, 6, 7</td>
<td>10 percent</td>
<td>25 percent</td>
<td>25 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>3</td>
<td>0</td>
<td>60 percent</td>
<td>25 percent</td>
<td>40 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>4</td>
<td>1</td>
<td>20 percent</td>
<td>25 percent</td>
<td>20 percent</td>
</tr>
</tbody>
</table>

The following is an example of the `auto qos voip trust` command and the applied policies and class maps:

```
Device(config)# interface gigabitethernet1/0/31
Device(config-if)# auto qos voip trust
Device(config-if)# end
Device# show policy-map interface gigabitethernet1/0/31

Gigabitethernet1/0/31

Service-policy input: AutoQos-4.0-Trust-Cos-Input-Policy
Class-map: class-default (match-any)
  0 packets
```
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
 cos cos table AutoQos-4.0-Trust-Cos-Table

Service-policy output: AutoQos-4.0-Output-Policy

queue stats for all priority classes:
Queueing
 priority level 1
 (total drops) 0
 (bytes output) 0

Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 5
 0 packets, 0 bytes
 5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1

Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 3
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
 queue-limit dscp 16 percent 80
 queue-limit dscp 24 percent 90
 queue-limit dscp 48 percent 100
 queue-limit dscp 56 percent 100
 (total drops) 0
 (bytes output) 0
 bandwidth remaining 10%

 queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 4
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
 (total drops) 0
 (bytes output) 0
 bandwidth remaining 10%
 queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 2
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
 0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 1
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

(totals drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
 0 packets
Match: dscp cs1 (8)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

(totals drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
 0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: class-default (match-any)
 0 packets
Match: any
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

(totals drops) 0
(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25
The following is an example of the `auto qos voip cisco-phone` command and the applied policies and class maps:

```bash
Device(config)# interface gigabitethernet1/0/5
Device(config-if)# auto qos voip cisco-phone
Device(config-if)# end
Device# show policy-map interface gigabitethernet1/0/5

Gigabitethernet1/0/5
Service-policy input: AutoQos-4.0-CiscoPhone-Input-Policy

Class-map: AutoQos-4.0-Voip-Data-CiscoPhone-Class (match-any)
  0 packets
  Match: cos 5
  0 packets, 0 bytes
  5 minute rate 0 bps
  QoS Set
dscp ef
  police:
  cir 128000 bps, bc 8000 bytes
  conformed 0 bytes; actions:
    transmit
  exceeded 0 bytes; actions:
    set-dscp-transmit dscp table policed-dscp
  conformed 0000 bps, exceed 0000 bps

Class-map: AutoQos-4.0-Voip-Signal-CiscoPhone-Class (match-any)
  0 packets
  Match: cos 3
  0 packets, 0 bytes
  5 minute rate 0 bps
  QoS Set
dscp cs3
  police:
  cir 32000 bps, bc 8000 bytes
  conformed 0 bytes; actions:
    transmit
  exceeded 0 bytes; actions:
    set-dscp-transmit dscp table policed-dscp
  conformed 0000 bps, exceed 0000 bps

Class-map: AutoQos-4.0-Default-Class (match-any)
  0 packets
  Match: access-group name AutoQos-4.0-Acl-Default
  0 packets, 0 bytes
  5 minute rate 0 bps
  QoS Set
dscp default

Class-map: class-default (match-any)
  0 packets
  Match: any
  0 packets, 0 bytes
  5 minute rate 0 bps

Service-policy output: AutoQos-4.0-Output-Policy

queue stats for all priority classes:
  Queueing
  priority level 1
  (total drops) 0
```
Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 5
 0 packets, 0 bytes
 5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
Priority Level: 1

Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 3
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
queue-limit dscp 16 percent 80
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100
(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 4
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 2
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
(totals drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10
Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 1
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
 (total drops) 0
 (bytes output) 0
 bandwidth remaining 4%
 queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
 (total drops) 0
 (bytes output) 0
 bandwidth remaining 1%
 queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
 (total drops) 0
 (bytes output) 0
 bandwidth remaining 10%
 queue-buffers ratio 10

Class-map: class-default (match-any)
0 packets
Match: any
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
 (total drops) 0
 (bytes output) 0
 bandwidth remaining 25%
 queue-buffers ratio 25

The following is an example of the auto qos voip cisco-softphone command and the applied policies and class maps:

```bash
Device(config)# interface gigabitethernet1/0/20
Device(config-if)# auto qos voip cisco-softphone
Device(config-if)# end
Device# show policy-map interface gigabitethernet1/0/20

Gigabitethernet1/0/20

Service-policy input: AutoQos-4.0-CiscoSoftPhone-Input-Policy
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
Class-map: AutoQos-4.0-Voip-Data-Class (match-any)
0 packets
Match: dscp ef (46)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 5
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp ef
police:
cir 128000 bps, bc 8000 bytes
conformed 0 bytes; actions:
transmit
exceeded 0 bytes; actions:
set-dscp-transmit dscp table policed-dscp
conformed 0000 bps, exceed 0000 bps

Class-map: AutoQos-4.0-Voip-Signal-Class (match-any)
0 packets
Match: dscp cs3 (24)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 3
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp cs3
police:
cir 32000 bps, bc 8000 bytes
conformed 0 bytes; actions:
transmit
exceeded 0 bytes; actions:
set-dscp-transmit dscp table policed-dscp
conformed 0000 bps, exceed 0000 bps

Class-map: AutoQos-4.0-Multimedia-Conf-Class (match-any)
0 packets
Match: access-group name AutoQos-4.0-Acl-MultiEnhanced-Conf
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp af41
police:
cir 5000000 bps, bc 156250 bytes
conformed 0 bytes; actions:
transmit
exceeded 0 bytes; actions:
drop
conformed 0000 bps, exceed 0000 bps

Class-map: AutoQos-4.0-Bulk-Data-Class (match-any)
0 packets
Match: access-group name AutoQos-4.0-Acl-Bulk-Data
0 packets, 0 bytes
5 minute rate 0 bps
QoS Set
dscp af11
police:
cir 10000000 bps, bc 312500 bytes
conformed 0 bytes; actions:
transmit
exceeded 0 bytes; actions:
set-dscp-transmit dscp table policed-dscp
conformed 0000 bps, exceed 0000 bps

Class-map: AutoQos-4.0-Transaction-Class (match-any)
 0 packets
 Match: access-group name AutoQos-4.0-Acl-Transactional-Data
 0 packets, 0 bytes
 5 minute rate 0 bps
 QoS Set
 dscp af21
 police:
 cir 10000000 bps, bc 312500 bytes
 conformed 0 bytes; actions:
 transmit
 exceeded 0 bytes; actions:
 set-dscp-transmit dscp table policed-dscp
 conformed 0000 bps, exceed 0000 bps

Class-map: AutoQos-4.0-Scavanger-Class (match-any)
 0 packets
 Match: access-group name AutoQos-4.0-Acl-Scavanger
 0 packets, 0 bytes
 5 minute rate 0 bps
 QoS Set
 dscp cs1
 police:
 cir 10000000 bps, bc 312500 bytes
 conformed 0 bytes; actions:
 transmit
 exceeded 0 bytes; actions:
 drop
 conformed 0000 bps, exceed 0000 bps

Class-map: AutoQos-4.0-Signaling-Class (match-any)
 0 packets
 Match: access-group name AutoQos-4.0-Acl-Signaling
 0 packets, 0 bytes
 5 minute rate 0 bps
 QoS Set
 dscp cs3
 police:
 cir 32000 bps, bc 8000 bytes
 conformed 0 bytes; actions:
 transmit
 exceeded 0 bytes; actions:
 drop
 conformed 0000 bps, exceed 0000 bps

Class-map: AutoQos-4.0-Default-Class (match-any)
 0 packets
 Match: access-group name AutoQos-4.0-Acl-Default
 0 packets, 0 bytes
 5 minute rate 0 bps
 QoS Set
 dscp default
 police:
 cir 10000000 bps, bc 312500 bytes
 conformed 0 bytes; actions:
 transmit
 exceeded 0 bytes; actions:
 set-dscp-transmit dscp table policed-dscp
 conformed 0000 bps, exceed 0000 bps

Class-map: class-default (match-any)
0 packets
Match: any
 0 packets, 0 bytes
 5 minute rate 0 bps

Service-policy output: AutoQos-4.0-Output-Policy

queue stats for all priority classes:
Queueing
 priority level 1
 (total drops) 0
 (bytes output) 0

Class-map: AutoQos-4.0-Output-Priority-Queue (match-any)
0 packets
Match: dscp cs4 (32) cs5 (40) ef (46)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 5
 0 packets, 0 bytes
 5 minute rate 0 bps
Priority: 30% (300000 kbps), burst bytes 7500000,
 Priority Level: 1

Class-map: AutoQos-4.0-Output-Control-Mgmt-Queue (match-any)
0 packets
Match: dscp cs2 (16) cs3 (24) cs6 (48) cs7 (56)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 3
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing
queue-limit dscp 16 percent 80
queue-limit dscp 24 percent 90
queue-limit dscp 48 percent 100
queue-limit dscp 56 percent 100

 (total drops) 0
 (bytes output) 0
 bandwidth remaining 10%
 queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Conf-Queue (match-any)
0 packets
Match: dscp af41 (34) af42 (36) af43 (38)
 0 packets, 0 bytes
 5 minute rate 0 bps
Match: cos 4
 0 packets, 0 bytes
 5 minute rate 0 bps
Queueing

 (total drops) 0
 (bytes output) 0
 bandwidth remaining 10%
 queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Trans-Data-Queue (match-any)
0 packets
Match: dscp af21 (18) af22 (20) af23 (22)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 2
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Bulk-Data-Queue (match-any)
0 packets
Match: dscp af11 (10) af12 (12) af13 (14)
0 packets, 0 bytes
5 minute rate 0 bps
Match: cos 1
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 4%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Scavenger-Queue (match-any)
0 packets
Match: dscp cs1 (8)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 1%
queue-buffers ratio 10

Class-map: AutoQos-4.0-Output-Multimedia-Strm-Queue (match-any)
0 packets
Match: dscp af31 (26) af32 (28) af33 (30)
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 10%
queue-buffers ratio 10

Class-map: class-default (match-any)
0 packets
Match: any
0 packets, 0 bytes
5 minute rate 0 bps
Queueing
(total drops) 0
(bytes output) 0
bandwidth remaining 25%
queue-buffers ratio 25
You can verify your settings by entering the **show auto qos interface interface-id** privileged EXEC command.
class

To define a traffic classification match criteria for the specified class-map name, use the `class` command in policy-map configuration mode. Use the `no` form of this command to delete an existing class map.

```
class {class-map-name | class-default}  
no class {class-map-name | class-default}  
```

Syntax Description

<table>
<thead>
<tr>
<th>class-map-name</th>
<th>The class map name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-default</td>
<td>Refers to a system default class that matches unclassified packets.</td>
</tr>
</tbody>
</table>

Command Default

No policy map class-maps are defined.

Command Modes

Policy-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before using the `class` command, you must use the `policy-map` global configuration command to identify the policy map and enter policy-map configuration mode. After specifying a policy map, you can configure a policy for new classes or modify a policy for any existing classes in that policy map. You attach the policy map to a port by using the `service-policy` interface configuration command.

After entering the `class` command, you enter the policy-map class configuration mode. These configuration commands are available:

- **admit**—Admits a request for Call Admission Control (CAC)
- **bandwidth**—Specifies the bandwidth allocated to the class.
- **exit**—Exits the policy-map class configuration mode and returns to policy-map configuration mode.
- **no**—Returns a command to its default setting.
- **police**—Defines a policer or aggregate policer for the classified traffic. The policer specifies the bandwidth limitations and the action to take when the limits are exceeded. For more information about this command, see *Cisco IOS Quality of Service Solutions Command Reference* available on Cisco.com.
- **priority**—Assigns scheduling priority to a class of traffic belonging to a policy map.
- **queue-buffers**—Configures the queue buffer for the class.
- **queue-limit**—Specifies the maximum number of packets the queue can hold for a class policy configured in a policy map.
- **service-policy**—Configures a QoS service policy.
- **set**—Specifies a value to be assigned to the classified traffic. For more information, see the `set` command.
- **shape**—Specifies average or peak rate traffic shaping. For more information about this command, see *Cisco IOS Quality of Service Solutions Command Reference* available on Cisco.com.
To return to policy-map configuration mode, use the `exit` command. To return to privileged EXEC mode, use the `end` command.

The `class` command performs the same function as the `class-map` global configuration command. Use the `class` command when a new classification, which is not shared with any other ports, is needed. Use the `class-map` command when the map is shared among many ports.

You can configure a default class by using the `class class-default` policy-map configuration command. Unclassified traffic (traffic that does not meet the match criteria specified in the traffic classes) is treated as default traffic.

You can verify your settings by entering the `show policy-map` privileged EXEC command.

Examples

This example shows how to create a policy map called `policy1`. When attached to the ingress direction, it matches all the incoming traffic defined in class1 and polices the traffic at an average rate of 1 Mb/s and bursts at 1000 bytes, marking down exceeding traffic via a table-map.

```plaintext
Device(config)# policy-map policy1
Device(config-pmap)# class class1
Device(config-pmap-c)# police cir 1000000 bc 1000 conform-action
transmit exceed-action set-dscp-transmit dscp table EXEC_TABLE
Device(config-pmap-c)# exit
```

This example shows how to configure a default traffic class to a policy map. It also shows how the default traffic class is automatically placed at the end of policy-map pm3 even though `class-default` was configured first:

```plaintext
Device# configure terminal
Device(config)# class-map cm-3
Device(config-cmap)# match ip dscp 30
Device(config-cmap)# exit

Device(config)# class-map cm-4
Device(config-cmap)# match ip dscp 40
Device(config-cmap)# exit

Device(config)# policy-map pm3
Device(config-pmap)# class class-default
Device(config-pmap-c)# set dscp 10
Device(config-pmap-c)# exit

Device(config-pmap)# class cm-3
Device(config-pmap-c)# set dscp 4
Device(config-pmap-c)# exit

Device(config-pmap)# class cm-4
Device(config-pmap-c)# set precedence 5
Device(config-pmap-c)# exit
Device(config-pmap)# exit

Device# show policy-map pm3
Policy Map pm3
Class cm-3
  set dscp 4
Class cm-4
  set precedence 5
Class class-default
  set dscp af11
```
To create a class map to be used for matching packets to the class whose name you specify and to enter class-map configuration mode, use the class-map command in global configuration mode. Use the no form of this command to delete an existing class map and to return to global or policy map configuration mode.

```
class-map class-map-name [match-any | match-all]
no class-map class-map-name [match-any | match-all]
```

Syntax Description

- **match-any** (Optional) Perform a logical-OR of the matching statements under this class map. One or more criteria must be matched.
- **match-all** (Optional) Performs a logical-AND of the matching statements under this class map. All criteria must match.
- **class-map-name** The class map name.

Command Default
No class maps are defined.

Command Modes
Global configuration
Policy map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to specify the name of the class for which you want to create or modify class-map match criteria and to enter class-map configuration mode.

The class-map command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally named service policy applied on a per-port basis.

After you are in quality of service (QoS) class-map configuration mode, these configuration commands are available:

- **description**—Describes the class map (up to 200 characters). The show class-map privileged EXEC command displays the description and the name of the class map.
- **exit**—Exits from QoS class-map configuration mode.
- **match**—Configures classification criteria.
- **no**—Removes a match statement from a class map.

If you enter the match-any keyword, you can only use it to specify an extended named access control list (ACL) with the match access-group class-map configuration command.

To define packet classification on a physical-port basis, only one match command per class map is supported. The ACL can have multiple access control entries (ACEs).
Examples

This example shows how to configure the class map called class1 with one match criterion, which is an access list called 103:

Device(config)# access-list 103 permit ip any any dscp 10
Device(config)# class-map class1
Device(config-cmap)# match access-group 103
Device(config-cmap)# exit

This example shows how to delete the class map class1:

Device(config)# no class-map class1

You can verify your settings by entering the `show class-map` privileged EXEC command.
debug auto qos

To enable debugging of the automatic quality of service (auto-QoS) feature, use the `debug auto qos` command in privileged EXEC mode. Use the `no` form of this command to disable debugging.

```
download auto qos
no download auto qos
```

Syntax Description

This command has no arguments or keywords.

Command Default

Auto-QoS debugging is disabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. You enable debugging by entering the `debug auto qos` privileged EXEC command.

The `undebug auto qos` command is the same as the `no debug auto qos` command.

When you enable debugging on a device stack, it is enabled only on the active device. To enable debugging on a stack member, you can start a session from the active device by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the active device to enable debugging on a member device without first starting a session.

Examples

This example shows how to display the QoS configuration that is automatically generated when auto-QoS is enabled:

```
Device# debug auto qos
AutoQoS debugging is on
Device# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# auto qos voip cisco-phone
```
match (class-map configuration)

To define the match criteria to classify traffic, use the `match` command in class-map configuration mode. Use the `no` form of this command to remove the match criteria.

Cisco IOS XE Everest 16.5.x and Earlier Releases

```
match {access-group {name acl-name acl-index} | class-map class-map-name | cos cos-value | dscp dscp-value | [ ip ] dscp dscp-list | [ ip ] precedence ip-precedence-list | precedence precedence-value1...value4 | qos-group qos-group-value | vlan vlan-id}
```

```
no match {access-group {name acl-name acl-index} | class-map class-map-name | cos cos-value | dscp dscp-value | [ ip ] dscp dscp-list | [ ip ] precedence ip-precedence-list | precedence precedence-value1...value4 | qos-group qos-group-value | vlan vlan-id}
```

Cisco IOS XE Everest 16.6.x and Later Releases

```
match {access-group {name acl-name acl-index} | cos cos-value | dscp dscp-value | [ ip ] dscp dscp-list | [ ip ] precedence ip-precedence-list | non-client-nrt | precedence precedence-value1...value4 | protocol protocol-name | qos-group qos-group-value | vlan vlan-id | wlan wlan-id}
```

```
no match {access-group {name acl-name acl-index} | cos cos-value | dscp dscp-value | [ ip ] dscp dscp-list | [ ip ] precedence ip-precedence-list | non-client-nrt | precedence precedence-value1...value4 | protocol protocol-name | qos-group qos-group-value | vlan vlan-id | wlan wlan-id}
```

Syntax Description

access-group

Specifies an access group.

name acl-name

Specifies the name of an IP standard or extended access control list (ACL) or MAC ACL.

acl-index

Specifies the number of an IP standard or extended access control list (ACL) or MAC ACL. For an IP standard ACL, the ACL index range is 1 to 99 and 1300 to 1999. For an IP extended ACL, the ACL index range is 100 to 199 and 2000 to 2699.

class-map class-map-name

Uses a traffic class as a classification policy and specifies a traffic class name to use as the match criterion.

cos cos-value

Matches a packet on the basis of a Layer 2 class of service (CoS)/Inter-Switch Link (ISL) marking. The cos-value is from 0 to 7. You can specify up to four CoS values in one `match cos` statement, separated by a space.

dscp dscp-value

Specifies the parameters for each DSCP value. You can specify a value in the range 0 to 63 specifying the differentiated services code point value.
ip dscp *dscp-list*
Specifies a list of up to eight IP Differentiated Services Code Point (DSCP) values to match against incoming packets. Separate each value with a space. The range is 0 to 63. You also can enter a mnemonic name for a commonly used value.

ip precedence *ip-precedence-list*
Specifies a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7. You also can enter a mnemonic name for a commonly used value.

precedence *precedence-value1...value4*
Assigns an IP precedence value to the classified traffic. The range is 0 to 7. You also can enter a mnemonic name for a commonly used value.

qos-group *qos-group-value*
Identifies a specific QoS group value as a match criterion. The range is 0 to 31.

vlan *vlan-id*
Identifies a specific VLAN as a match criterion. The range is 1 to 4094.

non-client-nrt
Matches a non-client NRT (non-real-time).

protocol *protocol-name*
Specifies the type of protocol.

wlan *wlan-id*
Identifies 802.11 specific values.

Command Default
No match criteria are defined.

Command Modes
Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `match` command is used to specify which fields in the incoming packets are examined to classify the packets. Only the IP access group or the MAC access group matching to the Ether Type/LEN are supported. If you enter the `class-map match-any class-map-name` global configuration command, you can enter the following `match` commands:

- **match access-group name** *acl-name*

 Note
 The ACL must be an extended named ACL.

- **match ip dscp** *dscp-list*
- **match ip precedence** *ip-precedence-list*

The `match access-group` *acl-index* command is not supported.
To define packet classification on a physical-port basis, only one `match` command per class map is supported. In this situation, the `match-any` keyword is equivalent.

For the `match ip dscp dscp-list` or the `match ip precedence ip-precedence-list` command, you can enter a mnemonic name for a commonly used value. For example, you can enter the `match ip dscp af11` command, which is the same as entering the `match ip dscp 10` command. You can enter the `match ip precedence critical` command, which is the same as entering the `match ip precedence 5` command. For a list of supported mnemonics, enter the `match ip dscp ?` or the `match ip precedence ?` command to see the command-line help strings.

Use the `input-interface interface-id-list` keyword when you are configuring an interface-level class map in a hierarchical policy map. For the `interface-id-list`, you can specify up to six entries.

Examples

This example shows how to create a class map called `class2`, which matches all the incoming traffic with DSCP values of 10, 11, and 12:

```
Device(config)# class-map class2
Device(config-cmap)# match ip dscp 10 11 12
Device(config-cmap)# exit
```

This example shows how to create a class map called `class3`, which matches all the incoming traffic with IP-precedence values of 5, 6, and 7:

```
Device(config)# class-map class3
Device(config-cmap)# match ip precedence 5 6 7
Device(config-cmap)# exit
```

This example shows how to delete the IP-precedence match criteria and to classify traffic using acl1:

```
Device(config)# class-map class2
Device(config-cmap)# match ip precedence 5 6 7
Device(config-cmap)# no match ip precedence
Device(config-cmap)# match access-group acl1
Device(config-cmap)# exit
```

This example shows how to specify a list of physical ports to which an interface-level class map in a hierarchical policy map applies:

```
Device(config)# class-map match-any class4
Device(config-cmap)# match cos 4
Device(config-cmap)# exit
```

This example shows how to specify a range of physical ports to which an interface-level class map in a hierarchical policy map applies:

```
Device(config)# class-map match-any class4
Device(config-cmap)# match cos 4
Device(config-cmap)# exit
```

You can verify your settings by entering the `show class-map` privileged EXEC command.
policy-map

To create or modify a policy map that can be attached to multiple physical ports or switch virtual interfaces (SVIs) and to enter policy-map configuration mode, use the `policy-map` command in global configuration mode. Use the `no` form of this command to delete an existing policy map and to return to global configuration mode.

```
policy-map policy-map-name
no policy-map policy-map-name
```

Syntax Description

- `policy-map-name` Name of the policy map.

Command Default

No policy maps are defined.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

After entering the `policy-map` command, you enter policy-map configuration mode, and these configuration commands are available:

- `class`—Defines the classification match criteria for the specified class map.
- `description`—Describes the policy map (up to 200 characters).
- `exit`—Exits policy-map configuration mode and returns you to global configuration mode.
- `no`—Removes a previously defined policy map.
- `sequence-interval`—Enables sequence number capability.

To return to global configuration mode, use the `exit` command. To return to privileged EXEC mode, use the `end` command.

Before configuring policies for classes whose match criteria are defined in a class map, use the `policy-map` command to specify the name of the policy map to be created, added to, or modified. Entering the `policy-map` command also enables the policy-map configuration mode in which you can configure or modify the class policies for that policy map.

You can configure class policies in a policy map only if the classes have match criteria defined for them. To configure the match criteria for a class, use the `class-map` global configuration and `match` class-map configuration commands. You define packet classification on a physical-port basis.

Only one policy map per ingress port is supported. You can apply the same policy map to multiple physical ports.

You can apply a nonhierarchical policy maps to physical ports. A nonhierarchical policy map is the same as the port-based policy maps in the device.

A hierarchical policy map has two levels in the format of a parent-child policy. The parent policy cannot be modified but the child policy (port-child policy) can be modified to suit the QoS configuration.
In VLAN-based QoS, a service policy is applied to an SVI interface.

Note

Not all MQC QoS combinations are supported for wired ports. For information about these restrictions, see chapters "Restrictions for QoS on Wired Targets" in the QoS configuration guide.

Examples

This example shows how to create a policy map called policy1. When attached to the ingress port, it matches all the incoming traffic defined in class1, sets the IP DSCP to 10, and polices the traffic at an average rate of 1 Mb/s and bursts at 20 KB. Traffic less than the profile is sent.

```plaintext
Device(config)# policy-map policy1
Device(config-pmap)# class class1
Device(config-pmap-c)# set dscp 10
Device(config-pmap-c)# police 1000000 20000 conform-action transmit
Device(config-pmap-c)# exit
```

This example shows you how to configure hierarchical polices:

```plaintext
Device(config)# configure terminal
Device(config)# class-map c1
Device(config-cmap)# exit
Device(config)# class-map c2
Device(config-cmap)# exit
Device(config)# policy-map child
Device(config-pmap)# class c1
Device(config-pmap-c)# priority level 1
Device(config-pmap-c)# police rate percent 20 conform-action transmit exceed action drop
Device(config-pmap-c)# exit
Device(config-pmap-c)# class c2
Device(config-pmap-c)# bandwidth 20000
Device(config-pmap-c)# exit
Device(config-pmap-c)# class class-default
Device(config-pmap-c)# bandwidth 20000
Device(config-pmap-c)# exit
Device(config-pmap-c)# exit
Device(config)# policy-map parent
Device(config-pmap)# class class-default
Device(config-pmap-c)# shape average 1000000
Device(config-pmap-c)# service-policy child
Device(config-pmap-c)# end
```

This example shows how to delete a policy map:

```plaintext
Device(config)# no policy-map policymap2
```

You can verify your settings by entering the `show policy-map` privileged EXEC command.
priority

To assign priority to a class of traffic belonging to a policy map, use the `priority` command in policy-map class configuration mode. To remove a previously specified priority for a class, use the `no` form of this command.

```
```

Syntax Description

- **Kbps**
 - (Optional) Guaranteed allowed bandwidth, in kilobits per second (kbps), for the priority traffic. The amount of guaranteed bandwidth varies according to the interface and platform in use. Beyond the guaranteed bandwidth, the priority traffic will be dropped in the event of congestion to ensure that the nonpriority traffic is not starved. The value must be between 1 and 2,000,000 kbps.

- **burst-in-bytes**
 - (Optional) Burst size in bytes. The burst size configures the network to accommodate temporary bursts of traffic. The default burst value, which is computed as 200 milliseconds of traffic at the configured bandwidth rate, is used when the burst argument is not specified. The range of the burst is from 32 to 2000000 bytes.

- **level level-value**
 - (Optional) Assigns priority level. Available values for `level-value` are 1 and 2. Level 1 is a higher priority than Level 2. Level 1 reserves bandwidth and goes first, so latency is very low.

- **percent percentage**
 - (Optional) Specifies the amount of guaranteed bandwidth to be specified by the percent of available bandwidth.

Command Default

No priority is set.

Command Modes

Policy-map class configuration (config-pmap-c)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The bandwidth and priority commands cannot be used in the same class, within the same policy map. However, these commands can be used together in the same policy map.

When the policy map containing class policy configurations is attached to the interface to stipulate the service policy for that interface, available bandwidth is assessed. If a policy map cannot be attached to a particular interface because of insufficient interface bandwidth, the policy is removed from all interfaces to which it was successfully attached.
Example

The following example shows how to configure the priority of the class in policy map policy1:

```bash
Device(config)# class-map cm1
Device(config-cmap)# match precedence 2
Device(config-cmap)# exit

Device(config)# class-map cm2
Device(config-cmap)# match dscp 30
Device(config-cmap)# exit

Device(config)# policy-map policy1
Device(config-pmap)# class cm1
Device(config-pmap-c)# priority level 1
Device(config-pmap-c)# police 1m
Device(config-pmap-c-polic)# exit
Device(config-pmap-c)# exit

Device(config)# policy-map policy1
Device(config-pmap)# class cm2
Device(config-pmap-c)# priority level 2
Device(config-pmap-c)# police 1m
```
queue-buffers ratio

To configure the queue buffer for the class, use the `queue-buffers ratio` command in policy-map class configuration mode. Use the no form of this command to remove the ratio limit.

```
queue-buffers ratio  ratio limit
no queue-buffers ratio  ratio limit
```

Syntax Description

- `ratio limit` (Optional) Configures the queue buffer for the class. Enter the queue buffers ratio limit (0-100).

Command Default

No queue buffer for the class is defined.

Command Modes

Policy-map class configuration (config-pmap-c)

Command History

- **Release**
 - Cisco IOS XE Fuji 16.9.2
 - This command was introduced.

Usage Guidelines

Either the `bandwidth`, `shape`, or `priority` command must be used before using this command. For more information about these commands, see Cisco IOS Quality of Service Solutions Command Reference available on Cisco.com.

The device allows you to allocate buffers to queues. If buffers are not allocated, then they are divided equally amongst all queues. You can use the queue-buffer ratio to divide it in a particular ratio. The buffers are soft buffers because Dynamic Threshold and Scaling (DTS) is active on all queues by default.

Example

The following example sets the queue buffers ratio to 10 percent:

```
Device(config)# policy-map policy_queuebuf01
Device(config-pmap)# class-map class_queuebuf01
Device(config-cmap)# exit
Device(config)# policy policy_queuebuf01
Device(config-pmap)# class class_queuebuf01
Device(config-pmap-c)# bandwidth percent 80
Device(config-pmap-c)# queue-buffers ratio 10
Device(config-pmap-c)# end
```

You can verify your settings by entering the `show policy-map` privileged EXEC command.
queue-limit

To specify or modify the maximum number of packets the queue can hold for a class policy configured in a policy map, use the queue-limit policy-map class configuration command. To remove the queue packet limit from a class, use the no form of this command.

```
queue-limit queue-limit-size [packets] {cos cos-value | dscp dscp-value} percent percentage-of-packets
no queue-limit queue-limit-size [packets] {cos cos-value | dscp dscp-value} percent percentage-of-packets
```

Syntax Description

- `queue-limit-size`: The maximum size of the queue. The maximum varies according to the optional unit of measure keyword specified (bytes, ms, us, or packets).
- `cos cos-value`: Specifies parameters for each CoS value. CoS values are from 0 to 7.
- `dscp dscp-value`: Specifies parameters for each DSCP value. You can specify a value in the range 0 to 63 specifying the differentiated services code point value for the type of queue limit.
- `percent percentage-of-packets`: A percentage in the range 1 to 100 specifying the maximum percentage of packets that the queue for this class can accumulate.

Command Default

None

Command Modes

Policy-map class configuration (policy-map-c)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

Although visible in the command line help-strings, the packets unit of measure is not supported; use the percent unit of measure.

Note

This command is supported only on wired ports in the egress direction.

Weighted fair queuing (WFQ) creates a queue for every class for which a class map is defined. Packets satisfying the match criteria for a class accumulate in the queue reserved for the class until they are sent, which occurs when the queue is serviced by the fair queuing process. When the maximum packet threshold you defined for the class is reached, queuing of any further packets to the class queue causes tail drop.
You use queue limits to configure Weighted Tail Drop (WTD). WTD ensures the configuration of more than one threshold per queue. Each class of service is dropped at a different threshold value to provide for QoS differentiation.

You can configure the maximum queue thresholds for the different subclasses of traffic, that is, DSCP and CoS and configure the maximum queue thresholds for each subclass.

Example

The following example configures a policy map called port-queue to contain policy for a class called dscp-1. The policy for this class is set so that the queue reserved for it has a maximum packet limit of 20 percent:

```
Device(config)# policy-map policy1
Device(config-pmap)# class dscp-1
Device(config-pmap-c)# bandwidth percent 20
Device(config-pmap-c)# queue-limit dscp 1 percent 20
```
random-detect cos

To change the minimum and maximum packet thresholds for the Class of service (CoS) value, use the `random-detect cos` command in QoS policy-map class configuration mode. To return the minimum and maximum packet thresholds to the default for the CoS value, use the `no` form of this command.

```plaintext
random-detect cos cos-value percent min-threshold max-threshold
no random-detect cos cos-value percent min-threshold max-threshold
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cos-value</code></td>
<td>The CoS value, which is IEEE 802.1Q/ISL class of service/user priority value. The CoS value can be a number from 0 to 7.</td>
</tr>
<tr>
<td><code>percent</code></td>
<td>Specifies that the minimum and threshold values are in percentage.</td>
</tr>
<tr>
<td><code>min-threshold</code></td>
<td>Minimum threshold in number of packets. The value range of this argument is from 1 to 512000000. When the average queue length reaches the minimum threshold, Weighted Random Early Detection (WRED) randomly drop some packets with the specified CoS value.</td>
</tr>
<tr>
<td><code>max-threshold</code></td>
<td>Maximum threshold in number of packets. The value range of this argument is from the value of the <code>min-threshold</code> argument to 512000000. When the average queue length exceeds the maximum threshold, WRED or dWRED drop all packets with the specified CoS value.</td>
</tr>
</tbody>
</table>

Command Modes

QoS policy-map class configuration (config-pmap-c)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `random-detect cos` command in conjunction with the `random-detect` command in QoS policy-map class configuration mode.

The `random-detect cos` command is available only if you have specified the `cos-based` argument when using the `random-detect` command in interface configuration mode.

Examples

The following example enables WRED to use the CoS value 8. The minimum threshold for the CoS value 8 is 20, the maximum threshold is 40.

```plaintext
random-detect cos-based
random-detect cos percent 5 20 40
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random-detect</td>
<td>Enables WRED</td>
</tr>
</tbody>
</table>
random-detect cos-based

To enable weighted random early detection (WRED) on the basis of the class of service (CoS) value of a packet, use the `random-detect cos-based` command in policy-map class configuration mode. To disable WRED, use the `no` form of this command.

```
random-detect cos-based
no random-detect cos-based
```

Command Default

When WRED is configured, the default minimum and maximum thresholds are determined on the basis of output buffering capacity and the transmission speed for the interface.

Command Modes

Policy-map class configuration (config-pmap-c)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

In the following example, WRED is configured on the basis of the CoS value.

```
Device> enable
Device# configure terminal
Device(config)# policy-map policymap1
Device(config-pmap)# class class1
Device(config-pmap-c)# random-detect cos-based
Device(config-pmap-c)#
end
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>random-detect cos</code></td>
<td>Specifies the CoS value of a packet, the minimum and maximum thresholds, and the maximum probability denominator used for enabling WRED.</td>
</tr>
<tr>
<td><code>show policy-map</code></td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td><code>show policy-map interface</code></td>
<td>Displays the packet statistics of all classes that are configured for all service policies either on the specified interface or subinterface or on a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
random-detect dscp

To change the minimum and maximum packet thresholds for the differentiated services code point (DSCP) value, use the `random-detect dscp` command in QoS policy-map class configuration mode. To return the minimum and maximum packet thresholds to the default for the DSCP value, use the `no` form of this command.

```
random-detect dscp dscp-value percent min-threshold max-threshold
no random-detect dscp dscp-value percent min-threshold max-threshold
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp-value</td>
<td>The DSCP value. The DSCP value can be a number from 0 to 63, or it can be one of the following keywords: af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, cs1, cs2, cs3, cs4, cs5, cs7, ef, or rsvp.</td>
</tr>
<tr>
<td>percent</td>
<td>Specifies that the minimum and threshold values are in percentage.</td>
</tr>
<tr>
<td>min-threshold</td>
<td>Minimum threshold in number of packets. The value range of this argument is from 1 to 512000000. When the average queue length reaches the minimum threshold, Weighted Random Early Detection (WRED) randomly drop some packets with the specified DSCP value.</td>
</tr>
<tr>
<td>max-threshold</td>
<td>Maximum threshold in number of packets. The value range of this argument is from the value of the min-threshold argument to 512000000. When the average queue length exceeds the maximum threshold, WRED or dWRED drop all packets with the specified DSCP value.</td>
</tr>
</tbody>
</table>

Command Modes

- **QoS policy-map class configuration (config-pmap-c)**

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `random-detect dscp` command in conjunction with the `random-detect` command in QoS policy-map class configuration mode.

The `random-detect dscp` command is available only if you specified the `dscp-based` argument when using the `random-detect` command in interface configuration mode.

Specifying the DSCP Value

The `random-detect dscp` command allows you to specify the DSCP value per traffic class. The DSCP value can be a number from 0 to 63, or it can be one of the following keywords: af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, cs1, cs2, cs3, cs4, cs5, cs7, ef, or rsvp.

On a particular traffic class, eight DSCP values can be configured per traffic class. Overall, 29 values can be configured on a traffic class: 8 precedence values, 12 Assured Forwarding (AF) code points, 1 Expedited Forwarding code point, and 8 user-defined DSCP values.
Assured Forwarding Code Points

The AF code points provide a means for a domain to offer four different levels (four different AF classes) of forwarding assurances for IP packets received from other (such as customer) domains. Each one of the four AF classes is allocated a certain amount of forwarding services (buffer space and bandwidth).

Within each AF class, IP packets are marked with one of three possible drop precedence values (binary 2 \{010\}, 4 \{100\}, or 6 \{110\}), which exist as the three lowest bits in the DSCP header. In congested network environments, the drop precedence value of the packet determines the importance of the packet within the AF class. Packets with higher drop precedence values are discarded before packets with lower drop precedence values.

The upper three bits of the DSCP value determine the AF class; the lower three values determine the drop probability.

Examples

The following example enables WRED to use the DSCP value 8. The minimum threshold for the DSCP value 8 is 20, the maximum threshold is 40, and the mark probability is 1/10.

```
random-detect dscp percent 8 20 40
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random-detect</td>
<td>Enables WRED</td>
</tr>
</tbody>
</table>
random-detect dscp-based

To base weighted random early detection (WRED) on the Differentiated Services Code Point (dscp) value of a packet, use the `random-detect dscp-based` command in policy-map class configuration mode. To disable this feature, use the `no` form of this command.

```
random-detect dscp-based
no random-detect dscp-based
```

Syntax Description

This command has no arguments or keywords.

Command Default

WRED is disabled by default.

Command Modes

Policy-map class configuration (config-pmap-c)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

With the `random-detect dscp-based` command, WRED is based on the dscp value of the packet.

Use the `random-detect dscp-based` command before configuring the `random-detect dscp` command.

Examples

The following example shows that random detect is based on the precedence value of a packet:

```
Device> enable
Device# configure terminal
Device(config)#

policy-map policy1
Device(config-pmap)# class class1
Device(config-pmap-c)# bandwidth percent 80
Device(config-pmap-c)# random-detect dscp-based
Device(config-pmap-c)# random-detect dscp 2 percent 10 40
Device(config-pmap-c)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random-detect</td>
<td>Enables WRED.</td>
</tr>
<tr>
<td>random-detect dscp</td>
<td>Configures the WRED parameters for a particular DSCP value for a class policy in a policy map.</td>
</tr>
</tbody>
</table>
random-detect precedence

To configure Weighted Random Early Detection (WRED) parameters for a particular IP precedence for a class policy in a policy map, use the random-detect precedence command in QoS policy-map class configuration mode. To return the values to the default for the precedence, use the no form of this command.

random-detect precedence precedence percent min-threshold max-threshold

no random-detect precedence

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>precedence</td>
<td>IP precedence number. The value range is from 0 to 7; see Table 1 in the “Usage Guidelines” section.</td>
</tr>
<tr>
<td>percent</td>
<td>Indicates that the threshold values are in percentage.</td>
</tr>
<tr>
<td>min-threshold</td>
<td>Minimum threshold in number of packets. The value range of this argument is from 1 to 512000000. When the average queue length reaches the minimum threshold, WRED randomly drops some packets with the specified IP precedence.</td>
</tr>
<tr>
<td>max-threshold</td>
<td>Maximum threshold in number of packets. The value range of this argument is from the value of the min-threshold argument to 512000000. When the average queue length exceeds the maximum threshold, WRED or dWRED drop all packets with the specified IP precedence.</td>
</tr>
</tbody>
</table>

Command Default

The default min-threshold value depends on the precedence. The min-threshold value for IP precedence 0 corresponds to half of the max-threshold value. The values for the remaining precedences fall between half the max-threshold value and the max-threshold value at evenly spaced intervals. See the table in the “Usage Guidelines” section of this command for a list of the default minimum threshold values for each IP precedence.

Command Modes

- Interface configuration (config-if)
- QoS policy-map class configuration (config-pmap-c)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

WRED is a congestion avoidance mechanism that slows traffic by randomly dropping packets when congestion exists.

When you configure the random-detect command on an interface, packets are given preferential treatment based on the IP precedence of the packet. Use the random-detect precedence command to adjust the treatment for different precedences.

If you want WRED to ignore the precedence when determining which packets to drop, enter this command with the same parameters for each precedence. Remember to use appropriate values for the minimum and maximum thresholds.

Note that if you use the random-detect precedence command to adjust the treatment for different precedences within class policy, you must ensure that WRED is not configured for the interface to which you attach that service policy.
Although the range of values for the `min-threshold` and `max-threshold` arguments is from 1 to 512000000, the actual values that you can specify depend on the type of random detect you are configuring. For example, the maximum threshold value cannot exceed the queue limit.

Examples

The following example shows the configuration to enable WRED on the interface and to specify parameters for the different IP precedences:

```plaintext
interface FortyGigE1/0/1
description 45Mbps to R1
ip address 10.200.14.250 255.255.255.252
random-detect
random-detect precedence 7 percent 20 50
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bandwidth(policy-map class)</code></td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map.</td>
<td></td>
</tr>
<tr>
<td><code>random-detect dscp</code></td>
<td>Changes the minimum and maximum packet thresholds for the DSCP value.</td>
<td></td>
</tr>
<tr>
<td><code>show policy-map interface</code></td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
<td></td>
</tr>
<tr>
<td><code>show queuing</code></td>
<td>Lists all or selected configured queuing strategies.</td>
<td></td>
</tr>
</tbody>
</table>
random-detect precedence-based

To base weighted random early detection (WRED) on the precedence value of a packet, use the `random-detect precedence-based` command in policy-map class configuration mode. To disable this feature, use the `no` form of this command.

```
random-detect precedence-based
no random-detect precedence-based
```

Syntax Description

This command has no arguments or keywords.

Command Default

WRED is disabled by default.

Command Modes

Policy-map class configuration (config-pmap-c)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

With the `random-detect precedence-based` command, WRED is based on the IP precedence value of the packet.

Use the `random-detect precedence-based` command before configuring the `random-detect precedence-based` command.

Examples

The following example shows that random detect is based on the precedence value of a packet:

```
Device> enable
Device# configure terminal
Device(config)#

policy-map policy1
Device(config-pmap)# class class1
Device(config-pmap-c)# bandwidth percent 80
Device(config-pmap-c)# random-detect precedence-based
Device(config-pmap-c)# random-detect precedence 2 percent 30 50
Device(config-pmap-c)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random-detect</td>
<td>Enables WRED.</td>
</tr>
<tr>
<td>random-detect precedence</td>
<td>Configures the WRED parameters for a particular IP precedence for a class policy in a policy map.</td>
</tr>
</tbody>
</table>
service-policy (Wired)

To apply a policy map to a physical port or a switch virtual interface (SVI), use the `service-policy` command in interface configuration mode. Use the `no` form of this command to remove the policy map and port association.

```
service-policy {input | output} policy-map-name
no service-policy {input | output} policy-map-name
```

Syntax Description
- `input policy-map-name` Apply the specified policy map to the input of a physical port or an SVI.
- `output policy-map-name` Apply the specified policy map to the output of a physical port or an SVI.

Command Default
No policy maps are attached to the port.

Command Modes
WLAN interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A policy map is defined by the `policy map` command.

Only one policy map is supported per port, per direction. In other words, only one input policy and one output policy is allowed on any one port.

You can apply a policy map to incoming traffic on a physical port or on an SVI.

Examples

This example shows how to apply plcmap1 to an physical ingress port:

```
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# service-policy input plcmap1
```

This example shows how to remove plcmap2 from a physical port:

```
Device(config)# interface gigabitethernet 2/0/2
Device(config-if)# no service-policy input plcmap2
```

The following example displays a VLAN policer configuration. At the end of this configuration, the VLAN policy map is applied to an interface for QoS:

```
Device# configure terminal
Device(config)# class-map vlan100
Device(config-cmap)# match vlan 100
Device(config-cmap)# exit
Device(config)# policy-map vlan100
Device(config-pmap)# policy-map class vlan100
Device(config-pmap-c)# police 100000 bc conform-action transmit exceed-action drop
Device(config-pmap-c-police)# end
Device# configure terminal
```
Device(config)# interface gigabitethernet 1/0/5
Device(config-if)# service-policy input vlan100

You can verify your settings by entering the `show running-config` privileged EXEC command.
To classify IP traffic by setting a Differentiated Services Code Point (DSCP) or an IP-precedence value in the packet, use the **set** command in policy-map class configuration mode. Use the **no** form of this command to remove traffic classification.

```plaintext
set
cos | dscp | precedence | ip | qos-group
set cos
  {cos-value} | {cos | dscp | precedence | qos-group} [{table table-map-name}]
set dscp
  {dscp-value} | {cos | dscp | precedence | qos-group} [{table table-map-name}]
set ip {dscp | precedence}
set precedence {precedence-value} | {cos | dscp | precedence | qos-group} [{table table-map-name}]
set qos-group
  {qos-group-value | dscp} [{table table-map-name}] | precedence [{table table-map-name}]}
```
Syntax Description

<table>
<thead>
<tr>
<th>cos</th>
<th>Set the Layer 2 class of service (CoS) value or user priority of an outgoing packet. You can specify these values:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• cos-value—CoS value from 0 to 7. You also can enter a mnemonic name for a commonly used value.</td>
</tr>
<tr>
<td></td>
<td>• Specify a packet-marking category to set the CoS value of the packet. If you also configure a table map for mapping and converting packet-marking values, this establishes the "map from" packet-marking category. Packet-marking category keywords:</td>
</tr>
<tr>
<td></td>
<td>• cos—Sets a value from the CoS value or user priority.</td>
</tr>
<tr>
<td></td>
<td>• dscp—Sets a value from packet differentiated services code point (DSCP).</td>
</tr>
<tr>
<td></td>
<td>• precedence—Sets a value from packet precedence.</td>
</tr>
<tr>
<td></td>
<td>• qos-group—Sets a value from the QoS group.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) table table-map-name—Indicates that the values set in a specified table map are used to set the CoS value. Enter the name of the table map used to specify the CoS value. The table map name can be a maximum of 64 alphanumeric characters.</td>
</tr>
<tr>
<td></td>
<td>If you specify a packet-marking category but do not specify the table map, the default action is to copy the value associated with the packet-marking category as the CoS value. For example, if you enter the set cos precedence command, the precedence (packet-marking category) value is copied and used as the CoS value.</td>
</tr>
</tbody>
</table>
dscp

Sets the differentiated services code point (DSCP) value to mark IP(v4) and IPv6 packets. You can specify these values:

- **cos-value**—Number that sets the DSCP value. The range is from 0 to 63. You also can enter a mnemonic name for a commonly used value.

- Specify a packet-marking category to set the DSCP value of the packet. If you also configure a table map for mapping and converting packet-marking values, this establishes the "map from" packet-marking category. Packet-marking category keywords:
 - **cos**—Sets a value from the CoS value or user priority.
 - **dscp**—Sets a value from packet differentiated services code point (DSCP).
 - **precedence**—Sets a value from packet precedence.
 - **qos-group**—Sets a value from the QoS group.

- (Optional) **table** *table-map-name*—Indicates that the values set in a specified table map will be used to set the DSCP value. Enter the name of the table map used to specify the DSCP value. The table map name can be a maximum of 64 alphanumeric characters.

If you specify a packet-marking category but do not specify the table map, the default action is to copy the value associated with the packet-marking category as the DSCP value. For example, if you enter the **set dscp cos** command, the CoS value (packet-marking category) is copied and used as the DSCP value.

ip

Sets IP values to the classified traffic. You can specify these values:

- **dscp**—Specify an IP DSCP value from 0 to 63 or a packet marking category.

- **precedence**—Specify a precedence-bit value in the IP header; valid values are from 0 to 7 or specify a packet marking category.
precedence

Sets the precedence value in the packet header. You can specify these values:

- **precedence-value**—Sets the precedence bit in the packet header; valid values are from 0 to 7. You also can enter a mnemonic name for a commonly used value.

- Specify a packet marking category to set the precedence value of the packet.
 - **cos**—Sets a value from the CoS or user priority.
 - **dscp**—Sets a value from packet differentiated services code point (DSCP).
 - **precedence**—Sets a value from packet precedence.
 - **qos-group**—Sets a value from the QoS group.

- (Optional) **table table-map-name**—Indicates that the values set in a specified table map will be used to set the precedence value. Enter the name of the table map used to specify the precedence value. The table map name can be a maximum of 64 alphanumeric characters.

If you specify a packet-marking category but do not specify the table map, the default action is to copy the value associated with the packet-marking category as the precedence value. For example, if you enter the **set precedence cos** command, the CoS value (packet-marking category) is copied and used as the precedence value.
qos-group

Assigns a QoS group identifier that can be used later to classify packets.

- **qos-group-value**—Sets a QoS value to the classified traffic. The range is 0 to 31. You also can enter a mnemonic name for a commonly used value.

- **dscp**—Sets the original DSCP field value of the packet as the QoS group value.

- **precedence**—Sets the original precedence field value of the packet as the QoS group value.

- **(Optional) table table-map-name**—Indicates that the values set in a specified table map will be used to set the DSCP or precedence value. Enter the name of the table map used to specify the value. The table map name can be a maximum of 64 alphanumeric characters.

If you specify a packet-marking category (dscp or precedence) but do not specify the table map, the default action is to copy the value associated with the packet-marking category as the QoS group value. For example, if you enter the `set qos-group precedence` command, the precedence value (packet-marking category) is copied and used as the QoS group value.

Command Default

No traffic classification is defined.

Command Modes

Policy-map class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For the `set dscp dscp-value` command, the `set cos cos-value` command, and the `set ip precedence precedence-value` command, you can enter a mnemonic name for a commonly used value. For example, you can enter the `set dscp af11` command, which is the same as entering the `set dscp 10` command. You can enter the `set ip precedence critical` command, which is the same as entering the `set ip precedence 5` command. For a list of supported mnemonics, enter the `set dscp ?` or the `set ip precedence ?` command to see the command-line help strings.

When you configure the `set dscp cos` command, note the following: The CoS value is a 3-bit field, and the DSCP value is a 6-bit field. Only the three bits of the CoS field are used.

When you configure the `set dscp qos-group` command, note the following:

- The valid range for the DSCP value is a number from 0 to 63. The valid value range for the QoS group is a number from 0 to 99.

- If a QoS group value falls within both value ranges (for example, 44), the packet-marking value is copied and the packets is marked.
• If QoS group value exceeds the DSCP range (for example, 77), the packet-marking value is not be copied and the packet is not marked. No action is taken.

The `set qos-group` command cannot be applied until you create a service policy in policy-map configuration mode and then attach the service policy to an interface or ATM virtual circuit (VC).

To return to policy-map configuration mode, use the `exit` command. To return to privileged EXEC mode, use the `end` command.

Examples

This example shows how to assign DSCP 10 to all FTP traffic without any policers:

```
Device(config)# policy-map policy_ftp
Device(config-pmap)# class-map ftp_class
Device(config-cmap)# exit
Device(config)# policy policy_ftp
Device(config-pmap)# class ftp_class
Device(config-pmap-c)# set dscp 10
Device(config-pmap-c)# exit
```

You can verify your settings by entering the `show policy-map` privileged EXEC command.
show auto qos

To display the quality of service (QoS) commands entered on the interfaces on which automatic QoS (auto-QoS) is enabled, use the `show auto qos` command in privileged EXEC mode.

```plaintext
show auto qos [interface [interface-id]]
```

Syntax Description

- **interface [interface-id]**

 (Optional) Displays auto-QoS information for the specified port or for all ports. Valid interfaces include physical ports.

Command Modes

- User EXEC
- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show auto qos` command output shows only the `auto qos` command entered on each interface. The `show auto qos interface interface-id` command output shows the `auto qos` command entered on a specific interface.

Use the `show running-config` privileged EXEC command to display the auto-QoS configuration and the user modifications.

Examples

This is an example of output from the `show auto qos` command after the `auto qos voip cisco-phone` and the `auto qos voip cisco-softphone` interface configuration commands are entered:

```
Device# show auto qos
Gigabitethernet 2/0/4
  auto qos voip cisco-softphone

Gigabitethernet 2/0/5
  auto qos voip cisco-phone

Gigabitethernet 2/0/6
  auto qos voip cisco-phone
```

This is an example of output from the `show auto qos interface interface-id` command when the `auto qos voip cisco-phone` interface configuration command is entered:

```
Device# show auto qos interface Gigabitethernet 2/0/5
Gigabitethernet 2/0/5
  auto qos voip cisco-phone
```

These are examples of output from the `show auto qos interface interface-id` command when auto-QoS is disabled on an interface:

```
Device# show auto qos interface Gigabitethernet 3/0/1
```
AutoQoS is disabled
show class-map

To display quality of service (QoS) class maps, which define the match criteria to classify traffic, use the `show class-map` command in EXEC mode.

```
show class-map [class-map-name | type control subscriber {all | class-map-name}]
```

Syntax Description

- `class-map-name` (Optional) Class map name.
- `type control subscriber` (Optional) Displays information about control class maps.
- `all` (Optional) Displays information about all control class maps.

Command Modes

- User EXEC
- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This is an example of output from the `show class-map` command:

```
Device# show class-map
Class Map match-any videowizard_10-10-10-10 (id 2)
    Match access-group name videowizard_10-10-10-10

Class Map match-any class-default (id 0)
    Match any

Class Map match-any dscp5 (id 3)
    Match ip dscp 5
```
show platform hardware fed switch

To display device-specific hardware information, use the `show platform hardware fed switch switch_number` command.

This topic elaborates only the QoS-specific options, that is, the options available with the `show platform hardware fed switch {switch_num | active | standby} qos` command.

`show platform hardware fed switch {switch_num | active | standby} qos {afd | {config type type | [{asic asic_num}] | stats clients {all | bssid id | wlanid id} | dscp-cos counters {iifd_id id | interface type number} | le-info | {iifd_id id | interface type number} | policer config {iifd_id id | interface type number} | queue | {config | {iifd_id id | interface number | internal port-type type {asic number [{port_num}]}} | label2qmap | [{aqmrepqostbl | iqslabeltable | sqslabeltable}] | {asicnumber} | stats | {iifd_id id | interface type number | internal {cpu policer | port-type type asic number} {asicnumber [{port_num}]}} | resource}`

Syntax Description

| switch | {switch_num | active | standby } | Switch for which you want to display information. You have the following options: |
|--------|----------------|---|
| | switch_num—ID of the switch. | |
| | active—Displays information relating to the active switch. | |
| | standby—Displays information relating to the standby switch, if available. | |

<table>
<thead>
<tr>
<th>qos</th>
<th>Displays QoS hardware information. You must choose from the following options:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• afd—Displays Approximate Fair Drop (AFD) information in hardware.</td>
</tr>
<tr>
<td></td>
<td>• dscp-cos—Displays information dscp-cos counters for each port.</td>
</tr>
<tr>
<td></td>
<td>• leinfo—Displays logical entity information.</td>
</tr>
<tr>
<td></td>
<td>• policer—Displays QoS policer information in hardware.</td>
</tr>
<tr>
<td></td>
<td>• queue—Displays queue information in hardware.</td>
</tr>
<tr>
<td></td>
<td>• resource—Displays hardware resource information.</td>
</tr>
</tbody>
</table>

| afd | {config type | stats client } | You must choose from the options under `config type` or `stats client`: |
|-----|----------------|---|
| config type: | | |
| • client—Displays wireless client information |
| • port—Displays port-specific information |
| • radio—Displays wireless radio information |
| • ssid—Displays wireless SSID information |

| stats client : | |
| • all—Displays statistics of all client. |
| • bssid—Valid range is from 1 to 4294967295. |
| • wlanid—Valid range is from to 1 4294967295 |
| asicasic_num | (Optional) ASIC number. Valid range is from 0 to 255. |
| dscp-cos counters { iif_id id | interface type number } | Displays per port dscp-cos counters. You must choose from the following options under dscp-cos counters:
 - iif_id id—The target interface ID. Valid range is from 1 to 4294967295.
 - interface type number—Target interface type and ID. |
| leinfo | You must choose from the following options under dscp-cos counters:
 - iif_id id—The target interface ID. Valid range is from 1 to 4294967295.
 - interface type number—Target interface type and ID. |
| policer config | Displays configuration information related to policers in hardware. You must choose from the following options:
 - iif_id id—The target interface ID. Valid range is from 1 to 4294967295.
 - interface type number—Target interface type and ID. |
| queue { config { iif_id id | interface type number | internal } | label2qmap | stats } | Displays queue information in hardware. You must choose from the following options:
 - config—Configuration information. You must choose from the following options:
 - iif_id id—The target interface ID. Valid range is from 1 to 4294967295.
 - interface type number—Target interface type and ID.
 - internal—Displays internal queue related information.
 - label2qmap—Displays hardware label to queue mapping information. You can choose from the following options:
 - (Optional) aqmrepqostbl—AQM REP QoS label table lookup.
 - (Optional) iqslabeltable—IQS QoS label table lookup.
 - (Optional) sqslabeltable—SQS and local QoS label table lookup.
 - stats—Displays queue statistics. You must choose from the following options:
 - iif_id id—The target interface ID. Valid range is from 1 to 4294967295.
 - interface type number—Target interface type and ID.
 - internal { cpu policer | port_type port_type asic asic_num [port_num port_num] }—Displays internal queue related information. |
| resource | Displays hardware resource usage information. You must enter the following keyword: usage |
This is an example of output from the `show platform hardware fed switch switch_number qos queue stats internal cpu policer` command:

```
Device# show platform hardware fed switch 3 qos queue stats internal cpu policer

<table>
<thead>
<tr>
<th>QId</th>
<th>PlcIdx</th>
<th>Queue Name</th>
<th>Enabled</th>
<th>Rate</th>
<th>Rate</th>
<th>Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>DOT1X Auth</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>L2 Control</td>
<td>No</td>
<td>500</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>Forus traffic</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>ICMP GEN</td>
<td>Yes</td>
<td>200</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Routing Control</td>
<td>Yes</td>
<td>1800</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>Forus Address resolution</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>ICMP Redirect</td>
<td>No</td>
<td>500</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>WLESS PRI-5</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>WLESS PRI-1</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>WLESS PRI-2</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>WLESS PRI-3</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>WLESS PRI-4</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>BROADCAST</td>
<td>Yes</td>
<td>200</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>Learning cache ovfl</td>
<td>Yes</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>Sw forwarding</td>
<td>Yes</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>Topology Control</td>
<td>No</td>
<td>13000</td>
<td>13000</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>Proto Snooping</td>
<td>No</td>
<td>500</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>DHCP Snooping</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>Transit Traffic</td>
<td>Yes</td>
<td>500</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>RPF Failed</td>
<td>Yes</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>MCAST END STATION</td>
<td>Yes</td>
<td>2000</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>LOGGING</td>
<td>Yes</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>Punt Webauth</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>Crypto Control</td>
<td>Yes</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>Exception</td>
<td>Yes</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>General Punt</td>
<td>No</td>
<td>500</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>10</td>
<td>NFL SAMPLED DATA</td>
<td>Yes</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>SGT Cache Full</td>
<td>Yes</td>
<td>1800</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>10</td>
<td>EGR Exception</td>
<td>Yes</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>16</td>
<td>Show frwd</td>
<td>No</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>9</td>
<td>MCAST Data</td>
<td>Yes</td>
<td>500</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>10</td>
<td>Gold Pkt</td>
<td>Yes</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
```
show platform software fed switch qos

To display device-specific software information, use the `show platform hardware fed switch switch_number` command.

This topic elaborates only the QoS-specific options available with the `show platform software fed switch {switch_num | active | standby} qos` command.

`show platform software fed switch {switch number | active | standby} qos {avc | internal | label2qmap | nflqos | policer | policy | qsb | tablemap}`

Syntax Description

<table>
<thead>
<tr>
<th>switch</th>
<th>The device for which you want to display information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>`{switch_num</td>
<td>active</td>
</tr>
<tr>
<td></td>
<td>• <code>switch_num</code>—Enter the switch ID. Displays information for the specified switch.</td>
</tr>
<tr>
<td></td>
<td>• <code>active</code>—Displays information for the active switch.</td>
</tr>
<tr>
<td></td>
<td>• <code>standby</code>—Displays information for the standby switch, if available.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>qos</th>
<th>Displays QoS software information. Choose one the following options:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>avc</code></td>
<td>Displays Application Visibility and Control (AVC) QoS information.</td>
</tr>
<tr>
<td><code>internal</code></td>
<td>Displays internal queue-related information.</td>
</tr>
<tr>
<td><code>label2qmap</code></td>
<td>Displays label to queue map table information.</td>
</tr>
<tr>
<td><code>nflqos</code></td>
<td>Displays NetFlow QoS information.</td>
</tr>
<tr>
<td><code>policer</code></td>
<td>Displays QoS policer information in hardware.</td>
</tr>
<tr>
<td><code>policy</code></td>
<td>Displays QoS policy information.</td>
</tr>
<tr>
<td><code>qsb</code></td>
<td>Displays QoS sub-block information.</td>
</tr>
<tr>
<td><code>tablemap</code></td>
<td>Displays table mapping information for QoS egress and ingress queues.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
show platform software fed switch qos qsb

To display QoS sub-block information, use the `show platform software fed switch switch_number qos qsb` command.

```
show platform software fed switch {switch number | active | standby} qos qsb \b {\{all | type | \{client client_id | port port_number | radio radio_type | ssid ssid\}} | iif_id | interface | \{Auto-Template interface_number | BDI interface_number | Capwap interface_number | GigabitEthernet interface_number | InternalInterface interface_number | Loopback interface_number | Null interface_number | Port-channel interface_number | TenGigabitEthernet interface_number | Tunnel interface_number | Vlan interface_number\}
```

Syntax Description

<table>
<thead>
<tr>
<th>switch</th>
<th>The switch for which you want to display information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{switch_num</td>
<td>active</td>
</tr>
<tr>
<td>active</td>
<td>• <code>active</code>—Displays information for the active switch.</td>
</tr>
<tr>
<td>standby</td>
<td>• <code>standby</code>—Displays information for the standby switch, if available.</td>
</tr>
</tbody>
</table>

| qos qsb | Displays QoS sub-block software information. |
qsb {brief | iif_id | brief interface}

- all—Displays information for all client.
- type—Displays qsb information for the specified target type:
 - client—Displays QoS qsb information for wireless clients
 - port—Displays port-specific information
 - radio—Displays QoS qsb information for wireless radios
 - ssid—Displays QoS qsb information for wireless networks

iif_id—Displays information for the iif_ID

interface—Displays QoS qsb information for the specified interface:
- Auto-Template—Auto-template interface between 1 and 999.
- BDI—Bridge-domain interface between 1 and 16000.
- Capwap—CAPWAP interface between 0 and 2147483647.
- GigabitEthernet—GigabitEthernet interface between 0 and 9.
- InternalInterface—Internal interface between 0 and 9.
- Loopback—Loopback interface between 0 and 2147483647.
- Null—Null interface 0-0
- Port-Channel—Port-channel interface between 1 and 128.
- TenGigabitEthernet—TenGigabitEthernet interface between 0 and 9.
- Tunnel—Tunnel interface between 0 and 2147483647.
- Vlan—VLAN interface between 1 and 4094.

Command Modes

User EXEC
Privileged EXEC

Command History

This command was introduced.

This is an example of the output for the show platform software fed switch switch_number qos qsb command

Device# sh pl so fed sw 3 qos qsb interface g3/0/2

QoS subblock information:
Name:GigabitEthernet3/0/2 iif_id:0x0000000000007b iif_type:ETHER(146)
qsb ptr:0xffd8573350
Port type - Wired port
asic_num:0 is_uplink:false init_done:true
FRU events: Active-0, Inactive-0
def_qos_label:0 def_le_priority:13
trust_enabled:false trust_type:TRUST_DSCP ifm_trust_type:1
Stats (plc,q) export counters: (in/out): 0/0

Policy Info:
Ingress Policy: pmap::{(0xffd8685180,AutoQos-4.0-CiscoPhone-Input-Policy,1083231504,)}
tcg::{0xffd867ad10,GigabitEthernet3/0/2 tgt(0x7b,IN) level:0 num_tccg:4 num_child:0},
status:VALID,SET_INHW

Egress Policy: pmap::{(0xffd86857d0,AutoQos-4.0-Output-Policy,1076629088,)}
tcg::{0xffd8685b40,GigabitEthernet3/0/2 tgt(0x7b,OUT) level:0 num_tccg:8 num_child:0},
status:VALID,SET_INHW

TCG(in,out):(0xffd867ad10, 0xffd8685b40) le_label_id(in,out):(2, 1)

Policer Info:
num_ag_policers(in,out): ([0,0], [0,0])
num_mf_policers(in,out): (0,0)
num_sfd_policers:0
[ag_pclc_handle(in,out) = (0xd8688220,0)]
[mf_pclc_handle(in,out)={nil},{nil}] num_mf_policers:0,0
base: (0xffffffff,0xffffffff) rc:(0,0)

Queueing Info:
def_queueing = 0, shape_rate:0 interface_rate_kbps:1000000
Port shaper:false
lbl_to_qmap_index:1

Physical qparams:
Queue Config: NodeType:Physical Id:0x40000049 parent:0x40000049 qid:0 attr:0x1 defq:0
PARAMS: Excess Ratio:1 Min Cir:1000000 qBuffer:0
Queue Limit Type:Single Unit:Percent Queue Limit:44192
SHARED Queue
show policy-map

To display quality of service (QoS) policy maps, which define classification criteria for incoming traffic, use the `show policy-map` command in EXEC mode.

```
show policy-map [policy-map-name | interface interface-id]
```

Syntax Description

- `policy-map-name` (Optional) Name of the policy-map.
- `interface interface-id` (Optional) Displays the statistics and the configurations of the input and output policies that are attached to the interface.

Command Modes

User EXEC
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Policy maps can include policers that specify the bandwidth limitations and the action to take if the limits are exceeded.

Note

Though visible in the command-line help string, the `control-plane`, `session`, and `type` keywords are not supported, and the statistics shown in the display should be ignored.

This is an example of the output for the `show policy-map interface` command.

```
Device# show policy-map interface gigabitethernet 1/0/48

Service-policy output: port_shape_parent

    Class-map: class-default (match-any)
            191509734 packets
            Match: any
            Queueing

            (total drops) 524940551420
            (bytes output) 14937264500
            shape (average) cir 250000000, bc 2500000, be 2500000
            target shape rate 250000000

            Service-policy : child_trip_play

            queue stats for all priority classes:
            Queueing
            priority level 1
```
(total drops) 524940551420
(bytes output) 14937180648

queue stats for all priority classes:
Queueing
priority level 2

(total drops) 0
(bytes output) 0

Class-map: dscp56 (match-any)
191508445 packets
Match: dscp cs7 (56)
0 packets, 0 bytes
5 minute rate 0 bps
Priority: Strict,
Priority Level: 1
police:
 cir 10 %
 cir 25000000 bps, bc 781250 bytes
conformed 0 bytes; actions: >>>>>counters not supported
transmit
exceeded 0 bytes; actions: drop
conformed 0000 bps, exceeded 0000 bps >>>>>counters not supported
show tech-support qos

To display quality of service (QoS)-related information for use by technical support, use the `show tech-support qos` command in privileged EXEC mode.

```
show tech-support qos [ { switch { switch-number | active | all | standby } | [ { control-plane | interface { interface-name | all } ] } ] ]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>switch switch-number</th>
<th>(Optional) Displays QoS-related information for a specific switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>active</td>
<td>(Optional) Displays QoS-related information for the active instance of the switch.</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>(Optional) Displays QoS-related information for all instances of the switch.</td>
</tr>
<tr>
<td></td>
<td>standby</td>
<td>(Optional) Displays QoS-related information for the standby instance of the switch.</td>
</tr>
<tr>
<td></td>
<td>control-plane</td>
<td>(Optional) Displays QoS-related information for the control-plane.</td>
</tr>
<tr>
<td></td>
<td>interface interface-name</td>
<td>(Optional) Displays QoS-related information for a specified interface.</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>(Optional) Displays QoS-related information for all interfaces.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output of this command is very long. To better manage this output, you can redirect the output to an external file (for example, `show tech-support qos | redirect flash: filename`) in the local writable storage file system or remote file system.

The output of the `show tech-support qos` command displays a list of commands and their output. These commands differ based on the platform.

Examples

The following is sample output from the `show tech-support qos` command:

```
Device# show tech-support qos
```

```
```
TCG summary for policy: system-cpp-policy

<table>
<thead>
<tr>
<th>Loc</th>
<th>Interface</th>
<th>IIF-ID</th>
<th>Dir</th>
<th>tccg</th>
<th>#m/p/q</th>
<th>State: (cfg, opr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>?:255</td>
<td>Control Plane</td>
<td>0x0000000100000100</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4da31c8</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-0</td>
<td>0x000000010000010000d</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4da41e8</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-1</td>
<td>0x000000010000010000e</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dbee8</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-2</td>
<td>0x000000010000010000f</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dc2f8</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-3</td>
<td>0x0000000100000100010</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dc6e8</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-4</td>
<td>0x0000000100000100011</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dc8e18</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-5</td>
<td>0x0000000100000100012</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-6</td>
<td>0x0000000100000100013</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-7</td>
<td>0x0000000100000100014</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-8</td>
<td>0x0000000100000100015</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-9</td>
<td>0x0000000100000100016</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-10</td>
<td>0x0000000100000100017</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-11</td>
<td>0x0000000100000100018</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-12</td>
<td>0x0000000100000100019</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-13</td>
<td>0x000000010000010001a</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-14</td>
<td>0x000000010000010001b</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-15</td>
<td>0x000000010000010001c</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-16</td>
<td>0x000000010000010001d</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-17</td>
<td>0x000000010000010001e</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-18</td>
<td>0x000000010000010001f</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-19</td>
<td>0x0000000100000100020</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-20</td>
<td>0x0000000100000100021</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-21</td>
<td>0x0000000100000100022</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-22</td>
<td>0x0000000100000100023</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-23</td>
<td>0x0000000100000100024</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-24</td>
<td>0x0000000100000100025</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-25</td>
<td>0x0000000100000100026</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-26</td>
<td>0x0000000100000100027</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-27</td>
<td>0x0000000100000100028</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-28</td>
<td>0x0000000100000100029</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-29</td>
<td>0x0000000100000100030</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-30</td>
<td>0x0000000100000100031</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
<tr>
<td>?:0</td>
<td>CoPP-Queue-31</td>
<td>0x0000000100000100032</td>
<td>OUT</td>
<td>22</td>
<td>0</td>
<td>0/17/0, VALID, SET_INHW, 0xffe4dce528</td>
</tr>
</tbody>
</table>

Policymap Summary: (counters)

<table>
<thead>
<tr>
<th>CGID</th>
<th>Classes</th>
<th>Targets</th>
<th>Child</th>
<th>CfgErr</th>
<th>InHw</th>
<th>OpErr</th>
<th>Policy Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>15212688</td>
<td>22</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>system-cpp-policy</td>
</tr>
</tbody>
</table>

Output fields are self-explanatory.
trust device

To configure trust for supported devices connected to an interface, use the `trust device` command in interface configuration mode. Use the `no` form of this command to disable trust for the connected device.

```
trust device { cisco-phone | cts | ip-camera | media-player }
no trust device { cisco-phone | cts | ip-camera | media-player }
```

Syntax Description

- `cisco-phone` Configures a Cisco IP phone
- `cts` Configures a Cisco TelePresence System
- `ip-camera` Configures an IP Video Surveillance Camera (IPVSC)
- `media-player` Configures a Cisco Digital Media Player (DMP)

Command Default

Trust disabled

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `trust device` command on the following types of interfaces:

- **Auto** — auto-template interface
- **Capwap** — CAPWAP tunnel interface
- **GigabitEthernet** — Gigabit Ethernet IEEE 802
- **GroupVI** — Group virtual interface
- **Internal Interface** — Internal interface
- **Loopback** — Loopback interface
- **Null** — Null interface
- **Port-channel** — Ethernet Channel interface
- **TenGigabitEthernet** — 10-Gigabit Ethernet
- **Tunnel** — Tunnel interface
- **Vlan** — Catalyst VLANs
- **range** — `interface range` command
Example

The following example configures trust for a Cisco IP phone in Interface GigabitEthernet 1/0/1:

```
Device(config)# interface gigabitethernet 1/0/1
Device(config-if)# trust device cisco-phone
```
trust device
PART VIII

Routing

• IP Routing Commands, on page 903
IP Routing Commands

- address-family ipv6 (OSPF), on page 905
- area nssa, on page 906
- area virtual-link, on page 908
- authentication (BFD), on page 911
- bfd, on page 912
- bfd all-interfaces, on page 914
- bfd check-ctrl-plane-failure, on page 915
- bfd echo, on page 916
- bfd slow-timers, on page 918
- bfd template, on page 920
- bfd-template single-hop, on page 921
- default-information originate (OSP), on page 922
- distance (OSPF), on page 924
- eigrp log-neighbor-changes, on page 927
- ip authentication key-chain eigrp, on page 929
- ip authentication mode eigrp, on page 930
- ip bandwidth-percent eigrp, on page 931
- ip cef load-sharing algorithm, on page 932
- ip prefix-list, on page 933
- ip hello-interval eigrp, on page 936
- ip hold-time eigrp, on page 937
- ip load-sharing, on page 938
- ip ospf database-filter all out, on page 939
- ip ospf name-lookup, on page 940
- ip split-horizon eigrp, on page 941
- ip summary-address eigrp, on page 942
- ip route static bfd, on page 944
- ipv6 route static bfd, on page 946
- metric weights (EIGRP), on page 947
- neighbor description, on page 949
- network (EIGRP), on page 950
- nsf (EIGRP), on page 952
- offset-list (EIGRP), on page 954
• router bgp, on page 956
• router-id, on page 959
• router eigrp, on page 960
• redistribute (IPv6), on page 961
• redistribute maximum-prefix (OSPF), on page 964
• router ospfv3, on page 966
• show ip eigrp interfaces, on page 967
• show ip eigrp neighbors, on page 970
• show ip eigrp topology, on page 973
• show ip eigrp traffic, on page 978
• show ip ospf, on page 980
• show ip ospf border-routers, on page 988
• show ip ospf database, on page 989
• show ip ospf interface, on page 998
• show ip ospf neighbor, on page 1001
• show ip ospf virtual-links, on page 1007
• summary-address (OSPF), on page 1008
• timers throttle spf, on page 1010
address-family ipv6 (OSPF)

To enter the address family configuration mode for configuring routing sessions, such as Open Shortest Path First (OSPF), that uses the standard IPv6 address prefixes, use the `address-family ipv6` command in the router configuration mode. To disable the address family configuration mode, use the `no` form of this command.

```
address-family ipv6 [unicast ][ { vrf  vrf-name } ]
no address-family ipv6 [unicast ][ { vrf  vrf-name } ]
```

Syntax Description

- **unicast** (Optional) Specifies the IPv6 unicast address prefixes.
- **vrf** (Optional) Specifies all the VPN routing and forwarding (VRF) instance tables or a specific VRF table for an IPv6 address.
- **vrf-name** (Optional) A specific VRF table for an IPv6 address.

Command Default

IPv6 address prefixes are not enabled. Unicast address prefixes are the default when the IPv6 address prefixes are configured.

Command Modes

Router configuration (config-router)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `address-family ipv6` command places the router in address family configuration mode (prompt: `config-router-af`), from which you can configure routing sessions that use the standard IPv6 address prefixes.

Examples

The following example shows how to place the router in address family configuration mode:

```
Device> enable
Device# configure terminal
Device(config)# router ospfv3 1
Device(config-router)# address-family ipv6 unicast
Device(config-router-af)#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>router ospfv3</td>
<td>Enters OSPFv3 router configuration mode.</td>
</tr>
</tbody>
</table>
area nssa

To configure a not-so-stubby area (NSSA), use the area nssa command in router address family topology or router configuration mode. To remove the NSSA distinction from the area, use the no form of this command.

```
area nssa command
area area-id nssa [no-redistribution] [default-information-originate [metric] [metric-type]] [no-summary] [nssa-only]
no area area-id nssa [no-redistribution] [default-information-originate [metric] [metric-type]] [no-summary] [nssa-only]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>area-id</td>
<td>Identifier for the stub area or NSSA. The identifier can be specified as either a decimal value or an IP address.</td>
</tr>
<tr>
<td>no-redistribution</td>
<td>(Optional) Used when the router is an NSSA Area Border Router (ABR) and you want the redistribute command to import routes only into the normal areas, but not into the NSSA area.</td>
</tr>
<tr>
<td>default-information-originate</td>
<td>(Optional) Used to generate a Type 7 default into the NSSA area. This keyword takes effect only on the NSSA ABR or the NSSA Autonomous System Boundary Router (ASBR).</td>
</tr>
<tr>
<td>metric</td>
<td>(Optional) Specifies the OSPF default metric.</td>
</tr>
<tr>
<td>metric-type</td>
<td>(Optional) Specifies the OSPF metric type for default routes.</td>
</tr>
<tr>
<td>no-summary</td>
<td>(Optional) Allows an area to be an NSSA but not have summary routes injected into it.</td>
</tr>
<tr>
<td>nssa-only</td>
<td>(Optional) Limits the default advertisement to this NSSA area by setting the propagate (P) bit in the type-7 LSA to zero.</td>
</tr>
</tbody>
</table>

Command Default: No NSSA area is defined.

Command Modes: Router address family topology configuration (config-router-af-topology) Router configuration (config-router)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines: To remove the specified area from the software configuration, use the no area area-id command (with no other keywords). That is, the no area area-id command removes all area options, including area authentication, area default-cost, area nssa, area range, area stub, and area virtual-link.

Release 12.2(33)SRB

If you plan to configure the Multi-Topology Routing (MTR) feature, you need to enter the area nssa command in router address family topology configuration mode in order for this OSPF router configuration command to become topology-aware.

Examples: The following example makes area 1 an NSSA area:
router ospf 1
redistribute rip subnets
network 172.19.92.0 0.0.0.255 area 1
area 1 nssa

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>redistribute</td>
<td>Redistributes routes from one routing domain into another routing domain.</td>
</tr>
</tbody>
</table>
area virtual-link

To define an Open Shortest Path First (OSPF) virtual link, use the area virtual-link command in router address family topology, router configuration, or address family configuration mode. To remove a virtual link, use the no form of this command.

```plaintext
area area-id virtual-link router-id authentication key-chain chain-name [hello-interval seconds] [retransmit-interval seconds] [transmit-delay seconds] [dead-interval seconds] [ttl-security hops hop-count]
no area area-id virtual-link router-id authentication key-chain chain-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area-id</td>
<td>Area ID assigned to the virtual link. This can be either a decimal value or a valid IPv6 prefix. There is no default.</td>
</tr>
<tr>
<td>router-id</td>
<td>Router ID associated with the virtual link neighbor. The router ID appears in the show ip ospf or show ipv6 display command. There is no default.</td>
</tr>
<tr>
<td>authentication</td>
<td>Enables virtual link authentication.</td>
</tr>
<tr>
<td>key-chain</td>
<td>Configures a key-chain for cryptographic authentication keys.</td>
</tr>
<tr>
<td>chain-name</td>
<td>Name of the authentication key that is valid.</td>
</tr>
<tr>
<td>hello-interval seconds</td>
<td>(Optional) Specifies the time (in seconds) between the hello packets that the Cisco IOS software sends on an interface. The hello interval is an unsigned integer value to be advertised in the hello packets. The value must be the same for all routers and access servers attached to a common network. The range is from 1 to 8192. The default is 10.</td>
</tr>
<tr>
<td>retransmit-interval seconds</td>
<td>(Optional) Specifies the time (in seconds) between link-state advertisement (LSA) retransmissions for adjacencies belonging to the interface. The retransmit interval is the expected round-trip delay between any two routers on the attached network. The value must be greater than the expected round-trip delay. The range is from 1 to 8192. The default is 5.</td>
</tr>
<tr>
<td>transmit-delay seconds</td>
<td>(Optional) Specifies the estimated time (in seconds) required to send a link-state update packet on the interface. The integer value that must be greater than zero. LSAs in the update packet have their age incremented by this amount before transmission. The range is from 1 to 8192. The default value is 1.</td>
</tr>
</tbody>
</table>
dead-interval seconds

(Optional) Specifies the time (in seconds) that hello packets are not seen before a neighbor declares the router down. The dead interval is an unsigned integer value. The default is four times the hello interval, or 40 seconds. As with the hello interval, this value must be the same for all routers and access servers attached to a common network.

ttl-security hops hop-count

(Optional) Configures Time-to-Live (TTL) security on a virtual link. The hop-count argument range is from 1 to 254.

Command Default
No OSPF virtual link is defined.

Command Modes
Router address family topology configuration (config-router-af-topology)
Router configuration (config-router)
Address family configuration (config-router-af)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
In OSPF, all areas must be connected to a backbone area. A lost connection to the backbone can be repaired by establishing a virtual link.

The shorter the hello interval, the faster topological changes will be detected, but more routing traffic will ensue. The setting of the retransmit interval should be conservative, or needless retransmissions will result. The value should be larger for serial lines and virtual links.

You should choose a transmit delay value that considers the transmission and propagation delays for the interface.

To configure a virtual link in OSPF for IPv6, you must use a router ID instead of an address. In OSPF for IPv6, the virtual link takes the router ID rather than the IPv6 prefix of the remote router.

Use the ttl-security hops hop-count keywords and argument to enable checking of TTL values on OSPF packets from neighbors or to set TTL values sent to neighbors. This feature adds an extra layer of protection to OSPF.

In order for a virtual link to be properly configured, each virtual link neighbor must include the transit area ID and the corresponding virtual link neighbor router ID. To display the router ID, use the show ip ospf or the show ipv6 ospf command in privileged EXEC mode.

To remove the specified area from the software configuration, use the no area area-id command (with no other keywords). That is, the no area area-id command removes all area options, such as area default-cost, area nssa, area range, area stub, and area virtual-link.
Release 12.2(33)SRB

If you plan to configure the Multitopology Routing (MTR) feature, you need to enter the `area virtual-link` command in router address family topology configuration mode in order for this OSPF router configuration command to become topology-aware.

Examples

The following example establishes a virtual link with default values for all optional parameters:

```
ipv6 router ospf 1
log-adjacency-changes
area 1 virtual-link 192.168.255.1
```

The following example establishes a virtual link in OSPF for IPv6:

```
ipv6 router ospf 1
log-adjacency-changes
area 1 virtual-link 192.168.255.1 hello-interval 5
```

The following example shows how to configure TTL security for a virtual link in OSPFv3 for IPv6:

```
Device(config)#router ospfv3 1
Device(config-router)#address-family ipv6 unicast vrf vrf1
Device(config-router-af)#area 1 virtual-link 10.1.1.1 ttl-security hops 10
```

The following example shows how to configure the authentication using a key chain for virtual-links:

```
area 1 virtual-link 1.1.1.1 authentication key-chain ospf-chain-1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>Configures OSPFv3 area parameters.</td>
</tr>
<tr>
<td>show ip ospf</td>
<td>Enables the display of general information about OSPF routing processes.</td>
</tr>
<tr>
<td>show ipv6 ospf</td>
<td>Enables the display of general information about OSPF routing processes.</td>
</tr>
<tr>
<td>ttl-security hops</td>
<td>Enables checking of TTL values on OSPF packets from neighbors or setting TTL values sent to neighbors.</td>
</tr>
</tbody>
</table>
authentication (BFD)

To configure authentication in a Bidirectional Forwarding Detection (BFD) template for single hop sessions, use the `authentication` command in BFD configuration mode. To disable authentication in BFD template for single-hop sessions, use the `no` form of this command

```
authentication authentication-type keychain keychain-name
no authentication authentication-type keychain keychain-name
```

Syntax Description
- `authentication-type`
 Authentication type. Valid values are md5, meticulous-md5, meticulous-sha1, and sha-1.
- `keychain keychain-name`
 Configures an authentication key chain with the specified name. The maximum number of characters allowed in the name is 32.

Command Default
Authentication in BFD template for single hop sessions is not enabled.

Command Modes
BFD configuration (config-bfd)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You can configure authentication in single hop templates. We recommend that you configure authentication to enhance security. Authentication must be configured on each BFD source-destination pair, and authentication parameters must match on both devices.

Examples
The following example shows how to configure authentication for the template1 BFD single-hop template:

```
Device>enable
Device#configuration terminal
Device(config)#bfd-template single-hop template1
Device(config-bfd)#authentication sha-1 keychain bfd-singlehop
```
To set the baseline Bidirectional Forwarding Detection (BFD) session parameters on an interface, use the `bfd` interface configuration mode. To remove the baseline BFD session parameters, use the `no` form of this command.

```
bfd interval milliseconds min_rx milliseconds multiplier multiplier-value
no bfd interval milliseconds min_rx milliseconds multiplier multiplier-value
```

Syntax Description

- **interval milliseconds**: Specifies the rate, in milliseconds, at which BFD control packets will be sent to BFD peers. The valid range for the milliseconds argument is from 50 to 9999.

- **min_rx milliseconds**: Specifies the rate, in milliseconds, at which BFD control packets will be expected to be received from BFD peers. The valid range for the milliseconds argument is from 50 to 9999.

- **multiplier multiplier-value**: Specifies the number of consecutive BFD control packets that must be missed from a BFD peer before BFD declares that the peer is unavailable and the Layer 3 BFD peer is informed of the failure. The valid range for the multiplier-value argument is from 3 to 50.

Command Default

No baseline BFD session parameters are set.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `bfd` command can be configured on SVI, Ethernet and port-channel interfaces.

If BFD runs on a port channel interface, BFD has a timer value restriction of 250 * 3 milliseconds.

The `bfd` interval configuration is not removed when:

- an IPv4 address is removed from an interface
- an IPv6 address is removed from an interface
- IPv6 is disabled from an interface
- an interface is shutdown
- IPv4 CEF is disabled globally or locally on an interface
- IPv6 CEF is disabled globally or locally on an interface

The `bfd` interval configuration is removed when the subinterface on which it is configured is removed.
If we configure bfd interval command in interface config mode, then bfd echo mode is enabled by default. We need to enable either no ip redirect (if BFD echo is needed) or no bfd echo in interface config mode.

Before using BFD echo mode, you must disable sending Internet Control Message Protocol (ICMP) redirect messages by entering the no ip redirect command, in order to avoid high CPU utilization.

The following example shows the BFD session parameters set for Gigabit Ethernet 1/0/3:

```
Device>enable
Device#configuration terminal
Device(config)#interface gigabitethernet 1/0/3
Device(config-if)#bfd interval 100 min_rx 100 multiplier 3
```
bfd all-interfaces

To enable Bidirectional Forwarding Detection (BFD) for all interfaces participating in the routing process, use the **bfd all-interfaces** command in router configuration or address family interface configuration mode. To disable BFD for all neighbors on a single interface, use the **no** form of this command.

```
bfd all-interfaces
no bfd all-interfaces
```

Syntax Description

This command has no arguments or keywords.

Command Default

BFD is disabled on the interfaces participating in the routing process.

Command Modes

Router configuration (config-router)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To enable BFD for all interfaces, enter the bfd all-interfaces command in router configuration mode.

Examples

The following example shows how to enable BFD for all Enhanced Interior Gateway Routing Protocol (EIGRP) neighbors:

```
Device> enable
Device# configuration terminal
Device(config)# router eigrp 123
Device(config-router)# bfd all-interfaces
Device(config-router)# end
```

The following example shows how to enable BFD for all Intermediate System-to-Intermediate System (IS-IS) neighbors:

```
Device> enable
Device# configuration terminal
Device(config)# router isis tag1
Device(config-router)# bfd all-interfaces
Device(config-router)# end
```
bfd check-ctrl-plane-failure

To enable Bidirectional Forwarding Detection (BFD) control plane failure checking for the Intermediate System-to-Intermediate System (IS-IS) routing protocol, use the `bfd check-ctrl-plane-failure` command in router configuration mode. To disable control plane failure detection, use the `no` form of this command:

```plaintext
bfd check-ctrl-plane-failure
no bfd check-ctrl-plane-failure
```

Syntax Description

This command has no arguments or keywords.

Command Default

BFD control plane failure checking is disabled.

Command Modes

Router configuration (config-router)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

The `bfd check-ctrl-plane-failure` command can be configured for an IS-IS routing process only. The command is not supported on other protocols.

When a switch restarts, a false BFD session failure can occur, where neighboring routers behave as if a true forwarding failure has occurred. However, if the `bfd check-ctrl-plane-failure` command is enabled on a switch, the router can ignore control plane related BFD session failures. We recommend that you add this command to the configuration of all neighboring routers just prior to a planned router restart, and that you remove the command from all neighboring routers when the restart is complete.

Examples

The following example enables BFD control plane failure checking for the IS-IS routing protocol:

```plaintext
Device>enable
Device#configuration terminal
Device(config)#router isis
Device(config-router)#bfd check-ctrl-plane-failure
Device(config-router)#end
```
bdf echo

To enable Bidirectional Forwarding Detection (BFD) echo mode, use the `bdf echo` command in interface configuration mode. To disable BFD echo mode, use the `no` form of this command:

```
bfd echo
no bfd echo
```

Syntax Description

This command has no arguments or keywords.

Command Default

BFD echo mode is enabled by default if BFD is configured using `bfd interval` command in interface configuration mode.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Echo mode is enabled by default. Entering the `no bfd echo` command without any keywords turns off the sending of echo packets and signifies that the switch is unwilling to forward echo packets received from BFD neighbor switches.

When echo mode is enabled, the desired minimum echo transmit interval and required minimum transmit interval values are taken from the `bfd interval milliseconds min_rx milliseconds` parameters, respectively.

Note

Before using BFD echo mode, you must disable sending Internet Control Message Protocol (ICMP) redirect messages by entering the `no ip redirects` command, in order to avoid high CPU utilization.

Examples

The following example configures echo mode between BFD neighbors:

```
Device>enable
Device#configuration terminal
Device(config)#interface GigabitEthernet 1/0/3
Device(config-if)#bdf echo
```

The following output from the `show bfd neighbors details` command shows that the BFD session neighbor is up and using BFD echo mode. The relevant command output is shown in bold in the output.

```
Device#show bfd neighbors details
OurAddr   NeighAddr  LD/RD  RH/RS  Holdown(mult)  State Int
172.16.1.2 172.16.1.1 1/6   Up   0 (3)   Up   Fa0/1

Session state is UP and using echo function with 100 ms interval.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3000(0), Hello (hits): 1000(337)
Rx Count: 341, Rx Interval (ms) min/max/avg: 1/1008/882 last: 364 ms ago
Tx Count: 339, Tx Interval (ms) min/max/avg: 1/1016/886 last: 632 ms ago
Registered protocols: EIGRP
```
Uptime: 00:05:00
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 6 - Your Discr.: 1
Min tx interval: 1000000 - Min rx interval: 1000000
Min Echo interval: 50000
bfd slow-timers

To configure the Bidirectional Forwarding Detection (BFD) slow timers value, use the `bfd slow-timers` command in interface configuration mode. To change the slow timers used by BFD, use the `no` form of this command.

```
bfd slow-timers [milliseconds]
no bfd slow-timers
```

<table>
<thead>
<tr>
<th>Command Default</th>
<th>The BFD slow timer value is 1000 milliseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Modes</td>
<td>Global configuration (config)</td>
</tr>
<tr>
<td>Command History</td>
<td>Release Modification</td>
</tr>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows how to configure the BFD slow timers value to 14,000 milliseconds:

```
Device(config)#bfd slow-timers 14000
```

The following output from the `show bfd neighbors details` command shows that the BFD slow timers value of 14,000 milliseconds has been implemented. The values for the MinTxInt and MinRxInt will correspond to the configured value for the BFD slow timers. The relevant command output is shown in bold.

```
Device#show bfd neighbors details
OurAddr NeighAddr LD/RD RH/RS Holdown(mult) State Int
172.16.1.2 172.16.1.1 1/6 Up 0 (3) Up Fa0/1
Session state is UP and using echo function with 100 ms interval.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 14000, MinRxInt: 14000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3600(0), Hello (hits): 1200(337)
Rx Count: 341, Rx Interval (ms) min/max/avg: 1/1008/882 last: 364 ms ago
Tx Count: 339, Tx Interval (ms) min/max/avg: 1/1016/886 last: 632 ms ago
Registered protocols: EIGRP
Uptime: 00:05:00
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 6 - Your Discr.: 1
Min tx interval: 1000000 - Min rx interval: 1000000
Min Echo interval: 50000
```
• If the BFD session is down, then the BFD control packets will be sent with the slow timer interval.

