Environmental Monitoring and Power Management

Note
Before reading this chapter, read the “Preparing for Installation” section of the *Catalyst 4500 Series Installation Guide*. It is important to ensure that your installation site has enough power and cooling to accommodate the additional electrical load and heat introduced by Power over Ethernet (PoE).

This chapter describes power management and environmental monitoring features in the Catalyst 4500 series switches. It provides guidelines, procedures, and configuration examples.

This chapter consists of the following major sections:

- About Environmental Monitoring, page 14-1
- Power Management, page 14-7
- IEEE 802.3az Energy Efficient Ethernet, page 14-23

Note
For complete syntax and usage information for the switch commands used in this chapter, see the *Cisco Catalyst 4500 Series Switch Command Reference* and related publications at this location:

If a command is not in the *Catalyst 4500 Series Switch Command Reference*, you can locate it in the Cisco IOS library. See the *Cisco IOS Command Reference* and related publications at this location:

About Environmental Monitoring

This section contains the following subsections:

- Using CLI Commands to Monitor your Environment, page 14-2
- Displaying Environment Conditions, page 14-2
- Displaying On Board Failure Logging (OBFL) information for 9000W AC, page 14-4
- Emergency Actions, page 14-5
About Environmental Monitoring

Environmental monitoring of chassis components provides early warning indications of possible component failure. This warning helps you to ensure the safe and reliable operation of your system and avoid network interruptions.

This section describes how to monitor critical system components so that you can identify and rapidly correct hardware-related problems.

Using CLI Commands to Monitor your Environment

Use the `show environment` CLI command to monitor the system. This section gives a basic overview of the command and keywords you need.

Enter the `show environment [alarm | status | temperature]` command to display system status information. Keyword descriptions are listed in Table 14-1.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm</td>
<td>Displays environmental alarms for the system.</td>
</tr>
<tr>
<td>status</td>
<td>Displays field-replaceable unit (FRU) operational status and power and power supply fan sensor information.</td>
</tr>
<tr>
<td>temperature</td>
<td>Displays temperature of the chassis.</td>
</tr>
</tbody>
</table>

Displaying Environment Conditions

Supervisor Engine 6-E, Supervisor Engine 6L-E, Supervisor Engine 7-E, and Supervisor Engine 7L-E and their associated line cards support multiple temperature sensors per card. The environment condition output includes the temperature reading from each sensor and the temperature thresholds for each sensor. These line cards support three thresholds: warning, critical, and shutdown.

The following example illustrates how to display the environment condition on a Supervisor Engine 6-E and Supervisor 6L-E. The thresholds appear within parentheses.

```
Switch# show environment
no temperature alarms

<table>
<thead>
<tr>
<th>Module</th>
<th>Sensor</th>
<th>Temperature</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>air inlet</td>
<td>23C (51C, 65C, 68C)</td>
<td>ok</td>
</tr>
<tr>
<td>2</td>
<td>air outlet</td>
<td>29C (69C, 83C, 86C)</td>
<td>ok</td>
</tr>
<tr>
<td>5</td>
<td>air inlet</td>
<td>38C (51C, 65C, 68C)</td>
<td>ok</td>
</tr>
<tr>
<td>5</td>
<td>air outlet</td>
<td>38C (69C, 83C, 86C)</td>
<td>ok</td>
</tr>
<tr>
<td>6</td>
<td>air inlet</td>
<td>34C (51C, 65C, 68C)</td>
<td>ok</td>
</tr>
<tr>
<td>6</td>
<td>air outlet</td>
<td>37C (69C, 83C, 86C)</td>
<td>ok</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Model No</th>
<th>Type</th>
<th>Status</th>
<th>Fan Status</th>
<th>Inline Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1</td>
<td>PWR-C45-2800AC</td>
<td>AC 2800W</td>
<td>good</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>PS2</td>
<td>none</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Power supplies needed by system : 1
Power supplies currently available : 1
```
Chassis Type : WS-C4510R-E

Power consumed by backplane : 40 Watts

Switch Bandwidth Utilization : 0%

Supervisor Led Color : Green

Module 2 Status Led Color : Green
Module 5 Status Led Color : Green
Module 6 Status Led Color : Orange
Module 10 Status Led Color : Green

Fantray : Good

Power consumed by Fantray : 80 Watts

The following example illustrates how to display the environment condition on WS-C4506-E with a Supervisor Engine 7-E. The thresholds appear within parentheses.

Switch# show environment

+---------------------------------+-------------------+-----------------+
| Module Sensor | Temperature | Status |
+---------------------------------+-------------------+-----------------+
1 Xgstub A	39C (48C,62C,65C)	ok
1 Xgstub B	32C (45C,60C,63C)	ok
1 XFP	47C (62C,75C,78C)	ok
1 VPEZ	59C (74C,85C,88C)	ok
1 NPE	44C (63C,75C,78C)	ok
1 CPU	55C (57C,72C,75C)	ok
1 FPGA	37C (52C,66C,69C)	ok
4 Power macro	30C (56C,68C,71C)	ok
4 Air inlet	27C (46C,59C,62C)	ok
4 Xgstub	31C (66C,76C,79C)	ok
4 Air outlet	30C (60C,71C,74C)	ok

+-------------------+-------------------+-----------------+
| Power Supply | Model No | Type | Status | Sensor | Status |
+-------------------+-------------------+-----------------+--------+--------+--------+
| PS1 | PWR-C45-1300ACV | AC 1300W | good | good | good |
| PS2 | none | -- | -- | -- | -- |
+-------------------+-------------------+-----------------+--------+--------+--------+

Power supplies needed by system : 1
Power supplies currently available : 1

Chassis Type : WS-C4506-E

Power consumed by backplane : 0 Watts

Switch Bandwidth Utilization : 0%

Supervisor Led Color : Green

Module 1 Status Led Color : Green
Module 4 Status Led Color : Green
Module 6 Status Led Color : Green

Fantray : Good

Fantray removal timeout : 30

Power consumed by Fantray : 120 Watts
Chapter 14 Environmental Monitoring and Power Management

About Environmental Monitoring

The following example illustrates how to display the environment condition on WS-C4500X-32 with a Supervisor Engine 7-E. The thresholds appear within parentheses.

