MPLS VPN Support

- Prerequisites for MPLS VPN, page 1-1
- Restrictions for MPLS VPN, page 1-2
- Information About MPLS VPN Support, page 1-2
- How to Configure MPLS VPNs, page 1-3
- Configuration Example for MPLS VPNs, page 1-4

Note

- For complete syntax and usage information for the commands used in this chapter, see these publications:

- Cisco IOS Release 15.0SY supports only Ethernet interfaces. Cisco IOS Release 15.0SY does not support any WAN features or commands.

Tip

For additional information about Cisco Catalyst 6500 Series Switches (including configuration examples and troubleshooting information), see the documents listed on this page:

Participate in the Technical Documentation Ideas forum

Prerequisites for MPLS VPN

None.
Restrictions for MPLS VPN

- When configuring MPLS VPN, note that VPNs are recirculated when the number of VPNs is over 511.
- MPLS VPN supports these commands:
 - address-family
 - exit-address-family
 - import map
 - ip route vrf
 - ip route forwarding
 - ip vrf
 - neighbor activate
 - rd
 - route-target

For information about these commands, see these publications:

Cisco IOS Release 15.0SY supports only Ethernet interfaces. Cisco IOS Release 15.0SY does not support any WAN features or commands.

Information About MPLS VPN Support

The IP VPN feature for MPLS allows a Cisco IOS network to deploy scalable IP Layer 3 VPN backbone services to multiple sites deployed on a shared infrastructure while also providing the same access or security policies as a private network. VPN based on MPLS technology provides the benefits of routing isolation and security, as well as simplified routing and better scalability. See this publication for more information about MPLS VPNs:
At the ingress PE, the PFC makes a forwarding decision based on the packet headers. The PFC contains a table that maps VLANs to VPNs. In the switch architecture, all physical ingress interfaces in the system are associated with a specific VPN. The PFC looks up the IP destination address in the CEF table but only against prefixes that are in the specific VPN. (The table entry points to a specific set of adjacencies and one is chosen as part of the load-balancing decision if multiple parallel paths exist.)

The table entry contains the information on the Layer 2 header that the packet needs, as well as the specific MPLS labels to be pushed onto the frame. The information to rewrite the packet goes back to the ingress module where it is rewritten and forwarded to the egress line interface.

VPN traffic is handled at the egress from the PE based upon the per-prefix labels or aggregate labels. If per-prefix labels are used, then each VPN prefix has a unique label association; this allows the PE to forward the packet to the final destination based upon a label lookup in the FIB.

Note
The PFC allocates only one aggregate label per VRF.

If aggregate labels are used for disposition in an egress PE, many prefixes on the multiple interfaces may be associated with the label. In this case, the PFC must perform an IP lookup to determine the final destination. The IP lookup may require recirculation.

How to Configure MPLS VPNs

For information on configuring MPLS VPN, see this publication:

Note
If you use a Layer 3 VLAN interface as the MPLS uplink through a Layer 2 port peering with another MPLS device, then you can use another Layer 3 VLAN interface as the VRF interface.
Configuration Example for MPLS VPNs

This sample configuration shows LAN CE-facing interfaces. MPLS switching configuration in Cisco IOS Release 15.0SY is identical to configuration in other releases.

```
!ip vrf blues
  rd 100:10
  route-target export 100:1
  route-target import 100:1
!
mpls label protocol ldp
mpls ldp logging neighbor-changes
!
interface Loopback0
  ip address 10.4.4.4 255.255.255.255
!
interface GigabitEthernet4/2
  description Catalyst link to P2
  no ip address
!
interface GigabitEthernet4/2.42
  encapsulation dot1Q 42
  ip address 10.0.3.2 255.255.255.0
  tag-switching ip
!
interface GigabitEthernet7/3
  description Catalyst link to CE2
  no ip address
!
interface GigabitEthernet7/3.73
  encapsulation dot1Q 73
  ip vrf forwarding blues
  ip address 10.19.7.1 255.255.255.0
!
router ospf 100
  log-adjacency-changes
  network 10.4.4.4 0.0.0.0 area 0
  network 10.0.0.0 0.0.255.255 area 0
!
router ospf 65000 vrf blues
  log-adjacency-changes
  redistribute bgp 100 subnets
  network 10.19.0.0 0.0.255.255 area 0
!
router bgp 100
  no synchronization
  bgp log-neighbor-changes
  neighbor 10.3.3.3 remote-as 100
  neighbor 10.3.3.3 description MP-BGP to PE1
  neighbor 10.3.3.3 update-source Loopback0
  no auto-summary
!
address-family vpnv4
  neighbor 10.3.3.3 activate
  neighbor 10.3.3.3 send-community extended
  exit-address-family
!
address-family ipv4 vrf blues
  redistribute connected
  redistribute ospf 65000 match internal external 1 external 2
  no auto-summary
  no synchronization
  exit-address-family
```