• If the BFD session is up, then if echo is enabled, then BFD control packets will be sent in negotiated slow timer interval and echo packets will be sent in negotiated configured BFD interval. If echo is not enabled, then BFD control packets will be sent in negotiated configured interval.
bfd template

To create a Bidirectional Forwarding Detection (BFD) template and to enter BFD configuration mode, use the `bfd-template` command in global configuration mode. To remove a BFD template, use the `no` form of this command.

```plaintext
bfd template  template-name
no bfd template  template-name
```

Command Default
A BFD template is not bound to an interface.

Command Modes
Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Even if you have not created the template by using the `bfd-template` command, you can configure the name of the template under an interface, but the template is considered invalid until you define the template. You do not have to reconfigure the template name again. It becomes valid automatically.

Examples

```plaintext
Device> enable
Device# configuration terminal
Device(config)# interface Gigabitethernet 1/3/0
Device(config-if)# bfd template template1
```
bfd-template single-hop

To bind a single hop Bidirectional Forwarding Detection (BFD) template to an interface, use the `bfd template` command in interface configuration mode. To unbind single-hop BFD template from an interface, use the `no` form of this command.

```
bfd-template single-hop  template-name
no bfd-template single-hop  template-name
```

Syntax Description
- `single-hop` Creates the single-hop BFD template.
- `template-name` Template name.

Command Default
A BFD template does not exist.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `bfd-template` command allows you to create a BFD template and places the device in BFD configuration mode. The template can be used to specify a set of BFD interval values. BFD interval values specified as part of the BFD template are not specific to a single interface.

Examples
The following example shows how to create a BFD template and specify BFD interval values:

```
Device> enable
Device# configuration terminal
Device(config)# bfd-template single-hop node1
Device(bfd-config)# interval min-tx 100 min-rx 100 multiplier 3
Device(bfd-config)# echo
```

The following example shows how to create a BFD single-hop template and configure BFD interval values and an authentication key chain:

```
Device> enable
Device# configuration terminal
Device(config)# bfd-template single-hop template1
Device(bfd-config)# interval min-tx 200 min-rx 200 multiplier 3
Device(bfd-config)# authentication keyed-sha-1 keychain bfd_singlehop
```

Note
BFD echo is not enabled by default in the bfd-template configuration. This needs to be configured explicitly.
default-information originate (OSPF)

To generate a default external route into an Open Shortest Path First (OSPF) routing domain, use the **default-information originate** command in router configuration or router address family topology configuration mode. To disable this feature, use the **no** form of this command.

Syntax

```
default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]
no default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]
```

Syntax Description

- **always** *(Optional)* Always advertises the default route regardless of whether the software has a default route.

 Note The **always** keyword includes the following exception when the route map is used. When a route map is used, the origination of the default route by OSPF is not bound to the existence of a default route in the routing table and the **always** keyword is ignored.

- **metric metric-value** *(Optional)* Metric used for generating the default route. If you omit a value and do not specify a value using the **default-metric** router configuration command, the default metric value is 10. The value used is specific to the protocol.

- **metric-type type-value** *(Optional)* External link type associated with the default route that is advertised into the OSPF routing domain. It can be one of the following values:

 - Type 1 external route.
 - Type 2 external route.

 The default is type 2 external route.

- **route-map map-name** *(Optional)* The routing process will generate the default route if the route map is satisfied.

Command Default

This command is disabled by default. No default external route is generated into the OSPF routing domain.

Command Modes

Router configuration (config-router) Router address family topology configuration (config-router-af-topology)

Command History

Cisco IOS XE Fuji 16.9.2 This command was introduced.

Usage Guidelines

Whenever you use the **redistribute** or the **default-information** router configuration command to redistribute routes into an OSPF routing domain, the Cisco IOS software automatically becomes an Autonomous System Boundary Router (ASBR). However, an ASBR does not, by default, generate a default route into the OSPF routing domain. The software must still have a default route for itself before it generates one, except when you have specified the **always** keyword.

When a route map is used, the origination of the default route by OSPF is not bound to the existence of a default route in the routing table.
Release 12.2(33)SRB

If you plan to configure the Multi-Topology Routing (MTR) feature, you need to enter the `default-information originate` command in router address family topology configuration mode in order for this OSPF router configuration command to become topology-aware.

Examples

The following example specifies a metric of 100 for the default route that is redistributed into the OSPF routing domain and specifies an external metric type of 1:

```plaintext
router ospf 109
redistribute eigrp 108 metric 100 subnets
default-information originate metric 100 metric-type 1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>default-information</code></td>
<td>Accepts exterior or default information into Enhanced Interior Gateway Routing Protocol (EIGRP) processes.</td>
</tr>
<tr>
<td><code>default-metric</code></td>
<td>Sets default metric values for routes.</td>
</tr>
<tr>
<td><code>redistribute (IP)</code></td>
<td>Redistributes routes from one routing domain into another routing domain.</td>
</tr>
</tbody>
</table>
distance (OSPF)

To define an administrative distance, use the `distance` command in router configuration mode or VRF configuration mode. To remove the `distance` command and restore the system to its default condition, use the `no` form of this command.

```
distance  weight
[ip-address wildcard-mask  [access-list-name]]
no distance  weight ip-address wildcard-mask  [access-list-name]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>weight</code></td>
<td>Administrative distance. Range is 10 to 255. Used alone, the <code>weight</code> argument specifies a default administrative distance that the software uses when no other specification exists for a routing information source. Routes with a distance of 255 are not installed in the routing table. The table in the “Usage Guidelines” section lists the default administrative distances.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>(Optional) IP address in four-part dotted-decimal notation.</td>
</tr>
<tr>
<td><code>wildcard-mask</code></td>
<td>(Optional) Wildcard mask in four-part, dotted-decimal format. A bit set to 1 in the <code>wildcard-mask</code> argument instructs the software to ignore the corresponding bit in the address value.</td>
</tr>
<tr>
<td><code>access-list-name</code></td>
<td>(Optional) Name of an IP access list to be applied to incoming routing updates.</td>
</tr>
</tbody>
</table>

| Command Default | If this command is not specified, the administrative distance is the default. The table in the “Usage Guidelines” section lists the default administrative distances. |

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Router configuration (config-router)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VRF configuration (config-vrf)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines	To use this command, you must be in a user group associated with a task group that includes the appropriate task IDs. If the user group assignment is preventing you from using a command contact your AAA administrator for assistance.
-----------------------------	An administrative distance is an integer from 10 to 255. In general, the higher the value, the lower the trust rating. An administrative distance of 255 means that the routing information source cannot be trusted at all and should be ignored. Weight values are subjective; no quantitative method exists for choosing weight values.
	If an access list is used with this command, it is applied when a network is being inserted into the routing table. This behavior allows you to filter networks based on the IP prefix supplying the routing information. For example, you could filter possibly incorrect routing information from networking devices not under your administrative control.
	The order in which you enter `distance` commands can affect the assigned administrative distances, as shown in the “Examples” section. The following table lists default administrative distances.
Table 103: Default Administrative Distances

<table>
<thead>
<tr>
<th>Rate Source</th>
<th>Default Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected interface</td>
<td>0</td>
</tr>
<tr>
<td>Static route out on interface</td>
<td>0</td>
</tr>
<tr>
<td>Static route to next hop</td>
<td>1</td>
</tr>
<tr>
<td>EIGRP summary route</td>
<td>5</td>
</tr>
<tr>
<td>External BGP</td>
<td>20</td>
</tr>
<tr>
<td>Internal EIGRP</td>
<td>90</td>
</tr>
<tr>
<td>OSPF</td>
<td>110</td>
</tr>
<tr>
<td>IS-IS</td>
<td>115</td>
</tr>
<tr>
<td>RIP version 1 and 2</td>
<td>120</td>
</tr>
<tr>
<td>External EIGRP</td>
<td>170</td>
</tr>
<tr>
<td>Internal BGP</td>
<td>200</td>
</tr>
<tr>
<td>Unknown</td>
<td>255</td>
</tr>
</tbody>
</table>

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospf</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

In the following example, the `router ospf` command sets up Open Shortest Path First (OSPF) routing instance 1. The first `distance` command sets the default administrative distance to 255, which instructs the software to ignore all routing updates from networking devices for which an explicit distance has not been set. The second `distance` command sets the administrative distance for all devices on the network 192.168.40.0 to 90.

```
Device#configure terminal
Device(config)#router ospf 1
Device(config-ospf)#distance 255
Device(config-ospf)#distance 90 192.168.40.0 0.0.0.255
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance bgp</td>
<td>Allows the use of external, internal, and local administrative distances that could be a better route to a BGP node.</td>
</tr>
<tr>
<td>distance ospf</td>
<td>Allows the use of external, internal, and local administrative distances that could be a better route to an OSPF node.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>router ospf</td>
<td>Configures the OSPF routing process.</td>
</tr>
</tbody>
</table>
eigrp log-neighbor-changes

To enable the logging of changes in Enhanced Interior Gateway Routing Protocol (EIGRP) neighbor adjacencies, use the `eigrp log-neighbor-changes` command in router configuration mode, address-family configuration mode, or service-family configuration mode. To disable the logging of changes in EIGRP neighbor adjacencies, use the `no` form of this command.

```
eigrp log-neighbor-changes
no eigrp log-neighbor-changes
```

Syntax Description

This command has no arguments or keywords.

Command Default

Adjacency changes are logged.

Command Modes

Router configuration (config-router) Address-family configuration (config-router-af) Service-family configuration (config-router-sf)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command enables the logging of neighbor adjacency changes to monitor the stability of the routing system and to help detect problems. Logging is enabled by default. To disable the logging of neighbor adjacency changes, use the `no` form of this command.

To enable the logging of changes for EIGRP address-family neighbor adjacencies, use the `eigrp log-neighbor-changes` command in address-family configuration mode.

To enable the logging of changes for EIGRP service-family neighbor adjacencies, use the `eigrp log-neighbor-changes` command in service-family configuration mode.

Examples

The following configuration disables logging of neighbor changes for EIGRP process 209:

```
Device(config)# router eigrp 209
Device(config-router)# no eigrp log-neighbor-changes
```

The following configuration enables logging of neighbor changes for EIGRP process 209:

```
Device(config)# router eigrp 209
Device(config-router)# eigrp log-neighbor-changes
```

The following example shows how to disable logging of neighbor changes for EIGRP address-family with autonomous-system 4453:

```
Device(config)# router eigrp virtual-name
Device(config-router)# address-family ipv4 autonomous-system 4453
Device(config-router-af)# no eigrp log-neighbor-changes
Device(config-router-af)# exit-address-family
```

The following configuration enables logging of neighbor changes for EIGRP service-family process 209:

```
Device(config)# router eigrp service-family 209
Device(config-router)# service-family log-neighbor-changes
```
Device(config)# router eigrp 209
Device(config-router)# service-family ipv4 autonomous-system 4453
Device(config-router-sf)# eigrp log-neighbor-changes
Device(config-router-sf)# exit-service-family

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-family (EIGRP)</td>
<td>Enters address-family configuration mode to configure an EIGRP routing instance.</td>
</tr>
<tr>
<td>exit-address-family</td>
<td>Exits address-family configuration mode.</td>
</tr>
<tr>
<td>exit-service-family</td>
<td>Exits service-family configuration mode.</td>
</tr>
<tr>
<td>router eigrp</td>
<td>Configures the EIGRP routing process.</td>
</tr>
<tr>
<td>service-family</td>
<td>Specifies service-family configuration mode.</td>
</tr>
</tbody>
</table>
ip authentication key-chain eigrp

To enable authentication of Enhanced Interior Gateway Routing Protocol (EIGRP) packets, use the `ip authentication key-chain eigrp` command in interface configuration mode. To disable such authentication, use the `no` form of this command.

```
ip authentication key-chain eigrp as-number key-chain
no ip authentication key-chain eigrp as-number key-chain
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>as-number</code></td>
<td>Autonomous system number to which the authentication applies.</td>
</tr>
<tr>
<td><code>key-chain</code></td>
<td>Name of the authentication key chain.</td>
</tr>
</tbody>
</table>

Command Default

No authentication is provided for EIGRP packets.

Command Modes

Interface configuration (config-if) Virtual network interface (config-if-vnet)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example applies authentication to autonomous system 2 and identifies a key chain named SPORTS:

```
Device(config-if)#ip authentication key-chain eigrp 2 SPORTS
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept-lifetime</td>
<td>Sets the time period during which the authentication key on a key chain is received as valid.</td>
</tr>
<tr>
<td>ip authentication mode eigrp</td>
<td>Specifies the type of authentication used in EIGRP packets.</td>
</tr>
<tr>
<td>key</td>
<td>Identifies an authentication key on a key chain.</td>
</tr>
<tr>
<td>key chain</td>
<td>Enables authentication of routing protocols.</td>
</tr>
<tr>
<td>key-string (authentication)</td>
<td>Specifies the authentication string for a key.</td>
</tr>
<tr>
<td>send-lifetime</td>
<td>Sets the time period during which an authentication key on a key chain is valid to be sent.</td>
</tr>
</tbody>
</table>
ip authentication mode eigrp

To specify the type of authentication used in Enhanced Interior Gateway Routing Protocol (EIGRP) packets, use the `ip authentication mode eigrp` command in interface configuration mode. To disable that type of authentication, use the `no` form of this command.

```
ip authentication mode eigrp as-number md5
no ip authentication mode eigrp as-number md5
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>as-number</code></td>
<td>Autonomous system number.</td>
</tr>
<tr>
<td><code>md5</code></td>
<td>Keyed Message Digest 5 (MD5) authentication.</td>
</tr>
</tbody>
</table>

Command Default

No authentication is provided for EIGRP packets.

Command Modes

Interface configuration (config-if) Virtual network interface (config-if-vnet)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Configure authentication to prevent unapproved sources from introducing unauthorized or false routing messages. When authentication is configured, an MD5 keyed digest is added to each EIGRP packet in the specified autonomous system.

Examples

The following example configures the interface to use MD5 authentication in EIGRP packets in autonomous system 10:

```
Device(config-if)#ip authentication mode eigrp 10 md5
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>accept-lifetime</code></td>
<td>Sets the time period during which the authentication key on a key chain is received as valid.</td>
</tr>
<tr>
<td><code>ip authentication key-chain eigrp</code></td>
<td>Enables authentication of EIGRP packets.</td>
</tr>
<tr>
<td><code>key</code></td>
<td>Identifies an authentication key on a key chain.</td>
</tr>
<tr>
<td><code>key chain</code></td>
<td>Enables authentication of routing protocols.</td>
</tr>
<tr>
<td><code>key-string (authentication)</code></td>
<td>Specifies the authentication string for a key.</td>
</tr>
<tr>
<td><code>send-lifetime</code></td>
<td>Sets the time period during which an authentication key on a key chain is valid to be sent.</td>
</tr>
</tbody>
</table>
ip bandwidth-percent eigrp

To configure the percentage of bandwidth that may be used by Enhanced Interior Gateway Routing Protocol (EIGRP) on an interface, use the `ip bandwidth-percent eigrp` command in interface configuration mode. To restore the default value, use the `no` form of this command.

```
ip bandwidth-percent eigrp as-number percent
do ip bandwidth-percent eigrp as-number percent
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>as-number</code></td>
<td>Autonomous system number.</td>
</tr>
<tr>
<td><code>percent</code></td>
<td>Percent of bandwidth that EIGRP may use.</td>
</tr>
</tbody>
</table>

Command Default

EIGRP may use 50 percent of available bandwidth.

Command Modes

Interface configuration (config-if) Virtual network interface (config-if-vnet)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

EIGRP will use up to 50 percent of the bandwidth of a link, as defined by the `bandwidth` interface configuration command. This command may be used if some other fraction of the bandwidth is desired. Note that values greater than 100 percent may be configured. The configuration option may be useful if the bandwidth is set artificially low for other reasons.

Examples

The following example allows EIGRP to use up to 75 percent (42 kbps) of a 56-kbps serial link in autonomous system 209:

```
Device(config)#interface serial 0
Device(config-if)#bandwidth 56
Device(config-if)#ip bandwidth-percent eigrp 209 75
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bandwidth (interface)</code></td>
<td>Sets a bandwidth value for an interface.</td>
</tr>
</tbody>
</table>
ip cef load-sharing algorithm

To select a Cisco Express Forwarding load-balancing algorithm, use the `ip cef load-sharing algorithm` command in global configuration mode. To return to the default universal load-balancing algorithm, use the `no` form of this command.

```
ip cef load-sharing algorithm {original | universal [id]}
no ip cef load-sharing algorithm
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>original</td>
<td>Sets the load-balancing algorithm to the original algorithm based on a source and destination hash.</td>
</tr>
<tr>
<td>universal</td>
<td>Sets the load-balancing algorithm to the universal algorithm that uses a source and destination and an ID hash.</td>
</tr>
<tr>
<td>id</td>
<td>(Optional) Fixed identifier.</td>
</tr>
</tbody>
</table>

Command Default
The universal load-balancing algorithm is selected by default. If you do not configure the fixed identifier for a load-balancing algorithm, the router automatically generates a unique ID.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The original Cisco Express Forwarding load-balancing algorithm produced distortions in load sharing across multiple devices because of the use of the same algorithm on every device. When the load-balancing algorithm is set to universal mode, each device on the network can make a different load sharing decision for each source-destination address pair, and that resolves load-balancing distortions.

Examples
The following example shows how to enable the Cisco Express Forwarding original load-balancing algorithm:

```
Device> enable
Device# configure terminal
Device(config)# ip cef load-sharing algorithm original
Device(config)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip load-sharing</td>
<td>Enables load balancing for Cisco Express Forwarding.</td>
</tr>
</tbody>
</table>
ip prefix-list

To create a prefix list or to add a prefix-list entry, use the `ip prefix-list` command in global configuration mode. To delete a prefix-list entry, use the `no` form of this command.

```
ip prefix-list \{list-name [seq number] \{deny \| permit\} network/length \{ge ge-length \| le le-length\} \{description description \| sequence-number\}
no ip prefix-list \{list-name [seq number] \{deny \| permit\} network/length \{ge ge-length \| le le-length\}\] \{description description \| sequence-number\}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>Configures a name to identify the prefix list. Do not use the word “detail” or “summary” as a list name because they are keywords in the <code>show ip prefix-list</code> command.</td>
</tr>
<tr>
<td>seq</td>
<td>(Optional) Applies a sequence number to a prefix-list entry.</td>
</tr>
<tr>
<td>number</td>
<td>(Optional) Integer from 1 to 4294967294. If a sequence number is not entered when configuring this command, default sequence numbering is applied to the prefix list. The number 5 is applied to the first prefix entry, and subsequent unnumbered entries are incremented by 5.</td>
</tr>
<tr>
<td>deny</td>
<td>Denies access for a matching condition.</td>
</tr>
<tr>
<td>permit</td>
<td>Permits access for a matching condition.</td>
</tr>
<tr>
<td>network / length</td>
<td>Configures the network address and the length of the network mask in bits. The network number can be any valid IP address or prefix. The bit mask can be a number from 1 to 32.</td>
</tr>
<tr>
<td>ge</td>
<td>(Optional) Specifies the lesser value of a range (the “from” portion of the range description) by applying the <code>ge-length</code> argument to the range specified. Note The <code>ge</code> keyword represents the greater than or equal to operator.</td>
</tr>
<tr>
<td>ge-length</td>
<td>(Optional) Represents the minimum prefix length to be matched.</td>
</tr>
<tr>
<td>le</td>
<td>(Optional) Specifies the greater value of a range (the “to” portion of the range description) by applying the <code>le-length</code> argument to the range specified. Note The <code>le</code> keyword represents the less than or equal to operator.</td>
</tr>
<tr>
<td>le-length</td>
<td>(Optional) Represents the maximum prefix length to be matched.</td>
</tr>
<tr>
<td>description</td>
<td>(Optional) Configures a descriptive name for the prefix list.</td>
</tr>
<tr>
<td>description</td>
<td>(Optional) Descriptive name of the prefix list, from 1 to 80 characters in length.</td>
</tr>
<tr>
<td>sequence-number</td>
<td>(Optional) Enables or disables the use of sequence numbers for prefix lists.</td>
</tr>
</tbody>
</table>

Command Default

No prefix lists or prefix-list entries are created.

Command Modes

Global configuration (config)
Command History

Table 104:

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **ip prefix-list** command to configure IP prefix filtering. Prefix lists are configured with **permit** or **deny** keywords to either permit or deny a prefix based on a matching condition. An implicit deny is applied to traffic that does not match any prefix-list entry.

A prefix-list entry consists of an IP address and a bit mask. The IP address can be for a classful network, a subnet, or a single host route. The bit mask is a number from 1 to 32.

Prefix lists are configured to filter traffic based on a match of an exact prefix length or a match within a range when the **ge** and **le** keywords are used. The **ge** and **le** keywords are used to specify a range of prefix lengths and provide more flexible configuration than using only the **network/length** argument. A prefix list is processed using an exact match when neither the **ge** nor the **le** keyword is specified. If only the **ge** value is specified, the range is the value entered for the **ge ge-length** argument to a full 32-bit length. If only the **le** value is specified, the range is from the value entered for the **network/length** argument to the **le le-length** argument. If both the **ge ge-length** and **le le-length** keywords and arguments are entered, the range is between the values used for the **ge-length** and **le-length** arguments.

The following formula shows this behavior:

\[
\text{length} < \text{ge ge-length} < \text{le le-length} \leq 32
\]

If the **seq** keyword is configured without a sequence number, the default sequence number is 5. In this scenario, the first prefix-list entry is assigned the number 5 and subsequent prefix list entries increment by 5. For example, the next two entries would have sequence numbers 10 and 15. If a sequence number is entered for the first prefix list entry but not for subsequent entries, the subsequent entry numbers increment by 5. For example, if the first configured sequence number is 3, subsequent entries will be 8, 13, and 18. Default sequence numbers can be suppressed by entering the **no ip prefix-list** command with the **seq** keyword.

Evaluation of a prefix list starts with the lowest sequence number and continues down the list until a match is found. When an IP address match is found, the permit or deny statement is applied to that network and the remainder of the list is not evaluated.

Tip

For best performance, the most frequently processed prefix list statements should be configured with the lowest sequence numbers. The **seq number** keyword and argument can be used for resequencing.

A prefix list is applied to inbound or outbound updates for a specific peer by entering the **neighbor prefix-list** command. Prefix list information and counters are displayed in the output of the **show ip prefix-list** command. Prefix-list counters can be reset by entering the **clear ip prefix-list** command.

Examples

In the following example, a prefix list is configured to deny the default route 0.0.0.0/0:

```
Device(config)#ip prefix-list RED deny 0.0.0.0/0
```

In the following example, a prefix list is configured to permit traffic from the 172.16.1.0/24 subnet:

```
Device(config)#ip prefix-list BLUE permit 172.16.1.0/24
```
In the following example, a prefix list is configured to permit routes from the 10.0.0.0/8 network that have a mask length that is less than or equal to 24 bits:

```
Device(config)#ip prefix-list YELLOW permit 10.0.0.0/8 le 24
```

In the following example, a prefix list is configured to deny routes from the 10.0.0.0/8 network that have a mask length that is greater than or equal to 25 bits:

```
Device(config)#ip prefix-list PINK deny 10.0.0.0/8 ge 25
```

In the following example, a prefix list is configured to permit routes from any network that have a mask length from 8 to 24 bits:

```
Device(config)#ip prefix-list GREEN permit 0.0.0.0/0 ge 8 le 24
```

In the following example, a prefix list is configured to deny any route with any mask length from the 10.0.0.0/8 network:

```
Device(config)#ip prefix-list ORANGE deny 10.0.0.0/8 le 32
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clear ip prefix-list</td>
<td>Resets the prefix list entry counters.</td>
</tr>
<tr>
<td></td>
<td>ip prefix-list description</td>
<td>Adds a text description of a prefix list.</td>
</tr>
<tr>
<td></td>
<td>ip prefix-list sequence</td>
<td>Enables or disables default prefix-list sequencing.</td>
</tr>
<tr>
<td></td>
<td>match ip address</td>
<td>Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.</td>
</tr>
<tr>
<td></td>
<td>neighbor prefix-list</td>
<td>Filters routes from the specified neighbor using a prefix list.</td>
</tr>
<tr>
<td></td>
<td>show ip prefix-list</td>
<td>Displays information about a prefix list or prefix list entries.</td>
</tr>
</tbody>
</table>
ip hello-interval eigrp

To configure the hello interval for an Enhanced Interior Gateway Routing Protocol (EIGRP) process, use the `ip hello-interval eigrp` command in interface configuration mode. To restore the default value, use the `no` form of this command.

```
ip hello-interval eigrp as-number seconds
no ip hello-interval eigrp as-number [seconds]
```

Syntax Description

<table>
<thead>
<tr>
<th>as-number</th>
<th>Autonomous system number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Hello interval (in seconds). The range is from 1 to 65535.</td>
</tr>
</tbody>
</table>

Command Default

The hello interval for low-speed, nonbroadcast multiaccess (NBMA) networks is 60 seconds and 5 seconds for all other networks.

Command Modes

Interface configuration (config-if) Virtual network interface (config-if-vnet)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The default of 60 seconds applies only to low-speed, NBMA media. Low speed is considered to be a rate of T1 or slower, as specified with the `bandwidth` interface configuration command. Note that for the purposes of EIGRP, Frame Relay and Switched Multimegabit Data Service (SMDS) networks may be considered to be NBMA. These networks are considered NBMA if the interface has not been configured to use physical multicasting; otherwise, they are considered not to be NBMA.

Examples

The following example sets the hello interval for Ethernet interface 0 to 10 seconds:

```
Device(config)#interface ethernet 0
Device(config-if)#ip hello-interval eigrp 109 10
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth (interface)</td>
<td>Sets a bandwidth value for an interface.</td>
</tr>
<tr>
<td>ip hold-time eigrp</td>
<td>Configures the hold time for a particular EIGRP routing process designated by the autonomous system number.</td>
</tr>
</tbody>
</table>
ip hold-time eigrp

To configure the hold time for an Enhanced Interior Gateway Routing Protocol (EIGRP) process, use the `ip hold-time eigrp` command in interface configuration mode. To restore the default value, use the `no` form of this command.

```
ip hold-time eigrp as-number seconds
no ip hold-time eigrp as-number seconds
```

Syntax Description

<table>
<thead>
<tr>
<th>as-number</th>
<th>Autonomous system number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Hold time (in seconds). The range is from 1 to 65535.</td>
</tr>
</tbody>
</table>

Command Default

The EIGRP hold time is 180 seconds for low-speed, nonbroadcast multiaccess (NBMA) networks and 15 seconds for all other networks.

Command Modes

Interface configuration (config-if) Virtual network interface (config-if-vnet)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

On very congested and large networks, the default hold time might not be sufficient time for all routers and access servers to receive hello packets from their neighbors. In this case, you may want to increase the hold time.

We recommend that the hold time be at least three times the hello interval. If a router does not receive a hello packet within the specified hold time, routes through this router are considered unavailable.

Increasing the hold time delays route convergence across the network.

The default of 180 seconds hold time and 60 seconds hello interval apply only to low-speed, NBMA media. Low speed is considered to be a rate of T1 or slower, as specified with the `bandwidth` interface configuration command.

Examples

The following example sets the hold time for Ethernet interface 0 to 40 seconds:

```
Device(config)#interface ethernet 0
Device(config-if)#ip hold-time eigrp 109 40
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth (interface)</td>
<td>Sets a bandwidth value for an interface.</td>
</tr>
<tr>
<td>ip hello-interval eigrp</td>
<td>Configures the hello interval for the EIGRP routing process designated by an autonomous system number.</td>
</tr>
</tbody>
</table>
ip load-sharing

To enable load balancing for Cisco Express Forwarding on an interface, use the **ip load-sharing** command in interface configuration mode. To disable load balancing for Cisco Express Forwarding on the interface, use the **no** form of this command.

```
ip load-sharing {per-packet | per-destination}
no ip load-sharing per-packet
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>per-packet</td>
<td>Enables per-packet load balancing for Cisco Express Forwarding on the interface. This functionality and keyword are not supported on all platforms. See "Usage Guidelines" for more information.</td>
</tr>
<tr>
<td>per-destination</td>
<td>Enables per-destination load balancing for Cisco Express Forwarding on the interface.</td>
</tr>
</tbody>
</table>

Command Default
Per-destination load balancing is enabled by default when you enable Cisco Express Forwarding.

Command Modes
Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Per-packet load balancing allows the router to send data packets over successive equal-cost paths without regard to individual destination hosts or user sessions. Path utilization is good, but packets destined for a given destination host might take different paths and might arrive out of order.

Per-destination load balancing allows the device to use multiple, equal-cost paths to achieve load sharing. Packets for a given source-destination host pair are guaranteed to take the same path, even if multiple, equal-cost paths are available. Traffic for different source-destination host pairs tends to take different paths.

Note
If you want to enable per-packet load sharing to a particular destination, then all interfaces that can forward traffic to the destination must be enabled for per-packet load sharing.

Examples

The following example shows how to enable per-packet load balancing:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/0/1
Device(config-if)# ip load-sharing per-packet
```

The following example shows how to enable per-destination load balancing:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/0/1
Device(config-if)# ip load-sharing per-destination
```
ip ospf database-filter all out

To filter outgoing link-state advertisements (LSAs) to an Open Shortest Path First (OSPF) interface, use the ip ospf database-filter all out command in interface or virtual network interface configuration modes. To restore the forwarding of LSAs to the interface, use the no form of this command.

```
ip ospf database-filter all out [disable]
no ip ospf database-filter all out
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>(Optional) Disables the filtering of outgoing LSAs to an OSPF interface; all outgoing LSAs are flooded to the interface.</td>
</tr>
<tr>
<td>Note</td>
<td>This keyword is available only in virtual network interface mode.</td>
</tr>
</tbody>
</table>

Command Default

This command is disabled by default. All outgoing LSAs are flooded to the interface.

Command Modes

Interface configuration (config-if)
Virtual network interface (config-if-vnet)

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command performs the same function that the neighbor database-filter command performs on a neighbor basis.

If the ip ospf database-filter all out command is enabled for a virtual network and you want to disable it, use the disable keyword in virtual network interface configuration mode.

Examples

The following example prevents filtering of OSPF LSAs to broadcast, nonbroadcast, or point-to-point networks reachable through Ethernet interface 0:

```
Device(config)#interface ethernet 0
Device(config-if)#ip ospf database-filter all out
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>neighbor database-filter</td>
<td>Filters outgoing LSAs to an OSPF neighbor.</td>
</tr>
</tbody>
</table>
ip ospf name-lookup

To configure Open Shortest Path First (OSPF) to look up Domain Name System (DNS) names for use in all OSPF `show` EXEC command displays, use the `ip ospf name-lookup` command in global configuration mode. To disable this function, use the `no` form of this command.

```plaintext
ip ospf name-lookup
noipospfname-lookup
```

Syntax Description

This command has no arguments or keywords.

Command Default

This command is disabled by default.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command makes it easier to identify a router because the router is displayed by name rather than by its router ID or neighbor ID.

Examples

The following example configures OSPF to look up DNS names for use in all OSPF `show` EXEC command displays:

```plaintext
Device(config)#ip ospf name-lookup
```
ip split-horizon eigrp

To enable Enhanced Interior Gateway Routing Protocol (EIGRP) split horizon, use the `ip split-horizon eigrp` command in interface configuration mode. To disable split horizon, use the `no` form of this command.

```
ip split-horizon eigrp as-number
no ip split-horizon eigrp as-number
```

Syntax Description

| `as-number` | Autonomous system number. |

Command Default

The behavior of this command is enabled by default.

Command Modes

- Interface configuration (config-if)
- Virtual network interface (config-if-vnet)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `no ip split-horizon eigrp` command to disable EIGRP split horizon in your configuration.

Examples

The following is an example of how to enable EIGRP split horizon:

```
Device(config-if)#ip split-horizon eigrp 101
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip split-horizon</td>
<td>Enables the split horizon mechanism.</td>
</tr>
<tr>
<td>(RIP)</td>
<td></td>
</tr>
<tr>
<td>neighbor</td>
<td>Defines a neighboring router with which to exchange routing</td>
</tr>
<tr>
<td>(EIGRP)</td>
<td>information.</td>
</tr>
</tbody>
</table>
ip summary-address eigrp

To configure address summarization for the Enhanced Interior Gateway Routing Protocol (EIGRP) on a specified interface, use the `ip summary-address eigrp` command in interface configuration or virtual network interface configuration mode. To disable the configuration, use the `no` form of this command.

```
ip summary-address eigrp as-number ip-address mask [admin-distance] [leak-map name]
no ip summary-address eigrp as-number ip-address mask
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>as-number</code></td>
<td>Autonomous system number.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>Summary IP address to apply to an interface.</td>
</tr>
<tr>
<td><code>mask</code></td>
<td>Subnet mask.</td>
</tr>
<tr>
<td><code>admin-distance</code></td>
<td>(Optional) Administrative distance. Range: 0 to 255.</td>
</tr>
<tr>
<td><code>leak-map name</code></td>
<td>(Optional) Specifies the route-map reference that is used to configure the route leaking through the summary.</td>
</tr>
</tbody>
</table>

Command Default

- An administrative distance of 5 is applied to EIGRP summary routes.
- EIGRP automatically summarizes to the network level, even for a single host route.
- No summary addresses are predefined.
- The default administrative distance metric for EIGRP is 90.

Command Modes

- Interface configuration (config-if)
- Virtual network interface configuration (config-if-vnet)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ip summary-address eigrp` command is used to configure interface-level address summarization. EIGRP summary routes are given an administrative-distance value of 5. The administrative-distance metric is used to advertise a summary without installing it in the routing table.

By default, EIGRP summarizes subnet routes to the network level. The `no auto-summary` command can be entered to configure the subnet-level summarization.

The summary address is not advertised to the peer if the administrative distance is configured as 255.

EIGRP Support for Leaking Routes
Configuring the `leak-map` keyword allows a component route that would otherwise be suppressed by the manual summary to be advertised. Any component subset of the summary can be leaked. A route map and access list must be defined to source the leaked route.

The following is the default behavior if an incomplete configuration is entered:

- If the `leak-map` keyword is configured to reference a nonexistent route map, the configuration of this keyword has no effect. The summary address is advertised but all component routes are suppressed.

- If the `leak-map` keyword is configured but the access list does not exist or the route map does not reference the access list, the summary address and all component routes are advertised.

If you are configuring a virtual-network trunk interface and you configure the `ip summary-address eigrp` command, the `admin-distance` value of the command is not inherited by the virtual networks running on the trunk interface because the administrative distance option is not supported in the `ip summary-address eigrp` command on virtual network subinterfaces.

Examples

The following example shows how to configure an administrative distance of 95 on Ethernet interface 0/0 for the 192.168.0.0/16 summary address:

```
Device(config)#router eigrp 1
Device(config-router)#no auto-summary
Device(config-router)#exit
Device(config)#interface Ethernet 0/0
Device(config-if)#ip summary-address eigrp 1 192.168.0.0 255.255.0.0 95
```

The following example shows how to configure the 10.1.1.0/24 subnet to be leaked through the 10.2.2.0 summary address:

```
Device(config)#router eigrp 1
Device(config-router)#exit
Device(config)#access-list 1 permit 10.1.1.0 0.0.0.255
Device(config)#route-map LEAK-10-1-1 permit 10
Device(config-route-map)#match ip address 1
Device(config-route-map)#exit
Device(config)#interface Serial 0/0
Device(config-if)#ip summary-address eigrp 1 10.2.2.0 255.0.0.0 leak-map LEAK-10-1-1
Device(config-if)#end
```

The following example configures GigabitEthernet interface 0/0/0 as a virtual network trunk interface:

```
Device(config)#interface gigabitethernet 0/0/0
Device(config-if)#vnet global
Device(config-if-vnet)#ip summary-address eigrp 1 10.3.3.0 255.0.0.0 33
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>auto-summary (EIGRP)</code></td>
<td>Configures automatic summarization of subnet routes to network-level routes (default behavior).</td>
</tr>
<tr>
<td><code>summary-metric</code></td>
<td>Configures fixed metrics for an EIGRP summary aggregate address.</td>
</tr>
</tbody>
</table>
ip route static bfd

To specify static route bidirectional forwarding detection (BFD) neighbors, use the `ip route static bfd` command in global configuration mode. To remove a static route BFD neighbor, use the `no` form of this command.

```
ip route static bfd (interface-type interface-number ip-address | vrf vrf-name) [group group-name]
no ip route static bfd (interface-type interface-number ip-address | vrf vrf-name) [group group-name]
```

Syntax Description

- **interface-type interface-number**
 - Interface type and number.

- **ip-address**
 - IP address of the gateway, in A.B.C.D format.

- **vrf vrf-name**
 - Specifies Virtual Routing and Forwarding (VRF) instance and the destination vrf name.

- **group group-name**
 - (Optional) Assigns a BFD group. The group-name is a character string of up to 32 characters specifying the BFD group name.

- **passive**
 - (Optional) Indicates passive membership in the BFD group.

- **unassociate**
 - (Optional) Unassociates the static route configured for a BFD.

Command Default

No static route BFD neighbors are specified.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `ip route static bfd` command to specify static route BFD neighbors. All static routes that have the same interface and gateway specified in the configuration share the same BFD session for reachability notification.

All static routes that specify the same values for the interface-type, interface-number, and ip-address arguments will automatically use BFD to determine gateway reachability and take advantage of fast failure detection.

The `group` keyword assigns a BFD group. The static BFD configuration is added to the VPN routing and forwarding (VRF) instance with which the interface is associated. The `passive` keyword specifies the passive member of the group. Adding static BFD in a group without the passive keyword makes the BFD an active member of the group. A static route should be tracked by the active BFD configuration in order to trigger a BFD session for the group. To remove all the static BFD configurations (active and passive) of a specific group, use the `no ip route static bfd` command and specify the BFD group name.
The **unassociate** keyword specifies that a BFD neighbor is not associated with static route, and the BFD sessions are requested if an interface has been configured with BFD. This is useful in bringing up a BFDv4 session in the absence of an IPv4 static route. If the unassociate keyword is not provided, then the IPv4 static routes are associated with BFD sessions.

BFD requires that BFD sessions are initiated on both endpoint devices. Therefore, this command must be configured on each endpoint device.

The BFD static session on a switch virtual interface (SVI) is established only after the `bfd interval milliseconds` command is disabled and enabled on that SVI.

To enable the static BFD sessions, perform the following steps:

1. Enable BFD timers on the SVI.
   ```
   bfd interval milliseconds min_rx milliseconds multiplier multiplier-value
   ```

2. Enable BFD for the static IP route
   ```
   ip route static bfd interface-type interface-number ip-address
   ```

3. Disable and enable the BFD timers on the SVI again.
   ```
   no bfd interval milliseconds min_rx milliseconds multiplier multiplier-value
   bfd interval milliseconds min_rx milliseconds multiplier multiplier-value
   ```

Examples

The following example shows how to configure BFD for all static routes through a specified neighbor, group, and active member of the group:

```
Device#configuration terminal
Device(config)#ip route static bfd GigabitEthernet 1/0/1 10.1.1.1 group group1
```

The following example shows how to configure BFD for all static routes through a specified neighbor, group, and passive member of the group:

```
Device#configuration terminal
Device(config)#ip route static bfd GigabitEthernet 1/0/1 10.2.2.2 group group1 passive
```

The following example shows how to configure BFD for all static routes in an unassociated mode without the group and passive keywords:

```
Device#configuration terminal
Device(config)#ip route static bfd GigabitEthernet 1/0/1 10.2.2.2 unassociate
```
ipv6 route static bfd

To specify static route Bidirectional Forwarding Detection for IPv6 (BFDv6) neighbors, use the **ipv6 route static bfd** command in global configuration mode. To remove a static route BFDv6 neighbor, use the **no** form of this command.

syntax:
```
ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]
```

no ipv6 route static bfd

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Name of the virtual routing and forwarding (VRF) instance by which static routes should be specified.</td>
</tr>
<tr>
<td>interface-type interface-number</td>
<td>Interface type and number.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighbor.</td>
</tr>
<tr>
<td>unassociated</td>
<td>(Optional) Moves a static BFD neighbor from associated mode to unassociated mode.</td>
</tr>
</tbody>
</table>

Command Default
No static route BFDv6 neighbors are specified.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the ipv6 route static bfd command to specify static route neighbors. All of the static routes that have the same interface and gateway specified in the configuration share the same BFDv6 session for reachability notification. BFDv6 requires that BFDv6 sessions are initiated on both endpoint routers. Therefore, this command must be configured on each endpoint router. An IPv6 static BFDv6 neighbor must be fully specified (with the interface and the neighbor address) and must be directly attached.

All static routes that specify the same values for vrf vrf-name, interface-type interface-number, and ipv6-address will automatically use BFDv6 to determine gateway reachability and take advantage of fast failure detection.

Examples

The following example creates a neighbor on Ethernet interface 0/0 with an address of 2001::1:

```
Device#configuration terminal
Device(config)#ipv6 route static bfd ethernet 0/0 2001::1
```

The following example converts the neighbor to unassociated mode:

```
Device#configuration terminal
Device(config)#ipv6 route static bfd ethernet 0/0 2001::1 unassociated
```
metric weights (EIGRP)

To tune the Enhanced Interior Gateway Routing Protocol (EIGRP) metric calculations, use the **metric weights** command in router configuration mode or address family configuration mode. To reset the values to their defaults, use the **no** form of this command.

Router Configuration

```
metric weights tos k1 k2 k3 k4 k5
no metric weights
```

Address Family Configuration

```
metric weights tos [k1 [k2 [k3 [k4 [k5 [k6]]]]]]
no metric weights
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tos</td>
<td>Type of service. This value must always be zero.</td>
</tr>
<tr>
<td>k1 k2 k3 k4 k5 k6</td>
<td>(Optional) Constants that convert an EIGRP metric vector into a scalar quantity. Valid values are 0 to 255. Given below are the default values:</td>
</tr>
<tr>
<td></td>
<td>* k1: 1</td>
</tr>
<tr>
<td></td>
<td>* k2: 0</td>
</tr>
<tr>
<td></td>
<td>* k3: 1</td>
</tr>
<tr>
<td></td>
<td>* k4: 0</td>
</tr>
<tr>
<td></td>
<td>* k5: 0</td>
</tr>
<tr>
<td></td>
<td>* k6: 0</td>
</tr>
</tbody>
</table>

Note

In address family configuration mode, if the values are not specified, default values are configured. The k6 argument is supported only in address family configuration mode.

Command Default

EIGRP metric K values are set to their default values.

Command Modes

- Router configuration (config-router)
- Address family configuration (config-router-af)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to alter the default behavior of EIGRP routing and metric computation and to allow the tuning of the EIGRP metric calculation for a particular type of service (ToS).

If k5 equals 0, the composite EIGRP metric is computed according to the following formula:

```
metric = [k1 * bandwidth + (k2 * bandwidth)/(256 – load) + k3 * delay + K6 * extended metrics]
```
If k5 does not equal zero, an additional operation is performed:

$$\text{metric} = \text{metric} \times \frac{k5}{(\text{reliability} + k4)}$$

Scaled Bandwidth = $10^7 / \text{minimum interface bandwidth (in kilobits per second)} \times 256$

Delay is in tens of microseconds for classic mode and pico seconds for named mode. In classic mode, a delay of hexadecimal FFFFFFFF (decimal 4294967295) indicates that the network is unreachable. In named mode, a delay of hexadecimal FFFFFFFFFFFFF (decimal 281474976710655) indicates that the network is unreachable.

Reliability is given as a fraction of 255. That is, 255 is 100 percent reliability or a perfectly stable link.

Load is given as a fraction of 255. A load of 255 indicates a completely saturated link.

Examples

The following example shows how to set the metric weights to slightly different values than the defaults:

```
Device(config)#router eigrp 109
Device(config-router)#network 192.168.0.0
Device(config-router)#metric weights 0 2 0 2 0 0
```

The following example shows how to configure an address-family metric weight to ToS: 0; K1: 2; K2: 0; K3: 2; K4: 0; K5: 0; K6: 1:

```
Device(config)#router eigrp virtual-name
Device(config-router)#address-family ipv4 autonomous-system 4533
Device(config-router-af)#metric weights 0 2 0 2 0 0 1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-family (EIGRP)</td>
<td>Enters address family configuration mode to configure an EIGRP routing instance.</td>
</tr>
<tr>
<td>bandwidth (interface)</td>
<td>Sets a bandwidth value for an interface.</td>
</tr>
<tr>
<td>delay (interface)</td>
<td>Sets a delay value for an interface.</td>
</tr>
<tr>
<td>ipv6 router eigrp</td>
<td>Configures an IPv6 EIGRP routing process.</td>
</tr>
<tr>
<td>metric holddown</td>
<td>Keeps new EIGRP routing information from being used for a certain period of time.</td>
</tr>
<tr>
<td>metric maximum-hops</td>
<td>Causes IP routing software to advertise routes with a hop count higher than what is specified by the command (EIGRP only) as unreachable routes.</td>
</tr>
<tr>
<td>router eigrp</td>
<td>Configures an EIGRP routing process.</td>
</tr>
</tbody>
</table>
neighbor description

To associate a description with a neighbor, use the `neighbor description` command in router configuration mode or address family configuration mode. To remove the description, use the `no` form of this command.

```
neighbor {ip-address peer-group-name} description text
no neighbor {ip-address peer-group-name} description [text]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the neighbor.</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Name of an EIGRP peer group. This argument is not available in address-family configuration mode.</td>
</tr>
<tr>
<td>text</td>
<td>Text (up to 80 characters in length) that describes the neighbor.</td>
</tr>
</tbody>
</table>

Command Default

There is no description of the neighbor.

Command Modes

Router configuration (config-router) Address family configuration (config-router-af)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

In the following examples, the description of the neighbor is “peer with example.com”:

```
Device(config)#router bgp 109
Device(config-router)#network 172.16.0.0
Device(config-router)#neighbor 172.16.2.3 description peer with example.com
```

In the following example, the description of the address family neighbor is “address-family-peer”:

```
Device(config)#router eigrp virtual-name
Device(config-router)#address-family ipv4 autonomous-system 4453
Device(config-router-af)#network 172.16.0.0
Device(config-router-af)#neighbor 172.16.2.3 description address-family-peer
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-family (EIGRP)</td>
<td>Enters address family configuration mode to configure an EIGRP routing instance.</td>
</tr>
<tr>
<td>network (EIGRP)</td>
<td>Specifies the network for an EIGRP routing process.</td>
</tr>
<tr>
<td>router eigrp</td>
<td>Configures the EIGRP address family process.</td>
</tr>
</tbody>
</table>
network (EIGRP)

To specify the network for an Enhanced Interior Gateway Routing Protocol (EIGRP) routing process, use the network command in router configuration mode or address-family configuration mode. To remove an entry, use the no form of this command.

```
network  ip-address  [wildcard-mask]
no network  ip-address  [wildcard-mask]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the directly connected network.</td>
</tr>
<tr>
<td>wildcard-mask</td>
<td>(Optional) EIGRP wildcard bits. Wildcard mask indicates a subnetwork, bitwise complement of the subnet mask.</td>
</tr>
</tbody>
</table>

Command Default

No networks are specified.

Command Modes

Router configuration (config-router) Address-family configuration (config-router-af)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When the network command is configured for an EIGRP routing process, the router matches one or more local interfaces. The network command matches only local interfaces that are configured with addresses that are within the same subnet as the address that has been configured with the network command. The router then establishes neighbors through the matched interfaces. There is no limit to the number of network statements (network commands) that can be configured on a router.

Use a wildcard mask as a shortcut to group networks together. A wildcard mask matches everything in the network part of an IP address with a zero. Wildcard masks target a specific host/IP address, entire network, subnet, or even a range of IP addresses.

When entered in address-family configuration mode, this command applies only to named EIGRP IPv4 configurations. Named IPv6 and Service Advertisement Framework (SAF) configurations do not support this command in address-family configuration mode.

Examples

The following example configures EIGRP autonomous system 1 and establishes neighbors through network 172.16.0.0 and 192.168.0.0:

```
Device(config)#router eigrp 1
Device(config-router)#network 172.16.0.0
Device(config-router)#network 192.168.0.0
Device(config-router)#network 192.168.0.0 0.0.255.255
```

The following example configures EIGRP address-family autonomous system 4453 and establishes neighbors through network 172.16.0.0 and 192.168.0.0:

```
Device(config)#router eigrp virtual-name
Device(config-router)#address-family ipv4 autonomous-system 4453
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-family (EIGRP)</td>
<td>Enters address-family configuration mode to configure an EIGRP routing instance.</td>
</tr>
<tr>
<td>router eigrp</td>
<td>Configures the EIGRP address-family process.</td>
</tr>
</tbody>
</table>
nsf (EIGRP)

To enable Cisco nonstop forwarding (NSF) operations for the Enhanced Interior Gateway Routing Protocol (EIGRP), use the `nsf` command in router configuration or address family configuration mode. To disable EIGRP NSF and to remove the EIGRP NSF configuration from the running-configuration file, use the `no` form of this command.

```
nsf
no nsf
```

Syntax Description
This command has no arguments or keywords.

Command Default
EIGRP NSF is disabled.

Command Modes
Router configuration (config-router)
Address family configuration (config-router-af)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `nsf` command is used to enable or disable EIGRP NSF support on an NSF-capable router. NSF is supported only on platforms that support High Availability.

Examples
The following example shows how to disable NSF:

```
Device# configure terminal
Device(config)# router eigrp 101
Device(config-router)# no nsf
Device(config-router)# end
```

The following example shows how to enable EIGRP IPv6 NSF:

```
Device# configure terminal
Device(config)# router eigrp virtual-name-1
Device(config-router)# address-family ipv6 autonomous-system 10
Device(config-router-af)# nsf
Device(config-router-af)# end
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug eigrp address-family ipv6 notifications</td>
<td>Displays information about EIGRP address family IPv6 event notifications.</td>
</tr>
<tr>
<td>debug eigrp nsf</td>
<td>Displays notifications and information about NSF events for an EIGRP routing process.</td>
</tr>
<tr>
<td>debug ip eigrp notifications</td>
<td>Displays information and notifications for an EIGRP routing process.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td><code>show ip protocols</code></td>
<td>Displays the parameters and the current state of the active routing protocol process.</td>
</tr>
<tr>
<td><code>show ipv6 protocols</code></td>
<td>Displays the parameters and the current state of the active IPv6 routing protocol process.</td>
</tr>
<tr>
<td><code>timers graceful-restart purge-time</code></td>
<td>Sets the graceful-restart purge-time timer to determine how long an NSF-aware router that is running EIGRP must hold routes for an inactive peer.</td>
</tr>
<tr>
<td><code>timers nsf converge</code></td>
<td>Sets the maximum time that the restarting router must wait for the end-of-table notification from an NSF-capable or NSF-aware peer.</td>
</tr>
<tr>
<td><code>timers nsf signal</code></td>
<td>Sets the maximum time for the initial restart period.</td>
</tr>
</tbody>
</table>
offset-list (EIGRP)

To add an offset to incoming and outgoing metrics to routes learned via Enhanced Interior Gateway Routing Protocol (EIGRP), use the offset-list command in router configuration mode or address family topology configuration mode. To remove an offset list, use the no form of this command.

```
offset-list {access-list-number|access-list-name} {in|out} offset [interface-type interface-number]
no offset-list {access-list-number|access-list-name} {in|out} offset [interface-type interface-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>access-list-number</th>
<th>Standard access list number or name to be applied. Access list number 0 indicates all networks (networks, prefixes, or routes). If the offset value is 0, no action is taken.</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list-name</td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>Applies the access list to incoming metrics.</td>
</tr>
<tr>
<td>out</td>
<td>Applies the access list to outgoing metrics.</td>
</tr>
<tr>
<td>offset</td>
<td>Positive offset to be applied to metrics for networks matching the access list. If the offset is 0, no action is taken.</td>
</tr>
<tr>
<td>interface-type</td>
<td>(Optional) Interface type to which the offset list is applied.</td>
</tr>
<tr>
<td>interface-number</td>
<td>(Optional) Interface number to which the offset list is applied.</td>
</tr>
</tbody>
</table>

Command Default

No offset values are added to incoming or outgoing metrics to routes learned via EIGRP.

Command Modes

Router configuration (config-router) Address family topology configuration (config-router-af-topology)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The offset value is added to the routing metric. An offset list with an interface type and interface number is considered extended and takes precedence over an offset list that is not extended. Therefore, if an entry passes the extended offset list and the normal offset list, the offset of the extended offset list is added to the metric.

Examples

In the following example, the router applies an offset of 10 to the delay component of the router only to access list 21:

```
Device(config-router)#offset-list 21 out 10
```

In the following example, the router applies an offset of 10 to routes learned from Ethernet interface 0:

```
Device(config-router)#offset-list 21 in 10 ethernet 0
```

In the following example, the router applies an offset of 10 to routes learned from Ethernet interface 0 in an EIGRP named configuration:
Device(config)#router eigrp virtual-name
Device(config-router)#address-family ipv4 autonomous-system 1
Device(config-router-af)#topology base
Device(config-router-af-topology)#offset-list 21 in 10 ethernet0
To configure the Border Gateway Protocol (BGP) routing process, use the **router bgp** command in global configuration mode. To remove a BGP routing process, use the **no** form of this command.

```
router bgp autonomous-system-number
no router bgp autonomous-system-number
```

Syntax Description

| **autonomous-system-number** | Number of an autonomous system that identifies the router to other BGP routers and tags the routing information that is passed along. Number in the range from 1 to 65535. |

Command Default

No BGP routing process is enabled by default.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.12.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command allows you to set up a distributed routing core that automatically guarantees the loop-free exchange of routing information between autonomous systems.

Cisco has implemented the following two methods of representing autonomous system numbers:

- **Asplain**—Decimal value notation where both 2-byte and 4-byte autonomous system numbers are represented by their decimal value. For example, 65526 is a 2-byte autonomous system number and 234567 is a 4-byte autonomous system number.

- **Asdot**—Autonomous system dot notation where 2-byte autonomous system numbers are represented by their decimal value and 4-byte autonomous system numbers are represented by a dot notation. For example, 65526 is a 2-byte autonomous system number and 1.169031 is a 4-byte autonomous system number (this is dot notation for the 234567 decimal number).

For details about the third method of representing autonomous system numbers, see [RFC 5396](https://tools.ietf.org/html/rfc5396).

Note

In Cisco IOS releases that include 4-byte ASN support, command accounting and command authorization that include a 4-byte ASN number are sent in the asplain notation irrespective of the format that is used on the command-line interface.

Asplain as Default Autonomous System Number Formatting

In Cisco IOS Release 12.0(32)SY8, 12.0(33)S3, 12.2(33)SRE, 12.2(33)XNE, 12.2(33)SXH, Cisco IOS XE Release 2.4, and later releases, the Cisco implementation of 4-byte autonomous system numbers uses asplain as the default display format for autonomous system numbers, but you can configure 4-byte autonomous system numbers in both the asplain and asdot format. In addition, the default format for matching 4-byte autonomous system numbers in regular expressions is asplain, so you must ensure that any regular expressions to match 4-byte autonomous system numbers are written in the asplain format. If you want to change the...
default show command output to display 4-byte autonomous system numbers in the asdot format, use the bgp asnotation dot command under router configuration mode. When the asdot format is enabled as the default, any regular expressions to match 4-byte autonomous system numbers must be written using the asdot format, or the regular expression match will fail. The tables below show that although you can configure 4-byte autonomous system numbers in either asplain or asdot format, only one format is used to display show command output and control 4-byte autonomous system number matching for regular expressions, and the default is asplain format. To display 4-byte autonomous system numbers in show command output and to control matching for regular expressions in the asdot format, you must configure the bgp asnotation dot command. After enabling the bgp asnotation dot command, a hard reset must be initiated for all BGP sessions by entering the clear ip bgp * command.

If you are upgrading to an image that supports 4-byte autonomous system numbers, you can still use 2-byte autonomous system numbers. The show command output and regular expression match are not changed and remain in asplain (decimal value) format for 2-byte autonomous system numbers regardless of the format configured for 4-byte autonomous system numbers.

<table>
<thead>
<tr>
<th>Format</th>
<th>Configuration Format</th>
<th>Show Command Output and Regular Expression Match Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>asplain</td>
<td>2-byte: 1 to 65535 4-byte: 65536 to 4294967295</td>
<td>2-byte: 1 to 65535 4-byte: 65536 to 4294967295</td>
</tr>
<tr>
<td>asdot</td>
<td>2-byte: 1 to 65535 4-byte: 1.0 to 65535.65535</td>
<td>2-byte: 1 to 65535 4-byte: 65536 to 4294967295</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
<th>Configuration Format</th>
<th>Show Command Output and Regular Expression Match Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>asplain</td>
<td>2-byte: 1 to 65535 4-byte: 65536 to 4294967295</td>
<td>2-byte: 1 to 65535 4-byte: 1.0 to 65535.65535</td>
</tr>
<tr>
<td>asdot</td>
<td>2-byte: 1 to 65535 4-byte: 1.0 to 65535.65535</td>
<td>2-byte: 1 to 65535 4-byte: 1.0 to 65535.65535</td>
</tr>
</tbody>
</table>

Reserved and Private Autonomous System Numbers

In Cisco IOS Release 12.0(32)S12, 12.0(32)SY8, 12.2(33)SRE, 12.2(33)XNE, 12.2(33)SXH, 12.4(24)T, Cisco IOS XE Release 2.3 and later releases, the Cisco implementation of BGP supports RFC 4893. RFC 4893 was developed to allow BGP to support a gradual transition from 2-byte autonomous system numbers to 4-byte autonomous system numbers. A new reserved (private) autonomous system number, 23456, was created by RFC 4893 and this number cannot be configured as an autonomous system number in the Cisco IOS CLI.

RFC 5398, Autonomous System (AS) Number Reservation for Documentation Use, describes new reserved autonomous system numbers for documentation purposes. Use of the reserved numbers allow configuration examples to be accurately documented and avoids conflict with production networks if these configurations are literally copied. The reserved numbers are documented in the IANA autonomous system number registry. Reserved 2-byte autonomous system numbers are in the contiguous block, 64496 to 64511 and reserved 4-byte autonomous system numbers are from 65536 to 65551 inclusive.
Private 2-byte autonomous system numbers are still valid in the range from 64512 to 65534 with 65535 being reserved for special use. Private autonomous system numbers can be used for internal routing domains but must be translated for traffic that is routed out to the Internet. BGP should not be configured to advertise private autonomous system numbers to external networks. Cisco IOS software does not remove private autonomous system numbers from routing updates by default. Cisco recommends that ISPs filter private autonomous system numbers.

Autonomous system number assignment for public and private networks is governed by the IANA. For information about autonomous system numbers, including reserved number assignment, or to apply to register an autonomous system number, see the following URL: http://www.iana.org/.

Examples

The following example shows how to configure a BGP process for autonomous system 45000 and configures two external BGP neighbors in different autonomous systems using 2-byte autonomous system numbers:

```
Device> enable
Device# configure terminal
Device(config)# router bgp 45000
Device(config-router)# neighbor 192.168.1.2 remote-as 40000
Device(config-router)# neighbor 192.168.3.2 remote-as 50000
Device(config-router)# neighbor 192.168.3.2 description finance
Device(config-router)# address-family ipv4
Device(config-router-af)# neighbor 192.168.1.2 activate
Device(config-router-af)# neighbor 192.168.3.2 activate
Device(config-router-af)# no auto-summary
Device(config-router-af)# no synchronization
Device(config-router-af)# network 172.17.1.0 mask 255.255.255.0
Device(config-router-af)# exit-address-family
```

The following example shows how to configure a BGP process for autonomous system 65538 and configures two external BGP neighbors in different autonomous systems using 4-byte autonomous system numbers in asplain notation. This example is supported in Cisco IOS Release 12.0(23)SY8, 12.0(23)SY9, 12.0(23)SY10, 12.0(23)SY11, 12.2(33)SRE, 12.2(33)XNE, 12.2(33)SX1, Cisco IOS XE Release 2.4, and later releases.

```
Device> enable
Device# configure terminal
Device(config)# router bgp 65538
Device(config-router)# neighbor 192.168.1.2 remote-as 65536
Device(config-router)# neighbor 192.168.3.2 remote-as 65550
Device(config-router)# neighbor 192.168.3.2 description finance
Device(config-router)# address-family ipv4
Device(config-router-af)# neighbor 192.168.1.2 activate
Device(config-router-af)# neighbor 192.168.3.2 activate
Device(config-router-af)# no auto-summary
Device(config-router-af)# no synchronization
Device(config-router-af)# network 172.17.1.0 mask 255.255.255.0
Device(config-router-af)# exit-address-family
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>neighbor remote-as</td>
<td>Adds an entry to the BGP or multiprotocol BGP neighbor table.</td>
</tr>
<tr>
<td>network (BGP and multiprotocol BGP)</td>
<td>Specifies the list of networks for the BGP routing process.</td>
</tr>
</tbody>
</table>
router-id

To use a fixed router ID, use the router-id command in router configuration mode. To force Open Shortest Path First (OSPF) to use the previous OSPF router ID behavior, use the no form of this command.

```
router-id  ip-address
no router-id  ip-address
```

Syntax Description

- `ip-address`: Router ID in IP address format.

Command Default

No OSPF routing process is defined.

Command Modes

Router configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can configure an arbitrary value in the IP address format for each router. However, each router ID must be unique.

If this command is used on an OSPF router process which is already active (has neighbors), the new router-ID is used at the next reload or at a manual OSPF process restart. To manually restart the OSPF process, use the clear ip ospf command.

Examples

The following example specifies a fixed router-id:

```
router-id 10.1.1.1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip ospf</td>
<td>Clears redistribution based on the OSPF routing process ID.</td>
</tr>
<tr>
<td>router ospf</td>
<td>Configures the OSPF routing process.</td>
</tr>
</tbody>
</table>
router eigrp

To configure the Enhanced Interior Gateway Routing Protocol (EIGRP) routing process, use the `router eigrp` command in global configuration mode. To remove an EIGRP routing process, use the `no` form of this command.

```
router eigrp {autonomous-system-number virtual-instance-name}
no router eigrp {autonomous-system-number virtual-instance-name}
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>autonomous-system-number</code></td>
<td>Autonomoussystem number that identifies the services to the other EIGRP address-family routers. It is also used to tag routing information. Valid range is 1 to 65535.</td>
</tr>
<tr>
<td><code>virtual-instance-name</code></td>
<td>EIGRP virtual instance name. This name must be unique among all address-family router processes on a single router, but need not be unique among routers.</td>
</tr>
</tbody>
</table>

Command Default

No EIGRP processes are configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Configuring the `router eigrp` command with the `autonomous-system-number` argument creates an EIGRP configuration referred to as autonomous system (AS) configuration. An EIGRP AS configuration creates an EIGRP routing instance that can be used for tagging routing information.

Configuring the `router eigrp` command with the `virtual-instance-name` argument creates an EIGRP configuration referred to as EIGRP named configuration. An EIGRP named configuration does not create an EIGRP routing instance by itself. An EIGRP named configuration is a base configuration that is required to define address-family configurations under it that are used for routing.

Examples

The following example configures EIGRP process 109:

```
Device(config)# router eigrp 109
```

The following example configures an EIGRP address-family routing process and assigns it the name “virtual-name”:

```
Device(config)#router eigrp virtual-name
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>network (EIGRP)</code></td>
<td>Specifies a list of networks for the EIGRP process.</td>
</tr>
</tbody>
</table>
redistribute (IPv6)

To redistribute IPv6 routes from one routing domain into another routing domain, use the `redistribute` command in IPv6 address family configuration mode. To disable redistribution, use the `no` form of this command.

```
redistribute protocol [{process-id}] [{include-connected level-1 | level-1-2 | level-2}] [{as-number}] [{metric metric-value}] [{metric-type type-value}] [{nssa-only}] [{tag tag-value}] [{route-map map-tag}]

no redistribute protocol [{process-id}] [{include-connected level-1 | level-1-2 | level-2}] [{as-number}] [{metric metric-value}] [{metric-type type-value}] [{nssa-only}] [{tag tag-value}] [{route-map map-tag}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol</td>
<td>Source protocol from which routes are redistributed. It can be one of the following keywords: <code>bgp</code>, <code>connected</code>, <code>eigrp</code>, <code>isis</code>, <code>lisp</code>, <code>nd</code>, <code>omp</code>, <code>ospf</code> (ospfv3), <code>rip</code>, or <code>static</code>.</td>
</tr>
<tr>
<td>process-id</td>
<td>(Optional) For the <code>bgp</code> or <code>eigrp</code> keyword, the process ID is an autonomous system number, which is a 16-bit decimal number. For the <code>isis</code> keyword, the process ID is an optional value that defines a meaningful name for a routing process. You can specify only one Intermediate System-to-Intermediate System (IS-IS) process per router. Creating a name for a routing process means that you use names when configuring routing. For the <code>ospf</code> keyword, the process ID is the number that is assigned administratively when the Open Shortest Path First (OSPF) for the IPv6 routing process is enabled. For the <code>rip</code> keyword, the process ID is an optional value that defines a meaningful name for an IPv6 Routing Information Protocol (RIP) routing process.</td>
</tr>
<tr>
<td>include-connected</td>
<td>(Optional) Allows the target protocol to redistribute routes that are learned by the source protocol and connected prefixes on those interfaces over which the source protocol is running.</td>
</tr>
<tr>
<td>level-1</td>
<td>Specifies that for IS-IS, Level 1 routes are redistributed into other IPv6 routing protocols independently.</td>
</tr>
<tr>
<td>level-1-2</td>
<td>Specifies that for IS-IS, both Level 1 and Level 2 routes are redistributed into other IPv6 routing protocols.</td>
</tr>
<tr>
<td>level-2</td>
<td>Specifies that for IS-IS, Level 2 routes are redistributed into other IPv6 routing protocols independently.</td>
</tr>
<tr>
<td>as-number</td>
<td>(Optional) Autonomous system number for the redistributed route.</td>
</tr>
<tr>
<td>metric</td>
<td>(Optional) When redistributing from one OSPF process to another OSPF process on the same router, the metric is carried through from one process to the other if no metric value is specified. When redistributing other processes to an OSPF process, the default metric is 20 when no metric value is specified.</td>
</tr>
</tbody>
</table>
redistribute (IPv6)

| **metric-type** type-value | (Optional) Specifies the external link type that is associated with the default route that is advertised into the routing domain. It can be one of two values:
| • 1: Type 1 external route
| • 2: Type 2 external route

If no value is specified for the **metric-type** keyword, the Cisco IOS software adopts a Type 2 external route.

| **nssa-only** | (Optional) Limits redistributed routes to not-so-stubby area (NSSA)

| **tag tag-value** | (Optional) Specifies the 32-bit decimal value that is attached to each external route. This is not used by OSPF itself. It might be used to communicate information between Autonomous System Boundary Routers (ASBRs). If none is specified, then the remote autonomous system number is used for routes from the BGP and the Exterior Gateway Protocol (EGP); for other protocols, zero (0) is used.

| **route-map** | (Optional) Specifies the route map that is checked to filter the import of routes from this source routing protocol to the current routing protocol. If the **route-map** keyword is not specified, all the routes are redistributed. If this keyword is specified, but no route map tags are listed, no routes are imported.

| **map-tag** | (Optional) Identifier of a configured route map.

Command Modes

Router configuration (config-router)
Address family configuration (config-router-af)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Changing or disabling a keyword does not affect the state of other keywords.

IS-IS ignores configured redistribution of routes, if any that are configured with the **include-connected** keyword. IS-IS advertises a prefix on an interface if either IS-IS is running over the interface or the interface is configured as passive.

Routes that are learned from IPv6 routing protocols are redistributed into IPv6 IS-IS at Level 1 into an attached area, or at Level 2. The **level-1-2** keyword allows both Level 1 and Level 2 routes in a single command.

For IPv6 RIP, use the **redistribute** command to advertise static routes as if they were directly connected routes.

Note

Advertising static routes as directly connected routes might cause routing loops if improperly configured.

Redistributed IPv6 RIP routing information is always filtered by the **distribute-list prefix-list** command in router configuration mode. Using the **distribute-list prefix-list** command ensures that only those routes that are intended by the administrator are passed along to the receiving routing protocol.
The metric value that is specified in the redistribute command for IPv6 RIP supersedes the metric value that is specified using the default-metric command.

In IPv4, if you redistribute a protocol, by default, you also redistribute the subnet on the interfaces over which the protocol is running. In IPv6, this is not the default behavior. To redistribute the subnet on the interfaces over which the protocol is running in IPv6, use the include-connected keyword. In IPv6, this functionality is not supported when the source protocol is BGP.

When the no redistribute command is configured, the parameter settings are ignored when the client protocol is IS-IS or EIGRP.

IS-IS redistribution is removed completely when IS-IS Level 1 and Level 2 are removed by you. IS-IS level settings can be configured using the redistribute command only.

The default redistribute type is restored to OSPFv3 when all route type values are removed by you.

Specify the nssa-only keyword to clear the propagate bit (P-bit) when external routes are redistributed into an NSSA. Doing so prevents corresponding NSSA external link state advertisements (LSAs) from being translated into other areas.

Examples

The following example shows how to configure IPv6 IS-IS to redistribute IPv6 BGP routes. The metric is specified as 5, and the metric type is set to 1.

Device> enable
Device# configure terminal
Device(config)# router isis
Device(config-router)# address-family ipv6
Device(config-router-af)# redistribute bgp 64500 metric 5 metric-type 1

The following example shows how to redistribute IPv6 BGP routes into the IPv6 RIP routing process named cisco:

Device> enable
Device# configure terminal
Device(config)# router rip cisco
Device(config-router)# redistribute bgp 42

The following example shows how to redistribute IS-IS for IPv6 routes into the OSPFv3 for IPv6 routing process 1:

Device> enable
Device# configure terminal
Device(config)# router ospfv3 1
Device(config-router)# address-family ipv6
Device(config-router-af)# redistribute isis 1 metric 32 metric-type 1 tag 85
redistribute maximum-prefix (OSPF)

To limit the number of prefixes that are redistributed into Open Shortest Path First (OSPF) or to generate a warning when the number of prefixes that are redistributed into OSPF reaches a maximum, use the `redistribute maximum-prefix` command in router configuration mode. To remove the values, use the `no` form of this command.

```
redistribute maximum-prefix maximum [{percentage}] [{warning-only}]
no redistribute
```

Syntax Description
- `maximum`: Integer from 1 to 4294967295 that specifies the maximum number of IP or IPv6 prefixes that can be redistributed into OSPF.
 - When the `warning-only` keyword is configured, the maximum value specifies the number of prefixes that can be redistributed into OSPF before the system logs a warning message. Redistribution is not limited.
 - The maximum number of IP or IPv6 prefixes that are allowed to be redistributed into OSPF, or the number of prefixes that are allowed to be redistributed into OSPF before the system logs a warning message, depends on whether the `warning-only` keyword is present.
 - There is no default value for the maximum argument.
 - If the `warning-only` keyword is also configured, this value does not limit redistribution; it is simply the number of redistributed prefixes that, when reached, causes a warning message to be logged.
- `percentage`: (Optional) Integer from 1 to 100 that specifies the threshold value, as a percentage, at which a warning message is generated.
 - The default percentage is 75.
- `warning-only`: (Optional) Causes a warning message to be logged when the number of prefixes that are defined by the `maximum` argument has been exceeded. Additional redistribution is not prevented.

Command Default
The default percentage is 75.

Command Modes
- Router configuration (config-router)
- Address family configuration (config-router-af)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
A network can be severely flooded if many IP or IPv6 prefixes are injected into the OSPF, perhaps by redistributing Border Gateway Protocol (BGP) into OSPF. Limiting the number of redistributed prefixes prevents this potential problem.

When the `redistribute maximum-prefix` command is configured and the number of redistributed prefixes reaches the maximum value that is configured, no more prefixes are redistributed (unless the `warning-only` keyword is configured).
The following example shows how two warning messages are logged; the first if the number of prefixes redistributed reaches 85 percent of 600 (510 prefixes), and the second if the number of redistributed routes reaches 600. However, the number of redistributed routes is not limited.

```
Device> enable
Device# configure terminal
Device(config)# router ospfv3 11
Device(config-router)# address-family ipv6
Device(config-router-af)# redistribute eigrp 10 subnets
Device(config-router-af)# redistribute maximum-prefix 600 85 warning-only
```

The following example shows how to set a maximum of 10 prefixes that can be redistributed into an OSPFv3 process:

```
Device> enable
Device# configure terminal
Device(config)# router ospfv3 10
Device(config-router)# address-family ipv6 unicast
Device(config-router-af)# redistribute maximum-prefix 10
Device(config-router-af)# redistribute connected
```
router ospfv3

To enter Open Shortest Path First Version 3 (OSPFv3) through router configuration mode, use the `router ospfv3` command in global configuration mode.

```
router ospfv3 [{process-id}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>process-id</code> (Optional) Internal identification. The number that is used here is the number assigned administratively when enabling the OSPFv3 routing process. The range is 1-65535.</td>
<td></td>
</tr>
</tbody>
</table>

Command Default

OSPFv3 routing process is disabled by default.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `router ospfv3` command to enter OSPFv3 router configuration mode. From this mode, you can enter taddress-family configuration mode for IPv6 or IPv4, and then configure the IPv6 or IPv4 address family.

Examples

The following example shows how to enter OSPFv3 router configuration mode:

```
Device> enable
Device# configure terminal
Device(config)# router ospfv3 1
Device(config-router)#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-family ipv6</td>
<td>Enters IPv6 address family configuration mode.</td>
</tr>
</tbody>
</table>
show ip eigrp interfaces

To display information about interfaces that are configured for the Enhanced Interior Gateway Routing Protocol (EIGRP), use the **show ip eigrp interfaces** command in user EXEC or privileged EXEC mode.

```
show ip eigrp [vrf vrf-name] [autonomous-system-number] interfaces [type number] [detail]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Displays information about the specified virtual routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>autonomous-system-number</td>
<td>(Optional) Autonomous system number whose output needs to be filtered.</td>
</tr>
<tr>
<td>type</td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>number</td>
<td>(Optional) Interface or subinterface number. For more information about the numbering syntax for your networking device, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed information about EIGRP interfaces for a specific EIGRP process.</td>
</tr>
</tbody>
</table>

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **show ip eigrp interfaces** command to display active EIGRP interfaces and EIGRP-specific interface settings and statistics. The optional `type number` argument and the `detail` keyword can be entered in any order.

- If an interface is specified, only information about that interface is displayed. Otherwise, information about all interfaces on which EIGRP is running is displayed.
- If an autonomous system is specified, only the routing process for the specified autonomous system is displayed. Otherwise, all EIGRP processes are displayed.
- This command can be used to display information about EIGRP named and EIGRP autonomous system configurations.
- This command displays the same information as the **show eigrp address-family interfaces** command. Cisco recommends using the **show eigrp address-family interfaces** command.

Examples

The following is sample output from the **show ip eigrp interfaces** command:

```
Device#show ip eigrp interfaces
EIGRP-IPv4 Interfaces for AS(60)
   Xmit Queue  Mean  Pacing Time  Multicast  Pending
```
The following sample output from the `show ip eigrp interfaces detail` command displays detailed information about all active EIGRP interfaces:

```
Device#show ip eigrp interfaces detail

EIGRP-IPv4 Interfaces for AS(1)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Peers</th>
<th>Un/Reliable</th>
<th>SRTT</th>
<th>Un/Reliable</th>
<th>Flow Timer</th>
<th>Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et0/0</td>
<td>1</td>
<td>0/0</td>
<td>337</td>
<td>0/10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SE0:1.16</td>
<td>1</td>
<td>0/0</td>
<td>10</td>
<td>1/63</td>
<td>103</td>
<td>0</td>
</tr>
<tr>
<td>Tu0</td>
<td>1</td>
<td>0/0</td>
<td>330</td>
<td>0/16</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Hello-interval is 5, Hold-time is 15
Split-horizon is enabled
Next xmit serial <none>
Packetized sent/expedited: 3/0
Hello's sent/expedited: 6/2
Un/reliable mcasts: 0/6 Un/reliable ucasts: 7/4
Mcast exceptions: 1 CR packets: 1 ACKs suppressed: 0
Retransmissions sent: 1 Out-of-sequence rcvd: 0
Topology-ids on interface - 0
Authentication mode is not set

The following sample output from the `show ip eigrp interfaces detail` command displays detailed information about a specific interface on which the `no ip next-hop self` command is configured along with the `no-ecmp-mode` option:

```
Device#show ip eigrp interfaces detail tunnel 0

EIGRP-IPv4 Interfaces for AS(1)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Peers</th>
<th>Un/Reliable</th>
<th>SRTT</th>
<th>Un/Reliable</th>
<th>Flow Timer</th>
<th>Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tu0/0</td>
<td>2</td>
<td>0/0</td>
<td>50</td>
<td>0/0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Hello-interval is 5, Hold-time is 15
Split-horizon is disabled
Next xmit serial <none>
Packetized sent/expedited: 24/3
Hello's sent/expedited: 28083/9
Un/reliable mcasts: 0/19 Un/reliable ucasts: 18/64
Mcast exceptions: 5 CR packets: 5 ACKs suppressed: 0
Retransmissions sent: 52 Out-of-sequence rcvd: 2
Next-hop-self disabled, next-hop info forwarded, **ECMP mode Enabled**
Topology-ids on interface - 0
Authentication mode is not set

The table below describes the significant fields shown in the displays.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface on which EIGRP is configured.</td>
</tr>
<tr>
<td>Peers</td>
<td>Number of directly connected EIGRP neighbors.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>PeerQ Un/Reliable</td>
<td>Number of unreliable and reliable packets queued for transmission to specific peers on the interface.</td>
</tr>
<tr>
<td>Xmit Queue Un/Reliable</td>
<td>Number of packets remaining in the Unreliable and Reliable transmit queues.</td>
</tr>
<tr>
<td>Mean SRTT</td>
<td>Mean smooth round-trip time (SRTT) interval (in seconds).</td>
</tr>
<tr>
<td>Pacing Time Un/Reliable</td>
<td>Pacing time (in seconds) used to determine when EIGRP packets (unreliable and reliable) should be sent out of the interface.</td>
</tr>
<tr>
<td>Multicast Flow Timer</td>
<td>Maximum number of seconds for which the device will send multicast EIGRP packets.</td>
</tr>
<tr>
<td>Pending Routes</td>
<td>Number of routes in the transmit queue waiting to be sent.</td>
</tr>
<tr>
<td>Packetized sent/expedited</td>
<td>Number of EIGRP routes that have been prepared for sending packets to neighbors on an interface, and the number of times multiple routes were stored in a single packet.</td>
</tr>
<tr>
<td>Hello’s sent/expedited</td>
<td>Number of EIGRP hello packets that have been sent on an interface and packets that were expedited.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show eigrp address-family interfaces</td>
<td>Displays information about address family interfaces configured for EIGRP.</td>
</tr>
<tr>
<td>show ip eigrp neighbors</td>
<td>Displays neighbors discovered by EIGRP.</td>
</tr>
</tbody>
</table>
show ip eigrp neighbors

To display neighbors discovered by the Enhanced Interior Gateway Routing Protocol (EIGRP), use the `show ip eigrp neighbors` command in privileged EXEC mode.

```
show ip eigrp [vrf vrf-name] [autonomous-system-number] neighbors [{static | detail}] [interface-type interface-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Displays information about the specified VPN Routing and Forwarding (VRF) instance.</td>
</tr>
<tr>
<td>autonomous-system-number</td>
<td>(Optional) Autonomous-system-number-specific output is displayed.</td>
</tr>
<tr>
<td>static</td>
<td>(Optional) Displays static neighbors.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed neighbor information.</td>
</tr>
<tr>
<td>interface-type interface-number</td>
<td>(Optional) Interface-specific output is displayed.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show ip eigrp neighbors` command can be used to display information about EIGRP named and EIGRP autonomous-system configurations. Use the `show ip eigrp neighbors` command to display dynamic and static neighbor states. You can use this command for also debugging certain types of transport problems.

This command displays the same information as the `show eigrp address-family neighbors` command. Cisco recommends that you use the `show eigrp address-family neighbors` command.

Examples

The following is sample output from the `show ip eigrp neighbors` command:

```
Device#show ip eigrp neighbors

      H Address      Interface  Hold Uptime  SRTT   RTO  Q  Seq
        (sec)         (ms) (ms)    (ms)
0  10.1.1.2        Et0/0     13 00:00:03 1996 5000 0 5
2  10.1.1.9        Et0/0     14 00:02:24 2096 5000 0 5
1  10.1.2.3        Et0/1     11 00:20:39 2202 5000 0 5

```

The table below describes the significant fields shown in the display.

Table 110: show ip eigrp neighbors Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>IP address of the EIGRP peer.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface on which the router is receiving hello packets from the peer.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Hold</td>
<td>Time in seconds for which EIGRP waits to hear from the peer before declaring it down.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Elapsed time (in hours:minutes: seconds) since the local router first heard from this neighbor.</td>
</tr>
<tr>
<td>SRTT</td>
<td>Smooth round-trip time. This is the number of milliseconds required for an EIGRP packet to be sent to this neighbor and for the local router to receive an acknowledgment of that packet.</td>
</tr>
<tr>
<td>RTO</td>
<td>Retransmission timeout (in milliseconds). This is the amount of time the software waits before resending a packet from the retransmission queue to a neighbor.</td>
</tr>
<tr>
<td>Q Cnt</td>
<td>Number of EIGRP packets (update, query, and reply) that the software is waiting to send.</td>
</tr>
<tr>
<td>Seq Num</td>
<td>Sequence number of the last update, query, or reply packet that was received from this neighbor.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show ip eigrp neighbors detail` command:

```
Device#show ip eigrp neighbors detail
EIGRP-IPv4 VR(foo) Address-Family Neighbors for AS(1)
H Address Interface Hold Uptime SRTT RTO Q Cnt Seq
0  192.168.10.1 Gi2/0 12 00:00:21 1600 5000 0 3
  Static neighbor (Lisp Encap)
  Version 8.0/2.0, Retrans: 0, Retries: 0, Prefixes: 1
  Topology-ids from peer - 0
```

The table below describes the significant fields shown in the display.

Table 111: show ip eigrp neighbors detail Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>This column lists the order in which a peering session was established with the specified neighbor. The order is specified with sequential numbering starting with 0.</td>
</tr>
<tr>
<td>Address</td>
<td>IP address of the EIGRP peer.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface on which the router is receiving hello packets from the peer.</td>
</tr>
<tr>
<td>Hold</td>
<td>Time in seconds for which EIGRP waits to hear from the peer before declaring it down.</td>
</tr>
<tr>
<td>Lisp Encap</td>
<td>Indicates that routes from this neighbor are LISP encapsulated.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Elapsed time (in hours:minutes: seconds) since the local router first heard from this neighbor.</td>
</tr>
<tr>
<td>SRTT</td>
<td>Smooth round-trip time. This is the number of milliseconds required for an EIGRP packet to be sent to this neighbor and for the local router to receive an acknowledgment of that packet.</td>
</tr>
<tr>
<td>RTO</td>
<td>Retransmission timeout (in milliseconds). This is the amount of time the software waits before resending a packet from the retransmission queue to a neighbor.</td>
</tr>
<tr>
<td>Q Cnt</td>
<td>Number of EIGRP packets (update, query, and reply) that the software is waiting to send.</td>
</tr>
</tbody>
</table>
show ip eigrp neighbors

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq Num</td>
<td>Sequence number of the last update, query, or reply packet that was received from this neighbor.</td>
</tr>
<tr>
<td>Version</td>
<td>The software version that the specified peer is running.</td>
</tr>
<tr>
<td>Retrans</td>
<td>Number of times that a packet has been retransmitted.</td>
</tr>
<tr>
<td>Retries</td>
<td>Number of times an attempt was made to retransmit a packet.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show eigrp address-family neighbors</td>
<td>Displays neighbors discovered by EIGRP.</td>
</tr>
</tbody>
</table>
show ip eigrp topology

To display Enhanced Interior Gateway Routing Protocol (EIGRP) topology table entries, use the `show ip eigrp topology` command in user EXEC or privileged EXEC mode.

```
show ip eigrp topology [vrf vrf-name autonomous-system-number | network [mask] | prefix | active | all-links | detail-links | name | pending | summary | zero-successors]
```

Syntax Description

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Displays information about the specified virtual routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>autonomous-system-number</td>
<td>(Optional) Autonomous system number.</td>
</tr>
<tr>
<td>network</td>
<td>(Optional) Network address.</td>
</tr>
<tr>
<td>mask</td>
<td>(Optional) Network mask.</td>
</tr>
<tr>
<td>prefix</td>
<td>(Optional) Network prefix in the format <network>/<length>; for example, 192.168.0.0/16.</td>
</tr>
<tr>
<td>active</td>
<td>(Optional) Displays all topology entries that are in the active state.</td>
</tr>
<tr>
<td>all-links</td>
<td>(Optional) Displays all entries in the EIGRP topology table (including nonfeasible-successor sources).</td>
</tr>
<tr>
<td>detail-links</td>
<td>(Optional) Displays all topology entries with additional details.</td>
</tr>
<tr>
<td>name</td>
<td>(Optional) Displays the IPv4 topology table name. This name is the topology identifier and shows topology-related information for Multitopology Routing (MTR).</td>
</tr>
<tr>
<td>pending</td>
<td>(Optional) Displays all entries in the EIGRP topology table that are either waiting for an update from a neighbor or waiting to reply to a neighbor.</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays a summary of the EIGRP topology table.</td>
</tr>
<tr>
<td>zero-successors</td>
<td>(Optional) Displays available routes that have zero successors.</td>
</tr>
</tbody>
</table>

Command Default

If this command is used without any of the optional keywords, only topology entries with feasible successors are displayed and only feasible paths are shown.

Command Modes

- User EXEC (`>`)
- Privileged EXEC (`#`)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show ip eigrp topology` command to display topology entries, feasible and nonfeasible paths, metrics, and states. This command can be used without any arguments or keywords to display only topology entries.
with feasible successors and feasible paths. The **all-links** keyword displays all paths, whether feasible or not, and the **detail-links** keyword displays additional details about these paths.

Use this command to display information about EIGRP named and EIGRP autonomous system configurations. This command displays the same information as the **show eigrp address-family topology** command. We recommend using the **show eigrp address-family topology** command.

Examples

The following is sample output from the **show ip eigrp topology** command:

```
Device# show ip eigrp topology

EIGRP-IPv4 Topology Table for AS(1)/ID(10.0.0.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status, s - sia status
P 10.0.0.0/8, 1 successors, FD is 409600
   via 192.0.2.1 (409600/128256), Ethernet0/0
P 172.16.1.0/24, 1 successors, FD is 409600
   via 192.0.2.1 (409600/128256), Ethernet0/0
P 10.0.0.0/8, 1 successors, FD is 281600
   via Summary (281600/0), Null0
P 10.0.1.0/24, 1 successors, FD is 281600
   via Connected, Ethernet0/0
```

The following sample output from the **show ip eigrp topology prefix** command displays detailed information about a single prefix. The prefix shown is an EIGRP internal route.

```
Device# show ip eigrp topology 10.0.0.0/8

EIGRP-IPv4 VR(vr1) Topology Entry for AS(1)/ID(10.1.1.2) for 10.0.0.0/8
State is Passive, Query origin flag is 1, 1 Successor(s), FD is 82329600, RIB is 643200
Descriptor Blocks:
  10.1.1.1 (Ethernet2/0), from 10.1.1.1, Send flag is 0x0
    Composite metric is (82329600/163840), route is Internal
    Vector metric:
      Minimum bandwidth is 16000 Kbit
      Total delay is 631250000 picoseconds
      Reliability is 255/255
      Load is 1/255
      Minimum MTU is 1500
      Hop count is 1
      Originating router is 10.1.1.1
```

The following sample output from the **show ip eigrp topology prefix** command displays detailed information about a single prefix. The prefix shown is an EIGRP external route.

```
Device# show ip eigrp topology 172.16.1.0/24

EIGRP-IPv4 Topology Entry for AS(1)/ID(10.0.0.1) for 172.16.1.0/24
State is Passive, Query origin flag is 1, 1 Successor(s), FD is 409600, RIB is 643200
Descriptor Blocks:
  172.16.1.0/24 (Ethernet0/0), from 10.0.1.2, Send flag is 0x0
    Composite metric is (409600/128256), route is External
    Vector metric:
      Minimum bandwidth is 10000 Kbit
      Total delay is 6000 picoseconds
      Reliability is 255/255
      Load is 1/255
      Minimum MTU is 1500
      Hop count is 1
```
The following sample output from the `show ip eigrp topology prefix` command displays Equal Cost Multipath (ECMP) mode information when the `no ip next-hop-self` command is configured without the `no-ecmp-mode` keyword in an EIGRP topology. The ECMP mode provides information about the path that is being advertised. If there is more than one successor, the top most path will be advertised as the default path over all interfaces, and “ECMP Mode: Advertise by default” will be displayed in the output. If any path other than the default path is advertised, “ECMP Mode: Advertise out <Interface name>” will be displayed.

The topology table displays entries of routes for a particular prefix. The routes are sorted based on metric, next-hop, and infosource. In a Dynamic Multipoint VPN (DMVPN) scenario, routes with same metric and next-hop are sorted based on infosource. The top route in the ECMP is always advertised.

Device#`show ip eigrp topology 192.168.10.0/24`

EIGRP-IPv4 Topology Entry for AS(1)/ID(10.10.100.100) for 192.168.10.0/24
State is Passive, Query origin flag is 1, 2 Successor(s), FD is 284160
Descriptor Blocks:
10.100.1.0 (Tunnel0), from 10.100.0.1, Send flag is 0x0
Composite metric is (284160/281600), route is Internal
Vector metric:
Minimum bandwidth is 10000 Kbit
Total delay is 1100 microseconds
Reliability is 255/255
Load is ½55
Minimum MTU is 1400
Hop count is 1
Originating router is 10.10.1.1
ECMP Mode: Advertise by default
10.100.0.2 (Tunnel1), from 10.100.0.2, Send flag is 0x0
Composite metric is (284160/281600), route is Internal
Vector metric:
Minimum bandwidth is 10000 Kbit
Total delay is 1100 microseconds
Reliability is 255/255
Load is ½55
Minimum MTU is 1400
Hop count is 1
Originating router is 10.10.2.2
ECMP Mode: Advertise out Tunnel1

The following sample output from the `show ip eigrp topology all-links` command displays all paths, even those that are not feasible:

Device#`show ip eigrp topology all-links`

EIGRP-IPv4 Topology Table for AS(1)/ID(10.0.0.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
r - reply Status, s - sia Status
P 172.16.1.0/24, 1 successors, FD is 409600, serno 14
via 10.10.1.2 (409600/128256), Ethernet0/0
via 10.1.4.3 (2588611744/25885499744), Serial3/0, serno 18

The following sample output from the `show ip eigrp topology detail-links` command displays additional details about routes:
Device# show ip eigrp topology detail-links

EIGRP-IPv4 Topology Table for AS(1)/ID(10.0.0.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
r - reply Status, s - sia Status
P 10.0.0.0/8, 1 successors, FD is 409600, serno 6
 via 10.10.1.2 (409600/128256), Ethernet0/0
P 172.16.1.0/24, 1 successors, FD is 409600, serno 14
 via 10.10.1.2 (409600/128256), Ethernet0/0
P 10.0.0.0/8, 1 successors, FD is 281600, serno 3
 via Summary (281600/0), Null0
P 10.1.1.0/24, 1 successors, FD is 281600, serno 1
 via Connected, Ethernet0/0

The table below describes the significant fields shown in the displays.