Switch> `show environment`
no temperature alarms

<table>
<thead>
<tr>
<th>Module Sensor</th>
<th>Temperature</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 XPP</td>
<td>42C (80C,90C,100C)</td>
<td>ok</td>
</tr>
<tr>
<td>1 VFE</td>
<td>47C (80C,90C,100C)</td>
<td>ok</td>
</tr>
<tr>
<td>1 CPU</td>
<td>46C (80C,90C,100C)</td>
<td>ok</td>
</tr>
<tr>
<td>1 FPGA</td>
<td>50C (80C,90C,100C)</td>
<td>ok</td>
</tr>
<tr>
<td>1 Stub A</td>
<td>34C (80C,90C,100C)</td>
<td>ok</td>
</tr>
<tr>
<td>1 Stub B</td>
<td>35C (80C,90C,100C)</td>
<td>ok</td>
</tr>
<tr>
<td>2 Air inlet</td>
<td>31C (80C,90C,100C)</td>
<td>ok</td>
</tr>
<tr>
<td>2 Air outlet</td>
<td>36C (80C,90C,100C)</td>
<td>ok</td>
</tr>
</tbody>
</table>

Power

<table>
<thead>
<tr>
<th>Supply</th>
<th>Model No</th>
<th>Type</th>
<th>Status</th>
<th>Fan Sensor</th>
<th>Inline Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1</td>
<td>none</td>
<td>AC</td>
<td>good</td>
<td>good</td>
<td>n.a.</td>
</tr>
<tr>
<td>PS2</td>
<td>PWR-C49X-750AC-R</td>
<td>AC 750W</td>
<td>good</td>
<td>good</td>
<td></td>
</tr>
</tbody>
</table>

Power supplies needed by system : 1
Power supplies currently available : 1

Chassis Type : WS-C4500X-32

Power consumed by backplane : 0 Watts

Switch Bandwidth Utilization : 0%

Supervisor Led Color : Green

Module 1 Status Led Color : Green
Module 2 Status Led Color : Green

Beacon Led Status : off

Fan trays needed by system : 4
Fan trays currently available : 5
Chassis fan tray direction : FrontToBack

Fantray 1 : dir : FrontToBack status : Good
Fantray 2 : dir : FrontToBack status : Good
Fantray 3 : dir : FrontToBack status : Good
Fantray 4 : dir : FrontToBack status : Good
Fantray 5 : dir : FrontToBack status : Good

Fantray removal timeout : 30

Power consumed by Fantray : 30 Watts

Switch>

Displaying On Board Failure Logging (OBFL) information for 9000W AC

9000W AC power supplies support logging of voltage sag (input voltage drops below a certain input threshold) and voltage surge (input voltage spikes above a certain input threshold) events.
If a 9000W power supply is installed in the left bay, the `show logging onboard subslot 0 detail` command displays logging information for that power supply.

If a 9000W power supply is installed in the right bay, enter the `show logging onboard subslot 1 detail` command, as follows:

```
Switch# show logging onboard subslot 0 detail
PID: WS-C4506-E , VID: 4 , SN: FOX1347GR85
--------------------------------------------------------------------------------
ERROR MESSAGE SUMMARY INFORMATION
--------------------------------------------------------------------------------
Facility-Sev-Name | Count | Persistence Flag
MM/DD/YYYY HH:MM:SS
--------------------------------------------------------------------------------
No historical data to display
--------------------------------------------------------------------------------
ERROR MESSAGE CONTINUOUS INFORMATION
--------------------------------------------------------------------------------
MM/DD/YYYY HH:MM:SS Facility-Sev-Name
--------------------------------------------------------------------------------
08/20/2012 08:06:23  %CAT4K-2-POWER_SAG : 5 Power Sag event(s) detected: Slot 1, Input 1
08/20/2012 08:06:23  %CAT4K-2-POWER_SURGE : 5 Power Surge event(s) detected: Slot 1, Input 1
09/09/2012 21:12:28  %CAT4K-2-POWER_SURGE : 5 Power Surge event(s) detected: Slot 1, Input 3
09/09/2012 21:22:30  %CAT4K-2-POWER_SURGE : 5 Power Surge event(s) detected: Slot 1, Input 3
09/09/2012 21:32:32  %CAT4K-2-POWER_SURGE : 5 Power Surge event(s) detected: Slot 1, Input 3
09/10/2012 00:05:49  %CAT4K-2-POWER_SAG : 1 Power Sag event(s) detected: Slot 1, Input 1
09/10/2012 00:05:49  %CAT4K-2-POWER_SURGE : 1 Power Surge event(s) detected: Slot 1, Input 1
```

Emergency Actions

Catalyst 4500 chassis can power down a single card, providing a detailed response to over-temperature conditions on line cards. However, the Catalyst 4500 chassis cannot safely operate when the temperature of the supervisor itself exceeds the critical threshold. The supervisor engine turns off the chassis' power supplies to protect itself from overheating. When this happens, you can recover the switch only by cycling the power on and off switches on the power supplies or by cycling the AC or DC inputs to the power supplies.

Critical and shutdown temperature emergencies trigger the same action. Table 14-2 lists temperature emergencies but does not distinguish between critical and shutdown emergencies.

Case 1. Complete fan failure emergency.	Power down the chassis.
Case 2. Temperature emergency on a line card.	Power down the line card.
Case 3. Temperature emergency on the standby supervisor engine.	Power down the standby supervisor engine.
Chapter 14 Environmental Monitoring and Power Management

About Environmental Monitoring

In Case 4, the standby supervisor engine takes over when the active engine resets itself. If the temperature emergency remains, the newly active supervisor engine resets the standby supervisor engine.

Case 5 applies to nonredundant chassis and to chassis with a standby supervisor engine that has been shutdown or which has not fully booted.

Table 14-2 Emergency and Action

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1.</td>
<td>Complete fan failure emergency.</td>
<td>Power down the chassis.</td>
</tr>
<tr>
<td>Case 4.</td>
<td>Temperature emergency on the active supervisor engine with the standby supervisor engine in the hot standby or cold standby redundancy state.</td>
<td>Reset the active supervisor engine.</td>
</tr>
<tr>
<td>Case 5.</td>
<td>Temperature emergency on the active supervisor engine with no standby supervisor engine or with a standby supervisor engine that is not in hot standby or cold standby redundancy state.</td>
<td>Power down the chassis.</td>
</tr>
</tbody>
</table>

In Case 4, the standby supervisor engine takes over when the active engine resets itself. If the temperature emergency remains, the newly active supervisor engine resets the standby supervisor engine.

System Alarms

Any system has two types of alarms: major and minor. A major alarm indicates a critical problem that could lead to system shutdown. A minor alarm is informational—it alerts you to a problem that could become critical if corrective action is not taken.

Table 14-3 lists the possible environment alarms.

Table 14-3 Possible Environmental Alarms

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A temperature sensor over its warning threshold</td>
<td>minor</td>
</tr>
<tr>
<td>A temperature sensor over its critical threshold</td>
<td>major</td>
</tr>
<tr>
<td>A temperature sensor over its shutdown threshold</td>
<td>major</td>
</tr>
<tr>
<td>A partial fan failure</td>
<td>minor</td>
</tr>
<tr>
<td>A complete fan failure</td>
<td>major</td>
</tr>
</tbody>
</table>

Fan failure alarms are issued as soon as the fan failure condition is detected and are canceled when the fan failure condition clears. Temperature alarms are issued as soon as the temperature reaches the threshold temperature and are canceled when the temperature drops more than 5 degree C below the threshold. 5 degree C is a hysteresis value designed to prevent toggling alarms.

An LED on the supervisor engine indicates whether an alarm has been issued.

When the system issues a major alarm, it starts a timer whose duration depends on the alarm. If the alarm is not canceled before the timer expires, the system takes emergency action to protect itself from the effects of overheating. The timer values and the emergency actions depend on the type of supervisor engine.

Refer to the Catalyst 4500 Series Switch Module Installation Guide for information on LEDs, including the startup behavior of the supervisor engine system LED.
Table 14-4 describes the alarms.

Table 14-4 Alarms on Supervisor Engine 6-E, Supervisor Engine 6L-E, and Supervisor Engine 7-E

<table>
<thead>
<tr>
<th>Event</th>
<th>Alarm Type</th>
<th>Supervisor LED Color</th>
<th>Timeout</th>
<th>Description and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card temperature exceeds the critical threshold.</td>
<td>Major</td>
<td>Red</td>
<td>15 min</td>
<td>Syslog message displays when the alarm is issued. See Table 14-2 for the action on timeout.</td>
</tr>
<tr>
<td>Card temperature exceeds the shutdown threshold.</td>
<td>Major</td>
<td>Red</td>
<td>30 sec</td>
<td>Syslog message displays when the alarm is issued. See Table 14-2 for the action on timeout.</td>
</tr>
<tr>
<td>Supervisor engine fails power-on self-test (POST).</td>
<td>Major</td>
<td>Red</td>
<td>—</td>
<td>Syslog message displays. Supervisor engine fails to come up.</td>
</tr>
<tr>
<td>Chassis fan tray fails.</td>
<td>Major</td>
<td>Red</td>
<td>30 sec</td>
<td>Syslog message displays when the alarm is issued. See Table 14-2 for the action on timeout.</td>
</tr>
<tr>
<td>Chassis temperature exceeds the warning threshold.</td>
<td>Minor</td>
<td>Orange</td>
<td>—</td>
<td>Syslog message when the alarm is issued.</td>
</tr>
<tr>
<td>Chassis fan tray experiences partial failure.</td>
<td>Minor</td>
<td>Orange</td>
<td>—</td>
<td>Syslog message when the alarm is issued.</td>
</tr>
</tbody>
</table>

Power Management

This section describes the power management feature in the Catalyst 4500 series switches. It includes the following topics:

- Power Management for the Catalyst 4500 Series Switches, page 14-7
- Powering Down a Module, page 14-22
- Power Management for the Catalyst 4948 Switches, page 14-23

Note For power consumption of all Catalyst 4000/4500 family modules, see “Appendix A, Specifications,” in the Catalyst 4500 Series Module Installation Guide. Enter the `show power` command to display the current power redundancy and the current system power usage.

Power Management for the Catalyst 4500 Series Switches

This section includes the following subsections:

- Supported Power Supplies, page 14-8
- Power Management Modes for the Catalyst 4500 Switch, page 14-9
- Selecting a Power Management Mode, page 14-10
- Power Management Limitations in Catalyst 4500 Series Switches, page 14-10
- Available Power for Catalyst 4500 Series Switches Power Supplies, page 14-14
Power Management

- Special Considerations for the 4200 W AC and 6000 W AC Power Supplies, page 14-15
- Combined Mode Power Resiliency, page 14-19
- Special Considerations for the 1400 W DC Power Supply, page 14-21
- Special Considerations for the 1400 W DC SP Triple Input Power Supply, page 14-22
- Power Management Modes for the Catalyst 4948 Switch, page 14-23

Supported Power Supplies

You can select from several different power supplies to ensure that you have enough power for the modules installed in your switch.

Note

You should select a power supply based on the modules and the amount of PoE desired using the Cisco Power Calculator:

http://tools.cisco.com/cpc/

The choice between 1000 AC and 1400 AC should depend on the type of line cards that the customer plans to use in the chassis.

The Catalyst 4500 series switches support the following power supplies:

- Fixed Wattage—These power supplies always deliver a fixed amount of PoE and system power.
 - 1000 W AC—Supports up to 1050 W of system power. (Not recommended on the Catalyst 4510R switch, PoE not supported)
 - 1400 W AC—Supports up to 1400 W system power. (PoE not supported)
 - 2800 W AC—Supports up to 1400 W of system power and up to 1400 W of PoE.
- Variable Wattage—These power supplies automatically adjust the wattage to accommodate PoE and system power requirements.
 - 1300 W AC—Supports up to 1050 W of system power and 800 W of PoE, limited to a total of 1300 W.
 - 1400 W DC—Supports up to 1400 W of system power and variable amounts of PoE, depending on the input feed to the power supply. See “Special Considerations for the 1400 W DC Power Supply” section on page 14-21 for more information.
 - 1400 W DC Service Provider—Uses up to three lines (12.5 A, 15 A, 15 A) of DC input and delivers varying amounts of system power ranging from 400 W to 1400 W depending on the lines powered. See “Special Considerations for the 1400 W DC SP Triple Input Power Supply” section on page 14-22 for more information. (PoE not supported)
 - 4200 W AC, 6000 W AC, and 9000W AC—Supports varying amounts of system power and PoE depending on the number of inputs powered and input voltage.

Note

All Catalyst 4500 series switch AC-input power supplies require single-phase source AC. The source AC can be out of phase between multiple power supplies or multiple AC-power plugs on the same power supply because all AC power supply inputs are isolated. Each chassis power supply should ideally have its own dedicated branch circuit sized to local and national codes.
When you insert power supplies in your switch, use power supplies that are of the same wattage. Multi-input power supplies such as 1400 W DC triple-input, 4200 W AC, 6000 W AC, and 9000W AC have additional restrictions. Read the sections on special considerations for these power supplies. If you mix power supplies, the switch uses the one with the higher wattage and ignores the other power supply. The power supply status displays as err-disable and the summary displays as all zeros (0) for wattage values in the output for the `show power` command.

The following example shows the output for the `show power` command for mixed power supplies:

```
Switch# show power

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Model No</th>
<th>Type</th>
<th>Status</th>
<th>Fan Status</th>
<th>Inline Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1</td>
<td>PWR-C45-2800AC</td>
<td>AC 2800W</td>
<td>good</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>PS2</td>
<td>PWR-C45-1000AC</td>
<td>AC 1000W</td>
<td>err-disable</td>
<td>good</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

*** Power Supplies of different type have been detected***

Power supplies needed by system : 1
Power supplies currently available : 1

```

Power Management Modes for the Catalyst 4500 Switch

The Catalyst 4500 series switches support two power management modes:

- **Redundant mode**—Redundant mode uses one power supply as a primary power supply and the second power supply as a back-up. If the primary power supply fails, the second power supply immediately supports the switch without any disruption in the network. Both power supplies must be the same wattage. A single power supply must have enough power to support the switch configuration.