Table 112: show ip eigrp topology Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codes</td>
<td>State of this topology table entry. Passive and Active refer to the EIGRP state with respect to the destination. Update, Query, and Reply refer to the type of packet that is being sent.</td>
</tr>
<tr>
<td></td>
<td>• P - Passive—Indicates that no EIGRP computations are being performed for this route.</td>
</tr>
<tr>
<td></td>
<td>• A - Active—Indicates that EIGRP computations are being performed for this route.</td>
</tr>
<tr>
<td></td>
<td>• U - Update—Indicates that a pending update packet is waiting to be sent for this route.</td>
</tr>
<tr>
<td></td>
<td>• Q - Query—Indicates that a pending query packet is waiting to be sent for this route.</td>
</tr>
<tr>
<td></td>
<td>• R - Reply—Indicates that a pending reply packet is waiting to be sent for this route.</td>
</tr>
<tr>
<td></td>
<td>• r - Reply status—Indicates that EIGRP has sent a query for the route and is waiting for a reply from the specified path.</td>
</tr>
<tr>
<td></td>
<td>• s - sia status—Indicates that the EIGRP query packet is in stuck-in-active (SIA) status.</td>
</tr>
<tr>
<td>successors</td>
<td>Number of successors. This number corresponds to the number of next hops in the IP routing table. If “successors” is capitalized, then the route or the next hop is in a transition state.</td>
</tr>
<tr>
<td>serno</td>
<td>Serial number.</td>
</tr>
</tbody>
</table>
Feasible distance. The feasible distance is the best metric to reach the destination or the best metric that was known when the route became active. This value is used in the feasibility condition check. If the reported distance of the device is less than the feasible distance, the feasibility condition is met and that route becomes a feasible successor. After the software determines that it has a feasible successor, the software need not send a query for that destination.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>Feasible distance. The feasible distance is the best metric to reach the destination or the best metric that was known when the route became active. This value is used in the feasibility condition check. If the reported distance of the device is less than the feasible distance, the feasibility condition is met and that route becomes a feasible successor. After the software determines that it has a feasible successor, the software need not send a query for that destination.</td>
</tr>
<tr>
<td>via</td>
<td>Next-hop address that advertises the passive route.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show eigrp address-family topology</code></td>
<td>Displays entries in the EIGRP address-family topology table.</td>
</tr>
</tbody>
</table>
show ip eigrp traffic

To display the number of Enhanced Interior Gateway Routing Protocol (EIGRP) packets sent and received, use the `show ip eigrp traffic` command in privileged EXEC mode.

```
show ip eigrp [vrf {vrf-name | *}] [autonomous-system-number] traffic
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrf vrf-name</code></td>
<td>(Optional) Displays information about the specified VRF.</td>
</tr>
<tr>
<td><code>vrf *</code></td>
<td>(Optional) Displays information about all VRFs.</td>
</tr>
<tr>
<td><code>autonomous-system-number</code></td>
<td>(Optional) Autonomous system number.</td>
</tr>
</tbody>
</table>

| Command Modes | Privileged EXEC (#) |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command can be used to display information about EIGRP named configurations and EIGRP autonomous-system (AS) configurations.

This command displays the same information as the `show eigrp address-family traffic` command. Cisco recommends using the `show eigrp address-family traffic` command.

Examples

The following is sample output from the `show ip eigrp traffic` command:

```
Device#show ip eigrp traffic
EIGRP-IPv4 Traffic Statistics for AS(60)
Hellos sent/received: 21429/2809
Updates sent/received: 22/17
Queries sent/received: 0/0
Replies sent/received: 0/0
Acks sent/received: 16/13
SIA-Queries sent/received: 0/0
SIA-Replies sent/received: 0/0
Hello Process ID: 204
PIM Process ID: 203
Socket Queue: 0/2000/2/0 (current/max/highest/drops)
Input Queue: 0/2000/2/0 (current/max/highest/drops)
```

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hellos sent/received</td>
<td>Number of hello packets sent and received.</td>
</tr>
<tr>
<td>Updates sent/received</td>
<td>Number of update packets sent and received.</td>
</tr>
<tr>
<td>Queries sent/received</td>
<td>Number of query packets sent and received.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
Replies sent/received | Number of reply packets sent and received.
Acks sent/received | Number of acknowledgement packets sent and received.
SIA-Queries sent/received | Number of stuck in active query packets sent and received.
SIA-Replies sent/received | Number of stuck in active reply packets sent and received.
Hello Process ID | Hello process identifier.
Socket Queue | The IP to EIGRP Hello Process socket queue counters.
Input queue | The EIGRP Hello Process to EIGRP PDM socket queue counters.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show eigrp address-family traffic</td>
<td>Displays the number of EIGRP packets sent and received.</td>
</tr>
</tbody>
</table>
show ip ospf

To display general information about Open Shortest Path First (OSPF) routing processes, use the `show ip ospf` command in user EXEC or privileged EXEC mode.

Syntax Description

```
show ip ospf [process-id]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>process-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Process ID. If this argument is included, only information for the specified routing process is included.</td>
<td></td>
</tr>
</tbody>
</table>

Command Modes

User EXEC Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Mainline Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show ip ospf` command when entered without a specific OSPF process ID:

```
Device# show ip ospf
Routing Process "ospf 201" with ID 10.0.0.1 and Domain ID 10.20.0.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
LSA group pacing timer 100 secs
Interface flood pacing timer 55 msecs
Retransmission pacing timer 100 msecs
Number of external LSA 0. Checksum Sum 0x0
Number of opaque AS LSA 0. Checksum Sum 0x0
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 2. 2 normal 0 stub 0 nssa
External flood list length 0
Area BACKBONE (0)
  Number of interfaces in this area is 2
  Area has message digest authentication
  SPF algorithm executed 4 times
  Area ranges are
  Number of LSA 4. Checksum Sum 0x29BEB
  Number of opaque link LSA 0. Checksum Sum 0x0
  Number of DCbitless LSA 3
  Number of indication LSA 0
  Number of DoNotAge LSA 0
  Flood list length 0
Area 172.16.26.0
  Number of interfaces in this area is 0
  Area has no authentication
  SPF algorithm executed 1 times
  Area ranges are
  192.168.0.0/16 Passive Advertise
  Number of LSA 1. Checksum Sum 0x44FD
  Number of opaque link LSA 0. Checksum Sum 0x0
  Number of DCbitless LSA 1
```
Cisco IOS Release 12.2(18)SXE, 12.0(31)S, and 12.4(4)T

The following is sample output from the `show ip ospf` command to verify that the BFD feature has been enabled for OSPF process 123. The relevant command output is shown in bold in the output.

```plaintext
Device# show ip ospf
Routing Process "ospf 123" with ID 172.16.10.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPF's 10000 msecs
Maximum wait time between two consecutive SPF's 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of opaque AS LSA 0. Checksum Sum 0x000000
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0
  BFD is enabled
  Area BACKBONE(0)
    Number of interfaces in this area is 2
    Area has no authentication
    SPF algorithm last executed 00:00:03.708 ago
    SPF algorithm executed 27 times
    Area ranges are
    Number of LSA 3. Checksum Sum 0x00A0EF1
    Number of opaque link LSA 0. Checksum Sum 0x000000
    Number of DCbitless LSA 0
    Number of indication LSA 0
    Number of DoNotAge LSA 0
    Flood list length 0
```

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing process “ospf 201” with ID 10.0.0.1</td>
<td>Process ID and OSPF router ID.</td>
</tr>
<tr>
<td>Supports...</td>
<td>Number of types of service supported (Type 0 only).</td>
</tr>
<tr>
<td>SPF schedule delay</td>
<td>Delay time (in seconds) of SPF calculations.</td>
</tr>
<tr>
<td>Minimum LSA interval</td>
<td>Minimum interval (in seconds) between link-state advertisements.</td>
</tr>
</tbody>
</table>
Field

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA group pacing timer</td>
<td>Configured LSA group pacing timer (in seconds).</td>
</tr>
<tr>
<td>Interface flood pacing timer</td>
<td>Configured LSA flood pacing timer (in milliseconds).</td>
</tr>
<tr>
<td>Retransmission pacing timer</td>
<td>Configured LSA retransmission pacing timer (in milliseconds).</td>
</tr>
<tr>
<td>Number of external LSA</td>
<td>Number of external link-state advertisements.</td>
</tr>
<tr>
<td>Number of opaque AS LSA</td>
<td>Number of opaque link-state advertisements.</td>
</tr>
<tr>
<td>Number of DCbitless external and opaque AS LSA</td>
<td>Number of demand circuit external and opaque link-state advertisements.</td>
</tr>
<tr>
<td>Number of DoNotAge external and opaque AS LSA</td>
<td>Number of do not age external and opaque link-state advertisements.</td>
</tr>
<tr>
<td>Number of areas in this router is</td>
<td>Number of areas configured for the router.</td>
</tr>
<tr>
<td>External flood list length</td>
<td>External flood list length.</td>
</tr>
<tr>
<td>BFD is enabled</td>
<td>BFD has been enabled on the OSPF process.</td>
</tr>
</tbody>
</table>

The following is an excerpt of output from the `show ip ospf` command when the OSPF Forwarding Address Suppression in Type-5 LSAs feature is configured:

```
Device# show ip ospf
  .
  .
  Area 2
    Number of interfaces in this area is 4
      It is a NSSA area
      Perform type-7/type-5 LSA translation, suppress forwarding address
  .
  .
Routing Process "ospf 1" with ID 192.168.0.1
  Supports only single TOS(TOS0) routes
  Supports opaque LSA
  Supports Link-local Signaling (LLS)
  Initial SPF schedule delay 5000 msecs
  Minimum hold time between two consecutive SPFs 10000 msecs
  Maximum wait time between two consecutive SPFs 10000 msecs
  Incremental-SPF disabled
  Minimum LSA interval 5 secs
  Minimum LSA arrival 1000 msecs
  LSA group pacing timer 240 secs
  Interface flood pacing timer 33 msecs
  Retransmission pacing timer 66 msecs
  Number of external LSA 0. Checksum Sum 0x0
  Number of opaque AS LSA 0. Checksum Sum 0x0
  Number of DCbitless external and opaque AS LSA 0
  Number of DoNotAge external and opaque AS LSA 0
  Number of areas in this router is 0. 0 normal 0 stub 0 nssa
  External flood list length 0
```
The table below describes the significant fields shown in the display.

Table 115: show ip ospf Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>OSPF area and tag.</td>
</tr>
<tr>
<td>Number of interfaces...</td>
<td>Number of interfaces configured in the area.</td>
</tr>
<tr>
<td>It is...</td>
<td>Possible types are internal, area border, or autonomous system boundary.</td>
</tr>
<tr>
<td>Routing process “ospf 1” with ID 192.168.0.1</td>
<td>Process ID and OSPF router ID.</td>
</tr>
<tr>
<td>Supports...</td>
<td>Number of types of service supported (Type 0 only).</td>
</tr>
<tr>
<td>Initial SPF schedule delay</td>
<td>Delay time of SPF calculations at startup.</td>
</tr>
<tr>
<td>Minimum hold time</td>
<td>Minimum hold time (in milliseconds) between consecutive SPF calculations.</td>
</tr>
<tr>
<td>Maximum wait time</td>
<td>Maximum wait time (in milliseconds) between consecutive SPF calculations.</td>
</tr>
<tr>
<td>Incremental-SPF</td>
<td>Status of incremental SPF calculations.</td>
</tr>
<tr>
<td>Minimum LSA...</td>
<td>Minimum time interval (in seconds) between link-state advertisements, and minimum arrival time (in milliseconds) of link-state advertisements,</td>
</tr>
<tr>
<td>LSA group pacing timer</td>
<td>Configured LSA group pacing timer (in seconds).</td>
</tr>
<tr>
<td>Interface flood pacing timer</td>
<td>Configured LSA flood pacing timer (in milliseconds).</td>
</tr>
<tr>
<td>Retransmission pacing timer</td>
<td>Configured LSA retransmission pacing timer (in milliseconds).</td>
</tr>
<tr>
<td>Number of...</td>
<td>Number and type of link-state advertisements that have been received.</td>
</tr>
<tr>
<td>Number of external LSA</td>
<td>Number of external link-state advertisements.</td>
</tr>
<tr>
<td>Number of opaque AS LSA</td>
<td>Number of opaque link-state advertisements.</td>
</tr>
<tr>
<td>Number of DCbitless external and opaque AS LSA</td>
<td>Number of demand circuit external and opaque link-state advertisements.</td>
</tr>
<tr>
<td>Number of DoNotAge external and opaque AS LSA</td>
<td>Number of do not age external and opaque link-state advertisements.</td>
</tr>
<tr>
<td>Number of areas in this router is</td>
<td>Number of areas configured for the router listed by type.</td>
</tr>
<tr>
<td>External flood list length</td>
<td>External flood list length.</td>
</tr>
</tbody>
</table>
The following is sample output from the show ip ospf command. In this example, the user had configured the redistributionmaximum-prefix command to set a limit of 2000 redistributed routes. SPF throttling was configured with the timerthrottlespf command.

Device#show ip ospf 1
Routing Process "ospf 1" with ID 10.0.0.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
It is an autonomous system boundary router
Redistributing External Routes from,
static, includes subnets in redistribution
Maximum limit of redistributed prefixes 2000
Threshold for warning message 75%
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs

The table below describes the significant fields shown in the display.

Table 116: show ip ospf Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing process “ospf 1” with ID 10.0.0.1</td>
<td>Process ID and OSPF router ID.</td>
</tr>
<tr>
<td>Supports ...</td>
<td>Number of Types of Service supported.</td>
</tr>
<tr>
<td>It is ...</td>
<td>Possible types are internal, area border, or autonomous system boundary router.</td>
</tr>
<tr>
<td>Redistributing External Routes from</td>
<td>Lists of redistributed routes, by protocol.</td>
</tr>
<tr>
<td>Maximum limit of redistributed prefixes</td>
<td>Value set in the redistributionmaximum-prefix command to set a limit on the number of redistributed routes.</td>
</tr>
<tr>
<td>Threshold for warning message</td>
<td>Percentage set in the redistributionmaximum-prefix command for the threshold number of redistributed routes needed to cause a warning message. The default is 75 percent of the maximum limit.</td>
</tr>
<tr>
<td>Initial SPF schedule delay</td>
<td>Delay (in milliseconds) before initial SPF schedule for SPF throttling. Configured with the timerthrottlespf command.</td>
</tr>
<tr>
<td>Minimum hold time between two consecutive SPFs</td>
<td>Minimum hold time (in milliseconds) between two consecutive SPF calculations for SPF throttling. Configured with the timerthrottlespf command.</td>
</tr>
<tr>
<td>Maximum wait time between two consecutive SPFs</td>
<td>Maximum wait time (in milliseconds) between two consecutive SPF calculations for SPF throttling. Configured with the timerthrottlespf command.</td>
</tr>
<tr>
<td>Number of areas</td>
<td>Number of areas in router, area addresses, and so on.</td>
</tr>
</tbody>
</table>

The following is sample output from the show ip ospf command. In this example, the user had configured LSA throttling, and those lines of output are displayed in bold.
Device# show ip ospf 1
Routing Process "ospf 1" with ID 10.10.24.4
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs
Incremental-SPF disabled
Initial LSA throttle delay 100 msecs
Minimum hold time for LSA throttle 10000 msecs
Maximum wait time for LSA throttle 45000 msecs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x0
Number of opaque AS LSA 0. Checksum Sum 0x0
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0
Area 24
 Number of interfaces in this area is 2
 Area has no authentication
 SPF algorithm last executed 04:28:18.396 ago
 SPF algorithm executed 8 times
 Area ranges are
 Number of LSA 4. Checksum Sum 0x23EB9
 Number of opaque link LSA 0. Checksum Sum 0x0
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0

The following is sample showipospf command. In this example, the user had configured the redistribution maximum-prefix command to set a limit of 2000 redistributed routes. SPF throttling was configured with the timer throttle spf command.

Device# show ip ospf 1
Routing Process "ospf 1" with ID 192.168.0.0
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
It is an autonomous system boundary router
Redistributing External Routes from,
static, includes subnets in redistribution
Maximum limit of redistributed prefixes 2000
Threshold for warning message 75%
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs

The table below describes the significant fields shown in the display.
Table 117: show ip ospf Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing process “ospf 1” with ID 192.168.0.0.</td>
<td>Process ID and OSPF router ID.</td>
</tr>
<tr>
<td>Supports ...</td>
<td>Number of TOS supported.</td>
</tr>
<tr>
<td>It is ...</td>
<td>Possible types are internal, area border, or autonomous system boundary routers.</td>
</tr>
<tr>
<td>Redistributing External Routes from</td>
<td>Lists of redistributed routes, by protocol.</td>
</tr>
<tr>
<td>Maximum limit of redistributed prefixes</td>
<td>Value set in the <code>redistributionmaximum-prefix</code> command to set a limit on the number of redistributed routes.</td>
</tr>
<tr>
<td>Threshold for warning message</td>
<td>Percentage set in the <code>redistributionmaximum-prefix</code> command for the threshold number of redistributed routes needed to cause a warning message. The default is 75 percent of the maximum limit.</td>
</tr>
<tr>
<td>Initial SPF schedule delay</td>
<td>Delay (in milliseconds) before the initial SPF schedule for SPF throttling. Configured with the <code>timersthrottestpf</code> command.</td>
</tr>
<tr>
<td>Minimum hold time between two consecutive SPFs</td>
<td>Minimum hold time (in milliseconds) between two consecutive SPF calculations for SPF throttling. Configured with the <code>timersthrottestpf</code> command.</td>
</tr>
<tr>
<td>Maximum wait time between two consecutive SPFs</td>
<td>Maximum wait time (in milliseconds) between two consecutive SPF calculations for SPF throttling. Configured with the <code>timersthrottestpf</code> command.</td>
</tr>
<tr>
<td>Number of areas</td>
<td>Number of areas in router, area addresses, and so on.</td>
</tr>
</tbody>
</table>

The following is sample output from the `showipospf` command. In this example, the user had configured LSA throttling, and those lines of output are displayed in bold.

```
Device#show ip ospf 1
Routing Process "ospf 4" with ID 10.10.24.4
  Supports only single TOS(TOS0) routes
  Supports opaque LSA
  Supports Link-local Signaling (LLS)
  Initial SPF schedule delay 5000 msecs
  Minimum hold time between two consecutive SPFs 10000 msecs
  Maximum wait time between two consecutive SPFs 10000 msecs
  Incremental-SPF disabled
  Initial LSA throttle delay 100 msecs
  Minimum hold time for LSA throttle 10000 msecs
  Maximum wait time for LSA throttle 45000 msecs
  Minimum LSA arrival 10000 msecs
  LSA group pacing timer 240 secs
  Interface flood pacing timer 33 msecs
  Retransmission pacing timer 66 msecs
  Number of external LSA 0, Checksum Sum 0x0
  Number of opaque AS LSA 0, Checksum Sum 0x0
  Number of Dcbitless external and opaque AS LSA 0
  Number of DoNotAge external and opaque AS LSA 0
```
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0

Area 24
 Number of interfaces in this area is 2
 Area has no authentication
 SPF algorithm last executed 04:28:18.396 ago
 SPF algorithm executed 8 times
 Area ranges are
 Number of LSA 4. Checksum Sum 0x23EB9
 Number of opaque link LSA 0. Checksum Sum 0x0
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0
show ip ospf border-routers

To display the internal Open Shortest Path First (OSPF) routing table entries to an Area Border Router (ABR) and Autonomous System Boundary Router (ASBR), use the `show ip ospf border-routers` command in privileged EXEC mode.

show ip ospf border-routers

Syntax Description

This command has no arguments or keywords.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show ip ospf border-routers` command:

```
Device#show ip ospf border-routers
OSPF Process 109 internal Routing Table
Codes: i - Intra-area route, I - Inter-area route
i 192.168.97.53 [10] via 172.16.1.53, Serial0, ABR, Area 0.0.0.3, SPF 3
i 192.168.103.51 [10] via 192.168.96.51, Serial0, ABR, Area 0.0.0.3, SPF 3
I 192.168.103.52 [22] via 192.168.96.51, Serial0, ASBR, Area 0.0.0.3, SPF 3
I 192.168.103.52 [22] via 172.16.1.53, Serial0, ASBR, Area 0.0.0.3, SPF 3
```

The table below describes the significant fields shown in the display.

Table 118: show ip ospf border-routers Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.97.53</td>
<td>Router ID of the destination.</td>
</tr>
<tr>
<td>[10]</td>
<td>Cost of using this route.</td>
</tr>
<tr>
<td>via 172.16.1.53</td>
<td>Next hop toward the destination.</td>
</tr>
<tr>
<td>Serial0</td>
<td>Interface type for the outgoing interface.</td>
</tr>
<tr>
<td>ABR</td>
<td>The router type of the destination; it is either an ABR or ASBR or both.</td>
</tr>
<tr>
<td>Area</td>
<td>The area ID of the area from which this route is learned.</td>
</tr>
<tr>
<td>SPF 3</td>
<td>The internal number of the shortest path first (SPF) calculation that installs this route.</td>
</tr>
</tbody>
</table>
show ip ospf database

To display lists of information related to the Open Shortest Path First (OSPF) database for a specific router, use the `show ip ospf database` command in EXEC mode.

```plaintext
show ip ospf [process-id area-id] database
show ip ospf [process-id area-id] database [adv-router [ip-address]]
show ip ospf [process-id area-id] database [asbr-summary] [link-state-id]
show ip ospf [process-id area-id] database [asbr-summary] [link-state-id] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [asbr-summary] [link-state-id] [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [database-summary]
show ip ospf [process-id] database [external] [link-state-id]
show ip ospf [process-id] database [external] [link-state-id] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [external] [link-state-id] [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [network] [link-state-id]
show ip ospf [process-id area-id] database [network] [link-state-id] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [network] [link-state-id] [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [nssa-external] [link-state-id]
show ip ospf [process-id area-id] database [nssa-external] [link-state-id] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [nssa-external] [link-state-id] [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [router] [link-state-id]
show ip ospf [process-id area-id] database [router] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [router] [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [self-originate] [link-state-id]
show ip ospf [process-id area-id] database [summary] [link-state-id]
show ip ospf [process-id area-id] database [summary] [link-state-id] [adv-router [ip-address]]
show ip ospf [process-id area-id] database [summary] [link-state-id] [self-originate] [link-state-id]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>process-id</td>
<td>(Optional) Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when enabling the OSPF routing process.</td>
</tr>
<tr>
<td>area-id</td>
<td>(Optional) Area number associated with the OSPF address range defined in the <code>network</code> router configuration command used to define the particular area.</td>
</tr>
<tr>
<td>adv-router [ip-address]</td>
<td>(Optional) Displays all the LSAs of the specified router. If no IP address is included, the information is about the local router itself (in this case, the same as <code>self-originate</code>).</td>
</tr>
</tbody>
</table>

link-state-id (Optional) Portion of the Internet environment that is being described by the advertisement. The value entered depends on the advertisement’s LS type. It must be entered in the form of an IP address.

When the link state advertisement is describing a network, the **link-state-id** can take one of two forms:

The network’s IP address (as in type 3 summary link advertisements and in autonomous system external link advertisements).

A derived address obtained from the link state ID. (Note that masking a network links advertisement’s link state ID with the network’s subnet mask yields the network’s IP address.)

When the link state advertisement is describing a router, the link state ID is always the described router’s OSPF router ID.

When an autonomous system external advertisement (LS Type = 5) is describing a default route, its link state ID is set to Default Destination (0.0.0.0).

asbr-summary (Optional) Displays information only about the autonomous system boundary router summary LSAs.

database-summary (Optional) Displays how many of each type of LSA for each area there are in the database, and the total.

external (Optional) Displays information only about the external LSAs.

network (Optional) Displays information only about the network LSAs.

nssa-external (Optional) Displays information only about the NSSA external LSAs.

router (Optional) Displays information only about the router LSAs.

self-originate (Optional) Displays only self-originated LSAs (from the local router).

summary (Optional) Displays information only about the summary LSAs.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The various forms of this command deliver information about different OSPF link state advertisements.

Examples

The following is sample output from the **show ip ospf database** command when no arguments or keywords are used:

```
Device#show ip ospf database
OSPF Router with id(192.168.239.66) (Process ID 300)
    Displaying Router Link States(Area 0.0.0.0)
    Link ID     ADV Router   Age   Seq#     Checksum  Link count
    172.16.21.6  172.16.21.6  1731   0x80002CFB  0x69BC     8
```
The following is sample output from the `show ip ospf database asbr-summary` command with the `asbr-summary` keyword:

```
Device#show ip ospf database asbr-summary
OSPF Router with id(192.168.239.66) (Process ID 300)
Displaying Summary ASB Link States(Area 0.0.0.0)
   LS age: 1463
   Options: (No TOS-capability)
   LS Type: Summary Links(AS Boundary Router)
   Link State ID: 172.16.245.1 (AS Boundary Router address)
   Advertising Router: 172.16.241.5
   LS Seq Number: 80000072
   Checksum: 0x3548
   Length: 28
   Network Mask: 0.0.0.0 TOS: 0  Metric: 1
```

The following command output describes the significant fields shown in the display.

Table 119: show ip ospf Database Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link ID</td>
<td>Router ID number.</td>
</tr>
<tr>
<td>ADV Router</td>
<td>Advertising router’s ID.</td>
</tr>
<tr>
<td>Age</td>
<td>Link state age.</td>
</tr>
<tr>
<td>Seq#</td>
<td>Link state sequence number (detects old or duplicate link state advertisements).</td>
</tr>
<tr>
<td>Checksum</td>
<td>Fletcher checksum of the complete contents of the link state advertisement.</td>
</tr>
<tr>
<td>Link count</td>
<td>Number of interfaces detected for router.</td>
</tr>
</tbody>
</table>

The table below describes the significant fields shown in the display.

Table 120: show ip ospf database asbr-summary Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Router with id</td>
<td>Router ID number.</td>
</tr>
<tr>
<td>Process ID</td>
<td>OSPF process ID.</td>
</tr>
</tbody>
</table>
show ip ospf database

OSPF Router with id(192.168.239.66) (Autonomous system 300)
Displaying AS External Link States

LS age: 280
Options: (No TOS-capability)
LS Type: AS External Link
Link State ID: 10.105.0.0 (External Network Number)
Advertising Router: 172.16.70.6
LS Seq Number: 80000AFD
Checksum: 0xC3A
Length: 36
Network Mask: 255.255.0.0
 Metric Type: 2 (Larger than any link state path)
 TOS: 0
 Metric: 1
 Forward Address: 0.0.0.0
 External Route Tag: 0

The table below describes the significant fields shown in the display.

Table 121: show ip ospf database external Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Router with id</td>
<td>Router ID number.</td>
</tr>
<tr>
<td>Autonomous system</td>
<td>OSPF autonomous system number (OSPF process ID).</td>
</tr>
<tr>
<td>LS age</td>
<td>Link state age.</td>
</tr>
<tr>
<td>Options</td>
<td>Type of service options (Type 0 only).</td>
</tr>
</tbody>
</table>
Table 122: show ip ospf database network Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Router with id</td>
<td>Router ID number.</td>
</tr>
<tr>
<td>Process ID 300</td>
<td>OSPF process ID.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show ip ospf database` command with the `network` keyword:

Device#`show ip ospf database network`
OSPF Router with id (192.168.239.66) (Process ID 300)
Displaying Net Link States (Area 0.0.0.0)
LS age: 1367
Options: (No TOS-capability)
LS Type: Network Links
Link State ID: 172.16.1.3 (address of Designated Router)
Advertising Router: 192.168.239.66
LS Seq Number: 800000E7
Checksum: 0x1229
Length: 52
Network Mask: 255.255.255.0
 Attached Router: 192.168.239.66
 Attached Router: 172.16.241.5
 Attached Router: 172.16.1.1
 Attached Router: 172.16.54.5
 Attached Router: 172.16.1.5

The table below describes the significant fields shown in the display.
show ip ospf database

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS age</td>
<td>Link state age.</td>
</tr>
<tr>
<td>Options</td>
<td>Type of service options (Type 0 only).</td>
</tr>
<tr>
<td>LS Type:</td>
<td>Link state type.</td>
</tr>
<tr>
<td>Link State ID</td>
<td>Link state ID of designated router.</td>
</tr>
<tr>
<td>Advertising Router</td>
<td>Advertising router’s ID.</td>
</tr>
<tr>
<td>LS Seq Number</td>
<td>Link state sequence (detects old or duplicate link state advertisements).</td>
</tr>
<tr>
<td>Checksum</td>
<td>LS checksum (Fletcher checksum of the complete contents of the link state advertisement).</td>
</tr>
<tr>
<td>Length</td>
<td>Length in bytes of the link state advertisement.</td>
</tr>
<tr>
<td>Network Mask</td>
<td>Network mask implemented.</td>
</tr>
<tr>
<td>AS Boundary Router</td>
<td>Definition of router type.</td>
</tr>
<tr>
<td>Attached Router</td>
<td>List of routers attached to the network, by IP address.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show ip ospf database` command with the `router` keyword:

```
Device#show ip ospf database router
OSPF Router with id(192.168.239.66) (Process ID 300)
Displaying Router Link States(Area 0.0.0.0)
LS age: 1176
Options: (No TOS-capability)
LS Type: Router Links
Link State ID: 172.16.21.6
Advertising Router: 172.16.21.6
LS Seq Number: 80002CF6
Checksum: 0x73B7
Length: 120
AS Boundary Router
155 Number of Links: 8
Link connected to: another Router (point-to-point)
(link ID) Neighboring Router ID: 172.16.21.5
(Link Data) Router Interface address: 172.16.21.6
Number of TOS metrics: 0
TOS 0 Metrics: 2
```

The table below describes the significant fields shown in the display.

Table 123: show ip ospf database router Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Router with id</td>
<td>Router ID number.</td>
</tr>
<tr>
<td>Process ID</td>
<td>OSPF process ID.</td>
</tr>
<tr>
<td>LS age</td>
<td>Link state age.</td>
</tr>
</tbody>
</table>
Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td>Type of service options (Type 0 only).</td>
</tr>
<tr>
<td>LS Type</td>
<td>Link state type.</td>
</tr>
<tr>
<td>Link State ID</td>
<td>Link state ID.</td>
</tr>
<tr>
<td>Advertising Router</td>
<td>Advertising router’s ID.</td>
</tr>
<tr>
<td>LS Seq Number</td>
<td>Link state sequence (detects old or duplicate link state advertisements).</td>
</tr>
<tr>
<td>Checksum</td>
<td>LS checksum (Fletcher checksum of the complete contents of the link state advertisement).</td>
</tr>
<tr>
<td>Length</td>
<td>Length in bytes of the link state advertisement.</td>
</tr>
<tr>
<td>AS Boundary Router</td>
<td>Definition of router type.</td>
</tr>
<tr>
<td>Number of Links</td>
<td>Number of active links.</td>
</tr>
<tr>
<td>link ID</td>
<td>Link type.</td>
</tr>
<tr>
<td>Link Data</td>
<td>Router interface address.</td>
</tr>
<tr>
<td>TOS</td>
<td>Type of service metric (Type 0 only).</td>
</tr>
</tbody>
</table>

The following is sample output from `show ip ospf database` command with the `summary` keyword:

```
Device#show ip ospf database summary
   OSPF Router with id(192.168.239.66) (Process ID 300)
         Displaying Summary Net Link States(Area 0.0.0.0)
       LS age: 1401
       Options: (No TOS-capability)
       LS Type: Summary Links(Network)
       Link State ID: 172.16.240.0 (summary Network Number)
       Advertising Router: 172.16.241.5
       LS Seq Number: 80000072
       Checksum: 0x84FF
       Length: 28
       Network Mask: 255.255.255.0  TOS: 0  Metric: 1
```

The table below describes the significant fields shown in the display.

Table 124: show ip ospf database summary Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Router with id</td>
<td>Router ID number.</td>
</tr>
<tr>
<td>Process ID</td>
<td>OSPF process ID.</td>
</tr>
<tr>
<td>LS age</td>
<td>Link state age.</td>
</tr>
<tr>
<td>Options</td>
<td>Type of service options (Type 0 only).</td>
</tr>
<tr>
<td>LS Type</td>
<td>Link state type.</td>
</tr>
</tbody>
</table>
The following is sample output from `show ip ospf database` command with the `database-summary` keyword:

```
Device#show ip ospf database database-summary
OSPF Router with ID {10.0.0.1} (Process ID 1)
Area 0 database summary
   LSA Type  Count  Delete  Maxage
   Router    3      0      0
   Network   0      0      0
   Summary Net  0    0      0
   Summary ASBR 0    0      0
   Type-7 Ext  0      0      0
   Self-originated Type-7 0
   Opaque Link 0      0      0
   Opaque Area 0      0      0
Subtotal 3      0      0
Process 1 database summary
   LSA Type  Count  Delete  Maxage
   Router    3      0      0
   Network   0      0      0
   Summary Net  0    0      0
   Summary ASBR 0    0      0
   Type-7 Ext  0      0      0
   Opaque Link 0      0      0
   Opaque Area 0      0      0
   Type-5 Ext  0      0      0
   Self-originated Type-5 200
   Opaque AS   0      0      0
Total 203      0      0
```

The table below describes the significant fields shown in the display.

```
Table 125: show ip ospf database database-summary Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 0 database summary</td>
<td>Area number.</td>
</tr>
<tr>
<td>Count</td>
<td>Count of LSAs of the type identified in the first column.</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>Number of router link state advertisements in that area.</td>
</tr>
<tr>
<td>Network</td>
<td>Number of network link state advertisements in that area.</td>
</tr>
<tr>
<td>Summary Net</td>
<td>Number of summary link state advertisements in that area.</td>
</tr>
<tr>
<td>Summary ASBR</td>
<td>Number of summary autonomous system boundary router (ASBR) link state</td>
</tr>
<tr>
<td></td>
<td>advertisements in that area.</td>
</tr>
<tr>
<td>Type-7 Ext</td>
<td>Type-7 LSA count.</td>
</tr>
<tr>
<td>Self-originated Type-7</td>
<td>Self-originated Type-7 LSA.</td>
</tr>
<tr>
<td>Opaque Link</td>
<td>Type-9 LSA count.</td>
</tr>
<tr>
<td>Opaque Area</td>
<td>Type-10 LSA count.</td>
</tr>
<tr>
<td>Subtotal</td>
<td>Sum of LSAs for that area.</td>
</tr>
<tr>
<td>Delete</td>
<td>Number of link state advertisements that are marked “Deleted” in that area.</td>
</tr>
<tr>
<td>Maxage</td>
<td>Number of link state advertisements that are marked “Maxaged” in that area.</td>
</tr>
<tr>
<td>Process 1 database summary</td>
<td>Database summary for the process.</td>
</tr>
<tr>
<td>Count</td>
<td>Count of LSAs of the type identified in the first column.</td>
</tr>
<tr>
<td>Router</td>
<td>Number of router link state advertisements in that process.</td>
</tr>
<tr>
<td>Network</td>
<td>Number of network link state advertisements in that process.</td>
</tr>
<tr>
<td>Summary Net</td>
<td>Number of summary link state advertisements in that process.</td>
</tr>
<tr>
<td>Summary ASBR</td>
<td>Number of summary autonomous system boundary router (ASBR) link state</td>
</tr>
<tr>
<td></td>
<td>advertisements in that process.</td>
</tr>
<tr>
<td>Type-7 Ext</td>
<td>Type-7 LSA count.</td>
</tr>
<tr>
<td>Opaque Link</td>
<td>Type-9 LSA count.</td>
</tr>
<tr>
<td>Opaque Area</td>
<td>Type-10 LSA count.</td>
</tr>
<tr>
<td>Type-5 Ext</td>
<td>Type-5 LSA count.</td>
</tr>
<tr>
<td>Self-Originated Type-5</td>
<td>Self-originated Type-5 LSA count.</td>
</tr>
<tr>
<td>Opaque AS</td>
<td>Type-11 LSA count.</td>
</tr>
<tr>
<td>Total AS</td>
<td>Sum of LSAs for that process.</td>
</tr>
<tr>
<td>Delete</td>
<td>Number of link state advertisements that are marked “Deleted” in that process.</td>
</tr>
<tr>
<td>Maxage</td>
<td>Number of link state advertisements that are marked “Maxaged” in that process.</td>
</tr>
</tbody>
</table>
show ip ospf interface

To display interface information related to Open Shortest Path First (OSPF), use the **show ip ospf interface** command in user EXEC or privileged EXEC mode.

```
show ip [ospf] [process-id] interface [type number] [brief] [multicast] [topology {topology-name | base}]`
```

Syntax Description

- **process-id** (Optional) Process ID number. If this argument is included, only information for the specified routing process is included. The range is 1 to 65535.
- **type** (Optional) Interface type. If the `type` argument is included, only information for the specified interface type is included.
- **number** (Optional) Interface number. If the `number` argument is included, only information for the specified interface number is included.
- **brief** (Optional) Displays brief overview information for OSPF interfaces, states, addresses and masks, and areas on the device.
- **multicast** (Optional) Displays multicast information.
- **topology topology-name** (Optional) Displays OSPF-related information about the named topology instance.
- **topology base** (Optional) Displays OSPF-related information about the base topology.

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the **show ip ospf interface** command when Ethernet interface 0/0 is specified:

```
Device# show ip ospf interface ethernet 0/0

Ethernet0/0 is up, line protocol is up
    Internet Address 192.168.254.202/24, Area 0
    Process ID 1, Router ID 192.168.99.1, Network Type BROADCAST, Cost: 10
    Topology-MTID Cost Disabled Shutdown Topology Name
    0 10 no no Base
    Transmit Delay is 1 sec, State DR, Priority 1
    Designated Router (ID) 192.168.99.1, Interface address 192.168.254.202
    Backup Designated router (ID) 192.168.254.10, Interface address 192.168.254.10
    Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:05
    Supports Link-local Signaling (LLS)
    Cisco NSF helper support enabled
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
IETF NSF helper support enabled
Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 192.168.254.10 (Backup Designated Router)
Suppress hello for 0 neighbor(s)

In Cisco IOS Release 12.2(33)SRB, the following sample output from the `show ip ospf interface brief topology VOICE` command shows a summary of information, including a confirmation that the Multitopology Routing (MTR) VOICE topology is configured in the interface configuration:

```
Device# show ip ospf interface brief topology VOICE

VOICE Topology (MTID 10)
Interface PID Area IP Address/Mask Cost State Nbrs F/C
Lo0 1 0 10.0.0.2/32 1 LOOP 0/0
Se2/0 1 0 10.1.0.2/30 10 P2P 1/1

The following sample output from the `show ip ospf interface topology VOICE` command displays details of the MTR VOICE topology for the interface. When the command is entered without the `brief` keyword, more information is displayed.

```
Device# show ip ospf interface topology VOICE

VOICE Topology (MTID 10)
Loopback0 is up, line protocol is up
Internet Address 10.0.0.2/32, Area 0
Process ID 1, Router ID 10.0.0.2, Network Type LOOPBACK
Topology-MTID Cost Disabled Shutdown Topology Name
10 1 no no VOICE
Loopback interface is treated as a stub Host Serial2/0 is up, line protocol is up
Internet Address 10.1.0.2/30, Area 0
Process ID 1, Router ID 10.0.0.2, Network Type POINT_TO_POINT
Topology-MTID Cost Disabled Shutdown Topology Name
10 10 no no VOICE
Transmit Delay is 1 sec, State POINT_TO_POINT
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
oob-resync timeout 40
Hello due in 00:00:03
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 10.0.0.1
Suppress hello for 0 neighbor(s)

In Cisco IOS Release 12.2(33)SRC, the following sample output from the `show ip ospf interface` command displays details about the configured Time-to-Live (TTL) limits:

```
Device# show ip ospf interface ethernet 0
```

! or a message similar to the following is displayed
Strict TTL checking enabled, up to 4 hops allowed
The table below describes the significant fields shown in the displays.

Table 126: show ip ospf interface Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Status of the physical link and operational status of the protocol.</td>
</tr>
<tr>
<td>Process ID</td>
<td>OSPF process ID.</td>
</tr>
<tr>
<td>Area</td>
<td>OSPF area.</td>
</tr>
<tr>
<td>Cost</td>
<td>Administrative cost assigned to the interface.</td>
</tr>
<tr>
<td>State</td>
<td>Operational state of the interface.</td>
</tr>
<tr>
<td>Nbrs F/C</td>
<td>OSPF neighbor count.</td>
</tr>
<tr>
<td>Internet Address</td>
<td>Interface IP address, subnet mask, and area address.</td>
</tr>
<tr>
<td>Topology-MTID</td>
<td>MTR topology Multitopology Identifier (MTID). A number assigned so that the protocol can identify the topology associated with information that it sends to its peers.</td>
</tr>
<tr>
<td>Transmit Delay</td>
<td>Transmit delay in seconds, interface state, and device priority.</td>
</tr>
<tr>
<td>Designated Router</td>
<td>Designated router ID and respective interface IP address.</td>
</tr>
<tr>
<td>Backup Designated router</td>
<td>Backup designated router ID and respective interface IP address.</td>
</tr>
<tr>
<td>Timer intervals configured</td>
<td>Configuration of timer intervals.</td>
</tr>
<tr>
<td>Hello</td>
<td>Number of seconds until the next hello packet is sent out this interface.</td>
</tr>
<tr>
<td>Strict TTL checking enabled</td>
<td>Only one hop is allowed.</td>
</tr>
<tr>
<td>Strict TTL checking enabled, up to 4 hops allowed</td>
<td>A set number of hops has been explicitly configured.</td>
</tr>
<tr>
<td>Neighbor Count</td>
<td>Count of network neighbors and list of adjacent neighbors.</td>
</tr>
</tbody>
</table>

show ip ospf neighbor

To display Open Shortest Path First (OSPF) neighbor information on a per-interface basis, use the `show ip ospf neighbor` command in privileged EXEC mode.

```
show ip ospf neighbor [interface-type interface-number] [neighbor-id] [detail] [summary] [per-instance]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-type</td>
<td>(Optional) Type and number associated with a specific OSPF interface.</td>
</tr>
<tr>
<td>interface-number</td>
<td></td>
</tr>
<tr>
<td>neighbor-id</td>
<td>(Optional) Neighbor hostname or IP address in A.B.C.D format.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays all neighbors given in detail (lists all neighbors).</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays total number summary of all neighbors.</td>
</tr>
<tr>
<td>per-instance</td>
<td>(Optional) Displays total number of neighbors in each neighbor state. The output is printed for each configured OSPF instance separately.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following sample output from the `show ip ospf neighbor` command shows a single line of summary information for each neighbor:

```
Device# show ip ospf neighbor

Neighbor ID Pri State   Dead Time Address Interface
10.199.199.137 1 FULL/DR 00:00:31 192.168.80.37 Ethernet0
172.16.48.1    1 FULL/DROTHER 00:00:33 172.16.48.1  Fddi0
172.16.48.200  1 FULL/DROTHER 00:00:33 172.16.48.200 Fddi0
10.199.199.137 5 FULL/DR 00:00:33 172.16.48.189 Fddi0
```

The following is sample output showing summary information about the neighbor that matches the neighbor ID:

```
Device# show ip ospf neighbor 10.199.199.137

Neighbor 10.199.199.137, interface address 192.168.80.37
   In the area 0.0.0.0 via interface Ethernet0
   Neighbor priority is 1, State is FULL
   Options 2
   Dead timer due in 0:00:32
   Link State retransmission due in 0:00:04
Neighbor 10.199.199.137, interface address 172.16.48.189
   In the area 0.0.0.0 via interface Fddi0
   Neighbor priority is 5, State is FULL
   Options 2
   Dead timer due in 0:00:32
```
If you specify the interface along with the neighbor ID, the system displays the neighbors that match the neighbor ID on the interface, as in the following sample display:

```
Device# show ip ospf neighbor ethernet 0 10.199.199.137
```

Neighbor 10.199.199.137, interface address 192.168.80.37
In the area 0.0.0.0 via interface Ethernet0
Neighbor priority is 1, State is FULL
Options 2
Dead timer due in 0:00:37
Link State retransmission due in 0:00:04

You can also specify the interface without the neighbor ID to show all neighbors on the specified interface, as in the following sample display:

```
Device# show ip ospf neighbor fddi 0
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Pri</th>
<th>State</th>
<th>Dead Time</th>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.48.1</td>
<td>1</td>
<td>FULL/DROTHER</td>
<td>0:00:33</td>
<td>172.16.48.1</td>
<td>Fddi0</td>
</tr>
<tr>
<td>172.16.48.200</td>
<td>1</td>
<td>FULL/DROTHER</td>
<td>0:00:32</td>
<td>172.16.48.200</td>
<td>Fddi0</td>
</tr>
<tr>
<td>10.199.199.137</td>
<td>5</td>
<td>FULL/DR</td>
<td>0:00:32</td>
<td>172.16.48.189</td>
<td>Fddi0</td>
</tr>
</tbody>
</table>

The following is sample output from the `show ip ospf neighbor detail` command:

```
Device# show ip ospf neighbor detail
```

Neighbor 192.168.5.2, interface address 10.225.200.28
In the area 0 via interface GigabitEthernet1/0/0
Neighbor priority is 1, State is FULL, 6 state changes
DR is 10.225.200.28 BDR is 10.225.200.30
Options is 0x42
LLS Options is 0x1 (LR), last OOB-Resync 00:03:08 ago
Dead timer due in 00:00:36
Neighbor is up for 00:09:46
Index 1/1, retransmission queue length 0, number of retransmission 1
First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
Last retransmission scan length is 1, maximum is 1
Last retransmission scan time is 0 msec, maximum is 0 msec

The table below describes the significant fields shown in the displays.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor</td>
<td>Neighbor router ID.</td>
</tr>
<tr>
<td>interface address</td>
<td>IP address of the interface.</td>
</tr>
<tr>
<td>In the area</td>
<td>Area and interface through which the OSPF neighbor is known.</td>
</tr>
<tr>
<td>Neighbor priority</td>
<td>Router priority of the neighbor and neighbor state.</td>
</tr>
<tr>
<td>State</td>
<td>OSPF state. If one OSPF neighbor has enabled TTL security, the other side of the connection will show the neighbor in the INIT state.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>state changes</td>
<td>Number of state changes since the neighbor was created. This value can be reset using the <code>clearipospfcountersneighbor</code> command.</td>
</tr>
<tr>
<td>DR is</td>
<td>Router ID of the designated router for the interface.</td>
</tr>
<tr>
<td>BDR is</td>
<td>Router ID of the backup designated router for the interface.</td>
</tr>
<tr>
<td>Options</td>
<td>Hello packet options field contents. (E-bit only. Possible values are 0 and 2; 2 indicates area is not a stub; 0 indicates area is a stub.)</td>
</tr>
<tr>
<td>LLS Options,..., last OOB-Resync</td>
<td>Link-Local Signaling and out-of-band (OOB) link-state database resynchronization performed hours:minutes:seconds ago. This is nonstop forwarding (NSF) information. The field indicates the last successful out-of-band resynchronization with the NSF-capable router.</td>
</tr>
<tr>
<td>Dead timer due in</td>
<td>Expected time in hours:minutes:seconds before Cisco IOS software will declare the neighbor dead.</td>
</tr>
<tr>
<td>Neighbor is up for</td>
<td>Number of hours:minutes:seconds since the neighbor went into the two-way state.</td>
</tr>
<tr>
<td>Index</td>
<td>Neighbor location in the area-wide and autonomous system-wide retransmission queue.</td>
</tr>
<tr>
<td>retransmission queue length</td>
<td>Number of elements in the retransmission queue.</td>
</tr>
<tr>
<td>number of retransmission</td>
<td>Number of times update packets have been re-sent during flooding.</td>
</tr>
<tr>
<td>First</td>
<td>Memory location of the flooding details.</td>
</tr>
<tr>
<td>Next</td>
<td>Memory location of the flooding details.</td>
</tr>
<tr>
<td>Last retransmission scan length</td>
<td>Number of link state advertisements (LSAs) in the last retransmission packet.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum number of LSAs sent in any retransmission packet.</td>
</tr>
<tr>
<td>Last retransmission scan time</td>
<td>Time taken to build the last retransmission packet.</td>
</tr>
<tr>
<td>maximum</td>
<td>Maximum time, in milliseconds, taken to build any retransmission packet.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show ip ospf neighbor` command showing a single line of summary information for each neighbor. If one OSPF neighbor has enabled TTL security, the other side of the connection will show the neighbor in the INIT state.

```
Device#show ip ospf neighbor

<table>
<thead>
<tr>
<th>Neighbor ID</th>
<th>Pri</th>
<th>State</th>
<th>Dead Time</th>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.199.199.137</td>
<td>1</td>
<td>FULL/DR</td>
<td>0:00:31</td>
<td>192.168.80.37</td>
<td>Ethernet0</td>
</tr>
<tr>
<td>172.16.48.1</td>
<td>1</td>
<td>FULL/DROTHER</td>
<td>0:00:33</td>
<td>172.16.48.1</td>
<td>Fdd10</td>
</tr>
<tr>
<td>172.16.48.200</td>
<td>1</td>
<td>FULL/DROTHER</td>
<td>0:00:33</td>
<td>172.16.48.200</td>
<td>Fdd10</td>
</tr>
</tbody>
</table>
```
Cisco IOS Release 15.1(3)S

The following sample output from the `show ip ospf neighbor` command shows the network from the neighbor’s point of view:

```
Device#show ip ospf neighbor 192.0.2.1
    OSPF Router with ID (192.1.1.1) (Process ID 1)

     Area with ID (0)

    Neighbor with Router ID 192.0.2.1:
    Reachable over:
        Ethernet0/0, IP address 192.0.2.1, cost 10
    SPF was executed 1 times, distance to computing router 10

    Router distance table:
        192.1.1.1 i [10]
        192.0.2.1 i [0]
        192.3.3.3 i [10]
        192.4.4.4 i [20]
        192.5.5.5 i [20]

    Network LSA distance table:
        192.2.12.2 i [10]
        192.2.13.3 i [20]
        192.2.14.4 i [20]
        192.2.15.5 i [20]
```

The following is sample output from the `show ip ospf neighbor summary` command:

```
Device#show ip ospf neighbor summary

    Neighbor summary for all OSPF processes

    DOWN     0
    ATTEMPT  0
    INIT     0
    2WAY     0
    EXSTART  0
    EXCHANGE 0
    LOADING  0
    FULL     1
    Total count 1  (Undergoing NSF 0)
```

The following is sample output from the `show ip ospf neighbor summary per-instance` command:

```
Device#show ip ospf neighbor summary

    OSPF Router with ID (1.0.0.10) (Process ID 1)

    DOWN     0
    ATTEMPT  0
    INIT     0
    2WAY     0
```
EXSTART 0
EXCHANGE 0
LOADING 0
FULL 1
Total count 1 (Undergoing NSF 0)

Neighbor summary for all OSPF processes

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWN</td>
<td>No information (hellos) has been received from this neighbor, but hello packets can still be sent to the neighbor in this state.</td>
</tr>
<tr>
<td>ATTEMPT</td>
<td>This state is only valid for manually configured neighbors in a Non-Broadcast Multi-Access (NBMA) environment. In Attempt state, the router sends unicast hello packets every poll interval to the neighbor, from which hellos have not been received within the dead interval.</td>
</tr>
<tr>
<td>INIT</td>
<td>This state specifies that the router has received a hello packet from its neighbor, but the receiving router's ID was not included in the hello packet. When a router receives a hello packet from a neighbor, it should list the sender's router ID in its hello packet as an acknowledgment that it received a valid hello packet.</td>
</tr>
<tr>
<td>2WAY</td>
<td>This state designates that bi-directional communication has been established between two routers.</td>
</tr>
<tr>
<td>EXSTART</td>
<td>This state is the first step in creating an adjacency between the two neighboring routers. The goal of this step is to decide which router is the master, and to decide upon the initial DD sequence number. Neighbor conversations in this state or greater are called adjacencies.</td>
</tr>
<tr>
<td>EXCHANGE</td>
<td>In this state, OSPF routers exchange database descriptor (DBD) packets. Database descriptors contain link-state advertisement (LSA) headers only and describe the contents of the entire link-state database. Each DBD packet has a sequence number which can be incremented only by master which is explicitly acknowledged by slave. Routers also send link-state request packets and link-state update packets (which contain the entire LSA) in this state. The contents of the DBD received are compared to the information contained in the routers link-state database to check if new or more current link-state information is available with the neighbor.</td>
</tr>
<tr>
<td>LOADING</td>
<td>In this state, the actual exchange of link state information occurs. Based on the information provided by the DBDs, routers send link-state request packets. The neighbor then provides the requested link-state information in link-state update packets. During the adjacency, if a device receives an outdated or missing LSA, it requests that LSA by sending a link-state request packet. All link-state update packets are acknowledged.</td>
</tr>
</tbody>
</table>

Table 128: show ip ospf neighbor summary and show ip ospf neighbor summary per-instance Field Descriptions
In this state, devices are fully adjacent with each other. All the device and network LSAs are exchanged and the devices' databases are fully synchronized.

Full is the normal state for an OSPF device. If a device is stuck in another state, it's an indication that there are problems in forming adjacencies. The only exception to this is the 2-way state, which is normal in a broadcast network. Devices achieve the full state with their DR and BDR only. Neighbors always see each other as 2-way.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL</td>
<td>In this state, devices are fully adjacent with each other. All the device and network LSAs are exchanged and the devices' databases are fully synchronized. Full is the normal state for an OSPF device. If a device is stuck in another state, it's an indication that there are problems in forming adjacencies. The only exception to this is the 2-way state, which is normal in a broadcast network. Devices achieve the full state with their DR and BDR only. Neighbors always see each other as 2-way.</td>
</tr>
</tbody>
</table>
show ip ospf virtual-links

To display parameters and the current state of Open Shortest Path First (OSPF) virtual links, use the **show ip ospf virtual-links** command in EXEC mode.

show ip ospf virtual-links

Syntax Description

This command has no arguments or keywords.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The information displayed by the **show ip ospf virtual-links** command is useful in debugging OSPF routing operations.

Examples

The following is sample output from the **show ip ospf virtual-links** command:

```
Device#show ip ospf virtual-links
Virtual Link to router 192.168.101.2 is up
Transit area 0.0.0.1, via interface Ethernet0, Cost of using 10
Transmit Delay is 1 sec, State POINT_TO_POINT
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 0:00:08
Adjacency State FULL
```

The table below describes the significant fields shown in the display.

Table 129: show ip ospf virtual-links Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Link to router 192.168.101.2 is up</td>
<td>Specifies the OSPF neighbor, and if the link to that neighbor is up or down.</td>
</tr>
<tr>
<td>Transit area 0.0.0.1</td>
<td>The transit area through which the virtual link is formed.</td>
</tr>
<tr>
<td>via interface Ethernet0</td>
<td>The interface through which the virtual link is formed.</td>
</tr>
<tr>
<td>Cost of using 10</td>
<td>The cost of reaching the OSPF neighbor through the virtual link.</td>
</tr>
<tr>
<td>Transmit Delay is 1 sec</td>
<td>The transmit delay (in seconds) on the virtual link.</td>
</tr>
<tr>
<td>State POINT_TO_POINT</td>
<td>The state of the OSPF neighbor.</td>
</tr>
<tr>
<td>Timer intervals...</td>
<td>The various timer intervals configured for the link.</td>
</tr>
<tr>
<td>Hello due in 0:00:08</td>
<td>When the next hello is expected from the neighbor.</td>
</tr>
<tr>
<td>Adjacency State FULL</td>
<td>The adjacency state between the neighbors.</td>
</tr>
</tbody>
</table>
summary-address (OSPF)

To create aggregate addresses for Open Shortest Path First (OSPF), use the summary-address command in router configuration mode. To restore the default, use the no form of this command.

summary-address commands

summary-address {ip-address mask | prefix mask} [not-advertise] [tag tag] [nssa-only]
no summary-address {ip-address mask | prefix mask} [not-advertise] [tag tag] [nssa-only]

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>Summary address designated for a range of addresses.</td>
</tr>
<tr>
<td>mask</td>
<td>IP subnet mask used for the summary route.</td>
</tr>
<tr>
<td>prefix</td>
<td>IP route prefix for the destination.</td>
</tr>
<tr>
<td>not-advertise</td>
<td>(Optional) Suppresses routes that match the specified prefix/mask pair.</td>
</tr>
<tr>
<td>tag</td>
<td>(Optional) Specifies the tag value that can be used as a “match” value for</td>
</tr>
<tr>
<td></td>
<td>controlling redistribution via route maps.</td>
</tr>
<tr>
<td>nssa-only</td>
<td>(Optional) Sets the nssa-only attribute for the summary route (if any)</td>
</tr>
<tr>
<td></td>
<td>generated for the specified prefix, which limits the summary to not-so-stubby-area (NSSA) areas.</td>
</tr>
</tbody>
</table>

Command Default

This command behavior is disabled by default.

Command Modes

Router configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Routes learned from other routing protocols can be summarized. The metric used to advertise the summary is the lowest metric of all the more specific routes. This command helps reduce the size of the routing table.

Using this command for OSPF causes an OSPF Autonomous System Boundary Router (ASBR) to advertise one external route as an aggregate for all redistributed routes that are covered by the address. For OSPF, this command summarizes only routes from other routing protocols that are being redistributed into OSPF. Use the area range command for route summarization between OSPF areas.

OSPF does not support the summary-address 0.0.0.0 0.0.0.0 command.

Examples

In the following example, the summary address 10.1.0.0 includes address 10.1.1.0, 10.1.2.0, 10.1.3.0, and so on. Only the address 10.1.0.0 is advertised in an external link-state advertisement.

Device(config)#summary-address 10.1.0.0 255.255.0.0
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area range</td>
<td>Consolidates and summarizes routes at an area boundary.</td>
</tr>
<tr>
<td>ip ospf authentication-key</td>
<td>Assigns a password to be used by neighboring routers that are using the simple password authentication of OSPF.</td>
</tr>
<tr>
<td>ip ospf message-digest-key</td>
<td>Enables OSPF MD5 authentication.</td>
</tr>
</tbody>
</table>
timers throttle spf

To turn on Open Shortest Path First (OSPF) shortest path first (SPF) throttling, use the **timers throttle spf** command in the appropriate configuration mode. To turn off OSPF SPF throttling, use the **no** form of this command.

timers throttle spf spf-start spf-hold spf-max-wait

no timers throttle spf spf-start spf-hold spf-max-wait

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spf-start</td>
<td>Initial delay to schedule an SPF calculation after a change, in milliseconds. Range is from 1 to 600000. In OSPF for IPv6, the default value is 5000.</td>
</tr>
<tr>
<td>spf-hold</td>
<td>Minimum hold time between two consecutive SPF calculations, in milliseconds. Range is from 1 to 600000. In OSPF for IPv6, the default value is 10,000.</td>
</tr>
<tr>
<td>spf-max-wait</td>
<td>Maximum wait time between two consecutive SPF calculations, in milliseconds. Range is from 1 to 600000. In OSPF for IPv6, the default value is 10,000.</td>
</tr>
</tbody>
</table>

Command Default

SPF throttling is not set.

Command Modes

Address family configuration (config-router-af)
Router address family topology configuration (config-router-af-topology)
Router configuration (config-router)
OSPF for IPv6 router configuration (config-rtr)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The first wait interval between SPF calculations is the amount of time in milliseconds specified by the **spf-start** argument. Each consecutive wait interval is two times the current hold level in milliseconds until the wait time reaches the maximum time in milliseconds as specified by the **spf-max-wait** argument. Subsequent wait times remain at the maximum until the values are reset or a link-state advertisement (LSA) is received between SPF calculations.

Release 12.2(33)SRB

If you plan to configure the Multi-Topology Routing (MTR) feature, you need to enter the **timers throttle spf** command in router address family topology configuration mode in order to make this OSPF router configuration command become topology-aware.

Release 15.2(1)T

When you configure the **ospfv3 network manet** command on any interface attached to the OSPFv3 process, the default values for the **spf-start**, **spf-hold**, and the **spf-max-wait** arguments are reduced to 1000 milliseconds, 1000 milliseconds, and 2000 milliseconds respectively.

Examples

The following example shows how to configure a router with the delay, hold, and maximum interval values for the **timers throttle spf** command set at 5, 1000, and 90,000 milliseconds, respectively.

```
router ospf 1
  router-id 10.10.10.2
```
log-adjacency-changes
timers throttle spf 5 1000 90000
redistribute static subnets
network 10.21.21.0 0.0.0.255 area 0
network 10.22.22.0 0.0.0.255 area 00

The following example shows how to configure a router using IPv6 with the delay, hold, and maximum interval values for the **timers throttle spf** command set at 500, 1000, and 10,000 milliseconds, respectively.

```
ipv6 router ospf 1
  event-log size 10000 one-shot
  log-adjacency-changes
timers throttle spf 500 1000 10000
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfv3 network manet</td>
<td>Sets the network type to Mobile Ad Hoc Network (MANET).</td>
</tr>
</tbody>
</table>
PART IX

Security

• Security, on page 1015
Security

- aaa accounting, on page 1018
- aaa accounting dot1x, on page 1021
- aaa accounting identity, on page 1023
- aaa authentication dot1x, on page 1025
- aaa new-model, on page 1026
- authentication host-mode, on page 1028
- authentication logging verbose, on page 1030
- authentication mac-move permit, on page 1031
- authentication priority, on page 1033
- authentication violation, on page 1036
- cisp enable, on page 1038
- clear errdisable interface vlan, on page 1039
- clear mac address-table, on page 1040
- deny (MAC access-list configuration), on page 1042
- device-role (IPv6 snooping), on page 1046
- device-role (IPv6 nd inspection), on page 1047
- device-tracking policy, on page 1048
- dot1x critical (global configuration), on page 1050
- dot1x logging verbose, on page 1051
- dot1x pae, on page 1052
- dot1x supplicant controlled transient, on page 1053
- dot1x supplicant force-multicast, on page 1054
- dot1x test capol-capable, on page 1055
- dot1x test timeout, on page 1056
- dot1x timeout, on page 1057
- dtls, on page 1059
- enable password, on page 1061
- enable secret, on page 1064
- epm access-control open, on page 1067
- ip access-list role-based, on page 1068
- ip admission, on page 1069
- ip admission name, on page 1070
- ip dhcp snooping database, on page 1072
- ip dhcp snooping information option format remote-id, on page 1074
- ip dhcp snooping verify no-relay-agent-address, on page 1075
- ip http access-class, on page 1076
- ip radius source-interface, on page 1078
- ip source binding, on page 1080
- ip ssh source-interface, on page 1081
- ip verify source, on page 1082
- ipv6 access-list, on page 1083
- ipv6 snooping policy, on page 1085
- key chain macec, on page 1086
- key config-key password-encrypt, on page 1087
- limit address-count, on page 1089
- mab logging verbose, on page 1090
- mab request format attribute 32, on page 1091
- macec network-link, on page 1093
- match (access-map configuration), on page 1094
- mka pre-shared-key, on page 1096
- mka suppress syslogs sak-rekey, on page 1097
- password encryption aes, on page 1098
- permit (MAC access-list configuration), on page 1100
- protocol (IPv6 snooping), on page 1104
- radius server, on page 1105
- security level (IPv6 snooping), on page 1107
- server-private (RADIUS), on page 1108
- show aaa clients, on page 1110
- show aaa command handler, on page 1111
 - show aaa local, on page 1112
 - show aaa servers, on page 1114
 - show aaa sessions, on page 1115
 - show authentication brief, on page 1116
 - show authentication sessions, on page 1119
 - show cisp, on page 1122
 - show dot1x, on page 1124
 - show eap pae peer, on page 1126
 - show ip dhcp snooping statistics, on page 1127
 - show radius server-group, on page 1130
 - show tech-support acl, on page 1132
 - show tech-support identity, on page 1136
 - show vlan access-map, on page 1145
 - show vlan filter, on page 1146
 - show vlan group, on page 1147
 - switchport port-security aging, on page 1148
 - switchport port-security mac-address, on page 1150
 - switchport port-security maximum, on page 1153
 - switchport port-security violation, on page 1155
 - tacacs server, on page 1157
• tracking (IPv6 snooping), on page 1158
• trusted-port, on page 1160
• username, on page 1161
• vlan access-map, on page 1166
• vlan filter, on page 1168
• vlan group, on page 1169
aaa accounting

To enable authentication, authorization, and accounting (AAA) accounting of requested services for billing or security purposes when you use RADIUS or TACACS+, use the `aaa accounting` command in global configuration mode. To disable AAA accounting, use the `no` form of this command.

```
aaa accounting { auth-proxy | system | network | exec | connections | commands level }
{ (default | list-name) ( start-stop | stop-only | none ) [ broadcast ] group group-name }
no aaa accounting { auth-proxy | system | network | exec | connections | commands level }
{ (default | list-name) ( start-stop | stop-only | none ) [ broadcast ] group group-name }
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth-proxy</td>
<td>Provides information about all authenticated-proxy user events.</td>
</tr>
<tr>
<td>system</td>
<td>Performs accounting for all system-level events not associated with users, such as reloads.</td>
</tr>
<tr>
<td>network</td>
<td>Runs accounting for all network-related service requests.</td>
</tr>
<tr>
<td>exec</td>
<td>Runs accounting for EXEC shell session. This keyword might return user profile information such as what is generated by the <code>autocommand</code> command.</td>
</tr>
<tr>
<td>connection</td>
<td>Provides information about all outbound connections made from the network access server.</td>
</tr>
<tr>
<td>commands level</td>
<td>Runs accounting for all commands at the specified privilege level. Valid privilege level entries are integers from 0 through 15.</td>
</tr>
<tr>
<td>default</td>
<td>Uses the listed accounting methods that follow this argument as the default list of methods for accounting services.</td>
</tr>
<tr>
<td>list-name</td>
<td>Character string used to name the list of at least one of the accounting methods described in.</td>
</tr>
<tr>
<td>start-stop</td>
<td>Sends a "start" accounting notice at the beginning of a process and a "stop" accounting notice at the end of a process. The "start" accounting record is sent in the background. The requested user process begins regardless of whether the "start" accounting notice was received by the accounting server.</td>
</tr>
<tr>
<td>stop-only</td>
<td>Sends a "stop" accounting notice at the end of the requested user process.</td>
</tr>
<tr>
<td>none</td>
<td>Disables accounting services on this line or interface.</td>
</tr>
<tr>
<td>broadcast</td>
<td>(Optional) Enables sending accounting records to multiple AAA servers. Simultaneously sends accounting records to the first server in each group. If the first server is unavailable, fail over occurs using the backup servers defined within that group.</td>
</tr>
<tr>
<td>group group-name</td>
<td>At least one of the keywords described in the AAA Accounting Methods table.</td>
</tr>
</tbody>
</table>

Command Default

AAA accounting is disabled.

Command Modes

Global configuration (config)
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `aaa accounting` command to enable accounting and to create named method lists defining specific accounting methods on a per-line or per-interface basis.

Table 130: AAA Accounting Methods

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group radius</td>
<td>Uses the list of all RADIUS servers for authentication as defined by the <code>aaa group server radius</code> command.</td>
</tr>
<tr>
<td>group tacacs+</td>
<td>Uses the list of all TACACS+ servers for authentication as defined by the <code>aaa group server tacacs+</code> command.</td>
</tr>
<tr>
<td>group group-name</td>
<td>Uses a subset of RADIUS or TACACS+ servers for accounting as defined by the server group group-name.</td>
</tr>
</tbody>
</table>

In AAA Accounting Methods table, the `group radius` and `group tacacs+` methods refer to a set of previously defined RADIUS or TACACS+ servers. Use the `radius server` and `tacacs server` commands to configure the host servers. Use the `aaa group server radius` and `aaa group server tacacs+` commands to create a named group of servers.

Cisco IOS XE software supports the following two methods of accounting:

- **RADIUS**—The network access server reports user activity to the RADIUS security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server.

- **TACACS+**—The network access server reports user activity to the TACACS+ security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server.

Method lists for accounting define the way accounting will be performed. Named accounting method lists enable you to designate a particular security protocol to be used on specific lines or interfaces for particular types of accounting services. Create a list by entering the `list-name` and the `method`, where `list-name` is any character string used to name this list (excluding the names of methods, such as radius or tacacs+) and `method` identifies the methods to be tried in sequence as given.

If the `aaa accounting` command for a particular accounting type is issued without a named method list specified, the default method list is automatically applied to all interfaces or lines (where this accounting type applies) except those that have a named method list explicitly defined. (A defined method list overrides the default method list.) If no default method list is defined, then no accounting takes place.

Note

System accounting does not use named accounting lists; you can only define the default list for system accounting.

For minimal accounting, include the `stop-only` keyword to send a stop record accounting notice at the end of the requested user process. For more accounting, you can include the `start-stop` keyword, so that RADIUS
or TACACS+ sends a start accounting notice at the beginning of the requested process and a stop accounting notice at the end of the process. Accounting is stored only on the RADIUS or TACACS+ server. The none keyword disables accounting services for the specified line or interface.

When AAA accounting is activated, the network access server monitors either RADIUS accounting attributes or TACACS+ AV pairs pertinent to the connection, depending on the security method you have implemented. The network access server reports these attributes as accounting records, which are then stored in an accounting log on the security server.

Note

This command cannot be used with TACACS or extended TACACS.

This example defines a default commands accounting method list, where accounting services are provided by a TACACS+ security server, set for privilege level 15 commands with a stop-only restriction:

```
Device> enable
Device# configure terminal
Device(config)# aaa accounting commands 15 default stop-only group TACACS+
Device(config)# exit
```

This example defines a default auth-proxy accounting method list, where accounting services are provided by a TACACS+ security server with a stop-only restriction. The `aaa accounting` commands activates authentication proxy accounting.

```
Device> enable
Device# configure terminal
Device(config)# aaa new model
Device(config)# aaa authentication login default group TACACS+
Device(config)# aaa authorization auth-proxy default group TACACS+
Device(config)# aaa accounting auth-proxy default start-stop group TACACS+
Device(config)# exit
```
aaa accounting dot1x

To enable authentication, authorization, and accounting (AAA) accounting and to create method lists defining specific accounting methods on a per-line or per-interface basis for IEEE 802.1x sessions, use the `aaa accounting dot1x` command in global configuration mode. To disable IEEE 802.1x accounting, use the `no` form of this command.

```
aaa accounting dot1x { name | default } start-stop [ broadcast group { name | radius | tacacs+ } ]
[ group { name | radius | tacacs+ } ... ]
[ group { name | radius | tacacs+ } ]
[ group { name | radius | tacacs+ } ... ]

no aaa accounting dot1x { name | default }
```

Syntax Description

- `name` — Name of a server group. This is optional when you enter it after the `broadcast group` and `group` keywords.
- `default` — Specifies the accounting methods that follow as the default list for accounting services.
- `start-stop` — Sends a start accounting notice at the beginning of a process and a stop accounting notice at the end of a process. The start accounting record is sent in the background. The requested user process begins regardless of whether or not the start accounting notice was received by the accounting server.
- `broadcast` — Enables accounting records to be sent to multiple AAA servers and sends accounting records to the first server in each group. If the first server is unavailable, the device uses the list of backup servers to identify the first server.
- `group` — Specifies the server group to be used for accounting services. These are valid server group names:
 - `name` — Name of a server group.
 - `radius` — Lists of all RADIUS hosts.
 - `tacacs+` — Lists of all TACACS+ hosts.

The `group` keyword is optional when you enter it after the `broadcast group` and `group` keywords. You can enter more than optional `group` keyword.

- `radius` — (Optional) Enables RADIUS accounting.
- `tacacs+` — (Optional) Enables TACACS+ accounting.

Command Default

AAA accounting is disabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
Usage Guidelines

This command requires access to a RADIUS server.

We recommend that you enter the `dot1x reauthentication` interface configuration command before configuring IEEE 802.1x RADIUS accounting on an interface.

This example shows how to configure IEEE 802.1x accounting:

```
Device> enable
Device# configure terminal
Device(config)# aaa new-model
Device(config)# aaa accounting dot1x default start-stop group radius
Device(config)# exit
```
aaa accounting identity

To enable authentication, authorization, and accounting (AAA) accounting for IEEE 802.1x, MAC authentication bypass (MAB), and web authentication sessions, use the `aaa accounting identity` command in global configuration mode. To disable IEEE 802.1x accounting, use the `no` form of this command.

```
**aaa accounting identity {name | default} start-stop {broadcast group {name | radius | tacacs+} [group {name | radius | tacacs+} ... ] [group {name | radius | tacacs+} ... ]}
no aaa accounting identity {name | default}
```

Syntax Description

- **name**
 Name of a server group. This is optional when you enter it after the `broadcast group` and `group` keywords.

- **default**
 Uses the accounting methods that follow as the default list for accounting services.

- **start-stop**
 Sends a start accounting notice at the beginning of a process and a stop accounting notice at the end of a process. The start accounting record is sent in the background. The requested-user process begins regardless of whether or not the start accounting notice was received by the accounting server.

- **broadcast**
 Enables accounting records to be sent to multiple AAA servers and send accounting records to the first server in each group. If the first server is unavailable, the switch uses the list of backup servers to identify the first server.

- **group**
 Specifies the server group to be used for accounting services. These are valid server group names:

 - **name** — Name of a server group.
 - **radius** — Lists of all RADIUS hosts.
 - **tacacs+** — Lists of all TACACS+ hosts.

 The `group` keyword is optional when you enter it after the `broadcast group` and `group` keywords. You can enter more than optional `group` keyword.

- **radius** (Optional) Enables RADIUS authorization.

- **tacacs+** (Optional) Enables TACACS+ accounting.

Command Default

AAA accounting is disabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To enable AAA accounting identity, you need to enable policy mode. To enable policy mode, enter the `authentication display new-style` command in privileged EXEC mode.
This example shows how to configure IEEE 802.1x accounting identity:

Device# **authentication display new-style**

Please note that while you can revert to legacy style configuration at any time unless you have explicitly entered new-style configuration, the following caveats should be carefully read and understood.

1. If you save the config in this mode, it will be written to NVRAM in NEW-style config, and if you subsequently reload the router without reverting to legacy config and saving that, you will no longer be able to revert.

2. In this and legacy mode, Webauth is not IPv6-capable. It will only become IPv6-capable once you have entered new-style config manually, or have reloaded with config saved in 'authentication display new' mode.

Device# **configure terminal**
Device(config)# **aaa accounting identity default start-stop group radius**
Device(config)# **exit**
aaa authentication dot1x

To specify the authentication, authorization, and accounting (AAA) method to use on ports complying with the IEEE 802.1x authentication, use the `aaa authentication dot1x` command in global configuration mode. To disable authentication, use the `no` form of this command.

```plaintext
aaa authentication dot1x { default } method1
no aaa authentication dot1x { default } method1
```

Syntax Description

- `default` The default method when a user logs in. Use the listed authentication method that follows this argument.

- `method1` Specifies the server authentication. Enter the `group radius` keywords to use the list of all RADIUS servers for authentication.

Note Though other keywords are visible in the command-line help strings, only the `default` and `group radius` keywords are supported.

Command Default

No authentication is performed.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `method` argument identifies the method that the authentication algorithm tries in the specified sequence to validate the password provided by the client. The only method that is IEEE 802.1x-compliant is the `group radius` method, in which the client data is validated against a RADIUS authentication server.

If you specify `group radius`, you must configure the RADIUS server by entering the `radius-server host` global configuration command.

Use the `show running-config` privileged EXEC command to display the configured lists of authentication methods.

This example shows how to enable AAA and how to create an IEEE 802.1x-compliant authentication list. This authentication first tries to contact a RADIUS server. If this action returns an error, the user is not allowed access to the network.

```plaintext
Device> enable
Device# configure terminal
Device(config)# aaa new-model
Device(config)# aaa authentication dot1x default group radius
Device(config)# exit
```
aaa new-model

To enable the authentication, authorization, and accounting (AAA) access control model, issue the `aaa new-model` command in global configuration mode. To disable the AAA access control model, use the `no` form of this command.

```
aaa new-model
no aaa new-model
```

Syntax Description

This command has no arguments or keywords.

Command Default

AAA is not enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command enables the AAA access control system.

If the `login local` command is configured for a virtual terminal line (VTY), and the `aaa new-model` command is removed, you must reload the switch to get the default configuration or the `login` command. If the switch is not reloaded, the switch defaults to the `login local` command under the VTY.

We do not recommend removing the `aaa new-model` command.

Examples

The following example initializes AAA:

```
Device> enable
Device# configure terminal
Device(config)# aaa new-model
Device(config)# exit
```

The following example shows a VTY configured and the `aaa new-model` command removed:

```
Device> enable
Device# configure terminal
Device(config)# aaa new-model
Device(config)# line vty 0 15
Device(config-line)# login local
Device(config-line)# exit
Device(config)# no aaa new-model
Device(config)# exit
Device# show running-config | b line vty

line vty 0 4
login local !<--- Login local instead of "login"
line vty 5 15
login local
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa accounting</td>
<td>Enables AAA accounting of requested services for billing or security purposes.</td>
</tr>
<tr>
<td>aaa authentication arap</td>
<td>Enables an AAA authentication method for ARAP using TACACS+.</td>
</tr>
<tr>
<td>aaa authentication enable default</td>
<td>Enables AAA authentication to determine if a user can access the privileged command level.</td>
</tr>
<tr>
<td>aaa authentication login</td>
<td>Sets AAA authentication at login.</td>
</tr>
<tr>
<td>aaa authentication ppp</td>
<td>Specifies one or more AAA authentication method for use on serial interfaces running PPP.</td>
</tr>
<tr>
<td>aaa authorization</td>
<td>Sets parameters that restrict user access to a network.</td>
</tr>
</tbody>
</table>
authentication host-mode

To set the authorization manager mode on a port, use the **authentication host-mode** command in interface configuration mode. To return to the default setting, use the **no** form of this command.

```
authentication host-mode { multi-auth | multi-domain | multi-host | single-host }

no authentication host-mode
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-auth</td>
<td>Enables multiple-authorization mode (multi-auth mode) on the port.</td>
</tr>
<tr>
<td>multi-domain</td>
<td>Enables multiple-domain mode on the port.</td>
</tr>
<tr>
<td>multi-host</td>
<td>Enables multiple-host mode on the port.</td>
</tr>
<tr>
<td>single-host</td>
<td>Enables single-host mode on the port.</td>
</tr>
</tbody>
</table>

Command Default

Single host mode is enabled.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Single-host mode should be configured if only one data host is connected. Do not connect a voice device to authenticate on a single-host port. Voice device authorization fails if no voice VLAN is configured on the port.

Multi-domain mode should be configured if data host is connected through an IP phone to the port. Multi-domain mode should be configured if the voice device needs to be authenticated.

Multi-auth mode should be configured to allow devices behind a hub to obtain secured port access through individual authentication. Only one voice device can be authenticated in this mode if a voice VLAN is configured.

Multi-host mode also offers port access for multiple hosts behind a hub, but multi-host mode gives unrestricted port access to the devices after the first user gets authenticated.

This example shows how to enable multi-auth mode on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# authentication host-mode multi-auth
Device(config-if)# end
```

This example shows how to enable multi-domain mode on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
```
Device(config-if)# authentication host-mode multi-domain
Device(config-if)# end

This example shows how to enable multi-host mode on a port:

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# authentication host-mode multi-host
Device(config-if)# end

This example shows how to enable single-host mode on a port:

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# authentication host-mode single-host
Device(config-if)# end

You can verify your settings by entering the show authentication sessions interface interface details privileged EXEC command.
authentication logging verbose

To filter detailed information from authentication system messages, use the `authentication logging verbose` command in global configuration mode on the switch stack or on a standalone switch.

```
authentication logging verbose
no authentication logging verbose
```

Syntax Description
This command has no arguments or keywords.

Command Default
Detailed logging of system messages is not enabled.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command filters details, such as anticipated success, from authentication system messages. Failure messages are not filtered.

To filter verbose authentication system messages:

```
Device> enable
Device# configure terminal
Device(config)# authentication logging verbose
Device(config)# exit
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication logging verbose</td>
<td>Filters details from authentication system messages.</td>
</tr>
<tr>
<td>dot1x logging verbose</td>
<td>Filters details from 802.1x system messages.</td>
</tr>
<tr>
<td>mab logging verbose</td>
<td>Filters details from MAC authentication bypass (MAB) system messages.</td>
</tr>
</tbody>
</table>
authentication mac-move permit

To enable MAC move on a device, use the `authentication mac-move permit` command in global configuration mode. To disable MAC move, use the `no` form of this command.

```
authentication mac-move permit
no authentication mac-move permit
```

Syntax Description

This command has no arguments or keywords.

Command Default

MAC move is disabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The command enables authenticated hosts to move between any authentication-enabled ports (MAC authentication bypass [MAB], 802.1x, or Web-auth) on a device. For example, if there is a device between an authenticated host and port, and that host moves to another port, the authentication session is deleted from the first port, and the host is reauthenticated on the new port.

If MAC move is disabled, and an authenticated host moves to another port, it is not reauthenticated, and a violation error occurs.

This example shows how to enable MAC move on a device:

```
Device> enable
Device# configure terminal
Device(config)# authentication mac-move permit
Device(config)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-session mac-move deny</td>
<td>Disables MAC move on a device.</td>
</tr>
<tr>
<td>authentication event</td>
<td>Sets the action for specific authentication events.</td>
</tr>
<tr>
<td>authentication fallback</td>
<td>Configures a port to use web authentication as a fallback method for clients that do not support IEEE 802.1x authentication.</td>
</tr>
<tr>
<td>authentication host-mode</td>
<td>Sets the authorization manager mode on a port.</td>
</tr>
<tr>
<td>authentication open</td>
<td>Enables or disables open access on a port.</td>
</tr>
<tr>
<td>authentication order</td>
<td>Sets the order of authentication methods used on a port.</td>
</tr>
<tr>
<td>authentication periodic</td>
<td>Enable or disables reauthentication on a port.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>authentication port-control</td>
<td>Enables manual control of the port authorization state.</td>
</tr>
<tr>
<td>authentication priority</td>
<td>Adds an authentication method to the port-priority list.</td>
</tr>
<tr>
<td>authentication timer</td>
<td>Configures the timeout and reauthentication parameters for an 802.1x-enabled port.</td>
</tr>
<tr>
<td>authentication violation</td>
<td>Configures the violation modes that occur when a new device connects to a port or when a new device connects to a port with the maximum number of devices already connected to that port.</td>
</tr>
<tr>
<td>show authentication</td>
<td>Displays information about authentication manager events on the device.</td>
</tr>
</tbody>
</table>
authentication priority

To add an authentication method to the port-priority list, use the authentication priority command in interface configuration mode. To return to the default, use the no form of this command.

```
authentication priority [dot1x | mab] {webauth}
no authentication priority [dot1x | mab] {webauth}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x</td>
<td>(Optional) Adds 802.1x to the order of authentication methods.</td>
</tr>
<tr>
<td>mab</td>
<td>(Optional) Adds MAC authentication bypass (MAB) to the order of authentication methods.</td>
</tr>
<tr>
<td>webauth</td>
<td>Adds web authentication to the order of authentication methods.</td>
</tr>
</tbody>
</table>

Command Default
The default priority is 802.1x authentication, followed by MAC authentication bypass and web authentication.

Command Modes
Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Ordering sets the order of methods that the device attempts when trying to authenticate a new device is connected to a port.

When configuring multiple fallback methods on a port, set web authentication (webauth) last.

Assigning priorities to different authentication methods allows a higher-priority method to interrupt an in-progress authentication method with a lower priority.

Note

If a client is already authenticated, it might be reauthenticated if an interruption from a higher-priority method occurs.

The default priority of an authentication method is equivalent to its position in execution-list order: 802.1x authentication, MAC authentication bypass (MAB), and web authentication. Use the `dot1x`, `mab`, and `webauth` keywords to change this default order.

This example shows how to set 802.1x as the first authentication method and web authentication as the second authentication method:

```
Device(config-if)# authentication priority dot1x webauth
```

This example shows how to set MAB as the first authentication method and web authentication as the second authentication method:
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 0/1/2
Device(config-if)# authentication priority mab webauth
Device(config-if)# end

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication control-direction</td>
<td>Configures the port mode as unidirectional or bidirectional.</td>
</tr>
<tr>
<td>authentication event fail</td>
<td>Specifies how the Auth Manager handles authentication failures as a result of unrecognized user credentials.</td>
</tr>
<tr>
<td>authentication event no-response action</td>
<td>Specifies how the Auth Manager handles authentication failures as a result of a nonresponsive host.</td>
</tr>
<tr>
<td>authentication event server alive action reinitialize</td>
<td>Reinitializes an authorized Auth Manager session when a previously unreachable authentication, authorization, and accounting server becomes available.</td>
</tr>
<tr>
<td>authentication event server dead action authorize</td>
<td>Authorizes Auth Manager sessions when the authentication, authorization, and accounting server becomes unreachable.</td>
</tr>
<tr>
<td>authentication fallback</td>
<td>Enables a web authentication fallback method.</td>
</tr>
<tr>
<td>authentication host-mode</td>
<td>Allows hosts to gain access to a controlled port.</td>
</tr>
<tr>
<td>authentication open</td>
<td>Enables open access on a port.</td>
</tr>
<tr>
<td>authentication order</td>
<td>Specifies the order in which the Auth Manager attempts to authenticate a client on a port.</td>
</tr>
<tr>
<td>authentication periodic</td>
<td>Enables automatic reauthentication on a port.</td>
</tr>
<tr>
<td>authentication port-control</td>
<td>Configures the authorization state of a controlled port.</td>
</tr>
<tr>
<td>authentication timer inactivity</td>
<td>Configures the time after which an inactive Auth Manager session is terminated.</td>
</tr>
<tr>
<td>authentication timer reauthenticate</td>
<td>Specifies the period of time between which the Auth Manager attempts to reauthenticate authorized ports.</td>
</tr>
<tr>
<td>authentication timer restart</td>
<td>Specifies the period of time after which the Auth Manager attempts to authenticate an unauthorized port.</td>
</tr>
<tr>
<td>authentication violation</td>
<td>Specifies the action to be taken when a security violation occurs on a port.</td>
</tr>
<tr>
<td>mab</td>
<td>Enables MAC authentication bypass on a port.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td><code>show authentication registrations</code></td>
<td>Displays information about the authentication methods that are registered with the Auth Manager.</td>
</tr>
<tr>
<td><code>show authentication sessions</code></td>
<td>Displays information about current Auth Manager sessions.</td>
</tr>
<tr>
<td><code>show authentication sessions interface</code></td>
<td>Displays information about the Auth Manager for a given interface.</td>
</tr>
</tbody>
</table>
authentication violation

To configure the violation modes that occur when a new device connects to a port or when a new device connects to a port after the maximum number of devices are connected to that port, use the **authentication violation** command in interface configuration mode.

```
authentication violation { protect | replace | restrict | shutdown }
no authentication violation { protect | replace | restrict | shutdown }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protect</td>
<td>Drops unexpected incoming MAC addresses. No syslog errors are generated.</td>
</tr>
<tr>
<td>replace</td>
<td>Removes the current session and initiates authentication with the new host.</td>
</tr>
<tr>
<td>restrict</td>
<td>Generates a syslog error when a violation error occurs.</td>
</tr>
<tr>
<td>shutdown</td>
<td>Error-disables the port or the virtual port on which an unexpected MAC address occurs.</td>
</tr>
</tbody>
</table>

Command Default

Authentication violation shutdown mode is enabled.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **authentication violation** command to specify the action to be taken when a security violation occurs on a port.

This example shows how to configure an IEEE 802.1x-enabled port as error-disabled and to shut down when a new device connects it:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# authentication violation shutdown
Device(config-if)# end
```

This example shows how to configure an 802.1x-enabled port to generate a system error message and to change the port to restricted mode when a new device connects to it:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# authentication violation restrict
Device(config-if)# end
```

This example shows how to configure an 802.1x-enabled port to ignore a new device when it connects to the port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# authentication violation protect
Device(config-if)# end
```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# authentication violation protect
Device(config-if)# end

This example shows how to configure an 802.1x-enabled port to remove the current session and initiate authentication with a new device when it connects to the port:

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/1
Device(config-if)# authentication violation replace
Device(config-if)# end

You can verify your settings by entering the show authentication command.
cisp enable

To enable Client Information Signaling Protocol (CISP) on a device so that it acts as an authenticator to a supplicant device and a supplicant to an authenticator device, use the cisp enable global configuration command.

```
cisp enable
no cisp enable
```

Syntax Description
This command has no arguments or keywords.

Command Default
No default behavior or values.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The link between the authenticator and supplicant device is a trunk. When you enable VTP on both devices, the VTP domain name must be the same, and the VTP mode must be server.

To avoid the MD5 checksum mismatch error when you configure VTP mode, verify that:

- VLANs are not configured on two different devices, which can be caused by two VTP servers in the same domain.
- Both devices have different configuration revision numbers.

This example shows how to enable CISP:

```
Device> enable
Device# configure terminal
Device(config)# cisp enable
Device(config)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x credentials profile</td>
<td>Configures a profile on a supplicant device.</td>
</tr>
<tr>
<td>dot1x supplicant force-multicast</td>
<td>Forces 802.1X supplicant to send multicast packets.</td>
</tr>
<tr>
<td>dot1x supplicant controlled transient</td>
<td>Configures controlled access by 802.1X supplicant.</td>
</tr>
<tr>
<td>show cisp</td>
<td>Displays CISP information for a specified interface.</td>
</tr>
</tbody>
</table>
clear errdisable interface vlan

To reenable a VLAN that was error-disabled, use the **clear errdisable interface** command in privileged EXEC mode.

```plaintext
clear errdisable interface interface-id vlan [vlan-list]
```

Syntax Description

- `interface-id`: Specifies an interface.
- `vlan list`: (Optional) Specifies a list of VLANs to be reenabled. If a VLAN list is not specified, then all VLANs are reenabled.

Command Default

No default behavior or values.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can reenable a port by using the `shutdown` and `no shutdown` interface configuration commands, or you can clear error-disable for VLANs by using the `clear errdisable` interface command.

This example shows how to reenable all VLANs that were error-disabled on Gigabit Ethernet port 4/0/2:

```plaintext
Device# clear errdisable interface gigabitethernet4/0/2 vlan
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>errdisable detect cause</td>
<td>Enables error-disabled detection for a specific cause or all causes.</td>
</tr>
<tr>
<td>errdisable recovery</td>
<td>Configures the recovery mechanism variables.</td>
</tr>
<tr>
<td>show errdisable detect</td>
<td>Displays error-disabled detection status.</td>
</tr>
<tr>
<td>show errdisable recovery</td>
<td>Displays error-disabled recovery timer information.</td>
</tr>
<tr>
<td>show interfaces status err-disabled</td>
<td>Displays interface status of a list of interfaces in error-disabled state.</td>
</tr>
</tbody>
</table>
clear mac address-table

To delete from the MAC address table a specific dynamic address, all dynamic addresses on a particular interface, all dynamic addresses on stack members, or all dynamic addresses on a particular VLAN, use the clear mac address-table command in privileged EXEC mode. This command also clears the MAC address notification global counters.

clear mac address-table {dynamic [address mac-addr | interface interface-id | vlan vlan-id] | move update | notification}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic</td>
<td>Deletes all dynamic MAC addresses.</td>
</tr>
<tr>
<td>address mac-addr</td>
<td>(Optional) Deletes the specified dynamic MAC address.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>(Optional) Deletes all dynamic MAC addresses on the specified physical port or port channel.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>(Optional) Deletes all dynamic MAC addresses for the specified VLAN. The range is 1 to 4094.</td>
</tr>
<tr>
<td>move update</td>
<td>Clears the MAC address table move-update counters.</td>
</tr>
<tr>
<td>notification</td>
<td>Clears the notifications in the history table and reset the counters.</td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can verify that the information was deleted by entering the show mac address-table command.

This example shows how to remove a specific MAC address from the dynamic address table:

Device> enable
Device# clear mac address-table dynamic address 0008.0070.0007

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac address-table notification</td>
<td>Enables the MAC address notification feature.</td>
</tr>
<tr>
<td>mac address-table move update</td>
<td>Configures MAC address-table move update on the device.</td>
</tr>
<tr>
<td>{receive</td>
<td>transmit}</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>show mac address-table</td>
<td>Displays the MAC address table static and dynamic entries.</td>
</tr>
<tr>
<td>show mac address-table move update</td>
<td>Displays the MAC address-table move update information on the device.</td>
</tr>
<tr>
<td>show mac address-table notification</td>
<td>Displays the MAC address notification settings for all interfaces or on the specified interface when the interface keyword is appended.</td>
</tr>
<tr>
<td>snmp trap mac-notification change</td>
<td>Enables the SNMP MAC address notification trap on a specific interface.</td>
</tr>
</tbody>
</table>
deny (MAC access-list configuration)

To prevent non-IP traffic from being forwarded if the conditions are matched, use the **deny** command in MAC access-list extended configuration mode. To remove a deny condition from the named MAC access list, use the **no** form of this command.

```plaintext
deny {any | host src-MAC-addr | src-MAC-addr mask} {any | host dst-MAC-addr | dst-MAC-addr mask} [type mask | aarp | amber | appletalk | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lave-sca | lsap | lsap mask | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp] [cos cos]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Denies any source or destination MAC address.</td>
</tr>
<tr>
<td>host src-MAC-addr</td>
<td>Defines a host MAC address and optional subnet mask. If the source address for a packet matches the defined address, non-IP traffic from that address is denied.</td>
</tr>
<tr>
<td>host dst-MAC-addr</td>
<td>Defines a destination MAC address and optional subnet mask. If the destination address for a packet matches the defined address, non-IP traffic to that address is denied.</td>
</tr>
<tr>
<td>type mask</td>
<td>(Optional) Specifies the EtherType number of a packet with Ethernet II or SNAP encapsulation to identify the protocol of the packet. The type is 0 to 65535, specified in hexadecimal. The mask is a mask of don't care bits applied to the EtherType before testing for a match.</td>
</tr>
<tr>
<td>aarp</td>
<td>(Optional) Specifies EtherType AppleTalk Address Resolution Protocol that maps a data-link address to a network address.</td>
</tr>
<tr>
<td>amber</td>
<td>(Optional) Specifies EtherType DEC-Amber.</td>
</tr>
<tr>
<td>appletalk</td>
<td>(Optional) Specifies EtherType AppleTalk/EtherTalk.</td>
</tr>
<tr>
<td>dec-spanning</td>
<td>(Optional) Specifies EtherType DECnet Phase IV spanning tree.</td>
</tr>
<tr>
<td>decnet-iv</td>
<td>(Optional) Specifies EtherType DECnet Phase IV protocol.</td>
</tr>
<tr>
<td>diagnostic</td>
<td>(Optional) Specifies EtherType DEC-Diagnostic.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>dsm</td>
<td>(Optional) Specifies EtherType DEC-DSM.</td>
</tr>
<tr>
<td>etype-6000</td>
<td>(Optional) Specifies EtherType 0x6000.</td>
</tr>
<tr>
<td>etype-8042</td>
<td>(Optional) Specifies EtherType 0x8042.</td>
</tr>
<tr>
<td>lat</td>
<td>(Optional) Specifies EtherType DEC-LAT.</td>
</tr>
<tr>
<td>lavc-sca</td>
<td>(Optional) Specifies EtherType DEC-LAVC-SCA.</td>
</tr>
<tr>
<td>lsap lsap-number mask</td>
<td>(Optional) Specifies the LSAP number (0 to 65535) of a packet with 802.2 encapsulation to identify the protocol of the packet. mask is a mask of don’t care bits applied to the LSAP number before testing for a match.</td>
</tr>
<tr>
<td>mop-console</td>
<td>(Optional) Specifies EtherType DEC-MOP Remote Console.</td>
</tr>
<tr>
<td>mop-dump</td>
<td>(Optional) Specifies EtherType DEC-MOP Dump.</td>
</tr>
<tr>
<td>msdos</td>
<td>(Optional) Specifies EtherType DEC-MSDOS.</td>
</tr>
<tr>
<td>mumps</td>
<td>(Optional) Specifies EtherType DEC-MUMPS.</td>
</tr>
<tr>
<td>netbios</td>
<td>(Optional) Specifies EtherType DEC- Network Basic Input/Output System (NetBIOS).</td>
</tr>
<tr>
<td>vines-echo</td>
<td>(Optional) Specifies EtherType Virtual Integrated Network Service (VINES) Echo from Banyan Systems.</td>
</tr>
<tr>
<td>vines-ip</td>
<td>(Optional) Specifies EtherType VINES IP.</td>
</tr>
<tr>
<td>xns-idp</td>
<td>(Optional) Specifies EtherType Xerox Network Systems (XNS) protocol suite (0 to 65535), an arbitrary EtherType in decimal, hexadecimal, or octal.</td>
</tr>
<tr>
<td>cos cos</td>
<td>(Optional) Specifies a class of service (CoS) number from 0 to 7 to set priority. Filtering on CoS can be performed only in hardware. A warning message reminds the user if the cos option is configured.</td>
</tr>
</tbody>
</table>

Command Default

This command has no defaults. However, the default action for a MAC-named ACL is to deny.

Command Modes

MAC-access list extended configuration (config-ext-macl)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

You enter MAC-access list extended configuration mode by using the `mac access-list extended` global configuration command.

If you use the `host` keyword, you cannot enter an address mask; if you do not use the `host` keyword, you must enter an address mask.

When an access control entry (ACE) is added to an access control list, an implied `deny-any-any` condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

To filter IPX traffic, you use the `type mask` or `lsap lsap mask` keywords, depending on the type of IPX encapsulation being used. Filter criteria for IPX encapsulation types as specified in Novell terminology and Cisco IOS XE terminology are listed in the table.

Table 131: IPX Filtering Criteria

<table>
<thead>
<tr>
<th>IPX Encapsulation Type</th>
<th>Filter Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>arpa</td>
<td>EtherType 0x8137</td>
</tr>
<tr>
<td>snap</td>
<td>EtherType 0x8137</td>
</tr>
<tr>
<td>sap</td>
<td>LSAP 0xE0E0</td>
</tr>
<tr>
<td>novell-ether</td>
<td>LSAP 0xFFFF</td>
</tr>
</tbody>
</table>

This example shows how to define the named MAC extended access list to deny NETBIOS traffic from any source to MAC address 00c0.00a0.03fa. Traffic matching this list is denied.

```
Device> enable
Device# configure terminal
Device(config)# mac access-list extended mac_layer
Device(config-ext-macl)# deny any host 00c0.00a0.03fa netbios.
Device(config-ext-macl)# end
```

This example shows how to remove the deny condition from the named MAC extended access list:

```
Device> enable
Device# configure terminal
Device(config)# mac access-list extended mac_layer
Device(config-ext-macl)# no deny any 00c0.00a0.03fa 0000.0000.0000 netbios.
Device(config-ext-macl)# end
```

The following example shows how to deny all packets with EtherType 0x4321:

```
Device> enable
Device# configure terminal
Device(config)# mac access-list extended mac_layer
Device(config-ext-macl)# deny any any 0x4321 0
Device(config-ext-macl)# end
```

You can verify your settings by entering the `show access-lists` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mac access-list extended</td>
<td>Creates an access list based on MAC addresses for non-IP traffic.</td>
</tr>
<tr>
<td></td>
<td>permit</td>
<td>Permits from the MAC access-list configuration. Permits non-IP traffic to be forwarded if conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>show access-lists</td>
<td>Displays access control lists configured on a device.</td>
</tr>
</tbody>
</table>
To specify the role of the device attached to the port, use the `device-role` command in IPv6 snooping configuration mode. To remove the specification, use the `no` form of this command.

```plaintext
device-role { node | switch }
no device-role { node | switch }
```

Syntax Description
- `node` Sets the role of the attached device to node.
- `switch` Sets the role of the attached device to device.

Command Default
The device role is node.

Command Modes
IPv6 snooping configuration (config-ipv6-snooping)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `device-role` command specifies the role of the device attached to the port. By default, the device role is node.

The `switch` keyword indicates that the remote device is a switch and that the local switch is now operating in multiswitch mode; binding entries learned from the port will be marked with `trunk_port` preference level. If the port is configured as a trust-port, binding entries will be marked with `trunk_trusted_port` preference level.

This example shows how to define an IPv6 snooping policy name as `policy1`, place the device in IPv6 snooping configuration mode, and configure the device as the node:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping)# device-role node
Device(config-ipv6-snooping)# end
```
device-role (IPv6 nd inspection)

To specify the role of the device attached to the port, use the `device-role` command in neighbor discovery (ND) inspection policy configuration mode.

```
device-role { host | switch }
```

Syntax Description

- **host**: Sets the role of the attached device to host.
- **switch**: Sets the role of the attached device to switch.

Command Default

The device role is host.

Command Modes

ND inspection policy configuration (config-nd-inspection)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `device-role` command specifies the role of the device attached to the port. By default, the device role is host, and therefore all the inbound router advertisement and redirect messages are blocked.

The `switch` keyword indicates that the remote device is a switch and that the local switch is now operating in multiswitch mode; binding entries learned from the port will be marked with trunk_port preference level. If the port is configured as a trust-port, binding entries will be marked with trunk_trusted_port preference level.

The following example defines a Neighbor Discovery Protocol (NDP) policy name as policy1, places the device in ND inspection policy configuration mode, and configures the device as the host:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 nd inspection policy policy1
Device(config-nd-inspection)# device-role host
Device(config-nd-inspection)# end
```
device-tracking policy

To configure a Switch Integrated Security Features (SISF)-based IP device tracking policy, use the `device-tracking` command in global configuration mode. To delete a device tracking policy, use the `no` form of this command.

```
device-tracking policy  policy-name
no device-tracking policy  policy-name
```

Syntax Description

- `policy-name` User-defined name of the device tracking policy. The policy name can be a symbolic string (such as Engineering) or an integer (such as 0).

Command Default

A device tracking policy is not configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the SISF-based `device-tracking policy` command to create a device tracking policy. When the `device-tracking policy` command is enabled, the configuration mode changes to device-tracking configuration mode. In this mode, the administrator can configure the following first-hop security commands:

- (Optional) `device-role{node} | switch`—Specifies the role of the device attached to the port. Default is `node`.

- (Optional) `limit address-count value`—Limits the number of addresses allowed per target.

- (Optional) `no`—Negates a command or sets it to defaults.

- (Optional) `destination-glean {recovery | log-only} [dhcp]`—Enables binding table recovery by data traffic source address gleaning.

- (Optional) `data-glean {recovery | log-only} [dhcp | ndp]`—Enables binding table recovery using source or data address gleaning.

- (Optional) `security-level{glean|guard|inspect}`—Specifies the level of security enforced by the feature. Default is `guard`.

 - `glean`—Gleans addresses from messages and populates the binding table without any verification.
 - `guard`—Gleans addresses and inspects messages. In addition, it rejects RA and DHCP server messages. This is the default option.
 - `inspect`—Gleans addresses, validates messages for consistency and conformance, and enforces address ownership.

- (Optional) `tracking {disable | enable}`—Specifies a tracking option.

- (Optional) `trusted-port`—Sets up a trusted port. It disables the guard on applicable targets. Bindings learned through a trusted port have preference over bindings learned through any other port. A trusted port is given preference in case of a collision while making an entry in the table.
This example shows how to configure a device-tracking policy:

```
Device> enable
Device# configure terminal
Device(config)# device-tracking policy policy1
Device(config-device-tracking)# trusted-port
Device(config-device-tracking)# end
```
dot1x critical (global configuration)

To configure the IEEE 802.1X critical authentication parameters, use the `dot1x critical` command in global configuration mode.

```
dot1x critical eapol
```

Syntax Description

- `eapol` Specifies that the switch send an EAPOL-Success message when the device successfully authenticates the critical port.

Command Default

eapol is disabled

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to specify that the device sends an EAPOL-Success message when the device successfully authenticates the critical port:

```
Device> enable
Device# configure terminal
Device(config)# dot1x critical eapol
Device(config)# exit
```
dot1x logging verbose

To filter detailed information from 802.1x system messages, use the `dot1x logging verbose` command in global configuration mode on a device stack or on a standalone device.

```
dot1x logging verbose
no dot1x logging verbose
```

Syntax Description
This command has no arguments or keywords.

Command Default
Detailed logging of system messages is not enabled.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| Cisco IOS XE Fuji 16.9.2 | This command was introduced.

Usage Guidelines
This command filters details, such as anticipated success, from 802.1x system messages. Failure messages are not filtered.

The following example shows how to filter verbose 802.1x system messages:

```
Device> enable
Device# configure terminal
Device(config)# dot1x logging verbose
Device(config)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication logging verbose</td>
<td>Filters details from authentication system messages.</td>
</tr>
<tr>
<td>dot1x logging verbose</td>
<td>Filters details from 802.1x system messages.</td>
</tr>
<tr>
<td>mab logging verbose</td>
<td>Filters details from MAC authentication bypass (MAB) system messages.</td>
</tr>
</tbody>
</table>
dot1x pae

To set the Port Access Entity (PAE) type, use the `dot1x pae` command in interface configuration mode. To disable the PAE type that was set, use the `no` form of this command.

```
dot1x pae {supplicant | authenticator}
no dot1x pae {supplicant | authenticator}
```

Syntax Description

- **supplicant**: The interface acts only as a supplicant and will not respond to messages that are meant for an authenticator.
- **authenticator**: The interface acts only as an authenticator and will not respond to any messages meant for a supplicant.

Command Default

PAE type is not set.

Command Modes

Interface configuration (config-if)

Command History

- Release: Cisco IOS XE Fuji 16.9.2
- Modification: This command was introduced.

Usage Guidelines

Use the `no dot1x pae` interface configuration command to disable IEEE 802.1x authentication on the port.

When you configure IEEE 802.1x authentication on a port, such as by entering the `dot1x port-control` interface configuration command, the device automatically configures the port as an IEEE 802.1x authenticator. After the `no dot1x pae` interface configuration command is entered, the Authenticator PAE operation is disabled.

The following example shows that the interface has been set to act as a supplicant:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 1/0/3
Device(config-if)# dot1x pae supplicant
Device(config-if)# end
```
dot1x supplicant controlled transient

To control access to an 802.1x supplicant port during authentication, use the `dot1x supplicant controlled transient` command in global configuration mode. To open the supplicant port during authentication, use the `no` form of this command.

```
dot1x supplicant controlled transient
no dot1x supplicant controlled transient
```

Syntax Description

This command has no arguments or keywords.

Command Default

Access is allowed to 802.1x supplicant ports during authentication.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

In the default state, when you connect a supplicant device to an authenticator switch that has BPCU guard enabled, the authenticator port could be error-disabled if it receives a Spanning Tree Protocol (STP) bridge protocol data unit (BPDU) packets before the supplicant switch has authenticated. You can control traffic exiting the supplicant port during the authentication period. Entering the `dot1x supplicant controlled transient` command temporarily blocks the supplicant port during authentication to ensure that the authenticator port does not shut down before authentication completes. If authentication fails, the supplicant port opens. Entering the `no dot1x supplicant controlled transient` command opens the supplicant port during the authentication period. This is the default behavior.

We recommend using the `dot1x supplicant controlled transient` command on a supplicant device when BPDU guard is enabled on the authenticator switch port with the `spanning-tree bpdu guard enable` interface configuration command.

This example shows how to control access to 802.1x supplicant ports on a device during authentication:

```
Device> enable
Device# configure terminal
Device(config)# dot1x supplicant controlled transient
Device(config)# exit
```
dot1x supplicant force-multicast

To force a supplicant switch to send only multicast Extensible Authentication Protocol over LAN (EAPOL) packets whenever it receives multicast or unicast EAPOL packets, use the `dot1x supplicant force-multicast` command in global configuration mode. To return to the default setting, use the `no` form of this command.

```
dot1x supplicant force-multicast
no dot1x supplicant force-multicast
```

Syntax Description

This command has no arguments or keywords.

Command Default

The supplicant device sends unicast EAPOL packets when it receives unicast EAPOL packets. Similarly, it sends multicast EAPOL packets when it receives multicast EAPOL packets.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enable this command on the supplicant device for Network Edge Access Topology (NEAT) to work in all host modes.

This example shows how force a supplicant device to send multicast EAPOL packets to the authenticator device:

```
Device> enable
Device# configure terminal
Device(config)# dot1x supplicant force-multicast
Device(config)# end
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisp enable</td>
<td>Enables CISP on a device so that it acts as an authenticator to a supplicant switch.</td>
</tr>
<tr>
<td>dot1x credentials</td>
<td>Configures the 802.1x supplicant credentials on the port.</td>
</tr>
<tr>
<td>dot1x pae supplicant</td>
<td>Configures an interface to act only as a supplicant.</td>
</tr>
</tbody>
</table>
dot1x test eapol-capable

To monitor IEEE 802.1x activity on all the switch ports and to display information about the devices that are connected to the ports that support IEEE 802.1x, use the **dot1x test eapol-capable** command in privileged EXEC mode.

Syntax

```
dot1x test eapol-capable [interface interface-id]
```

Syntax Description

- **interface interface-id**

 (Optional) Port to be queried.

Command Default

There is no default setting.

Command Modes

Privileged EXEC (adiator)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to test the IEEE 802.1x capability of the devices connected to all ports or to specific ports on a switch.

There is not a no form of this command.

This example shows how to enable the IEEE 802.1x readiness check on a switch to query a port. It also shows the response received from the queried port verifying that the device connected to it is IEEE 802.1x-capable:

```
Device> enable
Device# dot1x test eapol-capable interface gigabitethernet1/0/13

DOT1X_PORT_EAPOL_CAPABLE:DOT1X: MAC 00-01-02-4b-f1-a3 on gigabitethernet1/0/13 is EAPOL capable
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x test timeout timeout</td>
<td>Configures the timeout used to wait for EAPOL response to an IEEE 802.1x readiness query.</td>
</tr>
</tbody>
</table>
dot1x test timeout

To configure the timeout used to wait for EAPOL response from a port being queried for IEEE 802.1x readiness, use the `dot1x test timeout` command in global configuration mode.

```
dot1x test timeout timeout
```

Syntax Description

- `timeout`
 - Time in seconds to wait for an EAPOL response. The range is from 1 to 65535 seconds.

Command Default

The default setting is 10 seconds.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to configure the timeout used to wait for EAPOL response.

There is not a no form of this command.

This example shows how to configure the switch to wait 27 seconds for an EAPOL response:

```
Device> enable
Device# dot1x test timeout 27
```

You can verify the timeout configuration status by entering the `show running-config` command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x test eapol-capable [interface interface-id]</code></td>
<td>Checks for IEEE 802.1x readiness on devices connected to all or to specified IEEE 802.1x-capable ports.</td>
</tr>
</tbody>
</table>
dot1x timeout

To configure the value for retry timeouts, use the `dot1x timeout` command in global configuration or interface configuration mode. To return to the default value for retry timeouts, use the `no` form of this command.

```
dot1x timeout { auth-period seconds | held-period seconds | quiet-period seconds | ratelimit-period seconds | server-timeout seconds | start-period seconds | supp-timeout seconds | tx-period seconds }
```

Syntax Description

- `auth-period seconds` Configures the time, in seconds for which a supplicant will stay in the HELD state (that is, the length of time it will wait before trying to send the credentials again after a failed attempt).

 The range is from 1 to 65535. The default is 30.

- `held-period seconds` Configures the time, in seconds for which a supplicant will stay in the HELD state (that is, the length of time it will wait before trying to send the credentials again after a failed attempt).

 The range is from 1 to 65535. The default is 60.

- `quiet-period seconds` Configures the time, in seconds, that the authenticator (server) remains quiet (in the HELD state) following a failed authentication exchange before trying to reauthenticate the client.

 The range is from 1 to 65535. The default is 60.

- `ratelimit-period seconds` Throttles the EAP-START packets that are sent from misbehaving client PCs (for example, PCs that send EAP-START packets that result in the wasting of device processing power).

 • The authenticator ignores EAPOL-Start packets from clients that have successfully authenticated for the rate-limit period duration.

 • The range is from 1 to 65535. By default, rate limiting is disabled.

- `server-timeout seconds` Configures the interval, in seconds, between two successive EAPOL-Start frames when they are being retransmitted.

 • The range is from 1 to 65535. The default is 30.

 If the server does not send a response to an 802.1X packet within the specified period, the packet is sent again.

- `start-period seconds` Configures the interval, in seconds, between two successive EAPOL-Start frames when they are being retransmitted.

 The range is from 1 to 65535. The default is 30.
supp-timeout seconds
Sets the authenticator-to-supplicant retransmission time for all EAP messages other than EAP Request ID.

- The range is from 1 to 65535. The default is 30.

tx-period seconds
Configures the number of seconds between retransmission of EAP request ID packets (assuming that no response is received) to the client.
- The range is from 1 to 65535. The default is 30.
- If an 802.1X packet is sent to the supplicant and the supplicant does not send a response after the retry period, the packet will be sent again.

Command Default
Periodic reauthentication and periodic rate-limiting are done.

Command Modes
- Global configuration (config)
- Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The **dot1x timeout reauth-period** interface configuration command affects the behavior of the device only if you have enabled periodic re-authentication by using the **dot1x reauthentication** interface configuration command.

During the quiet period, the device does not accept or initiate any authentication requests. If you want to provide a faster response time to the user, enter a number smaller than the default.

When the **ratelimit-period** is set to 0 (the default), the device does not ignore EAPOL packets from clients that have been successfully authenticated and forwards them to the RADIUS server.

The following example shows that various 802.1X retransmission and timeout periods have been set:

```plaintext
Device> enable
Device(config)# configure terminal
Device(config)# interface gigabitethernet 1/0/3
Device(config-if)# dot1x port-control auto
Device(config-if)# dot1x timeout auth-period 2000
Device(config-if)# dot1x timeout held-period 2400
Device(config-if)# dot1x timeout quiet-period 600
Device(config-if)# dot1x timeout start-period 90
Device(config-if)# dot1x timeout supp-timeout 300
Device(config-if)# dot1x timeout tx-period 60
Device(config-if)# dot1x timeout server-timeout 60
Device(config-if)# end
```
dtls

To configure Datagram Transport Layer Security (DTLS) parameters, use the `dtls` command in radius server configuration mode. To return to the default setting, use the `no` form of this command.

```
dtls [connectiontimeout connection-timeout-value] [idletimeout idle-timeout-value] [ip {radius source-interface interface-name | vrf forwarding forwarding-table-name}] [port port-number] [retries number-of-connection-retries] [trustpoint {client trustpoint name | server trustpoint name}]
```

```
no dtls
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>connectiontimeout connection-timeout-value</code></td>
<td>(Optional) Configures the DTLS connection timeout value.</td>
</tr>
<tr>
<td><code>idletimeout idle-timeout-value</code></td>
<td>(Optional) Configures the DTLS idle timeout value.</td>
</tr>
<tr>
<td>`ip {radius source-interface interface-name</td>
<td>vrf forwarding forwarding-table-name}`</td>
</tr>
<tr>
<td><code>port port-number</code></td>
<td>(Optional) Configures the DTLS port number.</td>
</tr>
<tr>
<td><code>retries number-of-connection-retries</code></td>
<td>(Optional) Configures the number of DTLS connection retries.</td>
</tr>
<tr>
<td>`trustpoint {client trustpoint name</td>
<td>server trustpoint name}`</td>
</tr>
</tbody>
</table>

Command Default

- The default value of DTLS connection timeout is 5 seconds.
- The default value of DTLS idle timeout is 60 seconds.
- The default DTLS port number is 2083.
- The default value of DTLS connection retries is 5.

Command Modes

Radius server configuration (config-radius-server)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

We recommend that you use the same server type, either only Transport Layer Security (TLS) or only DTLS, under an Authentication, Authorization, and Accounting (AAA) server group.

Examples

The following example shows how to configure the DTLS connection timeout value to 10 seconds:

```
Device> enable
Device# configure terminal
Device(config)# radius server R1
Device(config)# dtls connectiontimeout 10
Device(config)# end
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show aaa servers</code></td>
<td>Displays information related to the DTLS server.</td>
</tr>
<tr>
<td>`clear aaa counters servers radius {server id</td>
<td>all}`</td>
</tr>
<tr>
<td><code>debug radius dtls</code></td>
<td>Enables RADIUS DTLS-specific debugs.</td>
</tr>
</tbody>
</table>
enable password

To set a local password to control access to various privilege levels, use the `enable password` command in global configuration mode. To remove control access of the local password, use the `no` form of this command.

```
enable password [level level] {0 unencrypted-password | [encryption-type] encrypted-password}
no enable password [level level]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>level level</td>
<td>(Optional) Specifies the level for which the password is applicable. You can specify up to 16 privilege levels, using numbers 0 through 15. Level 1 is normal user EXEC mode user privileges. If level is not specified in the command or in the no form of the command, the privilege level defaults to 15.</td>
</tr>
<tr>
<td>0</td>
<td>(Optional) Specifies an unencrypted cleartext password. The password is converted to a Secure Hash Algorithm (SHA) 256 secret and is stored in the device.</td>
</tr>
<tr>
<td>unencrypted-password</td>
<td>Specifies the password to enter enable mode.</td>
</tr>
<tr>
<td>encryption-type</td>
<td>(Optional) Cisco-proprietary algorithm used to encrypt the password. If you specify encryption-type, the next argument that you supply must be an encrypted password (a password already encrypted by a Cisco device). You can specify type 7, which indicates that a hidden password follows.</td>
</tr>
<tr>
<td>encrypted-password</td>
<td>Encrypted password copied from another device configuration.</td>
</tr>
</tbody>
</table>

Command Default

No password is defined.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If neither the `enable password` command nor the `enable secret` command is configured, and if a line password is configured for the console, the console line password serves as the enable password for all VTY (Telnet and Secure Shell [SSH]) sessions.

Use `enable password` command with the `level` option to define a password for a specific privilege level. After you specify the level and the password, share the password with users who need to access this level. Use the `privilege level` configuration command to specify the commands that are accessible at various levels.

Typically, you enter an encryption type only if you copy and paste a password that has already been encrypted by a Cisco device, into this command.
If you specify an encryption type and then enter a cleartext password, you will not be able to re-enter enable mode. You cannot recover a lost password that has been encrypted earlier.

If the `service password-encryption` command is set, the encrypted form of the password you create with the `enable password` command is displayed when the `more nvram:startup-config` command is run.

You can enable or disable password encryption with the `service password-encryption` command.

An enable password is defined as follows:

- Must contain a combination of numerals from 1 to 25, and uppercase and lowercase alphanumeric characters.
- Can have leading spaces, but they are ignored. However, intermediate and trailing spaces are recognized.
- Can contain the question mark (?) character if you precede the question mark with the key combination Ctrl-V when you create the password, for example, to create the password `abc?123`, do the following:
 1. Enter `abc`.
 2. Press Ctrl-v.
 3. Enter `?123`.

When the system prompt you to enter the `enable password` command, you need not precede the question mark with Ctrl-V; you can enter `abc?123` at the password prompt.

The following example shows how to enables the password `pswd2` for privilege level 2:

```plaintext
Device> enable
Device# configure terminal
Device(config)# enable password level 2 pswd2
```

The following example shows how to set the encrypted password `1i5Rkl3LoxyzS8t9`, which has been copied from a device configuration file, for privilege level 2 using encryption type 7:

```plaintext
Device> enable
Device# configure terminal
Device(config)# enable password level 2 5 $1$i5Rkl3LoxyzS8t9
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable secret</code></td>
<td>Specifies an additional layer of security over the <code>enable password</code> command.</td>
</tr>
<tr>
<td><code>service password-encryption</code></td>
<td>Encrypts a password.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>more nvram:startup-config</td>
<td>Displays the startup configuration file contained in NVRAM or specified by the CONFIG_FILE environment variable.</td>
</tr>
<tr>
<td>privilege level</td>
<td>Sets the privilege level for the user.</td>
</tr>
</tbody>
</table>
enable secret

To specify an additional layer of security over the enable password command, use the enable secret command in global configuration mode. To turn off the enable secret function, use the no form of this command.

```
enable secret [level level] {[0] unencrypted-password | encryption-type encrypted-password}
no enable secret [level level] [encryption-type encrypted-password]
```

Syntax Description

- `level level` (Optional) Specifies the level for which the password is applicable. You can specify up to 15 privilege levels, using numerals 1 through 15. Level 1 is normal user EXEC mode privileges. If `level` is not specified in the command or in the no form of the command, the privilege level defaults to 15.
- `0` (Optional) Specifies an unencrypted cleartext password. The password is converted to a Secure Hash Algorithm (SHA) 256 secret and is stored in the device.
- `unencrypted-password` Specifies the password for users to enter enable mode. This password should be different from the password created with the enable password command.
- `encryption-type` Cisco-proprietary algorithm used to hash the password:
 - 5: Specifies a message digest algorithm 5-encrypted (MD5-encrypted) secret.
 - 8: Specifies a Password-Based Key Derivation Function 2 (PBKDF2) with SHA-256 hashed secret.
 - 9: Specifies a scrypt-hashed secret.
- `encrypted-password` Hashed password that is copied from another device configuration.

Command Default

No password is defined.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If neither the enable password command or the enable secret command is configured, and if a line password is configured for the console, the console line password serves as the enable password for all vty (Telnet and Secure Shell [SSH]) sessions.
Use the `enable secret` command to provide an additional layer of security over the `enable password` password. The `enable secret` command provides better security by storing the password using a nonreversible cryptographic function. The additional layer of security encryption is useful in environments where the password is sent to the network or is stored on a TFTP server.

Typically, you enter an encryption type only when you paste an encrypted password that you copied from a device configuration file, into this command.

Caution

If you specify an encryption type and then enter a cleartext password, you will not be able to reenter enable mode. You cannot recover a lost password that has been encrypted earlier.

If you use the same password for the `enable password` and `enable secret` commands, you receive an error message warning that this practice is not recommended, but the password will be accepted. By using the same password, however, you undermine the additional security the `enable secret` command provides.

Note

After you set a password using the `enable secret` command, a password set using the `enable password` command works only if the `enable secret` is disabled. Additionally, you cannot recover a lost password that has been encrypted by any method.

If the `service password-encryption` command is set, the encrypted form of the password you create is displayed when the `more nvram:startup-config` command is run.

You can enable or disable password encryption with the `service password-encryption` command.

An enable password is defined as follows:

- Must contain a combination of numerals from 1 to 25, and uppercase and lowercase alphanumeric characters.
- Can have leading spaces, but they are ignored. However, intermediate and trailing spaces are recognized.
- Can contain the question mark (?) character if you precede the question mark with the key combination Ctrl-v when you create the password; for example, to create the password `abc?123`, do the following:
 1. Enter `abc`.
 2. Press `Ctrl-v`.
 3. Enter `?123`.

Note

When the system prompts you to enter the `enable password` command, you need not precede the question mark with Ctrl-v; you can enter `abc?123` at the password prompt.

Examples

The following example shows how to specify a password with the `enable secret` command:

```
Device> enable
Device# configure terminal
```
Device(config)# **enable secret** password

After specifying a password with the **enable secret** command, users must enter this password to gain access. Otherwise, passwords set using the **enable password** command will no longer work.

Password: **password**

The following example shows how to enable the encrypted password 1FaD0$Xyti5Rkls3LoyxzS8, which has been copied from a device configuration file, for privilege level 2, using the encryption type 4:

Device> **enable**
Device# **configure terminal**
Device(config)# **enable password** level 2 4 1FaD0$Xyti5Rkls3LoyxzS8

The following example shows the warning message that is displayed when a user enters the **enable secret 4 encrypted-password** command:

Device> **enable**
Device# **configure terminal**
Device(config)# **enable secret** 4 tnhtc92DxCBhelxjYk9t8LJtPV36S2i4ntXrpb4RFmfqY

WARNING: Command has been added to the configuration but Type 4 passwords have been deprecated.
Migrate to a supported password type

Device(config)# **end**
Device# **show running-config** | inc secret

enable secret 4 tnhtc92DxCBhelxjYk9t8LJtPV36S2i4ntXrpb4RFmfqY

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable password</td>
<td>Sets a local password to control access to various privilege levels.</td>
<td></td>
</tr>
<tr>
<td>more nvram:startup-config</td>
<td>Displays the startup configuration file contained in NVRAM or specified by the CONFIG_FILE environment variable.</td>
<td></td>
</tr>
<tr>
<td>service password-encryption</td>
<td>Encrypt passwords.</td>
<td></td>
</tr>
</tbody>
</table>
epm access-control open

To configure an open directive for ports that do not have an access control list (ACL) configured, use the `epm access-control open` command in global configuration mode. To disable the open directive, use the `no` form of this command.

`epm access-control open`
`no epm access-control open`

Syntax Description
This command has no arguments or keywords.

Command Default
The default directive applies.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use this command to configure an open directive that allows hosts without an authorization policy to access ports configured with a static ACL. If you do not configure this command, the port applies the policies of the configured ACL to the traffic. If no static ACL is configured on a port, both the default and open directives allow access to the port.

You can verify your settings by entering the `show running-config` command.

This example shows how to configure an open directive.

```
Device> enable
Device# configure terminal
Device(config)# epm access-control open
Device(config)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the contents of the current running configuration file.</td>
</tr>
</tbody>
</table>
ip access-list role-based

To create a role-based (security group) access control list (RBACL) and enter role-based ACL configuration mode, use the `ip access-list role-based` command in global configuration mode. To remove the configuration, use the `no` form of this command.

```
ip access-list role-based access-list-name
no ip access-list role-based access-list-name
```

Syntax Description

- **access-list-name**: Name of the security group access control list (SGACL).

Command Default

Role-based ACLs are not configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For SGACL logging, you must configure the `permit ip log` command. Also, this command must be configured in Cisco Identity Services Engine (ISE) to enable logging for dynamic SGACLs.

The following example shows how to define an SGACL that can be applied to IPv4 traffic and enter role-based access list configuration mode:

```
Device> enable
Device# configure terminal
Device(config)# ip access-list role-based rbacl1
Device(config-rb-acl)# permit ip log
Device(config-rb-acl)# end
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>permit ip log</td>
<td>Permits logging that matches the configured entry.</td>
</tr>
<tr>
<td>show ip access-list</td>
<td>Displays contents of all current IP access lists.</td>
</tr>
</tbody>
</table>
ip admission

To enable web authentication, use the `ip admission` command in interface configuration mode or fallback-profile configuration mode. To disable web authentication, use the `no` form of this command.

```
ip admission rule
no ip admission rule
```

Syntax Description
- `rule` IP admission rule name.

Command Default
Web authentication is disabled.

Command Modes
- Interface configuration (config-if)
- Fallback-profile configuration (config-fallback-profile)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `ip admission` command applies a web authentication rule to a switch port.

This example shows how to apply a web authentication rule to a switchport:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip admission rule1
Device(config-if)# end
```

This example shows how to apply a web authentication rule to a fallback profile for use on an IEEE 802.1x enabled switch port.

```
Device> enable
Device# configure terminal
Device(config)# fallback profile profile1
Device(config-fallback-profile)# ip admission rule1
Device(config-fallback-profile)# end
```
To enable web authentication, use the `ip admission name` command in global configuration mode. To disable web authentication, use the `no` form of this command.

```
ip admission name name {consent | proxy http} [absolute timer minutes | inactivity-time minutes | list {acl | acl-name} | service-policy type tag service-policy-name]
no ip admission name name {consent | proxy http} [absolute timer minutes | inactivity-time minutes | list {acl | acl-name} | service-policy type tag service-policy-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Name of network admission control rule.</td>
</tr>
<tr>
<td>consent</td>
<td>Associates an authentication proxy consent web page with the IP admission rule specified using the admission-name argument.</td>
</tr>
<tr>
<td>proxy http</td>
<td>Configures web authentication custom page.</td>
</tr>
<tr>
<td>absolute-timer</td>
<td>(Optional) Elapsed time, in minutes, before the external server times out.</td>
</tr>
<tr>
<td>inactivity-time</td>
<td>(Optional) Elapsed time, in minutes, before the external file server is deemed unreachable.</td>
</tr>
<tr>
<td>list</td>
<td>(Optional) Associates the named rule with an access control list (ACL).</td>
</tr>
<tr>
<td>acl</td>
<td>Applies a standard, extended list to a named admission control rule.</td>
</tr>
<tr>
<td>acl-name</td>
<td>Applies a named access list to a named admission control rule.</td>
</tr>
<tr>
<td>service-policy</td>
<td>(Optional) A control plane service policy is to be configured.</td>
</tr>
<tr>
<td>service-policy-name</td>
<td>Control plane tag service policy that is configured using the policy-map type control tag policymap command, keyword, and argument. This policy map is used to apply the actions on the host when a tag is received.</td>
</tr>
</tbody>
</table>

Command Default

Web authentication is disabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
The **ip admission name** command globally enables web authentication on a switch.

After you enable web authentication on a switch, use the **ip access-group in** and **ip admission web-rule** interface configuration commands to enable web authentication on a specific interface.

Examples

This example shows how to configure only web authentication on a switch port:

```
Device> enable
Device# configure terminal
Device(config)# ip admission name http-rule proxy http
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip access-group 101 in
Device(config-if)# ip admission rule
Device(config-if)# end
```

This example shows how to configure IEEE 802.1x authentication with web authentication as a fallback mechanism on a switch port:

```
Device> enable
Device# configure terminal
Device(config)# ip admission name rule2 proxy http
Device(config)# fallback profile profile1
Device(config)# ip access group 101 in
Device(config)# ip admission name rule2
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# dot1x port-control auto
Device(config-if)# dot1x fallback profile1
Device(config-if)# end
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x fallback</td>
<td>Configures a port to use web authentication as a fallback method for clients that do not support IEEE 802.1x authentication.</td>
</tr>
<tr>
<td>fallback profile</td>
<td>Creates a web authentication fallback profile.</td>
</tr>
<tr>
<td>ip admission</td>
<td>Enables web authentication on a port.</td>
</tr>
<tr>
<td>show authentication sessions interface</td>
<td>Displays information about the web authentication session status.</td>
</tr>
<tr>
<td>show ip admission</td>
<td>Displays information about NAC cached entries or the NAC configuration.</td>
</tr>
</tbody>
</table>
To configure the Dynamic Host Configuration Protocol (DHCP)-snooping database, use the `ip dhcp snooping database` command in global configuration mode. To disable the DHCP-snooping database, use the `no` form of this command.

```plaintext
scp: url | tftp: url | timeout seconds | usbflash0: url | write-delay seconds }
no ip dhcp snooping database [ timeout | write-delay ]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crashinfo: url</td>
<td>Specifies the database URL for storing entries using crashinfo.</td>
</tr>
<tr>
<td>flash: url</td>
<td>Specifies the database URL for storing entries using flash.</td>
</tr>
<tr>
<td>ftp: url</td>
<td>Specifies the database URL for storing entries using FTP.</td>
</tr>
<tr>
<td>http: url</td>
<td>Specifies the database URL for storing entries using HTTP.</td>
</tr>
<tr>
<td>https: url</td>
<td>Specifies the database URL for storing entries using secure HTTP (https).</td>
</tr>
<tr>
<td>rcp: url</td>
<td>Specifies the database URL for storing entries using remote copy (rcp).</td>
</tr>
<tr>
<td>scp: url</td>
<td>Specifies the database URL for storing entries using Secure Copy (SCP).</td>
</tr>
<tr>
<td>tftp: url</td>
<td>Specifies the database URL for storing entries using TFTP.</td>
</tr>
<tr>
<td>timeout seconds</td>
<td>Specifies the abort timeout interval; valid values are from 0 to 86400 seconds.</td>
</tr>
<tr>
<td>usbflash0: url</td>
<td>Specifies the database URL for storing entries using USB flash.</td>
</tr>
<tr>
<td>write-delay seconds</td>
<td>Specifies the amount of time before writing the DHCP-snooping entries to an external server after a change is seen in the local DHCP-snooping database; valid values are from 15 to 86400 seconds.</td>
</tr>
</tbody>
</table>
Command Default

The DHCP-snooping database is not configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must enable DHCP snooping on the interface before entering this command. Use the `ip dhcp snooping` command to enable DHCP snooping.

This example shows how to specify the database URL using TFTP:

```
Device> enable
Device# configure terminal
Device(config)# ip dhcp snooping database tftp://10.90.90.90/snooping-rp2
Device(config)# exit
```

This example shows how to specify the amount of time before writing DHCP snooping entries to an external server:

```
Device> enable
Device# configure terminal
Device(config)# ip dhcp snooping database write-delay 15
Device(config)# exit
```
ip dhcp snooping information option format remote-id

To configure the option-82 remote-ID suboption, use the `ip dhcp snooping information option format remote-id` command in global configuration mode on the device to configure the option-82 remote-ID suboption. To configure the default remote-ID suboption, use the `no` form of this command.

```
ip dhcp snooping information option format remote-id { hostname | string string }
no ip dhcp snooping information option format remote-id { hostname | string string }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>Specify the device hostname as the remote ID.</td>
</tr>
<tr>
<td>string string</td>
<td>Specify a remote ID, using from 1 to 63 ASCII characters (no spaces).</td>
</tr>
</tbody>
</table>

Command Default

The device MAC address is the remote ID.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must globally enable DHCP snooping by using the `ip dhcp snooping` global configuration command for any DHCP snooping configuration to take effect.

When the option-82 feature is enabled, the default remote-ID suboption is the device MAC address. This command allows you to configure either the device hostname or a string of up to 63 ASCII characters (but no spaces) to be the remote ID.

Note

If the hostname exceeds 63 characters, it will be truncated to 63 characters in the remote-ID configuration.

This example shows how to configure the option-82 remote-ID suboption:

```
Device> enable
Device# configure terminal
Device(config)# ip dhcp snooping information option format remote-id hostname
Device(config)# exit
```
ip dhcp snooping verify no-relay-agent-address

To disable the DHCP snooping feature from verifying that the relay agent address (giaddr) in a DHCP client message matches the client hardware address on an untrusted port, use the `ip dhcp snooping verify no-relay-agent-address` command in global configuration mode. To enable verification, use the `no` form of this command.

```
ip dhcp snooping verify no-relay-agent-address
no ip dhcp snooping verify no-relay-agent-address
```

Syntax Description
This command has no arguments or keywords.

Command Default
The DHCP snooping feature verifies that the relay-agent IP address (giaddr) field in DHCP client message on an untrusted port is 0.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
By default, the DHCP snooping feature verifies that the relay-agent IP address (giaddr) field in DHCP client message on an untrusted port is 0; the message is dropped if the giaddr field is not 0. Use the `ip dhcp snooping verify no-relay-agent-address` command to disable the verification. Use the `no ip dhcp snooping verify no-relay-agent-address` to reenable verification.

This example shows how to enable verification of the giaddr in a DHCP client message:

```
Device> enable
Device# configure terminal
Device(config)# no ip dhcp snooping verify no-relay-agent-address
Device(config)# exit
```
ip http access-class

To specify the access list that should be used to restrict access to the HTTP server, use the `ip http access-class` command in global configuration mode. To remove a previously configured access list association, use the `no` form of this command.

```
ip http access-class { access-list-number | ipv4 { access-list-number | access-list-name } | ipv6 access-list-name }
no ip http access-class { access-list-number | ipv4 { access-list-number | access-list-name } | ipv6 access-list-name }
```

Syntax Description

- **access-list-number**
 - Standard IP access list number in the range 0 to 99, as configured by the `access-list` global configuration command.

- **ipv4**
 - Specifies the IPv4 access list to restrict access to the secure HTTP server.

- **access-list-name**
 - Name of a standard IPv4 access list, as configured by the `ip access-list` command.

- **ipv6**
 - Specifies the IPv6 access list to restrict access to the secure HTTP server.

Command Default

No access list is applied to the HTTP server.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If this command is configured, the specified access list is assigned to the HTTP server. Before the HTTP server accepts a connection, it checks the access list. If the check fails, the HTTP server does not accept the request for a connection.

Examples

The following example shows how to define an access list as 20 and assign it to the HTTP server:

```
Device> enable
Device(config)# ip access-list standard 20
Device(config-standard-nacl)# permit 209.165.202.130 0.0.0.255
Device(config-standard-nacl)# permit 209.165.201.1 0.0.255.255
Device(config-standard-nacl)# permit 209.165.200.225 0.255.255.255
Device(config-standard-nacl)# exit
Device(config)# ip http access-class 20
Device(config-standard-nacl)# exit
```

The following example shows how to define an IPv4 named access list as and assign it to the HTTP server.

```
Device> enable
Device(config)# ip access-list standard Internet_filter
Device(config-standard-nacl)# permit 1.2.3.4
Device(config-standard-nacl)# exit
```
Device(config)# ip http access-class ipv4 Internet_filter
Device(config)# exit

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip access-list</td>
<td>Assigns an ID to an access list and enters access list configuration mode.</td>
</tr>
<tr>
<td>ip http server</td>
<td>Enables the HTTP 1.1 server, including the Cisco web browser user interface.</td>
</tr>
</tbody>
</table>
ip radius source-interface

To force RADIUS to use the IP address of a specified interface for all outgoing RADIUS packets, use the `ip radius source-interface` command in global configuration mode. To prevent RADIUS from using the IP address of a specified interface for all outgoing RADIUS packets, use the `no` form of this command.

```
ip radius source-interface interface-name [vrf vrf-name]
oip radius source-interface
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-name</code></td>
<td>Name of the interface that RADIUS uses for all of its outgoing packets.</td>
</tr>
<tr>
<td><code>vrf vrf-name</code></td>
<td>(Optional) Per virtual route forwarding (VRF) configuration.</td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to set the IP address of an interface to be used as the source address for all outgoing RADIUS packets. The IP address is used as long as the interface is in the `up` state. The RADIUS server can use one IP address entry for every network access client instead of maintaining a list of IP addresses. RADIUS uses the IP address of the interface that it is associated to, regardless of whether the interface is in the `up` or `down` state.

The `ip radius source-interface` command is especially useful in cases where the router has many interfaces and you want to ensure that all RADIUS packets from a particular router have the same IP address.

The specified interface should have a valid IP address and should be in the `up` state for a valid configuration. If the specified interface does not have a valid IP address or is in the `down` state, RADIUS selects a local IP that corresponds to the best possible route to the AAA server. To avoid this, add a valid IP address to the interface or bring the interface to the `up` state.

Use the `vrf vrf-name` keyword and argument to configure this command per VRF, which allows multiple disjoined routing or forwarding tables, where the routes of one user have no correlation with the routes of another user.

Examples

The following example shows how to configure RADIUS to use the IP address of interface s2 for all outgoing RADIUS packets:

```
 ip radius source-interface s2
```

The following example shows how to configure RADIUS to use the IP address of interface Ethernet0 for VRF definition:
ip radius source-interface Ethernet0 vrf vrf1
ip source binding

To add a static IP source binding entry, use the `ip source binding` command. Use the `no` form of this command to delete a static IP source binding entry.

```
ip source binding  mac-address  vlan  vlan-id  ip-address  interface  interface-id
no ip source binding  mac-address  vlan  vlan-id  ip-address  interface  interface-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mac-address</code></td>
<td>Binding MAC address.</td>
</tr>
<tr>
<td><code>vlan vlan-id</code></td>
<td>Specifies the Layer 2 VLAN identification; valid values are from 1 to 4094.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>Binding IP address.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>ID of the physical interface.</td>
</tr>
</tbody>
</table>

Command Default

No IP source bindings are configured.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can use this command to add a static IP source binding entry only.

The `no` format deletes the corresponding IP source binding entry. It requires the exact match of all required parameter in order for the deletion to be successful. Note that each static IP binding entry is keyed by a MAC address and a VLAN number. If the command contains the existing MAC address and VLAN number, the existing binding entry is updated with the new parameters instead of creating a separate binding entry.

This example shows how to add a static IP source binding entry:

```
Device> enable
Device# configure terminal
Device(config) ip source binding 0100.0230.0002 vlan 11 10.0.0.4 interface gigabitethernet1/0/1
Device(config)# exit
```
ip ssh source-interface

To specify the IP address of an interface as the source address for a Secure Shell (SSH) client device, use the `ip ssh source-interface` command in global configuration mode. To remove the IP address as the source address, use the `no` form of this command.

```
interface

Command Default
The address of the closest interface to the destination is used as the source address (the closest interface is the output interface through which the SSH packet is sent).

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines
By specifying this command, you can force the SSH client to use the IP address of the source interface as the source address.

Examples
In the following example, the IP address assigned to GigabitEthernet interface 1/0/1 is used as the source address for the SSH client:

```
Device> enable
Device# configure terminal
Device(config)# ip ssh source-interface GigabitEthernet 1/0/1
Device(config)# exit
```
ip verify source

To enable IP source guard on an interface, use the `ip verify source` command in interface configuration mode.
To disable IP source guard, use the `no` form of this command.

```
ip verify source [mac-check][tracking]
no ip verify source
```

<table>
<thead>
<tr>
<th>mac-check</th>
<th>(Optional) Enables IP source guard with MAC address verification.</th>
</tr>
</thead>
<tbody>
<tr>
<td>tracking</td>
<td>(Optional) Enables IP port security to learn static IP address learning on a port.</td>
</tr>
</tbody>
</table>

**Command Default**

IP source guard is disabled.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To enable IP source guard with source IP address filtering, use the `ip verify source` interface configuration command.

To enable IP source guard with source IP address filtering and MAC address verification, use the `ip verify source mac-check` interface configuration command.

**Examples**

This example shows how to enable IP source guard with source IP address filtering on an interface:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip verify source
Device(config-if)# end
```

This example shows how to enable IP source guard with MAC address verification:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# ip verify source mac-check
Device(config-if)# end
```

You can verify your settings by entering the `show ip verify source` command.
ipv6 access-list

To define an IPv6 access list and to place the device in IPv6 access list configuration mode, use the `ipv6 access-list` command in global configuration mode. To remove the access list, use the `no` form of this command.

```
ipv6 access-list access-list-name | match-local-traffic | log-update threshold threshold-in-msgs | role-based list-name
no ipv6 access-list access-list-name | client permit-control-packets | log-update threshold | role-based list-name
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 access-list access-list-name</code></td>
<td>Creates a named IPv6 ACL (up to 64 characters in length) and enters IPv6 ACL configuration mode.</td>
</tr>
<tr>
<td><code>access-list-name</code></td>
<td>Name of the IPv6 access list. Names cannot contain a space or quotation mark, or begin with a numeric.</td>
</tr>
<tr>
<td><code>match-local-traffic</code></td>
<td>Enables matching for locally-generated traffic.</td>
</tr>
<tr>
<td><code>log-update threshold threshold-in-msgs</code></td>
<td>Determines how syslog messages are generated after the initial packet match.</td>
</tr>
<tr>
<td><code>threshold-in-msgs</code></td>
<td>Number of packets generated.</td>
</tr>
<tr>
<td><code>role-based list-name</code></td>
<td>Creates a role-based IPv6 ACL.</td>
</tr>
</tbody>
</table>

### Command Default

No IPv6 access list is defined.

### Command Modes

Global configuration (config)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

IPv6 ACLs are defined by using the `ipv6 access-list` command in global configuration mode and their permit and deny conditions are set by using the `deny` and `permit` commands in IPv6 access list configuration mode. Configuring the `ipv6 access-list` command places the device in IPv6 access list configuration mode. From IPv6 access list configuration mode, permit and deny conditions can be set for the defined IPv6 ACL.

### Note

IPv6 ACLs are defined by a unique name (IPv6 does not support numbered ACLs). An IPv4 ACL and an IPv6 ACL cannot share the same name.

IPv6 is automatically configured as the protocol type in `permit any any` and `deny any any` statements that are translated from global configuration mode to IPv6 access list configuration mode.

Every IPv6 ACL has implicit `permit icmp any any nd-na`, `permit icmp any any nd-ns`, and `deny ipv6 any any` statements as its last match conditions. (The former two match conditions allow for ICMPv6 neighbor discovery.) An IPv6 ACL must contain at least one entry for the implicit `deny ipv6 any any` statement to take
effect. The IPv6 neighbor discovery process makes use of the IPv6 network layer service; therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, makes use of a separate data link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Use the `ipv6 traffic-filter` interface configuration command with the `access-list-name` argument to apply an IPv6 ACL to an IPv6 interface. Use the `ipv6 access-class` line configuration command with the `access-list-name` argument to apply an IPv6 ACL to incoming and outgoing IPv6 virtual terminal connections to and from the device.

An IPv6 ACL applied to an interface with the `ipv6 traffic-filter` command filters traffic that is forwarded, not originated, by the device.

### Examples

The example configures the IPv6 ACL list named list1 and places the device in IPv6 access list configuration mode.

```
Device> enable
Device# configure terminal
Device(config)# ipv6 access-list list1
Device(config-ipv6-acl)# end
```

The following example configures the IPv6 ACL named list2 and applies the ACL to outbound traffic on Ethernet interface 0. Specifically, the first ACL entry keeps all packets from the network FEC0:0:0:2::/64 (packets that have the site-local prefix FEC0:0:0:2 as the first 64 bits of their source IPv6 address) from exiting from GigabitEthernet interface 0/1/2. The second entry in the ACL permits all other traffic to exit out of Ethernet interface 0. The second entry is necessary because an implicit deny all condition is at the end of each IPv6 ACL.

```
Device> enable
Device# configure terminal
Device(config)# ipv6 access-list list2 deny FEC0:0:0:2::/64 any
Device(config)# ipv6 access-list list2 permit any any
Device(config)# interface gigabitethernet 0/1/2
Device(config-if)# ipv6 traffic-filter list2 out
Device(config-if)# end
```
**ipv6 snooping policy**

To configure an IPv6 snooping policy and enter IPv6 snooping configuration mode, use the `ipv6 snooping policy` command in global configuration mode. To delete an IPv6 snooping policy, use the `no` form of this command.

```
ipv6 snooping policy snooping-policy
no ipv6 snooping policy snooping-policy
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snooping-policy</code></td>
<td>User-defined name of the snooping policy. The policy name can be a symbolic string (such as Engineering) or an integer (such as 0).</td>
</tr>
</tbody>
</table>

| Command Default | An IPv6 snooping policy is not configured. |
| Command Modes | Global configuration (config) |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `ipv6 snooping policy` command to create an IPv6 snooping policy. When the `ipv6 snooping policy` command is enabled, the configuration mode changes to IPv6 snooping configuration mode. In this mode, the administrator can configure the following IPv6 first-hop security commands:

- The `device-role` command specifies the role of the device attached to the port.
- The `limit address-count maximum` command limits the number of IPv6 addresses allowed to be used on the port.
- The `protocol` command specifies that addresses should be gleaned with Dynamic Host Configuration Protocol (DHCP) or Neighbor Discovery Protocol (NDP).
- The `security-level` command specifies the level of security enforced.
- The `tracking` command overrides the default tracking policy on a port.
- The `trusted-port` command configures a port to become a trusted port; that is, limited or no verification is performed when messages are received.

This example shows how to configure an IPv6 snooping policy:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping)# end
```
key chain macsec

To configure a MACsec key chain name on a device interface to fetch a Pre Shared Key (PSK), use the `key chain macsec` command in global configuration mode. To disable it, use the `no` form of this command.

```
key chain name macsec
no key chain name [macsec]
```

**Syntax Description**

- `name` Name of a key chain to be used to get keys.

**Command Default**

Key chain macsec is disabled.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to configure MACsec key chain to fetch a 128-bit Pre Shared Key (PSK):

```
Device> enable
Device# configure terminal
Device(config)# key chain kc1 macsec
Device(config-keychain-macsec)# key 1000
Device(config-keychain-macsec)# cryptographic-algorithm aes-128-cmac
Device(config-keychain-macsec-key)# key-string fb63e0269e2768c49bab8ee9a5c2258f
Device(config-keychain-macsec-key)# end
Device#
```

This example shows how to configure MACsec key chain to fetch a 256-bit Pre Shared Key (PSK):

```
Device> enable
Device# configure terminal
Device(config)# key chain kc1 macsec
Device(config-keychain-macsec)# key 2000
Device(config-keychain-macsec)# cryptographic-algorithm aes-256-cmac
Device(config-keychain-macsec-key)# key-string c865632acb269022447c417504a1bf5db1c296449b52627ba01f2ba2574c2878
Device(config-keychain-macsec-key)# end
Device#
```
**key config-key password-encrypt**

To store a type 6 encryption key in private NVRAM, use the **key config-key password-encrypt** command in global configuration mode. To disable the encryption, use the **no** form of this command.

```
key config-key password-encrypt [text]
no key config-key password-encrypt [text]
```

**Syntax Description**

- `text` *(Optional)* Password or master key.
- **Note** We recommended that you do not use the `text` argument, and instead use interactive mode (using the Enter key after you enter the `key config-key password-encrypt` command) so that the preshared key is not printed anywhere and, therefore, cannot be seen.

**Command Default**

Type 6 password encryption key is not stored in private NVRAM.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can securely store plain text passwords in type 6 format in NVRAM using a CLI. Type 6 passwords are encrypted. Although the encrypted passwords can be seen or retrieved, it is difficult to decrypt them to find out the actual password. Use the **key config-key password-encrypt** command along with the **password encryption aes** command to configure and enable the password (symmetric cipher Advanced Encryption Standard [AES] is used to encrypt the keys). The password (key) configured using the **key config-key password-encrypt** command is the master encryption key that is used to encrypt all other keys in the device.

If you configure the **password encryption aes** command without configuring the **key config-key password-encrypt** command, the following message is displayed at startup or during a nonvolatile generation (NVGEN) process, such as when the **show running-config** or **copy running-config startup-config** commands are configured:

"Can not encrypt password. Please configure a configuration-key with ‘key config-key’"

**Changing a Password**

If the password (master key) is changed or reencrypted, use the **key config-key password-encrypt** command for the list registry to pass the old key and the new key to the application modules that are using type 6 encryption.

**Deleting a Password**

If the master key that was configured using the **key config-key password-encrypt** command is deleted from the system, a warning is displayed (and a confirm prompt is issued) stating that all type 6 passwords will become useless. As a security measure, after the passwords are encrypted, they will never be decrypted in the Cisco IOS software. However, passwords can be re-encrypted, as explained in the previous paragraph.
If the password that is configured using the `key config-key password-encrypt` command is lost, it cannot be recovered. We, therefore, recommend that you store the password in a safe location.

**Caution**

Unconfiguring Password Encryption

If you unconfigure password encryption using the `no password encryption aes` command, all the existing type 6 passwords are left unchanged, and as long as the password (master key) that was configured using the `key config-key password-encrypt` command exists, the type 6 passwords will be decrypted as and when required by the application.

Storing Passwords

Because no one can read the password (configured using the `key config-key password-encrypt` command), there is no way that the password can be retrieved from the device. Existing management stations cannot know what it is unless the stations are enhanced to include this key somewhere, in which case, the password needs to be stored securely within the management system. If configurations are stored using TFTP, the configurations are not standalone, meaning that they cannot be loaded onto a device. Before or after the configurations are loaded onto a device, the password must be manually added (using the `key config-key password-encrypt` command). The password can be manually added to the stored configuration. However we do not recommend this because adding the password manually allows anyone to decrypt all the passwords in that configuration.

Configuring New or Unknown Passwords

If you enter or cut and paste ciphertext that does not match the master key, or if there is no master key, the ciphertext is accepted or saved, but an alert message is displayed:

"ciphertext>[for username bar> is incompatible with the configured master key."

If a new master key is configured, all plain keys are encrypted and made type 6 keys. The existing type 6 keys are not encrypted. The existing type 6 keys are left as is.

If the old master key is lost or is unknown, you have the option of deleting the master key using the `no key config-key password-encrypt` command. Deleting the master key causes the existing encrypted passwords to remain encrypted in the device configuration. The passwords cannot be decrypted.

**Examples**

The following example shows how a type 6 encryption key is stored in NVRAM:

```
Device> enable
Device# configure terminal
Device (config)# key config-key password-encrypt
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>password encryption aes</td>
<td>Enables a type 6 encrypted preshared key.</td>
</tr>
</tbody>
</table>
limit address-count

To limit the number of IPv6 addresses allowed to be used on the port, use the `limit address-count` command in Neighbor Discovery Protocol (NDP) inspection policy configuration mode or IPv6 snooping configuration mode. To return to the default, use the `no` form of this command.

```
limit address-count maximum
no limit address-count
```

**Syntax Description**

- `maximum` The number of addresses allowed on the port. The range is from 1 to 10000.

**Command Default**

The default is no limit.

**Command Modes**

- IPv6 snooping configuration (config-ipv6-snooping)
- ND inspection policy configuration (config-nd-inspection)

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
```

**Usage Guidelines**

The `limit address-count` command limits the number of IPv6 addresses allowed to be used on the port on which the policy is applied. Limiting the number of IPv6 addresses on a port helps limit the binding table size. The range is from 1 to 10000.

This example shows how to define an NDP policy name as policy1, and limit the number of IPv6 addresses allowed on the port to 25:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 nd inspection policy policy1
Device(config-nd-inspection)# limit address-count 25
Device(config-nd-inspection)# end
```

This example shows how to define an IPv6 snooping policy name as policy1, and limit the number of IPv6 addresses allowed on the port to 25:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping)# limit address-count 25
Device(config-ipv6-snooping)# end
```
mab logging verbose

To filter detailed information from MAC authentication bypass (MAB) system messages, use the `mab logging verbose` command in global configuration mode. Use the no form of this command to disable logging MAB system messages.

```
mab logging verbose
no mab logging verbose
```

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
Detailed logging of system messages is not enabled.

**Command Modes**
Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
This command filters details, such as anticipated success, from MAC authentication bypass (MAB) system messages. Failure messages are not filtered.

To filter verbose MAB system messages:

```
Device> enable
Device# configure terminal
Device(config)# mab logging verbose
Device(config)# exit
```

You can verify your settings by entering the `show running-config` command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>authentication logging verbose</code></td>
<td>Filters details from authentication system messages.</td>
</tr>
<tr>
<td><code>dot1x logging verbose</code></td>
<td>Filters details from 802.1x system messages.</td>
</tr>
<tr>
<td><code>mab logging verbose</code></td>
<td>Filters details from MAC authentication bypass (MAB) system messages.</td>
</tr>
</tbody>
</table>
mab request format attribute 32

To enable VLAN ID-based MAC authentication on a device, use the `mab request format attribute 32 vlan access-vlan` command in global configuration mode. To return to the default setting, use the `no` form of this command.

```
mab request format attribute 32 vlan access-vlan
no mab request format attribute 32 vlan access-vlan
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

VLAN-ID based MAC authentication is disabled.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to allow a RADIUS server to authenticate a new user based on the host MAC address and VLAN. Use this feature on networks with the Microsoft IAS RADIUS server. The Cisco ACS ignores this command.

This example shows how to enable VLAN-ID based MAC authentication on a device:

```
Device> enable
Device# configure terminal
Device(config)# mab request format attribute 32 vlan access-vlan
Device(config)# exit
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication event</td>
<td>Sets the action for specific authentication events.</td>
</tr>
<tr>
<td>authentication fallback</td>
<td>Configures a port to use web authentication as a fallback method for clients that do not support IEEE 802.1x authentication.</td>
</tr>
<tr>
<td>authentication host-mode</td>
<td>Sets the authorization manager mode on a port.</td>
</tr>
<tr>
<td>authentication open</td>
<td>Enables or disables open access on a port.</td>
</tr>
<tr>
<td>authentication order</td>
<td>Sets the order of authentication methods used on a port.</td>
</tr>
<tr>
<td>authentication periodic</td>
<td>Enables or disables reauthentication on a port.</td>
</tr>
<tr>
<td>authentication port-control</td>
<td>Enables manual control of the port authorization state.</td>
</tr>
<tr>
<td>authentication priority</td>
<td>Adds an authentication method to the port-priority list.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>authentication timer</td>
<td>Configures the timeout and reauthentication parameters for an 802.1x-enabled port.</td>
</tr>
<tr>
<td>authentication violation</td>
<td>Configures the violation modes that occur when a new device connects to a port or when a new device connects to a port with the maximum number of devices already connected to that port.</td>
</tr>
<tr>
<td>mab</td>
<td>Enables MAC-based authentication on a port.</td>
</tr>
<tr>
<td>mab eap</td>
<td>Configures a port to use the Extensible Authentication Protocol (EAP).</td>
</tr>
<tr>
<td>show authentication</td>
<td>Displays information about authentication manager events on the device.</td>
</tr>
</tbody>
</table>
macsec network-link

To enable MACsec Key Agreement protocol (MKA) configuration on the uplink interfaces, use the `macsec network-link` command in interface configuration mode. To disable it, use the `no` form of this command.

```
macsec network-link

no macsec network-link
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>macsec network-link</code></td>
<td>Enables MKA MACsec configuration on device interfaces using EAP-TLS authentication protocol.</td>
</tr>
</tbody>
</table>

**Command Default**

MACsec network-link is disabled.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to configure MACsec MKA on an interface using the EAP-TLS authentication protocol:

```
Device> enable
Device# configure terminal
Device(config)# interface GigabitEthernet 1/0/20
Device(config-if)# macsec network-link
Device(config-if)# end
Device#
```
match (access-map configuration)

To set the VLAN map to match packets against one or more access lists, use the `match` command in access-map configuration mode. To remove the match parameters, use the `no` form of this command.

```
match {ip address {namenumber} [{namenumber}]... | ipv6 address {namenumber} [{namenumber}]... | mac address {name} [{name}]...}
no match {ip address {namenumber} [{namenumber}]... | ipv6 address {namenumber} [{namenumber}]... | mac address {name} [{name}]...}
```

**Syntax Description**
- `ip address` Sets the access map to match packets against an IP address access list.
- `ipv6 address` Sets the access map to match packets against an IPv6 address access list.
- `mac address` Sets the access map to match packets against a MAC address access list.
- `name` Name of the access list to match packets against.
- `number` Number of the access list to match packets against. This option is not valid for MAC access lists.

**Command Default**
The default action is to have no match parameters applied to a VLAN map.

**Command Modes**
Access-map configuration (config-access-map)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
You enter access-map configuration mode by using the `vlan access-map` global configuration command.

You must enter one access list name or number; others are optional. You can match packets against one or more access lists. Matching any of the lists counts as a match of the entry.

In access-map configuration mode, use the `match` command to define the match conditions for a VLAN map applied to a VLAN. Use the `action` command to set the action that occurs when the packet matches the conditions.

Packets are matched only against access lists of the same protocol type; IP packets are matched against IP access lists, IPv6 packets are matched against IPv6 access lists, and all other packets are matched against MAC access lists.

IP, IPv6, and MAC addresses can be specified for the same map entry.

This example shows how to define and apply a VLAN access map vmap4 to VLANs 5 and 6 that will cause the interface to drop an IP packet if the packet matches the conditions defined in access list al2:

```
Device> enable
Device(config)# vlan access-map vmap4
Device(config-access-map)# match ip address al2
Device(config-access-map)# action drop
```
Device(config-access-map)# exit
Device(config)# vlan filter vmap4 vlan-list 5-6
Device(config)# exit

You can verify your settings by entering the `show vlan access-map` command.
**mka pre-shared-key**

To configure MACsec Key Agreement (MKA) MACsec on a device interface using a Pre Shared Key (PSK), use the **mka pre-shared-key key-chain** `key-chain-name` command in interface configuration mode. To disable it, use the **no** form of this command.

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>mka pre-shared-key key-chain</strong> <code>key-chain-name</code></td>
<td>Enables MACsec MKA configuration on device interfaces using a PSK.</td>
</tr>
</tbody>
</table>

**Command Default**

MKA pre-shared-key is disabled.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to configure MKA MACsec on an interface using a PSK:

```
Device> enable
Device# configure terminal
Device(config)# interface Gigabitethernet 1/0/20
Device(config-if)# mka pre-shared-key key-chain kcol
Device(config-if)# end
Device#
```
mka suppress syslogs sak-rekey

To suppress MACsec Key Agreement (MKA) secure association key (SAK) rekey messages during logging, use the **mka suppress syslogs sak-rekey** command in global configuration mode. To enable MKA SAK rekey message logging, use the **no** form of this command.

**mka suppress syslogs sak-rekey**  
**no mka suppress syslogs sak-rekey**

This command has no arguments or keywords.

---

**Command Default**  
All MKA SAK syslog messages are displayed on the console.

**Command Modes**  
Global configuration (config)

**Command History**  

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**  
MKASAKsyslogs are continuously generated at every rekey interval, and when MKA is configured on multiple interfaces, the amount of syslog generated is too high. Use this command to suppress the MKASAKsyslogs.

**Example**

The following example shows how to suppress MKA SAK syslog logging:

```
Device> enable
Device# configure terminal
Device(config)# mka suppress syslogs sak-rekey
```
password encryption aes

To enable a type 6 encrypted preshared key, use the password encryption aes command in global configuration mode. To disable password encryption, use the no form of this command.

password encryption aes
no password encryption aes

Syntax Description
This command has no arguments or keywords.

Command Default
Preshared keys are not encrypted.

Command Modes
Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You can securely store plain text passwords in type 6 format in NVRAM using a CLI. Type 6 passwords are encrypted. Although the encrypted passwords can be seen or retrieved, it is difficult to decrypt them to find out the actual password. Use the key config-key password-encrypt command along with the password encryption aes command to configure and enable the password (symmetric cipher Advanced Encryption Standard [AES] is used to encrypt the keys). The password (key) that is configured using the key config-key password-encrypt command is the master encryption key that is used to encrypt all other keys in the router.

If you configure the password encryption aes command without configuring the key config-key password-encrypt command, the following message is displayed at startup or during a nonvolatile generation (NVGEN) process, such as when the show running-config or copy running-config startup-config commands are run:

“Can not encrypt password. Please configure a configuration-key with ‘key config-key’”

Changing a Password
If the password (master key) is changed or re-encrypted using the key config-key password-encrypt command, the list registry passes the old key and the new key to the application modules that are using type 6 encryption.

Deleting a Password
If the master key that was configured using the key config-key password-encrypt command is deleted from the system, a warning is displayed (and a confirm prompt is issued) that states that all type 6 passwords will no longer be applicable. As a security measure, after the passwords are encrypted, they will never be decrypted in the Cisco IOS software. However, passwords can be re-encrypted as explained in the previous paragraph.

Caution
If a password that is configured using the key config-key password-encrypt command is lost, it cannot be recovered. Therefore, the password should be stored in a safe location.

Unconfiguring Password Encryption
If you unconfigure password encryption using the `no password encryption aes` command, all the existing type 6 passwords are left unchanged. As long as the password (master key) that was configured using the `key config-key password-encrypt` command exists, the type 6 passwords are decrypted as and when required by the application.

**Storing Passwords**

Because no one can read the password (configured using the `key config-key password-encrypt` command), there is no way that the password can be retrieved from the router. Existing management stations cannot know what it is unless the stations are enhanced to include this key somewhere. Therefore, the password needs to be stored securely within the management system. If configurations are stored using TFTP, the configurations are not standalone, meaning that they cannot be loaded onto a router. Before or after the configurations are loaded onto a router, the password must be manually added (using the `key config-key password-encrypt` command). The password can be manually added to the stored configuration, but we do not recommend this because adding the password manually allows anyone to decrypt all the passwords in that configuration.

**Configuring New or Unknown Passwords**

If you enter or cut and paste ciphertext that does not match the master key, or if there is no master key, the ciphertext is accepted or saved, but the following alert message is displayed:

```
"ciphertext>[for username bar>] is incompatible with the configured master key."
```

If a new master key is configured, all the plain keys are encrypted and converted to type 6 keys. The existing type 6 keys are not encrypted. The existing type 6 keys are left as is.

If the old master key is lost or unknown, you have the option of deleting the master key using the `no key config-key password-encrypt` command. This causes the existing encrypted passwords to remain encrypted in the router configuration. The passwords will not be decrypted.

**Examples**

The following example shows how a type 6 encrypted preshared key is enabled:

```
Device> enable
Device# configure terminal
Device (config)# password encryption aes
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>key config-key password-encrypt</code></td>
<td>Stores a type 6 encryption key in private NVRAM.</td>
</tr>
</tbody>
</table>
permit (MAC access-list configuration)

To allow non-IP traffic to be forwarded if the conditions are matched, use the **permit** command in MAC access-list configuration mode. To remove a permit condition from the extended MAC access list, use the **no** form of this command.

```
permit {any | host src-MAC-addr | src-MAC-addr mask} {any | host dst-MAC-addr | dst-MAC-addr mask} {type mask | aarp | amber | appletalk | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lsvc-sca | lsap lsap mask | mop-console | mop-dump | msdos | mumps | netbios | vides-echo | vides-ip | xns-idp} [cos cos]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>any</strong></td>
<td>Denies any source or destination MAC address.</td>
</tr>
<tr>
<td>**host src-MAC-addr</td>
<td>src-MAC-addr mask**</td>
</tr>
<tr>
<td>**host dst-MAC-addr</td>
<td>dst-MAC-addr mask**</td>
</tr>
<tr>
<td><strong>type mask</strong></td>
<td>(Optional) Specifies the EtherType number of a packet with Ethernet II or SNAP encapsulation to identify the protocol of the packet.</td>
</tr>
<tr>
<td>- <strong>type</strong></td>
<td>is 0 to 65535, specified in hexadecimal.</td>
</tr>
<tr>
<td>- <strong>mask</strong></td>
<td>is a mask of don’t care bits applied to the EtherType before testing for a match.</td>
</tr>
<tr>
<td><strong>aarp</strong></td>
<td>(Optional) Specifies EtherType AppleTalk Address Resolution Protocol that maps a data-link address to a network address.</td>
</tr>
<tr>
<td><strong>amber</strong></td>
<td>(Optional) Specifies EtherType DEC-Amber.</td>
</tr>
<tr>
<td><strong>appletalk</strong></td>
<td>(Optional) Specifies EtherType AppleTalk/EtherTalk.</td>
</tr>
<tr>
<td><strong>dec-spanning</strong></td>
<td>(Optional) Specifies EtherType Digital Equipment Corporation (DEC) spanning tree.</td>
</tr>
<tr>
<td><strong>decnet-iv</strong></td>
<td>(Optional) Specifies EtherType DECnet Phase IV protocol.</td>
</tr>
<tr>
<td><strong>diagnostic</strong></td>
<td>(Optional) Specifies EtherType DEC-Diagnostic.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>dsd</td>
<td>Specifies EtherType DEC-DSM.</td>
</tr>
<tr>
<td>etype-6000</td>
<td>Specifies EtherType 0x6000.</td>
</tr>
<tr>
<td>etype-8042</td>
<td>Specifies EtherType 0x8042.</td>
</tr>
<tr>
<td>lat</td>
<td>Specifies EtherType DEC-LAT.</td>
</tr>
<tr>
<td>lavc-sca</td>
<td>Specifies EtherType DEC-LAVC-SCA.</td>
</tr>
<tr>
<td>lsap lsap-number mask</td>
<td>Specifies the LSAP number (0 to 65535) of a packet with 802.2 encapsulation to identify the protocol of the packet. The mask is a mask of don’t care bits applied to the LSAP number before testing for a match.</td>
</tr>
<tr>
<td>mop-console</td>
<td>Specifies EtherType DEC-MOP Remote Console.</td>
</tr>
<tr>
<td>mop-dump</td>
<td>Specifies EtherType DEC-MOP Dump.</td>
</tr>
<tr>
<td>msdos</td>
<td>Specifies EtherType DEC-MSDOS.</td>
</tr>
<tr>
<td>mumps</td>
<td>Specifies EtherType DEC-MUMPS.</td>
</tr>
<tr>
<td>netbios</td>
<td>Specifies EtherType DEC- Network Basic Input/Output System (NetBIOS).</td>
</tr>
<tr>
<td>vines-echo</td>
<td>Specifies EtherType Virtual Integrated Network Service (VINES) Echo from Banyan Systems.</td>
</tr>
<tr>
<td>vines-ip</td>
<td>Specifies EtherType VINES IP.</td>
</tr>
<tr>
<td>xns-idp</td>
<td>Specifies EtherType Xerox Network Systems (XNS) protocol suite.</td>
</tr>
<tr>
<td>cos cos</td>
<td>Specifies an arbitrary class of service (CoS) number from 0 to 7 to set priority. Filtering on CoS can be performed only in hardware. A warning message appears if the cos option is configured.</td>
</tr>
</tbody>
</table>

### Command Default

This command has no defaults. However, the default action for a MAC-named ACL is to deny.

### Command Modes

MAC-access list configuration

### Command History

- **Release**
  - Cisco IOS XE Fuji 16.9.2

- **Modification**
  - This command was introduced.

### Usage Guidelines

Though visible in the command-line help strings, **appletalk** is not supported as a matching condition.
You enter MAC access-list configuration mode by using the `mac access-list extended` global configuration command.

If you use the `host` keyword, you cannot enter an address mask; if you do not use the `any` or `host` keywords, you must enter an address mask.

After an access control entry (ACE) is added to an access control list, an implied `deny-any-any` condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

To filter IPX traffic, you use the `type mask` or `lsap lsap mask` keywords, depending on the type of IPX encapsulation being used. Filter criteria for IPX encapsulation types as specified in Novell terminology and Cisco IOS XE terminology are listed in the following table.

**Table 132: IPX Filtering Criteria**

<table>
<thead>
<tr>
<th>IPX Encapsulation Type</th>
<th>Cisco IOS Name</th>
<th>Novell Name</th>
<th>Filter Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>arpa</td>
<td>Ethernet II</td>
<td>EtherType 0x8137</td>
</tr>
<tr>
<td></td>
<td>snap</td>
<td>Ethernet-snap</td>
<td>EtherType 0x8137</td>
</tr>
<tr>
<td></td>
<td>sap</td>
<td>Ethernet 802.2</td>
<td>LSAP 0xE0E0</td>
</tr>
<tr>
<td></td>
<td>novell-ether</td>
<td>Ethernet 802.3</td>
<td>LSAP 0xFFFF</td>
</tr>
</tbody>
</table>

This example shows how to define the MAC-named extended access list to allow NetBIOS traffic from any source to MAC address 00c0.00a0.03fa. Traffic matching this list is allowed.

```
Device> enable
Device# configure terminal
Device(config)# mac access-list extended
Device(config-ext-macl)# permit any host 00c0.00a0.03fa netbios
Device(config-ext-macl)# end
```

This example shows how to remove the permit condition from the MAC-named extended access list:

```
Device> enable
Device# configure terminal
Device(config)# mac access-list extended
Device(config-ext-macl)# no permit any 00c0.00a0.03fa 0000.0000.0000 netbios
Device(config-ext-macl)# end
```

This example permits all packets with EtherType 0x4321:

```
Device> enable
Device# configure terminal
Device(config)# mac access-list extended
Device(config-ext-macl)# permit any any 0x4321 0
Device(config-ext-macl)# end
```

You can verify your settings by entering the `show access-lists` command.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deny</td>
<td>Denies from the MAC access-list configuration. Denies non-IP traffic to be forwarded if conditions are matched.</td>
</tr>
<tr>
<td>mac access-list extended</td>
<td>Creates an access list based on MAC addresses for non-IP traffic.</td>
</tr>
<tr>
<td>show access-lists</td>
<td>Displays access control lists configured on a device.</td>
</tr>
</tbody>
</table>
protocol (IPv6 snooping)

To specify that addresses should be gleaned with Dynamic Host Configuration Protocol (DHCP) or Neighbor Discovery Protocol (NDP), or to associate the protocol with an IPv6 prefix list, use the `protocol` command in IPv6 snooping configuration mode. To disable address gleaning with DHCP or NDP, use the `no` form of the command.

```
protocol { dhcp | ndp }
no protocol { dhcp | ndp }
```

**Syntax Description**

- **dhcp**: Specifies that addresses should be gleaned in Dynamic Host Configuration Protocol (DHCP) packets.
- **ndp**: Specifies that addresses should be gleaned in Neighbor Discovery Protocol (NDP) packets.

**Command Default**

Snooping and recovery are attempted using both DHCP and NDP.

**Command Modes**

IPv6 snooping configuration mode (config-ipv6-snooping)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If an address does not match the prefix list associated with DHCP or NDP, then control packets will be dropped and recovery of the binding table entry will not be attempted with that protocol.

- Using the `no protocol { dhcp | ndp }` command indicates that a protocol will not be used for snooping or gleaning.
- If the `no protocol dhcp` command is used, DHCP can still be used for binding table recovery.
- Data glean can recover with DHCP and NDP, though destination guard will only recovery through DHCP.

This example shows how to define an IPv6 snooping policy name as policy1, and configure the port to use DHCP to glean addresses:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping)# protocol dhcp
Device(config-ipv6-snooping)# end
```
radius server

To configure the RADIUS server parameters, including the RADIUS accounting and authentication, use the **radius server** command in global configuration mode. Use the **no** form of this command to return to the default settings.

```
radius server name
address {ipv4 | ipv6} ip{address | hostname} auth-port udp-port acct-port udp-port
key string
automate tester name | retransmit value | timeout seconds
no radius server name
```

### Syntax Description

- **address {ipv4 | ipv6}**
  - Specifies the IP address of the RADIUS server.

- **auth-port udp-port**
  - (Optional) Specifies the UDP port for the RADIUS authentication server. The range is from 0 to 65536.

- **acct-port udp-port**
  - (Optional) Specifies the UDP port for the RADIUS accounting server. The range is from 0 to 65536.

- **key string**
  - (Optional) Specifies the authentication and encryption key for all RADIUS communication between the device and the RADIUS daemon.
  
  **Note**
  The key is a text string that must match the encryption key used on the RADIUS server. Always configure the key as the last item in this command. Leading spaces are ignored, but spaces within and at the end of the key are used. If there are spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.

- **automate tester name**
  - (Optional) Enables automatic server testing of the RADIUS server status, and specify the username to be used.

- **retransmit value**
  - (Optional) Specifies the number of times a RADIUS request is resent when the server is not responding or responding slowly. The range is 1 to 100. This setting overrides the radius-server retransmit global configuration command setting.

- **timeout seconds**
  - (Optional) Specifies the time interval that the device waits for the RADIUS server to reply before sending a request again. The range is 1 to 1000. This setting overrides the radius-server timeout command.

### Command Default

- The UDP port for the RADIUS accounting server is 1646.
- The UDP port for the RADIUS authentication server is 1645.
- Automatic server testing is disabled.
- The timeout is 60 minutes (1 hour).
- When the automatic testing is enabled, testing occurs on the accounting and authentication UDP ports.
The authentication and encryption key (string) is not configured.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

- We recommend that you configure the UDP port for the RADIUS accounting server and the UDP port for the RADIUS authentication server to non-default values.
- You can configure the authentication and encryption key by using the `key string` command in RADIUS server configuration mode. Always configure the key as the last item in this command.
- Use the `automate-tester name` keywords to enable automatic server testing of the RADIUS server status and to specify the username to be used.

This example shows how to configure 1645 as the UDP port for the authentication server and 1646 as the UDP port for the accounting server, and configure a key string:

```
Device> enable
Device# configure terminal
Device(config)# radius server ISE
Device(config-radius-server)# address ipv4 10.1.1 auth-port 1645 acct-port 1646
Device(config-radius-server)# key cisco123
Device(config-radius-server)# end
```
security level (IPv6 snooping)

To specify the level of security enforced, use the `security-level` command in IPv6 snooping policy configuration mode.

```
security level { glean | guard | inspect }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>glean</td>
<td>Extracts addresses from the messages and installs them into the binding table without performing any verification.</td>
</tr>
<tr>
<td>guard</td>
<td>Performs both glean and inspect. Additionally, RA, and DHCP server messages are rejected unless they are received on a trusted port or another policy authorizes them.</td>
</tr>
<tr>
<td>inspect</td>
<td>Validates messages for consistency and conformance; in particular, address ownership is enforced. Invalid messages are dropped.</td>
</tr>
</tbody>
</table>

**Command Default**
The default security level is guard.

**Command Modes**
IPv6 snooping configuration (config-ipv6-snooping)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to define an IPv6 snooping policy name as policy1 and configure the security level as inspect:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping)# security-level inspect
Device(config-ipv6-snooping)# end
```
**server-private (RADIUS)**

To configure the IP address of the private RADIUS server for the group server, use the `server-private` command in RADIUS server-group configuration mode. To remove the associated private server from the authentication, authorization, and accounting (AAA) group server, use the `no` form of this command.

```
server-private ip-address [{auth-port port-number | acct-port port-number}] [non-standard] [timeout seconds] [retransmit retries] [key string]
no server-private ip-address [{auth-port port-number | acct-port port-number}] [non-standard] [timeout seconds] [retransmit retries] [key string]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the private RADIUS server host.</td>
</tr>
<tr>
<td>auth-port</td>
<td>(Optional) User Datagram Protocol (UDP) destination port for authentication requests. The default value is 1645.</td>
</tr>
<tr>
<td>port-number</td>
<td></td>
</tr>
<tr>
<td>acct-port</td>
<td>Optional) UDP destination port for accounting requests. The default value is 1646.</td>
</tr>
<tr>
<td>port-number</td>
<td></td>
</tr>
<tr>
<td>non-standard</td>
<td>(Optional) RADIUS server is using vendor-proprietary RADIUS attributes.</td>
</tr>
<tr>
<td>timeout</td>
<td>(Optional) Time interval (in seconds) that the device waits for the RADIUS server to reply before retransmitting. This setting overrides the global value of the radius-server timeout command. If no timeout value is specified, the global value is used.</td>
</tr>
<tr>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>retransmit</td>
<td>(Optional) Number of times a RADIUS request is resent to a server, if that server is not responding or responding slowly. This setting overrides the global setting of the radius-server retransmit command.</td>
</tr>
<tr>
<td>retries</td>
<td></td>
</tr>
<tr>
<td>key</td>
<td>(Optional) Authentication and encryption key used between the device and the RADIUS daemon running on the RADIUS server. This key overrides the global setting of the radius-server key command. If no key string is specified, the global value is used.</td>
</tr>
<tr>
<td>string</td>
<td>The string can be 0 (specifies that an unencrypted key follows), 6 (specifies that an advanced encryption scheme [AES] encrypted key follows), 7 (specifies that a hidden key follows), or a line specifying the unencrypted (clear-text) server key.</td>
</tr>
</tbody>
</table>

**Command Default**

If server-private parameters are not specified, global configurations will be used; if global configurations are not specified, default values will be used.

**Command Modes**

RADIUS server-group configuration (config-sg-radius)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `server-private` command to associate a particular private server with a defined server group. To prevent possible overlapping of private addresses between virtual route forwarding (VRF) instances, private
servers (servers with private addresses) can be defined within the server group and remain hidden from other groups, while the servers in the global pool (default "radius" server group) can still be referred to by IP addresses and port numbers. Thus, the list of servers in server groups includes references to the hosts in the global configuration and the definitions of private servers.

**Note**

- If the `radius-server directed-request` command is configured, then a private RADIUS server cannot be used as the group server by configuring the `server-private` (RADIUS) command.

- Creating or updating AAA server statistics record for private RADIUS servers are not supported. If private RADIUS servers are used, then error messages and tracebacks will be encountered, but these error messages or tracebacks do not have any impact on the AAA RADIUS functionality. To avoid these error messages and tracebacks, configure public RADIUS server instead of private RADIUS server.

Use the `password encryption aes` command to configure type 6 AES encrypted keys.

**Examples**

The following example shows how to define the sg_water RADIUS group server and associate private servers with it:

```
Device> enable
Device# configure terminal
Device(config)# aaa new-model
Device(config)# aaa group server radius sg_water
Device(config-sg-radius)# server-private 10.1.1.1 timeout 5 retransmit 3 key xyz
Device(config-sg-radius)# server-private 10.2.2.2 timeout 5 retransmit 3 key xyz
Device(config-sg-radius)# end
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aaa group server</code></td>
<td>Groups different server hosts into distinct lists and distinct methods.</td>
</tr>
<tr>
<td><code>aaa new-model</code></td>
<td>Enables the AAA access control model.</td>
</tr>
<tr>
<td><code>password encryption aes</code></td>
<td>Enables a type 6 encrypted preshared key.</td>
</tr>
<tr>
<td><code>radius-server host</code></td>
<td>Specifies a RADIUS server host.</td>
</tr>
<tr>
<td><code>radius-server directed-request</code></td>
<td>Allows users to log in to a Cisco NAS and select a RADIUS server for authentication.</td>
</tr>
</tbody>
</table>
show aaa clients

To display authentication, authorization, and accounting (AAA) client statistics, use the `show aaa clients` command.

```
show aaa clients [detailed]
```

**Syntax Description**

- `detailed` (Optional) Shows detailed AAA client statistics.

**Command Modes**

- User EXEC (`>`)  
- Privileged EXEC (`#`)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show aaa clients` command:

```
Device> enable
Device# show aaa clients
Dropped request packets: 0
```
show aaa command handler

To display authentication, authorization, and accounting (AAA) command handler statistics, use the `show aaa command handler` command.

```
show aaa command handler
```

**Syntax Description**

This command has no arguments or keywords.

**Command Modes**

User EXEC (>

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show aaa command handler` command:

```
Device# show aaa command handler

AAA Command Handler Statistics:
 account-logon: 0, account-logoff: 0
 account-query: 0, pod: 0
 service-logon: 0, service-logoff: 0
 user-profile-push: 0, session-state-log: 0
 reauthenticate: 0, bounce-host-port: 0
 disable-host-port: 0, update-rbacl: 0
 update-sgt: 0, update-cts-policies: 0
 invalid commands: 0
 async message not sent: 0
```
show aaa local

To display authentication, authorization, and accounting (AAA) local method options, use the **show aaa local** command.

```
show aaa local { netuser { name | all } | statistics | user lockout }
```

**Syntax Description**

- `netuser`: Specifies the AAA local network or guest user database.
- `name`: Network user name.
- `all`: Specifies the network and guest user information.
- `statistics`: Displays statistics for local authentication.
- `user lockout`: Specifies the AAA local locked-out user.

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This is an example of output from the **show aaa local statistics** command:

```
Device# show aaa local statistics

Local EAP statistics

<table>
<thead>
<tr>
<th>EAP Method</th>
<th>Success</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EAP-MD5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EAP-GTC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LEAP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PEAP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EAP-TLS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EAP-MSCHAPV2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EAP-FAST</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Requests received from AAA: 0
Responses returned from EAP: 0
Requests dropped (no EAP AVP): 0
Requests dropped (other reasons): 0
Authentication timeouts from EAP: 0

Credential request statistics
Requests sent to backend: 0
Requests failed (unable to send): 0
Authorization results received

Success: 0
```
show aaa local

Fail: 0
show aaa servers

To display all authentication, authorization, and accounting (AAA) servers as seen by the AAA server MIB, use the **show aaa servers** command.

`show aaa servers [private | public | [detailed]]`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>detailed</th>
<th>(Optional) Displays private AAA servers as seen by the AAA server MIB.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>public</td>
<td>(Optional) Displays public AAA servers as seen by the AAA server MIB.</td>
</tr>
<tr>
<td></td>
<td>detailed</td>
<td>(Optional) Displays detailed AAA server statistics.</td>
</tr>
</tbody>
</table>

**Command Modes**
- User EXEC (>)
- Privileged EXEC (>)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following is a sample output from the **show aaa servers** command:
show aaa sessions

To display authentication, authorization, and accounting (AAA) sessions as seen by the AAA Session MIB, use the **show aaa sessions** command.

**show aaa sessions**

**Syntax Description**

This command has no arguments or keywords.

**Command Modes**

User EXEC (>)

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is sample output from the *show aaa sessions* command:

```
Device# show aaa sessions
Total sessions since last reload: 7
Session Id: 4007
 Unique Id: 4025
 User Name: *not available*
 IP Address: 0.0.0.0
 Idle Time: 0
 CT Call Handle: 0
```
show authentication brief

To display brief information about authentication sessions for a given interface, use the **show authentication brief** command in either user EXEC or privileged EXEC mode.

```
show authentication brief[switch{switch-number|active|standby}{R0}]
```

### Syntax Description

<table>
<thead>
<tr>
<th><strong>switch-number</strong></th>
<th>Valid values for the switch-number variable are from 1 to 9.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>R0</strong></td>
<td>Displays information about the Route Processor (RP) slot 0.</td>
</tr>
<tr>
<td><strong>active</strong></td>
<td>Specifies the active instance.</td>
</tr>
<tr>
<td><strong>standby</strong></td>
<td>Specifies the standby instance.</td>
</tr>
</tbody>
</table>

### Command Modes

- Privileged EXEC (#)
- User EXEC (>)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output from the **show authentication brief** command:

```
Device# show authentication brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>MAC Address</th>
<th>AuthC</th>
<th>AuthZ</th>
<th>Fg</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0001</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>281s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0002</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>280s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0003</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>279s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0004</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>278s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0005</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>278s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0006</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>277s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0007</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>276s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0008</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>276s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0009</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>275s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000a</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>275s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000b</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>274s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000c</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>274s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000d</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>273s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000e</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>273s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000f</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>272s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0010</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>272s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0011</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>271s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0012</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>271s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0013</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>270s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0014</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>270s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0015</td>
<td>m:NA d:OK</td>
<td>A2: SA-</td>
<td>X</td>
<td>269s</td>
</tr>
</tbody>
</table>

The following is a sample output from the **show authentication brief** command for active instances:
Device# `show authentication brief switch active R0`

<table>
<thead>
<tr>
<th>Interface</th>
<th>MAC Address</th>
<th>AuthC</th>
<th>AuthZ</th>
<th>Fg</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0001</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>1s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0002</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>0s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0003</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>299s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0004</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>298s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0005</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>298s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0006</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>297s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0007</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>296s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0008</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>296s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0009</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>295s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000a</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>295s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000b</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>294s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000c</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>294s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000d</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>293s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000e</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>293s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.000f</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>292s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0010</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>292s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0011</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>291s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0012</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>291s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0013</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>290s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0014</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>290s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0015</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>289s</td>
</tr>
<tr>
<td>Gi2/0/14</td>
<td>0002.0002.0016</td>
<td>m:NA d:OK</td>
<td>AZ: SA-</td>
<td>X</td>
<td>289s</td>
</tr>
</tbody>
</table>

The following is a sample output from the `show authentication brief` command for standby instances:

Device# `show authentication brief switch standby R0`

No sessions currently exist.

The table below describes the significant fields shown in the displays.

Table 133: show authentication brief Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The type and number of the authentication interface.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the client.</td>
</tr>
<tr>
<td>AuthC</td>
<td>Indicates authentication status.</td>
</tr>
<tr>
<td>AuthZ</td>
<td>Indicates authorization status.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Fg | Flag indicates the current status. The valid values are:
| | • A—Applying policy (multi-line status for details)
| | • D—Awaiting removal
| | • F—Final removal in progress
| | • I—Awaiting IIF ID allocation
| | • P—Pushed session
| | • R—Removing user profile (multi-line status for details)
| | • U—Applying user profile (multi-line status for details)
| | • X—Unknown blocker |
| Uptime| Indicates the duration since which the session came up |
show authentication sessions

To display information about current Auth Manager sessions, use the **show authentication sessions** command.