- **Combined mode**—Combined mode uses the power from all installed power supplies to support the switch configuration power requirements. However, combined mode has no power redundancy. If a power supply fails, one or more modules might shut down.

Note

On the Catalyst 4510R switch, the 1000 W AC power supply is not enough to support redundant mode for all possible configurations. It is able to support redundant mode for limited configurations that require less than 1050 W.

Note

The 1400 W DC power supply supports combined mode for data power. It does not support combined mode for PoE power.
Selecting a Power Management Mode

By default, a switch is set to redundant mode. In the `show power` command, if the `power supplies needed by system` is 1, the switch is in redundant mode; if the `power supplies needed by system` is 2, the switch is in combined mode.

Your switch hardware configuration dictates which power supply or supplies you should use. For example, if your switch configuration requires more power than a single power supply provides, use the combined mode. In combined mode, however, the switch has no power redundancy. Consider the following possibilities:

- The supervisor engine consumes 110 W, the fan boxes for the Catalyst 4503 switch consume 30 W each, the fan boxes for the Catalyst 4506 and Catalyst 4507 switches consume 50 W each, the backplane for the Catalyst 4503 and Catalyst 4506 switches consumes 10 W, and the backplane for the Catalyst 4507 switch consumes 40 W.
- 1000 W can support a fully loaded Catalyst 4503 switch with no powered device support.
- 1300 W can support a fully loaded Catalyst 4503 switch with Cisco powered devices.
- Each PoE port on a WS-X4148-RJ45V module requires 6.3 W. Five fully loaded WS-X4148-RJ45V modules in a switch comprise 240 ports. This configuration requires 1512 W of PoE, plus 300 W for the modules.

Power Management Limitations in Catalyst 4500 Series Switches

Limitation 1

It is possible to configure a switch that requires more power than the power supplies provide. The two ways you could configure a switch to exceed the power capabilities are as follows:

- The power requirements for the installed modules exceed the power provided by the power supplies.

 If you insert a single power supply and then set the switch to combined mode, the switch displays this error message:

 Insufficient power supplies present for specified configuration.

 This error message also displays in the output for the `show power` command. This error message displays because, by definition, combined mode requires that two working power supplies be installed in your switch.

 If the power requirements for the installed modules exceeds the power provided by the power supplies, the switch displays this error message:

 Insufficient power available for the current chassis configuration.

 This error message also appears in the `show power` command output.

 If you attempt to insert additional modules into your switch and exceed the power supply, the switch immediately places the newly inserted module into reset mode, and the switch displays these error messages:

 Module has been inserted
 Insufficient power supplies operating.

 Additionally, if you power down a functioning switch and insert an additional module or change the module configuration so that the power requirements exceed the available power, one or more modules enter reset mode when you power on the switch again.

- The power requirements for the PoE exceed the PoE provided by the power supplies.
If you have too many IP phones drawing power from the system, power to IP phones is cut, and some phones may be powered down to reduce the power requirements to match the power supplies.

In the first scenario (power requirements exceed the power supplied), the system attempts to resolve this power usage limitation by evaluating the type and number of modules installed. During the evaluation cycle, beginning from the bottom of the chassis, the system puts the modules that it is unable to support (for lack of power) into reset mode. The supervisor engine and modules for which there is adequate power always remain enabled, with no disruption of network connectivity. Modules placed in reset mode still consume some power and can be removed from the chassis to further reduce power requirements. If you configure the chassis correctly, the system does not enter the evaluation cycle.

A module in reset mode continues to draw power as long as it is installed in the chassis; use the `show power module` command to determine how much power is required to bring the module online.

To compute the power requirements for your system and verify that your system has enough power, add the power consumed by the supervisor engine module(s), the fan box(es), and the installed modules (including PoE). For PoE, total the requirements for all the phones. See the “Powering Down a Module” section on page 14-22 for more information on the power consumption for the various components of your switch.

The 802.3af-compliant PoE modules can consume up to 20 W of PoE to power FPGAs and other hardware components on the module. Be sure to add at least 20 W to your PoE requirements for each 802.3af-compliant PoE module to ensure that the system has adequate power for the PDs connected to the switch.

On the WS-X4148-RJ45V PoE module, PoE consumption cannot be measured. For all PoE calculations, the PoE consumption on this module is presumed to be equal to its administrative PoE.

Use the `show module` command to verify which modules are active and which, if any, have been placed in reset.

The following example shows the `show module` command output for a system with inadequate power for all installed modules. The system does not have enough power for Module 5; the `Status` displays it as `PwrDeny`.

If the PoE that is consumed by the module is more than 50 W above the PoE you allocated using the `power inline consumption default` command, the Status displays as `PwrOver`. If the PoE consumed by the module is more than 50 W above the PoE module limit, the Status displays as `PwrFault`.

```
Switch# show module
---+-----+--------------------------------------+-----------------+-----------
1 2  1000BaseX (GBIC) Supervisor(active)    WS-X4014 JAB054109GH
2 6  1000BaseX (GBIC)                       WS-X4306 000000110
3 18 1000BaseX (GBIC)                       WS-X4418 JAB025104WK
5 0  Not enough power for module            WS-X4148-FX-MT 0000000000
6 48 10/100BaseTX (RJ45)                    WS-X4148 JAB023402RP

M MAC addresses                    Hw  Fw           Sw               Status
--+--------------------------------+---+------------+----------------+---------
1 005c.9d1a.f9d0 to 005c.9d1a.f9df 0.5 12.1(11br)EW 12.1(20020313:00 Ok
2 0010.7bab.9920 to 0010.7bab.9925 0.2                               Ok
3 0050.7356.2b36 to 0050.7356.2b47 1.0                               Ok
5 0001.64fe.a930 to 0001.64fe.a95f 0.0 PwrDeny
6 0050.0f10.28b0 to 0050.0f10.28df 1.0                               Ok
Switch#
```

Limitation 2

Certain configurations on the Catalyst 4507R and Catalyst 4510R chassis exceeds the maximum amount of data power available. These configurations include the combination of the follow PIDs:
• 7-slot configuration
• Chassis: WS-C4507R-E, WS-C4510R-E
• Dual supervisor engines: WS-X45-Sup6-E and WS-X45-Sup6L-E
• One or more: WS-X4448-GB-RJ45 or WS-X4148-FX-MT

To maximize the 10/100/1000 port density of 7- and 10- slot chassis, install WS-X4548-GB-RJ45 line cards instead of WS-X4448-GB-RJ45 line cards. If WS-X4448-GB-RJ45 line cards are required, two options are available:

• Option 1
 Only four line card slots can be used on the Catalyst 4507R and six line card slots on the Catalyst 4510R chassis.