```
show authentication sessions  [database] [handle handle-id [details]] [interface type number [details]] [mac mac-address [interface type number] [method method-name [interface type number [details]]] [session-id session-id [details]]]
```

Syntax Description

- `database` (Optional) Shows only data stored in session database.
- `handle handle-id` (Optional) Specifies the particular handle for which Auth Manager information is to be displayed.
- `details` (Optional) Shows detailed information.
- `interface type number` (Optional) Specifies a particular interface type and number for which Auth Manager information is to be displayed.
- `mac mac-address` (Optional) Specifies the particular MAC address for which you want to display information.
- `method method-name` (Optional) Specifies the particular authentication method for which Auth Manager information is to be displayed. If you specify a method (dot1x, mab, or webauth), you may also specify an interface.
- `session-id session-id` (Optional) Specifies the particular session for which Auth Manager information is to be displayed.

Command Modes

- User EXEC (>)
- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **show authentication sessions** command to display information about all current Auth Manager sessions. To display information about specific Auth Manager sessions, use one or more of the keywords.

This table shows the possible operating states for the reported authentication sessions.

Table 134: Authentication Method States

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not run</td>
<td>The method has not run for this session.</td>
</tr>
<tr>
<td>Running</td>
<td>The method is running for this session.</td>
</tr>
<tr>
<td>Failed over</td>
<td>The method has failed and the next method is expected to provide a result.</td>
</tr>
</tbody>
</table>
The method has provided a successful authentication result for the session.

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>The method has provided a successful authentication result for the session.</td>
</tr>
<tr>
<td>Authc Failed</td>
<td>The method has provided a failed authentication result for the session.</td>
</tr>
</tbody>
</table>

This table shows the possible authentication methods.

Table 135: Authentication Method States

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x</td>
<td>802.1X</td>
</tr>
<tr>
<td>mab</td>
<td>MAC authentication bypass</td>
</tr>
<tr>
<td>webauth</td>
<td>web authentication</td>
</tr>
</tbody>
</table>

The following example shows how to display all authentication sessions on the device:

```
Device# show authentication sessions
```

```
<table>
<thead>
<tr>
<th>Interface</th>
<th>MAC Address</th>
<th>Method</th>
<th>Domain</th>
<th>Status</th>
<th>Session ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/48</td>
<td>0015.63b0.f676</td>
<td>dot1x</td>
<td>DATA</td>
<td>Authz Success</td>
<td>0A3462B100000102983C05C</td>
</tr>
<tr>
<td>Gi1/0/5</td>
<td>000f.23c4.a401</td>
<td>mab</td>
<td>DATA</td>
<td>Authz Success</td>
<td>0A3462B100000D24F80B58</td>
</tr>
<tr>
<td>Gi1/0/5</td>
<td>0014.bf5d.d26d</td>
<td>dot1x</td>
<td>DATA</td>
<td>Authz Success</td>
<td>0A3462B100000E29811B94</td>
</tr>
</tbody>
</table>
```

The following example shows how to display all authentication sessions on an interface:

```
Device# show authentication sessions interface gigabitethernet2/0/47
```

```
<table>
<thead>
<tr>
<th>Interface</th>
<th>MAC Address</th>
<th>User-Name</th>
<th>Status</th>
<th>Common Session ID</th>
<th>Acct Session ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/2/0/6</td>
<td>0005.5e7c.da05</td>
<td>00055e7cda05</td>
<td>Authz Success</td>
<td>0A3462C80000000002763C</td>
<td>0x000000002</td>
</tr>
</tbody>
</table>

Runnable methods list:

<table>
<thead>
<tr>
<th>Method</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>mab</td>
<td>Failed over</td>
</tr>
<tr>
<td>dot1x</td>
<td>Failed over</td>
</tr>
</tbody>
</table>
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
**Domain:** VOICE  
**Oper host mode:** multi-domain  
**Oper control dir:** both  
**Authorized By:** Authentication Server  
**Session timeout:** N/A  
**Idle timeout:** N/A  
**Common Session ID:** 0A3462C8000000010002A238  
**Acct Session ID:** 0x00000003  
**Handle:** 0x91000001  

**Runnable methods list:**

<table>
<thead>
<tr>
<th>Method</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>mab</td>
<td>Authc Success</td>
</tr>
<tr>
<td>dot1x</td>
<td>Not run</td>
</tr>
</tbody>
</table>
show cisp

To display Client Information Signaling Protocol (CISP) information for a specified interface, use the `show cisp` command in privileged EXEC mode.

```
show cisp { [clients | interface interface-id] | registrations | summary }
```

**Syntax Description**

- **clients** (Optional) Display CISP client details.
- **interface interface-id** (Optional) Display CISP information about the specified interface. Valid interfaces include physical ports and port channels.
- **registrations** Displays CISP registrations.
- **summary** (Optional) Displays CISP summary.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show cisp interface` command:

```
Device# show cisp interface fastethernet 0/1/1
CISP not enabled on specified interface
```

The following is sample output from the `show cisp registration` command:

```
Device# show cisp registrations

Interface(s) with CISP registered user(s):
--
Fa1/0/13
Auth Mgr (Authenticator)
Gi12/0/1
Auth Mgr (Authenticator)
Gi12/0/2
Auth Mgr (Authenticator)
Gi12/0/3
Auth Mgr (Authenticator)
Gi12/0/5
Auth Mgr (Authenticator)
Gi12/0/9
Auth Mgr (Authenticator)
Gi12/0/11
Auth Mgr (Authenticator)
Gi12/0/13
Auth Mgr (Authenticator)
Gi13/0/3
Gi13/0/5
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisp enable</td>
<td>Enables CISP.</td>
</tr>
<tr>
<td>dot1x credentials <em>profile</em></td>
<td>Configures a profile on a supplicant device.</td>
</tr>
</tbody>
</table>
show dot1x

To display IEEE 802.1x statistics, administrative status, and operational status for a device or for the specified port, use the **show dot1x** command in user EXEC or privileged EXEC mode.

```
show dot1x [all [count | details | statistics | summary]] [interface type number [details | statistics]] [statistics]
```

**Syntax Description**

- **all**: (Optional) Displays the IEEE 802.1x information for all interfaces.
- **count**: (Optional) Displays total number of authorized and unauthorized clients.
- **details**: (Optional) Displays the IEEE 802.1x interface details.
- **statistics**: (Optional) Displays the IEEE 802.1x statistics for all interfaces.
- **summary**: (Optional) Displays the IEEE 802.1x summary for all interfaces.
- **interface type number**: (Optional) Displays the IEEE 802.1x status for the specified port.

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is sample output from the **show dot1x all** command:

```
Device# show dot1x all

Sysauthcontrol Enable
Dot1x Protocol Version 3
```

The following is sample output from the **show dot1x all count** command:

```
Device# show dot1x all count

Number of Dot1x sessions

Authorized Clients - 0
UnAuthorized Clients - 0
Total No of Client - 0
```

The following is sample output from the **show dot1x all statistics** command:

```
Device# show dot1x statistics
```
Dot1x Global Statistics for
--------------------------------------------
RxStart = 0  RxLogoff = 0  RxResp = 0  RxRespID = 0
RxReq = 0  RxInvalid = 0  RxLenErr = 0
RxTotal = 0

TxStart = 0  TxLogoff = 0  TxResp = 0
TxReq = 0  ReTxReq = 0  ReTxReqFail = 0
TxReqID = 0  ReTxReqID = 0  ReTxReqIDFail = 0
TxTotal = 0
show eap pac peer

To display stored Protected Access Credentials (PAC) for Extensible Authentication Protocol (EAP) Flexible Authentication via Secure Tunneling (FAST) peers, use the **show eap pac peer** command in privileged EXEC mode.

```
show eap pac peer
```

**Syntax Description**

This command has no arguments or keywords.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is sample output from the **show eap pac peers** command:

```
Device# show eap pac peers
No PACs stored
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear eap sessions</td>
<td>Clears EAP session information for the device or for the specified port.</td>
</tr>
</tbody>
</table>
**show ip dhcp snooping statistics**

To display DHCP snooping statistics in summary or detail form, use the `show ip dhcp snooping statistics` command in user EXEC or privileged EXEC mode.

```
show ip dhcp snooping statistics [detail]
```

**Syntax Description**

- `detail` (Optional) Displays detailed statistics information.

**Command Modes**

- User EXEC (`>`)  
- Privileged EXEC (`#`)  

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In a device stack, all statistics are generated on the stack master. If a new active device is elected, the statistics counters reset.

The following is sample output from the `show ip dhcp snooping statistics` command:

```
Device> show ip dhcp snooping statistics

Packets Forwarded = 0
Packets Dropped = 0
Packets Dropped From untrusted ports = 0
```

The following is sample output from the `show ip dhcp snooping statistics detail` command:

```
Device> show ip dhcp snooping statistics detail

Packets Processed by DHCP Snooping = 0
Packets Dropped Because
 IDB not known = 0
 Queue full = 0
 Interface is in errdisabled = 0
 Rate limit exceeded = 0
 Received on untrusted ports = 0
 Nonzero giaddr = 0
 Source mac not equal to chaddr = 0
 Binding mismatch = 0
 Insertion of opt82 fail = 0
 Interface Down = 0
 Unknown output interface = 0
 Reply output port equal to input port = 0
 Packet denied by platform = 0
```
This table shows the DHCP snooping statistics and their descriptions:

<table>
<thead>
<tr>
<th>DHCP Snooping Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Processed by DHCP Snooping</td>
<td>Total number of packets handled by DHCP snooping, including forwarded and dropped packets.</td>
</tr>
<tr>
<td>Packets Dropped Because IDB not known</td>
<td>Number of errors when the input interface of the packet cannot be determined.</td>
</tr>
<tr>
<td>Queue full</td>
<td>Number of errors when an internal queue used to process the packets is full. This might happen if DHCP packets are received at an excessively high rate and rate limiting is not enabled on the ingress ports.</td>
</tr>
<tr>
<td>Interface is in errdisabled</td>
<td>Number of times a packet was received on a port that has been marked as error disabled. This might happen if packets are in the processing queue when a port is put into the error-disabled state and those packets are subsequently processed.</td>
</tr>
<tr>
<td>Rate limit exceeded</td>
<td>Number of times the rate limit configured on the port was exceeded and the interface was put into the error-disabled state.</td>
</tr>
<tr>
<td>Received on untrusted ports</td>
<td>Number of times a DHCP server packet (OFFER, ACK, NAK, or LEASEQUERY) was received on an untrusted port and was dropped.</td>
</tr>
<tr>
<td>Nonzero giaddr</td>
<td>Number of times the relay agent address field (giaddr) in the DHCP packet received on an untrusted port was not zero, or the no ip dhcp snooping information option allow-untrusted global configuration command is not configured and a packet received on an untrusted port contained option-82 data.</td>
</tr>
<tr>
<td>Source mac not equal to chaddr</td>
<td>Number of times the client MAC address field of the DHCP packet (chaddr) does not match the packet source MAC address and the ip dhcp snooping verify mac-address global configuration command is configured.</td>
</tr>
<tr>
<td>Binding mismatch</td>
<td>Number of times a RELEASE or DECLINE packet was received on a port that is different than the port in the binding for that MAC address-VLAN pair. This indicates someone might be trying to spoof the real client, or it could mean that the client has moved to another port on the device and issued a RELEASE or DECLINE. The MAC address is taken from the chaddr field of the DHCP packet, not the source MAC address in the Ethernet header.</td>
</tr>
<tr>
<td>Insertion of opt82 fail</td>
<td>Number of times the option-82 insertion into a packet failed. The insertion might fail if the packet with the option-82 data exceeds the size of a single physical packet on the internet.</td>
</tr>
<tr>
<td>DHCP Snooping Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Interface Down</td>
<td>Number of times the packet is a reply to the DHCP relay agent, but the SVI interface for the relay agent is down. This is an unlikely error that occurs if the SVI goes down between sending the client request to the DHCP server and receiving the response.</td>
</tr>
<tr>
<td>Unknown output interface</td>
<td>Number of times the output interface for a DHCP reply packet cannot be determined by either option-82 data or a lookup in the MAC address table. The packet is dropped. This can happen if option 82 is not used and the client MAC address has aged out. If IPSG is enabled with the port-security option and option 82 is not enabled, the MAC address of the client is not learned, and the reply packets will be dropped.</td>
</tr>
<tr>
<td>Reply output port equal to input port</td>
<td>Number of times the output port for a DHCP reply packet is the same as the input port, causing a possible loop. Indicates a possible network misconfiguration or misuse of trust settings on ports.</td>
</tr>
<tr>
<td>Packet denied by platform</td>
<td>Number of times the packet has been denied by a platform-specific registry.</td>
</tr>
</tbody>
</table>

**show ip dhcp snooping statistics**
show radius server-group

To display properties for the RADIUS server group, use the show radius server-group command in user EXEC or privileged EXEC mode.

```
show radius server-group { name | all }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>name</code></td>
<td>Name of the server group. The character string used to name the group of servers must be defined using the <code>aaa group server radius</code> command.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Displays properties for all of the server groups.</td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC (`>`)  
- Privileged EXEC (`#`)  

**Command History**

- **Release** Cisco IOS XE Fuji 16.9.2  
- **Modification** This command was introduced.

**Usage Guidelines**

Use the `show radius server-group` command to display the server groups that you defined by using the `aaa group server radius` command.

The following is sample output from the `show radius server-group all` command:

```
Device# show radius server-group all
Server group radius
 Sharecount = 1 sg_unconfigured = FALSE
 Type = standard Memlocks = 1
```

This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server group</td>
<td>Name of the server group.</td>
</tr>
<tr>
<td>Sharecount</td>
<td>Number of method lists that are sharing this server group. For example, if one method list uses a particular server group, the sharecount would be 1. If two method lists use the same server group, the sharecount would be 2.</td>
</tr>
<tr>
<td>sg_unconfigured</td>
<td>Server group has been unconfigured.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Type</td>
<td>The type can be either standard or nonstandard. The type indicates whether the servers in the group accept nonstandard attributes. If all servers within the group are configured with the nonstandard option, the type will be shown as &quot;nonstandard&quot;.</td>
</tr>
<tr>
<td>Memlocks</td>
<td>An internal reference count for the server-group structure that is in memory. The number represents how many internal data structure packets or transactions are holding references to this server group. Memlocks is used internally for memory management purposes.</td>
</tr>
</tbody>
</table>
show tech-support acl

To display access control list (ACL)-related information for technical support, use the show tech-support acl command in privileged EXEC mode.

**Syntax Description**

This command has no arguments or keywords.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The output of the show tech-support acl command is very long. To better manage this output, you can redirect the output to an external file (for example, show tech-support acl | redirect flash:show_tech_acl.txt) in the local writable storage file system or remote file system.

The output of this command displays the following commands:

- show clock
- show version
- show running-config
- show module
- show interface
- show access-lists
- show logging
- show platform software fed switch switch-number acl counters hardware
- show platform software fed switch switch-number ifm mapping
- show platform hardware fed switch switch-number fwd-asic drops exceptions
- show platform software fed switch switch-number acl info
show tech-support acl

Examples

The following is sample output from the **show tech-support acl** command:

```
Device# show tech-support acl
.
.
----------- show platform software fed switch 1 acl cam brief -----------

Printing entries for region ACL_CONTROL (143) type 6 asic 0

TAQ-4 Index-0 (A:0,C:0) Valid StartF-1 StartA-1 SkipF-0 SkipA-0
Output IPv4 VACL

VCU Result: Not In-Use
L3 Length: 0000, L3 Protocol: 17 (UDP), L3 Tos: 00
Source Address/Mask
0.0.0.0/0.0.0.0
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
show tech-support acl

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
L3 Length: 0000, L3 Protocol: 00 (HOPOPT), L3 Tos: 00
Source Address/Mask
0.0.0.0/0.0.0.0
Destination Address/Mask
0.0.0.0/0.0.0.0
Router MAC: Disabled, Not First Fragment: Disabled, Small Offset: Disabled
L4 Source Port/Mask L4 Destination Port/Mask
0x0000 (0)/0x0000 0x0000 (0)/0x0000
TCP Flags: 0x00 (NOT SET)
ACTIONS: Drop L3, Drop L2, Logging Disabled
ACL Priority: 2 (15 is Highest Priority)

-------------------------------
TAQ-4 Index-4 (A:0,C:0) Valid StartF-0 StartA-0 SkipF-0 SkipA-0
Output IPv4 PACL
VCU Result: Not In-Use
L3 Length: 0000, L3 Protocol: 00 (HOPOPT), L3 Tos: 00
Source Address/Mask
0.0.0.0/0.0.0.0
Destination Address/Mask
0.0.0.0/0.0.0.0
Router MAC: Disabled, Not First Fragment: Disabled, Small Offset: Disabled
L4 Source Port/Mask L4 Destination Port/Mask
0x0000 (0)/0x0000 0x0000 (0)/0x0000
TCP Flags: 0x00 (NOT SET)
ACTIONS: Drop L3, Drop L2, Logging Disabled
ACL Priority: 2 (15 is Highest Priority)

-------------------------------
TAQ-4 Index-5 (A:0,C:0) Valid StartF-0 StartA-0 SkipF-0 SkipA-0
Output MAC PACL
VLAN ID/MASK : 0x000 (000)/0x000
Source MAC/Mask : 0000.0000.0000/0000.0000.0000
Destination MAC/Mask : 0000.0000.0000/0000.0000.0000
isSnap: Disabled, isLLC: Disabled
ACTIONS: Drop L3, Drop L2, Logging Disabled
ACL Priority: 2 (15 is Highest Priority)

Output fields are self-explanatory.
show tech-support identity

To display identity/802.1x-related information for technical support, use the `show tech-support identity` command in privileged EXEC mode.

`show tech-support identity mac mac-address interface interface-name`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mac mac-address</code></td>
<td>Displays information about the client MAC address.</td>
</tr>
<tr>
<td><code>interface interface-name</code></td>
<td>Displays information about the client interface.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (`#`)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The output of the `show tech-support platform` command is very long. To better manage this output, you can redirect the output to an external file (for example, `show tech-support identity mac mac-address interface interface-name | redirect flash:filename`) in the local writable storage file system or remote file system.

The output of this command displays the following commands:

- `show clock`
- `show module`
- `show version`
- `show switch`
- `show redundancy`
- `show dot1x statistics`
- `show ip access-lists`
- `show interface`
- `show ip interface brief`
- `show vlan brief`
- `show running-config`
- `show logging`
- `show interface controller`
- `show platform authentication sbinfo interface`
show platform host-access-table
show platform pm port-data
show spanning-tree interface
show access-session mac detail
show platform authentication session mac
show device-tracking database mac details
show mac address-table address
show access-session event-logging mac
show authentication sessions mac details R0
show ip admission cache R0
show platform software wired-client R0
show platform software wired-client F0
show platform software process database forwarding-manager R0 summary
show platform software process database forwarding-manager F0 summary
show platform software object-manager F0 pending-ack-update
show platform software object-manager F0 pending-issue-update
show platform software object-manager F0 error-object
show platform software peer forwarding-manager R0
show platform software peer forwarding-manager F0
show platform software VP R0 summary
show platform software VP F0 summary
show platform software fed punt cpuq
show platform software fed punt cause summary
show platform software fed inject cause summary
show platform hardware fed fwd-asic drops exceptions
show platform hardware fed fwd-asic resource team table acl
show platform software fed acl counter hardware
show platform software fed matm macTable
show platform software fed ifm mappings
show platform software trace message fed reverse
show platform software trace message forwarding-manager R0 reverse
show platform software trace message forwarding-manager F0 reverse
• show platform software trace message smd R0 reverse
• show authentication sessions mac details
• show platform software wired-client
• show platform software process database forwarding-manager summary
• show platform software object-manager pending-ack-update
• show platform software object-manager pending-issue-update
• show platform software object-manager error-object
• show platform software peer forwarding-manager
• show platform software VP summary
• show platform software trace message forwarding-manager reverse
• show ip admission cache
• show platform software trace message smd reverse
• show platform software fed punt cpuq
• show platform software fed punt cause summary
• show platform software fed inject cause summary
• show platform hardware fed fwd-asic drops exceptions
• show platform hardware fed fwd-asic resource tcam table acl
• show platform software fed acl counter hardware
• show platform software fed matm macTable
• show platform software fed ifm mappings
• show platform software trace message fed reverse

Examples

The following is sample output from the **show tech-support identity** command:

Device# show tech-support identity mac 0000.0001.0003 interface gigabitethernet1/0/1

```
... show platform software peer forwarding-manager R0 ...
```

**IOSD Connection Information:**

MQIPC (reader) Connection State: Connected, Read-selected
  Connections: 1, Failures: 22
  3897 packet received (0 dropped), 466929 bytes
  Read attempts: 2352, Yields: 0

BIPC Connection state: Connected, Ready
  Accepted: 1, Rejected: 0, Closed: 0, Backpressures: 0
  36 packets sent, 2808 bytes

**SMD Connection Information:**
MQIPC (reader) Connection State: Connected, Read-selected
Connections: 1, Failures: 30
0 packet received (0 dropped), 0 bytes
Read attempts: 1, Yields: 0
MQIPC (writer) Connection State: Connected, Ready
Connections: 1, Failures: 0, Backpressures: 0
0 packet sent, 0 bytes

FP Peers Information:

Slot: 0
Peer state: connected
OM ID: 0, Download attempts: 638
Complete: 638, Yields: 0, Spurious: 0
IPC Back-Pressure: 0, IPC-Log Back-Pressure: 0
Back-Pressure asserted for IPC: 0, IPC-Log: 1
Number of FP FMAN peer connection expected: 7
Number of FP FMAN online msg received: 1
IPC state: unknown

Config IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xd3d458e8, BIPC FD: 36, Peer Context: 0xdf3e7158
Tx Packets: 688, Messages: 2392, ACKs: 36
Rx Packets: 37, Bytes: 2068

IPC Log:
Peer name: fman-log-bay0-peer0
Flags: Recovery-Complete
Send Seq: 36, Recv Seq: 36, Msgs Sent: 0, Msgs Recovered: 0

Upstream FMRP IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xd35e7308, BIPC FD: 37, Peer Context: 0xdf3e7158
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0

Upstream FMRP-IOSd IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xd3e7308, BIPC FD: 38, Peer Context: 0xdf3e7158
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 37, Bytes: 2864
Rx ACK Requests: 1, Tx ACK Responses: 1

Upstream FMRP-SMD IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xd40c568, BIPC FD: 39, Peer Context: 0xdf3e7158
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-WNCD_0 IPC Context:
State: Connected
BIPC Handle: 0xd3f4317c8, BIPC FD: 41, Peer Context: 0xdf3e7158
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-WNCMGDRD IPC Context:
State: Connected
BIPC Handle: 0xd3f41e998, BIPC FD: 40, Peer Context: 0xdf3e7158
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-MOBILITYD IPC Context:
  State: Connected
  BIPC Handle: 0xdf4440f8, BIPC FD: 42, Peer Context: 0xdf3e7158
  TX Packets: 0, Bytes: 0, Drops: 0
  Rx Packets: 0, Bytes: 0
  Rx ACK Requests: 0, Tx ACK Responses: 0

Slot: 1
Peer state: connected
  OM ID: 1, Download attempts: 1
    Complete: 1, Yields: 0, Spurious: 0
  IPC Back-Pressure: 0, IPC-Log Back-Pressure: 0
  Back-Pressure asserted for IPC: 0, IPC-Log: 0
  Number of FP FMAN peer connection expected: 7
  Number of FP FMAN online msg received: 1
  IPC state: unknown

Config IPC Context:
  State: Connected, Read-selected
  BIPC Handle: 0xdf45e4d8, BIPC FD: 48, Peer Context: 0xdf470e18
  Tx Packets: 20, Messages: 704, ACKs: 1
  Rx Packets: 2, Bytes: 108

  IPC Log:
    Peer name: fman-log-bay0-peer1
    Flags: Recovery-Complete
    Send Seq: 1, Recv Seq: 1, Msgs Sent: 0, Msgs Recovered: 0

Upstream FMRP IPC Context:
  State: Connected, Read-selected
  BIPC Handle: 0xdf470fc8, BIPC FD: 49, Peer Context: 0xdf470e18
  TX Packets: 0, Bytes: 0, Drops: 0
  Rx Packets: 0, Bytes: 0

Upstream FMRP-IOSd IPC Context:
  State: Connected, Read-selected
  BIPC Handle: 0xdf4838f8, BIPC FD: 50, Peer Context: 0xdf470e18
  TX Packets: 0, Bytes: 0, Drops: 0
  Rx Packets: 0, Bytes: 0
  Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-SMD IPC Context:
  State: Connected, Read-selected
  BIPC Handle: 0xdf496228, BIPC FD: 51, Peer Context: 0xdf470e18
  TX Packets: 0, Bytes: 0, Drops: 0
  Rx Packets: 0, Bytes: 0
  Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-WNCD_0 IPC Context:
  State: Connected
  BIPC Handle: 0xdf4abb488, BIPC FD: 53, Peer Context: 0xdf470e18
  TX Packets: 0, Bytes: 0, Drops: 0
  Rx Packets: 0, Bytes: 0
  Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-WNCMGRD IPC Context:
  State: Connected
  BIPC Handle: 0xdf4a8b58, BIPC FD: 52, Peer Context: 0xdf470e18
  TX Packets: 0, Bytes: 0, Drops: 0
  Rx Packets: 0, Bytes: 0
  Rx ACK Requests: 0, Tx ACK Responses: 0
Upstream FMRP-MOBILITYD IPC Context:
  State: Connected
  BIPC Handle: 0xdf4cddb8, BIPC FD: 54, Peer Context: 0xdf470e18
  TX Packets: 0, Bytes: 0, Drops: 0
  Rx Packets: 0, Bytes: 0
  Rx ACK Requests: 0, Tx ACK Responses: 0

------------------ show platform software peer forwarding-manager R0 ------------------

IOSD Connection Information:
  MQIPC (reader) Connection State: Connected, Read-selected
  Connections: 1, Failures: 22
  3897 packet received (0 dropped), 466929 bytes
  Read attempts: 2352, Yields: 0
  BIPC Connection state: Connected, Ready
    Accepted: 1, Rejected: 0, Closed: 0, Backpressures: 0
    36 packets sent, 2808 bytes

SMD Connection Information:
  MQIPC (reader) Connection State: Connected, Read-selected
    Connections: 1, Failures: 30
    0 packet received (0 dropped), 0 bytes
    Read attempts: 1, Yields: 0
  MQIPC (writer) Connection State: Connected, Ready
    Connections: 1, Failures: 0, Backpressures: 0
    0 packet sent, 0 bytes

FP Peers Information:
  Slot: 0
  Peer state: connected
  OM ID: 0, Download attempts: 638
    Complete: 638, Yields: 0, Spurious: 0
  IPC Back-Pressure: 0, IPC-Log Back-Pressure: 0
  Back-Pressure asserted for IPC: 0, IPC-Log: 1
  Number of FP FMAN peer connection expected: 7
  Number of FP FMAN online msg received: 1
  IPC state: unknown

Config IPC Context:
  State: Connected, Read-selected
  BIPC Handle: 0xdf3d48e8, BIPC FD: 36, Peer Context: 0xdf3e7158
  TX Packets: 688, Messages: 2392, ACKs: 36
  Rx Packets: 37, Bytes: 2068

  IPC Log:
    Peer name: fman-log-bay0-peer0
    Flags: Recovery-Complete
    Send Seq: 36,Recv Seq: 36,Msgs Sent: 0,Msgs Recovered: 0

Upstream FMRP IPC Context:
  State: Connected, Read-selected
  BIPC Handle: 0xdf3e7308, BIPC FD: 37, Peer Context: 0xdf3e7158
  TX Packets: 0, Bytes: 0, Drops: 0
  Rx Packets: 0, Bytes: 0

Upstream FMRP-IOSd IPC Context:
  State: Connected, Read-selected
  BIPC Handle: 0xdf3f9c38, BIPC FD: 38, Peer Context: 0xdf3e7158
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 37, Bytes: 2864
Rx ACK Requests: 1, Tx ACK Responses: 1

Upstream FMRP-SMD IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xd4fd0000, BIPC FD: 39, Peer Context: 0xdf3e7158
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-WNCD_0 IPC Context:
State: Connected
BIPC Handle: 0xdf4317c8, BIPC FD: 41, Peer Context: 0xdf3e7158
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-WNCGMGRD IPC Context:
State: Connected
BIPC Handle: 0xdf41ee98, BIPC FD: 40, Peer Context: 0xdf3e7158
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-MOBILITYD IPC Context:
State: Connected
BIPC Handle: 0xdf4440f8, BIPC FD: 42, Peer Context: 0xdf3e7158
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

Slot: 1
Peer state: connected
OM ID: 1, Download attempts: 1
  Complete: 1, Yields: 0, Spurious: 0
  IPC Back-Pressure: 0, IPC-Log Back-Pressure: 0
Back-Pressure asserted for IPC: 0, IPC-Log: 0
Number of FP FMAN peer connection expected: 7
Number of FP FMAN online msg received: 1
IPC state: unknown

Config IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xdf45e4d8, BIPC FD: 48, Peer Context: 0xdf470e18
TX Packets: 20, Messages: 704, ACKs: 1
Rx Packets: 2, Bytes: 108

IPC Log:
  Peer name: fman-log-bay0-peer1
  Flags: Recovery-Complete
  Send Seq: 1, Recv Seq: 1, Msgs Sent: 0, Msgs Recovered: 0

Upstream FMRP IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xdf470fc8, BIPC FD: 49, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0

Upstream FMRP-IOSd IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xdf4838f8, BIPC FD: 50, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-SMD IPC Context:
State: Connected, Read-selected
BIPC Handle: 0xdf496228, BIPC FD: 51, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-WNCD_0 IPC Context:
State: Connected
BIPC Handle: 0xdf4bb488, BIPC FD: 53, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-WNCMGRD IPC Context:
State: Connected
BIPC Handle: 0xdf4a8b58, BIPC FD: 52, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

Upstream FMRP-MOBILITYD IPC Context:
State: Connected
BIPC Handle: 0xdf4cdddb8, BIPC FD: 54, Peer Context: 0xdf470e18
TX Packets: 0, Bytes: 0, Drops: 0
Rx Packets: 0, Bytes: 0
Rx ACK Requests: 0, Tx ACK Responses: 0

------------------ show platform software VP R0 summary ------------------

Forwarding Manager Vlan Port Information

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Intf-ID</th>
<th>Stp-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>Forwarding</td>
</tr>
</tbody>
</table>

Forwarding Manager Vlan Port Information

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Intf-ID</th>
<th>Stp-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>51</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>63</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>73</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>74</td>
<td>Forwarding</td>
</tr>
</tbody>
</table>
### show platform software VP R0 summary

Forwarding Manager Vlan Port Information

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Intf-ID</th>
<th>Stp-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>Forwarding</td>
</tr>
</tbody>
</table>

Forwarding Manager Vlan Port Information

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Intf-ID</th>
<th>Stp-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>51</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>63</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>73</td>
<td>Forwarding</td>
</tr>
<tr>
<td>1</td>
<td>74</td>
<td>Forwarding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show vlan access-map

To display information about a particular VLAN access map or for all VLAN access maps, use the `show vlan access-map` command in privileged EXEC mode.

```
show vlan access-map [map-name]
```

**Syntax Description**

- `map-name` (Optional) Name of a specific VLAN access map.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show vlan access-map` command:

```
Device# show vlan access-map

Vlan access-map "vmap4" 10
 Match clauses:
 ip address: a12
 Action:
 forward
Vlan access-map "vmap4" 20
 Match clauses:
 ip address: a12
 Action:
 forward
```
show vlan filter

To display information about all VLAN filters or about a particular VLAN or VLAN access map, use the show vlan filter command in privileged EXEC mode.

```
show vlan filter {access-map name | vlan vlan-id}
```

**Syntax Description**

- `access-map name` (Optional) Displays filtering information for the specified VLAN access map.
- `vlan vlan-id` (Optional) Displays filtering information for the specified VLAN. The range is 1 to 4094.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is sample output from the show vlan filter command:

```
Device# show vlan filter

VLAN Map map_1 is filtering VLANs:
 20-22
```
show vlan group

To display the VLANs that are mapped to VLAN groups, use the `show vlan group` command in privileged EXEC mode.

```
show vlan group [{group-name vlan-group-name [user_count]]}
```

**Syntax Description**

- `group-name` *(Optional)* Displays the VLANs mapped to the specified VLAN group.
- `vlan-group-name` *(Optional)* Displays the number of users in each VLAN mapped to a specified VLAN group.
- `user_count` *(Optional)*

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show vlan group` command displays the existing VLAN groups and lists the VLANs and VLAN ranges that are members of each VLAN group. If you enter the `group-name` keyword, only the members of the specified VLAN group are displayed.

This example shows how to display the members of a specified VLAN group:

```
Device# show vlan group group-name group2
vlan group group1 :40-45
```

This example shows how to display number of users in each of the VLANs in a group:

```
Device# show vlan group group-name group2 user_count

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>41</td>
<td>8</td>
</tr>
<tr>
<td>42</td>
<td>12</td>
</tr>
<tr>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>44</td>
<td>9</td>
</tr>
<tr>
<td>45</td>
<td>0</td>
</tr>
</tbody>
</table>
```
switchport port-security aging

To set the aging time and type for secure address entries or to change the aging behavior for secure addresses on a particular port, use the `switchport port-security aging` command in interface configuration mode. To disable port security aging or to set the parameters to their default states, use the `no` form of this command.

```
switchport port-security aging {static | time time | type {absolute | inactivity}}
no switchport port-security aging {static | time | type}
```

**Syntax Description**

- **static** Enables aging for statically configured secure addresses on this port.
- **time** Specifies the aging time for this port. The range is 0 to 1440 minutes. If the time is 0, aging is disabled for this port.
- **type** Sets the aging type.
  - **absolute** Sets absolute aging type. All the secure addresses on this port age out exactly after the time (minutes) specified and are removed from the secure address list.
  - **inactivity** Sets the inactivity aging type. The secure addresses on this port age out only if there is no data traffic from the secure source address for the specified time period.

**Command Default**

The port security aging feature is disabled. The default time is 0 minutes.

The default aging type is `absolute`.

The default static aging behavior is disabled.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To enable secure address aging for a particular port, set the aging time to a value other than 0 for that port.

To allow limited time access to particular secure addresses, set the aging type as `absolute`. When the aging time lapses, the secure addresses are deleted.

To allow continuous access to a limited number of secure addresses, set the aging type as `inactivity`. This removes the secure address when it become inactive, and other addresses can become secure.

To allow unlimited access to a secure address, configure it as a secure address, and disable aging for the statically configured secure address by using the `no switchport port-security aging static` interface configuration command.

This example sets the aging time as 2 hours for absolute aging for all the secure addresses on the port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/1
Device(config-if)# switchport port-security aging time 120
```
Device(config-if)# end

This example sets the aging time as 2 minutes for inactivity aging type with aging enabled for configured secure addresses on the port:

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# switchport port-security aging time 2
Device(config-if)# switchport port-security aging type inactivity
Device(config-if)# switchport port-security aging static
Device(config-if)# end

This example shows how to disable aging for configured secure addresses:

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# no switchport port-security aging static
Device(config-if)# end
switchport port-security mac-address

To configure secure MAC addresses or sticky MAC address learning, use the `switchport port-security mac-address` interface configuration command. To return to the default setting, use the `no` form of this command.

```
switchport port-security mac-address {mac-address [vlan {vlan-id {access | voice}}] | sticky}
no switchport port-security mac-address {mac-address [vlan {vlan-id {access | voice}}] | sticky}
```

**Syntax Description**

- `mac-address` (Optional) A secure MAC address for the interface by entering a 48-bit MAC address. You can add additional secure MAC addresses up to the maximum value configured.
- `vlan vlan-id` (Optional) On a trunk port only, specifies the VLAN ID and the MAC address. If no VLAN ID is specified, the native VLAN is used.
- `vlan access` (Optional) On an access port only, specifies the VLAN as an access VLAN.
- `vlan voice` (Optional) On an access port only, specifies the VLAN as a voice VLAN.
  - **Note** The `voice` keyword is available only if voice VLAN is configured on a port and if that port is not the access VLAN.
- `sticky` Enables the interface for sticky learning. When sticky learning is enabled, the interface adds all secure MAC addresses that are dynamically learned to the running configuration and converts these addresses to sticky secure MAC addresses.
- `mac-address` (Optional) A MAC address to specify a sticky secure MAC address.

**Command Default**

No secure MAC addresses are configured.

Sticky learning is disabled.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A secure port has the following limitations:

- A secure port can be an access port or a trunk port; it cannot be a dynamic access port.
- A secure port cannot be a routed port.
- A secure port cannot be a protected port.
- A secure port cannot be a destination port for Switched Port Analyzer (SPAN).
- A secure port cannot belong to a Gigabit or 10-Gigabit EtherChannel port group.
• You cannot configure static secure or sticky secure MAC addresses in the voice VLAN.

• When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to two. When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN, but is not learned on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the Cisco IP phone.

• Voice VLAN is supported only on access ports and not on trunk ports.

Sticky secure MAC addresses have these characteristics:

• When you enable sticky learning on an interface by using the switchport port-security mac-address sticky interface configuration command, the interface converts all the dynamic secure MAC addresses, including those that were dynamically learned before sticky learning was enabled, to sticky secure MAC addresses and adds all sticky secure MAC addresses to the running configuration.

• If you disable sticky learning by using the no switchport port-security mac-address sticky interface configuration command or the running configuration is removed, the sticky secure MAC addresses remain part of the running configuration but are removed from the address table. The addresses that were removed can be dynamically reconfigured and added to the address table as dynamic addresses.

• When you configure sticky secure MAC addresses by using the switchport port-security mac-address sticky mac-address interface configuration command, these addresses are added to the address table and the running configuration. If port security is disabled, the sticky secure MAC addresses remain in the running configuration.

• If you save the sticky secure MAC addresses in the configuration file, when the device restarts or the interface shuts down, the interface does not need to relearn these addresses. If you do not save the sticky secure addresses, they are lost. If sticky learning is disabled, the sticky secure MAC addresses are converted to dynamic secure addresses and are removed from the running configuration.

• If you disable sticky learning and enter the switchport port-security mac-address sticky mac-address interface configuration command, an error message appears, and the sticky secure MAC address is not added to the running configuration.

You can verify your settings by using the show port-security command.

This example shows how to configure a secure MAC address and a VLAN ID on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/2
Device(config-if)# switchport mode trunk
Device(config-if)# switchport port-security
Device(config-if)# switchport port-security mac-address 1000.2000.3000 vlan 3
Device(config-if)# end
```

This example shows how to enable sticky learning and to enter two sticky secure MAC addresses on a port:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/2
Device(config-if)# switchport port-security mac-address sticky
Device(config-if)# switchport port-security mac-address sticky 0000.0000.4141
```
Device(config-if)# switchport port-security mac-address sticky 0000.0000.000f
Device(config-if)# end
### switchport port-security maximum

To configure the maximum number of secure MAC addresses, use the `switchport port-security maximum` command in interface configuration mode. To return to the default settings, use the `no` form of this command.

```
switchport port-security maximum value [vlan [{vlan-list | [{{access | voice}}]]}]
no switchport port-security maximum value [vlan [{vlan-list | [{{access | voice}}]}]]
```

#### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>value</code></td>
<td>Sets the maximum number of secure MAC addresses for the interface. The default setting is 1.</td>
</tr>
<tr>
<td><code>vlan</code></td>
<td>(Optional) For trunk ports, sets the maximum number of secure MAC addresses on a VLAN or range of VLANs. If the <code>vlan</code> keyword is not entered, the default value is used.</td>
</tr>
<tr>
<td><code>vlan-list</code></td>
<td>(Optional) Range of VLANs separated by a hyphen or a series of VLANs separated by commas. For nonspecified VLANs, the per-VLAN maximum value is used.</td>
</tr>
<tr>
<td><code>access</code></td>
<td>(Optional) On an access port only, specifies the VLAN as an access VLAN.</td>
</tr>
</tbody>
</table>
| `voice`   | (Optional) On an access port only, specifies the VLAN as a voice VLAN.  
**Note** The `voice` keyword is available only if voice VLAN is configured on a port and if that port is not the access VLAN. |

#### Command Default

When port security is enabled and no keywords are entered, the default maximum number of secure MAC addresses is 1.

#### Command Modes

Interface configuration (config-if)

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

#### Usage Guidelines

The maximum number of secure MAC addresses that you can configure on a device is set by the maximum number of available MAC addresses allowed in the system. This number is determined by the active Switch Database Management (SDM) template. See the `sdm prefer` command. This number represents the total of available MAC addresses, including those used for other Layer 2 functions and any other secure MAC addresses configured on interfaces.

A secure port has the following limitations:

- A secure port can be an access port or a trunk port; it cannot be a dynamic access port.
- A secure port cannot be a routed port.
- A secure port cannot be a protected port.
- A secure port cannot be a destination port for Switched Port Analyzer (SPAN).
- A secure port cannot belong to a Gigabit or 10-Gigabit EtherChannel port group.
- When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to two. When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN, but is not learned on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the Cisco IP phone.

Voice VLAN is supported only on access ports and not on trunk ports.

- When you enter a maximum secure address value for an interface, if the new value is greater than the previous value, the new value overrides the previously configured value. If the new value is less than the previous value and the number of configured secure addresses on the interface exceeds the new value, the command is rejected.

Setting a maximum number of addresses to one and configuring the MAC address of an attached device ensures that the device has the full bandwidth of the port.

When you enter a maximum secure address value for an interface, this occurs:

- If the new value is greater than the previous value, the new value overrides the previously configured value.
- If the new value is less than the previous value and the number of configured secure addresses on the interface exceeds the new value, the command is rejected.

You can verify your settings by using the `show port-security` command.

This example shows how to enable port security on a port and to set the maximum number of secure addresses to 5. The violation mode is the default, and no secure MAC addresses are configured.

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 2/0/2
Device(config-if)# switchport mode access
Device(config-if)# switchport port-security
Device(config-if)# switchport port-security maximum 5
Device(config-if)# end
```
switchport port-security violation

To configure secure MAC address violation mode or the action to be taken if port security is violated, use the `switchport port-security violation` command in interface configuration mode. To return to the default settings, use the `no` form of this command.

```
switchport port-security violation {protect | restrict | shutdown | shutdown vlan}
no switchport port-security violation {protect | restrict | shutdown | shutdown vlan}
```

**Syntax Description**

- **protect**: Sets the security violation protect mode.
- **restrict**: Sets the security violation restrict mode.
- **shutdown**: Sets the security violation shutdown mode.
- **shutdown vlan**: Sets the security violation mode to per-VLAN shutdown.

**Command Default**

The default violation mode is **shutdown**.

**Command Modes**

Interface configuration (config-if)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In the security violation protect mode, when the number of port secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. You are not notified that a security violation has occurred.

We do not recommend configuring the protect mode on a trunk port. The protect mode disables learning when any VLAN reaches its maximum limit, even if the port has not reached its maximum limit.

In the security violation restrict mode, when the number of secure MAC addresses reaches the limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses or increase the number of maximum allowable addresses. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.

In the security violation shutdown mode, the interface is error-disabled when a violation occurs and the port LED turns off. An SNMP trap is sent, a syslog message is logged, and the violation counter increments. When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shutdown` interface configuration commands.

When the security violation mode is set to per-VLAN shutdown, only the VLAN on which the violation occurred is error-disabled.
A secure port has the following limitations:

- A secure port can be an access port or a trunk port; it cannot be a dynamic access port.
- A secure port cannot be a routed port.
- A secure port cannot be a protected port.
- A secure port cannot be a destination port for Switched Port Analyzer (SPAN).
- A secure port cannot belong to a Gigabit or 10-Gigabit EtherChannel port group.

A security violation occurs when the maximum number of secure MAC addresses are in the address table and a station whose MAC address is not in the address table attempts to access the interface or when a station whose MAC address is configured as a secure MAC address on another secure port attempts to access the interface.

When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command. You can manually re-enable the port by entering the `shutdown` and `no shutdown` interface configuration commands or by using the `clear errdisable interface` privileged EXEC command.

You can verify your settings by using the `show port-security` privileged EXEC command.

This example shows how to configure a port to shut down only the VLAN if a MAC security violation occurs:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet2/0/2
Device(config)# switchport port-security violation shutdown vlan
Device(config)# exit
```
**tacacs server**

To configure the TACACS+ server for IPv6 or IPv4 and enter TACACS+ server configuration mode, use the `tacacs server` command in global configuration mode. To remove the configuration, use the `no` form of this command.

```
tacacs server name
no tacacs server
```

**Syntax Description**

- `name`: Name of the private TACACS+ server host.

**Command Default**

No TACACS+ server is configured.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `tacacs server` command configures the TACACS server using the `name` argument and enters TACACS+ server configuration mode. The configuration is applied once you have finished configuration and exited TACACS+ server configuration mode.

**Examples**

The following example shows how to configure the TACACS server using the name server1 and enter TACACS+ server configuration mode to perform further configuration:

```
Device> enable
Device# configure terminal
Device(config)# tacacs server server1
Device(config-server-tacacs)# end
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>address ipv6 (TACACS+)</code></td>
<td>Configures the IPv6 address of the TACACS+ server.</td>
</tr>
<tr>
<td><code>key (TACACS+)</code></td>
<td>Configures the per-server encryption key on the TACACS+ server.</td>
</tr>
<tr>
<td><code>port (TACACS+)</code></td>
<td>Specifies the TCP port to be used for TACACS+ connections.</td>
</tr>
<tr>
<td><code>send-nat-address (TACACS+)</code></td>
<td>Sends a client’s post-NAT address to the TACACS+ server.</td>
</tr>
<tr>
<td><code>single-connection (TACACS+)</code></td>
<td>Enables all TACACS packets to be sent to the same server using a single TCP connection.</td>
</tr>
<tr>
<td><code>timeout(TACACS+)</code></td>
<td>Configures the time to wait for a reply from the specified TACACS server.</td>
</tr>
</tbody>
</table>
tracking (IPv6 snooping)

To override the default tracking policy on a port, use the `tracking` command in IPv6 snooping policy configuration mode.

```
tracking { enable [reachable-lifetime { value | infinite }] | disable [stale-lifetime { value | infinite }] }
```

### Syntax Description

- **enable**
  - Enables tracking.

- **reachable-lifetime**
  - (Optional) Specifies the maximum amount of time a reachable entry is considered to be directly or indirectly reachable without proof of reachability.
    - The `reachable-lifetime` keyword can be used only with the `enable` keyword.
    - Use of the `reachable-lifetime` keyword overrides the global reachable lifetime configured by the `ipv6 neighbor binding reachable-lifetime` command.

  - **value**
    - Lifetime value, in seconds. The range is from 1 to 86400, and the default is 300.

  - **infinite**
    - Keeps an entry in a reachable or stale state for an infinite amount of time.

- **disable**
  - Disables tracking.

- **stale-lifetime**
  - (Optional) Keeps the time entry in a stale state, which overwrites the global stale-lifetime configuration.
    - The stale lifetime is 86,400 seconds.
    - The `stale-lifetime` keyword can be used only with the `disable` keyword.
    - Use of the `stale-lifetime` keyword overrides the global stale lifetime configured by the `ipv6 neighbor binding stale-lifetime` command.

### Command Default

The time entry is kept in a reachable state.

### Command Modes

IPv6 snooping configuration (config-ipv6-snooping)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
The **tracking** command overrides the default tracking policy set by the **ipv6 neighbor tracking** command on the port on which this policy applies. This function is useful on trusted ports where, for example, you may not want to track entries but want an entry to stay in the binding table to prevent it from being stolen.

The **reachable-lifetime** keyword is the maximum time an entry will be considered reachable without proof of reachability, either directly through tracking or indirectly through IPv6 snooping. After the **reachable-lifetime** value is reached, the entry is moved to stale. Use of the **reachable-lifetime** keyword with the tracking command overrides the global reachable lifetime configured by the **ipv6 neighbor binding reachable-lifetime** command.

The **stale-lifetime** keyword is the maximum time an entry is kept in the table before it is deleted or the entry is proven to be reachable, either directly or indirectly. Use of the **reachable-lifetime** keyword with the tracking command overrides the global stale lifetime configured by the **ipv6 neighbor binding stale-lifetime** command.

This example shows how to define an IPv6 snooping policy name as policy1 and configures an entry to stay in the binding table for an infinite length of time on a trusted port:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping)# tracking disable stale-lifetime infinite
Device(config-ipv6-snooping)# end
```
trusted-port

To configure a port to become a trusted port, use the `trusted-port` command in IPv6 snooping policy mode or ND inspection policy configuration mode. To disable this function, use the `no` form of this command.

```
trusted-port
no trusted-port
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

No ports are trusted.

**Command Modes**

ND inspection policy configuration (config-nd-inspection)
IPv6 snooping configuration (config-ipv6-snooping)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When the `trusted-port` command is enabled, limited or no verification is performed when messages are received on ports that have this policy. However, to protect against address spoofing, messages are analyzed so that the binding information that they carry can be used to maintain the binding table. Bindings discovered from these ports will be considered more trustworthy than bindings received from ports that are not configured to be trusted.

This example shows how to define an NDP policy name as policy1, and configures the port to be trusted:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 nd inspection policy1
Device(config-nd-inspection)# trusted-port
Device(config-nd-inspection)# end
```

This example shows how to define an IPv6 snooping policy name as policy1, and configures the port to be trusted:

```
Device> enable
Device# configure terminal
Device(config)# ipv6 snooping policy policy1
Device(config-ipv6-snooping)# trusted-port
Device(config-ipv6-snooping)# end
```
username

To establish the username-based authentication system, use the `username` command in global configuration mode. To remove an established username-based authentication, use the `no` form of this command.

```plaintext
username name [aaa attribute list aaa-list-name]
username name [access-class access-list-number]
username name [algorithm-type {md5 | scrypt | sha256}]
username name [autocommand command]
username name [callback-dialstring telephone-number]
username name [callback-line [tty line-number [ending-line-number]]]
username name [callback-rotary rotary-group-number]
username name [common-criteria-policy policy-name]
username name [dnis]
username name [mac]
username name [nocallback-verify]
username name [noescape]
username name [nologger]
username name [{nopassword | password password} | password encryption-type encrypted-password]
username name [one-time {password {0 | 6 | 7 | password} | secret {0 | 5 | 8 | 9 | password}}]
username name [password secret]
username name [privilege level]
username name [secret {0 | 5 | password}]
username name [serial-number]
username name [user-maxlinks number]
username name [view view-name]
no username name
```

### Syntax Description

- `name`: Hostname, server name, user ID, or command name. The `name` argument can be only one word. Blank spaces and quotation marks are not allowed.

- `aaa attribute list`:
  - `aaa-list-name`: (Optional) Uses the specified authentication, authorization, and accounting (AAA) method list.

- `access-class`:
  - `access-list-number`: (Optional) Specifies an outgoing access list that overrides the access list specified in the `access-class` command that is available in line configuration mode. It is used for the duration of the user’s session.

- `algorithm-type`:
  - (Optional) Specifies the algorithm to use for hashing the plaintext secret for the user.
    - `md5`: Encodes the password using the MD5 algorithm.
    - `scrypt`: Encodes the password using the SCRYPT hashing algorithm.
    - `sha256`: Encodes the password using the PBKDF2 hashing algorithm.
<table>
<thead>
<tr>
<th><strong>autocommand command</strong></th>
<th>(Optional) Causes the specified <strong>autocommand</strong> command to be issued automatically after the user logs in. When the specified <strong>autocommand</strong> command is complete, the session is terminated. Because the command can be of any length and can contain embedded spaces, commands using the <strong>autocommand</strong> keyword must be the last option on the line.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>callback-dialstring</strong></td>
<td>(Optional) Permits you to specify a telephone number to pass to the Data Circuit-terminating Equipment (DCE) device; for asynchronous callback only.</td>
</tr>
<tr>
<td><strong>telephone-number</strong></td>
<td></td>
</tr>
<tr>
<td><strong>callback-line line-number</strong></td>
<td>(Optional) Specifies relative number of the terminal line (or the first line in a contiguous group) on which you enable a specific username for callback; for asynchronous callback only. Numbering begins with zero.</td>
</tr>
<tr>
<td><strong>ending-line-number</strong></td>
<td>(Optional) Relative number of the last line in a contiguous group on which you want to enable a specific username for callback. If you omit the keyword (such as <strong>tty</strong>), then line number and ending line number are absolute rather than relative line numbers.</td>
</tr>
<tr>
<td><strong>tty</strong></td>
<td>(Optional) Specifies standard asynchronous line; for asynchronous callback only.</td>
</tr>
<tr>
<td><strong>callback-rotary</strong></td>
<td>(Optional) Permits you to specify a rotary group number on which you want to enable a specific username for callback; for asynchronous callback only. The next available line in the rotary group is selected. Range: 1 to 100.</td>
</tr>
<tr>
<td><strong>rotary-group-number</strong></td>
<td></td>
</tr>
<tr>
<td><strong>common-criteria-policy</strong></td>
<td>(Optional) Specifies the name of the common criteria policy.</td>
</tr>
<tr>
<td><strong>dnis</strong></td>
<td>(Optional) Does not require a password when obtained through the Dialed Number Identification Service (DNIS).</td>
</tr>
<tr>
<td><strong>mac</strong></td>
<td>(Optional) Allows a MAC address to be used as the username for MAC filtering done locally.</td>
</tr>
<tr>
<td><strong>nocallback-verify</strong></td>
<td>(Optional) Specifies that authentication is not required for EXEC callback on the specified line.</td>
</tr>
<tr>
<td><strong>noescape</strong></td>
<td>(Optional) Prevents the user from using an escape character on the host to which that user is connected.</td>
</tr>
<tr>
<td><strong>nohangup</strong></td>
<td>(Optional) Prevents Cisco IOS software from disconnecting the user after an automatic command (set up with the <strong>autocommand</strong> keyword) is run. Instead, the user gets another user EXEC prompt.</td>
</tr>
<tr>
<td><strong>nopassword</strong></td>
<td>(Optional) No password is required for the user to log in. This is usually the most useful keyword to use in combination with the <strong>autocommand</strong> keyword.</td>
</tr>
<tr>
<td><strong>password</strong></td>
<td>(Optional) Specifies a password to access the <strong>name</strong> argument. The password must be from 1 to 25 characters, can contain embedded spaces, and must be the last option specified in the <strong>username</strong> command.</td>
</tr>
<tr>
<td><strong>password</strong></td>
<td>Password that the user enters.</td>
</tr>
</tbody>
</table>

**username**
**encryption-type**

Single-digit number that defines whether the text immediately following the **password** is encrypted, and if so, what type of encryption is used. Defined encryption types are 0, which means that the text immediately following the **password** is not encrypted, and 6 and 7, which means that the text is encrypted using a Cisco-defined encryption algorithm.

<table>
<thead>
<tr>
<th>encryption-type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Specifies that an unencrypted password or secret (depending on the configuration) follows.</td>
</tr>
<tr>
<td>6</td>
<td>Specifies that an encrypt password follows.</td>
</tr>
<tr>
<td>7</td>
<td>Specifies that a hidden password follows.</td>
</tr>
<tr>
<td>5</td>
<td>Specifies that a MD5 HASHED secret follows.</td>
</tr>
<tr>
<td>8</td>
<td>Specifies that a PBKDF2 HASHED secret follows.</td>
</tr>
<tr>
<td>9</td>
<td>Specifies that a SCRYPT HASHED secret follows.</td>
</tr>
</tbody>
</table>

**encrypted-password**

Encrypted password that the user enters.

**one-time**

(Optional) Specifies that the username and password is valid for only one time. This configuration is used to prevent default credentials from remaining in user configurations.

- **0**: Specifies that an unencrypted password or secret (depending on the configuration) follows.
- **6**: Specifies that an encrypt password follows.
- **7**: Specifies that a hidden password follows.
- **5**: Specifies that a MD5 HASHED secret follows.
- **8**: Specifies that a PBKDF2 HASHED secret follows.
- **9**: Specifies that a SCRYPT HASHED secret follows.

**secret**

(Optional) Specifies a secret for the user.

**secret**

For Challenge Handshake Authentication Protocol (CHAP) authentication. Specifies the secret for the local device or the remote device. The secret is encrypted when it is stored on the local device. The secret can consist of any string of up to 11 ASCII characters. There is no limit to the number of username and password combinations that can be specified, allowing any number of remote devices to be authenticated.

**privilege privilege-level**

(Optional) Sets the privilege level for the user. Range: 1 to 15.

**serial-number**

(Optional) Specifies the serial number.

**user-maxlinks number**

(Optional) Specifies the maximum number of inbound links allowed for the user.

**view view-name**

(Optional) Associates a CLI view name, which is specified with the **parser view** command, with the local AAA database; for CLI view only.

**Command Default**

No username-based authentication system is established.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **username** command provides username or password authentication, or both, for login purposes only. Multiple **username** commands can be used to specify options for a single user.
Add a username entry for each remote system with which the local device communicates, and from which it requires authentication. The remote device must have a username entry for the local device. This entry must have the same password as the local device’s entry for that remote device.

This command can be useful for defining usernames that get special treatment. For example, you can use this command to define an *info* username that does not require a password, but connects the user to a general purpose information service.

The *username* command is required as part of the configuration for CHAP. Add a username entry for each remote system from which the local device requires authentication.

To enable the local device to respond to remote CHAP challenges, one *username name* entry must be the same as the *hostname* entry that has already been assigned to the other device. To avoid the situation of a privilege level 1 user entering into a higher privilege level, configure a per-user privilege level other than 1, for example, 0 or 2 through 15. Per-user privilege levels override virtual terminal privilege levels.

**CLI and Lawful Intercept Views**

Both CLI views and lawful intercept views restrict access to specified commands and configuration information. A lawful intercept view allows the user to secure access to lawful intercept commands that are held within the TAP-MIB, which is a special set of SNMP commands that store information about calls and users.

Users who are specified via the *lawful-intercept* keyword are placed in the lawful-intercept view by default if no other privilege level or view name is explicitly specified.

If no value is specified for the *secret* argument, and the *debug serial-interface* command is enabled, an error is displayed when a link is established and the CHAP challenge is not implemented. The CHAP debugging information is available using the *debug ppp negotiation*, *debug serial-interface*, and *debug serial-packet* commands.

### Examples

The following example shows how to implement a service similar to the UNIX *who* command, which can be entered at the login prompt, and lists the current users of the device:

```
Device> enable
Device# configure terminal
Device(config)# username who nopassword nohangup autocommand show users
```

The following example shows how to implement an information service that does not require a password to be used:

```
Device> enable
Device# configure terminal
Device(config)# username info nopassword noescape autocommand telnet nic.ddn.mil
```

The following example shows how to implement an ID that works even if all the TACACS+ servers break:

```
Device> enable
Device# configure terminal
Device(config)# username superuser password superpassword
```

The following example shows how to enable CHAP on interface serial 0 of server_l. It also defines a password for a remote server named server_r.

```
hostname server_l
username server_r password theirsistem
interface serial 0
```
encapsulation ppp
ppp authentication chap

The following is a sample output from the `show running-config` command displaying the passwords that are encrypted:

```
hostname server_l
username server_r password 7 121F0A18
interface serial 0
 encapsulation ppp
 ppp authentication chap
```

The following example shows how a privilege level 1 user is denied access to privilege levels higher than 1:

```
Device> enable
Device# configure terminal
Device(config)# username user privilege 0 password 0 cisco
Device(config)# username user2 privilege 2 password 0 cisco
```

The following example shows how to remove username-based authentication for user2:

```
Device> enable
Device# configure terminal
Device(config)# no username user2
```

## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug ppp negotiation</td>
<td>Displays PPP packets sent during PPP startup, where PPP options are negotiated.</td>
</tr>
<tr>
<td>debug serial-interface</td>
<td>Displays information about a serial connection failure.</td>
</tr>
<tr>
<td>debug serial-packet</td>
<td>Displays more detailed serial interface debugging information than you can obtain using the <code>debug serial interface</code> command.</td>
</tr>
</tbody>
</table>
**vlan access-map**

To create or modify a VLAN map entry for VLAN packet filtering, and change the mode to the VLAN access-map configuration, use the `vlan access-map` command in global configuration mode on the device. To delete a VLAN map entry, use the `no` form of this command.

```
vlan access-map name [number]
no vlan access-map name [number]
```

**Syntax Description**
- `name` Name of the VLAN map.
- `number` (Optional) The sequence number of the map entry that you want to create or modify (0 to 65535). If you are creating a VLAN map and the sequence number is not specified, it is automatically assigned in increments of 10, starting from 10. This number is the sequence to insert to, or delete from, a VLAN access-map entry.

**Command Default**
There are no VLAN map entries and no VLAN maps applied to a VLAN.

**Command Modes**
Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In global configuration mode, use this command to create or modify a VLAN map. This entry changes the mode to VLAN access-map configuration, where you can use the `match` access-map configuration command to specify the access lists for IP or non-IP traffic to match and use the `action` command to set whether a match causes the packet to be forwarded or dropped.

In VLAN access-map configuration mode, these commands are available:

- `action`—Sets the action to be taken (forward or drop).
- `default`—Sets a command to its defaults.
- `exit`—Exits from VLAN access-map configuration mode.
- `match`—Sets the values to match (IP address or MAC address).
- `no`—Negates a command or set its defaults.

When you do not specify an entry number (sequence number), it is added to the end of the map.

There can be only one VLAN map per VLAN and it is applied as packets are received by a VLAN.

You can use the `no vlan access-map name [number]` command with a sequence number to delete a single entry.

Use the `vlan filter` interface configuration command to apply a VLAN map to one or more VLANs.

This example shows how to create a VLAN map named vac1 and apply matching conditions and actions to it. If no other entries already exist in the map, this will be entry 10.
Device> enable
Device# configure terminal
Device(config)# vlan access-map vac1
Device(config-access-map)# match ip address acl1
Device(config-access-map)# action forward
Device(config-access-map)# end

This example shows how to delete VLAN map vac1:

Device> enable
Device# configure terminal
Device(config)# no vlan access-map vac1
Device(config)# exit
To apply a VLAN map to one or more VLANs, use the `vlan filter` command in global configuration mode. Use the `no` form of this command to remove the map.

```
vlan filter mapname vlan-list {list | all}
no vlan filter mapname vlan-list {list | all}
```

**Syntax Description**

- `mapname` Name of the VLAN map entry.
- `vlan-list` Specifies which VLANs to apply the map to.
- `list` The list of one or more VLANs in the form tt, uu-vv, xx, yy-zz, where spaces around commas and dashes are optional. The range is 1 to 4094.
- `all` Adds the map to all VLANs.

**Command Default**

There are no VLAN filters.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To avoid accidentally dropping too many packets and disabling connectivity in the middle of the configuration process, we recommend that you completely define the VLAN access map before applying it to a VLAN.

This example applies VLAN map entry map1 to VLANs 20 and 30:

```
Device> enable
Device# configure terminal
Device(config)# vlan filter map1 vlan-list 20, 30
Device(config)# exit
```

This example shows how to delete VLAN map entry mac1 from VLAN 20:

```
Device> enable
Device# configure terminal
Device(config)# no vlan filter map1 vlan-list 20
Device(config)# exit
```

You can verify your settings by entering the `show vlan filter` command.
**vlan group**

To create or modify a VLAN group, use the `vlan group` command in global configuration mode. To remove a VLAN list from the VLAN group, use the `no` form of this command.

```
vlan group group-name vlan-list vlan-list
no vlan group group-name vlan-list vlan-list
```

**Syntax Description**

- `group-name`: Name of the VLAN group. The group name may contain up to 32 characters and must begin with a letter.
- `vlan-list`: Specifies one or more VLANs to be added to the VLAN group. The `vlan-list` argument can be a single VLAN ID, a list of VLAN IDs, or VLAN ID range. Multiple entries are separated by a hyphen (-) or a comma (,).

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the named VLAN group does not exist, the `vlan group` command creates the group and maps the specified VLAN list to the group. If the named VLAN group exists, the specified VLAN list is mapped to the group.

The `no` form of the `vlan group` command removes the specified VLAN list from the VLAN group. When you remove the last VLAN from the VLAN group, the VLAN group is deleted.

A maximum of 100 VLAN groups can be configured, and a maximum of 4094 VLANs can be mapped to a VLAN group.

This example shows how to map VLANs 7 through 9 and 11 to a VLAN group:

```
Device> enable
Device# configure terminal
Device(config)# vlan group group1 vlan-list 7-9,11
Device(config)# exit
```

This example shows how to remove VLAN 7 from the VLAN group:

```
Device> enable
Device# configure terminal
Device(config)# no vlan group group1 vlan-list 7
Device(config)# exit
```
PART X

Stack Manager and High Availability

• Stack Manager and High Availability Commands, on page 1173
Stack Manager and High Availability Commands

- debug platform stack-manager, on page 1174
- main-cpu, on page 1175
- mode sso, on page 1176
- policy config-sync prc reload, on page 1177
- redundancy, on page 1178
- redundancy config-sync mismatched-commands, on page 1179
- redundancy force-switchover, on page 1181
- redundancy reload, on page 1182
- reload, on page 1183
- session, on page 1184
- show redundancy, on page 1185
- show redundancy config-sync, on page 1189
- show switch, on page 1191
- show switch stack-mode, on page 1194
- stack-mac persistent timer, on page 1195
- stack-mac update force, on page 1196
- standby console enable, on page 1197
- switch clear stack-mode, on page 1198
- switch switch-number role, on page 1199
- switch stack port, on page 1200
- switch priority, on page 1201
- switch provision, on page 1202
- switch renumber, on page 1204
- switch renumber, on page 1205
**debug platform stack-manager**

To enable debugging of the stack manager software, use the `debug platform stack-manager` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
depbug platform stack-manager {level1 | level2 | level3 | sdp | serviceability | sim | ssm | trace} [{switch switch-number}]
nodelbug platform stack-manager {level1 | level2 | level3 | sdp | serviceability | sim | ssm | trace} [{switch switch-number}]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>level1</td>
<td>Enables level 1 debug logs.</td>
</tr>
<tr>
<td>level2</td>
<td>Enables level 2 debug logs.</td>
</tr>
<tr>
<td>level3</td>
<td>Enables level 3 debug logs.</td>
</tr>
<tr>
<td>sdp</td>
<td>Displays the Stack Discovery Protocol (SDP) debug messages.</td>
</tr>
<tr>
<td>serviceability</td>
<td>Displays stack manager serviceability debug messages.</td>
</tr>
<tr>
<td>sim</td>
<td>Displays the stack information module debug messages.</td>
</tr>
<tr>
<td>ssm</td>
<td>Displays the stack state-machine debug messages.</td>
</tr>
<tr>
<td>trace</td>
<td>Traces the stack manager entry and exit debug messages.</td>
</tr>
<tr>
<td>switch switch-number</td>
<td>(Optional) Specifies the stack member number to enable debugging on. The range is 1 to 9.</td>
</tr>
</tbody>
</table>

### Command Default

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

This command is supported only on stacking-capable switches.

The `undebug platform stack-manager` command is the same as the `no debug platform stack-manager` command.
main-cpu

To enter the redundancy main configuration submode and enable the standby, use the main-cpu command in redundancy configuration mode.

**main-cpu**

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command Modes**
Redundancy configuration (config-red)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
From the redundancy main configuration submode, use the standby console enable command to enable the standby.

This example shows how to enter the redundancy main configuration submode and enable the standby:

```
Device(config)# redundancy
Device(config-red)# main-cpu
Device(config-r-mc)# standby console enable
Device#`
```
mode sso

To set the redundancy mode to stateful switchover (SSO), use the `mode sso` command in redundancy configuration mode.

```plaintext
mode sso
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command Modes**

Redundancy configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `mode sso` command can be entered only from within redundancy configuration mode.

Follow these guidelines when configuring your system to SSO mode:

- You must use identical Cisco IOS images on the to support SSO mode. Redundancy may not work due to differences between the Cisco IOS releases.

- If you perform an online insertion and removal (OIR) of the module, the switch resets during the stateful switchover and the port states are restarted only if the module is in a transient state (any state other than Ready).

- The forwarding information base (FIB) tables are cleared on a switchover. Routed traffic is interrupted until route tables reconverge.

This example shows how to set the redundancy mode to SSO:

```plaintext
Device(config)# redundancy
Device(config-red)# mode sso
Device(config-red)#
```
**policy config-sync prc reload**

To reload the standby if a parser return code (PRC) failure occurs during configuration synchronization, use the `policy config-sync reload` command in redundancy configuration mode. To specify that the standby is not reloaded if a parser return code (PRC) failure occurs, use the `no` form of this command.

```
policy config-sync {bulk | lbl} prc reload
no policy config-sync {bulk | lbl} prc reload
```

**Syntax Description**
- `bulk` Specifies bulk configuration mode.
- `lbl` Specifies line-by-line (lbl) configuration mode.

**Command Default**
The command is enabled by default.

**Command Modes**
Redundancy configuration (config-red)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to specify that the standby is not reloaded if a parser return code (PRC) failure occurs during configuration synchronization:

```
Device(config-red)# no policy config-sync bulk prc reload
```
redundancy

To enter redundancy configuration mode, use the `redundancy` command in global configuration mode.

```
redundancy
```

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command Modes**
Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisco IOS XE Fuji 16.9.2</td>
</tr>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The redundancy configuration mode is used to enter the main CPU submode, which is used to enable the standby.

To enter the main CPU submode, use the `main-cpu` command while in redundancy configuration mode.

From the main CPU submode, use the `standby console enable` command to enable the standby.

Use the `exit` command to exit redundancy configuration mode.

This example shows how to enter redundancy configuration mode:
```
(config)# redundancy
(config-red)#
```

This example shows how to enter the main CPU submode:
```
(config)# redundancy
(config-red)# main-cpu
(config-r-mc)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show redundancy</td>
<td>Displays redundancy facility information.</td>
</tr>
</tbody>
</table>
**redundancy config-sync mismatched-commands**

To allow the standby switch to join the stack if a configuration mismatch occurs between the active and standby switches, use the `redundancy config-sync mismatched-commands` command in privileged EXEC mode.

```
redundancy config-sync {ignore | validate} mismatched-commands
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ignore</td>
<td>Ignores the mismatched command list.</td>
</tr>
<tr>
<td>validate</td>
<td>Revalidates the mismatched command list with the modified running-configuration.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the command syntax check in the running configuration of the active switch fails while the standby switch is booting, use the `redundancy config-sync mismatched-commands` command to display the Mismatched Command List (MCL) on the active switch and to reboot the standby switch.

The following is a log entry example for mismatched commands:

```
00:06:31: Config Sync: Bulk-sync failure due to Servicing Incompatibility. Please check full list of mismatched commands via:
show redundancy config-sync failures mcl
00:06:31: Config Sync: Starting lines from MCL file:
interface GigabitEthernet7/7
 ! <submode> "interface"
 - ip address 192.0.2.0 255.255.255.0
 ! </submode> "interface"
```

To display all mismatched commands, use the `show redundancy config-sync failures mcl` command.

To clean the MCL, follow these steps:

1. Remove all mismatched commands from the running configuration of the active switch.
2. Revalidate the MCL with a modified running configuration by using the `redundancy config-sync validate mismatched-commands` command.
3. Reload the standby switch.

You can ignore the MCL by doing the following:

1. Enter the `redundancy config-sync ignore mismatched-commands` command.
2. Reload the standby switch; the system changes to SSO mode.
If you ignore the mismatched commands, the out-of-sync configuration at the active switch and the standby switch still exists.

3. Verify the ignored MCL with the `show redundancy config-sync ignored mcl` command.

If SSO mode cannot be established between the active and standby switches because of an incompatibility in the configuration file, a mismatched command list (MCL) is generated at the active switch and a reload into route processor redundancy (RPR) mode is forced for the standby switch.

This example shows how to revalidate the mismatched command list with the modified configuration:

```
redundancy config-sync validate mismatched-commands
```
**redundancy force-switchover**

To force a switchover from the active switch to the standby switch, use the `redundancy force-switchover` command in privileged EXEC mode on a switch stack.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `redundancy force-switchover` command to manually switch over to the redundant switch. The redundant switch becomes the new active switch that runs the Cisco IOS image, and the modules are reset to their default settings.

The old active switch reboots with the new image and joins the stack.

If you use the `redundancy force-switchover` command on the active switch, the switchports on the active switch to go down.

If you use this command on a switch that is in a partial ring stack, the following warning message appears:

```bash
redundancy force-switchover
Stack is in Half ring setup; Reloading a switch might cause stack split
This will reload the active unit and force switchover to standby[confirm]
```

This example shows how to manually switch over from the active to the standby supervisor engine:

```bash
redundancy force-switchover
```

# Stack Manager and High Availability

---

**redunancy force-switchover**

To force a switchover from the active switch to the standby switch, use the `redundancy force-switchover` command in privileged EXEC mode on a switch stack.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `redundancy force-switchover` command to manually switch over to the redundant switch. The redundant switch becomes the new active switch that runs the Cisco IOS image, and the modules are reset to their default settings.

The old active switch reboots with the new image and joins the stack.

If you use the `redundancy force-switchover` command on the active switch, the switchports on the active switch to go down.

If you use this command on a switch that is in a partial ring stack, the following warning message appears:

```bash
redundancy force-switchover
Stack is in Half ring setup; Reloading a switch might cause stack split
This will reload the active unit and force switchover to standby[confirm]
```

This example shows how to manually switch over from the active to the standby supervisor engine:

```bash
redundancy force-switchover
```
redundancy reload

To force a reload of one or all of the switches in the stack, use the **redundancy reload** command in privileged EXEC mode.

```
redundancy reload {peer | shelf}
```

**Syntax Description**

- **peer**  Reloads the peer unit.
- **shelf**  Reboots all switches in the stack.

**Command Default**

None

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Fuji 16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Before using this command, see the “Performing a Software Upgrade” section of the for additional information.

Use the **redundancy reload shelf** command to reboot all the switches in the stack.

This example shows how to manually reload all switches in the stack:

```
redundancy reload shelf
#```

To reload the and to apply a configuration change, use the `reload` command in privileged EXEC mode.

```
reload [{/noverify | /verify}] [{LINE | at | cancel | in}]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/noverify</td>
<td>(Optional) Specifies to not verify the file signature before the reload.</td>
</tr>
<tr>
<td>/verify</td>
<td>(Optional) Verifies the file signature before the reload.</td>
</tr>
<tr>
<td>LINE</td>
<td>(Optional) Reason for the reload.</td>
</tr>
<tr>
<td>at</td>
<td>(Optional) Specifies the time in hh:mm for the reload to occur.</td>
</tr>
<tr>
<td>cancel</td>
<td>(Optional) Cancels the pending reload.</td>
</tr>
<tr>
<td>in</td>
<td>(Optional) Specifies a time interval for reloads to occur.</td>
</tr>
</tbody>
</table>

Command Default

Immediately reloads the and and puts a configuration change into effect.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
To access the diagnostic shell of a specific stack member or to access the Cisco IOS prompt of the standby use the session command in privileged EXEC mode on the active.

```plaintext
session {standby ios | switch [stack-member-number]}
```

Syntax Description

- `standby ios`:
 - Accesses the Cisco IOS prompt of the standby.
 - **Note**: You cannot configure the standby using this command.

- `switch`:
 - Accesses the diagnostic shell of a stack member.

- `stack-member-number` (Optional)
 - Stack member number to access from the active switch. The range is 1 to 8.

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you access the Cisco IOS prompt on the standby, `-stby` is appended to the system prompt. You cannot configure the standby at the `-stby>` prompt.

When you access the diagnostic shell of a stack member, `(diag)` is appended to the system prompt.

Examples

This example shows how to access stack member 3:

```plaintext
# session switch 3
(diag)>
```

This example shows how to access the standby:

```plaintext
# session standby ios
-stby>
```
show redundancy

To display redundancy facility information, use the **show redundancy** command in privileged EXEC mode.

```
show redundancy [{clients | config-sync | counters | history  [{reload | reverse}]} | {clients | counters} | states | switchover | history  [domain default]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clients</td>
<td>(Optional) Displays information about the redundancy facility client.</td>
</tr>
<tr>
<td>config-sync</td>
<td>(Optional) Displays a configuration synchronization failure or the ignored mismatched command list (MCL).</td>
</tr>
<tr>
<td>counters</td>
<td>(Optional) Displays information about the redundancy facility counter.</td>
</tr>
<tr>
<td>history</td>
<td>(Optional) Displays a log of past status and related information for the redundancy facility.</td>
</tr>
<tr>
<td>history reload</td>
<td>(Optional) Displays a log of past reload information for the redundancy facility.</td>
</tr>
<tr>
<td>history reverse</td>
<td>(Optional) Displays a reverse log of past status and related information for the redundancy facility.</td>
</tr>
<tr>
<td>clients</td>
<td>Displays all redundancy facility clients in the specified slave.</td>
</tr>
<tr>
<td>counters</td>
<td>Displays all counters in the specified slave.</td>
</tr>
<tr>
<td>states</td>
<td>(Optional) Displays information about the redundancy facility state, such as disabled, initialization, standby or active.</td>
</tr>
<tr>
<td>switchover history</td>
<td>(Optional) Displays information about the redundancy facility switchover history.</td>
</tr>
<tr>
<td>domain default</td>
<td>(Optional) Displays the default domain as the domain to display switchover history for.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to display information about the redundancy facility:

```
Device# show redundancy

Redundant System Information :
--------------------------------
 Available system uptime - 1 hour, 25 minutes
 Switchovers system experienced - 0
 Standby failures - 0
 Last switchover reason - not known
```
Hardware Mode = Duplex
Configured Redundancy Mode = SSO
Operating Redundancy Mode = SSO
Maintenance Mode = Disabled
Communications = Up

Current Processor Information:

Active Location = slot 1
Current Software state = ACTIVE
Uptime in current state = 1 hour, 25 minutes
Image Version = Cisco IOS Software, Catalyst L3 Switch Software (CAT9K_LITE_IOSXE), Version 16.9.x
Copyright (c) 1986-2018 by Cisco Systems, Inc.
Compiled Sat 29-S
Configuration register = 0x102

Peer Processor Information:

Standby Location = slot 3
Current Software state = STANDBY HOT
Uptime in current state = 1 hour, 22 minutes
Image Version = Cisco IOS Software, Catalyst L3 Switch Software (CAT9K_LITE_IOSXE), Version 16.9.x
Copyright (c) 1986-2018 by Cisco Systems, Inc.
Compiled Sat 29-S
Configuration register = 0x102

Device#

This example shows how to display redundancy facility client information:

Device# show redundancy clients

Group ID = 1
clientID = 29 clientSeq = 60 Redundancy Mode RF
clientID = 139 clientSeq = 62 IfIndex
clientID = 25 clientSeq = 71 CHKPT RF
clientID = 10001 clientSeq = 85 QEMU Platform RF
clientID = 77 clientSeq = 87 Event Manager
clientID = 1340 clientSeq = 104 RP Platform RF
clientID = 1501 clientSeq = 105 CWAN HA
clientID = 78 clientSeq = 109 TSPTUN HA
clientID = 305 clientSeq = 110 Multicast ISSU Consolidation RF
clientID = 304 clientSeq = 111 IP multicast RF Client
clientID = 22 clientSeq = 112 Network RF Client
clientID = 88 clientSeq = 113 HSRP
clientID = 114 clientSeq = 114 GLBP
clientID = 225 clientSeq = 115 VRRP
clientID = 4700 clientSeq = 118 COND_DEBUG RF
clientID = 1341 clientSeq = 119 IOSXE DPIIDX
clientID = 1505 clientSeq = 120 IOSXE SPA TSM
clientID = 75 clientSeq = 130 Tableid HA
clientID = 501 clientSeq = 137 LAN-Switch VTP VLAN

<output truncated>

The output displays the following information:

- `clientID` displays the client’s ID number.
- `clientSeq` displays the client’s notification sequence number.
- Current redundancy facility state.
This example shows how to display the redundancy facility counter information:

Device# show redundancy counters

Redundancy Facility OMs
 comm link up = 0
 comm link down = 0
 invalid client tx = 0
 null tx by client = 0
 tx failures = 0
 tx msg length invalid = 0
 client not rxing msgs = 0
 rx peer msg routing errors = 0
 null peer msg rx = 0
 errored peer msg rx = 0
 buffers tx = 135884
 tx buffers unavailable = 0
 buffers rx = 135109
 buffer release errors = 0
 duplicate client registers = 0
 failed to register client = 0
 Invalid client syncs = 0

Device#

This example shows how to display redundancy facility history information:

Device# show redundancy history

00:00:04 client added: Redundancy Mode RF(29) seq=60
00:00:04 client added: IfIndex(139) seq=62
00:00:04 client added: CHKPT RF(25) seq=71
00:00:04 client added: QEMU Platform RF(10001) seq=85
00:00:04 client added: Event Manager(77) seq=87
00:00:04 client added: RP Platform RF(1340) seq=104
00:00:04 client added: CWAN HA(1501) seq=105
00:00:04 client added: Network RF Client(22) seq=112
00:00:04 client added: IOSXE SPA TSM(1505) seq=120
00:00:04 client added: LAN-Switch VTP VLAN(501) seq=137
00:00:04 client added: XDR RRP RF Client(71) seq=139
00:00:04 client added: CEF RRP RF Client(24) seq=140
00:00:04 client added: MFIB RRP RF Client(306) seq=150
00:00:04 client added: RFS RF(520) seq=163
00:00:04 client added: klib(33014) seq=167
00:00:04 client added: Config Sync RF client(5) seq=168
00:00:04 client added: NGWC FEC RF client(10007) seq=173
00:00:04 client added: LAN-Switch Port Manager(502) seq=190
00:00:04 client added: Access Tunnel(530) seq=192
00:00:04 client added: Mac address Table Manager(519) seq=193
00:00:04 client added: DHCFC(100) seq=238
00:00:04 client added: DHCFD(101) seq=239
00:00:04 client added: SNMP RF Client(34) seq=251
00:00:04 client added: CWAN APS HA RF Client(1502) seq=252
00:00:04 client added: History RF Client(35) seq=261

<output truncated>

This example shows how to display information about the redundancy facility state:
Device# `show redundancy states`

my state = 13 -ACTIVE
peer state = 8 -STANDBY HOT
 Mode = Duplex
 Unit = Primary
 Unit ID = 5

Redundancy Mode (Operational) = sso
Redundancy Mode (Configured) = sso
Redundancy State = sso
 Maintenance Mode = Disabled
 Manual Swact = enabled
 Communications = Up

 client count = 115
 client_notification_TMR = 30000 milliseconds
 RF debug mask = 0x0

Device#
show redundancy config-sync

To display a configuration synchronization failure or the ignored mismatched command list (MCL), if any, use the `show redundancy config-sync` command in EXEC mode.

```
show redundancy config-sync failures {failures bem | mcl | prc} | ignored failures mcl
```

Syntax Description
- **failures** Displays MCL entries or best effort method (BEM)/Parser Return Code (PRC) failures.
- **bem** Displays a BEM failed command list, and forces the standby to reboot.
- **mcl** Displays commands that exist in the switch’s running configuration but are not supported by the image on the standby, and forces the standby to reboot.
- **prc** Displays a PRC failed command list and forces the standby to reboot.
- **ignored failures mcl** Displays the ignored MCL failures.

Command Default
None

Command Modes
- User EXEC
- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When two versions of Cisco IOS images are involved, the command sets supported by two images might differ. If any of those mismatched commands are executed on the active, the standby might not recognize those commands, which causes a configuration mismatch condition. If the syntax check for the command fails on the standby during a bulk synchronization, the command is moved into the MCL and the standby is reset. To display all the mismatched commands, use the `show redundancy config-sync failures mcl` command.

To clean the MCL, follow these steps:

1. Remove all mismatched commands from the active’s running configuration.
2. Revalidate the MCL with a modified running configuration by using the `redundancy config-sync validate mismatched-commands` command.
3. Reload the standby.

Alternatively, you could ignore the MCL by following these steps:

1. Enter the `redundancy config-sync ignore mismatched-commands` command.
2. Reload the standby; the system transitions to SSO mode.
If you ignore the mismatched commands, the out-of-synchronization configuration on the active and the standby still exists.

3. You can verify the ignored MCL with the `show redundancy config-sync ignored mcl` command.

Each command sets a return code in the action function that implements the command. This return code indicates whether or not the command successfully executes. The active maintains the PRC after executing a command. The standby executes the command and sends the PRC back to the active. A PRC failure occurs if these two PRCs do not match. If a PRC error occurs at the standby either during bulk synchronization or line-by-line (LBL) synchronization, the standby is reset. To display all PRC failures, use the `show redundancy config-sync failures prc` command.

To display best effort method (BEM) errors, use the `show redundancy config-sync failures bem` command.

This example shows how to display the BEM failures:

```
Device> show redundancy config-sync failures bem
BEM Failed Command List
-----------------------
The list is Empty
```

This example shows how to display the MCL failures:

```
Device> show redundancy config-sync failures mcl
Mismatched Command List
-----------------------
The list is Empty
```

This example shows how to display the PRC failures:

```
Device# show redundancy config-sync failures prc
PRC Failed Command List
-----------------------
The list is Empty
```
show switch

To display information that is related to the stack member or the switch stack, use the `show switch` command in EXEC mode.

```
show switch [{stack-member-number | detail | neighbors | stack-ports [{summary}]}
```

Syntax Description

- `stack-member-number` (Optional) Number of the stack member. The range is 1 to 9.
- `detail` (Optional) Displays detailed information about the stack ring.
- `neighbors` (Optional) Displays the neighbors of the entire switch stack.
- `stack-ports` (Optional) Displays port information for the entire switch stack.
- `summary` (Optional) Displays the stack cable length, the stack link status, and the loopback status.

Command Default

None

Command Modes

User EXEC
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

This command displays these states:

- **Initializing**—A switch has been just added to the stack and it has not completed the basic initialization to go to the ready state.
- **HA Sync in Progress**—After the standby is elected, the corresponding switch remains in this state until the synchronization is completed.
- **Syncing**—A switch that is added to an already existing stack remains in this state until the switch add sequence is complete.
- **Ready**—The member has completed loading the system- and interface-level configurations and can forward traffic.
- **V-Mismatch**—A switch in version mismatch mode. Version-mismatch mode is when a switch that joins the stack has a software version that is incompatible with the active switch.
- **Provisioned**—The state of a preconfigured switch before it becomes an active member of a switch stack. The MAC address and the priority number in the display are always 0 for the provisioned switch.
- **Unprovisioned**—The state of a switch when the provisioned switch number was unprovisioned using the `no switch switch-number provision` command.
• Removed—A switch that was present in the stack was removed using the `reload slot` command.

• Sync not started—When multiple switches are added to an existing stack together, the active switch adds them one by one. The switch that is being added is in the Syncing state. The switches that have not been added yet are in the Sync not started state.

• Lic-Mismatch—A switch has a different license level than the active switch.

A typical state transition for a stack member (including an active switch) booting up is Waiting > Initializing > Ready.

A typical state transition for a stack member in version mismatch (VM) mode is Waiting > Ver Mismatch.

You can use the `show switch` command to identify whether the provisioned switch exists in the switch stack. The `show running-config` and the `show startup-config` privileged EXEC commands do not provide this information.

The display also includes stack MAC-persistency wait-time if persistent MAC address is enabled.

Examples

This example shows how to display summary stack information:

This example shows how to display detailed stack information:

This example shows how to display the member 6 summary information:

```bash
# show switch 6
Switch# Role Mac Address Priority State
-------- ------ -------- --------
6 Member 0003.e31a.1e00 1 Ready
```

This example shows how to display the neighbor information for a stack:

```bash
# show switch neighbors
Switch # Port A Port B
-------- ------ ------
6 None    8
8 6       None
```

This example shows how to display stack-port information:

```bash
# show switch stack-ports
Switch # Port A Port B
-------- ------ ------
6 Down    Ok
8 Ok      Down
```

This example shows the output for the `show switch stack-ports summary` command. The table that follows describes the fields in the display.

```bash
# show switch stack-ports summary
Switch#/ Port# Status Stack Neighbor Cable Link Link Sync Changes In
Port# Port Status Length OK Active OK OK To LinkOK Loopback
-------- ------ ------- -------- -------- ------- ----- ------ ---- -------- --------
1/1 Down 2 50 cm No NO No 10 No
1/2 Ok 3 1 m Yes Yes Yes 0 No
2/1 Ok 5 3 m Yes Yes Yes 0 No
2/2 Down 1 50 cm No No No 10 No
3/1 Ok 1 1 m Yes Yes Yes 0 No
3/2 Ok 5 1 m Yes Yes Yes 0 No
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
Table 138: Show switch stack-ports summary Command Output

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch#/Port#</td>
<td>Member number and its stack port number.</td>
</tr>
</tbody>
</table>
| **Stack Port Status** | Status of the stack port.
 - Down—A cable is detected, but either no connected neighbor is up, or the stack port is disabled.
 - OK—A cable is detected, and the connected neighbor is up. |
| **Neighbor** | Switch number of the active member at the other end of the stack cable. |
| **Cable Length** | Valid lengths are 50 cm, 1 m, or 3 m.
 If the switch cannot detect the cable length, the value is *no cable*. The cable might not be connected, or the link might be unreliable. |
| **Link OK** | Whether the stack cable is connected and functional. There may or may not be a neighbor connected on the other end.
 The *link partner* is a stack port on a neighbor switch.
 - No—There is no stack cable connected to this port or the stack cable is not functional.
 - Yes—There is a functional stack cable connected to this port. |
| **Link Active** | Whether a neighbor is connected on the other end of the stack cable. |
| |
 - No—No neighbor is detected on the other end. The port cannot send traffic over this link.
 - Yes—A neighbor is detected on the other end. The port can send traffic over this link. |
| **Sync OK** | Whether the link partner sends valid protocol messages to the stack port. |
| |
 - No—The link partner does not send valid protocol messages to the stack port.
 - Yes—The link partner sends valid protocol messages to the port. |
| **# Changes to LinkOK** | The relative stability of the link.
 If a large number of changes occur in a short period of time, link flapping can occur. |
| **In Loopback** | Whether a stack cable is attached to a stack port on the member. |
| |
 - No—At least one stack port on the member has an attached stack cable.
 - Yes—None of the stack ports on the member has an attached stack cable. |
show switch stack-mode

To display and verify the current stack mode on a device, use the show switch stack-mode command in privileged EXEC mode.

show switch stack-mode

Command Default
None

Command Modes
privileged EXEC

Command History

Release Modification
Cisco IOS XE Fuji 16.9.1 This command was introduced.

Usage Guidelines

The show switch stack-mode command displays detailed status of the currently running stack mode. Fields displayed for each one of the devices in the stack include: the role of the device, its MAC address, the stack mode after reboot, the current stack mode, and so on.

Device# show switch stack-mode
Switch Role Mac Address Version Mode Configured State

1 Member 3c5e.c357.c880 1+1' Active' Ready
*2 Active 547c.69de.cd00 V05 1+1' Standby' Ready
3 Member 547c.6965.cf80 V05 1+1' Member' Ready

The Mode field indicates the current stack mode

The Configured field refers to the device state expected after a reboot.

Single quotation marks (') indicate that the stack mode has been changed.
stack-mac persistent timer

To enable the persistent MAC address feature, use the `stack-mac persistent timer` command in global configuration mode on the switch stack or on a standalone switch. To disable the persistent MAC address feature, use the `no` form of this command.

```
stack-mac persistent timer [{0|time-value}]
no stack-mac persistent timer
```

Syntax Description

- `0` (Optional) Continues using the MAC address of the current active switch indefinitely, even after a new active switch takes over.

- `time-value` (Optional) Time period in minutes before the stack MAC address changes to that of the new active switch. The range is 1 to 60 minutes.

Command Default

Persistent MAC address is disabled. The MAC address of the stack is always that of the first active switch.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, the stack MAC address will always be the MAC address of the first active switch, even if a new active switch takes over. The same behavior occurs when you enter the `stack-mac persistent timer` command or the `stack-mac persistent timer 0` command.

When you enter the `stack-mac persistent timer` command with a `time-value`, the stack MAC address will change to that of the new active switch after the period of time that you entered whenever a new switch becomes the active switch. If the previous active switch rejoins the stack during that time period, the stack retains its MAC address for as long as the switch that has that MAC address is in the stack.

If the whole stack reloads the MAC address of the active switch is the stack MAC address.

Note

If you do not change the stack MAC address, Layer 3 interface flapping does not occur. This also means that a foreign MAC address (a MAC address that does not belong to any of the switches in the stack) could be the stack MAC address. If the switch with this foreign MAC address joins another stack as the active switch, two stacks will have the same stack MAC address. You must use the `stack-mac update force` command to resolve the conflict.

Examples

This example shows how to enable a persistent MAC address:

```
(config)# stack-mac persistent timer
```

You can verify your settings by entering the `show running-config` privileged EXEC command. If enabled, `stack-mac persistent timer` is shown in the output.
stack-mac update force

To update the stack MAC address to the MAC address of the active switch, use the `stack-mac update force` command in EXEC mode on the active switch.

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command Modes
- User EXEC
- Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
By default, the stack MAC address is not changed to the MAC address of the new active switch during a high availability (HA) failover. Use the `stack-mac update force` command to force the stack MAC address to change to the MAC address of the new active switch.

If the switch with the same MAC address as the stack MAC address is currently a member of the stack, the `stack-mac update force` command has no effect. (It does not change the stack MAC address to the MAC address of the active switch.)

Note
If you do not change the stack MAC address, Layer 3 interface flapping does not occur. It also means that a foreign MAC address (a MAC address that does not belong to any of the switches in the stack) could be the stack MAC address. If the switch with this foreign MAC address joins another stack as the active switch, two stacks will have the same stack MAC address. You must use the `stack-mac update force` command to resolve the conflict.

This example shows how to update the stack MAC address to the MAC address of the active switch:
```
> stack-mac update force
>```

You can verify your settings by entering the `show switch` privileged EXEC command. The stack MAC address includes whether the MAC address is local or foreign.
standby console enable

To enable access to the standby console, use the `standby console enable` command in redundancy main configuration submode. To disable access to the standby console, use the `no` form of this command.

```
standby console enable
no standby console enable
```

Syntax Description

This command has no arguments or keywords.

Command Default

Access to the standby console is disabled.

Command Modes

Redundancy main configuration submode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is used to collect and review specific data about the standby console. The command is useful primarily for Cisco technical support representatives troubleshooting the standby console.

This example shows how to enter the redundancy main configuration submode and enable access to the standby console:

```
Device(config)# redundancy
Device(config-red)# main-cpu
Device(config-r-mc)# standby console enable
Device(config-r-mc)#
```
switch clear stack-mode

To change the stack mode to N+1 and remove the active and standby assignments of the 1:1 mode, use the switch clear stack-mode command in privileged EXEC mode.

**switch clear stack-mode**

**Command Default**

None

**Command Modes**

privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to disable the 1:1 redundancy mode and set the stack to N+1 mode.

```
Device> enable
Device# switch clear stack-mode
WARNING: Clearing the chassis HA configuration will result in the chassis coming up in Stand Alone mode after reboot. The HA configuration will remain the same on other chassis. Do you wish to continue? [y/n]? [yes]:
```
switch switch-number role

To change the role of the device in the stack to either active or standby, use the `switch switch-number role` command in privileged EXEC mode.

```
switch switch-number role {standby | active}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch-number</td>
<td>Stack member number.</td>
</tr>
<tr>
<td>standby</td>
<td>Designates the device as Standby Device for the stack.</td>
</tr>
<tr>
<td>active</td>
<td>Designates the device as Active Device for the stack.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command Modes

privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use this command to set a device to active or standby role in the stack. The other devices in the stack remain as members of the stack.

Changing the role of the device results in redundancy mode being configured to 1:1 mode for the stack. If the configured active or standby device does not boot up, then the stack will not be able to boot.

The following example sets the device number 2 as active device and device number 1 as standby device for the stack.

```
Device> enable
Device# switch 2 role active
WARNING: Changing the switch role may result in redundancy mode being configured to 1:1 mode for this stack. If the configured Active or Standby switch numbers do not boot up, then the stack will not be able to boot. Do you want to continue?[y/n]? : yes

Device# switch 1 role standby
WARNING: Changing the switch role may result in redundancy mode being configured to 1:1 mode for this stack. If the configured Active or Standby switch numbers do not boot up, then the stack will not be able to boot. Do you want to continue?[y/n]? : yes
```
switch stack port

To disable or enable the specified stack port on the member, use the `switch` command in privileged EXEC mode on a stack member.

```
switch stack-member-number stack port port-number {disable | enable}
```

**Syntax Description**

- `stack-member-number` Current stack member number. The range is 1 to 8.
- `stack port port-number` Specifies the stack port on the member. The range is 1 to 2.
- `disable` Disables the specified port.
- `enable` Enables the specified port.

**Command Default**
The stack port is enabled.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A stack is in the full-ring state when all members are connected through the stack ports and are in the ready state.

The stack is in the partial-ring state when the following occurs:

- All members are connected through their stack ports but some are not in the ready state.
- Some members are not connected through the stack ports.

**Note**
Be careful when using the `switch stack-member-number stack port port-number disable` command. When you disable the stack port, the stack operates at half bandwidth.

If you enter the `switch stack-member-number stack port port-number disable` privileged EXEC command and the stack is in the full-ring state, you can disable only one stack port. This message appears:

```
Enabling/disabling a stack port may cause undesired stack changes. Continue?[confirm]
```

If you enter the `switch stack-member-number stack port port-number disable` privileged EXEC command and the stack is in the partial-ring state, you cannot disable the port. This message appears:

```
Disabling stack port not allowed with current stack configuration.
```

**Examples**

This example shows how to disable stack port 2 on member 4:

```
switch 4 stack port 2 disable
```
**switch priority**

To change the stack member priority value, use the `switch priority` command in EXEC mode on the active switch.

```
switch stack-member-number priority new-priority-value
```

**Syntax Description**

- `stack-member-number`  Current stack member number. The range is 1 to 8.
- `new-priority-value`  New stack member priority value. The range is 1 to 15.

**Command Default**

The default priority value is 1.

**Command Modes**

- User EXEC
- Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The new priority value is a factor when a new active switch is elected. When you change the priority value the active switch is not changed immediately.

**Examples**

This example shows how to change the priority value of stack member 6 to 8:

```
switch 6 priority 8
Changing the Switch Priority of Switch Number 6 to 8
Do you want to continue?[confirm]
```
**switch provision**

To supply a configuration to a new switch before it joins the switch stack, use the `switch provision` command in global configuration mode on the active switch. To delete all configuration information that is associated with the removed switch (a stack member that has left the stack), use the `no` form of this command.

```
switch stack-member-number provision type
no switch stack-member-number provision
```

**Syntax Description**

- `stack-member-number` Stack member number. The range is 1 to 8.
- `type` Switch type of the new switch before it joins the stack.

**Command Default**
The switch is not provisioned.

**Command Modes**
Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

For `type`, enter the model number of a supported switch that is listed in the command-line help strings.

To avoid receiving an error message, you must remove the specified switch from the switch stack before using the `no` form of this command to delete a provisioned configuration.

To change the switch type, you must also remove the specified switch from the switch stack. You can change the stack member number of a provisioned switch that is physically present in the switch stack if you do not also change the switch type.

If the switch type of the provisioned switch does not match the switch type in the provisioned configuration on the stack, the switch stack applies the default configuration to the provisioned switch and adds it to the stack. The switch stack displays a message when it applies the default configuration.

Provisioned information appears in the running configuration of the switch stack. When you enter the `copy running-config startup-config` privileged EXEC command, the provisioned configuration is saved in the startup configuration file of the switch stack.

**Caution**

When you use the `switch provision` command, memory is allocated for the provisioned configuration. When a new switch type is configured, the previously allocated memory is not fully released. Therefore, do not use this command more than approximately 200 times, or the switch will run out of memory and unexpected behavior will result.

**Examples**

This example shows how to provision a switch with a stack member number of 2 for the switch stack. The `show running-config` command output shows the interfaces associated with the provisioned switch.

```
(config)# switch 2 provision WS-xxxx
(config)# end
```
# show running-config | include switch 2
!
interface GigabitEthernet2/0/1
!
interface GigabitEthernet2/0/2
!
interface GigabitEthernet2/0/3
<output truncated>

You also can enter the `show switch` user EXEC command to display the provisioning status of the switch stack.

This example shows how to delete all configuration information about stack member 5 when the switch is removed from the stack:

```
(config)# no switch 5 provision
```

You can verify that the provisioned switch is added to or removed from the running configuration by entering the `show running-config` privileged EXEC command.
switch renumber

To change the stack member number, use the `switch renumber` command in EXEC mode on the active switch.

```
switch current-stack-member-number renumber new-stack-member-number
```

**Syntax Description**
- `current-stack-member-number` Current stack member number. The range is 1 to 8.
- `new-stack-member-number` New stack member number for the stack member. The range is 1 to 8.

**Command Default**
The default stack member number is 1.

**Command Modes**
- User EXEC
- Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**
If another stack member is already using the member number that you just specified, the active switch assigns the lowest available number when you reload the stack member.

**Note**
If you change the number of a stack member, and no configuration is associated with the new stack member number, that stack member loses its current configuration and resets to its default configuration.

Do not use the `switch current-stack-member-number renumber new-stack-member-number` command on a provisioned switch. If you do, the command is rejected.

Use the `reload slot current stack member number` privileged EXEC command to reload the stack member and to apply this configuration change.

**Examples**
This example shows how to change the member number of stack member 6 to 7:

```
switch 6 renumber 7
WARNING:Changing the switch number may result in a configuration change for that switch.
The interface configuration associated with the old switch number will remain as a provisioned configuration.
Do you want to continue?[confirm]
```
switch renumber

To change the stack member number, use the **switch renumber** command in EXEC mode on the active switch.

```
switch current-stack-member-number renumber new-stack-member-number
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>current-stack-member-number</td>
<td>Current stack member number. The range is 1 to 8.</td>
</tr>
<tr>
<td>new-stack-member-number</td>
<td>New stack member number for the stack member. The range is 1 to 8.</td>
</tr>
</tbody>
</table>

**Command Default**

The default stack member number is 1.

**Command Modes**

User EXEC

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If another stack member is already using the member number that you just specified, the active switch assigns the lowest available number when you reload the stack member.

**Note**

If you change the number of a stack member, and no configuration is associated with the new stack member number, that stack member loses its current configuration and resets to its default configuration.

Do not use the **switch current-stack-member-number renumber new-stack-member-number** command on a provisioned switch. If you do, the command is rejected.

Use the **reload slot current stack member number** privileged EXEC command to reload the stack member and to apply this configuration change.

**Examples**

This example shows how to change the member number of stack member 6 to 7:

```
switch 6 renumber 7
WARNING:Changing the switch number may result in a configuration change for that switch.
The interface configuration associated with the old switch number will remain as a provisioned configuration.
Do you want to continue?[confirm]
```
switch renumber
PART XI

System Management

• System Management Commands, on page 1209
• Tracing, on page 1355
System Management Commands

- arp, on page 1211
- boot, on page 1212
- cat, on page 1213
- copy, on page 1214
- copy startup-config tftp:, on page 1215
- copy tftp: startup-config, on page 1216
- debug voice diagnostics mac-address, on page 1217
- debug platform condition feature multicast controlplane, on page 1218
- debug platform condition mac, on page 1220
- debug platform rep, on page 1221
- debug ilpower powerman, on page 1222
- delete, on page 1225
- dir, on page 1226
- exit, on page 1228
- factory-reset, on page 1229
- flash_init, on page 1230
- help, on page 1231
- install, on page 1232
- l2 traceroute, on page 1236
- license boot level, on page 1237
- license smart deregister, on page 1239
- license smart register idtoken, on page 1240
- license smart renew, on page 1241
- location, on page 1242
- location plm calibrating, on page 1245
- mac address-table move update, on page 1246
- mgmt_init, on page 1247
- mkdir, on page 1248
- more, on page 1249
- no debug all, on page 1250
- rename, on page 1251
- request consent-token accept-response shell-access, on page 1252
- request consent-token generate-challenge shell-access, on page 1253
• request consent-token terminate-auth, on page 1254
• request platform software console attach switch, on page 1255
• reset, on page 1257
• rmdir, on page 1258
• sdm prefer, on page 1259
• service private-config-encryption, on page 1260
• set, on page 1261
• show avc client, on page 1264
• show debug, on page 1265
• show env xps, on page 1266
• show flow monitor, on page 1270
• show install, on page 1275
• show license all, on page 1277
• show license status, on page 1279
• show license summary, on page 1281
• show license udi, on page 1282
• show license usage, on page 1283
• show location, on page 1284
• show logging onboard switch uptime, on page 1286
• show mac address-table move update, on page 1289
• show parser encrypt file status, on page 1290
• show platform integrity, on page 1291
• show platform software audit, on page 1292
• show platform software fed switch punt cause, on page 1296
• show platform software fed switch punt cpuq, on page 1298
• show platform sudi certificate, on page 1301
• show sdm prefer, on page 1303
• show tech-support license, on page 1305
• show tech-support platform, on page 1307
• show tech-support platform evpn_vxlan, on page 1311
• show tech-support platform fabric, on page 1313
• show tech-support platform igmp_snooping, on page 1317
• show tech-support platform layer3, on page 1320
• show tech-support platform mld_snooping, on page 1328
• show tech-support port, on page 1335
• show version, on page 1338
• system env temperature threshold yellow, on page 1345
• traceroute mac, on page 1346
• traceroute mac ip, on page 1349
• type, on page 1351
• unset, on page 1352
• version, on page 1354
arp

To display the contents of the Address Resolution Protocol (ARP) table, use the `arp` command in boot loader mode.

```
arp [ip_address]
```

**Syntax Description**
- `ip_address` (Optional) Shows the ARP table or the mapping for a specific IP address.

**Command Default**
No default behavior or values.

**Command Modes**
Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The ARP table contains the IP-address-to-MAC-address mappings.

**Examples**

This example shows how to display the ARP table:

```
Device: arp 172.20.136.8
arp'ing 172.20.136.8...
172.20.136.8 is at 00:1b:78:d1:25:ae, via port 0
```
# boot

To load and boot an executable image and display the command-line interface (CLI), use the `boot` command in boot loader mode.

```
boot flag filesystem:/file-url...
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filesystem:</code></td>
<td>Alias for a file system. Use <code>flash:</code> for the system board flash device; use <code>usbflash0:</code> for USB memory sticks.</td>
</tr>
<tr>
<td><code>/file-url</code></td>
<td>Path (directory) and name of a bootable image. Separate image names with a semicolon.</td>
</tr>
</tbody>
</table>

## Command Default

No default behavior or values.

## Command Modes

Boot loader

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

## Usage Guidelines

When you enter the `boot` command without any arguments, the device attempts to automatically boot the system by using the information in the BOOT environment variable, if any.

If you supply an image name for the `file-url` variable, the `boot` command attempts to boot the specified image.

When you specify boot loader `boot` command options, they are executed immediately and apply only to the current boot loader session.

These settings are not saved for the next boot operation.

Filenames and directory names are case sensitive.

## Example

This example shows how to boot the device using the `new-image.bin` image:

```
Device: set BOOT flash:/new-images/new-image.bin
Device: boot
```

After entering this command, you are prompted to start the setup program.
cat

To display the contents of one or more files, use the `cat` command in boot loader mode.

`cat filesystem:/file-url...`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filesystem:</code></td>
<td>Specifies a file system.</td>
</tr>
<tr>
<td><code>/file-url</code></td>
<td>Specifies the path (directory) and name of the files to display. Separate each filename with a space.</td>
</tr>
</tbody>
</table>

**Command Default**

No default behavior or values.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Filenames and directory names are case sensitive.

If you specify a list of files, the contents of each file appears sequentially.

**Examples**

This example shows how to display the contents of an image file:

```
Device: cat flash:/image_file_name
version_suffix: universal-122-xx.SEx
version_directory: /image_file_name
image_system_type_id: 0x00000002
image_name: /image_file_name.bin
ios_image_file_size: 8919552
total_image_file_size: 11592192
image_feature: IP|LAYER_3|PLUS|MIN_DRAM_MEG=128
image_family: family
stacking_number: 1.34
board_ids: 0x00000068 0x00000069 0x0000006a 0x0000006b
info_end:
```
To copy a file from a source to a destination, use the `copy` command in boot loader mode.

```
copy filesystem:/source-file-url filesystem:/destination-file-url
```

**Syntax Description**

- `filesystem:` Alias for a file system. Use `usbflash0:` for USB memory sticks.
- `/source-file-url` Path (directory) and filename (source) to be copied.
- `/destination-file-url` Path (directory) and filename of the destination.

**Command Default**

No default behavior or values.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Filenames and directory names are case sensitive.

- Directory names are limited to 127 characters between the slashes (`/`); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.
- Filenames are limited to 127 characters; the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.
- If you are copying a file to a new directory, the directory must already exist.

**Examples**

This example shows how to copy a file at the root:

```
Device: copy usbflash0:test1.text usbflash0:test4.text
File "usbflash0:test1.text" successfully copied to "usbflash0:test4.text"
```

You can verify that the file was copied by entering the `dir filesystem:` boot loader command.
**copy startup-config tftp:**

To copy the configuration settings from a switch to a TFTP server, use the `copy startup-config tftp:` command in Privileged EXEC mode.

```
copy startup-config tftp: remote host [ip-address]/{name}
```

**Syntax Description**

```
remote host [ip-address]/{name} Host name or IP-address of Remote host.
```

**Command Default**

No default behavior or values.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Release 16.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To copy your current configurations from the switch, run the command `copy startup-config tftp:` and follow the instructions. The configurations are copied onto the TFTP server.

Then, login to another switch and run the command `copy tftp: startup-config` and follow the instructions. The configurations are now copied onto the other switch.

**Examples**

This example shows how to copy the configuration settings onto a TFTP server:

```
Device: copy startup-config tftp:
Address or name of remote host []?
```
**copy tftp: startup-config**

To copy the configuration settings from a TFTP server onto a new switch, use the `copy tftp: startup-config` command in Privileged EXEC mode on the new switch.

```
copy tftp: startup-config remote host {ip-address}/[name]
```

**Syntax Description**

- `remote host {ip-address}/[name]`  
  Host name or IP-address of Remote host.

**Command Default**

No default behavior or values.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Release 16.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

After the configurations are copied, to save your configurations, use `write memory` command and then either reload the switch or run the `copy startup-config running-config` command.

**Examples**

This example shows how to copy the configuration settings from the TFTP server onto a switch:

```
Device: copy tftp: startup-config
Address or name of remote host []?
```
debug voice diagnostics mac-address

To enable debugging of voice diagnostics for voice clients, use the `debug voice diagnostics mac-address` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug voice diagnostics mac-address mac-address1 verbose mac-address mac-address2 verbose
no debug voice diagnostics mac-address mac-address1 verbose mac-address mac-address2 verbose
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>voice diagnostics</td>
</tr>
<tr>
<td>mac-address mac-address1 mac-address mac-address2</td>
</tr>
<tr>
<td>verbose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>No default behavior or values.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privileged EXEC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
</tr>
</tbody>
</table>

The following is sample output from the `debug voice diagnostics mac-address` command and shows how to enable debugging of voice diagnostics for voice client with MAC address of 00:1f:ca:cf:b6:60:

```
Device# debug voice diagnostics mac-address 00:1f:ca:cf:b6:60
```
debug platform condition feature multicast controlplane

To enable radioactive tracing for the Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) snooping features, use the debug platform condition feature multicast controlplane command in privileged EXEC mode. To disable radioactive tracing, use the no form of this command.

```
debug platform condition feature multicast controlplane {{igmp-debug | pim} group-ip {ipv4 address | ipv6 address} | {mld-snooping | igmp-snooping} mac mac-address ip {ipv4 address | ipv6 address} vlan vlan-id} level {debug | error | info | verbose | warning}
no debug platform condition feature multicast controlplane {{igmp-debug | pim} group-ip {ipv4 address | ipv6 address} | {mld-snooping | igmp-snooping} mac mac-address ip {ipv4 address | ipv6 address} vlan vlan-id} level {debug | error | info | verbose | warning}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>igmp-debug</td>
<td>Enables IGMP control radioactive tracing.</td>
</tr>
<tr>
<td>pim</td>
<td>Enables Protocol Independent Multicast (PIM) control radioactive tracing.</td>
</tr>
<tr>
<td>mld-snooping</td>
<td>Enables MLD snooping control radioactive tracing.</td>
</tr>
<tr>
<td>igmp-snooping</td>
<td>Enables IGMP snooping control radioactive tracing.</td>
</tr>
<tr>
<td>mac mac-address</td>
<td>MAC address of the receiver.</td>
</tr>
<tr>
<td>group-ip {ipv4 address</td>
<td>ipv6 address}</td>
</tr>
<tr>
<td>ip {ipv4 address</td>
<td>ipv6 address}</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>VLAN ID. The range is from 1 to 4094.</td>
</tr>
<tr>
<td>level</td>
<td>Enables debug severity levels.</td>
</tr>
<tr>
<td>debug</td>
<td>Enables debugging level.</td>
</tr>
<tr>
<td>error</td>
<td>Enables error debugging.</td>
</tr>
<tr>
<td>info</td>
<td>Enables information debugging.</td>
</tr>
<tr>
<td>verbose</td>
<td>Enables detailed debugging.</td>
</tr>
<tr>
<td>warning</td>
<td>Enables warning debugging.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (#)
The following example shows how to enable radioactive tracing for IGMP snooping:

```
Device# debug platform condition feature multicast controlplane igmp-snooping mac 000a.3330.344a ip 10.1.1.10 vlan 550 level warning
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear debug platform condition all</td>
<td>Removes the debug conditions applied to a platform.</td>
</tr>
<tr>
<td>debug platform condition</td>
<td>Filters debugging output for <code>debug</code> commands on the basis of specified conditions.</td>
</tr>
<tr>
<td>debug platform condition start</td>
<td>Starts conditional debugging on a system.</td>
</tr>
<tr>
<td>debug platform condition stop</td>
<td>Stops conditional debugging on a system.</td>
</tr>
<tr>
<td>show platform condition</td>
<td>Displays the currently active debug configuration.</td>
</tr>
</tbody>
</table>
debug platform condition mac

To enable radioactive tracing for MAC learning, use the `debug platform condition mac` command in privileged EXEC mode. To disable radioactive tracing for MAC learning, use the `no` form of this command.

```
deb ug platform condition mac {mac-address \{control-plane | egress | ingress\} | access-list access-list name \{egress | ingress\}}
no debug platform condition mac {mac-address \{control-plane | egress | ingress\} | access-list access-list name \{egress | ingress\}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mac</code> mac-address</td>
<td>Filters output on the basis of the specified MAC address.</td>
</tr>
<tr>
<td><code>access-list</code> access-list name</td>
<td>Filters output on the basis of the specified access list.</td>
</tr>
<tr>
<td><code>control-plane</code></td>
<td>Displays messages about the control plane routines.</td>
</tr>
<tr>
<td><code>egress</code></td>
<td>Filters output on the basis of outgoing packets.</td>
</tr>
<tr>
<td><code>ingress</code></td>
<td>Filters output on the basis of incoming packets.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to filter debugging output on the basis of a MAC address:

```
Device# debug platform condition mac bc16.6509.3314 ingress
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show platform condition</td>
<td>Displays the currently active debug configuration.</td>
</tr>
<tr>
<td>debug platform condition</td>
<td>Filters debugging output for <code>debug</code> commands on the basis of specified conditions.</td>
</tr>
<tr>
<td>debug platform condition start</td>
<td>Starts conditional debugging on a system.</td>
</tr>
<tr>
<td>debug platform condition stop</td>
<td>Stops conditional debugging on a system.</td>
</tr>
<tr>
<td>clear debug platform condition all</td>
<td>Removes the debug conditions applied to a platform.</td>
</tr>
</tbody>
</table>
**debug platform rep**

To enable debugging of Resilient Ethernet Protocol (REP) functions, use the `debug platform rep` command in privileged EXEC mode. To remove the specified condition, use the `no` form of this command.

```
deploy platform rep {all | error | event | packet | verbose}
no debug platform rep {all | error | event | packet | verbose}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all REP debugging functions.</td>
</tr>
<tr>
<td>error</td>
<td>Enables REP error debugging.</td>
</tr>
<tr>
<td>event</td>
<td>Enables REP event debugging.</td>
</tr>
<tr>
<td>packet</td>
<td>Enables REP packet debugging.</td>
</tr>
<tr>
<td>verbose</td>
<td>Enables REP verbose debugging.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable debugging for all functions:

```
Device# debug platform rep all

debug platform rep verbose debugging is on
debug platform rep control pkt handle debugging is on
debug platform rep error debugging is on
debug platform rep event debugging is on
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show platform condition</td>
<td>Displays the currently active debug configuration.</td>
</tr>
<tr>
<td>debug platform condition</td>
<td>Filters debugging output for <code>debug</code> commands on the basis of specified conditions.</td>
</tr>
<tr>
<td>debug platform condition start</td>
<td>Starts conditional debugging on a system.</td>
</tr>
<tr>
<td>debug platform condition stop</td>
<td>Stops conditional debugging on a system.</td>
</tr>
<tr>
<td>clear debug platform condition all</td>
<td>Removes the debug conditions applied to a platform.</td>
</tr>
</tbody>
</table>
**debug ilpower powerman**

To enable debugging of the power controller and Power over Ethernet (PoE) system, use the `debug ilpower powerman` command in privileged EXEC mode. Use the `no` form of this command to disable debugging.

**Command Default**

This command has no arguments or keywords.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows the output for the `debug ilpower powerman` command for releases prior to Cisco IOS XE Gibraltar 16.10.1:

```
Device# debug ilpower powerman
1. %ILPOWER-3-CONTROLLER_PORT_ERR: Controller port error, Interface Gix/y/z: Power Controller reports power Imax error detected
 Mar 8 16:35:17.801: ilpower_power_assign_handle_event: event 0, pwrassign is done by proto CDP
 Port Gi1/0/48: Selected Protocol CDP
 Mar 8 16:35:17.801: Ilpowerinterface (Gi1/0/48) process tlvfrom cdpINPUT:
 Mar 8 16:35:17.801: power_consumption= 2640, power_request_id= 1, power_man_id= 2,
 Mar 8 16:35:17.801: power_request_level[] = 2640 0 0 0 0
 Mar 8 16:35:17.801:
 Mar 8 16:35:17.801: ILP:: Sending icutoffcurrent msgto slot:1 port:48
 Mar 8 16:35:17.802: Ilpowerinterface (Gi1/0/48) power negotiation:
 consumption = 2640, alloc_power= 2640
 Mar 8 16:35:17.802: Ilpowerinterface (Gi1/0/48) setting ICUT_OFF threshold to 2640.
 Mar 8 16:35:17.802: ILP:: Sending icutoffcurrent msgto slot:1 port:48
 Mar 8 16:35:17.802: ILP:: Sending icutoffcurrent msgto slot:1 port:48
 Mar 8 16:35:17.803: ILP:: Sending icutoffcurrent msgto slot:1 port:48
 Mar 8 16:35:17.803: ILP:: Sending icutoffcurrent msgto slot:1 port:48
 Mar 8 16:35:17.803: ILP:: Sending icutoffcurrent msgto slot:1 port:48
 Mar 8 16:35:18.115: ILP:: posting ilpslot 1 port 48 event 5 class 0
 Mar 8 16:35:18.115: ILP:: Gi1/0/48: State=NGWC_ILP_LINK_UP_S-6,
 Event=NGWC_ILP_IMAX_FAULT_EV-5
 Mar 8 16:35:18.115: ilpowerdelete power from pdlinkdownGi1/0/48
 Mar 8 16:35:18.115: Ilpowerinterface (Gi1/0/48), delete allocated power 2640
 Mar 8 16:35:18.116: Ilpowerinterface (Gi1/0/48) setting ICUT_OFF threshold to 0.
 Mar 8 16:35:18.116: ILP:: Sending icutoffcurrent msgto slot:1 port:48
 Mar 8 16:35:18.116: ilpower_notify_lldp_power_via_mdi_tlvGi1/0/48 pwralloc0
 Mar 8 16:35:18.116: Gi1/0/48 AUTO PORT PWR Alloc130 Request 130
 Mar 8 16:35:18.116: Gi1/0/48: LLDP NOTIFY TLV:
```

---

**Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)**
This example shows the output for the `debug ilpower powerman` command starting Cisco IOS XE Gibraltar 16.10.1. Power Unit (mW) has been added to the `power_request_level`, PSE Allocation and PD Request. `power_request_level` has been enhanced to display only non-zero values.

```plaintext
Device# debug ilpower powerman
1. %ILPOWER-3-CONTROLLER_PORT_ERR: Controller port error, Interface Gix/y/z: Power Controller reports power Imax error detected
 Mar 8 16:35:17.801: ilpower_power_assign_handle_event: event 0, pwrassign
 is done by proto CDP
 Port Gi1/0/48: Selected Protocol CDP
 Mar 8 16:35:17.801: Ilpowerinterface (Gi1/0/48) process tlv from cdpINPUT:

 Mar 8 16:35:17.801: power_consumption= 2640, power_request_id= 1,
 power_man_id= 2,
 Mar 8 16:35:17.801: power_request_level(mW) = 2640
 <------------------------ mW unit added, non-zero value display
 Mar 8 16:35:17.801:
 Mar 8 16:35:17.801: ILP:: Sending icutoffcurrent msg to slot:1 port:48
 Mar 8 16:35:17.802: Ilpowerinterface (Gi1/0/48) power negotiation:
 consumption = 2640, alloc_power= 2640
 Mar 8 16:35:17.802: ILP:: Sending icutoffcurrent msg to slot:1 port:48
 Mar 8 16:35:17.803: ILP:: Sending icutoffcurrent msg to slot:1 port:48
 Mar 8 16:35:17.804: ILP:: Sending icutoffcurrent msg to slot:1 port:48
 Mar 8 16:35:18.115: ILP:: posting ilpslot 1 port 48 event 5 class 0
 Mar 8 16:35:18.115: ILP:: Gi1/0/48: State=NGWC_ILP_LINK_UP_S-6,
 Event=NGWC_ILP_IMAX_FAULT_EV-5
 Mar 8 16:35:18.115: ilpowerdelete power from pdlinkdownGi1/0/48
 Mar 8 16:35:18.115: Ilpowerinterface (Gi1/0/48), delete allocated power
 2640
 Mar 8 16:35:18.116: Ilpowerinterface (Gi1/0/48) setting ICUT_OFF threshold
 to 0.
 Mar 8 16:35:18.116: ILP:: Sending icutoffcurrent msg to slot:1 port:48
 Mar 8 16:35:18.116: ilpower_notify_lldp_power_via_mdi_tlvGi1/0/48 pwralloc0
 Mar 8 16:35:18.116: Gi1/0/48 AUTO PORT PWR Alloc130 Request 130

 (curr/prev) PSE Allocation (mW): 13000/0
 <------------------------ mW unit added
 (curr/prev) PD Request (mW): 13000/0
 <------------------------ mW unit added
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
(curr/prev) PD Class : Class 4/
(curr/prev) PD Priority : low/unknown
(curr/prev) Power Type : Type 2 PSE/Type 2 PSE
(curr/prev) mdi_pwr_support: 7/0
(curr/prev) Power Pair : Signal/
(curr/prev) PSE PwrSource : Primary/Unknown
**delete**

To delete one or more files from the specified file system, use the `delete` command in boot loader mode.

```
delete filesystem:/file-url...
```

**Syntax Description**

- `filesystem`: Alias for a file system. Use `usbflash0:` for USB memory sticks.
- `/file-url...`: Path (directory) and filename to delete. Separate each filename with a space.

**Command Default**

No default behavior or values.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Filenames and directory names are case sensitive.

The device prompts you for confirmation before deleting each file.

**Examples**

This example shows how to delete two files:

```
Device: delete usbflash0:test2.text usbflash0:test5.text
Are you sure you want to delete "usbflash0:test2.text" (y/n)? y
File "usbflash0:test2.text" deleted
Are you sure you want to delete "usbflash0:test5.text" (y/n)? y
File "usbflash0:test5.text" deleted
```

You can verify that the files were deleted by entering the `dir usbflash0:` boot loader command.
dir

To display the list of files and directories on the specified file system, use the dir command in boot loader mode.

`dir filesystem:/file-url`

### Syntax Description

- **filesystem**: Alias for a file system. Use `flash:` for the system board flash device; use `usbflash0:` for USB memory sticks.

- **/file-url** (Optional) Path (directory) and directory name that contain the contents you want to display. Separate each directory name with a space.

### Command Default

No default behavior or values.

### Command Modes

- Boot Loader
- Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Directory names are case sensitive.

### Examples

This example shows how to display the files in flash memory:

```
Device: dir flash:
Directory of flash: /
 2 -rwx 561 Mar 01 2013 00:48:15 express_setup.debug
 3 -rwx 2160256 Mar 01 2013 04:18:48 c2960x-dmon-mz-150-2r.EX
 4 -rwx 1048 Mar 01 2013 00:01:39 multiple-fs
 6 drwx 512 Mar 01 2013 23:11:42 c2960x-universalk9-mz.150-2.EX
 645 drwx 512 Mar 01 2013 00:01:11 dc_profile_dir
 647 -rwx 4316 Mar 01 2013 01:14:05 config.text
 648 -rwx 5 Mar 01 2013 00:01:39 private-config.text

96453632 bytes available (25732096 bytes used)
```

### Table 139: dir Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Index number of the file.</td>
</tr>
<tr>
<td>-rwX</td>
<td>File permission, which can be any or all of the following:</td>
</tr>
<tr>
<td></td>
<td>• d—directory</td>
</tr>
<tr>
<td></td>
<td>• r—readable</td>
</tr>
<tr>
<td></td>
<td>• w—writable</td>
</tr>
<tr>
<td></td>
<td>• x—executable</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>1644045</td>
<td>Size of the file.</td>
</tr>
<tr>
<td>&lt;date&gt;</td>
<td>Last modification date.</td>
</tr>
<tr>
<td>env_vars</td>
<td>Filename.</td>
</tr>
</tbody>
</table>
exit

To return to the previous mode or exit from the CLI EXEC mode, use the `exit` command.

```
exit
```

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
No default behavior or values.

**Command Modes**
- Privileged EXEC
- Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to exit the configuration mode:

```
Device(config)# exit
Device# exit
```
factory-reset

To erase all customer-specific data and restore a device to its factory configuration, use the `factory-reset` command in privileged EXEC mode.

```
factory-reset {all | boot-vars | config}
```

**Syntax Description**
- **all**: Erases all the content from the NVRAM, all Cisco IOS images including the current boot image, boot variables, startup and running configuration data, and user data.
- **boot-vars**: Erases only the user-added boot variables.
- **config**: Erases only the startup configurations.

**Command Default**
None

**Command Modes**
Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The `factory-reset` command is used in the following scenarios:

- To return a device to Cisco for Return Material Authorization (RMA), use this command to remove all the customer-specific data before obtaining an RMA certificate for the device.
- If the key information or credentials that are stored on a device is compromised, use this command to reset the device to factory configuration, and then reconfigure the device.

After the factory reset process is successfully completed, the device reboots and enters ROMmon mode.

**Examples**
The following example shows how to erase all the content from a device using the `factory-reset all` command:

```
Device> enable
Device# factory-reset all
The factory reset operation is irreversible for all operations. Are you sure? [confirm]
The following will be deleted as a part of factory reset:
1: Crash info and logs
2: User data, startup and running configuration
3: All IOS images, including the current boot image
4: OBFL logs
5: User added rommon variables
6: Data on Field Replaceable Units (USB/SSD/SATA)
The system will reload to perform factory reset.
It will take some time to complete and bring it to rommon.
You will need to load IOS image using USB/TFTP from rommon after this operation is completed.
DO NOT UNPLUG THE POWER OR INTERRUPT THE OPERATION
Are you sure you want to continue? [confirm]
```
flash_init

To initialize the flash: file system, use the `flash_init` command in boot loader mode.

```
flash_init
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

The flash: file system is automatically initialized during normal system operation.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

During the normal boot process, the flash: file system is automatically initialized.

Use this command to manually initialize the flash: file system. For example, you use this command during the recovery procedure for a lost or forgotten password.
help

To display the available commands, use the `help` command in boot loader mode.

**help**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

No default behavior or values.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to display a list of available boot loader commands:

```plaintext
Device: help
 ? -- Present list of available commands
 arp -- Show arp table or arp-resolve an address
 boot -- Load and boot an executable image
 cat -- Concatenate (type) file(s)
 copy -- Copy a file
 delete -- Delete file(s)
 dir -- List files in directories
 emergency-install -- Initiate Disaster Recovery
 ...
 ...
 unset -- Unset one or more environment variables
 version -- Display boot loader version
```
To install Software Maintenance Upgrade (SMU) packages, use the `install` command in privileged EXEC mode.

```
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>abort</code></td>
<td>Terminates the current install operation.</td>
</tr>
<tr>
<td><code>activate</code></td>
<td>Validates whether the SMU is added through the <code>install add</code> command.</td>
</tr>
<tr>
<td>This keyword runs a compatibility check, updates package status, and if the package can be restarted, triggers post-install scripts to restart the necessary processes, or triggers a reload for nonrestartable packages.</td>
<td></td>
</tr>
<tr>
<td><code>file</code></td>
<td>Specifies the package to be activated.</td>
</tr>
<tr>
<td>`{bootflash:</td>
<td>flash:</td>
</tr>
<tr>
<td><code>auto-abort-timer</code></td>
<td>(Optional) Installs an auto-abort timer.</td>
</tr>
<tr>
<td><code>timer</code></td>
<td></td>
</tr>
<tr>
<td><code>prompt-level</code></td>
<td>(Optional) Prompts a user about installation activities.</td>
</tr>
<tr>
<td>`{all</td>
<td>none}`</td>
</tr>
<tr>
<td><code>add</code></td>
<td>Copies files from a remote location (through FTP or TFTP) to a device and performs SMU compatibility check for the platform and image versions. This keyword runs base compatibility checks to ensure that a specified package is supported on a platform.</td>
</tr>
<tr>
<td>command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>commit</td>
<td>Makes SMU changes persistent over reloads. You can perform a commit after activating a package while the system is up, or after the first reload. If a package is activated, but not committed, it remains active after the first reload, but not after the second reload.</td>
</tr>
<tr>
<td>auto-abort-timer stop</td>
<td>Stops the auto-abort timer.</td>
</tr>
<tr>
<td>deactivate</td>
<td>Deactivates an installed package.</td>
</tr>
<tr>
<td>label id</td>
<td>Specifies the ID of the install point to label.</td>
</tr>
<tr>
<td>description</td>
<td>Adds a description to the specified install point.</td>
</tr>
<tr>
<td>label-name name</td>
<td>Adds a label name to the specified install point.</td>
</tr>
<tr>
<td>remove</td>
<td>Removes the installed packages. The remove keyword can only be used on packages that are currently inactive.</td>
</tr>
<tr>
<td>inactive</td>
<td>Removes all the inactive packages from the device.</td>
</tr>
<tr>
<td>rollback</td>
<td>Rolls back the data model interface (DMI) package SMU to the base version, the last committed version, or a known commit ID.</td>
</tr>
<tr>
<td>to base</td>
<td>Returns to the base image.</td>
</tr>
<tr>
<td>committed</td>
<td>Returns to the installation state when the last commit operation was performed.</td>
</tr>
<tr>
<td>id install-ID</td>
<td>Returns to the specific install point ID. Valid values are from 1 to 4294967295.</td>
</tr>
</tbody>
</table>

**Command Default**

Packages are not installed.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

An SMU is a package that can be installed on a system to provide a patch fix or security resolution to a released image. This package contains a minimal set of files for patching the release along with metadata that describes the contents of the package.

Packages must be added before the SMU is activated.
A package must be deactivated before it is removed from Flash. A removed package must be added again.

The following example shows how to add an install package to a device:

```
Device# install add file
flash:/cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin

install_add: START Mon Mar 5 21:48:51 PST 2018
install_add: Adding SMU

--- Starting initial file syncing ---
Info: Finished copying
flash:/cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin to the
selected switch(es)
Finished initial file syncing

Executing pre scripts....

Executing pre scripts done.
--- Starting SMU Add operation ---
Performing SMU_ADD on all members
 [1] SMU_ADD package(s) on switch 1
 [1] Finished SMU_ADD on switch 1
Checking status of SMU_ADD on [1]
SMU_ADD: Passed on [1]
Finished SMU Add operation

SUCCESS: install_add
 /flash/cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin Mon Mar 5 21:49:00 PST 2018
```

The following example shows how to activate an install package:

```
Device# install activate file
flash:/cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin

install_activate: START Mon Mar 5 21:49:22 PST 2018
install_activate: Activating SMU
Executing pre scripts....

Executing pre scripts done.
--- Starting SMU Activate operation ---
Performing SMU_ACTIVATE on all members
 [1] SMU_ACTIVATE package(s) on switch 1
 [1] Finished SMU_ACTIVATE on switch 1
Checking status of SMU_ACTIVATE on [1]
SMU_ACTIVATE: Passed on [1]
Finished SMU Activate operation

SUCCESS: install_activate
 /flash/cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin Mon Mar 5 21:49:34 PST 2018
```

The following example shows how to commit an installed package:

```
Device# install commit

install_commit: START Mon Mar 5 21:50:52 PST 2018
install_commit: Committing SMU
Executing pre scripts....
```
Executing scripts done.
--- Starting SMU Commit operation ---
Performing SMU_COMMIT on all members
[1] SMU_COMMIT package(s) on switch 1
[1] Finished SMU_COMMIT on switch 1
Checking status of SMU_COMMIT on [1]
SMU_COMMIT: Passed on [1]
Finished SMU Commit operation

SUCCESS: install_commit
/flash/cat9k_iosxe.BLD_SMU_20180302_085005_TWIG_LATEST_20180306_013805.3.SSA.smu.bin Mon Mar 5 21:51:01 PST 2018

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show install</td>
<td>Displays information about the install packages.</td>
</tr>
</tbody>
</table>
**I2 traceroute**

To enable the Layer 2 traceroute server, use the `l2 traceroute` command in global configuration mode. Use the `no` form of this command to disable the Layer 2 traceroute server.

```
l2 traceroute
no l2 traceroute
```

**Syntax Description**

This command has no arguments or keywords.

**Command Modes**

Global configuration (config#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>The command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Layer 2 traceroute is enabled by default and opens a listening socket on User Datagram Protocol (UDP) port 2228. To close the UDP port 2228 and disable Layer 2 traceroute, use the `no l2 traceroute` command in global configuration mode.

The following example shows how to configure Layer 2 traceroute using the `l2 traceroute` command.

```
Device# configure terminal
Device(config)# l2 traceroute
```
license boot level

To boot a new software license on the device, use the `license boot level` command in global configuration mode. Use the `no` form of this command to remove all software licenses from the device.

`license boot level base-license-level addon addon-license-level
no license boot level`

**Syntax Description**

- `base-license-level` Level at which the switch is booted, for example, `network-essentials`
  
  Base licenses that are available are:
  
  - Network Essentials
  - Network Advantage (includes Network Essentials)

- `addon-license-level` Additional licenses that can be subscribed for a fixed term of three, five, or seven years.
  
  Add-on licenses that are available are:
  
  - Digital Networking Architecture (DNA) Essentials
  - DNA Advantage (includes DNA Essentials)

**Command Default**

The switch boots the configured image.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `license boot level` command for these purposes:

- Downgrade or upgrade licenses
- Enable or disable an evaluation or extension license
- Clear an upgrade license

This command forces the licensing infrastructure to boot the configured license level instead of the license hierarchy maintained by the licensing infrastructure for a given module:

- When the switch reloads, the licensing infrastructure checks the configuration in the startup configuration for licenses, if any. If there is a license in the configuration, the switch boots with that license. If there is no license, the licensing infrastructure follows the image hierarchy to check for licenses.
- If the forced boot evaluation license expires, the licensing infrastructure follows the regular hierarchy to check for licenses.
- If the configured boot license has already expired, the licensing infrastructure follows the hierarchy to check for licenses.
The following example shows how to activate the *network-essentials* license on a switch at the next reload:

```
Device(config)# license boot level network-essentials
```
license smart deregister

To cancel device registration from Cisco Smart Software Manager (CSSM), use the `license smart deregister` command in privileged EXEC mode.

```
license smart deregister
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `license smart deregister` command for these purposes:

- When your device is taken off the inventory
- When your device is shipped elsewhere for redeployment
- When your device is returned to Cisco for replacement using the return merchandise authorization (RMA) process

**Example**

This example shows how to deregister a device from CSSM:

```
Device# license smart deregister
*Jun 25 00:20:13.291 PDT: %SMART_LIC-6-AGENT_DEREG_SUCCESS: Smart Agent for Licensing De-registration with the Cisco Smart Software Manager or satellite was successful
*Jun 25 00:20:13.291 PDT: %SMART_LIC-5-EVAL_START: Entering evaluation period
*Jun 25 00:20:13.291 PDT: %SMART_LIC-6-EXPORT_CONTROLLED: Usage of export controlled features is Not Allowed for udi PID:ISR4461/K9,SN:FD02213A0GL
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>license smart register idtoken</td>
<td>Registers a device in CSSM.</td>
</tr>
<tr>
<td>show license all</td>
<td>Displays entitlements information.</td>
</tr>
<tr>
<td>show license status</td>
<td>Displays compliance status of a license.</td>
</tr>
<tr>
<td>show license summary</td>
<td>Displays summary of all active licenses.</td>
</tr>
<tr>
<td>show license usage</td>
<td>Displays license usage information</td>
</tr>
</tbody>
</table>
To register a device with the token generated from Cisco Smart Software Manager (CSSM), use the **license smart register idtoken** command in privileged EXEC mode.

```
license smart register idtoken token_ID {force}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>token_ID</code></td>
<td>Device with the token generated from CSSM.</td>
</tr>
<tr>
<td><code>force</code></td>
<td>Forcefully registers your device irrespective of whether the device is registered or not.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Privileged EXEC (#)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forgotten</td>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Example

This example shows how to register a device on CSSM:

```
Device# license smart register idtoken
$T14UytNKBzbEs1ck8veUwG5abnZJ0Fd3aLFwbVRx%0Abl1RM0%3D0A
Registration process is in progress. Use the 'show license status' command to check the progress and result
Device## Generating 2048 bit RSA keys, keys will be exportable...
[OK] (elapsed time was 0 seconds)
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>license smart deregister</td>
<td>Cancels the device registration from CSSM.</td>
</tr>
<tr>
<td>show license all</td>
<td>Displays entitlements information.</td>
</tr>
<tr>
<td>show license status</td>
<td>Displays compliance status of a license.</td>
</tr>
<tr>
<td>show license summary</td>
<td>Displays summary of all active licenses.</td>
</tr>
<tr>
<td>show license usage</td>
<td>Displays license usage information</td>
</tr>
</tbody>
</table>
license smart renew

To manually renew your device's ID or authorization with Cisco Smart Software Manager (CSSM), use the \textit{license smart renew} command in privileged EXEC mode.

\texttt{license smart renew \{auth | id\}}

\begin{tabular}{|l|l|}
\hline
\textbf{Syntax Description} & \textbf{Description} \\
\hline
auth & Renews your authorization. \\
\hline
id & Renews your ID. \\
\hline
\end{tabular}

\textbf{Command Default}

Privileged EXEC (#)

\textbf{Command History}

\begin{tabular}{|l|l|}
\hline
\textbf{Release} & \textbf{Modification} \\
\hline
Cisco IOS XE Fuji 16.9.1 & This command was introduced.
\hline
\end{tabular}

\textbf{Usage Guidelines}

Authorization periods are renewed by the smart licensing system every 30 days. As long as the license is in an \textit{Authorized} or \textit{Out of compliance} state, the authorization period is renewed. The grace period starts when an authorization period expires. During the grace period or when the license is in the \textit{Expired} state, the system continues to try and renew the authorization period. If a retry is successful, a new authorization period starts.

\textbf{Example}

This example shows how to renew a device license:

\texttt{Device# license smart renew auth}

\textbf{Related Commands}

\begin{tabular}{|l|l|}
\hline
\textbf{Command} & \textbf{Description} \\
\hline
show license all & Displays entitlements information. \\
\hline
show license status & Displays compliance status of a license. \\
\hline
show license usage & Displays license usage information \\
\hline
\end{tabular}
location

To configure location information for an endpoint, use the `location` command in global configuration mode. To remove the location information, use the `no` form of this command.

```
location {admin-tag string | civic-location identifier {host id} | civic-location identifier {host id} | elin-location {string | identifier id} | geo-location identifier {host id} | prefer {cdp weight priority-value | lldp-med weight priority-value | static config weight priority-value}
no location {admin-tag string | civic-location identifier {host id} | civic-location identifier {host id} | elin-location {string | identifier id} | geo-location identifier {host id} | prefer {cdp weight priority-value | lldp-med weight priority-value | static config weight priority-value}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>admin-tag string</code></td>
<td>Configures administrative tag or site information. Site or location information in alphanumeric format.</td>
</tr>
<tr>
<td><code>civic-location</code></td>
<td>Configures civic location information.</td>
</tr>
<tr>
<td><code>identifier</code></td>
<td>Specifies the name of the civic location, emergency, or geographical location.</td>
</tr>
<tr>
<td><code>host</code></td>
<td>Defines the host civic or geo-spatial location.</td>
</tr>
<tr>
<td><code>id</code></td>
<td>Name of the civic, emergency, or geographical location.</td>
</tr>
<tr>
<td><code>elin-location</code></td>
<td>Configures emergency location information (ELIN).</td>
</tr>
<tr>
<td><code>geo-location</code></td>
<td>Configures geo-spatial location information.</td>
</tr>
<tr>
<td><code>prefer</code></td>
<td>Sets location information source priority.</td>
</tr>
</tbody>
</table>

**Command Default**

No default behavior or values.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

After entering the `location civic-location identifier` global configuration command, you enter civic location configuration mode. After entering the `location geo-location identifier` global configuration command, you enter geo location configuration mode.
The civic-location identifier must not exceed 250 bytes.

The host identifier configures the host civic or geo-spatial location. If the identifier is not a host, the identifier only defines a civic location or geo-spatial template that can be referenced on the interface.

The **host** keyword defines the device location. The civic location options available for configuration using the **identifier** and the **host** keyword are the same. You can specify the following civic location options in civic location configuration mode:

- **additional-code**—Sets an additional civic location code.
- **additional-location-information**—Sets additional civic location information.
- **branch-road-name**—Sets the branch road name.
- **building**—Sets building information.
- **city**—Sets the city name.
- **country**—Sets the two-letter ISO 3166 country code.
- **county**—Sets the county name.
- **default**—Sets a command to its defaults.
- **division**—Sets the city division name.
- **exit**—Exits from the civic location configuration mode.
- **floor**—Sets the floor number.
- **landmark**—Sets landmark information.
- **leading-street-dir**—Sets the leading street direction.
- **name**—Sets the resident name.
- **neighborhood**—Sets neighborhood information.
- **no**—Negates the specified civic location data and sets the default value.
- **number**—Sets the street number.
- **post-office-box**—Sets the post office box.
- **postal-code**—Sets the postal code.
- **postal-community-name**—Sets the postal community name.
- **primary-road-name**—Sets the primary road name.
- **road-section**—Sets the road section.
- **room**—Sets room information.
- **seat**—Sets seat information.
- **state**—Sets the state name.
- **street-group**—Sets the street group.
- **street-name-postmodifier**—Sets the street name postmodifier.
- **street-name-premodifier**—Sets the street name premodifier.
- **street-number-suffix**—Sets the street number suffix.
- **street-suffix**—Sets the street suffix.
- **sub-branch-road-name**—Sets the sub-branch road name.
- **trailing-street-suffix**—Sets the trailing street suffix.
- **type-of-place**—Sets the type of place.
- **unit**—Sets the unit.

You can specify the following geo-spatial location information in geo-location configuration mode:

- **altitude**—Sets altitude information in units of floor, meters, or feet.
- **latitude**—Sets latitude information in degrees, minutes, and seconds. The range is from -90 degrees to 90 degrees. Positive numbers indicate locations north of the equator.
• **longitude**—Sets longitude information in degrees, minutes, and seconds. The range is from -180 degrees to 180 degrees. Positive numbers indicate locations east of the prime meridian.

• **resolution**—Sets the resolution for latitude and longitude. If the resolution value is not specified, default value of 10 meters is applied to latitude and longitude resolution parameters. For latitude and longitude, the resolution unit is measured in meters. The resolution value can also be a fraction.

• **default**—Sets the geographical location to its default attribute.

• **exit**—Exits from geographical location configuration mode.

• **no**—Negates the specified geographical parameters and sets the default value.

Use the `no lldp med-tlv-select location information` interface configuration command to disable the location TLV. The location TLV is enabled by default.

This example shows how to configure civic location information on the switch:

```console
Device(config)# location civic-location identifier 1
Device(config-civic)# number 3550
Device(config-civic)# primary-road-name "Cisco Way"
Device(config-civic)# city "San Jose"
Device(config-civic)# state CA
Device(config-civic)# building 19
Device(config-civic)# room C6
Device(config-civic)# county "Santa Clara"
Device(config-civic)# country US
Device(config-civic)# end
```

You can verify your settings by entering the `show location civic-location` privileged EXEC command.

This example shows how to configure the emergency location information on the switch:

```console
Device(config)# location elin-location 14085553881 identifier 1
```

You can verify your settings by entering the `show location elin` privileged EXEC command.

The example shows how to configure geo-spatial location information on the switch:

```console
Device(config)# location geo-location identifier host
Device(config-geo)# latitude 12.34
Device(config-geo)# longitude 37.23
Device(config-geo)# altitude 5 floor
Device(config-geo)# resolution 12.34
```

You can use the `show location geo-location identifier` command to display the configured geo-spatial location details.
location plm calibrating

To configure path loss measurement (CCX S60) request for calibrating clients, use the `location plm calibrating` command in global configuration mode.

```plaintext
location plm calibrating {multiband | uniband}
```

**Syntax Description**

- **multiband** Specifies the path loss measurement request for calibrating clients on the associated 802.11a or 802.11b/g radio.
- **uniband** Specifies the path loss measurement request for calibrating clients on the associated 802.11a/b/g radio.

**Command Default**

No default behavior or values.

**Command Modes**

Global configuration

**Command History**

- **Release**
  - Cisco IOS XE Fuji 16.9.2

  **Modification** This command was introduced.

**Usage Guidelines**

The uniband is useful for single radio clients (even if the radio is a dual band and can operate in the 2.4-GHz and the 5-GHz bands). The multiband is useful for multiple radio clients.

This example shows how to configure the path loss measurement request for calibrating clients on the associated 802.11a/b/g radio:

```
Device# configure terminal
Device(config)# location plm calibrating uniband
Device(config)# end
```
mac address-table move update

To enable the MAC address table move update feature, use the mac address-table move update command in global configuration mode on the switch stack or on a standalone switch. To return to the default setting, use the no form of this command.

mac address-table move update {receive | transmit}
no mac address-table move update {receive | transmit}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>receive</td>
<td>Specifies that the switch processes MAC address-table move update messages.</td>
</tr>
<tr>
<td>transmit</td>
<td>Specifies that the switch sends MAC address-table move update messages to other switches in the network if the primary link goes down and the standby link comes up.</td>
</tr>
</tbody>
</table>

Command Default

By default, the MAC address-table move update feature is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The MAC address-table move update feature allows the switch to provide rapid bidirectional convergence if a primary (forwarding) link goes down and the standby link begins forwarding traffic.

You can configure the access switch to send the MAC address-table move update messages if the primary link goes down and the standby link comes up. You can configure the uplink switches to receive and process the MAC address-table move update messages.

Examples

This example shows how to configure an access switch to send MAC address-table move update messages:

```
Device# configure terminal
Device(config)# mac address-table move update transmit
Device(config)# end
```

This example shows how to configure an uplink switch to get and process MAC address-table move update messages:

```
Device# configure terminal
Device(config)# mac address-table move update receive
Device(config)# end
```

You can verify your setting by entering the show mac address-table move update privileged EXEC command.
To initialize the Ethernet management port, use the `mgmt_init` command in boot loader mode.

```plaintext
mgmt_init
```

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
No default behavior or values.

**Command Modes**
Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Use the `mgmt_init` command only during debugging of the Ethernet management port.

**Examples**
This example shows how to initialize the Ethernet management port:

```
Device: mgmt_init
```
mkdir

To create one or more directories on the specified file system, use the **mkdir** command in boot loader mode.

**Syntax Description**

```
mkdir filesystem:/directory-url...
```

- **filesystem:** Alias for a file system. Use `usbflash0:` for USB memory sticks.
- **/directory-url...** Name of the directories to create. Separate each directory name with a space.

**Command Default**
No default behavior or values.

**Command Modes**
Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Directory names are case sensitive.
Directory names are limited to 127 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

**Example**

This example shows how to make a directory called Saved_Configs:

```
Device: mkdir usbflash0:Saved_Configs
Directory "usbflash0:Saved_Configs" created
```
more

To display the contents of one or more files, use the **more** command in boot loader mode.

```
more filesystem:/file-url...
```

**Syntax Description**

- **filesystem**: Alias for a file system. Use **flash**: for the system board flash device.
- **/file-url**: Path (directory) and name of the files to display. Separate each filename with a space.

**Command Default**

No default behavior or values.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Filenames and directory names are case sensitive.

If you specify a list of files, the contents of each file appears sequentially.

**Examples**

This example shows how to display the contents of a file:

```
Device: more flash:image_file_name
version_suffix: universal-122-xx.SEx
version_directory: image_file_name
image_system_type_id: 0x00000002
image_name: image_file_name.bin
ios_image_file_size: 8919552
total_image_file_size: 11592192
image_feature: IP|LAYER_3|PLUS|MIN_DRAM_MEG=128
image_family: family
stacking_number: 1.34
board_ids: 0x00000068 0x00000069 0x0000006a 0x0000006b
info_end:
```
no debug all

To disable debugging on a switch, use the no debug all command in Privileged EXEC mode.

no debug all

Command Default
No default behavior or values.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| Cisco IOS XE Release 16.1 | This command was introduced.

Examples

This example shows how to disable debugging on a switch.

Device: no debug all
All possible debugging has been turned off.
rename

To rename a file, use the `rename` command in boot loader mode.

```
rename filesystem:/source-file-url filesystem:/destination-file-url
```

**Syntax Description**

- `filesystem`: Alias for a file system. Use `usbflash0:` for USB memory sticks.
- `/source-file-url`: Original path (directory) and filename.
- `/destination-file-url`: New path (directory) and filename.

**Command Default**

No default behavior or values.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Filenames and directory names are case sensitive.

Directory names are limited to 127 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

Filenames are limited to 127 characters; the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

**Examples**

This example shows a file named `config.text` being renamed to `config1.text`:

```
Device: rename usbflash0:config.text usbflash0:config1.text
```

You can verify that the file was renamed by entering the `dir filesystem:` boot loader command.
request consent-token accept-response shell-access

To submit the Consent Token response to a previously generated challenge, use the request consent-token accept-response shell-access command.

Syntax: `request consent-token accept-response shell-access response-string`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>response-string</code></td>
<td>Specifies the character string representing the response.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC mode (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must enter the response string within 30 minutes of challenge generation. If it is not entered, the challenge expires and a new challenge must be requested.

**Example**

The following is sample output from the request consent-token accept-response shell-access `response-string` command:

```
Device# request consent-token accept-response shell-access
response-string

% Consent token authorization success
*Jan 18 02:51:37.807: %CTOKEN-6-AUTH_UPDATE: Consent Token Update (authentication success: Shell access 0).
```
**request consent-token generate-challenge shell-access**

To generate a Consent Token challenge for system shell access, use the `request consent-token generate-challenge shell-access` command.

**request consent-token generate-challenge shell-access auth-timeout time-validity-slot**

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth-timeout time-validity-slot</td>
<td>Specifies the time slot in minutes for which shell-access is requested.</td>
</tr>
</tbody>
</table>

### Command Modes

- **Privileged EXEC mode (#)**

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

When the requested time-slot for system shell expires, the session gets terminated automatically.

The maximum authorization timeout for system shell access is seven days.

### Example

The following is sample output from the `request consent-token generate-challenge shell-access auth-timeout` command:

```
Device# request consent-token generate-challenge shell-access auth-timeout 900
zSSdrAAAAQEBAAQAAAABAgAEAAAAAAMACH86CSuWmDl0BAAAQ0Fvd7CxqRYUeoD7B4AwW7QUABAAAAG8GAIAhDVEFfREVNTwAGENUQV9ERU1PX0NUQV9TSUdOSU5HX0tFWQgAC0M5ODAwLUNMLUs5CQALOVpQUEVESE5KRkI=
Device#
```

*Jan 18 02:47:06.733: %CTOKEN-6-AUTH_UPDATE: Consent Token Update (challenge generation attempt: Shell access 0).*
request consent-token terminate-auth

To terminate the Consent Token based authorization to system shell, use the request consent-token terminate-auth command.

**request consent-token terminate-auth**

**Command Modes**

Privileged EXEC mode (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In system shell access scenario, exiting the shell does not terminate authorization until the authorization timeout occurs.

We recommend that you force terminate system shell authorization by explicitly issuing the request consent-token terminate-auth command once the purpose of system shell access is complete.

If the current authentication is terminated using the request consent-token terminate-auth command, the user will have to repeat the authentication process to gain access to system shell.

**Example**

The following is sample output from the request consent-token terminate-auth command:

```
Device# request consent-token terminate-auth shell-access
% Consent token authorization termination success

Device#
Device#
```
request platform software console attach switch

To start a session on a member switch, use the `request platform software console attach switch` command in privileged EXEC mode.

Note

On stacking switches (Catalyst 3650/3850/9200/9300 switches), this command can only be used to start a session on the standby console. On Catalyst 9500 switches, this command is supported only in a stackwise virtual setup. You cannot start a session on member switches. By default, all consoles are already active, so a request to start a session on the active console will result in an error.

```plaintext
request platform software console attach switch { switch-number | active | standby } { 0/0 | R0 }
```

**Syntax Description**

- `switch-number` Specifies the switch number. The range is from 1 to 9.
- `active` Specifies the active switch.
  - **Note**: This argument is not supported on Catalyst 9500 switches.
- `standby` Specifies the standby switch.
- `0/0` Specifies that the SPA-Inter-Processor slot is 0, and bay is 0.
  - **Note**: Do not use this option with stacking switches. It will result in an error.
- `R0` Specifies that the Route-Processor slot is 0.

**Command Default**

By default, all switches in the stack are active.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To start a session on the standby switch, you must first enable it in the configuration.

**Examples**

This example shows how to session to the standby switch:

```
Device# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)# redundancy
Device(config-red)# main-cpu
Device(config-red-mo)# standby console enable
Device(config-red-mo)# end
Device# request platform software console attach switch standby R0
```
# Connecting to the IOS console on the route-processor in slot 0.
# Enter Control-C to exit.
Device-stby> enable
Device-stby#
reset

To perform a hard reset on the system, use the `reset` command in boot loader mode. A hard reset is similar to power-cycling the device; it clears the processor, registers, and memory.

**reset**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

No default behavior or values.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to reset the system:

```plaintext
Device: reset
Are you sure you want to reset the system (y/n)? y
System resetting...
```
rmdir

To remove one or more empty directories from the specified file system, use the `rmdir` command in boot loader mode.

```
rmdir filesystem:/directory-url...
```

**Syntax Description**

- `filesystem`: Alias for a file system. Use `usbflash0:` for USB memory sticks.
- `/directory-url...`: Path (directory) and name of the empty directories to remove. Separate each directory name with a space.

**Command Default**

No default behavior or values.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Directory names are case sensitive and limited to 45 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

Before removing a directory, you must first delete all of the files in the directory.

The device prompts you for confirmation before deleting each directory.

**Example**

This example shows how to remove a directory:

```
Device: rmdir usbflash0:/Test
```

You can verify that the directory was deleted by entering the `dir filesystem:` boot loader command.
**sdm prefer**

To specify the SDM template for use on the switch, use the `sdm prefer` command in global configuration mode.

```
sdm prefer
 (advanced)
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>advanced</td>
<td>Supports advanced features such as NetFlow.</td>
</tr>
</tbody>
</table>

**Command Default**

No default behavior or values.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In a stack, all stack members must use the same SDM template that is stored on the active.

When a new switch is added to a stack, the SDM configuration that is stored on the active switch overrides the template configured on an individual switch.

**Example**

This example shows how to configure the advanced template:

```
Device(config)# sdm prefer advanced
Device(config)# exit
Device# reload
```
service private-config-encryption

To enable private configuration file encryption, use the `service private-config-encryption` command. To disable this feature, use the `no` form of this command.

```
service private-config-encryption
no service private-config-encryption
```

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
No default behavior or values.

**Command Modes**
Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Examples**
The following example shows how to enable private configuration file encryption:

```
Device> enable
Device# configure terminal
Device(config)# service private-config-encryption
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show parser encrypt file status</code></td>
<td>Displays the private configuration encryption status.</td>
</tr>
</tbody>
</table>
To set or display environment variables, use the `set` command in boot loader mode. Environment variables can be used to control the boot loader or any other software running on the device.

```
set variable value
```

## Syntax Description

<table>
<thead>
<tr>
<th>variable</th>
<th>value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MANUAL_BOOT</strong></td>
<td></td>
<td>Decides whether the device boots automatically or manually. Valid values are 1/Yes and 0/No. If it is set to 0 or No, the boot loader attempts to automatically boot the system. If it is set to anything else, you must manually boot the device from the boot loader mode.</td>
</tr>
<tr>
<td><strong>BOOT filesystem:/file-url</strong></td>
<td></td>
<td>Identifies a semicolon-separated list of executable files to try to load and execute when automatically booting. If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the flash: file system. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot the first bootable file that it can find in the flash: file system.</td>
</tr>
<tr>
<td><strong>ENABLE_BREAK</strong></td>
<td></td>
<td>Allows the automatic boot process to be interrupted when the user presses the Break key on the console. Valid values are 1, Yes, On, 0, No, and Off. If set to 1, Yes, or On, you can interrupt the automatic boot process by pressing the Break key on the console after the flash: file system has initialized.</td>
</tr>
<tr>
<td><strong>HELPER filesystem:/file-url</strong></td>
<td></td>
<td>Identifies a semicolon-separated list of loadable files to dynamically load during the boot loader initialization. Helper files extend or patch the functionality of the boot loader.</td>
</tr>
<tr>
<td><strong>PS1 prompt</strong></td>
<td></td>
<td>Specifies a string that is used as the command-line prompt in boot loader mode.</td>
</tr>
<tr>
<td><strong>CONFIG_FILE flash:/file-url</strong></td>
<td></td>
<td>Specifies the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.</td>
</tr>
<tr>
<td><strong>BAUD rate</strong></td>
<td></td>
<td>Specifies the number of bits per second (b/s) that is used for the baud rate for the console. The Cisco IOS software inherits the baud rate setting from the boot loader and continues to use this value unless the configuration file specifies another setting. The range is from 0 to 128000 b/s. Valid values are 50, 75, 110, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600, 14400, 19200, 28800, 38400, 56000, 57600, 115200, and 128000. The most commonly used values are 300, 1200, 2400, 9600, 19200, 57600, and 115200.</td>
</tr>
<tr>
<td><strong>SWITCH_NUMBER stack-member-number</strong></td>
<td></td>
<td>Changes the member number of a stack member.</td>
</tr>
<tr>
<td><strong>SWITCH_PRIORITY priority-number</strong></td>
<td></td>
<td>Changes the priority value of a stack member.</td>
</tr>
</tbody>
</table>

## Command Default

The environment variables have these default values:
MANUAL_BOOT: No (0)
BOOT: Null string
ENABLE_BREAK: No (Off or 0) (the automatic boot process cannot be interrupted by pressing the Break key on the console).
HELPER: No default value (helper files are not automatically loaded).
PSI device:
CONFIG_FILE: config.text
BAUD: 9600 b/s
SWITCH_NUMBER: 1
SWITCH_PRIORITY: 1

---

### Command Modes

Bootloader

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Environment variables are case sensitive and must be entered as documented.

Environment variables that have values are stored in flash: file system in various files. Each line in the files contains an environment variable name and an equal sign followed by the value of the variable.

A variable has no value if it is not listed in these files; it has a value if it is listed even if the value is a null string. A variable that is set to a null string (for example, “”) is a variable with a value.

Many environment variables are predefined and have default values.
The SWITCH_PRIORITY environment variable can also be set by using the device `stack-member-number priority priority-number` global configuration command.

The boot loader prompt string (PS1) can be up to 120 printable characters not including the equal sign (=).

**Example**

This example shows how to set the SWITCH_PRIORITY environment variable:

Device: `set SWITCH_PRIORITY 2`

You can verify your setting by using the `set` boot loader command.
show avc client

To display information about top number of applications, use the show avc client command in privileged EXEC mode.

```
show avc client client-mac top n application [aggregate | upstream | downstream]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>client client-mac</strong></td>
</tr>
<tr>
<td>Specifies the client MAC address.</td>
</tr>
<tr>
<td><strong>top n application</strong></td>
</tr>
<tr>
<td>Specifies the number of top &quot;N&quot; applications for the given client.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>No default behavior or values.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privileged EXEC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Release</strong></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is sample output from the show avc client command:

```
sh avc client 0040.96ae.65ec top 10 application aggregate

Cumulative Stats:

<table>
<thead>
<tr>
<th>No.</th>
<th>AppName</th>
<th>Packet-Count</th>
<th>Byte-Count</th>
<th>AvgPkt-Size</th>
<th>usage%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>skinny</td>
<td>7343</td>
<td>449860</td>
<td>61</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>unknown</td>
<td>99</td>
<td>13631</td>
<td>137</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>dhcp</td>
<td>18</td>
<td>8752</td>
<td>486</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>http</td>
<td>18</td>
<td>3264</td>
<td>181</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>tftp</td>
<td>9</td>
<td>534</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>dns</td>
<td>2</td>
<td>224</td>
<td>112</td>
<td>0</td>
</tr>
</tbody>
</table>

Last Interval (90 seconds) Stats:

<table>
<thead>
<tr>
<th>No.</th>
<th>AppName</th>
<th>Packet-Count</th>
<th>Byte-Count</th>
<th>AvgPkt-Size</th>
<th>usage%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>skinny</td>
<td>9</td>
<td>540</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>
show debug

To display all the debug commands available on a switch, use the `show debug` command in Privileged EXEC mode.

```
show debug

show debug condition Condition identifier | All conditions
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Condition identifier</code></td>
<td>Sets the value of the condition identifier to be used. Range is between 1 and 1000.</td>
</tr>
<tr>
<td><code>All conditions</code></td>
<td>Shows all conditional debugging options available.</td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Release 16.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use debug commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. Moreover, it is best to use debug commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased debug command processing overhead will affect system use.

Examples

This example shows the output of a `show debug` command:

```
Device# show debug condition all
```

To disable debugging, use the `no debug all` command.
show env xps

To display budgeting, configuration, power, and system power information for the Cisco eXpandable Power System (XPS) 2200, use the `show env xps` command in privileged EXEC mode.

```
show env xps { budgeting | configuration | port [ all | number ] | power | system | thermal | upgrade | version }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>budgeting</td>
<td>Displays XPS power budgeting, the allocated and budgeted power of all switches in the power stack.</td>
</tr>
<tr>
<td>configuration</td>
<td>Displays the configuration resulting from the power xps privileged EXEC commands. The XPS configuration is stored in the XPS. Enter the show env xps configuration command to retrieve the non-default configuration.</td>
</tr>
<tr>
<td>**port [all</td>
<td>number]**</td>
</tr>
<tr>
<td>power</td>
<td>Displays the status of the XPS power supplies.</td>
</tr>
<tr>
<td>system</td>
<td>Displays the XPS system status.</td>
</tr>
<tr>
<td>thermal</td>
<td>Displays the XPS thermal status.</td>
</tr>
<tr>
<td>upgrade</td>
<td>Displays the XPS upgrade status.</td>
</tr>
<tr>
<td>version</td>
<td>Displays the XPS version details.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(55)SE1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show env xps` privileged EXEC command to display the information for XPS 2200.

Examples

This is an example of output from the show env xps budgeting command:

```
Switch# 
------
XPS 0101.0100.0000 :
_______________________________________________________________
Data Committed Current Power Power Port Switch #  PS A  PS B  Role-State
Budget ---- ---- ---- ---- ---- ---- ---- 1  -  -  715  SP-PS 
223 1543
```
This is an example of output from the `show env xps` configuration command:

```
Switch# show env xps configuration
---------------------------------------------
XPS 0101.0100.0000 :
---------------------------------------------
power xps port 4 priority 5
power xps port 5 mode disable
power xps port 5 priority 6
power xps port 6 priority 7
power xps port 7 priority 8
power xps port 8 priority 9
power xps port 9 priority 4
```

This is an example of output from the `show env xps port all` command:

```
____________________________________________________________
Port name : -  Connected : Yes  Mode : Enabled (On)
Priority : 1  Data stack switch # : -  Configured role : Auto-SP
Run mode : SP-PS : Stack Power Sharing Mode
Cable faults : 0x0 XPS 0101.0100.0000 Port 2
____________________________________________________________
Port name : -  Connected : Yes  Mode : Enabled (On)
Priority : 2  Data stack switch # : -  Configured role : Auto-SP
Run mode : SP-PS : Stack Power Sharing Mode
Cable faults : 0x0 XPS 0101.0100.0000 Port 3
____________________________________________________________
Port name : -  Connected : No  Mode : Enabled (On)
Priority : 3  Data stack switch # : -  Configured role : Auto-SP Run mode :
Cable faults <output truncated>
```

This is an example of output from the `show env xps power` command:

```
XPS 0101.0100.0000 :
-------------------------------
Port-Supply SW PID Serial# Status Mode Watts
---------------- -- ----------------- ----------- ---- ----
XPS-A Not present
XPS-B NG3K-PWR-1100WAC LIT13320NTV OK  SP  1100
1-A - - - - -
```
This is an example of output from the `show env xps` system command:

```
Switch#

XPS 0101.0100.0000 :
============================================================================
XPS Cfg Cfg RPS Switch Current Data Port XPS Port Name
Mode Role Pri Conn Role-State Switch #
---- -------------------- ---- ------- --- ------ ---------- --------
1 - On Auto-SP 1 Yes SP-PS -
2 - On Auto-SP 2 Yes SP-PS -
3 - On Auto-SP 3 No - -
4 none On Auto-SP 5 No - -
5 - Off Auto-SP 6 No - -
6 - On Auto-SP 7 No - -
7 - On Auto-SP 8 No - -
8 - On Auto-SP 9 No -
9 test On Auto-SP 4 Yes RPS-NB
```

This is an example of output from the `show env xps thermal` command:

```
Switch#

XPS 0101.0100.0000 :
=============================================Fan Status
---- -----------
1 OK
2 OK
3 NOT PRESENT PS-1 NOT PRESENT PS-2 OK Temperature is OK
```

This is an example of output from the `show env xps upgrade` command when no upgrade is occurring:

```
Switch# show env xps upgrade
No XPS is connected and upgrading.
```

These are examples of output from the `show env xps upgrade` command when an upgrade is in process:

```
Switch# show env xps upgrade
XPS Upgrade Xfer
SW Status Prog
-- --------- ----
1 Waiting 0%
Switch# *
*Mar 22 03:12:46.723: %PLATFORM_XPS-6-UPGRADE_START: XPS 0022.bdd7.9b14 upgrade has started through the Service Port.
Switch# show env xps upgrade
XPS Upgrade Xfer
SW Status Prog
-- --------- ----
1 Receiving 1%
Switch# show env xps upgrade
```
XPS Upgrade Xfer
SW Status Prog
-- ----------- ----
1 Receiving 5%
Switch# show env xps upgrade
XPS Upgrade Xfer
SW Status Prog
-- ----------- ----
1 Reloading 100%
Switch#

*Mar 22 03:16:01.733: %PLATFORM_XPS-6-UPGRADE_DONE: XPS 0022.bdd7.9b14 upgrade has completed and the XPS is reloading.

This is an example of output from the show env xps version command:

Switch# show env xps version
===
XPS 0022.bdd7.9b14:
===
Serial Number: FDO13490KUT
Hardware Version: 8
Bootloader Version: 7
Software Version: 18

Table 140: Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>power xps(global configuration command)</td>
<td>Configures XPS and XPS port names.</td>
</tr>
<tr>
<td>power xps(privileged EXEC command)</td>
<td>Configures the XPS ports and system.</td>
</tr>
</tbody>
</table>
show flow monitor

To display the status and statistics for a Flexible NetFlow flow monitor, use the `show flow monitor` command in privileged EXEC mode.

```
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>broker</td>
<td>(Optional) Displays information about the state of the broker for the flow monitor.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed information about the flow monitor broker.</td>
</tr>
<tr>
<td>picture</td>
<td>(Optional) Displays a picture of the broker state.</td>
</tr>
<tr>
<td>name</td>
<td>(Optional) Specifies the name of a flow monitor.</td>
</tr>
<tr>
<td>monitor-name</td>
<td>(Optional) Name of a flow monitor that was previously configured.</td>
</tr>
<tr>
<td>cache</td>
<td>(Optional) Displays the contents of the cache for the flow monitor.</td>
</tr>
<tr>
<td>format</td>
<td>(Optional) Specifies the use of one of the format options for formatting the display output.</td>
</tr>
<tr>
<td>csv</td>
<td>(Optional) Displays the flow monitor cache contents in comma-separated variables (CSV) format.</td>
</tr>
<tr>
<td>record</td>
<td>(Optional) Displays the flow monitor cache contents in record format.</td>
</tr>
<tr>
<td>table</td>
<td>(Optional) Displays the flow monitor cache contents in table format.</td>
</tr>
<tr>
<td>provisioning</td>
<td>(Optional) Displays the flow monitor provisioning information.</td>
</tr>
<tr>
<td>statistics</td>
<td>(Optional) Displays the statistics for the flow monitor.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `cache` keyword uses the record format by default.

The uppercase field names in the display output of the `show flowmonitor monitor-name cache` command are key fields that Flexible NetFlow uses to differentiate flows. The lowercase field names in the display output of the `show flow monitor monitor-name cache` command are nonkey fields from which Flexible NetFlow collects values as additional data for the cache.

Examples

The following example displays the status for a flow monitor:

```
# show flow monitor FLOW-MONITOR-1
```

Flow Monitor FLOW-MONITOR-1:
 Description: Used for basic traffic analysis
Flow Record: flow-record-1
Flow Exporter: flow-exporter-1
flow-exporter-2
Cache:
 Type: normal
 Status: allocated
 Size: 4096 entries / 311316 bytes
 Inactive Timeout: 15 secs
 Active Timeout: 1800 secs
 Update Timeout: 1800 secs

This table describes the significant fields shown in the display.

Table 141: show flow monitor monitor-name Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Monitor</td>
<td>Name of the flow monitor that you configured.</td>
</tr>
<tr>
<td>Description</td>
<td>Description that you configured or the monitor, or the default description User defined.</td>
</tr>
<tr>
<td>Flow Record</td>
<td>Flow record assigned to the flow monitor.</td>
</tr>
<tr>
<td>Flow Exporter</td>
<td>Exporters that are assigned to the flow monitor.</td>
</tr>
<tr>
<td>Cache</td>
<td>Information about the cache for the flow monitor.</td>
</tr>
<tr>
<td>Type</td>
<td>Flow monitor cache type.</td>
</tr>
<tr>
<td></td>
<td>The possible values are:</td>
</tr>
<tr>
<td></td>
<td>• immediate—Flows are expired immediately.</td>
</tr>
<tr>
<td></td>
<td>• normal—Flows are expired normally.</td>
</tr>
<tr>
<td></td>
<td>• Permanent—Flows are never expired.</td>
</tr>
<tr>
<td>Status</td>
<td>Status of the flow monitor cache.</td>
</tr>
<tr>
<td></td>
<td>The possible values are:</td>
</tr>
<tr>
<td></td>
<td>• allocated—The cache is allocated.</td>
</tr>
<tr>
<td></td>
<td>• being deleted—The cache is being deleted.</td>
</tr>
<tr>
<td></td>
<td>• not allocated—The cache is not allocated.</td>
</tr>
<tr>
<td>Size</td>
<td>Current cache size.</td>
</tr>
<tr>
<td>Inactive Timeout</td>
<td>Current value for the inactive timeout in seconds.</td>
</tr>
<tr>
<td>Active Timeout</td>
<td>Current value for the active timeout in seconds.</td>
</tr>
<tr>
<td>Update Timeout</td>
<td>Current value for the update timeout in seconds.</td>
</tr>
</tbody>
</table>

The following example displays the status, statistics, and data for the flow monitor named FLOW-MONITOR-1:
show flow monitor FLOW-MONITOR-1 cache

Cache type: Normal (Platform cache)
Cache size: Unknown
Current entries: 1

Flows added: 3
Flows aged: 2
- Active timeout (300 secs) 2

DATALINK MAC SOURCE ADDRESS INPUT: 0000.0000.1000
DATALINK MAC DESTINATION ADDRESS INPUT: 6400.F125.5966
IPV6 SOURCE ADDRESS: 2001:DB8::1
IPV6 DESTINATION ADDRESS: 2001:DB8:1::1
TRNS SOURCE PORT: 1111
TRNS DESTINATION PORT: 2222
IP VERSION: 6
IP PROTOCOL: 6
IP TOS: 0x05
IP TTL: 11
tcp flags: 0x20
counter bytes long: 132059538
counter packets long: 1158417

This table describes the significant fields shown in the display.

Table 142: show flow monitor monitor-name cache Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache type</td>
<td>Flow monitor cache type. The value is always normal, as it is the only supported cache type.</td>
</tr>
<tr>
<td>Cache Size</td>
<td>Number of entries in the cache.</td>
</tr>
<tr>
<td>Current entries</td>
<td>Number of entries in the cache that are in use.</td>
</tr>
<tr>
<td>Flows added</td>
<td>Flows added to the cache since the cache was created.</td>
</tr>
<tr>
<td>Flows aged</td>
<td>Flows expired from the cache since the cache was created.</td>
</tr>
<tr>
<td>Active timeout</td>
<td>Current value for the active timeout in seconds.</td>
</tr>
<tr>
<td>Inactive timeout</td>
<td>Current value for the inactive timeout in seconds.</td>
</tr>
<tr>
<td>DATALINK MAC SOURCE ADDRESS INPUT</td>
<td>MAC source address of input packets.</td>
</tr>
<tr>
<td>DATALINK MAC DESTINATION ADDRESS INPUT</td>
<td>MAC destination address of input packets.</td>
</tr>
<tr>
<td>IPV6 SOURCE ADDRESS</td>
<td>IPv6 source address.</td>
</tr>
<tr>
<td>IPV6 DESTINATION ADDRESS</td>
<td>IPv6 destination address.</td>
</tr>
<tr>
<td>TRNS SOURCE PORT</td>
<td>Source port for the transport protocol.</td>
</tr>
<tr>
<td>TRNS DESTINATION PORT</td>
<td>Destination port for the transport protocol.</td>
</tr>
</tbody>
</table>
Field | Description
---|---
IP VERSION | IP version.
IP PROTOCOL | Protocol number.
IP TOS | IP type of service (ToS) value.
IP TTL | IP time-to-live (TTL) value.
tcp flags | Value of the TCP flags.
counter bytes | Number of bytes that have been counted.
counter packets | Number of packets that have been counted.

The following example displays the status, statistics, and data for the flow monitor named FLOW-MONITOR-1 in a table format:

```bash
# show flow monitor FLOW-MONITOR-1 cache format table
Cache type: Normal (Platform cache)
Cache size: Unknown
Current entries: 1
Flows added: 3
Flows aged: 2
  - Active timeout { 300 secs} 2
DATALINK MAC SRC ADDR INPUT DATALINK MAC DST ADDR INPUT IPV6 SRC ADDR IPV6 DST ADDR TRNS SRC PORT TRNS DST PORT IP VERSION IP PROT IP TOS IP TTL tcp flags bytes long pkts long
-------- -------- ------------ ------------ ------------ ------------ ------------ ----------- ----------- ------------- ---------- --------
0000.0000.1000 6400.F125.59E6 2001:DB8::1 2001:DB8:1::1 1111 2222 6 6 0x05 11 0x20 132059538
1158417
```

The following example displays the status, statistics, and data for the flow monitor named FLOW-MONITOR-IPv6 (the cache contains IPv6 data) in record format:

```bash
# show flow monitor name FLOW-MONITOR-IPv6 cache format record
Cache type: Normal (Platform cache)
Cache size: Unknown
Current entries: 1
Flows added: 3
Flows aged: 2
  - Active timeout { 300 secs} 2
DATALINK MAC SOURCE ADDRESS INPUT: 0000.0000.1000
DATALINK MAC DESTINATION ADDRESS INPUT: 6400.F125.59E6
IPV6 SOURCE ADDRESS: 2001::2
IPV6 DESTINATION ADDRESS: 2002::2
TRNS SOURCE PORT: 1111
TRNS DESTINATION PORT: 2222
IP VERSION: 6
IP PROTOCOL: 6
IP TOS: 0x05
IP TTL: 11
tcp flags: 0x20
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
The following example displays the status and statistics for a flow monitor:

```
# show flow monitor FLOW-MONITOR-1 statistics
Cache type: Normal (Platform cache)
Cache size: Unknown
Current entries: 1

Flows added: 3
Flows aged: 2
  - Active timeout (300 secs) 2
```

counter bytes long: 132059538
counter packets long: 1158417
show install

To display information about install packages, use the `show install` command in privileged EXEC mode.

```
show install {active | committed | inactive | log | package {bootflash: | flash: | webui:} | rollback | summary | uncommitted}
```

Syntax Description

- **active**
 - Displays information about active packages.

- **committed**
 - Displays package activations that are persistent.

- **inactive**
 - Displays inactive packages.

- **log**
 - Displays entries stored in the logging installation buffer.

- **package**
 - Displays metadata information about the package, including description, restart information, components in the package, and so on.

  ```
  {bootflash: | flash: | harddisk: | webui:}
  ```

 - Specifies the location of the install package.

- **rollback**
 - Displays the software set associated with a saved installation.

- **summary**
 - Displays information about the list of active, inactive, committed, and superseded packages.

- **uncommitted**
 - Displays package activations that are nonpersistent.

Command Modes

- Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the show commands to view the status of the install package.

Example

The following is sample output from the `show install package` command:

```
Device# show install package bootflash:cat3k-universalk9.2017-01-10_13.15.1.CSCxxx.SSA.dmp.bin
Name: cat3k-universalk9.2017-01-10_13.15.1.CSCxxx.SS
Version: 16.6.1.0.199.1484082952.Everest
Platform: Catalyst3k
Package Type: dmp
Defect ID: CSCxxx
Package State: Added
Supersedes List: ()
Smu ID: 1
```
The following is sample output from the `show install summary` command:

```
Device# show install summary

Active Packages:
   bootflash:cat3k-universalk9.2017-01-10_13.15.1.CSCxxx.SSA.dmp.bin

Inactive Packages:
   No packages

Committed Packages:
   bootflash:cat3k-universalk9.2017-01-10_13.15.1.CSCxxx.SSA.dmp.bin

Uncommitted Packages:
   No packages

Device#
```

The table below lists the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Packages</td>
<td>Name of the active install package.</td>
</tr>
<tr>
<td>Inactive Packages</td>
<td>List of inactive packages.</td>
</tr>
<tr>
<td>Committed Packages</td>
<td>Install packages that have saved or committed changes to the harddisk, so that the changes become persistent across reloads.</td>
</tr>
<tr>
<td>Uncommitted Packages</td>
<td>Install package activations that are nonpersistent.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show install log` command:

```
Device# show install log

[0|install_op_boot]: START Fri Feb 24 19:20:19 Universal 2017
[0|install_op_boot]: END SUCCESS Fri Feb 24 19:20:23 Universal 2017
[3|install_add]: START Sun Feb 26 05:55:31 UTC 2017
 [3|install_add( FATAL)]: File path (scp) is not yet supported for this command
[4|install_add]: START Sun Feb 26 05:57:04 UTC 2017
[4|install_add]: END SUCCESS
 /bootflash/cat3k-universalk9.2017-01-10_13.15.1.CSCvb12345.SSA.dmp.bin
 Sun Feb 26 05:57:22 UTC 2017
[5|install_activate]: START Sun Feb 26 05:58:41 UTC 2017

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>install</td>
<td>Installs SMU packages.</td>
</tr>
</tbody>
</table>
# show license all

To display the entitlement information, use the `show license all` command in privileged EXEC mode.

## Syntax Description

This command has no arguments or keywords.

## Command Default

Privileged EXEC (#)

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

## Usage Guidelines

The command also displays whether smart licensing is enabled, all associated licensing certificates, compliance status, and so on.

## Example

This example shows a sample output from the `show license all` command:

```
Device# show license all
Smart Licensing Status

Smart Licensing is ENABLED

Registration:
 Status: REGISTERED
 Smart Account: CISCO Systems
 Virtual Account: NPR
 Export-Controlled Functionality: Allowed
 Initial Registration: First Attempt Pending
 Last Renewal Attempt: SUCCEEDED on Jul 19 14:49:49 2018 IST
 Next Renewal Attempt: Jan 15 14:49:48 2019 IST
 Registration Expires: Jul 19 14:43:48 2019 IST

License Authorization:
 Status: AUTHORIZED on Jul 28 07:02:56 2018 IST
 Last Communication Attempt: SUCCEEDED on Jul 28 07:02:56 2018 IST
 Next Communication Attempt: Aug 27 07:02:56 2018 IST
 Communication Deadline: Oct 26 06:57:50 2018 IST

Utility:
 Status: DISABLED

Data Privacy:
 Sending Hostname: yes
 Callhome hostname privacy: DISABLED
 Smart Licensing hostname privacy: DISABLED
 Version privacy: DISABLED

Transport:
 Type: Callhome

License Usage
```

---

1277
System Management
show license all
C9200L DNA Advantage, 48-port Term license (C9200L-DNA-A-48):
  Description: C9200L DNA Advantage, 48-port Term license
  Count: 1
  Version: 1.0
  Status: AUTHORIZED

C9200L Network Advantage, 48-port license (C9200L-NW-A-48):
  Description: C9200L Network Advantage, 48-port license
  Count: 1
  Version: 1.0
  Status: AUTHORIZED

Product Information
-------------------
UDI: PID:C9200L-48P-4X,SN:JPG221300KP

Agent Version
-------------
Smart Agent for Licensing: 4.4.13_rel/116
Component Versions: SA:(1_3_dev)1.0.15, SI:(dev22)1.2.1, CH:(rel5)1.0.3, PK:(dev18)1.0.3

Reservation Info
----------------
License reservation: DISABLED

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show license status</td>
<td>Displays compliance status of a license.</td>
</tr>
<tr>
<td>show license summary</td>
<td>Displays summary of all active licenses.</td>
</tr>
<tr>
<td>show license udi</td>
<td>Displays UDI.</td>
</tr>
<tr>
<td>show license usage</td>
<td>Displays license usage information</td>
</tr>
<tr>
<td>show tech-support license</td>
<td>Displays the debug output.</td>
</tr>
</tbody>
</table>
show license status

To display the compliance status of a license, use the `show license status` command in privileged EXEC mode.

**show license status**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Example**

This example shows a sample output from the `show license status` command:

Device# show license status

Smart Licensing is ENABLED

Utility:
Status: DISABLED

Data Privacy:
Sending Hostname: yes
Callhome hostname privacy: DISABLED
Smart Licensing hostname privacy: DISABLED
Version privacy: DISABLED

Transport:
Type: Callhome

Registration:
Status: REGISTERED
Smart Account: Cisco Systems
Virtual Account: NPR
Export-Controlled Functionality: Allowed
Initial Registration: First Attempt Pending
Last Renewal Attempt: SUCCEEDED on Jul 19 14:49:49 2018 IST
Next Renewal Attempt: Jan 15 14:49:47 2019 IST
Registration Expires: Jul 19 14:43:47 2019 IST

License Authorization:
Status: AUTHORIZED on Jul 28 07:02:56 2018 IST
Last Communication Attempt: SUCCEEDED on Jul 28 07:02:56 2018 IST
Next Communication Attempt: Aug 27 07:02:56 2018 IST
Communication Deadline: Oct 26 06:57:50 2018 IST

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show license all</td>
<td>Displays entitlements information.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>show license summary</td>
<td>Displays summary of all active licenses.</td>
</tr>
<tr>
<td>show license udi</td>
<td>Displays UDI.</td>
</tr>
<tr>
<td>show license usage</td>
<td>Displays license usage information</td>
</tr>
<tr>
<td>show tech-support license</td>
<td>Displays the debug output.</td>
</tr>
</tbody>
</table>
show license summary

To display a summary of all active licenses, use the `show license summary` command in privileged EXEC mode.