• Option 2
 When all slots are required, only one WS-X4448-GB-RJ45 line card can be used.

To maximize the 100-BASE-FX port density of 7- and 10- slot chassis, install WS-4248-FE-SFP line cards with FX optics instead of WS-X4148-FX-MT line cards. If WS-X4148-FX-MT line cards are required, two options are available:

• Option 1
 Only four line card slots can be used on the Cat4507R and six line card slots on the Catalyst 4510R chassis.

• Option 2
 When all slots are required only one WS-X4448-GB-RJ45 line card can be used.

Configuring Redundant Mode on a Catalyst 4500 Series Switch

By default, the power supplies in a Catalyst 4500 series switch are set to operate in redundant mode. To effectively use redundant mode, follow these guidelines:

• Use two power supplies of the same type.
• If you have the power management mode set to redundant mode and only one power supply installed, your switch accepts the configuration but operates without redundancy.

Caution

If you have power supplies with different types or different wattages installed in your switch, the switch does not recognize one of the power supplies and does not have power redundancy.

• For fixed power supplies, choose a power supply that is powerful enough to support the switch configuration.
• For variable power supplies, choose a power supply that provides enough power so that the chassis and PoE requirements are less than the maximum available power. Variable power supplies automatically adjust the power resources at startup to accommodate the chassis and PoE requirements. Modules are brought up first, followed by IP phones.
• The maximum available power for chassis and PoE for each power supply are listed in Table 14-5 on page 14-14.

To configure redundant mode on your Catalyst 4500 series switch, perform this task:
Chapter 14 Environmental Monitoring and Power Management

Power Management

The following example shows how to set the power management mode to redundant mode:

Switch (config)# power redundancy-mode redundant
Switch (config)# end

The following example shows how to display the current power redundancy mode. The power supplies needed by system:1 indicates that the switch is in redundant mode.

Switch# show power supplies
Power supplies needed by system:1
Switch#

An option in the combined mode provides a form of redundancy available with only the 4200 W AC and 6000 W AC power supplies. Refer to the section “Combined Mode Power Resiliency” on page 19.

Configuring Combined Mode on a Catalyst 4500 Series Switch

If your switch configuration requires more power than a single power supply can provide, set the power management mode to combined mode. Combined mode utilizes the available power for both power supplies; however, your switch has no power redundancy.

To effectively use combined mode, follow these guidelines:

• Use power supplies of the same type and wattage (fixed or variable and AC or DC).
• If you use power supplies with different types or wattages, the switch utilizes only one of the power supplies.
• For variable power supplies, choose a power supply that provides enough power so that the chassis and PoE requirements are less than the maximum available power. Variable power supplies automatically adjust the power resources at startup to accommodate the chassis and PoE requirements.
• If you have the power management mode set to combined mode and only one power supply installed, your switch accepts the configuration, but power is available from only one power supply.
• When your switch is configured to combined mode, the total available power is not the mathematical sum of the individual power supplies. The power supplies have a predetermined current sharing ratio. See Table 14-5 on page 14-14 for more information.
• The maximum available power for chassis and PoE for each power supply are listed in Table 14-5 on page 14-14.

To configure combined mode on your Catalyst 4500 series switch, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Switch(config)# power redundancy-mode redundant</td>
</tr>
<tr>
<td></td>
<td>Sets the power management mode to redundant mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Switch# show power supplies</td>
</tr>
<tr>
<td></td>
<td>Verifies the power redundancy mode for the switch.</td>
</tr>
</tbody>
</table>
Chapter 14 Environmental Monitoring and Power Management

Power Management

The following example shows how to set the power management mode to combined mode:

```
Switch(config)# power redundancy-mode combined
Switch(config)# end
```

The following example shows how to display the current power redundancy mode. The power supplies needed by system: 2 indicates that the switch is in combined mode.

```
Switch# show power supplies
Power supplies needed by system: 2
Switch#
```

Available Power for Catalyst 4500 Series Switches Power Supplies

Table 14-5 lists the power available for use in the various Catalyst 4500 series switches power supplies. When your switch is configured to combined mode, the total available power in not the mathematical sum of the individual power supplies. The power supplies have a sharing ratio predetermined by the hardware. In combined mode, the total power available is $P + (P \times \text{sharing-ratio})$, where P is the amount of power in the power supply.

**Table 14-5 **Available Power for Switch Power Supplies

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Redundant Mode (W)</th>
<th>Combined Mode (W)</th>
<th>Sharing Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 W AC</td>
<td>Chassis1 = 1050</td>
<td>Chassis = 1667</td>
<td>2/3</td>
</tr>
<tr>
<td></td>
<td>PoE = 0</td>
<td>PoE = 0</td>
<td></td>
</tr>
<tr>
<td>1300 W AC</td>
<td>Chassis (max) = 1050</td>
<td>Chassis (min) = 767</td>
<td>2/3</td>
</tr>
<tr>
<td></td>
<td>PoE (max) = 800</td>
<td>PoE (max) = 1333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chassis + PoE + Backplane \leq 1300</td>
<td>Chassis + PoE + Backplane \leq 2200</td>
<td></td>
</tr>
<tr>
<td>1400 W DC</td>
<td>Chassis (min) = 200</td>
<td>Chassis = 22674</td>
<td>Chassis—2/3</td>
</tr>
<tr>
<td></td>
<td>Chassis (max) = 1360</td>
<td>PoE5</td>
<td>PoE—0</td>
</tr>
<tr>
<td></td>
<td>PoE (max)2 = (DC Input1 - [Chassis (min) + Backplane] / 0.75) * 0.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Special Considerations for the 4200 W AC and 6000 W AC Power Supplies

The 4200 W AC and 6000 W AC power supply has two inputs: each can be powered at 110 or 220 V. The 9000 W AC power supply has three inputs: each can be powered at 110 or 220V.