```markdown
show license summary
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows a sample output from the `show license summary` command:

```
Device# show license summary
Smart Licensing is ENABLED

Registration:
 Status: REGISTERED
 Smart Account: CISCO Systems
 Virtual Account: NPR
 Export-Controlled Functionality: Allowed
 Last Renewal Attempt: SUCCEEDED
 Next Renewal Attempt: Jan 15 14:49:48 2019 IST

License Authorization:
 Status: AUTHORIZED
 Last Communication Attempt: SUCCEEDED
 Next Communication Attempt: Aug 27 07:02:56 2018 IST

License Usage:

<table>
<thead>
<tr>
<th>License</th>
<th>Entitlement tag</th>
<th>Count Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9200L DNA Advantage... (C9200L-DNA-A-48)</td>
<td>1 AUTHORIZED</td>
<td></td>
</tr>
<tr>
<td>C9200L Network Advan... (C9200L-NW-A-48)</td>
<td>1 AUTHORIZED</td>
<td></td>
</tr>
</tbody>
</table>
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show license all</code></td>
<td>Displays entitlements information.</td>
</tr>
<tr>
<td><code>show license status</code></td>
<td>Displays compliance status of a license.</td>
</tr>
<tr>
<td><code>show license udi</code></td>
<td>Displays UDI.</td>
</tr>
<tr>
<td><code>show license usage</code></td>
<td>Displays license usage information</td>
</tr>
<tr>
<td><code>show tech-support license</code></td>
<td>Displays the debug output.</td>
</tr>
</tbody>
</table>
show license udi

To display the Unique Device Identifier (UDI), use the `show license udi` command in privileged EXEC mode.

```
show license udi
```

Syntax Description

This command has no arguments or keywords.

Command Default

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Example

This example shows a sample output from the `show license udi` command:

```
Device# show license udi
UDI: PID:C9200L-48P-4X,SN:JPG221300KP
```
show license usage

To display license usage information, use the **show license usage** command in privileged EXEC mode.

**show license usage**

This command has no arguments or keywords.

**Command Default**

Privileged EXEC (#)

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Example**

This example shows a sample output from the **show license usage** command:

```
Device# show license usage
License Authorization:
 Status: AUTHORIZED on Jul 28 07:02:56 2018 IST

C9200L DNA Advantage, 48-port Term license (C9200L-DNA-A-48):
 Description: C9200L DNA Advantage, 48-port Term license
 Count: 1
 Version: 1.0
 Status: AUTHORIZED

C9200L Network Advantage, 48-port license (C9200L-NW-A-48):
 Description: C9200L Network Advantage, 48-port license
 Count: 1
 Version: 1.0
 Status: AUTHORIZED
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show license all</td>
<td>Displays entitlements information.</td>
</tr>
<tr>
<td>show license status</td>
<td>Displays compliance status of a license.</td>
</tr>
<tr>
<td>show license summary</td>
<td>Displays summary of all active licenses.</td>
</tr>
<tr>
<td>show license udi</td>
<td>Displays UDI.</td>
</tr>
<tr>
<td>show tech-support license</td>
<td>Displays the debug output.</td>
</tr>
</tbody>
</table>
show location

To display location information for an endpoint, use the `show location` command in privileged EXEC mode.

```
show location
[{ admin-tag | civic-location | identifier identifier-string | interface type number | static } |
custom-location | identifier identifier-string | interface type number | static } |
elin-location | identifier identifier-string | interface type number | static |
geo-location | identifier identifier-string | interface type number | static | host]
```

**Syntax Description**

- **admin-tag**
  Displays administrative tag or site information.

- **civic-location**
  Specifies civic location information.

- **identifier identifier-string**
  Information identifier of the civic location, custom location, or geo-spatial location.

- **interface type number**
  Interface type and number.
  For information about the numbering syntax for your device, use the question mark (?) online help function.

- **static**
  Displays configured civic, custom, or geo-spatial location information.

- **custom-location**
  Specifies custom location information.

- **elin-location**
  Specifies emergency location information (ELIN).

- **geo-location**
  Specifies geo-spatial location information.

- **host**
  Specifies the civic, custom, or geo-spatial host location information.

**Command Default**

No default behavior or values.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following sample output of the `show location civic-location` command displays civic location information for the specified identifier (identifier 1):

```
Device# show location civic-location identifier 1
Civic location information

Identifier : 1
County : Santa Clara
Street number : 3550
Building : 19
Room : C6
Primary road name : Example
```
City: San Jose
State: CA
Country: US

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>location</td>
<td>Configures location information for an endpoint.</td>
</tr>
</tbody>
</table>
**show logging onboard switch uptime**

To display a history of all reset reasons for all modules or switches in a system, use the `show logging onboard switch uptime` command.

```plaintext
show logging onboard switch { switch-number | active | standby } uptime [[[continuous | detail] [start hour day month [year] [end hour day month year]]] | summary]
```

**Syntax Description**

- `switch switch-number` Specifies a switch. Enter the switch number.
- `active` Specifies the active instance.
- `standby` Specifies the standby instance.
- `continuous` (Optional) Displays continuous data.
- `detail` (Optional) Displays detailed data.
- `start hour day month year` (Optional) Specifies the start time to display data.
- `end hour day month year` (Optional) Specifies the end time to display data.
- `summary` (Optional) Displays summary data.

**Command Modes**

Privileged EXEC(#)  

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was implemented on the Cisco Catalyst 9200 Series Switches</td>
</tr>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>The output of this command was updated to display the reload reasons for members in a stack</td>
</tr>
</tbody>
</table>

**Examples:**

The following is a sample output from the `show logging onboard switch active uptime continuous` command:

```
Device# show logging onboard switch active uptime continuous
--
UPTIME CONTINUOUS INFORMATION
--
Time Stamp | Reset | Uptime
MM/DD/YYYY HH:MM:SS | Reason | years weeks days hours minutes
--
06/17/2018 19:42:56 Reload 0 0 0 0 5
06/17/2018 19:56:31 Reload 0 0 0 0 5
06/17/2018 20:10:46 Reload 0 0 0 0 5
06/17/2018 20:23:48 Reload 0 0 0 0 5
06/17/2018 20:37:20 Reload Command 0 0 0 0 5
06/18/2018 17:09:23 Reload Command 0 0 0 20 5
06/18/2018 17:18:39 redundancy force-switchover 0 0 0 0 5
06/18/2018 18:33:33 Reload 0 0 0 1 5
06/18/2018 19:03:05 Reload 0 0 0 0 5
```
The following is a sample output from the `show logging onboard switch active uptime detail` command:

```
Device# show logging onboard switch active uptime detail

--
<table>
<thead>
<tr>
<th>UPTIME SUMMARY INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>First customer power on : 06/10/2017 09:28:22</td>
</tr>
<tr>
<td>Total uptime : 0 years 50 weeks 4 days 13 hours 38 minutes</td>
</tr>
<tr>
<td>Total downtime : 0 years 15 weeks 4 days 11 hours 52 minutes</td>
</tr>
<tr>
<td>Number of resets : 75</td>
</tr>
<tr>
<td>Number of slot changes : 9</td>
</tr>
<tr>
<td>Current reset reason : PowerOn</td>
</tr>
<tr>
<td>Current slot : 1</td>
</tr>
<tr>
<td>Chassis type : 0</td>
</tr>
<tr>
<td>Current uptime : 0 years 0 weeks 0 days 0 hours 0 minutes</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>UPTIME CONTINUOUS INFORMATION</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Time Stamp</td>
</tr>
<tr>
<td>MM/DD/YYYY HH:MM:SS</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>06/10/2017 09:28:22</td>
</tr>
<tr>
<td><snip></td>
</tr>
<tr>
<td>09/17/2018 09:07:44</td>
</tr>
<tr>
<td>09/17/2018 10:16:26</td>
</tr>
<tr>
<td>09/17/2018 10:59:57</td>
</tr>
</tbody>
</table>
```

The following is a sample output from the `show logging onboard switch standby uptime detail` command:

```
Device# show logging onboard switch standby uptime detail

--
<table>
<thead>
<tr>
<th>UPTIME SUMMARY INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>First customer power on : 06/10/2017 09:28:22</td>
</tr>
<tr>
<td>Total uptime : 0 years 50 weeks 4 days 13 hours 38 minutes</td>
</tr>
<tr>
<td>Total downtime : 0 years 15 weeks 4 days 11 hours 52 minutes</td>
</tr>
<tr>
<td>Number of resets : 75</td>
</tr>
<tr>
<td>Number of slot changes : 9</td>
</tr>
<tr>
<td>Current reset reason : PowerOn</td>
</tr>
<tr>
<td>Current slot : 1</td>
</tr>
<tr>
<td>Chassis type : 0</td>
</tr>
<tr>
<td>Current uptime : 0 years 0 weeks 0 days 0 hours 0 minutes</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>UPTIME CONTINUOUS INFORMATION</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Time Stamp</td>
</tr>
<tr>
<td>MM/DD/YYYY HH:MM:SS</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>06/10/2017 09:28:22</td>
</tr>
<tr>
<td><snip></td>
</tr>
<tr>
<td>09/17/2018 09:07:44</td>
</tr>
<tr>
<td>09/17/2018 10:16:26</td>
</tr>
<tr>
<td>09/17/2018 10:59:57</td>
</tr>
</tbody>
</table>
```
First customer power on: 06/10/2017 11:51:26
Total uptime: 0 years 46 weeks 0 days 11 hours 44 minutes
Total downtime: 0 years 20 weeks 1 days 10 hours 45 minutes
Number of resets: 79
Number of slot changes: 13
Current reset reason: PowerOn
Current slot: 2
Chassis type: 0
Current uptime: 0 years 0 weeks 0 days 0 hours 5 minutes

<table>
<thead>
<tr>
<th>Time Stamp</th>
<th>Reset</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM/DD/YYYY HH:MM:SS</td>
<td>Reason</td>
<td>years weeks days hours minutes</td>
</tr>
<tr>
<td>06/10/2017 11:51:26</td>
<td>Reload</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>&lt;snip&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/10/2018 09:13:58</td>
<td>LocalSoft</td>
<td>0 0 2 5 4</td>
</tr>
<tr>
<td>08/28/2018 14:21:42</td>
<td>Reload Slot Command</td>
<td>0 0 0 3 5</td>
</tr>
<tr>
<td>08/28/2018 14:34:29</td>
<td>System requested reload</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>09/11/2018 09:08:15</td>
<td>Reload</td>
<td>0 0 1 8 5</td>
</tr>
<tr>
<td>09/11/2018 19:15:06</td>
<td>redundancy force-switchover</td>
<td>0 0 0 9 4</td>
</tr>
<tr>
<td>09/13/2018 16:50:18</td>
<td>Reload Command</td>
<td>0 0 1 21 6</td>
</tr>
<tr>
<td>09/17/2018 10:55:09</td>
<td>PowerOn</td>
<td>0 0 0 0 5</td>
</tr>
</tbody>
</table>

The following is a sample output from the `show logging onboard switch active uptime summary` command:

Device# `show logging onboard switch active uptime summary`

```
UPTIME SUMMARY INFORMATION

First customer power on: 04/26/2018 21:45:39
Total uptime: 0 years 20 weeks 2 days 12 hours 22 minutes
Total downtime: 0 years 2 weeks 2 days 8 hours 40 minutes
Number of resets: 1900
Number of slot changes: 18
Current reset reason: Reload Command
Current reset timestamp: 09/26/2018 20:43:15
Current slot: 1
Chassis type: 91
Current uptime: 0 years 0 weeks 5 days 22 hours 5 minutes
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
show mac address-table move update

To display the MAC address-table move update information on the device, use the `show mac address-table move update` command in EXEC mode.

**show mac address-table move update**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

No default behavior or values.

**Command Modes**

User EXEC

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Example**

This example shows the output from the `show mac address-table move update` command:

```
Device# show mac address-table move update

Switch-ID : 010b.4630.1780
Dst mac-address : 0180.c200.0010
Vlans/Macs supported : 1023/8320
Default/Current settings: Rcv Off/On, Xmt Off/On
Max packets per min : Rcv 40, Xmt 60
Rcv packet count : 10
Rcv conforming packet count : 5
Rcv invalid packet count : 0
Rcv packet count this min : 0
Rcv threshold exceed count : 0
Rcv last sequence# this min : 0
Rcv last interface : Po2
Rcv last src-mac-address : 0003.fd6a.8701
Rcv last switch-ID : 0303.fd63.7600
Xmt packet count : 0
Xmt packet count this min : 0
Xmt threshold exceed count : 0
Xmt pak buf unavail cnt : 0
Xmt last interface : None
```
show parser encrypt file status

To view the private configuration encryption status, use the **show parser encrypt file status** command.

**show parser encrypt file status**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following command output indicates that the feature is available and the file is encrypted. The file is in 'cipher text' format.

```plaintext
Device> enable
Device# show parser encrypt file status
Feature: Enabled
File Format: Cipher text
Encryption Version: ver1
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>service private-config-encryption</strong></td>
<td>Enables private configuration file encryption.</td>
</tr>
</tbody>
</table>
**show platform integrity**

To display checksum record for the boot stages, use the `show platform integrity` command in privileged EXEC mode.

```
show platform integrity [sign [nonce <nonce>]]
```

**Syntax Description**

- **sign** (Optional) Shows signature
- **nonce** (Optional) Enter a nonce value

**Command Modes**

Privileged EXEC (#)

**Command History**

- This command was introduced.

**Examples**

This example shows how to view the checksum record for boot stages:

```
Device# show platform integrity sign

PCR0: EE47F8644C2B87D9BD4DE3468DD27EB93F4A606006A0B7006292850C79AC
PCR8: E7B61EC32AF443DA1FF4D77F108CA266848B32924834F5E41A9F6895A9CB7A38
Signature version: 1
Signature:
816C5A29741BBAC1961C109FFC36DA5459A44DBF211025F539AFB4868EF91834C05789
5DAFB7C474F301916B7D008AB58E505E66598426A73E921024C215043832286787B74
8526A305B17DA03CF8705BACFD51A2D55A333415CABC73DAFDEEF8777AA77F482EC4B
731A909826A41FB3EFFC46DC02FBA666534DBEC7DC0C02929DB8462A70DBA26833C2A
1472D1F08D721BA941CB94A418E24303699174572A5759445B3564D8E8AE564AE304
EE1D2A4C53E93E085B24A92387E2261199CED8DBA0CE7134596F8D2D68A773357370C
D3BA91C45A91268C246DF32658999276FB972153ABE823F0ACFE9F3B6F0AD1A00E257
4A4CC41C9405A59FB8FE
Platform: WS-C3650-12X48UZ
```
show platform software audit

To display the SE Linux Audit logs, use the `show platform software audit` command in privileged EXEC mode.

```
show platform software audit { all | summary | [switch { switch-number | active | standby }]
{ 0 | F0 | R0 | { FP | RP } { active } } }
```

**Syntax Description**
- **all**: Shows the audit log from all the slots.
- **summary**: Shows the audit log summary count from all the slots.
- **switch**: Shows the audit logs for a slot on a specific switch.
- **switch-number**: Selects the switch with the specified switch number.
- **switch active**: Selects the active instance of the switch.
- **standby**: Selects the standby instance of the switch.
- **0**: Shows the audit log for the SPA-Inter-Processor slot 0.
- **F0**: Shows the audit log for the Embedded-Service-Processor slot 0.
- **R0**: Shows the audit log for the Route-Processor slot 0.
- **FP active**: Shows the audit log for the active Embedded-Service-Processor slot.
- **RP active**: Shows the audit log for the active Route-Processor slot.

**Command Modes**
- Privileged EXEC (#)

**Command History**
This command was introduced in the Cisco IOS XE Gibraltar 16.10.1 as a part of the SELinux Permissive Mode feature. The `show platform software audit` command displays the system logs containing the access violation events.

In Cisco IOS XE Gibraltar 16.10.1, operation in a permissive mode is available - with the intent of confining specific components (process or application) of the IOS-XE platform. In the permissive mode, access violation events are detected and system logs are generated, but the event or operation itself is not blocked. The solution operates mainly in an access violation detection mode.

The following is a sample output of the `show software platform software audit summary` command:

```
Device# show platform software audit summary

AUDIT LOG ON switch 1
```

---

*1292 Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)*
AVC Denial count: 58

The following is a sample output of the `show platform software audit all` command:

```
Device# show platform software audit all

AUDIT LOG ON switch 1

------- START -------
type=AVC msg=audit(1539222292.584:100): avc: denied { read } for pid=14017 comm="mcp_trace_filte" name="crashinfo" dev="rootfs" ino=13667 scontext=system_u:system_r:polaris_trace_filter_t:s0 tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0 tclass=lnk_file permissive=1

type=AVC msg=audit(1539222292.584:100): avc: denied { getattr } for pid=14017 comm="mcp_trace_filte" path="/mnt/sd1" dev="sda1" ino=2 scontext=system_u:system_r:polaris_trace_filter_t:s0 tcontext=system_u:object_r:polaris_disk_crashinfo_t:s0 tclass=dir permissive=1

type=AVC msg=audit(1539438600.896:119): avc: denied { execute } for pid=8300 comm="sh" name="id" dev="loop0" ino=6982 scontext=system_u:system_r:polaris_auto_upgrade_server_rp_t:s0 tcontext=system_u:object_r:bin_t:s0 tclass=file permissive=1

```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
The following is a sample output of the `show software platform software audit switch` command:

```
Device# show platform software audit switch active R0

--------- START ---------

--------- END ---------
```
show platform software audit
show platform software fed switch punt cause

To display information about why the packets received on an interface are punted to the Router Processor (RP), use the `show platform software fed switch punt cpuq cause` command in privileged EXEC mode.

```
show platform software fed switch {switch-number | active | standby} punt {cause_id | clear | summary}
```

**Syntax Description**
- `switch {switch-number | active | standby}`
  - Displays information about the switch. You have the following options:
    - `switch-number`: Displays the switch.
    - `active`: Displays information relating to the active switch.
    - `standby`: Displays information relating to the standby switch, if available.
  - **Note**: This keyword is not supported.
- `cause_id`
  - Specifies the ID of the cause for which the details have to be displayed.
- `clear`
  - Clears the statistics for all the causes. Clearing the causes might result in inconsistent statistics.
- `summary`
  - Displays a high-level overview of the punt reason.

**Command Default**
None

**Command Modes**
Privileged EXEC (#)

**Command History**
- **Release**
  - Cisco IOS XE Gibraltar 16.10.1 This command was introduced.

**Usage Guidelines**
None

**Example**
The following is sample output from the `show platform software fed switch active punt cause summary` command.

```
Device# show platform software fed switch active punt cause summary
Statistics for all causes

<table>
<thead>
<tr>
<th>Cause</th>
<th>Cause Info</th>
<th>Rcvd</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ARP request or response</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>RP<=->QFP keepalive</td>
<td>22314</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>For-us control</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>IP subnet or broadcast packet</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>Layer2 control protocols</td>
<td>133808</td>
<td>0</td>
</tr>
</tbody>
</table>
```

**Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)**

1296
The following is sample output from the `show platform software fed switch active punt cause cause-id` command.

```
Device# show platform software fed switch active punt cause 21
Detailed Statistics

<table>
<thead>
<tr>
<th>Sub Cause</th>
<th>Rcvd</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22363</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
```

---
show platform software fed switch punt cpuq

To display information about the punt traffic on CPU queues, use the `show platform software fed switch punt cpuq` command in privileged EXEC mode.

```
show platform software fed switch {switch-number | active | standby} punt cpuq {cpuq_id | all | brief | clear | rates}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
</table>
| `switch` `{switch-number | active | standby}` | Displays information about the switch. You have the following options:  
  * `switch-number`.  
  * `active` — Displays information relating to the active switch.  
  * `standby` — Displays information relating to the standby switch, if available. |
| `punt` | Displays the punt information. |
| `cpuq` | Displays information about the CPU receive queue. |
| `cpuq_id` | Specifies details specific to a particular CPU queue. |
| `all` | Displays the statistics for all the CPU queues. |
| `brief` | Displays summarized statistics for all the queues like details about punt packets received and dropped. |
| `clear` | Clears the statistics for all the CPU queues. Clearing the CPU queue might result in inconsistent statistics. |
| `rates` | Displays the rate at which the packets are punted. |

**Command Default**

None

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

None
Example

The following is sample output from the `show platform software fed switch active punt cpuq brief` command.

```
Device# show platform software fed switch active punt cpuq brief

Punt CPU Q Statistics Brief
==
<table>
<thead>
<tr>
<th>Q no</th>
<th>Queue Name</th>
<th>Rx</th>
<th>Rx</th>
<th>Rx</th>
<th>Drop</th>
<th>Drop</th>
<th>Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CPU_Q_DOT1X_AUTH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>CPU_Q_L2_CONTROL</td>
<td>0</td>
<td>6772</td>
<td>6772</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CPU_Q_FORUS_TRAFFIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>CPU_Q_ICMP_GEN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CPU_Q_ROUTING_CONTROL</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>CPU_Q_FORUS_ADDR_RESOLUTION</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>CPU_Q_ICMP_REDIRECT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>CPU_Q_INTER_FED_TRAFFIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>CPU_Q_L2LVS_CONTROL_PKT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>CPU_Q_EWMV_PRIORITY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>CPU_Q_EWMV_DATA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>CPU_Q_L2LVS_DATA_PKT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>CPU_Q_BROADCAST</td>
<td>0</td>
<td>21</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>CPU_Q_LEARNING_CACHE_OVFL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>CPU_Q_SW_FORWARDING</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>CPU_Q_TOPOLOGY_CONTROL</td>
<td>0</td>
<td>127300</td>
<td>127300</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>CPU_Q_PROTO_SNOOPING</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>CPU_Q_BFD_LOW_LATENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>CPU_Q_TRANSIT_TRAFFIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>CPU_Q_RPF_FAILED</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>CPU_Q_MCAST_END_STATION_SERVICE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>CPU_Q_LOGGING</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>CPU_Q_PUNT_WEBAUTH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>CPU_Q_HIGH_RATE_APP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>CPU_Q_EXCEPTION</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>CPU_Q_SYSTEM_CRITICAL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>CPU_Q_LARGE_POSTFIELDS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>CPU_Q_LOW_LATENCY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>CPU_Q_EGR_EXCEPTION</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>CPU_Q_FSS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>CPU_Q_MCAST_DATA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>CPU_Q_GOLD_PKT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

==
```

The table below describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q no</td>
<td>ID of the queue.</td>
</tr>
<tr>
<td>Queue Name</td>
<td>Name of the queue.</td>
</tr>
<tr>
<td>Rx</td>
<td>Number of packets received.</td>
</tr>
</tbody>
</table>

Table 144: `show platform software fed switch active punt cpuq brief` Field Descriptions
The following is sample output from the `show platform software fed switch active punt cpuq cpuq_id` command.

```
Device# show platform software fed switch active punt cpuq 1

Punt CPU Q Statistics

CPU Q Id : 1
CPU Q Name : CPU_Q_L2_CONTROL
Packets received from ASIC : 6774
Send to IOSd total attempts : 6774
Send to IOSd failed count : 0
RX suspend count : 0
RX unsuspend count : 0
RX unsuspend send count : 0
RX unsuspend send failed count : 0
RX consumed count : 0
RX dropped count : 0
RX non-active dropped count : 0
RX conversion failure dropped : 0
RX INTACK count : 6761
RX packets dq'd after intack : 0
Active RxQ event : 6761
RX spurious interrupt : 0

Replenish Stats for all rxq:

Number of replenish : 61969
Number of replenish suspend : 0
Number of replenish un-suspend : 0
```

### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop</td>
<td>Number of packets dropped.</td>
</tr>
</tbody>
</table>
show platform sudi certificate

To display checksum record for the specific SUDI, use the `show platform sudi certificate` command in privileged EXEC mode.

```
show platform sudi certificate [sign [nonce <nonce>]]
```

**Syntax Description**

- **sign** *(Optional) Show signature*
- **nonce** *(Optional) Enter a nonce value*

**Command Modes**

Privileged EXEC (#)

**Command History**

Release Modification

This command was introduced.

**Examples**

This example shows how to view the checksum record for a specific SUDI:

```
show platform sudi certificate

-----BEGIN CERTIFICATE-----
MIIDQzCCAiugAwIBAgIQX/h7KCtU3I1CoxW1aMmt/zANBgkqhkiG9w0BAQUFADA1
MRwvFAYDVQQKEw1DaXNjbBy8XWzN2ZzJmRwqGQYDVQQDEwJDaXNjbBy8XWzN2ZzJm
IDwvNJby8XWzN2ZzJmRwqGQYDVQQDEwJDaXNjbBy8XWzN2ZzJmRwqGQYDVQQDEwJC
MA0GCSqGSGz1b3QDMAXA6IBDQAggEIACIAgAcmrmpg6kKd6fica02mKUEt1H
xmJvNeAHyv9CrLqUcdda8Inuuoqrp0uHISEEdoyD0My5jOamaHBKeN8hF5070YXJ
FcpJfPt01Ymq61iDqYGeuJ57m5aUfJaz2tKs5M0MQr/4NREb7Y9Hje6r8bq9b9q
Vv9yDxsE14IrpyDX0WqC2e+3u6u1jXWLbVTd6m8ypPEAapkUE53WIEpMW/3q55h
jWm0f84bcN5SYGy11mBws2mAmq8SfKQ6SsXruXouIT6XeGla6g6b5QBDhTCYTMg9jI
E9g6CT5Xfje/rxrzmb6UXTY/CfdfHbbC111HF/R2QcQYCTFQGr/rks35LtgXafqEd
0mEw57mBhYnGPX8EBACmACKyWdYTVqTqgh/BAlDUwAE/6sAbGvNPQIEFGouJ1/3I
FR5umgJ1Fqopor5g9q77.L6owEAYJWYBBACGNxUBBMCACwQDQYJKoZIhvcNAQEF
BFAQEqEBADjzDHs1QaI8ldWg3808POFBI171R803XUXHJQ8xkt5Ltv5OhmBvR67m8w
Ygapo2TB9S5UM827/suUcuuVdr31r8LjJq6vru54v4E+5wWq4WqyvOhv4Tatuxx
cb7wYvN9oNebJp14r6eL7377mpgyc81WHjDStSd9177p7rrKMcSh8T81asa2
Bvt9YArsetJpsYV7q8S55uG8H071J3+r/+6yYA41e0Ge0caE7i7F2ujU7a7Q714
CYNuZ/2BPqUxSlhYQJK9bXUpL1hsS7KF3b5TkL4E1EqzK54CXDPOJBYVY11d
kxpUnWwvEpYB5DC2Ae/qPQrNhHzO=
-----END CERTIFICATE-----
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
show platform sudi certificate
show sdm prefer

To display information about the templates that can be used to maximize system resources for a particular feature, use the `show sdm prefer` command in privileged EXEC mode. To display the current template, use the command without a keyword.

```
show sdm prefer [advanced]
```

**Syntax Description**

- `advanced` (Optional) Displays information on the advanced template.

**Command Default**

No default behavior or values.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you did not reload the switch after entering the `sdm prefer` global configuration command, the `show sdm prefer` privileged EXEC command displays the template currently in use and not the newly configured template.

The numbers displayed for each template represent an approximate maximum number for each feature resource. The actual number might vary, depending on the actual number of other features configured. For example, in the default template if your had more than 16 routed interfaces (subnet VLANs), the number of possible unicast MAC addresses might be less than 6000.

**Example**

The following is sample output from the `show sdm prefer` command:

```bash
show sdm prefer

Showing SDM Template Info

This is the Advanced template.
Number of VLANs: 4094
Unicast MAC addresses: 32768
Overflow Unicast MAC addresses: 512
IGMP and Multicast groups: 8192
Overflow IGMP and Multicast groups: 512
Directly connected routes: 32768
Indirect routes: 7680
Security Access Control Entries: 3072
QoS Access Control Entries: 3072
Policy Based Routing ACEs: 1024
Netflow ACEs: 1024
Input Microflow policer ACEs: 256
Output Microflow policer ACEs: 256
Flow SPAN ACEs: 256
Tunnels: 256
```
Control Plane Entries: 512
Input Netflow flows: 8192
Output Netflow flows: 16384
SGT/DGT entries: 4096
SGT/DGT Overflow entries: 512

These numbers are typical for L2 and IPv4 features. Some features such as IPv6, use up double the entry size; so only half as many entries can be created.

#
show tech-support license

To display the debug output, use the **show license tech support** command in privileged EXEC mode.

**show tech-support license**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Example**

This example shows a sample output from the **show tech-support license** command:

```
Device# show tech-support license

------------------ show clock ------------------
*12:35:48.561 EDT Tue Jul 17 2018

------------------ show version ------------------
Cisco IOS XE Software, Version 16.09.01prd7
Cisco IOS Software [Fuji], Catalyst L3 Switch Software (CAT9K_IOSXE), Version 16.9.1prd7,
RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2018 by Cisco Systems, Inc.
Compiled Tue 10-Jul-18 08:47 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2018 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show license all</td>
<td>Displays entitlements information.</td>
</tr>
<tr>
<td>show license status</td>
<td>Displays compliance status of a license.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>show license summary</td>
<td>Displays summary of all active licenses.</td>
</tr>
<tr>
<td>show license udi</td>
<td>Displays UDI.</td>
</tr>
<tr>
<td>show license usage</td>
<td>Displays license usage information</td>
</tr>
</tbody>
</table>
show tech-support platform

To display detailed information about a platform for use by technical support, use the **show tech-support platform** command in privileged EXEC mode.

### Syntax Description
This command has no arguments or keywords.

### Command Modes
Privileged EXEC (#)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines
This command is used for platform-specific debugging. The output provides detailed information about a platform, such as CPU usage, Ternary Content Addressable Memory (TCAM) usage, capacity, and memory usage.

The output of the **show tech-support platform** command is very long. To better manage this output, you can redirect the output to an external file (for example, `show tech-support platform | redirect flash:filename`) in the local writable storage file system or remote file system.

The output of the **show tech-support platform** command displays a list commands and their output. These commands may differ based on the platform.

### Examples
The following is sample output from the **show tech-support platform** command:

```
Device# show tech-support platform
.
.
$ show platform hardware capacity

Load Average
Slot Status 1-Min 5-Min 15-Min
1-RP0 Healthy 0.25 0.17 0.12

Memory (kB)
Slot Status Total Used (Pct) Free (Pct) Committed (Pct)
1-RP0 Healthy 3964428 2212476 (56%) 1751952 (44%) 3420472 (86%)

CPU Utilization
Slot CPU User System Nice Idle IRQ SIRQ IOwait
1-RP0 0 1.40 0.90 0.00 97.60 0.00 0.10 0.00
 1 2.00 0.20 0.00 97.79 0.00 0.00 0.00
 2 0.79 0.19 0.00 99.80 0.00 0.00 0.00
 3 5.61 0.50 0.00 93.88 0.00 0.00 0.00
 4 2.90 0.40 0.00 96.70 0.00 0.00 0.00

*: interface is up
```
<table>
<thead>
<tr>
<th>Interface</th>
<th>IHQ</th>
<th>IQD</th>
<th>OHQ</th>
<th>OQD</th>
<th>RXBS</th>
<th>RXPS</th>
<th>TRTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet0/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10179</td>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>GigabitEthernet1/0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interface</td>
<td>Type 1</td>
<td>Type 2</td>
<td>Type 3</td>
<td>Type 4</td>
<td>Type 5</td>
<td>Type 6</td>
<td>Type 7</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>GigabitEthernet1/0/26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet1/0/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/47</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/0/48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/1/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/1/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Te1/1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ASIC 0 Info
-------------
ASIC 0 HASH Table 0 Software info: FSE 0
MAB 0: Unicast MAC addresses srip 0 1
MAB 1: Unicast MAC addresses srip 0 1
MAB 2: Unicast MAC addresses srip 0 1
MAB 3: Unicast MAC addresses srip 0 1
MAB 4: Unicast MAC addresses srip 0 1
MAB 5: Unicast MAC addresses srip 0 1
MAB 6: Unicast MAC addresses srip 0 1
MAB 7: Unicast MAC addresses srip 0 1
ASIC 0 HASH Table 1 Software info: FSE 0
MAB 0: Unicast MAC addresses srip 0 1
MAB 1: Unicast MAC addresses srip 0 1
MAB 2: Unicast MAC addresses srip 0 1
MAB 3: Unicast MAC addresses srip 0 1
MAB 4: Unicast MAC addresses srip 0 1
MAB 5: Unicast MAC addresses srip 0 1
MAB 6: Unicast MAC addresses srip 0 1
MAB 7: Unicast MAC addresses srip 0 1
ASIC 0 HASH Table 2 Software info: FSE 1
MAB 0: L3 Multicast entries srip 2 3
MAB 1: L3 Multicast entries srip 2 3
MAB 2: SGT_DGT srip 0 1
MAB 3: SGT_DGT srip 0 1
MAB 4: (null) srip
MAB 5: (null) srip
MAB 6: (null) srip
MAB 7: (null) srip
.
.
.

Output fields are self-explanatory.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show tech-support platform evpn_vxlan</strong></td>
<td>Displays EVPN-VXLAN-related platform information.</td>
</tr>
<tr>
<td><strong>show tech-support platform fabric</strong></td>
<td>Displays detailed information about the switch fabric.</td>
</tr>
<tr>
<td><strong>show tech-support platform igmp_snooping</strong></td>
<td>Displays IGMP snooping information about a group.</td>
</tr>
<tr>
<td><strong>show tech-support platform layer3</strong></td>
<td>Displays Layer 3 platform forwarding information.</td>
</tr>
<tr>
<td><strong>show tech-support platform mld_snooping</strong></td>
<td>Displays MLD snooping information about a group.</td>
</tr>
</tbody>
</table>
**show tech-support platform evpn_vxlan**

To display Ethernet VPN (EVPN)-Virtual eXtensible LAN (VXLAN)-related platform information for use by technical support, use the `show tech-support platform evpn_vxlan` command in privileged EXEC mode.

`show tech-support platform evpn_vxlan switch switch-number`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>switch switch-number</th>
<th>Displays information for the specified switch. Valid values are from 1 to 9.</th>
</tr>
</thead>
</table>

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The output of this command is very long. To better manage this output, you can redirect the output to an external file (for example, `show tech-support platform evpn_vxlan switch 1 | redirect flash:filename`) in the local writable storage file system or remote file system.

**Examples**

The following is sample output from the `show tech-support platform evpn_vxlan` command:

```
Device# show tech-support platform evpn_vxlan switch 1
.
.
"show clock"
"show version"
"show running-config"switch no: 1

----- sh adm prefer -----

Showing SDM Template Info

This is the Advanced template.

<table>
<thead>
<tr>
<th>Number of VLANS:</th>
<th>4094</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast MAC addresses:</td>
<td>32768</td>
</tr>
<tr>
<td>Overflow Unicast MAC addresses:</td>
<td>512</td>
</tr>
<tr>
<td>L2 Multicast entries:</td>
<td>4096</td>
</tr>
<tr>
<td>Overflow L2 Multicast entries:</td>
<td>512</td>
</tr>
<tr>
<td>L3 Multicast entries:</td>
<td>4096</td>
</tr>
<tr>
<td>Overflow L3 Multicast entries:</td>
<td>512</td>
</tr>
<tr>
<td>Directly connected routes:</td>
<td>16384</td>
</tr>
<tr>
<td>Indirect routes:</td>
<td>7168</td>
</tr>
<tr>
<td>STP Instances:</td>
<td>4096</td>
</tr>
<tr>
<td>Security Access Control Entries:</td>
<td>3072</td>
</tr>
<tr>
<td>QoS Access Control Entries:</td>
<td>2560</td>
</tr>
<tr>
<td>Policy Based Routing ACEs:</td>
<td>1024</td>
</tr>
<tr>
<td>Netflow ACEs:</td>
<td>768</td>
</tr>
<tr>
<td>Flow SPAN ACEs:</td>
<td>512</td>
</tr>
<tr>
<td>Tunnels:</td>
<td>256</td>
</tr>
<tr>
<td>LISP Instance Mapping Entries:</td>
<td>256</td>
</tr>
<tr>
<td>Control Plane Entries:</td>
<td>512</td>
</tr>
</tbody>
</table>
```
Input Netflow flows: 8192
Output Netflow flows: 16384
SGT/DST (or) MPLS VPN entries: 4096
SGT/DST (or) MPLS VPN Overflow entries: 512
Wired clients: 2048
MACSec SPD Entries: 256
MPLS L3 VPN VRF: 127
MPLS Labels: 2048
MPLS L3 VPN Routes VRF Mode: 7168
MPLS L3 VPN Routes Prefix Mode: 3072
MVVPN MDT Tunnels: 256
L2 VPN EOMPLS Attachment Circuit: 256
MAX VPLS Bridge Domains: 64
MAX VPLS Peers Per Bridge Domain: 8
MAX VPLS/VPWS Pseudowires: 256

These numbers are typical for L2 and IPv4 features. Some features such as IPv6, use up double the entry size; so only half as many entries can be created. * values can be modified by sdm cli.

----- show platform software fed switch 1 ifm interfaces nve -----

----- show platform software fed switch 1 ifm interfaces efp -----

----- show platform software fed switch 1 matm macTable -----

Total Mac number of addresses: 0
*a_time=aging_time(secs) *e_time=total_elapsed_time(secs)

Type:
MAT_DYNAMIC_ADDR 0x1 MAT_STATIC_ADDR 0x2 MAT_CPU_ADDR
0x4 MAT_DISCARD_ADDR 0x8
MAT_ALL_VLANS 0x10 MAT_NO_FORWARD 0x20 MAT_IPMULT_ADDR
0x40 MAT_RESYNC 0x80
MAT_DO_NOT_AGE 0x100 MAT_SECURE_ADDR 0x200 MAT_NO_PORT
0x400 MAT_DROP_ADDR 0x800
MAT_DUP_ADDR 0x1000 MAT_NULL_DESTINATION 0x2000 MAT_DOT1X_ADDR
0x4000 MAT_ROUTER_ADDR 0x8000
MAT_WIRELESS_ADDR 0x10000 MAT_SECURE_CFG_ADDR 0x20000 MAT_OPQ_DATA_PRESENT
0x40000 MAT_WIRED_TUNNEL_ADDR 0x80000
MAT_DLR_ADDR 0x100000 MAT_MRP_ADDR 0x200000 MAT_MSRP_ADDR
0x400000 MAT_LISP_LOCAL_ADDR 0x800000
MAT_LISP_REMOTE_ADDR 0x1000000 MAT_VPLS_ADDR 0x2000000

Device#

Output fields are self-explanatory.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show tech-support platform</td>
<td>Displays detailed information about a platform for use by technical support.</td>
</tr>
</tbody>
</table>
show tech-support platform fabric

To display information about the switch fabric, use the `show tech-support platform fabric` command in privileged EXEC mode.

```
show tech-support platform fabric [{display-cli | vrf vrf-name {ipv4 display-cli | ipv6 display-cli | source instance-id instance-id {ipv4 ip-address/ip-prefix | ipv6 ipv6-address/ipv6-prefix | mac mac-address} | dest instance-id instance-id} {ipv4 ip-address/ip-prefix | ipv6 ipv6-address/ipv6-prefix | mac mac-address} [{display-cli]}}]
```

**Syntax Description**

- `display-cli` (Optional) Displays the list of show commands available in the output of this command.
- `vrf vrf-name` (Optional) Displays fabric-related information for the specified virtual routing and forwarding (VRF) instance.
- `ipv4 ip-address/ip-prefix` (Optional) Displays fabric-related information for the source or destination IP VRF.
- `ipv6 ipv6-address/ipv6-prefix` (Optional) Displays fabric-related information for the source or destination IPv6 VRF.
- `source` (Optional) Displays fabric-related information for the source VRF.
- `instance-id instance-id` (Optional) Displays information about the endpoint identifier (EID) of the source.
- `mac mac-address` (Optional) Displays fabric-related information for the source and destination MAC VRF for Layer 2 extension deployments.

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The output of this command is very long. To better manage this output, you can redirect the output to an external file (for example, `show tech-support platform fabric | redirect flash:filename`) in the local writable storage file system or remote file system.
The output of this command displays a list commands and their output. These commands may differ based on the platform.

**Examples**

The following is sample output from the `show tech-support platform fabric vrf source instance-id ipv4 dest instance-id ipv4` command:

```

-----show ip lisp eid-table vrf DEFAULT_VN forwarding eid remote 10.12.12.12-----

Prefix Fwd action Locator status bits encap_iid
10.12.12.12/32 encap 0x00000001 N/A

 packets/bytes 1/576
 path list 7F44EE2C188, 4 locks, per-destination, flags 0x49 [shble, rif, hwcn]
 ifnums: 7F40.4098 (78): 192.0.2.2
 1 path
 path 7F44F8B5AFF0, share 10/10, type attached nextthop, for IPv4
 nextthop 192.0.2.2 LISP0.4098, IP midchain out of LISP0.4098, addr 192.0.2.2
 7F44F8E86CE8
 1 output chain
 chain[0]: IP midchain out of LISP0.4098, addr 192.0.2.2 7F44F8E86CE8
 IP adj out of GigabitEthernet1/0/1, addr 10.0.2.1 7F44F8E87378

-----show lisp instance-id 4098 ipv4 map-cache-----

LISP IPv4 Mapping Cache for EID-table vrf DEFAULT_VN (IID 4098), 3 entries

0.0.0.0/0, uptime: 02:46:01, expires: never, via static-send-map-request
 Encapsulating to proxy ETR
10.1.1.0/24, uptime: 02:46:01, expires: never, via dynamic-EID, send-map-request
 Encapsulating to proxy ETR
 Locator Uptime State Pri/Wgt Encap-IID
 192.0.2.2 02:45:54 up 10/10

-----show lisp instance-id 4098 ipv4 map-cache detail-----

LISP IPv4 Mapping Cache for EID-table vrf DEFAULT_VN (IID 4098), 3 entries

0.0.0.0/0, uptime: 02:46:01, expires: never, via static-send-map-request
 Sources: static-send-map-request
 State: send-map-request, last modified: 02:46:01, map-source: local
 Exempt, Packets out: 2(676 bytes) (~ 02:45:38 ago)
 Configured as EID address space
 Encapsulating to proxy ETR
10.1.1.0/24, uptime: 02:46:01, expires: never, via dynamic-EID, send-map-request
 Sources: NONE
 State: send-map-request, last modified: 02:46:01, map-source: local
 Exempt, Packets out: 0(0 bytes)
 Configured as EID address space
 Configured as dynamic-EID address space
 Encapsulating dynamic-EID traffic
 Encapsulating to proxy ETR
```
Sources: map-reply
State: complete, last modified: 02:45:54, map-source: 10.0.1.2
Idle, Packets out: 1(576 bytes) (~ 02:45:38 ago)
Locator Uptime State Pri/Wgt Encap-IID
192.0.2.2 02:45:54 up 10/10 -
Last up-down state change: 02:45:54, state change count: 1
Last route reachability change: 02:45:54, state change count: 1
Last priority / weight change: never/never
RLOC-probing loc-status algorithm:
Last RLOC-probe sent: 02:45:54 (rtt 1ms)

-----show lisp instance-id 4098 ipv4 map-cache 10.12.12.12/32-----

LISP IPv4 Mapping Cache for EID-table vrf DEFAULT_VN (IID 4098), 3 entries
Sources: map-reply
State: complete, last modified: 02:45:54, map-source: 10.0.1.2
Idle, Packets out: 1(576 bytes) (~ 02:45:38 ago)
Locator Uptime State Pri/Wgt Encap-IID
192.0.2.2 02:45:54 up 10/10 -
Last up-down state change: 02:45:54, state change count: 1
Last route reachability change: 02:45:54, state change count: 1
Last priority / weight change: never/never
RLOC-probing loc-status algorithm:
Last RLOC-probe sent: 02:45:54 (rtt 1ms)

-----show ip cef vrf DEFAULT_VN 10.12.12.12/32 internal-----

10.12.12.12/32, epoch 1, flags [sc, lisp elig], refcnt 6, per-destination sharing
sources: LISP, IPL
feature space:
Broker: linked, distributed at 1st priority
subblocks:
SC owned, sourced: LISP remote EID - locator status bits 0x00000001
LISP remote EID: 1 packets 576 bytes fwd action encap, cfg as EID space
LISP source path list
path list 7F44ECC2C188, 4 locks, per-destination, flags 0x49 [shble, rif, hwcn]
ifnums:
LISP0.4098(78): 192.0.2.2
1 path
path 7F44F8B5AFF0, share 10/10, type attached nexthop, for IPv4
nexthop 192.0.2.2 LISP0.4098, IP midchain out of LISP0.4098, addr 192.0.2.2
7F44F8E86CE8
1 output chain
chain[0]: IP midchain out of LISP0.4098, addr 192.0.2.2 7F44F8E86CE8
IP adj out of GigabitEthernet1/0/1, addr 10.0.2.1 7F44F8E87378
Dependent covered prefix type LISP, cover 0.0.0.0/0
2 IPL sources [no flags]
ifnums:
LISP0.4098(78): 192.0.2.2
path list 7F44ECC2C188, 3 locks, per-destination, flags 0x49 [shble, rif, hwcn]
path 7F44F8B5AFF0, share 10/10, type attached nexthop, for IPv4
nexthop 192.0.2.2 LISP0.4098, IP midchain out of LISP0.4098, addr 192.0.2.2 7F44F8E86CE8
output chain:
PushCounter(LISP:10.12.12.12/32) 7F44F3C8B8D8
IP midchain out of LISP0.4098, addr 192.0.2.2 7F44F8E86CE8
IP adj out of GigabitEthernet1/0/1, addr 10.0.2.1 7F44F8E87378
switch no: 1
.
.
.

Device# show tech-support platform fabric vrf Campus_VN source instance-id 8189 mac 00b7.7128.00a1 dest instance-id 8189 mac 00b7.7128.00a0 | i show

------------------ show clock ------------------
------------------ show version ------------------
------------------ show running-config ------------------
------------------ show device-tracking database ------------------
------------------ show lisp site ------------------
------------------ show mac address-table address 00b7.7128.00A0 ------------------
------------------ show ip arp vrf Campus_VN ------------------
Device#

Output fields are self-explanatory.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show tech-support platform</td>
<td>Displays detailed information about a platform for use by technical support.</td>
</tr>
</tbody>
</table>
show tech-support platform igmp_snooping

To display Internet Group Management Protocol (IGMP) snooping information about a group, use the `show tech-support platform igmp_snooping` command in privileged EXEC mode.

```
show tech-support platform igmp_snooping [Group_ipAddr ipv4-address | vlan vlan-ID]]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Group_ipAddr</strong></td>
</tr>
<tr>
<td><strong>ipv4-address</strong></td>
</tr>
<tr>
<td><strong>vlan vlan-ID</strong></td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The output of this command is very long. To better manage this output, you can redirect the output to a file (for example, `show tech-support platform igmp_snooping | redirect flash:filename`) in the local writable storage file system or remote file system.

**Examples**

The following is sample output from the `show tech-support platform igmp_snooping` command:

```
Device# show tech-support platform igmp_snooping GroupIPAddr 226.6.6.6 vlan

----- show ip igmp snooping groups | i 226.6.6.6 -----
5 226.6.6.6 user Gi1/0/8, Gi1/0/27, Gi1/0/28,

----- show ip igmp snooping groups count -----
Total number of groups: 2

----- show ip igmp snooping mrouter -----
Vlan ports
----- -----
23 Router
24 Router
```
25 Router

----- show ip igmp snooping querier -----

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>IGMP Version</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>10.1.1.1</td>
<td>v2</td>
<td>Router</td>
</tr>
<tr>
<td>24</td>
<td>10.1.2.1</td>
<td>v2</td>
<td>Router</td>
</tr>
<tr>
<td>25</td>
<td>10.1.3.1</td>
<td>v2</td>
<td>Router</td>
</tr>
</tbody>
</table>

----- show ip igmp snooping vlan 5 -----

Global IGMP Snooping configuration:
-----------------------------------------------
IGMP snooping : Enabled
Global PIM Snooping : Disabled
IGMPv3 snooping : Enabled
Report suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000

Vlan 5:
-------
IGMP snooping : Enabled
Pim Snooping : Disabled
IGMPv2 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
CGMP interoperability mode : IGMP_ONLY
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000

----- show ip igmp snooping groups vlan 5 -----

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group</th>
<th>Type</th>
<th>Version</th>
<th>Port List</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>226.6.6.6</td>
<td>user</td>
<td></td>
<td>Gi1/0/8, Gi1/0/27, Gi1/0/28, Gi2/0/7, Gi2/0/8, Gi2/0/27, Gi2/0/28</td>
</tr>
<tr>
<td>5</td>
<td>238.192.0.1</td>
<td>user</td>
<td></td>
<td>Gi2/0/28</td>
</tr>
</tbody>
</table>

----- show platform software fed active ip igmp snooping vlan 5 -----

Vlan 5
-------
IGMPSN Enabled : On
PIMSN Enabled : Off
Flood Mode : On
I-Mrouter : Off
Oper State : Up
STP TCN Flood : Off
Routing Enabled : Off
PIM Enabled : Off
PVLAN : No
In Retry : 0x0
L3mcast Adj : 
Mrouter PortQ : 
Flood PortQ :

----- show platform software fed active ip igmp snooping groups | begin 226.6.6.6 ----- 

Vlan:5 Group:226.6.6.6 
---------------------------------
Member ports :
CAPWAP ports :
Host Type Flags: 0
Failure Flags : 0
DI handle : 0x7f11151cbad8
REP RI handle : 0x7f11151cc018
SI handle : 0x7f11151cd198
HTM handle : 0x7f11151cd518
si hdl : 0x7f11151cd198 rep ri hdl : 0x7f11151cc018 di hdl : 0x7f11151cbad8 htm hdl : 0x7f11151cd518
.
.
Device#

Output fields are self-explanatory.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping</td>
<td>Enables IGMP snooping globally or on an interface.</td>
</tr>
<tr>
<td>show ip igmp snooping</td>
<td>Displays the IGMP snooping configuration of a device.</td>
</tr>
<tr>
<td>show tech-support platform</td>
<td>Displays detailed information about a platform for use by technical support.</td>
</tr>
</tbody>
</table>
show tech-support platform layer3

To display Layer 3 platform forwarding information, use the `show tech-support platform layer3` command in privileged EXEC mode.

```
show tech-support platform layer3 {multicast Group_ipAddr ipv4-address switch switch-number srcIP ipv4-address | unicast {dstIP ipv4-address srcIP ipv4-address | vrf vrf-name destIP ipv4-address srcIP ipv4-address}}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>Displays multicast information.</td>
</tr>
<tr>
<td>Group_ipv6Addr ipv4-address</td>
<td>Displays information about the specified multicast group address.</td>
</tr>
<tr>
<td>switch switch-number</td>
<td>Displays information about the specified switch. Valid values are from 1 to 9.</td>
</tr>
<tr>
<td>srcIP ipv4-address</td>
<td>Displays information about the specified source address.</td>
</tr>
<tr>
<td>unicast</td>
<td>Displays unicast-related information.</td>
</tr>
<tr>
<td>dstIP ipv4-address</td>
<td>Displays information about the specified destination address.</td>
</tr>
<tr>
<td>vrf vrf-name</td>
<td>Displays unicast-related virtual routing and forwarding (VRF) information.</td>
</tr>
</tbody>
</table>

### Command Modes

- Privileged EXEC (#)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The output of this command is very long. To better manage this output, you can redirect the output to an external file (for example, `show tech-support platform layer3 multicast group 224.1.1.1 switch 1 srcIP 10.10.0.2 | redirect flash:filename`) in the local writable storage file system or remote file system.

### Examples

The following is sample output from the `show tech-support platform layer3 multicast group` command:

```
Device# show tech-support platform layer3 multicast group_ipAddr 224.1.1.1 switch 1 srcIp 10.10.0.2

destination IP: 224.1.1.1
source IP: 10.10.0.2
```

---

1320 Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
switch no: 1

----- show ip mroute 224.1.1.1 10.10.0.2 -----

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URP, I - Received Source Specific Host Report,
Z - Multicast Tunnel, G - BGP C-Mroute, N - BGP C-Mroute suppressed,
Y - BGP S-A Route, V - BGP S-A Route, Q - BGP S-A Route,
X - VxLAN group, C - PFP-SA cache created entry
Outgoing interface flags: H - Hardware switched, A - Assert winner, F - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode

(10.10.0.2, 224.1.1.1), 00:00:22/00:02:37, flags: LFT
Incoming interface: GigabitEthernet1/0/10, Registering
Outgoing interface list:
Vlan20, Forward/Sparse, 00:00:22/00:02:37, A

----- show ip mfib 224.1.1.1 10.10.0.2 -----

Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag,
ET - Data Rate Exceeds Threshold, K - Keepalive
DDE - Data Driven Event, HW - Hardware Installed
ME - MoFRR ECMP entry, MNE - MoFRR Non-ECMP entry, MP - MFIB
MoFRR Primary, RP - MRIB MoFRR Primary, P - MoFRR Primary
MS - MoFRR Entry in Sync, MC - MoFRR Entry in MoFRR Client.
I/O Item Flags: IC - Internal Copy, NP - Not platform switched,
NS - Negate Signalling, SP - Signal Present,
A - Accept, F - Forward, RA - MRIB Accept, RF - MRIB Forward,
MA - MFIB Accept, A2 - Accept backup,
RA2 - MRIB Accept backup, MA2 - MFIB Accept backup
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
I/O Item Counts: FS Pkt Count/PS Pkt Count
Default
(10.10.0.2,224.1.1.1) Flags: HW
SW Forwarding: 0/0/0/0, Other: 1/1/0
HW Forwarding: NA/NA/NA/NA, Other: NA/NA/NA/GigabitEthernet1/0/10 Flags: A
Vlan20 Flags: F IC
Pkt: 0/0
Tunnel0 Flags: F
Pkt: 0/0

----- show platform software fed switch 1 ip multicast interface summary -----

Multicast Interface database
----- show platform software fed switch 1 ip multicast groups summary ----- 

Multicast Groups database

Mvrf_id: 0 Mroute: (*, 224.0.1.40/32) Flags: C IC  
Htm: 0x00007fb414b23ce8 Si: 0x00007fb414b23a08 Di: 0x00007fb414b240e8 Rep_ri: 0x00007fb414b245f8

Mvrf_id: 0 Mroute: (*, 224.0.0.0/4) Flags: C  
Htm: 0x00007fb4143549e8 Si: 0x00007fb414b20a48 Di: 0x00007fb414b1fe78 Rep_ri: 0x00007fb414b20428

Mvrf_id: 0 Mroute: (*, 224.1.1.1/32) Flags: C IC  
Htm: 0x00007fb414b2cc98 Si: 0x00007fb414b2b678 Di: 0x00007fb414b2ab98 Rep_ri: 0x00007fb414b2b0c8

Mvrf_id: 0 Mroute: (10.10.0.2, 224.1.1.1/32) Flags: IC  
Htm: 0x00007fb414b2f348 Si: 0x00007fb414b321d8 Di: 0x00007fb414b2dba8 Rep_ri: 0x00007fb414b30ed8

----- show platform software fed switch 1 ip multicast groups count ----- 

Total Number of entries:4

----- show platform software fed switch 1 ip multicast groups 224.1.1.1/32 source 10.10.0.2 detail ----- 

MROUTE ENTRY vrf 0 (10.10.0.2, 224.1.1.1/32)  
   HW Handle: 140411418055080 Flags: IC  
   RPF interface: GigabitEthernet1/0/10(95):  
   HW Handle:140411418055080 Flags:A  
   Number of OIF: 3  
   Flags: 0x4  
   OIF Details:  
      Tunnel0 Adj: 0xf8000636 F  
      Vlan20 Adj: 0xf8000601 F IC  
      GigabitEthernet1/0/10 A  
   Htm: 0x7fb414b2f348 Si: 0x7fb414b321d8 Di: 0x7fb414b2dba8 Rep_ri: 0x7fb414b30ed8

DI details  
-----------  
Handle:0x7fb414b2f348 Res-Type:ASIC_RSC_DI Res-Switch-Num:255 Asic-Num:255  
Feature-ID:AL_FID_L3_MULTICAST_IPV4 Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1  
priv_rri/priv_sii Handle:(nil) Hardware Indices/Handles: index0:0x538e mtu_index/13u_ri_index0:0x0 index1:0x538e mtu_index/13u_ri_index1:0x0

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
Detailed Resource Information (ASIC# 0)
----------------------------------------

Destination Index (DI) [0x538e]
portMap = 0x00000000 0

rcpPortMap = 0

al_rsc_cmi
CPU Map Index (CMI) [0x385]

tciLo0 = 0x9
tciLo1 = 0
tciLo2 = 0
cpuQNum0 = 0x9e
cpuQNum1 = 0
cpuQNum2 = 0

RI details
----------
Handle:0x7fb414b30ed8 Res-Type:ASIC_RSC_RI_REP Res-Switch-Num:255 Asic-Num:255 Feature-ID:
AL_FID_L3_MULTICAST_IPV4 Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1
priv_ri/priv_si Handle:(nil) Hardware Indices/Handles: index0:0x5 mtu_index/l3u_ri_index0:0x0

Cookie length: 56

00 00 00 00 00 00 00 00 00 00 00 00 02 00 0a 0a 01 01 01 e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Detailed Resource Information (ASIC# 1)
----------------------------------------

Destination Index (DI) [0x538e]
portMap = 0x00000000 0

rcpPortMap = 0

al_rsc_cmi
CPU Map Index (CMI) [0x385]

tciLo0 = 0x9
tciLo1 = 0
tciLo2 = 0
cpuQNum0 = 0x9e
cpuQNum1 = 0
cpuQNum2 = 0

RI details
----------
Handle:0x7fb414b30ed8 Res-Type:ASIC_RSC_RI_REP Res-Switch-Num:255 Asic-Num:255 Feature-ID:
AL_FID_L3_MULTICAST_IPV4 Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1
priv_ri/priv_si Handle:(nil) Hardware Indices/Handles: index0:0x5 mtu_index/l3u_ri_index0:0x0

index1:0x5 mtu_index/l3u_ri_index1:0x0

Cookie length: 56

00 00 00 00 00 00 00 00 00 00 00 00 02 00 0a 0a 01 01 01 e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
SI details
----------
Handle:0x7fb414b321d8 Res-Type:ASIC_RSC_SI_STATS Res-Switch-Num:255 Asic-Num:255 Feature-ID:
AL_FID_L3_MULTICAST_IPV4 Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1
priv_r1/prv_si Handle:(nil) Hardware Indices/Handles: index0:0x4004 mtu_index/l3u_ri_index0:
0x0 sm handle 0:0x7fb414b2df98 index1:0x4004 mtu_index/l3u_ri_index1:0x0
Cookie length: 56
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Detailed Resource Information (ASIC# 0)
----------------------------------------
Detailed Resource Information (ASIC# 1)
----------------------------------------

HTM details
----------
Handle:0x7fb414b2f348 Res-Type:ASIC_RSC_HASH_TCAM Res-Switch-Num:0 Asic-Num:255 Feature-ID:
AL_FID_L3_MULTICAST_IPV4 Lkp-ftr-id:LKP_FEAT_IPV4_MCAST_SG ref_count:1
priv_r1/prv_si Handle:(nil) Hardware Indices/Handles: handle0:0x7fb414b2f558
Detailed Resource Information (ASIC# 0)
----------------------------------------
Number of HTM Entries: 1
Entry #0: (handle 0x7fb414b2f558)
KEY - src_addr:10.10.0.2 starg_station_index: 16387
MASK - src_addr:0.0.0.0 starg_station_index: 0
AD: use_starg_match: 0 mcast_bridge_frame: 0 mcast_rep_frame: 0 rpf_valid: 1 rpf_le_ptr: 0
afd_client_flag: 0 dest_mod_bridge: 0 dest_mod_route: 1 cpp_type: 0 dest_mod_index: 0
rp_index: 0 priority: 5 rpf_le: 36 station_index: 16388 capwap_mgid_present: 0 mgid 0
-------------------------------------------------------------------------------------------------------------------------------------

The following is sample output from the show tech-support platform layer3 unicast vrf command:

Device# show tech-support platform layer3 unicast vrf vr1 dstIP 10.0.0.20 srcIP 10.0.0.10

Switch/Stack Mac Address : 5006.ab89.0280 - Local Mac Address
Mac persistency wait time: Indefinite
Switch# Role Mac Address Priority Version State
-------------------------------------------------------------------------------------
*1 Active 5006.ab89.0280 1 V02 Ready

----- show switch -----
10.0.0.10 -> 10.0.0.20 -> IP adj out of GigabitEthernet1/0/7, addr 10.0.0.20

----- show ip cef exact-route platform 10.0.0.10 10.0.0.20 ------

nexthop is 10.0.0.20

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Interface</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>GigabitEthernet1/0/7</td>
<td>10.0.0.20(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 packets, 0 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>epoch 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sourced in sev-epoch 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encap length 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00211BFDE6495006AB8902C00800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2 destination address byte offset 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2 destination address byte length 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link-type after encap: ip ARP</td>
</tr>
</tbody>
</table>

----- show adjacency 10.0.0.20 detail ------

Routing entry for 10.0.0.0/24
Known via "connected", distance 0, metric 0 (connected, via interface)
Routing Descriptor Blocks:
  * directly connected, via GigabitEthernet1/0/7
    Route metric is 0, traffic share count is 1

----- show ip route 10.0.0.20 ------

10.0.0.20/32, epoch 3, flags [attached]  
  Adj source: IP adj out of GigabitEthernet1/0/7, addr 10.0.0.20 FF90E67820  
  Dependent covered prefix type adjfib, cover 10.0.0.0/24  
  attached to GigabitEthernet1/0/7

----- show ip cef 10.0.0.20 detail ------

ip prefix: 10.0.0.20/32

Forwarding Table

10.0.0.20/32 -> OBJ_ADJACENCY (29), urpf: 30  
Connected Interface: 31  
Prefix Flags: Directly L2 attached  
OM handle: 0x10205416d8

----- show platform software ip switch 1 R0 cef prefix 10.0.0.20/32 detail ------
OBJ_ADJACENCY found: 29

Number of adjacency objects: 5

Adjacency id: 0x1d (29)
  Interface: GigabitEthernet1/0/7, IF index: 31, Link Type: MCP_LINK_IP
  Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500
  Flags: no-l3-inject
  Incomplete behavior type: None
  Fixup: unknown
  Fixup_Flags_2: unknown
  Nexthop addr: 10.0.0.20
  IP FRR MCP_ADJ_IPFRR_NONE 0
  OM handle: 0x1020541348

----- show platform software adjacency switch 1 R0 index 29 -----
Object identifier: 391
  Description: adj 0x1d, Flags None
  Status: Done, Epoch: 0, Client data: 0xc6a747a8

----- show platform software object-manager switch 1 F0 object 391 ----- 

Object identifier: 66
  Description: intf GigabitEthernet1/0/7, handle 31, hw handle 31, HW dirty: NONE AOM dirty NONE
  Status: Done

----- show platform software object-manager switch 1 F0 object 391 parents ----- 

Object identifier: 393
  Description: PREFIX 10.0.0.20/32 (Table id 0)
  Status: Done

Output fields are self-explanatory.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show tech-support platform</td>
<td>Displays detailed information about a platform for use by technical support.</td>
</tr>
</tbody>
</table>
show tech-support platform mld_snooping

To display Multicast Listener Discovery (MLD) snooping information about a group, use the `show tech-support platform mld_snooping` command in privileged EXEC mode.

```
show tech-support platform mld_snooping [{Group_ipv6Addr ipv6-address }][{vlan vlan-ID}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Group_ipv6Addr</th>
<th>(Optional) Displays snooping information about the specified group address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ipv6-address</td>
<td>(Optional) IPv6 address of the group.</td>
</tr>
<tr>
<td></td>
<td>vlan vlan-ID</td>
<td>(Optional) Displays MLD snooping VLAN information. Valid values are from 1 to 4094.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The output of this command is very long. To better manage this output, you can redirect the output to an external file (for example, `show tech-support platform mld_snooping | redirect flash:filename`) in the local writable storage file system or remote file system.

**Examples**

The following is sample output from the `show tech-support platform mld_snooping` command:

```
Device# show tech-support platform mld_snooping GroupIPv6Addr FF02::5:1
.
.
------------------ show running-config ------------------

Building configuration...

Current configuration : 11419 bytes

! Last configuration change at 09:17:04 UTC Thu Sep 6 2018

version 16.10
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
service call-home
no platform punt-keepalive disable-kernel-core
!
hostname Switch
!
!
```
! address-family ipv4
  exit-address-family
!
! address-family ipv6
  exit-address-family
!
! no aaa new-model

switch 1 provision ws-c3650-12x48uq
!
!
!
! call-home
  ! If contact email address in call-home is configured as sch-smart-licensing@cisco.com
  ! the email address configured in Cisco Smart License Portal will be used as contact email
  ! address to send SCH notifications.
  contact-email-addr sch-smart-licensing@cisco.com

profile "profile-1"
  active
  destination transport-method http
  no destination transport-method email
!
!
!
!
!
!
ip admission watch-list expiry-time 0
!
!
!
!
login on-success log
!
!
!
!
!
!
no device-tracking logging theft
!
crypto pki trustpoint TP-self-signed-559433368
  enrollment self-signed
  subject-name cn=IOS-Self-Signed-Certificate-559433368
  revocation-check none
  rsakeypair TP-self-signed-559433368
!
crypto pki trustpoint SLA-TrustPoint
  enrollment pkcs12
  revocation-check crl
!
!
crypto pki certificate chain TP-self-signed-559433368
  certificate self-signed 01
  30820229 30820192 A0030201 02020101 300D0609 2A864886 F70D0101 05050030
  30312E30 2C060355 04031325 494FS32D 53656C66 2D536967 6E5642D 43657274
  69666966 6174652D 35353934 33333638 30818D 00308189 02818100
  AD8C9C3B FEE7FFC8 986837D2 4C126172 446C3C53 E040F798 4BA61C97 7506FDCE
  46365DDA E47E3F4F C774CA5B 732A38DD B72A2E98 C66B196 94E8150F 0B669CF6
  AA5BC4CD FC2E02F6 FE08B17F 0164FC19 7DC84ABB C99D91D6 398233FF 814EF6DA
  6DC8FC20 CA120CD6 1CB28DEA 6ADD6DF8 7E3E2881 4A189A9A AA44FCC0 BA9BD6A5
  02030100 01A35330 51300F06 03551D13 0101FF04 05300301 01FF301F 060551D
23041830 16801448 668D668E C92914BB 69E9BA64 F61228DE 132E2030 1D060355 1D0E0416 04144866 8D668EC9 2914BB69 E9BA64F6 122E2030 0D06092A 488F700 01100505 00038181 000F1D5 3DD1E5F1 EB714A95 D5819933 CAD4C943 5900BD25 5D70CAD0 D64830EB D5430AD6 D2B5B613 F8A7F5AB 1F801134 246F760D 5E5515DB D098304F 5086F6E8 88E85B76 F6B93A88 F458F6CF 91A42D7E FA741908 5C892D78 600FB655 E6C5A4D0 6C1F1B9A 3AECA550 E3DC0881 01C4D004 7AB65BC3 88CF24DE DAA19474 51B535A5 0C quit

crypto pki certificate chain SLA-TrustPoint certificate ca 01 30820232 08020209 A0030201 02020101 300D0609 2A864886 F70D0101 0B050030 3210E030 0C060355 040A1305 43697363 6F312030 1E060355 40301317 43697363 6F20436F 6D6E73 6986E672 526F6F74 20434130 82012230 0D06092A 864886F7 0D010101 05003082 010F0030 82010A02 82010100 A6CBD96 131E05F7 145EA72C 2CD686E6 17222EA1 F1E6FD8D CB4C798 212AA147 C655D8D7 947188D7 8711441E 1AA0FF7A 9CAEE688 8A38E520 1C394D78 462F2E39 C659F715 B98CA059 5BBB5CB5 0CFFEEBA3 700A8BF7 8D256E6E 4AA4E80D B6F6D19C 60B1F618 FFC69C66 6FA69857 A2617DE7 104FDC5F EA2956AC 7390A3EB 2BB5436A DB47AC25 DAB535EB 69A9A535 58E9F3E3 C0B2D3CF 58B7188 6B6E9491 20F320E7 948E71D7 AE3BCC84 F10684C7 4BCE6E0F 539BA42B 42C6BBB7 C7479096 B4CB2B62 EA2F505D C7B062A4 681D95B8 E8250FC4 50D59FBB 8F27D191 C5F5F0DE 61F9A4CD 3D992327 A5BB035D 84607069 7CBAD9F9 D5F43668 9C155E44 D5F746CF 040D7FD1 02030100 01A342C3 40308E06 355120DF 0101F004 04030201 06300F06 03551D13 0101FF04 05300301 01FF301D 0603551D 0E0146D8 14C9DC85 4B3D31E5 1B3E6A17 606AF333 3D3B4C73 E8300D06 092A8648 86F7D001 010B0500 03820101 00507F24 A93246A6 86025DF9 E38AEE5C 60DF6E6B 49631C78 240DA095 0400D52DCE FF4FE2DB 77FC460E CD636FDB DD44681E 3A5673AB 9093DB31 6C933DB8 D98F87BF E40C9EBD 1AECAC02 218998BC 8FAB5686 C988B646 557B1546 8D4F66A8 467A3DF4 4D565700 6AD6F09D CF835015 304FF7C7 21E878AC 11B949D2 55A9232C 7CA7B7E6 C1A7F476 152E9B98 B1F9FBB9 E973DE7F 5BDBE86E C71E8B49 1765308B 5FB8DA06 B29A9E7F 49BA9E7E 07B85737 FC38AEB1 1A4A8229 C37C1E69 39F08678 80DCD16 D6BACECA EEE7C7F9 8428787B 35202C2D 60E44616 B632C0BD 230B63AB 418616A9 4093E4A9 4D10AB75 27E68F73 932E3585 886F2DAA 0275156F 719BB2F0 D697DF7F 28 quit

diagnostic bootup level minimal
diagnostic monitor syslog

class-map match-any system-cpp-police-topology-control
  description Topology control
class-map match-any system-cpp-police-sw-forward
  description Sw forwarding, L2 LVX data, LOGGING
class-map match-any system-cpp-default
  description EWLC control, EWLC data, Inter FED
class-map match-any system-cpp-police-sys-data
  description Learning cache ovfl, High Rate App, Exception, EGR Exception, NFL SAMPLED
DATA, RPF Failed
class-map match-any AutoQos-4.0-RT1-Class
    match dscp ef
    match dscp cs6
class-map match-any system-cpp-police-punt-webauth
description Punt Webauth
class-map match-any AutoQos-4.0-RT2-Class
    match dscp cs4
    match dscp cs3
    match dscp af41
class-map match-any system-cpp-police-l2lvx-control
description L2 LVX control packets
class-map match-any system-cpp-police-forus
description Forus Address resolution and Forus traffic
class-map match-any system-cpp-police-multicast-end-station
description MCAST END STATION
class-map match-any system-cpp-police-multicast
description Transit Traffic and MCAST Data
class-map match-any system-cpp-police-12-control
description L2 control
class-map match-any system-cpp-police-dot1x-auth
description DOT1X Auth
class-map match-any system-cpp-police-data
description ICMP redirect, ICMP.Gen and BROADCAST
class-map match-any system-cpp-police-stackwise-virt-control
description Stackwise Virtual
class-map match-any system-cpp-police-control-low-priority
description ICMP redirect and general punt
class-map match-any system-cpp-police-wireless-priority1
description Wireless priority 1
class-map match-any system-cpp-police-wireless-priority2
description Wireless priority 2
class-map match-any system-cpp-police-wireless-priority3-4-5
description Wireless priority 3, 4 and 5
class-map match-any non-client-nrt-class
class-map match-any system-cpp-police-routing-control
description Routing control and Low Latency
class-map match-any system-cpp-police-protocol-snooping
description Protocol snooping
class-map match-any system-cpp-police-dhcp-snooping
description DHCP snooping
class-map match-any system-cpp-police-system-critical
description System Critical and Gold Pkt
!
policy-map system-cpp-policy
class system-cpp-police-data
    police rate 200 pps
class system-cpp-police-routing-control
    police rate 500 pps
class system-cpp-police-control-low-priority
class system-cpp-police-wireless-priority1
class system-cpp-police-wireless-priority2
class system-cpp-police-wireless-priority3-4-5
policy-map port_child_policy
class non-client-nrt-class
    bandwidth remaining ratio 10
!
!
!
!
!
!
!
show tech-support platform mld_snooping

interface GigabitEthernet0/0
  vrf forwarding Mgmt-vrf
  no ip address
  speed 1000
  negotiation auto
interface GigabitEthernet1/0/1
  switchport mode access
  macsec network-link
interface GigabitEthernet1/0/2
interface GigabitEthernet1/0/3
interface TenGigabitEthernet1/1/1
interface TenGigabitEthernet1/1/2
interface TenGigabitEthernet1/1/3
interface TenGigabitEthernet1/1/4
interface Vlan1
  no ip address
  shutdown
  ip forward-protocol nd
  ip http server
  ip http authentication local
  ip http secure-server
  ip access-list extended AutoQos-4.0-wlan-Acl-Bulk-Data
    permit tcp any any eq 22
    permit tcp any any eq 465
    permit tcp any any eq 143
    permit tcp any any eq 993
    permit tcp any any eq 995
    permit tcp any any eq 1914
    permit tcp any any eq ftp
    permit tcp any any eq ftp-data
    permit tcp any any eq smtp
    permit tcp any any eq pop3
  ip access-list extended AutoQos-4.0-wlan-Acl-MultiEnhanced-Conf
    permit udp any any range 16384 32767
    permit tcp any any range 50000 59999
  ip access-list extended AutoQos-4.0-wlan-Acl-Scavanger
    permit tcp any any range 2300 2400
    permit udp any any range 2300 2400
    permit tcp any any range 6881 6999
    permit tcp any any range 28800 29100
    permit tcp any any eq 1214
    permit udp any any eq 1214
    permit tcp any any eq 3689
    permit udp any any eq 3689
    permit tcp any any eq 11999
  ip access-list extended AutoQos-4.0-wlan-Acl-Signaling
    permit tcp any any range 2000 2002
    permit tcp any any range 5060 5061
    permit udp any any range 5060 5061
  ip access-list extended AutoQos-4.0-wlan-Acl-Transactional-Data
    permit tcp any any eq 443
    permit tcp any any eq 1521
permit udp any any eq 1521
permit tcp any any eq 1526
permit udp any any eq 1526
permit tcp any any eq 1575
permit udp any any eq 1575
permit tcp any any eq 1630
permit udp any any eq 1630
permit tcp any any eq 1527
permit tcp any any eq 6200
permit tcp any any eq 3389
permit tcp any any eq 5985
permit tcp any any eq 8080
!
!
ipv6 access-list preauth_ipv6_acl
permit udp any any eq domain
permit tcp any any eq domain
permit icmp any any nd-ns
permit icmp any any nd-na
permit icmp any any router-solicitation
permit icmp any any router-advertisement
permit icmp any any redirect
permit udp any eq 547 any eq 546
permit udp any eq 546 any eq 547
deny ipv6 any any
!
control-plane
service-policy input system-cpp-policy
!
!
line con 0
  stopbits 1
line aux 0
  stopbits 1
line vty 0 4
  login
line vty 5 15
  login
!
!
mac address-table notification mac-move
!
!
!
end

-----show switch | Include Ready-----
*1  Active  188b.9dfc.eb00  1 V00 Ready

----- show ipv6 mld snooping address | i FF02::5:1 -----
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ipv6 mld snooping</code></td>
<td>Enables MLDv2 protocol snooping globally.</td>
</tr>
<tr>
<td></td>
<td><code>show ipv6 mld snooping</code></td>
<td>Displays MLDv2 snooping information.</td>
</tr>
<tr>
<td></td>
<td><code>show tech-support platform</code></td>
<td>Displays detailed information about a platform for use by technical support.</td>
</tr>
</tbody>
</table>
show tech-support port

To display port-related information for use by technical support, use the `show tech-support port` command in privileged EXEC mode.

```
show tech-support port
```

**Syntax Description**
This command has no arguments or keywords.

**Command Modes**
Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The output of the `show tech-support port` command is very long. To better manage this output, you can redirect the output to an external file (for example, `show tech-support port | redirect flash:filename`) in the local writable storage file system or remote file system.

The output of this command displays the following commands:

- `show clock`
- `show version`
- `show module`
- `show inventory`
- `show interface status`
- `show interface counters`
- `show interface counters errors`
- `show interfaces`
- `show interfaces capabilities`
- `show controllers`
- `show controllers utilization`
- `show idprom interface`
- `show controller ethernet-controller phy detail`
- `show switch`
- `show platform software fed switch active port summary`
- `show platform software fed switch ifm interfaces ethernet`
- `show platform software fed switch ifm mappings`
- `show platform software fed switch ifm mappings lpn`
• show platform software fed switch ifm mappings gpn
• show platform software fed switch ifm mappings port-le
• show platform software fed switch ifm if-id
• show platform software fed switch active port if_id

Examples

The following is sample output from the `show tech-support port` command:

Device# show tech-support port
.
.
.
----- show controllers utilization -----
Te1/0/45  0  0
Te1/0/46  0  0
Te1/0/47  0  0
Te1/0/48  0  0
Te1/1/1   0  0
Te1/1/2   0  0
Te1/1/3   0  0
Te1/1/4   0  0

Total Ports : 52
Total Ports Receive Bandwidth Percentage Utilization : 0
Total Ports Transmit Bandwidth Percentage Utilization : 0

Average Switch Percentage Utilization : 0

----- show idprom interface Gi1/0/1 -----  

-Sep 7 08:57:24.249: No module is present
.
.
The output fields are self-explanatory.
show version

To display information about the currently loaded software along with hardware and device information, use the `show version` command in user EXEC or privileged EXEC mode.

```
show version [{switch node}][{installed | provisioned | running}]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch node</td>
<td>(optional) Only a single switch may be specified. Default is all switches in a stacked system.</td>
</tr>
<tr>
<td>running</td>
<td>(optional) Specifies information on the files currently running.</td>
</tr>
<tr>
<td>provisioned</td>
<td>(optional) Specifies information on the software files that are provisioned.</td>
</tr>
<tr>
<td>installed</td>
<td>Specifies information on the software installed on the RP</td>
</tr>
<tr>
<td>user-interface</td>
<td>Specifies information on the files related to the user-interface.</td>
</tr>
</tbody>
</table>

### Command Default

No default behavior or values.

### Command Modes

- User EXEC (>)
- Privileged EXEC (#)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

### Usage Guidelines

This command displays information about the Cisco IOS software version currently running on a device, the ROM Monitor and Bootflash software versions, and information about the hardware configuration, including the amount of system memory. Because this command displays both software and hardware information, the output of this command is the same as the output of the `show hardware` command. (The `show hardware` command is a command alias for the `show version` command.)

Specifically, the `show version` command provides the following information:

- **Software information**
  - Main Cisco IOS image version
  - Main Cisco IOS image capabilities (feature set)
  - Location and name of bootfile in ROM
  - Bootflash image version (depending on platform)

- **Device-specific information**
  - Device name
  - System uptime
  - System reload reason
  - Config-register setting
  - Config-register settings for after the next reload (depending on platform)
The output of this command uses the following format:

Cisco IOS Software, <platform> Software (<image-id>), Version <software-version>, <software-type>

Technical Support: http://www.cisco.com/techsupport
Copyright (c) <date-range> by Cisco Systems, Inc.
Compiled <day> <date> <time> by <compiler-id>

ROM: System Bootstrap, Version <software-version>, <software-type>
BOOTLDR: <platform> Software (image-id), Version <software-version>, <software-type>

<router-name> uptime is <w> weeks, <d> days, <h> hours, <m> minutes
System returned to ROM by reload at <time> <day> <date>
System image file is "<filesystem-location>/<software-image-name>"
Last reload reason: <reload-reason>Cisco <platform-processor-type> processor (revision <processor-revision-id>) with <free-DRAM-memory> K/<packet-memory>K bytes of memory.
Processor board ID <ID-number>

See the Examples section for descriptions of the fields in this output.

Entering show version displays the IOS XE software version and the IOS XE software bundle which includes a set of individual packages that comprise the complete set of software that runs on the switch.

The show version running command displays the list of individual packages that are currently running on the switch. When booted in installed mode, this is typically the set of packages listed in the booted provisioning file. When booted in bundle mode, this is typically the set of packages contained in the bundle.

The show version provisioned command displays information about the provisioned package set.

The following is sample output from the show version command on a Cisco Catalyst 9300 Series Switch:

Device# show version
Cisco IOS XE Software, Version BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2
Cisco IOS Software [FujI], Catalyst L3 Switch Software (CAT9K_IOSXE), Experimental Version 16.10.20180903:072347
[v1610_throttle/nobackup/mcpre/BLD-V1610_THROTTLE_LATEST_20180903_070602 183] Copyright (c) 1986-2018 by Cisco Systems, Inc.
Compiled Mon 03-Sep-18 11:53 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2018 by cisco Systems, Inc.
show version

ROM: IOS-XE ROMMON
BOOTLDR: System Bootstrap, Version 16.10.1r, RELEASE SOFTWARE (P)

C9300 uptime is 20 hours, 7 minutes
Uptime for this control processor is 20 hours, 8 minutes
System returned to ROM by Image Install
System image file is "flash:packages.conf"
Last reload reason: Image Install

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrqg.html

If you require further assistance please contact us by sending email to export@cisco.com.

Technology Package License Information:

<table>
<thead>
<tr>
<th>Technology-package</th>
<th>Type</th>
<th>Technology-package</th>
<th>Next reboot</th>
</tr>
</thead>
<tbody>
<tr>
<td>network-advantage</td>
<td>Smart License</td>
<td>network-advantage</td>
<td></td>
</tr>
<tr>
<td>dna-advantage</td>
<td>Subscription</td>
<td>dna-advantage</td>
<td></td>
</tr>
</tbody>
</table>

Smart Licensing Status: UNREGISTERED/EVAL MODE

cisco C9300-24U (X86) processor with 1415813K/6147K bytes of memory.
Processor board ID FCW2125L08H
8 Virtual Ethernet interfaces
56 Gigabit Ethernet interfaces
16 Ten Gigabit Ethernet interfaces
4 TwentyFive Gigabit Ethernet interfaces
4 Forty Gigabit Ethernet interfaces
2048K bytes of non-volatile configuration memory.
8388608K bytes of physical memory.
1638400K bytes of Crash Files at crashinfo:
1638400K bytes of Crash Files at crashinfo-2:
11264000K bytes of Flash at flash:
11264000K bytes of Flash at flash-2:
0K bytes of WebUI ODM Files at webui:.
Base Ethernet MAC Address : 70:d3:79:be:6c:80
Motherboard Assembly Number : 73-17954-06
Motherboard Serial Number : FOC21230KPK
Model Revision Number : A0
Motherboard Revision Number : A0
Model Number : C9300-24U
System Serial Number : FCW2125L0BH

Switch Ports Model SW Version SW Image Mode
------ ----- ----- ---------- ---------- ----
* 1 40 C9300-24U 16.10.1 CAT9K_IOSXE INSTALL
  2 40 C9300-24U 16.10.1 CAT9K_IOSXE INSTALL

Switch 02
---------
Switch uptime : 20 hours, 8 minutes

Base Ethernet MAC Address : 70:d3:79:84:85:80
Motherboard Assembly Number : 73-17954-06
Motherboard Serial Number : FOC21230KPK
Model Revision Number : A0
Motherboard Revision Number : A0
Model Number : C9300-24U
System Serial Number : FCW2125L03W
Last reload reason : Image Install
Configuration register is 0x102

In the following example, the **show version running** command is entered on a Cisco Catalyst 9300 Series Switch to view information about the packages currently running on both switches in a 2-member stack:

```
Device# show version running
Package: Provisioning File, version: n/a, status: active
 Role: provisioning file
 File: /flash/packages.conf, on: RP0
 Built: n/a, by: n/a
 File SHA1 checksum: 6a43991bae5b94de0df80883550f827a3c01756c5

Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: active
 Role: rp_base
 File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885

Package: rpboot, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: active
 Role: rp_boot
 File: /flash/cat9k-rpboot.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
 Built: 2018-09-03_13.11, by: mcpre
 File SHA1 checksum: n/a

Package: guestshell, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: active
 Role: guestshell
 File: /flash/cat9k-guestshell.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0/0
```
In the following example, the `show version provisioned` command is entered on a Cisco Catalyst 9300 Series Switch that is the active switch in a 2-member stack. The `show version provisioned` command displays information about the packages in the provisioned package set.

Device# `show version provisioned`
Package: Provisioning File, version: n/a, status: active
  Role: provisioning file
  File: /flash/packages.conf, on: RP0
  Built: n/a, by: n/a
  File SHA1 checksum: 6a43991bae5b94de0df8083550f827a3c01756c5

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)

1343

show version

Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: rp_base
File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
Built: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885

Package: guestshell, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: guestshell
File: /flash/cat9k-guestshell.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
Built: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: 10827f9f9db3b016d19a926acc6be0541440b8d7

Package: rpboot, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: rp_boot
File: /flash/cat9k-rpboot.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
Built: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: n/a

Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: rp_daemons
File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
Built: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885

Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: rp_iosd
File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
Built: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885

Package: rpbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: rp_security
File: /flash/cat9k-rpbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
Built: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: 78331327788b2cd00624043d71a15094bd19d885

Package: webui, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: rp_webui
File: /flash/cat9k-webui.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
Built: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: 5112d7749b38fae122ce6ee1bfb266ad7eb553a

Package: wlc, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: rp_wlc
File: /flash/cat9k-wlc.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
Built: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: ada21bb3d57e1b03e5af2329503ed6caa7236d6e

Package: srdriver, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: srdriver
File: /flash/cat9k-srdriver.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: RP0
Build: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: aff411e981a8dfc8de14005cc33462dc69f8bfaf

Package: espbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: fp
File: /flash/cat9k-espbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: ESP0
Build: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: 1a2317485f285a3945b31ae57aa64c56ed30a8c0

Package: sipbase, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: cc
File: /flash/cat9k-sipbase.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: SIP0
Build: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: ce821195f0c0bd5e44f21e32fca76cf9b2eed02b

Package: sipspa, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: cc_spa
File: /flash/cat9k-sipspa.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: SIP0
Build: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: 54645404860b662d72f8ff7fa5e6e88cb0960e20

Package: cc_srdriver, version: BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2, status: n/a
Role: cc_srdriver
File: /flash/cat9k-cc_srdriver.BLD_V1610_THROTTLE_LATEST_20180903_070602_V16_10_0_101_2.SSA.pkg, on: SIP0
Build: 2018-09-03_13.11, by: mcpre
File SHA1 checksum: e3da784f3e61ef1e153028e53d9dc94b2c9b1bf7

Table 145: Table 5, show version running Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>The individual sub-package name.</td>
</tr>
<tr>
<td>version</td>
<td>The individual sub-package version.</td>
</tr>
<tr>
<td>status</td>
<td>Reveals if the package is active or inactive for the specific Supervisor module.</td>
</tr>
<tr>
<td>File</td>
<td>The filename of the individual package file.</td>
</tr>
<tr>
<td>on</td>
<td>The slot number of the Active or Standby Supervisor that this package is running on.</td>
</tr>
<tr>
<td>Built</td>
<td>The date the individual package was built.</td>
</tr>
</tbody>
</table>
system env temperature threshold yellow

To configure the difference between the yellow and red temperature thresholds that determines the value of yellow threshold, use the `system env temperature threshold yellow` command in global configuration mode. To return to the default value, use the `no` form of this command.

```
 system env temperature threshold yellow value
 no system env temperature threshold yellow value
```

**Syntax Description**

- `value`: Specifies the difference between the yellow and red threshold values (in Celsius). The range is 10 to 25.

**Command Default**

These are the default values

<table>
<thead>
<tr>
<th>Device</th>
<th>Difference between Yellow and Red</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14°C</td>
<td>60°C</td>
</tr>
</tbody>
</table>

You cannot configure the red temperature threshold.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You cannot configure the green and red thresholds but can configure the yellow threshold. Use the `system env temperature threshold yellow value` global configuration command to specify the difference between the yellow and red thresholds and to configure the yellow threshold. For example, if the red threshold is 66 degrees C and you want to configure the yellow threshold as 51 degrees C, set the difference between the thresholds as 15 by using the `system env temperature threshold yellow 15` command. For example, if the red threshold is 60 degrees C and you want to configure the yellow threshold as 51 degrees C, set the difference between the thresholds as 15 by using the `system env temperature threshold yellow 9` command.

**Note**

The internal temperature sensor in the device measures the internal system temperature and might vary ±5 degrees C.

**Examples**

This example sets 15 as the difference between the yellow and red thresholds:

```
Device(config)# system env temperature threshold yellow 15
Device(config)#
```
**traceroute mac**

To display the Layer 2 path taken by the packets from the specified source MAC address to the specified destination MAC address, use the `traceroute mac` command in privileged EXEC mode.

```
traceroute mac [interface interface-id] source-mac-address [interface interface-id]
 destination-mac-address [vlan vlan-id] [detail]
```

**Syntax Description**

- `interface interface-id` (Optional) Specifies an interface on the source or destination device.
- `source-mac-address` The MAC address of the source device in hexadecimal format.
- `destination-mac-address` The MAC address of the destination device in hexadecimal format.
- `vlan vlan-id` (Optional) Specifies the VLAN on which to trace the Layer 2 path that the packets take from the source device to the destination device. Valid VLAN IDs are 1 to 4094.
- `detail` (Optional) Specifies that detailed information appears.

**Command Default**

No default behavior or values.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

For Layer 2 traceroute to function properly, Cisco Discovery Protocol (CDP) must be enabled on all of the devices in the network. Do not disable CDP.

When the device detects a device in the Layer 2 path that does not support Layer 2 traceroute, the device continues to send Layer 2 trace queries and lets them time out.

The maximum number of hops identified in the path is ten.

Layer 2 traceroute supports only unicast traffic. If you specify a multicast source or destination MAC address, the physical path is not identified, and an error message appears.

The `traceroute mac` command output shows the Layer 2 path when the specified source and destination addresses belong to the same VLAN.

If you specify source and destination addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message appears.

If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong.

If the VLAN is not specified, the path is not identified, and an error message appears.

The Layer 2 traceroute feature is not supported when multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port).
When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.

This feature is not supported in Token Ring VLANs.

Examples

This example shows how to display the Layer 2 path by specifying the source and destination MAC addresses:

```
Device# traceroute mac 0000.0201.0601 0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C3750E-24PD] (2.2.6.6)
con6 (2.2.6.6) : Gi0/0/1 => Gi0/0/3
 con5 (2.2.5.5) : G10/0/3 => G10/0/1
 con1 (2.2.1.1) : G10/0/1 => G10/0/2
 con2 (2.2.2.2) : G10/0/2 => G10/0/1
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed
```

This example shows how to display the Layer 2 path by using the `detail` keyword:

```
Device# traceroute mac 0000.0201.0601 0000.0201.0201 detail
Source 0000.0201.0601 found on con6[WS-C3750E-24PD] (2.2.6.6)
con6 / WS-C3750E-24PD / 2.2.6.6 :
 Gi0/0/2 [auto, auto] => G10/0/3 [auto, auto]
con5 / WS-C2950G-24-EI / 2.2.5.5 :
 Fa0/3 [auto, auto] => G10/1 [auto, auto]
con1 / WS-C3550-12G / 2.2.1.1 :
 G10/1 [auto, auto] => G10/2 [auto, auto]
con2 / WS-C3550-24 / 2.2.2.2 :
 G10/2 [auto, auto] => Fa0/1 [auto, auto]
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed.
```

This example shows how to display the Layer 2 path by specifying the interfaces on the source and destination devices:

```
Device# traceroute mac interface fastethernet0/1 0000.0201.0601 interface fastethernet0/3 0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C3750E-24PD] (2.2.6.6)
con6 (2.2.6.6) : Gi0/0/1 => Gi0/0/3
 con5 (2.2.5.5) : G10/0/3 => G10/0/1
 con1 (2.2.1.1) : G10/0/1 => G10/0/2
 con2 (2.2.2.2) : G10/0/2 => G10/0/1
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed
```

This example shows the Layer 2 path when the device is not connected to the source device:

```
Device# traceroute mac 0000.0201.0501 0000.0201.0201 detail
Source not directly connected, tracing source Source 0000.0201.0501 found on con5[WS-C3750E-24TD] (2.2.5.5)
con5 / WS-C3750E-24TD / 2.2.5.5 :
 G10/0/1 [auto, auto] => G10/0/3 [auto, auto]
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
This example shows the Layer 2 path when the device cannot find the destination port for the source MAC address:

Device# traceroute mac 0000.0011.1111 0000.0201.0201
  Error: Source Mac address not found.
  Layer 2 trace aborted.

This example shows the Layer 2 path when the source and destination devices are in different VLANs:

Device# traceroute mac 0000.0201.0601 0000.0301.0201
  Error: Source and destination macs are on different vlans.
  Layer 2 trace aborted.

This example shows the Layer 2 path when the destination MAC address is a multicast address:

Device# traceroute mac 0000.0201.0601 0100.0201.0201
  Invalid destination mac address

This example shows the Layer 2 path when source and destination devices belong to multiple VLANs:

Device# traceroute mac 0000.0201.0601 0000.0201.0201
  Error: Mac found on multiple vlans.
  Layer 2 trace aborted.
traceroute mac ip

To display the Layer 2 path taken by the packets from the specified source IP address or hostname to the specified destination IP address or hostname, use the **traceroute mac ip** command in privileged EXEC mode.

```
traceroute mac ip {source-ip-address source-hostname} {destination-ip-address destination-hostname} [detail]
```

**Syntax Description**

- **source-ip-address** The IP address of the source device as a 32-bit quantity in dotted-decimal format.
- **source-hostname** The IP hostname of the source device.
- **destination-ip-address** The IP address of the destination device as a 32-bit quantity in dotted-decimal format.
- **destination-hostname** The IP hostname of the destination device.
- **detail** (Optional) Specifies that detailed information appears.

**Command Default**

No default behavior or values.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

For Layer 2 traceroute to function properly, Cisco Discovery Protocol (CDP) must be enabled on each device in the network. Do not disable CDP.

When the device detects a device in the Layer 2 path that does not support Layer 2 traceroute, the device continues to send Layer 2 trace queries and lets them time out.

The maximum number of hops identified in the path is ten.

The **traceroute mac ip** command output shows the Layer 2 path when the specified source and destination IP addresses are in the same subnet.

When you specify the IP addresses, the device uses Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.

- If an ARP entry exists for the specified IP address, the device uses the associated MAC address and identifies the physical path.
- If an ARP entry does not exist, the device sends an ARP query and tries to resolve the IP address. The IP addresses must be in the same subnet. If the IP address is not resolved, the path is not identified, and an error message appears.

The Layer 2 traceroute feature is not supported when multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port).

When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.
This feature is not supported in Token Ring VLANs.

Examples

This example shows how to display the Layer 2 path by specifying the source and destination IP addresses and by using the **detail** keyword:

```
Device# traceroute mac ip 2.2.66.66 2.2.22.22 detail
Translating IP to mac
2.2.66.66 -> 0000.0201.0601
2.2.22.22 -> 0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C2950G-24-EI] (2.2.6.6)
 con6 / WS-C3750E-24TD / 2.2.6.6 :
 Gi0/0/1 [auto, auto] -> Gi0/0/3 [auto, auto]
 con5 / WS-C2950G-24-EI / 2.2.5.5 :
 Gi0/3 [auto, auto] -> Gi0/1 [auto, auto]
 con1 / WS-C3550-12G / 2.2.1.1 :
 Gi0/1 [auto, auto] -> Gi0/1 [auto, auto]
 con2 / WS-C3550-24 / 2.2.2.2 :
 Gi0/2 [auto, auto] -> Fa0/1 [auto, auto]
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed.
```

This example shows how to display the Layer 2 path by specifying the source and destination hostnames:

```
Device# traceroute mac ip con6 con2
Translating IP to mac
2.2.66.66 -> 0000.0201.0601
2.2.22.22 -> 0000.0201.0201
Source 0000.0201.0601 found on con6
 con6 (2.2.6.6) : Gi0/0/1 -> Gi0/0/3
 (2.2.6.6) : Gi0/0/1 -> Gi0/0/3
 con5 (2.2.5.5) : Gi0/0/3 -> Gi0/1
 con1 (2.2.1.1) : Gi0/0/1 -> Gi0/2
 con2 (2.2.2.2) : Gi0/0/2 -> Fa0/1
Destination 0000.0201.0201 found on con2
Layer 2 trace completed.
```

This example shows the Layer 2 path when ARP cannot associate the source IP address with the corresponding MAC address:

```
Device# traceroute mac ip 2.2.66.66 2.2.77.77
Arp failed for destination 2.2.77.77.
Layer2 trace aborted.
```
type

To display the contents of one or more files, use the **type** command in boot loader mode.

**type filesystem:/file-url...**

**Syntax Description**

<table>
<thead>
<tr>
<th>filesystem: Alias for a file system. Use flash: for the system board flash device; use usbflash0: for USB memory sticks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>/file-url... Path (directory) and name of the files to display. Separate each filename with a space.</td>
</tr>
</tbody>
</table>

**Command Default**

No default behavior or values.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Filenames and directory names are case sensitive.

If you specify a list of files, the contents of each file appear sequentially.

**Examples**

This example shows how to display the contents of a file:

```plaintext
Device: type flash:image_file_name
version_suffix: universal-122-xx.SEx
version_directory: image_file_name
image_system_type_id: 0x00000002
image_name: image_file_name.bin
ios_image_file_size: 8919552
total_image_file_size: 11592192
image_feature: IP|LAYER_3|PLUS|MIN_DRAM_MEG=128
image_family: family
stacking_number: 1.34
board_ids: 0x00000068 0x00000069 0x0000006a 0x0000006b
info_end:
```
To reset one or more environment variables, use the `unset` command in boot loader mode.

`unset variable...`

### Syntax Description

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANUAL_BOOT</td>
<td>Specifies whether the device automatically or manually boots.</td>
</tr>
<tr>
<td>BOOT</td>
<td>Resets the list of executable files to try to load and execute when automatically booting. If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the flash: file system. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot the first bootable file that it can find in the flash: file system.</td>
</tr>
<tr>
<td>ENABLE_BREAK</td>
<td>Specifies whether the automatic boot process can be interrupted by using the Break key on the console after the flash: file system has been initialized.</td>
</tr>
<tr>
<td>HELPER</td>
<td>Identifies the semicolon-separated list of loadable files to dynamically load during the boot loader initialization. Helper files extend or patch the functionality of the boot loader.</td>
</tr>
<tr>
<td>PSI</td>
<td>Specifies the string that is used as the command-line prompt in boot loader mode.</td>
</tr>
<tr>
<td>CONFIG_FILE</td>
<td>Resets the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.</td>
</tr>
<tr>
<td>BAUD</td>
<td>Resets the rate in bits per second (b/s) used for the console. The Cisco IOS software inherits the baud rate setting from the boot loader and continues to use this value unless the configuration file specifies another setting.</td>
</tr>
</tbody>
</table>

### Command Default

No default behavior or values.

### Command Modes

Boot loader

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

### Usage Guidelines

Under typical circumstances, it is not necessary to alter the setting of the environment variables.

The MANUAL_BOOT environment variable can also be reset by using the `no boot manual` global configuration command.

The BOOT environment variable can also be reset by using the `no boot system` global configuration command.

The ENABLE_BREAK environment variable can also be reset by using the `no boot enable-break` global configuration command.
The HELPER environment variable can also be reset by using the `no boot helper` global configuration command.

The CONFIG_FILE environment variable can also be reset by using the `no boot config-file` global configuration command.

**Example**

This example shows how to unset the SWITCH_PRIORITY environment variable:

```
Device: unset SWITCH_PRIORITY
```
version

To display the boot loader version, use the `version` command in boot loader mode.

```
version [-v]
```

**Syntax Description**

- `-v` Displays Hardware Anchor, Microloader, Firmware-DDR and ROMMON Revision versions.

**Command Default**

No default behavior or values.

**Command Modes**

Boot loader

**Command History**

**Release**	**Modification**
Cisco IOS XE Fuji 16.9.2 | This command was introduced.

**Examples**

This example shows how to display the boot loader version on a device:

```
Device: version -v
System Bootstrap, Version 16.10.1r, RELEASE SOFTWARE (P)
Compiled Tue 09/04/2018 22:58:10 by rel

Current ROMMON image : Primary
C9200-48P-4X platform with 2097152 Kbytes of main memory

HARDWARE ANCHOR : v027.0 crayprod_20160517 20160517-2135
MICROLOADER : v061.0 rel_16_10_1r 20180904-2252
FIRMWARE-DDR : v011.0 rel_16_10_1r 20180904-2254
ROMMON REVISION : v010.003
```
Tracing

- Information About Tracing, on page 1356
- set platform software trace, on page 1358
- show platform software trace filter-binary, on page 1362
- show platform software trace message, on page 1363
- show platform software trace level, on page 1366
- request platform software trace archive, on page 1369
- request platform software trace rotate all, on page 1370
- request platform software trace filter-binary, on page 1371
Information About Tracing

Tracing Overview

The tracing functionality logs internal events. Trace files are automatically created and saved to the tracelogs subdirectory under crashinfo.

The contents of trace files are useful for the following purposes:

• Troubleshooting—If a switch has an issue, the trace file output may provide information that can be used for locating and solving the issue.

• Debugging—The trace file outputs helps users get a more detailed view of system actions and operations.

To view the most recent trace information for a specific module, use the `show platform software trace message` command.

To modify the trace level to increase or decrease the amount of trace message output, you can set a new trace level using the `set platform software trace` command. Trace levels can be set for each process using the `all-modules` keyword in the `set platform software trace` command, or per module within a process.

Location of Tracelogs

Each process uses btrace infrastructure to log its trace messages. When a process is active, the corresponding in-memory tracelog is found in the directory `/tmp/<FRU>/trace/`, where `<FRU>` refers to the location where the process is running (rp, fp, or cc).

When a tracelog file has reached the maximum file size limit allowed for the process, or if the process ends, it gets rotated into the following directory:

• `/crashinfo/tracelogs`, if the crashinfo: partition is available on the switch

• `/harddisk/tracelogs`, if the crashinfo: partition is not available on the switch

The tracelog files are compressed before being stored in the directory.

Tracelog Naming Convention

All the tracelogs that are created using btrace have the following naming convention:

`<process_name>_<FRU><SLOT>-<BAY>.<pid>_<counter>._<creation_timestamp>.bin`

Here, counter is a free-running 64-bit counter that gets incremented for each new file created for the process. For example, `wcm_R0-0.1362_0.20151006171744.bin`. When compressed, the files will have the gz extension appended to their names.

Tracelog size limits and rotation policy

The maximum size limit for a tracelog file is 1MB for each process, and the maximum number of tracelog files that are maintained for a process is 25.
**Rotation and Throttling Policy**

Initially, all the tracelog files are moved from the initial `/tmp/<FRU>/trace` directory to the `/tmp/<FRU>/trace/stage` staging directory. The `btrace_rotate` script then moves these tracelogs from the staging directory to the `/crashinfo/tracelogs` directory. When the number of files stored in the `/crashinfo/tracelogs` directory per process reaches the maximum limit, the oldest files for the process are deleted, while the newer files are maintained. This is repeated at every 60 minutes under worst-case situations.

There are two other sets of files that are purged from the `/crashinfo/tracelogs` directory:

- Files that do not have the standard naming convention (other than a few exceptions such as `fed_python.log`)
- Files older than two weeks

The throttling policy has been introduced so that a process with errors does not affect the functioning of the switch. Whenever a process starts logging at a very high rate, for example, if there are more than 16 files in a 4-second interval for the process in the staging directory, the process is throttled. The files do not rotate for the process from `/tmp/<FRU>/trace` into `/tmp/<FRU>/trace/stage`, however the files are deleted when they reach the maximum size. Throttling is re-enabled, when the count goes below 8.

**Tracing Levels**

Tracing levels determine how much information should be stored about a module in the trace buffer or file.

The following table shows all of the tracing levels that are available, and provides descriptions of the message that are displayed with each tracing level.

<table>
<thead>
<tr>
<th>Tracing Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>The message is regarding an issue that makes the system unusable.</td>
</tr>
<tr>
<td>Error</td>
<td>The message is regarding a system error.</td>
</tr>
<tr>
<td>Warning</td>
<td>The message is regarding a system warning.</td>
</tr>
<tr>
<td>Notice</td>
<td>The message is regarding a significant issue, but the switch is still working normally.</td>
</tr>
<tr>
<td>Informational</td>
<td>The message is useful for informational purposes only.</td>
</tr>
<tr>
<td>Debug</td>
<td>The message provides debug-level output.</td>
</tr>
<tr>
<td>Verbose</td>
<td>All possible trace messages are sent.</td>
</tr>
<tr>
<td>Noise</td>
<td>All possible trace messages for the module are logged. The noise level is always equal to the highest possible tracing level. Even if a future enhancement to tracing introduces a higher tracing level, the noise level will become equal to the level of that new enhancement.</td>
</tr>
</tbody>
</table>
set platform software trace

To set the trace level for a specific module within a process, use the `set platform software trace` command in privileged EXEC or user EXEC mode.

```
set platform software trace process slot module trace-level
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Process whose tracing level is being set. Options include:</td>
</tr>
<tr>
<td></td>
<td>• <strong>chassis-manager</strong>—The Chassis Manager process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>cli-agent</strong>—The CLI Agent process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>dbm</strong>—The Database Manager process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>emd</strong>—The Environmental Monitoring process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>fed</strong>—The Forwarding Engine Driver process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>forwarding-manager</strong>—The Forwarding Manager process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>host-manager</strong>—The Host Manager process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>iomd</strong>—The Input/Output Module daemon (IOMd) process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>ios</strong>—The IOS process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>license-manager</strong>—The License Manager process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>logger</strong>—The Logging Manager process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-mgr</strong>—The Platform Manager process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>pluggable-services</strong>—The Pluggable Services process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>replication-mgr</strong>—The Replication Manager process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>shell-manager</strong>—The Shell Manager process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>smd</strong>—The Session Manager process.</td>
</tr>
<tr>
<td></td>
<td>• <strong>table-manager</strong>—The Table Manager Server.</td>
</tr>
<tr>
<td></td>
<td>• <strong>wireshark</strong>—The Embedded Packet Capture (EPC) Wireshark process.</td>
</tr>
</tbody>
</table>
**slot**

Hardware slot where the process for which the trace level is set, is running. Options include:

- **number**—Number of the SIP slot of the hardware module where the trace level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.

- **SIP-slot / SPA-bay**—Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.

- **F0**—The Embedded-Service-Processor in slot 0.

- **FP active**—The active Embedded-Service-Processor.

- **R0**—The route processor in slot 0.

- **RP active**—The active route processor.

- **switch <number>**—The switch with its number specified.

- **switch active**—The active switch.

- **switch standby**—The standby switch.

**module**

Module within the process for which the tracing level is set.
Trace level. Options include:

- **debug**—Debug level tracing. A debug-level trace message is a non-urgent message providing a large amount of detail about the module.

- **emergency**—Emergency level tracing. An emergency-level trace message is a message indicating that the system is unusable.

- **error**—Error level tracing. An error-level tracing message is a message indicating a system error.

- **info**—Information level tracing. An information-level tracing message is a non-urgent message providing information about the system.

- **noise**—Noise level tracing. The noise level is always equal to the highest tracing level possible and always generates every possible tracing message.

  The noise level is always equal to the highest-level tracing message possible for a module, even if future enhancements to this command introduce options that allow users to set higher tracing levels.

- **notice**—The message is regarding a significant issue, but the switch is still working normally.

- **verbose**—Verbose level tracing. All possible tracing messages are sent when the trace level is set to verbose.

- **warning**—Warning messages.

---

**Command Default**

The default tracing level for all modules is **notice**.

**Command Modes**

User EXEC (>)

Privileged EXEC (#)

**Command History**

**Release**  **Modification**

This command was introduced.

**Usage Guidelines**

The *module* options vary by process and by *hardware-module*. Use the ? option when entering this command to see which *module* options are available with each keyword sequence.

Use the **show platform software trace message** command to view trace messages.

Trace files are stored in the tracelogs directory in the harddisk: file system. These files can be deleted without doing any harm to your switch operation.

Trace file output is used for debugging. The trace level is a setting that determines how much information should be stored in trace files about a module.
Examples

This example shows how to set the trace level for all the modules in dbm process:

```
set platform software trace dbm R0 all-modules debug
```
show platform software trace filter-binary

To display the most recent trace information for a specific module, use the `show platform software trace filter-binary` command in privileged EXEC or user EXEC mode.

```
show platform software trace filter-binary [modules] [context mac-address]
```

**Syntax Description**
- `context mac-address`: Represents the context used to filter. Additionally, you can filter based on module names and trace levels. The context keyword accepts either a MAC address or any other argument based on which a trace is tagged.

**Command Modes**
- User EXEC (`>`)
- Privileged EXEC (`#`)

**Command History**
- This command was introduced.

**Usage Guidelines**
This command collates and sorts all the logs present in the `/tmp/.../` across all the processes relevant to the module. The trace logs of all the processes relevant to the specified module are printed to the console. This command also generates a file named `collated_log_{system time}` with the same content, in the `/crashinfo/tracelogs` directory.
show platform software trace message

To display the trace messages for a process, use the set platform software trace command in privileged EXEC or user EXEC mode.

```
show platform software trace message process slot
```

### Syntax Description

- **process**

  Tracing level that is being set. Options include:

  - **chassis-manager** — The Chassis Manager process.
  - **cli-agent** — The CLI Agent process.
  - **cmm** — The CMM process.
  - **dbm** — The Database Manager process.
  - **emd** — The Environmental Monitoring process.
  - **fed** — The Forwarding Engine Driver process.
  - **forwarding-manager** — The Forwarding Manager process.
  - **geo** — The Geo Manager process.
  - **host-manager** — The Host Manager process.
  - **interface-manager** — The Interface Manager process.
  - **iomd** — The Input/Output Module daemon (IOMd) process.
  - **ios** — The IOS process.
  - **license-manager** — The License Manager process.
  - **logger** — The Logging Manager process.
  - **platform-mgr** — The Platform Manager process.
  - **pluggable-services** — The Pluggable Services process.
  - **replication-mgr** — The Replication Manager process.
  - **shell-manager** — The Shell Manager process.
  - **sif** — The Stack Interface (SIF) Manager process.
  - **smd** — The Session Manager process.
  - **stack-mgr** — The Stack Manager process.
  - **table-manager** — The Table Manager Server.
  - **thread-test** — The Multithread Manager process.
  - **virt-manager** — The Virtualization Manager process.
Hardware slot where the process for which the trace level is set, is running. Options include:

- **number**—Number of the SIP slot of the hardware module where the trace level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.

- **SIP-slot / SPA-bay**—Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.

- **F0**—The Embedded Service Processor slot 0.

- **FP active**—The active Embedded Service Processor.

- **R0**—The route processor in slot 0.

- **RP active**—The active route processor.

- **switch <number>** —The switch, with its number specified.

- **switch active**—The active switch.

- **switch standby**—The standby switch.
  - **number**—Number of the SIP slot of the hardware module where the trace level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.

- **SIP-slot / SPA-bay**—Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.

- **F0**—The Embedded Service Processor in slot 0.

- **FP active**—The active Embedded Service Processor.

- **R0**—The route processor in slot 0.

- **RP active**—The active route processor.
Examples

This example shows how to display the trace messages for the Stack Manager and the Forwarding Engine Driver processes:

```
show platform software trace message stack-mgr switch active R0
10/30 09:42:48.767 [btrace] [8974]: (note): Successfully registered module [97] [uiutil]
10/30 09:42:48.762 [btrace] [8974]: (note): Successfully registered module [98] [tdl_cdlcore_message]
10/29 13:28:19.023 [stack mgr] [8974]: (note): Examining peer state
10/29 13:28:19.023 [stack mgr] [8974]: (note): no switch eligible for standby election presently
10/29 13:28:19.022 [stack mgr] [8974]: (note): Posting event stack_fsm_event_wait_standby_elect_timer_expired, curstate stack_fsm_state_active_ready
10/29 13:28:19.022 [stack mgr] [8974]: (note): Timer HDL - STACK_WAIT_STANDBY_ELECT_TIMER expired
10/29 13:26:46.584 [btrace] [8974]: (note): Successfully registered module [99] [tdl_ui_message]
10/29 13:26:46.582 [bipc] [8974]: (note): Pending connection to server 10.129.1.0
10/29 13:26:36.582 [evutil] [8974]: (ERR): Connection attempt for sman-ui-serv (uipeer uplink to slot 1) failed, invoking disconnect
10/29 13:26:36.582 [evutil] [8974]: (ERR): Asynchronous connect failed for [uipeer uplink to slot 1] (fd == -1)
10/29 13:26:36.581 [bipc] [8974]: (note): Pending connection to server 10.129.1.0
10/29 13:26:26.581 [evutil] [8974]: (ERR): Connection attempt for sman-ui-serv (uipeer uplink to slot 1) failed, invoking disconnect

show platform software trace message fed switch active
11/02 10:55:01.832 [btrace]: [11310]: UUID: 0, ra: 0 (note): Successfully registered module [86] [uiutil]
11/02 10:55:01.848 [btrace]: [11310]: UUID: 0, ra: 0 (note): Single message size is greater than 1024
11/02 10:55:01.822 [btrace]: [11310]: UUID: 0, ra: 0 (note): Successfully registered module [87] [tdl_cdlcore_message]
11/01 09:54:41.474 [btrace]: [12312]: UUID: 0, ra: 0 (note): Successfully registered module [88] [tdl_ngwc_gold_message]
11/01 09:54:11.228 [btrace]: [12312]: UUID: 0, ra: 0 (note): Successfully registered module [89] [tdl_doppler_iosd_matm_type]
11/01 09:53:37.454 [btrace]: [11310]: UUID: 0, ra: 0 (note): Successfully registered module [90] [tdl_ui_message]
11/01 09:53:37.382 [bipc]: [11310]: UUID: 0, ra: 0 (note): Pending connection to server 10.129.1.0
11/01 09:53:34.227 [xcvr]: [18846]: UUID: 0, ra: 0 (ERR): FRU hardware authentication Fail, result = -1.
11/01 09:53:33.775 [ng3k_scc]: [18846]: UUID: 0, ra: 0 (ERR): SMART COOKIE: SCC I2C receive failed: rc=10
11/01 09:53:33.775 [ng3k_scc]: [18846]: UUID: 0, ra: 0 (ERR): SMART COOKIE receive failed, try again
11/01 09:53:33.585 [ng3k_scc]: [18846]: UUID: 0, ra: 0 (ERR):
```
show platform software trace level

To view the trace levels for all the modules under a specific process, use the `show platform software trace level` command in privileged EXEC or user EXEC mode.

```
show platform software trace level process slot
```

### Syntax Description

**process**

Process whose tracing level is being set. Options include:

- **chassis-manager** — The Chassis Manager process.
- **cli-agent** — The CLI Agent process.
- **cmm** — The CMM process.
- **dbm** — The Database Manager process.
- **emd** — The Environmental Monitoring process.
- **fed** — The Forwarding Engine Driver process.
- **forwarding-manager** — The Forwarding Manager process.
- **geo** — The Geo Manager process.
- **host-manager** — The Host Manager process.
- **interface-manager** — The Interface Manager process.
- **iomd** — The Input/Output Module daemon (IOMd) process.
- **ios** — The IOS process.
- **license-manager** — The License Manager process.
- **logger** — The Logging Manager process.
- **platform-mgr** — The Platform Manager process.
- **pluggable-services** — The Pluggable Services process.
- **replication-mgr** — The Replication Manager process.
- **shell-manager** — The Shell Manager process.
- **sif** — The Stack Interface (SIF) Manager process.
- **smd** — The Session Manager process.
- **stack-mgr** — The Stack Manager process.
- **table-manager** — The Table Manager Server.
- **thread-test** — The Multithread Manager process.
- **virt-manager** — The Virtualization Manager process.
Hardware slot where the process for which the trace level is set, is running. Options include:

- **number**—Number of the SIP slot of the hardware module where the trace level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.

- **SIP-slot / SPA-bay**—Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.

- **F0**—The Embedded Service Processor in slot 0.

- **F1**—The Embedded Service Processor in slot 1.

- **FP active**—The active Embedded Service Processor.

- **R0**—The route processor in slot 0.

- **RP active**—The active route processor.

- **switch <number>**—The switch, with its number specified.

- **switch active**—The active switch.

- **switch standby**—The standby switch.

  - **number**—Number of the SIP slot of the hardware module where the trace level is set. For instance, if you want to specify the SIP in SIP slot 2 of the switch, enter 2.

  - **SIP-slot / SPA-bay**—Number of the SIP switch slot and the number of the shared port adapter (SPA) bay of that SIP. For instance, if you want to specify the SPA in bay 2 of the SIP in switch slot 3, enter 3/2.

  - **F0**—The Embedded Service Processor in slot 0.

  - **FP active**—The active Embedded Service Processor.

  - **R0**—The route processor in slot 0.

  - **RP active**—The active route processor.

---

**Command Modes**

User EXEC (>

Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to view the trace level:

```
show platform software trace level dbm switch active R0
```
<table>
<thead>
<tr>
<th>Module Name</th>
<th>Trace Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>bins</td>
<td>Notice</td>
</tr>
<tr>
<td>bins/brand</td>
<td>Notice</td>
</tr>
<tr>
<td>bipc</td>
<td>Notice</td>
</tr>
<tr>
<td>btrace</td>
<td>Notice</td>
</tr>
<tr>
<td>bump_ptr_alloc</td>
<td>Notice</td>
</tr>
<tr>
<td>cdllib</td>
<td>Notice</td>
</tr>
<tr>
<td>chasfs</td>
<td>Notice</td>
</tr>
<tr>
<td>dbal</td>
<td>Informational</td>
</tr>
<tr>
<td>dbm</td>
<td>Debug</td>
</tr>
<tr>
<td>evlib</td>
<td>Notice</td>
</tr>
<tr>
<td>evutil</td>
<td>Notice</td>
</tr>
<tr>
<td>file_alloc</td>
<td>Notice</td>
</tr>
<tr>
<td>green-be</td>
<td>Notice</td>
</tr>
<tr>
<td>ios-avl</td>
<td>Notice</td>
</tr>
<tr>
<td>klib</td>
<td>Debug</td>
</tr>
<tr>
<td>services</td>
<td>Notice</td>
</tr>
<tr>
<td>sw_wdog</td>
<td>Notice</td>
</tr>
<tr>
<td>syshw</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_cdlcore_message</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_dbal_root_message</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_dbal_root_type</td>
<td>Notice</td>
</tr>
</tbody>
</table>
request platform software trace archive

To archive all the trace logs relevant to all the processes running on a system since the last reload on the switches and to save this in the specified location, use the `request platform software trace archive` command in privileged EXEC or user EXEC mode.

```
request platform software trace archive [last number-of-days [days [target location]]] | target location
```

**Syntax Description**

- `last number-of-days`:
  Specifies the number of days for which the trace files have to be archived.

- `target location`:
  Specifies the location and name of the archive file.

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

- **Release** Modification
  - This command was introduced.

**Usage Guidelines**

This archive file can be copied from the system, using the tftp or scp commands.

**Examples**

This example shows how to archive all the trace logs of the processes running on the switch since the last 5 days:

```
request platform software trace archive last 5 days target flash:test_archive
```
**request platform software trace rotate all**

To rotate all the current in-memory trace logs into the crashinfo partition and start a new in-memory trace log for each process, use the `request platform software trace rotate all` command in privileged EXEC or user EXEC mode.

```
request platform software trace rotate all
```

**Command Modes**

- User EXEC (>)
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The trace log files are for read-only purpose. Do not edit the contents of the file. If there is a requirement to delete the contents of the file to view certain set of logs, use this command to start a new trace log file.

**Examples**

This example shows how to rotate all the in-memory trace logs of the processes running on the switch since the last one day:

```
request platform software trace slot switch active R0 archive last 1 days target flash:test
```
# request platform software trace filter-binary

To collate and sort all the archived logs present in the tracelogssubdirectory, use the `request platform software trace filter-binary` command in privileged EXEC or user EXEC mode.

```
request platform software trace filter-binary modules [context mac-address]
```

## Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>context mac-address</td>
<td>Represents the context used to filter. Additionally, you can filter based on module names and trace levels. The context keyword accepts either a MAC address or any other argument based on which a trace is tagged.</td>
</tr>
</tbody>
</table>

## Command Modes

- User EXEC (>
- Privileged EXEC (#)

## Command History

- **Release**: Modification
  - This command was introduced.

## Usage Guidelines

This command collates and sorts all the archived logs present in the tracelogssubdirectory, across all the processes relevant to the module. This command also generates a file named `collated_log_{system time}` with the same content, in the `/crashinfo/tracelogs` directory.
request platform software trace filter-binary
PART XII

VLAN

• VLAN Commands, on page 1375
VLAN Commands

• clear vtp counters, on page 1376
• debug sw-vlan, on page 1377
• debug sw-vlan ifs, on page 1378
• debug sw-vlan notification, on page 1379
• debug sw-vlan vtp, on page 1380
• private-vlan, on page 1382
• private-vlan mapping, on page 1384
• show interfaces private-vlan mapping, on page 1386
• show vlan, on page 1387
• show vtp, on page 1391
• switchport mode private-vlan, on page 1397
• switchport priority extend, on page 1399
• switchport trunk, on page 1400
• vlan, on page 1403
• vlan dot1q tag native, on page 1409
• vtp (global configuration), on page 1410
• vtp (interface configuration), on page 1415
• vtp primary, on page 1416
clear vtp counters

To clear the VLAN Trunking Protocol (VTP) and pruning counters, use the **clear vtp counters** command in privileged EXEC mode.

**clear vtp counters**

This command has no arguments or keywords.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to clear the VTP counters:

```
Device> enable
Device# clear vtp counters
```

You can verify that information was deleted by entering the **show vtp counters** privileged EXEC command.
debug sw-vlan

To enable debugging of VLAN manager activities, use the `debug sw-vlan` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug sw-vlan {badpmcookies | cfg-vlan {bootup | cli} | events | ifs | mapping | notification | packets | redundancy | registries | vtp}
no debug sw-vlan {badpmcookies | cfg-vlan {bootup | cli} | events | ifs | mapping | notification | packets | redundancy | registries | vtp}
```

Syntax Description

- **badpmcookies** Displays debug messages for VLAN manager incidents of bad port manager cookies.
- **cfg-vlan** Displays VLAN configuration debug messages.
- **bootup** Displays messages when the switch is booting up.
- **cli** Displays messages when the command-line interface (CLI) is in VLAN configuration mode.
- **events** Displays debug messages for VLAN manager events.
- **ifs** Displays debug messages for the VLAN manager IOS file system (IFS). See `debug sw-vlan ifs`, on page 1378 for more information.
- **mapping** Displays debug messages for VLAN mapping.
- **notification** Displays debug messages for VLAN manager notifications. See `debug sw-vlan notification`, on page 1379 for more information.
- **packets** Displays debug messages for packet handling and encapsulation processes.
- **redundancy** Displays debug messages for VTP VLAN redundancy.
- **registries** Displays debug messages for VLAN manager registries.
- **vtp** Displays debug messages for the VLAN Trunking Protocol (VTP) code. See `debug sw-vlan vtp`, on page 1380 for more information.

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC

Command History

```
Release Modification
Cisco IOS XE Fuji 16.9.2 This command was introduced.
```

Usage Guidelines

The `undebug sw-vlan` command is the same as the `no debug sw-vlan` command.

This example shows how to display debug messages for VLAN manager events:

```
Device> enable
Device# debug sw-vlan events
```
# debug sw-vlan ifs

To enable debugging of the VLAN manager IOS file system (IFS) error tests, use the `debug sw-vlan ifs` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug sw-vlan ifs {open {read | write} | read {1 | 2 | 3 | 4} | write}
no debug sw-vlan ifs {open {read | write} | read {1 | 2 | 3 | 4} | write}
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>open read</td>
<td>Displays VLAN manager IFS file-read operation debug messages.</td>
</tr>
<tr>
<td>open write</td>
<td>Displays VLAN manager IFS file-write operation debug messages.</td>
</tr>
<tr>
<td>read</td>
<td>Displays file-read operation debug messages for the specified error test (1, 2, 3, or 4).</td>
</tr>
<tr>
<td>write</td>
<td>Displays file-write operation debug messages.</td>
</tr>
</tbody>
</table>

## Command Default

Debugging is disabled.

## Command Modes

Privileged EXEC

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

## Usage Guidelines

The `undebug sw-vlan ifs` command is the same as the `no debug sw-vlan ifs` command.

When selecting the file read operation, Operation 1 reads the file header, which contains the header verification word and the file version number. Operation 2 reads the main body of the file, which contains most of the domain and VLAN information. Operation 3 reads type length version (TLV) descriptor structures. Operation 4 reads TLV data.

This example shows how to display file-write operation debug messages:

```
Device> enable
Device# debug sw-vlan ifs write
```
debug sw-vlan notification

To enable debugging of VLAN manager notifications, use the `debug sw-vlan notification` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug sw-vlan notification {accfwdchange | allowedvlancfgchange | fwdchange | linkchange | modechange | pruningfgchange | statechange}
no debug sw-vlan notification {accfwdchange | allowedvlancfgchange | fwdchange | linkchange | modechange | pruningfgchange | statechange}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accfwdchange</td>
<td>Displays debug messages for VLAN manager notification of aggregated access interface spanning-tree forward changes.</td>
</tr>
<tr>
<td>allowedvlancfgchange</td>
<td>Displays debug messages for VLAN manager notification of changes to the allowed VLAN configuration.</td>
</tr>
<tr>
<td>fwdchange</td>
<td>Displays debug messages for VLAN manager notification of spanning-tree forwarding changes.</td>
</tr>
<tr>
<td>linkchange</td>
<td>Displays debug messages for VLAN manager notification of interface link-state changes.</td>
</tr>
<tr>
<td>modechange</td>
<td>Displays debug messages for VLAN manager notification of interface mode changes.</td>
</tr>
<tr>
<td>pruningfgchange</td>
<td>Displays debug messages for VLAN manager notification of changes to the pruning configuration.</td>
</tr>
<tr>
<td>statechange</td>
<td>Displays debug messages for VLAN manager notification of interface state changes.</td>
</tr>
</tbody>
</table>

### Command Default

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `undebug sw-vlan notification` command is the same as the `no debug sw-vlan notification` command.

When you enable debugging on a switch stack, it is enabled only on the active switch. To debug a specific stack member, you can start a CLI session from the active switch by using the `session switch stack-member-number` privileged EXEC command.

This example shows how to display debug messages for VLAN manager notification of interface mode changes:

```
Device> enable
Device# debug sw-vlan notification
```
To enable debugging of the VLAN Trunking Protocol (VTP) code, use the `debug sw-vlan vtp` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug sw-vlan vtp {events | packets | pruning [{packets | xmit}] | redundancy | xmit}
no debug sw-vlan vtp {events | packets | pruning | redundancy | xmit}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>Displays debug messages for general-purpose logic flow and detailed VTP messages generated by the VTP_LOG_RUNTIME macro in the VTP code.</td>
</tr>
<tr>
<td>packets</td>
<td>Displays debug messages for the contents of all incoming VTP packets that have been passed into the VTP code from the Cisco IOS VTP platform-dependent layer, except for pruning packets.</td>
</tr>
<tr>
<td>pruning</td>
<td>Displays debug messages generated by the pruning segment of the VTP code.</td>
</tr>
<tr>
<td>packets</td>
<td>(Optional) Displays debug messages for the contents of all incoming VTP pruning packets that have been passed into the VTP code from the Cisco IOS VTP platform-dependent layer.</td>
</tr>
<tr>
<td>xmit</td>
<td>(Optional) Displays debug messages for the contents of all outgoing VTP packets that the VTP code requests the Cisco IOS VTP platform-dependent layer to send.</td>
</tr>
<tr>
<td>redundancy</td>
<td>Displays debug messages for VTP redundancy.</td>
</tr>
<tr>
<td>xmit</td>
<td>Displays debug messages for the contents of all outgoing VTP packets that the VTP code requests the Cisco IOS VTP platform-dependent layer to send, except for pruning packets.</td>
</tr>
</tbody>
</table>

**Command Default**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug sw-vlan vtp` command is the same as the `no debug sw-vlan vtp` command.

If no additional parameters are entered after the `pruning` keyword, VTP pruning debugging messages appear. They are generated by the VTP_PRUNING_LOG_NOTICE, VTP_PRUNING_LOG_INFO, VTP_PRUNING_LOG_DEBUG, VTP_PRUNING_LOG_ALERT, and VTP_PRUNING_LOG_WARNING macros in the VTP pruning code.

When you enable debugging on a switch stack, it is enabled only on the active switch. To debug a specific stack member, you can start a CLI session from the active switch by using the `session switch stack-member-number` privileged EXEC command.
This example shows how to display debug messages for VTP redundancy:

Device> enable
Device# debug sw-vlan vtp redundancy
private-vlan

To configure private VLANs and to configure the association between private VLAN primary and secondary VLANs, use the `private-vlan` VLAN configuration command on the switch stack or on a standalone switch. Use the `no` form of this command to return the VLAN to normal VLAN configuration.

```
private-vlan {association [add | remove] } secondary-vlan-list | community | isolated | primary }
no private-vlan {association | community | isolated | primary }
```

**Syntax Description**

- **association**: Creates an association between the primary VLAN and a secondary VLAN.
- **add**: Associates a secondary VLAN to a primary VLAN.
- **remove**: Clears the association between a secondary VLAN and a primary VLAN.
- **secondary-vlan-list**: One or more secondary VLANs to be associated with a primary VLAN in a private VLAN.
- **community**: Designates the VLAN as a community VLAN.
- **isolated**: Designates the VLAN as an isolated VLAN.
- **primary**: Designates the VLAN as a primary VLAN.

**Command Default**
The default is to have no private VLANs configured.

**Command Modes**
VLAN configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Before configuring private VLANs, you must disable VTP (VTP mode transparent). After you configure a private VLAN, you should not change the VTP mode to client or server.

VTP does not propagate private VLAN configurations. You must manually configure private VLANs on all switches in the Layer 2 network to merge their Layer 2 databases and to prevent flooding of private VLAN traffic.

You cannot include VLAN 1 or VLANs 1002 to 1005 in the private VLAN configuration. Extended VLANs (VLAN IDs 1006 to 4094) can be configured in private VLANs.

You can associate a secondary (isolated or community) VLAN with only one primary VLAN. A primary VLAN can have one isolated VLAN and multiple community VLANs associated with it.

- A secondary VLAN cannot be configured as a primary VLAN.

- The `secondary-vlan-list` cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private VLAN ID or a hyphenated range of private VLAN IDs. The list can contain one isolated VLAN and multiple community VLANs.
• If you delete either the primary or secondary VLANs, the ports associated with the VLAN become inactive.

A community VLAN carries traffic among community ports and from community ports to the promiscuous ports on the corresponding primary VLAN.

An isolated VLAN is used by isolated ports to communicate with promiscuous ports. It does not carry traffic to other community ports or isolated ports with the same primary VLAN domain.

A primary VLAN is the VLAN that carries traffic from a gateway to customer end stations on private ports.

Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs. You cannot configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

The `private-vlan` commands do not take effect until you exit from VLAN configuration mode.

Do not configure private VLAN ports as EtherChannels. While a port is part of the private VLAN configuration, any EtherChannel configuration for it is inactive.

Do not configure a private VLAN as a Remote Switched Port Analyzer (RSPAN) VLAN.

Do not configure a private VLAN as a voice VLAN.

Do not configure fallback bridging on switches with private VLANs.

Although a private VLAN contains more than one VLAN, only one STP instance runs for the entire private VLAN. When a secondary VLAN is associated with the primary VLAN, the STP parameters of the primary VLAN are propagated to the secondary VLAN.

For more information about private VLAN interaction with other features, see the software configuration guide for this release.

This example shows how to configure VLAN 20 as a primary VLAN, VLAN 501 as an isolated VLAN, and VLANs 502 and 503 as community VLANs, and to associate them in a private VLAN:

```
configure terminal
(config)# vlan 20
(config-vlan)# private-vlan primary
(config-vlan)# exit
(config)# vlan 501
(config-vlan)# private-vlan isolated
(config-vlan)# exit
(config)# vlan 502
(config-vlan)# private-vlan community
(config-vlan)# exit
(config)# vlan 503
(config-vlan)# private-vlan community
(config-vlan)# exit
(config)# vlan 20
(config-vlan)# private-vlan association 501-503
(config-vlan)# end
```

You can verify your setting by entering the `show vlan private-vlan` or `show interfaces status privileged EXEC` command.
private-vlan mapping

To create a mapping between the primary and the secondary VLANs so that both VLANs share the same primary VLAN switched virtual interface (SVI), use the `private-vlan mapping` interface configuration command on a switch virtual interface (SVI). Use the `no` form of this command to remove private VLAN mappings from the SVI.

```
private-vlan mapping [{add | remove}] secondary-vlan-list
no private-vlan mapping
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>(Optional) Maps the secondary VLAN to the primary VLAN SVI.</td>
</tr>
<tr>
<td>remove</td>
<td>(Optional) Removes the mapping between the secondary VLAN and the primary</td>
</tr>
<tr>
<td></td>
<td>VLAN SVI.</td>
</tr>
<tr>
<td>secondary-vlan-list</td>
<td>One or more secondary VLANs to be mapped to the primary VLAN SVI.</td>
</tr>
</tbody>
</table>

**Command Default**

No private VLAN SVI mapping is configured.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The device must be in VTP transparent mode when you configure private VLANs.

The SVI of the primary VLAN is created at Layer 3.

Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs. You cannot configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

The `secondary-vlan-list` argument cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private VLAN ID or a hyphenated range of private VLAN IDs. The list can contain one isolated VLAN and multiple community VLANs.

Traffic that is received on the secondary VLAN is routed by the SVI of the primary VLAN.

A secondary VLAN can be mapped to only one primary SVI. If you configure the primary VLAN as a secondary VLAN, all SVIs specified in this command are brought down.

If you configure a mapping between two VLANs that do not have a valid Layer 2 private VLAN association, the mapping configuration does not take effect.

This example shows how to map the interface of VLAN 20 to the SVI of VLAN 18:

```
Device# configure terminal
Device# interface vlan 18
Device(config-if)# private-vlan mapping 20
Device(config-vlan)# end
```
This example shows how to permit routing of secondary VLAN traffic from secondary VLANs 303 to 305 and 307 through VLAN 20 SVI:

Device# configure terminal
Device# interface vlan 20
Device(config-if)# private-vlan mapping 303-305, 307
Device(config-vlan)# end

You can verify your settings by entering the `show interfaces private-vlan mapping` privileged EXEC command.
show interfaces private-vlan mapping

To display private VLAN mapping information for the VLAN switch virtual interfaces (SVIs), use the `show interfaces private-vlan mapping` command in user EXEC or privileged EXEC mode.

`show interfaces [interface-id] private-vlan mapping`

**Syntax Description**

`interface-id` (Optional) ID of the interface for which to display private VLAN mapping information.

**Command Default**

None

**Command Modes**

User EXEC

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to display the information about the private VLAN mapping:

```
Device# show interfaces private-vlan mapping
Interface Secondary VLAN Type
---------- --------------- --------
vlan2 301 community
vlan3 302 community
```
show vlan

To display the parameters for all configured VLANs or one VLAN (if the VLAN ID or name is specified) on the switch, use the `show vlan` command in user EXEC mode.

```
show vlan [{brief | group | id vlan-id | mtu | name vlan-name | private-vlan [{type}] | remote-span | summary}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>brief</strong></td>
<td>(Optional) Displays one line for each VLAN with the VLAN name, status, and its ports.</td>
</tr>
<tr>
<td><strong>group</strong></td>
<td>(Optional) Displays information about VLAN groups.</td>
</tr>
<tr>
<td><strong>id vlan-id</strong></td>
<td>(Optional) Displays information about a single VLAN identified by the VLAN ID number. For <code>vlan-id</code>, the range is 1 to 4094.</td>
</tr>
<tr>
<td><strong>mtu</strong></td>
<td>(Optional) Displays a list of VLANs and the minimum and maximum transmission unit (MTU) sizes configured on ports in the VLAN.</td>
</tr>
<tr>
<td><strong>name vlan-name</strong></td>
<td>(Optional) Displays information about a single VLAN identified by the VLAN name. The VLAN name is an ASCII string from 1 to 32 characters.</td>
</tr>
<tr>
<td><strong>private-vlan</strong></td>
<td>(Optional) Displays information about configured private VLANs, including primary and secondary VLAN IDs, type (community, isolated, or primary) and ports belonging to the private VLAN. This keyword is only supported if your switch is running the IP services feature set.</td>
</tr>
<tr>
<td><strong>type</strong></td>
<td>(Optional) Displays only private VLAN ID and type.</td>
</tr>
<tr>
<td><strong>remote-span</strong></td>
<td>(Optional) Displays information about Remote SPAN (RSPAN) VLANs.</td>
</tr>
<tr>
<td><strong>summary</strong></td>
<td>(Optional) Displays VLAN summary information.</td>
</tr>
</tbody>
</table>

**Note**

The `ifindex` keyword is not supported, even though it is visible in the command-line help string.

**Command Modes**

User EXEC

**Command History**

- **Release** Cisco IOS XE Fuji 16.9.2  This command was introduced.

**Usage Guidelines**

In the `show vlan mtu` command output, the MTU_Mismatch column shows whether all the ports in the VLAN have the same MTU. When yes appears in the column, it means that the VLAN has ports with different MTUs, and packets that are switched from a port with a larger MTU to a port with a smaller MTU might be dropped.
If the VLAN does not have an SVI, the hyphen (-) symbol appears in the SVI_MTU column. If the MTU-Mismatch column displays yes, the names of the ports with the MinMTU and the MaxMTU appear.

If you try to associate a private VLAN secondary VLAN with a primary VLAN before you define the secondary VLAN, the secondary VLAN is not included in the `show vlan private-vlan` command output.

In the `show vlan private-vlan type` command output, a type displayed as normal means a VLAN that has a private VLAN association but is not part of the private VLAN. For example, if you define and associate two VLANs as primary and secondary VLANs and then delete the secondary VLAN configuration without removing the association from the primary VLAN, the VLAN that was the secondary VLAN is shown as normal in the display. In the `show vlan private-vlan` output, the primary and secondary VLAN pair is shown as nonoperational.

This is an example of output from the `show vlan` command. See the table that follows for descriptions of the fields in the display.

```
Device> show vlan
VLAN Name Status Ports
----- ------------ -------------------------
 1 default active Gi1/0/2, Gi1/0/3, Gi1/0/4
 Gi1/0/5, Gi1/0/6, Gi1/0/7
 Gi1/0/8, Gi1/0/9, Gi1/0/10
 Gi1/0/11, Gi1/0/12, Gi1/0/13
 Gi1/0/14, Gi1/0/15, Gi1/0/16
 Gi1/0/17, Gi1/0/18, Gi1/0/19
 Gi1/0/20, Gi1/0/21, Gi1/0/22
 Gi1/0/23, Gi1/0/24, Gi1/0/25
 Gi1/0/26, Gi1/0/27, Gi1/0/28
 Gi1/0/29, Gi1/0/30, Gi1/0/31
 Gi1/0/32, Gi1/0/33, Gi1/0/34
 Gi1/0/35, Gi1/0/36, Gi1/0/37
 Gi1/0/38, Gi1/0/39, Gi1/0/40
 Gi1/0/41, Gi1/0/42, Gi1/0/43
 Gi1/0/44, Gi1/0/45, Gi1/0/46
 Gi1/0/47, Gi1/0/48
 2 VLAN0002 active
 40 vlan-40 active
 300 VLAN0300 active
1002 fddi-default act/unsup
1003 token-ring-default act/unsup
1004 fdnet-default act/unsup
1005 trnet-default act/unsup

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2
----- ------ ------ ---- ------ ------- ----- ------- ----- ----- -----
 1 enet 100001 1500 - - - - - 0 0
 2 enet 100002 1500 - - - - - 0 0
 40 enet 100040 1500 - - - - - 0 0
300 enet 100300 1500 - - - - - 0 0
1002 fddi 101002 1500 - - - - - 0 0
1003 tr 101003 1500 - - - - - 0 0
1004 fdnet 101004 1500 - - - - - 0 0
1005 trnet 101005 1500 - - - - - 0 0
2000 enet 102000 1500 - - - - - 0 0
3000 enet 103000 1500 - - - - - 0 0

Remote SPAN VLANs
--
2000,3000
```

Command Reference, Cisco IOS XE Gibraltar 16.12.x (Catalyst 9200 Switches)
Table 148: show vlan Command Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>VLAN number.</td>
</tr>
<tr>
<td>Name</td>
<td>Name, if configured, of the VLAN.</td>
</tr>
<tr>
<td>Status</td>
<td>Status of the VLAN (active or suspend).</td>
</tr>
<tr>
<td>Ports</td>
<td>Ports that belong to the VLAN.</td>
</tr>
<tr>
<td>Type</td>
<td>Media type of the VLAN.</td>
</tr>
<tr>
<td>SAID</td>
<td>Security association ID value for the VLAN.</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size for the VLAN.</td>
</tr>
<tr>
<td>Parent</td>
<td>Parent VLAN, if one exists.</td>
</tr>
<tr>
<td>RingNo</td>
<td>Ring number for the VLAN, if applicable.</td>
</tr>
<tr>
<td>BrdgNo</td>
<td>Bridge number for the VLAN, if applicable.</td>
</tr>
<tr>
<td>Stp</td>
<td>Spanning Tree Protocol type used on the VLAN.</td>
</tr>
<tr>
<td>BrdgMode</td>
<td>Bridging mode for this VLAN—possible values are source-route bridging (SRB) and source-route transparent (SRT); the default is SRB.</td>
</tr>
<tr>
<td>Trans1</td>
<td>Translation bridge 1.</td>
</tr>
<tr>
<td>Trans2</td>
<td>Translation bridge 2.</td>
</tr>
<tr>
<td>Remote SPAN VLANs</td>
<td>Identifies any RSPAN VLANs that have been configured.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show vlan summary` command:

```
Device> show vlan summary
Number of existing VLANs : 45
Number of existing VTP VLANs : 45
Number of existing extended VLANS : 0

Remote SPAN VLANs
```

This is an example of output from the `show vlan id` command:

```
Device# show vlan id 2
VLAN Name Status Ports
--
2 VLAN0200 active Gi1/0/7, Gi1/0/8
2 VLAN0200 active Gi2/0/1, Gi2/0/2

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2
------- ---- ----- ------ ------- ------- ----- ------- ------- ------- -------
2 enet 100002 1500 - - - - - - 0 0
```

Remote SPAN VLANs
Disabled
**show vtp**

To display general information about the VLAN Trunking Protocol (VTP) management domain, status, and counters, use the `show vtp` command in EXEC mode.

```
show vtp {counters | devices [conflicts] | interface [interface-id] | password | status}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>counters</td>
<td>Displays the VTP statistics for the device.</td>
</tr>
<tr>
<td>devices</td>
<td>Displays information about all VTP version 3 devices in the domain. This keyword applies only if the device is not running VTP version 3.</td>
</tr>
<tr>
<td>conflicts</td>
<td>(Optional) Displays information about VTP version 3 devices that have conflicting primary servers. This command is ignored when the device is in VTP transparent or VTP off mode.</td>
</tr>
<tr>
<td>interface</td>
<td>Displays VTP status and configuration for all interfaces or the specified interface.</td>
</tr>
<tr>
<td>interface-id</td>
<td>(Optional) Interface for which to display VTP status and configuration. This can be a physical interface or a port channel.</td>
</tr>
<tr>
<td>password</td>
<td>Displays the configured VTP password (available in privileged EXEC mode only).</td>
</tr>
<tr>
<td>status</td>
<td>Displays general information about the VTP management domain status.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enter the `show vtp password` command when the device is running VTP version 3, the display follows these rules:

- If the `password password` global configuration command did not specify the `hidden` keyword and encryption is not enabled on the device, the password appears in clear text.
- If the `password password` command did not specify the `hidden` keyword and encryption is enabled on the device, the encrypted password appears.
- If the `password password` command is included the `hidden` keyword, the hexadecimal secret key is displayed.

This is an example of output from the `show vtp devices` command. A Yes in the `Conflict` column indicates that the responding server is in conflict with the local server for the feature; that is, when two devices in the same domain do not have the same primary server for a database.
Device> enable
Device# show vtp devices
Retrieving information from the VTP domain. Waiting for 5 seconds.

<table>
<thead>
<tr>
<th>VTP Database</th>
<th>Conf Device ID</th>
<th>Primary Server Revision</th>
<th>System Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>Yes</td>
<td>00b0.8e50.d000</td>
<td>000c.0412.6300 12354 main.cisco.com</td>
</tr>
<tr>
<td>MST</td>
<td>No</td>
<td>00b0.8e50.d000 0004.AB45.6000</td>
<td>24 main.cisco.com</td>
</tr>
<tr>
<td>VLAN</td>
<td>Yes</td>
<td>000c.0412.6300=000c.0412.6300 67</td>
<td>qwerty.cisco.com</td>
</tr>
</tbody>
</table>

This is an example of output from the `show vtp counters` command. The table that follows describes each field in the display.

Device> show vtp counters

VTP statistics:
Summary advertisements received : 0
Subset advertisements received : 0
Request advertisements received : 0
Summary advertisements transmitted : 0
Subset advertisements transmitted : 0
Request advertisements transmitted : 0
Number of config revision errors : 0
Number of config digest errors : 0
Number of V1 summary errors : 0

VTP pruning statistics:

<table>
<thead>
<tr>
<th>Trunk</th>
<th>Join Transmitted</th>
<th>Join Received</th>
<th>Summary advts received from non-pruning-capable device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/0/48</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi2/0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi3/0/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 149: show vtp counters Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary advertisements received</td>
<td>Number of summary advertisements received by this device on its trunk ports. Summary advertisements contain the management domain name, the configuration revision number, the update timestamp and identity, the authentication checksum, and the number of subset advertisements to follow.</td>
</tr>
<tr>
<td>Subset advertisements received</td>
<td>Number of subset advertisements received by this device on its trunk ports. Subset advertisements contain all the information for one or more VLANs.</td>
</tr>
<tr>
<td>Request advertisements received</td>
<td>Number of advertisement requests received by this device on its trunk ports. Advertisement requests normally request information on all VLANs. They can also request information on a subset of VLANs.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Summary advertisements transmitted</td>
<td>Number of summary advertisements sent by this device on its trunk ports. Summary advertisements contain the management domain name, the configuration revision number, the update timestamp and identity, the authentication checksum, and the number of subset advertisements to follow.</td>
</tr>
<tr>
<td>Subset advertisements transmitted</td>
<td>Number of subset advertisements sent by this device on its trunk ports. Subset advertisements contain all the information for one or more VLANs.</td>
</tr>
<tr>
<td>Request advertisements transmitted</td>
<td>Number of advertisement requests sent by this device on its trunk ports. Advertisement requests normally request information on all VLANs. They can also request information on a subset of VLANs.</td>
</tr>
<tr>
<td>Number of configuration revision errors</td>
<td>Number of revision errors. Whenever you define a new VLAN, delete an existing one, suspend or resume an existing VLAN, or modify the parameters on an existing VLAN, the configuration revision number of the device increments. Revision errors increment whenever the device receives an advertisement whose revision number matches the revision number of the device, but the MD5 digest values do not match. This error means that the VTP password in the two devices is different or that the devices have different configurations. These errors indicate that the device is filtering incoming advertisements, which causes the VTP database to become unsynchronized across the network.</td>
</tr>
<tr>
<td>Number of configuration digest errors</td>
<td>Number of MD5 digest errors. Digest errors increment whenever the MD5 digest in the summary packet and the MD5 digest of the received advertisement calculated by the device do not match. This error usually means that the VTP password in the two devices is different. To solve this problem, make sure the VTP password on all devices is the same. These errors indicate that the device is filtering incoming advertisements, which causes the VTP database to become unsynchronized across the network.</td>
</tr>
</tbody>
</table>
Number of V1 summary errors

Number of Version 1 errors.
Version 1 summary errors increment whenever a device in VTP V2 mode receives a VTP Version 1 frame. These errors indicate that at least one neighboring device is either running VTP Version 1 or VTP Version 2 with V2-mode disabled. To solve this problem, change the configuration of the devices in VTP V2-mode to disabled.

Join Transmitted
Number of VTP pruning messages sent on the trunk.

Join Received
Number of VTP pruning messages received on the trunk.

Summary Advts Received from non-pruning-capable device
Number of VTP summary messages received on the trunk from devices that do not support pruning.

This is an example of output from the `show vtp status` command. The table that follows describes each field in the display.

```
Device> show vtp status
VTP Version capable : 1 to 3
VTP version running : 1
VTP Domain Name :
VTP Pruning Mode : Disabled
VTP Traps Generation : Disabled
Device ID : 2037.06ce.3580
Configuration last modified by 192.168.1.1 at 10-10-12 04:34:02
Local updater ID is 192.168.1.1 on interface LIIN0 (first layer3 interface found)
Feature VLAN:

VTP Operating Mode : Server
Maximum VLANs supported locally : 1005
Number of existing VLANs : 7
Configuration Revision : 2
MD5 digest : 0xA0 0xA1 0xFE 0x4E 0x7E 0x5D 0x97 0x41
0x89 0xB9 0xB7 0x70 0x03 0x61 0xE9 0x27
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP Version capable</td>
<td>Displays the VTP versions that are capable of operating on the device.</td>
</tr>
<tr>
<td>VTP Version running</td>
<td>Displays the VTP version operating on the device. By default, the device implements Version 1 but can be set to Version 2.</td>
</tr>
<tr>
<td>VTP Domain Name</td>
<td>Name that identifies the administrative domain for the device.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>VTP Pruning Mode</td>
<td>Displays whether pruning is enabled or disabled. Enabling pruning on a VTP server enables pruning for the entire management domain. Pruning restricts flooded traffic to those trunk links that the traffic must use to access the appropriate network devices.</td>
</tr>
<tr>
<td>VTP Traps Generation</td>
<td>Displays whether VTP traps are sent to a network management station.</td>
</tr>
<tr>
<td>Device ID</td>
<td>Displays the MAC address of the local device.</td>
</tr>
<tr>
<td>Configuration last modified</td>
<td>Displays the date and time of the last configuration modification. Displays the IP address of the device that caused the configuration change to the database.</td>
</tr>
<tr>
<td>VTP Operating Mode</td>
<td>Displays the VTP operating mode, which can be server, client, or transparent.</td>
</tr>
<tr>
<td><strong>Server</strong></td>
<td>A device in VTP server mode is enabled for VTP and sends advertisements. You can configure VLANs on it. The device guarantees that it can recover all the VLAN information in the current VTP database from NVRAM after reboot. By default, every device is a VTP server.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The device automatically changes from VTP server mode to VTP client mode if it detects a failure while writing the configuration to NVRAM and cannot return to server mode until the NVRAM is functioning.</td>
</tr>
<tr>
<td><strong>Client</strong></td>
<td>A device in VTP client mode is enabled for VTP, can send advertisements, but does not have enough nonvolatile storage to store VLAN configurations. You cannot configure VLANs on it. When a VTP client starts up, it does not send VTP advertisements until it receives advertisements to initialize its VLAN database.</td>
</tr>
<tr>
<td><strong>Transparent</strong></td>
<td>A device in VTP transparent mode is disabled for VTP, does not send or learn from advertisements sent by other devices, and cannot affect VLAN configurations on other devices in the network. The device receives VTP advertisements and forwards them on all trunk ports except the one on which the advertisement was received.</td>
</tr>
<tr>
<td>Maximum VLANs Supported Locally</td>
<td>Maximum number of VLANs supported locally.</td>
</tr>
<tr>
<td>Number of Existing VLANs</td>
<td>Number of existing VLANs.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>Configuration Revision</td>
<td>Current configuration revision number on this device.</td>
</tr>
<tr>
<td>MD5 Digest</td>
<td>A 16-byte checksum of the VTP configuration.</td>
</tr>
</tbody>
</table>
switchport mode private-vlan

To configure an interface as either a host private-VLAN port or a promiscuous private-VLAN port, use the `switchport mode private-vlan` command in interface configuration mode. To reset the mode to the appropriate default for the device, use the `no` form of this command.

```
switchport mode private-vlan {host | promiscuous}
no switchport mode private-vlan
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>host</code></td>
<td>Configures the interface as a private-VLAN host port. Host ports belong to private-VLAN secondary VLANs and are either community ports or isolated ports, depending on the VLAN to which they belong.</td>
</tr>
<tr>
<td><code>promiscuous</code></td>
<td>Configures the interface as a private-VLAN promiscuous port. Promiscuous ports are members of private-VLAN primary VLANs.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

A private-VLAN host or promiscuous port cannot be a Switched Port Analyzer (SPAN) destination port. If you configure a SPAN destination port as a private-VLAN host or promiscuous port, the port becomes inactive.

Do not configure private VLAN on ports with these other features:

- Dynamic-access port VLAN membership
- Dynamic Trunking Protocol (DTP)
- Port Aggregation Protocol (PAgP)
- Link Aggregation Control Protocol (LACP)
- Multicast VLAN Registration (MVR)
- Voice VLAN

While a port is part of the private-VLAN configuration, any EtherChannel configuration for it is inactive.

A private-VLAN port cannot be a secure port and should not be configured as a protected port.

For more information about private-VLAN interaction with other features, see the software configuration guide for this release.

We strongly recommend that you enable spanning tree Port Fast and bridge-protocol-data-unit (BPDU) guard on isolated and community host ports to prevent STP loops due to misconfigurations and to speed up STP convergence.
If you configure a port as a private-VLAN host port and you do not configure a valid private-VLAN association by using the `switchport private-vlan host-association` command, the interface becomes inactive.

If you configure a port as a private-VLAN promiscuous port and you do not configure a valid private VLAN mapping by using the `switchport private-vlan mapping` command, the interface becomes inactive.

### Examples

This example shows how to configure an interface as a private-VLAN host port and associate it to primary VLAN 20. The interface is a member of secondary isolated VLAN 501 and primary VLAN 20.

```
(config)# interface gigabitethernet2/0/1
(config-if)# switchport mode private-vlan host
(config-if)# switchport private-vlan host-association 20 501
(config-if)# end
```

This example shows how to configure an interface as a private-VLAN promiscuous port and map it to a private VLAN. The interface is a member of primary VLAN 20 and secondary VLANs 501 to 503 are mapped to it.

```
(config)# interface gigabitethernet2/0/1
(config-if)# switchport mode private-vlan promiscuous
(config-if)# switchport private-vlan mapping 20 501-503
(config-if)# end
```
switchport priority extend

To set a port priority for the incoming untagged frames or the priority of frames received by the IP phone connected to the specified port, use the `switchport priority extend` command in interface configuration mode. To return to the default setting, use the `no` form of this command.

```
switchport priority extend {cos value | trust}
no switchport priority extend
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cos value</td>
<td>Sets the IP phone port to override the IEEE 802.1p priority received from the PC or the attached device with the specified class of service (CoS) value. The range is 0 to 7. Seven is the highest priority. The default is 0.</td>
</tr>
<tr>
<td>trust</td>
<td>Sets the IP phone port to trust the IEEE 802.1p priority received from the PC or the attached device.</td>
</tr>
</tbody>
</table>

**Command Default**

The default port priority is set to a CoS value of 0 for untagged frames received on the port.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When voice VLAN is enabled, you can configure the device to send the Cisco Discovery Protocol (CDP) packets to instruct the IP phone how to send data packets from the device attached to the access port on the Cisco IP Phone. You must enable CDP on the device port connected to the Cisco IP Phone to send the configuration to the Cisco IP Phone. (CDP is enabled by default globally and on all device interfaces.)

You should configure voice VLAN on the device access ports.

This example shows how to configure the IP phone connected to the specified port to trust the received IEEE 802.1p priority:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# switchport priority extend trust
```

You can verify your settings by entering the `show interfaces interface-id switchport` privileged EXEC command.
switchport trunk

To set the trunk characteristics when the interface is in trunking mode, use the `switchport trunk` command in interface configuration mode. To reset a trunking characteristic to the default, use the `no` form of this command.

```
switchport trunk {allowed vlan vlan-list | native vlan vlan-id | pruning vlan vlan-list}
no switchport trunk {allowed vlan | native vlan | pruning vlan}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>allowed vlan vlan-list</code></td>
<td>Sets the list of allowed VLANs that can receive and send traffic on this interface in tagged format when in trunking mode. See the Usage Guidelines for the <code>vlan-list</code> choices.</td>
</tr>
<tr>
<td><code>native vlan vlan-id</code></td>
<td>Sets the native VLAN for sending and receiving untagged traffic when the interface is in IEEE 802.1Q trunking mode. The range is 1 to 4094.</td>
</tr>
<tr>
<td><code>pruning vlan vlan-list</code></td>
<td>Sets the list of VLANs that are eligible for VTP pruning when in trunking mode. See the Usage Guidelines for the <code>vlan-list</code> choices.</td>
</tr>
</tbody>
</table>

### Command Default

VLAN 1 is the default native VLAN ID on the port.
The default for all VLAN lists is to include all VLANs.

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `vlan-list` format is `all | none | [add | remove | except] vlan-atom [vlan-atom...]:`

- **all** specifies all VLANs from 1 to 4094. This is the default. This keyword is not allowed on commands that do not permit all VLANs in the list to be set at the same time.

- **none** specifies an empty list. This keyword is not allowed on commands that require certain VLANs to be set or at least one VLAN to be set.

- **add** adds the defined list of VLANs to those currently set instead of replacing the list. Valid IDs are from 1 to 1005; extended-range VLANs (VLAN IDs greater than 1005) are valid in some cases.

  **Note**

  You can add extended-range VLANs to the allowed VLAN list, but not to the pruning-eligible VLAN list.

  Separate nonconsecutive VLAN IDs with a comma; use a hyphen to designate a range of IDs.

- **remove** removes the defined list of VLANs from those currently set instead of replacing the list. Valid IDs are from 1 to 1005; extended-range VLAN IDs are valid in some cases.
You can remove extended-range VLANs from the allowed VLAN list, but you cannot remove them from the pruning-eligible list.

- **except** lists the VLANs that should be calculated by inverting the defined list of VLANs. (VLANs are added except the ones specified.) Valid IDs are from 1 to 1005. Separate nonconsecutive VLAN IDs with a comma; use a hyphen to designate a range of IDs.

- **vlan-atom** is either a single VLAN number from 1 to 4094 or a continuous range of VLANs described by two VLAN numbers, the lesser one first, separated by a hyphen.

Native VLANs:

- All untagged traffic received on an IEEE 802.1Q trunk port is forwarded with the native VLAN configured for the port.

- If a packet has a VLAN ID that is the same as the sending-port native VLAN ID, the packet is sent without a tag; otherwise, the switch sends the packet with a tag.

- The **no** form of the **native vlan** command resets the native mode VLAN to the appropriate default VLAN for the device.

Allowed VLAN:

- To reduce the risk of spanning-tree loops or storms, you can disable VLAN 1 on any individual VLAN trunk port by removing VLAN 1 from the allowed list. When you remove VLAN 1 from a trunk port, the interface continues to send and receive management traffic, for example, Cisco Discovery Protocol (CDP), Port Aggregation Protocol (PAGP), Link Aggregation Control Protocol (LACP), Dynamic Trunking Protocol (DTP), and VLAN Trunking Protocol (VTP) in VLAN 1.

- The **no** form of the **allowed vlan** command resets the list to the default list, which allows all VLANs.

Trunk pruning:

- The pruning-eligible list applies only to trunk ports.

- Each trunk port has its own eligibility list.

- If you do not want a VLAN to be pruned, remove it from the pruning-eligible list. VLANs that are pruning-ineligible receive flooded traffic.

- VLAN 1, VLANs 1002 to 1005, and extended-range VLANs (VLANs 1006 to 4094) cannot be pruned.

This example shows how to configure VLAN 3 as the default for the port to send all untagged traffic:

```
Device> enable
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# switchport trunk native vlan 3
```

This example shows how to add VLANs 1, 2, 5, and 6 to the allowed list:

```
Device> enable
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# switchport trunk allowed vlan add 1,2,5,6
```
This example shows how to remove VLANs 3 and 10 to 15 from the pruning-eligible list:

Device> enable
Device(config)# interface gigabitethernet1/0/2
Device(config-if)# switchport trunk pruning vlan remove 3,10-15

You can verify your settings by entering the `show interfaces interface-id switchport` privileged EXEC command.
To add a VLAN and to enter the VLAN configuration mode, use the `vlan` command in global configuration mode. To delete the VLAN, use the `no` form of this command.

```
vlan vlan-id
no vlan vlan-id
```

### Syntax Description

- **vlan-id**: ID of the VLAN to be added and configured. The range is 1 to 4094. You can enter a single VLAN ID, a series of VLAN IDs separated by commas, or a range of VLAN IDs separated by hyphens.

### Command Default

None

### Command Modes

Global configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji 16.9.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You can use the `vlan  vlan-id` global configuration command to add normal-range VLANs (VLAN IDs 1 to 1005) or extended-range VLANs (VLAN IDs 1006 to 4094). Configuration information for normal-range VLANs is always saved in the VLAN database, and you can display this information by entering the `show vlan` privileged EXEC command. If the VTP mode is transparent, VLAN configuration information for normal-range VLANs is also saved in the running configuration file. VLAN IDs in the extended range are not saved in the VLAN database, but they are stored in the switch running configuration file, and you can save the configuration in the startup configuration file.

VTP version 3 supports propagation of extended-range VLANs. VTP versions 1 and 2 propagate only VLANs 1 to 1005.

When you save the VLAN and VTP configurations in the startup configuration file and reboot the switch, the configuration is selected as follows:

- If the VTP mode is transparent in the startup configuration and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.

- If the VTP mode or domain name in the startup configuration do not match the VLAN database, the domain name and VTP mode and configuration for VLAN IDs 1 to 1005 use the VLAN database information.

If you enter an invalid VLAN ID, you receive an error message and do not enter VLAN configuration mode.

Entering the `vlan` command with a VLAN ID enables VLAN configuration mode. When you enter the VLAN ID of an existing VLAN, you do not create a new VLAN, but you can modify VLAN parameters for that VLAN. The specified VLANs are added or modified when you exit the VLAN configuration mode. Only the `shutdown` command (for VLANs 1 to 1005) takes effect immediately.
Although all commands are visible, the only VLAN configuration command that is supported on extended-range VLANs is `remote-span`. For extended-range VLANs, all other characteristics must remain at the default state.

These configuration commands are available in VLAN configuration mode. The `no` form of each command returns the characteristic to its default state:

- `are are-number` — Defines the maximum number of all-routes explorer (ARE) hops for this VLAN. This keyword applies only to TrCRF VLANs. The range is 0 to 13. The default is 7. If no value is entered, 0 is assumed to be the maximum.

- `backupcrf` — Specifies the backup CRF mode. This keyword applies only to TrCRF VLANs.
  - `enable` — Backup CRF mode for this VLAN.
  - `disable` — Backup CRF mode for this VLAN (the default).

- `bridge {bridge-number | type}` — Specifies the logical distributed source-routing bridge, the bridge that interconnects all logical rings that have this VLAN as a parent VLAN in FDDI-NET, Token Ring-NET, and TrBRF VLANs. The range is 0 to 15. The default bridge number is 0 (no source-routing bridge) for FDDI-NET, TrBRF, and Token Ring-NET VLANs. The `type` keyword applies only to TrCRF VLANs and is one of these:
  - `srb` — Source-route bridging
  - `srt` — Source-route transparent) bridging VLAN

- `exit` — Applies changes, increments the VLAN database revision number (VLANs 1 to 1005 only), and exits VLAN configuration mode.

- `media` — Defines the VLAN media type and is one of these:

  - `ethernet` — Ethernet media type (the default).
  - `fd-net` — FDDI network entity title (NET) media type.
  - `fddi` — FDDI media type.
  - `tokenring` — Token Ring media type if the VTP v2 mode is disabled, or TrCRF if the VTP Version 2 (v) mode is enabled.
  - `tr-net` — Token Ring network entity title (NET) media type if the VTP v2 mode is disabled or TrBRF media type if the VTP v2 mode is enabled.

See the table that follows for valid commands and syntax for different media types.

- `name vlan-name` — Names the VLAN with an ASCII string from 1 to 32 characters that must be unique within the administrative domain. The default is VLANxxxx where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number.
• **no**—Negates a command or returns it to the default setting.

• **parent parent-vlan-id**—Specifies the parent VLAN of an existing FDDI, Token Ring, or TrCRF VLAN. This parameter identifies the TrBRF to which a TrCRF belongs and is required when defining a TrCRF. The range is 0 to 1005. The default parent VLAN ID is 0 (no parent VLAN) for FDDI and Token Ring VLANs. For both Token Ring and TrCRF VLANs, the parent VLAN ID must already exist in the database and be associated with a Token Ring-NET or TrBRF VLAN.

• **remote-span**—Configures the VLAN as a Remote SPAN (RSPAN) VLAN. When the RSPAN feature is added to an existing VLAN, the VLAN is first deleted and is then recreated with the RSPAN feature. Any access ports are deactivated until the RSPAN feature is removed. If VTP is enabled, the new RSPAN VLAN is propagated by VTP for VLAN IDs that are lower than 1024. Learning is disabled on the VLAN.

• **ring ring-number**—Defines the logical ring for an FDDI, Token Ring, or TrCRF VLAN. The range is 1 to 4095. The default for Token Ring VLANs is 0. For FDDI VLANs, there is no default.

• **said said-value**—Specifies the security association identifier (SAID) as documented in IEEE 802.10. The range is 1 to 4294967294, and the number must be unique within the administrative domain. The default value is 100000 plus the VLAN ID number.

• **shutdown**—Shuts down VLAN switching on the VLAN. This command takes effect immediately. Other commands take effect when you exit VLAN configuration mode.

• **state**—Specifies the VLAN state:
  • **active** means the VLAN is operational (the default).
  • **suspend** means the VLAN is suspended. Suspended VLANs do not pass packets.

• **ste ste-number**—Defines the maximum number of spanning-tree explorer (STE) hops. This keyword applies only to TrCRF VLANs. The range is 0 to 13. The default is 7.

• **stp type**—Defines the spanning-tree type for FDDI-NET, Token Ring-NET, or TrBRF VLANs. For FDDI-NET VLANs, the default STP type is ieee. For Token Ring-NET VLANs, the default STP type is ibm. For FDDI and Token Ring VLANs, the default is no type specified.
  • **ieee**—IEEE Ethernet STP running source-route transparent (SRT) bridging.
  • **ibm**—IBM STP running source-route bridging (SRB).
  • **auto**—STP running a combination of source-route transparent bridging (IEEE) and source-route bridging (IBM).

• **tb-vlan1 tb-vlan1-id** and **tb-vlan2 tb-vlan2-id**—Specifies the first and second VLAN to which this VLAN is translationally bridged. Translational VLANs translate FDDI or Token Ring to Ethernet, for example. The range is 0 to 1005. If no value is specified, 0 (no transitional bridging) is assumed.

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Valid Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>name vlan-name, media ethernet, state {suspend</td>
</tr>
<tr>
<td>Media Type</td>
<td>Valid Syntax</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>FDDI</td>
<td>name vlan-name, media fddi, state {suspend</td>
</tr>
<tr>
<td>FDDI-NET</td>
<td>name vlan-name, media fd-net, state {suspend</td>
</tr>
<tr>
<td></td>
<td>If VTP v2 mode is disabled, do not set the stp type to auto.</td>
</tr>
<tr>
<td>Token Ring</td>
<td>VTP v1 mode is enabled.</td>
</tr>
<tr>
<td></td>
<td>name vlan-name, media tokenring, state {suspend</td>
</tr>
<tr>
<td>Token Ring concentrator relay function (TrCRF)</td>
<td>VTP v2 mode is enabled.</td>
</tr>
<tr>
<td></td>
<td>name vlan-name, media tokenring, state {suspend</td>
</tr>
<tr>
<td>Token Ring-NET</td>
<td>VTP v1 mode is enabled.</td>
</tr>
<tr>
<td></td>
<td>name vlan-name, media tr-net, state {suspend</td>
</tr>
<tr>
<td>Token Ring bridge relay function (TrBRF)</td>
<td>VTP v2 mode is enabled.</td>
</tr>
<tr>
<td></td>
<td>name vlan-name, media tr-net, state {suspend</td>
</tr>
</tbody>
</table>

The following table describes the rules for configuring VLANs:
### Table 152: VLAN Configuration Rules

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP v2 mode is enabled, and you are configuring a TrCRF VLAN media type.</td>
<td>Specify a parent VLAN ID of a TrBRF that already exists in the database.</td>
</tr>
<tr>
<td></td>
<td>Specify a ring number. Do not leave this field blank.</td>
</tr>
<tr>
<td></td>
<td>Specify unique ring numbers when TrCRF VLANs have the same parent VLAN ID. Only one backup concentrator relay function (CRF) can be enabled.</td>
</tr>
<tr>
<td>VTP v2 mode is enabled, and you are configuring VLANs other than TrCRF media type.</td>
<td>Do not specify a backup CRF.</td>
</tr>
<tr>
<td>VTP v2 mode is enabled, and you are configuring a TrBRF VLAN media type.</td>
<td>Specify a bridge number. Do not leave this field blank.</td>
</tr>
<tr>
<td>VTP v1 mode is enabled.</td>
<td>No VLAN can have an STP type set to auto.</td>
</tr>
<tr>
<td></td>
<td>This rule applies to Ethernet, FDDI, FDDI-NET, Token Ring, and Token Ring-NET VLANs.</td>
</tr>
<tr>
<td>Add a VLAN that requires translational bridging (values are not set to zero).</td>
<td>The translational bridging VLAN IDs that are used must already exist in the database.</td>
</tr>
<tr>
<td></td>
<td>The translational bridging VLAN IDs that a configuration points to must also contain a pointer to the original VLAN in one of the translational bridging parameters (for example, Ethernet points to FDDI, and FDDI points to Ethernet).</td>
</tr>
<tr>
<td></td>
<td>The translational bridging VLAN IDs that a configuration points to must be different media types than the original VLAN (for example, Ethernet can point to Token Ring).</td>
</tr>
<tr>
<td></td>
<td>If both translational bridging VLAN IDs are configured, these VLANs must be different media types (for example, Ethernet can point to FDDI and Token Ring).</td>
</tr>
</tbody>
</table>

This example shows how to add an Ethernet VLAN with default media characteristics. The default includes a `vlan-name` of VLAN `xxxx`, where `xxxx` represents four numeric digits (including leading zeros) equal to the VLAN ID number. The default media is ethernet; the state is active. The default said-value is 100000 plus the VLAN ID; the mtu-size variable is 1500; the stp-type is iee. When you enter the `exit` VLAN configuration command, the VLAN is added if it did not already exist; otherwise, this command does nothing.

This example shows how to create a new VLAN with all default characteristics and enter VLAN configuration mode:

```
(config)# vlan 200
(config-vlan)# exit
(config)#
```
This example shows how to create a new extended-range VLAN with all the default characteristics, to enter VLAN configuration mode, and to save the new VLAN in the startup configuration file:

```
(config)# vlan 2000
(config-vlan)# end
copy running-config startup config
```

You can verify your setting by entering the `show vlan` privileged EXEC command.
**vlan dot1q tag native**

To enable tagging of native VLAN frames on all IEEE 802.1Q trunk ports, use the `vlan dot1q tag native` command in global configuration mode. To return to the default setting, use the `no` form of this command.

```
vlan dot1q tag native
no vlan dot1q tag native
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

The IEEE 802.1Q native VLAN tagging is disabled.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When enabled, native VLAN packets going out of all IEEE 802.1Q trunk ports are tagged.

When disabled, native VLAN packets going out of all IEEE 802.1Q trunk ports are not tagged.

For more information about IEEE 802.1Q tunneling, see the software configuration guide for this release.

This example shows how to enable IEEE 802.1Q tagging on native VLAN frames:

```
Device# configure terminal
Device (config)# vlan dot1q tag native
Device (config)# end
```

You can verify your settings by entering the `show vlan dot1q tag native` privileged EXEC command.
vtp (global configuration)

To set or modify the VLAN Trunking Protocol (VTP) configuration characteristics, use the vtp command in global configuration mode. To remove the settings or to return to the default settings, use the no form of this command.

```
vtp {domain domain-name | file filename | interface interface-name [only] | mode {client | off | server | transparent} [{mst | unknown | vlan}] | password password [{hidden | secret}] | pruning | version number}
no vtp {file | interface | mode [{client | off | server | transparent}] [{mst | unknown | vlan}] | password | pruning | version}
```

**Syntax Description**

- **domain domain-name**: Specifies the VTP domain name, an ASCII string from 1 to 32 characters that identifies the VTP administrative domain for the device. The domain name is case sensitive.

- **file filename**: Specifies the Cisco IOS file system file where the VTP VLAN configuration is stored.

- **interface interface-name**: Specifies the name of the interface providing the VTP ID updated for this device.

- **only**: (Optional) Uses only the IP address of this interface as the VTP IP updater.

- **mode**: Specifies the VTP device mode as client, server, or transparent.

  - **client**: Places the device in VTP client mode. A device in VTP client mode is enabled for VTP, and can send advertisements, but does not have enough nonvolatile storage to store VLAN configurations. You cannot configure VLANs on a VTP client. VLANs are configured on another device in the domain that is in server mode. When a VTP client starts up, it does not send VTP advertisements until it receives advertisements to initialize its VLAN database.

  - **off**: Places the device in VTP off mode. A device in VTP off mode functions the same as a VTP transparent device except that it does not forward VTP advertisements on trunk ports.

  - **server**: Places the device in VTP server mode. A device in VTP server mode is enabled for VTP and sends advertisements. You can configure VLANs on the device. The device can recover all the VLAN information in the current VTP database from nonvolatile storage after reboot.

  - **transparent**: Places the device in VTP transparent mode. A device in VTP transparent mode is disabled for VTP, does not send advertisements or learn from advertisements sent by other devices, and cannot affect VLAN configurations on other devices in the network. The device receives VTP advertisements and forwards them on all trunk ports except the one on which the advertisement was received.

  When VTP mode is transparent, the mode and domain name are saved in the device running configuration file, and you can save them in the device startup configuration file by entering the `copy running-config startup config` privileged EXEC command.

- **mst**: (Optional) Sets the mode for the multiple spanning tree (MST) VTP database (only VTP Version 3).
unknown  (Optional) Sets the mode for unknown VTP databases (only VTP Version 3).

vlan  (Optional) Sets the mode for VLAN VTP databases. This is the default (only VTP Version 3).

password  Sets the administrative domain password for the generation of the 16-byte secret value used in MD5 digest calculation to be sent in VTP advertisements and to validate received VTP advertisements. The password can be an ASCII string from 1 to 32 characters. The password is case sensitive.

hidden  (Optional) Specifies that the key generated from the password string is saved in the VLAN database file. When the hidden keyword is not specified, the password string is saved in clear text. When the hidden password is entered, you need to reenter the password to issue a command in the domain. This keyword is supported only in VTP Version 3.

secret  (Optional) Allows the user to directly configure the password secret key (only VTP Version 3).

pruning  Enables VTP pruning on the device.

version  number  Sets the VTP Version to Version 1, Version 2, or Version 3.

Command Default

The default filename is flash:_vlan.dat.
The default mode is server mode and the default database is VLAN.
In VTP Version 3, for the MST database, the default mode is transparent.
No domain name or password is defined.
No password is configured.
Pruning is disabled.
The default version is Version 1.

Command Modes

Global configuration

Command History

Release  Modification
Cisco IOS XE Fuji 16.9.2  This command was introduced.

Usage Guidelines

When you save VTP mode, domain name, and VLAN configurations in the device startup configuration file and reboot the device, the VTP and VLAN configurations are selected by these conditions:

• If the VTP mode is transparent in the startup configuration and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.

• If the VTP mode or domain name in the startup configuration do not match the VLAN database, the domain name and VTP mode and configuration for VLAN IDs 1 to 1005 use the VLAN database information.
The vtp file filename cannot be used to load a new database; it renames only the file in which the existing database is stored.

Follow these guidelines when configuring a VTP domain name:

• The device is in the no-management-domain state until you configure a domain name. While in the no-management-domain state, the device does not send any VTP advertisements even if changes occur to the local VLAN configuration. The device leaves the no-management-domain state after it receives the first VTP summary packet on any port that is trunking or after you configure a domain name by using the vtp domain command. If the device receives its domain from a summary packet, it resets its configuration revision number to 0. After the device leaves the no-management-domain state, it cannot be configured to reenter it until you clear the NVRAM and reload the software.

• Domain names are case-sensitive.

• After you configure a domain name, it cannot be removed. You can only reassign it to a different domain.

Follow these guidelines when setting VTP mode:

• The no vtp mode command returns the device to VTP server mode.

• The vtp mode server command is the same as no vtp mode except that it does not return an error if the device is not in client or transparent mode.

• If the receiving device is in client mode, the client device changes its configuration to duplicate the configuration of the server. If you have devices in client mode, be sure to make all VTP or VLAN configuration changes on a device in server mode, as it has a higher VTP configuration revision number. If the receiving device is in transparent mode, the device configuration is not changed.

• A device in transparent mode does not participate in VTP. If you make VTP or VLAN configuration changes on a device in transparent mode, the changes are not propagated to other devices in the network.

• If you change the VTP or VLAN configuration on a device that is in server mode, that change is propagated to all the devices in the same VTP domain.

• The vtp mode transparent command disables VTP from the domain but does not remove the domain from the device.

• In VTP Versions 1 and 2, the VTP mode must be transparent for VTP and VLAN information to be saved in the running configuration file.

• With VTP Versions 1 and 2, you cannot change the VTP mode to client or server if extended-range VLANs are configured on the switch. Changing the VTP mode is allowed with extended VLANs in VTP Version 3.

• The VTP mode must be transparent for you to add extended-range VLANs or for VTP and VLAN information to be saved in the running configuration file.

• VTP can be set to either server or client mode only when dynamic VLAN creation is disabled.

• The vtp mode off command sets the device to off. The no vtp mode off command resets the device to the VTP server mode.

Follow these guidelines when setting a VTP password:

• Passwords are case sensitive. Passwords should match on all devices in the same domain.

• When you use the no vtp password form of the command, the device returns to the no-password state.
- The **hidden** and **secret** keywords are supported only in VTP Version 3. If you convert from VTP Version 2 to VTP Version 3, you must remove the hidden or secret keyword before the conversion.

Follow these guidelines when setting VTP pruning:

- VTP pruning removes information about each pruning-eligible VLAN from VTP updates if there are no stations belonging to that VLAN.

- If you enable pruning on the VTP server, it is enabled for the entire management domain for VLAN IDs 1 to 1005.

- Only VLANs in the pruning-eligible list can be pruned.

- Pruning is supported with VTP Version 1 and Version 2.

Follow these guidelines when setting the VTP version:

- Toggling the Version 2 (v2) mode state modifies parameters of certain default VLANs.

- Each VTP device automatically detects the capabilities of all the other VTP devices. To use Version 2, all VTP devices in the network must support Version 2; otherwise, you must configure them to operate in VTP Version 1 mode.

- If all devices in a domain are VTP Version 2-capable, you only need to configure Version 2 on one device; the version number is then propagated to the other Version-2 capable devices in the VTP domain.

- If you are using VTP in a Token Ring environment, VTP Version 2 must be enabled.

- If you are configuring a Token Ring bridge relay function (TrBRF) or Token Ring concentrator relay function (TrCRF) VLAN media type, you must use Version 2.

- If you are configuring a Token Ring or Token Ring-NET VLAN media type, you must use Version 1.

- In VTP Version 3, all database VTP information is propagated across the VTP domain, not only VLAN database information.

- Two VTP Version 3 regions can only communicate over a VTP Version 1 or VTP Version 2 region in transparent mode.

You cannot save password, pruning, and version configurations in the device configuration file.

This example shows how to rename the filename for VTP configuration storage to vtpfilename:

```
Device(config)# vtp file vtpfilename
```

This example shows how to clear the device storage filename:

```
Device(config)# no vtp file vtpconfig
```

Clearing device storage filename.

This example shows how to specify the name of the interface providing the VTP updater ID for this device:

```
Device(config)# vtp interface gigabitethernet
```

This example shows how to set the administrative domain for the device:
Device(config)# vtp domain OurDomainName

This example shows how to place the device in VTP transparent mode:
Device(config)# vtp mode transparent

This example shows how to configure the VTP domain password:
Device(config)# vtp password ThisIsOurDomainsPassword

This example shows how to enable pruning in the VLAN database:
Device(config)# vtp pruning
Pruning switched ON

This example shows how to enable Version 2 mode in the VLAN database:
Device(config)# vtp version 2

You can verify your settings by entering the `show vtp status` privileged EXEC command.
vtp (interface configuration)

To enable the VLAN Trunking Protocol (VTP) on a per-port basis, use the `vtp` command in interface configuration mode. To disable VTP on the interface, use the `no` form of this command.

```
vtp
no vtp
```

**Syntax Description**

This command has no arguments or keywords.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Fuji</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Enter this command only on interfaces that are in trunking mode.

This example shows how to enable VTP on an interface:

```
Device> enable
Device(config-if)# vtp
```

This example shows how to disable VTP on an interface:

```
Device(config-if)# no vtp
```
vtp primary

To configure a device as the VLAN Trunking Protocol (VTP) primary server, use the `vtp primary` command in privileged EXEC mode.

```
vtp primary [{mst | vlan}] [force]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mst</td>
<td>(Optional) Configures the device as the primary VTP server for the multiple spanning tree (MST) feature.</td>
</tr>
<tr>
<td>vlan</td>
<td>(Optional) Configures the device as the primary VTP server for VLANs.</td>
</tr>
<tr>
<td>force</td>
<td>(Optional) Configures the device to not check for conflicting devices when configuring the primary server.</td>
</tr>
</tbody>
</table>

**Command Default**
The device is a VTP secondary server.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Fuji 16.9.2</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A VTP primary server updates the database information and sends updates that are honored by all devices in the system. A VTP secondary server can only back up the updated VTP configurations received from the primary server to NVRAM.

By default, all devices come up as secondary servers. Primary server status is needed only for database updates when the administrator issues a takeover message in the domain. You can have a working VTP domain without any primary servers.

Primary server status is lost if the device reloads or domain parameters change.

**Note**

This command is supported only when the device is running VTP Version 3.

This example shows how to configure the device as the primary VTP server for VLANs:

```
Device> enable
Device# vtp primary vlan
Setting device to VTP TRANSPARENT mode.
```

You can verify your settings by entering the `show vtp status` privileged EXEC command.