The output of the show power command for the 4200 W AC, 6000 W AC, and 9000W AC power supplies are similar to that of 1400 W DC triple-input power supply (that is, the status of the submodules (multiple inputs) is displayed). With these power supplies, you can distinguish submodule “failed” versus “off,” and the status of the submodules (good, bad, or off):

```
Switch# show power
Power Supply Model No      Type       Status    Fan      Inline
------  ----------------  ---------  -----------  -------  -------
PS1     PWR-C45-4200ACV   AC 4200W   good       good     good
PS1-1                                    220V       good
PS1-2                                    off
PS2     PWR-C45-4200ACV   AC 4200W   bad/off    good     bad/off
PS2-1                                    220V       good
PS2-2                                    220V       bad
```

Power supplies needed by system : 1
Power supplies currently available : 2

Power Summary (in Watts) Maximum
(in Watts) Used Available
----------------------------- ------- -------
System Power (12V) 140 1360
Inline Power (-50V) 0 1850
Backplane Power (3.3V) 0 40
----------------------------- ------- -------
Total 140 (not to exceed Total Maximum Available = 2100)
Switch#

Switch# show power
Power Supply Model No Type Status Fan Inline
------ ---------------- --------- ----------- ------- -------
PS1 PWR-C45-9000ACV AC 9000W good good good
```

1. Chassis power includes power for the supervisor engine(s), all line cards, and the fan tray.
2. The efficiency for the 1400 W DC power supply is 0.75, and 0.96 is applied to PoE.
3. DC input can vary for the 1400 W DC power supply and is configurable. For more information, see “Special Considerations for the 1400 W DC Power Supply” on page 21.
4. Not available for PoE.
5. Not available for PoE.
6. No voice power.
7. Data-only.
8. Inline power.
As with other power supplies, the two power supplies must be of the same type (6000 W AC or 4200 W AC or 1400 W DC). Otherwise, the right power supply is put in err-disable state and the left one is selected. In addition, all the inputs to the chassis must be at the same voltage. In redundant mode, the inputs to the left and right power supplies must be identical. If the left and right power supplies are powered in redundant mode, the power values is based on the power supply with the higher output wattage.

**Note**

When the system is powered with a 4200 W, 6000 W, or 9000W power supply either in 110 V or 220 V combined mode operation, the available power is determined by the configuration of the system (the type of line cards, the number of line cards, number of ports consuming inline power, etc.) and does not reflect the absolute maximum power.

**Note**

In a matched redundant power supply configuration, if a power supply submodule fails, the other (good) power supply provides power to its full capability.

Table 14-6 illustrates how the 4200 W AC power supply is evaluated in redundant mode.

**Table 14-6 Output Power in Redundant Mode for the 4200 W AC Power Supply**

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>12 V (data) (W)</th>
<th>-50V (PoE) (W)</th>
<th>Total Power (W)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 V AC</td>
<td>660</td>
<td>922</td>
<td>1050</td>
</tr>
<tr>
<td>110 V AC + 110 V AC</td>
<td>1460</td>
<td>2000</td>
<td>2100</td>
</tr>
<tr>
<td>220 V AC</td>
<td>1460</td>
<td>2500</td>
<td>2100</td>
</tr>
<tr>
<td>220 V AC + 220 V AC</td>
<td>1960</td>
<td>5000</td>
<td>4200</td>
</tr>
</tbody>
</table>

1. Power supply outputs’ drawing should not exceed the total power.

In combined mode, all the inputs to the chassis must be at the same voltage.

Table 14-7 illustrates how the 4200 W AC power supply is evaluated in combined mode.
Table 14-7 illustrates how the 6000 W AC power supply is evaluated in redundant mode.

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>12 V (data) (W)</th>
<th>-50 V (PoE) (W)</th>
<th>Total Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sides at 110 V AC</td>
<td>1188</td>
<td>1531</td>
<td>1700</td>
</tr>
<tr>
<td>Both sides at 110 V AC + 110 V AC</td>
<td>2448</td>
<td>3071</td>
<td>3570</td>
</tr>
<tr>
<td>One side at 110 V AC + 110 V AC, the other at 110 V AC</td>
<td>1818</td>
<td>2301</td>
<td>2660</td>
</tr>
</tbody>
</table>

1. Power supply outputs’ drawing should not exceed the total power.

In combined mode, all the inputs to the chassis must be at the same voltage.

Table 14-8 illustrates how the 6000 W AC power supply is evaluated in combined mode.

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>12 V (data) (W)</th>
<th>-50 V (PoE) (W)</th>
<th>Total Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sides at 110 V AC</td>
<td>850</td>
<td>922</td>
<td>1050</td>
</tr>
<tr>
<td>Both sides at 110 V AC + 110 V AC</td>
<td>1700</td>
<td>1850</td>
<td>2100</td>
</tr>
<tr>
<td>220 V AC</td>
<td>2200</td>
<td>2400</td>
<td>3000</td>
</tr>
<tr>
<td>220 V AC + 220 V AC</td>
<td>2200</td>
<td>4800</td>
<td>6000</td>
</tr>
</tbody>
</table>

1. Power supply outputs’ drawing should not exceed the total power.
1. Power supply outputs’ drawing should not exceed the total power.

Table 14-10 illustrates how the 9000 W AC power supply is evaluated in redundant mode.

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>12V (data) (W)</th>
<th>-50V (PoE) (W)</th>
<th>Total Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110VAC</td>
<td>960</td>
<td>1000</td>
<td>1100</td>
</tr>
<tr>
<td>110VAC + 110 VAC</td>
<td>1460</td>
<td>2000</td>
<td>2200</td>
</tr>
<tr>
<td>110VAC + 110 V AC+ 110VAC</td>
<td>1460</td>
<td>2500</td>
<td>3300</td>
</tr>
<tr>
<td>220VAC</td>
<td>1460</td>
<td>2500</td>
<td>3000</td>
</tr>
<tr>
<td>220VAC + 220VAC</td>
<td>1960</td>
<td>5000</td>
<td>6000</td>
</tr>
<tr>
<td>220VAC + 220VAC + 220VAC</td>
<td>1960</td>
<td>7500</td>
<td>9000</td>
</tr>
</tbody>
</table>

1. Power supply output drawings should not exceed the total power.

Table 14-11 illustrates how the 9000 W AC power supply is evaluated in combined mode.

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>12V (data) (W)</th>
<th>-50V (PoE) (W)</th>
<th>Total Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sides at 110 VAC</td>
<td>1594</td>
<td>1660</td>
<td>1790</td>
</tr>
<tr>
<td>Both sides at 110VAC + 110VAC</td>
<td>2424</td>
<td>3320</td>
<td>3610</td>
</tr>
<tr>
<td>Both sides at 110VAC + 110VAC + 110VAC</td>
<td>2424</td>
<td>4150</td>
<td>5420</td>
</tr>
<tr>
<td>One side at 110VAC + 110VAC + 110VAC, the other at 110VAC + 110VAC</td>
<td>2020</td>
<td>3458</td>
<td>4510</td>
</tr>
<tr>
<td>One side at 110VAC + 110VAC + 110VAC, the other at 110VAC</td>
<td>1615</td>
<td>2767</td>
<td>3600</td>
</tr>
<tr>
<td>One side at 110VAC + 110VAC, the other at 110VAC</td>
<td>1818</td>
<td>2490</td>
<td>2700</td>
</tr>
<tr>
<td>Both sides at 220VAC</td>
<td>2424</td>
<td>4150</td>
<td>4930</td>
</tr>
<tr>
<td>Both sides at 220VAC + 220VAC</td>
<td>3763</td>
<td>8300</td>
<td>10140</td>
</tr>
<tr>
<td>Both sides at 220VAC + 220VAC + 220VAC</td>
<td>3763</td>
<td>14400</td>
<td>17210</td>
</tr>
<tr>
<td>One side at 220VAC + 220VAC + 220VAC, the other at 220VAC + 220VAC</td>
<td>2940</td>
<td>11250</td>
<td>13430</td>
</tr>
<tr>
<td>One side at 220VAC + 220VAC + 220VAC, the other at 220VAC</td>
<td>2169</td>
<td>8300</td>
<td>9900</td>
</tr>
<tr>
<td>One side at 220VAC + 220VAC, the other at 220VAC</td>
<td>2646</td>
<td>6225</td>
<td>7410</td>
</tr>
</tbody>
</table>
Combined Mode Power Resiliency

This feature only applies in combined mode when both power supply bays contain the 4200 W AC or 6000 W AC power supply.

Using the combined mode power resiliency feature, you can limit the power usage to a maximum of two or three (configurable) inputs for 4000W and 6000W power supplies. For 9000W power supplies, you can limit the power usage to a maximum of 2 to 5 inputs, since the 9000W is a triple input power supply.

With two 4200 W AC or 6000 W AC power supplies, a maximum of four inputs are available. With two 9000W, a maximum of six inputs are available. This feature allows you to cap the power usage to that of two/three inputs or four/five inputs. If one of the power supplies fails, no loss of power occurs because you have capped its usage to a smaller number of inputs.

To configure the combined mode resiliency feature, perform this task:

Step 1
Switch# configure terminal
Enters configuration mode.

Step 2
Switch(config)# power redundancy combined max inputs {2 | 5}
If a 9000W AC power supply is detected, this limits the power usage to four or five inputs.
Note The maximum inputs part of the command is ignored by all power supplies other than 9000 W AC.

OR

Switch(config)# power redundancy combined max inputs {2 | 3}
If a 9000W AC power supply is not detected, limits the power usage to two or three inputs.
Note The maximum inputs part of the command is ignored by all power supplies other than the 4200 W AC or 6000 W AC.

Step 3
Switch(config)# end
Exits configuration mode.

If you have max inputs 3 configured with four “good” (220 V) inputs and you limit the user to 5500 W instead of 7600 W and one subunit fails or is powered off, you have three quality inputs providing 5500 W and the chassis is powered at the same rate as it was prior to the failure event:

Switch# configuration terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# power redundancy combined max inputs 3
Switch(config)# end
Switch#
14:32:01: %SYS-5-CONFIG_I: Configured from console by console
Here is the output of the `show power` command prior to invoking this feature:

```
Switch# show power
sh power
Power
Supply Model No Type Status Sensor Status
------ ---------------- --------- ----------- ------- -------
PS1 PWR-C45-4200ACV AC 4200W good good good
PS1-1 110V good
PS1-2 110V good
PS2 PWR-C45-4200ACV AC 4200W good good good
PS2-1 110V good
PS2-2 110V good

Power supplies needed by system : 1
Power supplies currently available : 2

Power Summary Maximum
(in Watts) Used Available
---------------------- ---- --------
System Power (12V) 140 1360
Inline Power (-50V) 0 1850
Backplane Power (3.3V) 0 40
---------------------- ---- --------
Total 140 (not to exceed Total Maximum Available = 2100)
```

Here is the output after invoking this feature. The combined mode was indicated before

```
Power supplies needed by system: 2
```

```
Switch# show power
sh power
Power
Supply Model No Type Status Sensor Status
------ ---------------- --------- ----------- ------- -------
PS1 PWR-C45-4200ACV AC 4200W good good good
PS1-1 110V good
PS1-2 110V good
PS2 PWR-C45-4200ACV AC 4200W good good good
PS2-1 110V good
PS2-2 110V good

Power supplies needed by system : 2
Power supplies currently available : 2

Power Summary Maximum
(in Watts) Used Available
---------------------- ---- --------
System Power (12V) 140 2400
Inline Power (-50V) 0 2000
Backplane Power (3.3V) 0 40
---------------------- ---- --------
Total 140 (not to exceed Total Maximum Available = 2728)
```

Here's another example of combined mode resiliency with 9000W power supply with a maximum of six active inputs, limited to 3 inputs:

```
Switch# show power
sh power
Power
Supply Model No Type Status Sensor Status
------ ---------------- --------- ----------- ------- -------
PS1 PWR-C45-4200ACV AC 4200W good good good
PS1-1 110V good
PS1-2 110V good
PS2 PWR-C45-4200ACV AC 4200W good good good
PS2-1 110V good
PS2-2 110V good

Power supplies needed by system : 2
Power supplies currently available : 2

Power Summary Maximum
(in Watts) Used Available
---------------------- ---- --------
System Power (12V) 140 2400
Inline Power (-50V) 0 2000
Backplane Power (3.3V) 0 40
---------------------- ---- --------
Total 140 (not to exceed Total Maximum Available = 2728)
```

Switch#
### Special Considerations for the 1400 W DC Power Supply

⚠️ **Caution**

Do not mix the 1400 W DC power supply with any other power supply, even for a hot swap or other short-term emergency. Doing so can seriously damage your switch.

Keep in mind the following guidelines when using a 1400 W DC power supply with your Catalyst 4500 series switch:

- The 1400 W DC power supply works with a variety of DC sources. The DC input can vary from 300 W to 7500 W. Refer to the power supply documentation for additional information.
- The supervisor engine cannot detect the DC source plugged into the 1400 W DC power supply. If you are using the 1400 W DC power supply, use the `power dc input` command to set the DC input power. For more information on this command, see the “Configuring the DC Input for a Power Supply” section on page 14-21.
- The software automatically adjusts between system power (for modules, backplane, and fans) and PoE. Although PoE is 96 percent efficient, system power has only 75 percent efficiency. For example, each 120 W of system power requires 160 W from the DC input. This requirement is reflected in the “Power Used” column of the output for the `show power available` command.
- The 1400 W DC power supply has a separate power on or off switch for PoE. The power supply fan status and main power supply status are tied together. If either of them fails, both the power supply and its fan report as bad/off. You should verify that the main power is on before turning on the power for the inline switch. In addition, you should verify that the power for the inline switch is off before turning off the main power.

### Configuring the DC Input for a Power Supply

To configure the DC input power for the 1400 W DC power supply or a power shelf, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
Command | Purpose
--- | ---
Step 2 | Switch(config)# power dc input watts
Step 3 | Switch(config)# end

The same configuration is applied to both power slots. For example, if you set the dc power input to 1000 W, the switch expects 1000 W as the external DC source for both slot 1 and slot 2 (if present).

The following example shows how to set the external DC power source to 1000 W:
```
Switch# configure terminal
Switch (config)# power dc input 1000
Switch (config)# end
Switch#
```

If you use the 1400 W DC SP power supply in combined mode, the inputs do not have to match.

### Special Considerations for the 1400 W DC SP Triple Input Power Supply

Unlike the 1400 W DC power supply, the 1400 W DC SP power supply has submodules (multiple inputs) that can be powered on or off. With Cisco IOS Release 12.2(25)EW, the output of the show power command is modified to display the status of these submodules:

```
Switch# show power
```

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Model No</th>
<th>Type</th>
<th>Status</th>
<th>Fan Sensor</th>
<th>Inline Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1</td>
<td>PWR-C45-1400DC</td>
<td>DCSP1400W</td>
<td>good</td>
<td>good</td>
<td>n.a.</td>
</tr>
<tr>
<td>PS1-1</td>
<td></td>
<td>12.5A</td>
<td>good</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS1-2</td>
<td></td>
<td>15.0A</td>
<td>bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS1-3</td>
<td></td>
<td>15.0A</td>
<td>off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS2</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observer the following guidelines when using a 1400 W DC SP power supply with your Catalyst 4500 series switch:

- When you use two 48 V power rails to drive two power supplies, you might use cross-wiring to connect the power supplies (to rails) to minimize the inrush current drawn during an initial power up. In this situation, you should configure the switch in combined mode before you take a rail down for maintenance.

- Ordinarily, when configured for redundancy, two power supplies must be matched (have identical inputs). For example, you might provide power to inputs 1 and 3 on both PS1 and PS2. If power supplies are mismatched upon bootup, the right (second) power supply is in err-disable state.

In a matched redundant power supply configuration, if a power supply submodule fails, the other (good) power supply provides power to its full capability.

### Powering Down a Module

If your system does not have enough power for all modules installed in the switch, you can power down a module, and place it in low-power mode. To power down a module, perform this task:

```
Step 2 | Switch(config)# power dc input watts
Step 3 | Switch(config)# end
```

Sets the capacity of the DC input source.

Exits configuration mode.
Chapter 14      Environmental Monitoring and Power Management

IEEE 802.3az Energy Efficient Ethernet

To power on a module that has been powered down, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch(config)# no hw-module module num power</td>
<td>Turns power down to the specified module by placing it in low power mode.</td>
</tr>
<tr>
<td>Switch(config)# hw-module module num power</td>
<td>Turns power on to the specified module.</td>
</tr>
</tbody>
</table>

This example shows how to power down module 6:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# no hw-module module 6 power
Switch(config)# end
Switch#

Note After you enter no hw-mod mod x power command and OIR the linecard, the configuration persists and is valid for any slot in the chassis it is applied to. You observe the same behavior in the active and standby supervisor engines.

Power Management for the Catalyst 4948 Switches

You can select from AC or DC power supplies to ensure that you have enough power for your switch. The Catalyst 4948 switches support the following power supplies:

- 300 W AC
- 300 W DC

These power supplies are incompatible with Catalyst 4500 series switches. Because Power over Ethernet (PoE) is not supported on the Catalyst 4948 switch, you only need a limited wattage is needed. (For information on PoE, see Chapter 15, “Configuring Power over Ethernet.”) When you insert power supplies in your switch, the EEPROM on the power supplies can be read by the system software even if the supply is not powered on. You may mix AC and DC power supplies.

Power Management Modes for the Catalyst 4948 Switch

The Catalyst 4948 switches support the redundant power management mode. In this mode, if both power supplies are operating normally, each provides from 20/80 to 45/55 percent of the total system power requirements at all times. If one power supply fails, the other unit increases power to 100 percent of the total power requirement.

IEEE 802.3az Energy Efficient Ethernet

Note EEE is supported on WS-X4748-UPOE+E and WS-X4748-RJ45-E.
IEEE 802.3az Energy Efficient Ethernet

Energy Efficient Ethernet is an extension of the IEEE 802.3 standard that provides a mechanism and a standard for reducing energy usage without reducing the vital function of network interfaces. EEE defines the signaling necessary for energy savings during periods where no data is sent on the interface.

EEE defines support for physical layer devices (PHYS) to operate in Low Power Idle (LPI) mode. When enabled, EEE supports QUIET times during low link utilization allowing both sides of a link to disable portions of each PHY’s operating circuitry and save power. This functionality is provided per port and is not enabled by default. To avoid issues with EEE functionality on any port during run-time, Cisco provides the `power efficient-ethernet auto` command to enable or disable EEE.

Because EEE relies on Auto Negotiation pulse to determine whether to activate EEE, the port must initially enable auto negotiation. Furthermore, EEE is the correct action provided the speed is auto 100M, auto 1000M, or auto 100M and 1000M. 10M (either auto or forced mode) does not require EEE for power saving.

For more details, see the URL:


Sections include:

- Determining EEE Capability, page 14-24
- Enabling EEE, page 14-24
- Determining EEE Status, page 14-25

Determining EEE Capability

To determine whether a line card supports EEE, use the `show interface capabilities module` command, as follows:

```
Switch# show interface capabilities module 3
GigabitEthernet3/1
 Model: WS-X4748-NGPOE+E-RJ-45
 Type: 10/100/1000-TX
 Speed: 10,100,1000,auto
 Duplex: half,full,auto
 Auto-MDIX: yes
 EEE: yes (100-Tx and 1000-T auto mode)
```

Enabling EEE

To enable EEE on a given port, use the `power efficient-ethernet auto` command.

```
Command Purpose
Step 1 Switch# configure terminal Enters configuration mode.
Step 2 Switch(config)# interface interface Enters interface configuration mode and specifies the port to be configured.
Step 3 Switch(config-if)# power efficient-ethernet auto Enables EEE.
Step 4 Switch(config-if)# exit Exits global configuration mode.
```

The following example shows how to enable EEE:

```
Switch# config t
```
Determining EEE Status

To determine EEE status use the **show platform software interface interface status** command:

The following example determines EEE status:

```plaintext
Switch(config)# show platform software interface g2/1 status
Switch Phyport Gi2/1 Software Status
EEE: Disabled
```

EEE status can have the following values:

- **EEE: N/A** — The port is not capable of EEE.
- **EEE: Disabled** — The port EEE is disabled.
- **EEE: Disagreed** — The port EEE is not set because a remote link partner might be incompatible with EEE; either it is not EEE capable, or it’s EEE setting is incompatible.
- **EEE: Operational** — The port EEE is enabled and operating.