This module describes how to configure authorization and revocation of certificates in a public key infrastructure (PKI). It includes information on high-availability support for the certificate server.

Note Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Authorization and Revocation of Certificates

Plan Your PKI Strategy

Tip It is strongly recommended that you plan your entire PKI strategy before you begin to deploy actual certificates.

Authorization and revocation can occur only after you or a network administrator have completed the following tasks:

- Configured the certificate authority (CA).
- Enrolled peer devices with the CA.
Restrictions for Authorization and Revocation of Certificates

- Identified and configured the protocol (such as IP Security [IPsec] or secure socket layer [SSL]) that is to be used for peer-to-peer communication.

You should decide which authorization and revocation strategy you are going to configure before enrolling peer devices because the peer device certificates might have to contain authorization and revocation-specific information.

“crypto ca” to “crypto pki” CLI Change

As of Cisco IOS Release 12.3(7)T, all commands that begin as “crypto ca” have been changed to begin as “crypto pki.” Although the router will still accept crypto ca commands, all output will be read back as crypto pki.

High Availability

For high availability, IPsec-secured Stream Control Transmission Protocol (SCTP) must be configured on both the active and the standby routers. For synchronization to work, the redundancy mode on the certificate servers must be set to ACTIVE/STANDBY after you configure SCTP.

Restrictions for Authorization and Revocation of Certificates

PKI High Availability (HA) support of intra-chassis stateful switchover (SSO) redundancy is currently not supported on all switches running the Cisco IOS Release 12.2 S software. See Cisco bug CSCtb59872 for more information.

Depending on your Cisco IOS release, Lightweight Directory Access Protocol (LDAP) is supported.

Information About Authorization and Revocation of Certificates

PKI Authorization

PKI authentication does not provide authorization. Current solutions for authorization are specific to the router that is being configured, although a centrally managed solution is often required.

There is not a standard mechanism by which certificates are defined as authorized for some tasks and not for others. This authorization information can be captured in the certificate itself if the application is aware of the certificate-based authorization information. But this solution does not provide a simple mechanism for real-time updates to the authorization information and forces each application to be aware of the specific authorization information embedded in the certificate.

When the certificate-based ACL mechanism is configured as part of the trustpoint authentication, the application is no longer responsible for determining this authorization information, and it is no longer possible to specify for which application the certificate is authorized. In some cases, the certificate-based ACL on the router gets so large that it cannot be managed. Additionally, it is beneficial to retrieve certificate-based ACL indications from an external server.

Current solutions to the real-time authorization problem involve specifying a new protocol and building a new server (with associated tasks, such as management and data distribution).
PKI and AAA Server Integration for Certificate Status

Integrating your PKI with an authentication, authorization, and accounting (AAA) server provides an alternative online certificate status solution that leverages the existing AAA infrastructure. Certificates can be listed in the AAA database with appropriate levels of authorization. For components that do not explicitly support PKI-AAA, a default label of “all” from the AAA server provides authorization. Likewise, a label of “none” from the AAA database indicates that the specified certificate is not valid. (The absence of any application label is equivalent, but “none” is included for completeness and clarity). If the application component does support PKI-AAA, the component may be specified directly; for example, the application component could be “ipsec”, “ssl”, or “ocsp.” (ipsec=IP Security, ssl=Secure Sockets Layer, and osp=Open Settlement Protocol.)

Note
Currently, no application component supports specification of the application label.

- There may be a time delay when accessing the AAA server. If the AAA server is not available, the authorization fails.

RADIUS or TACACS+ Choosing a AAA Server Protocol

The AAA server can be configured to work with either the RADIUS or TACACS+ protocol. When you are configuring the AAA server for the PKI integration, you must set the RADIUS or TACACS attributes that are required for authorization.

If the RADIUS protocol is used, the password that is configured for the username in the AAA server should be set to Cisco, which is acceptable because the certificate validation provides authentication and the AAA database is only being used for authorization. When the TACACS protocol is used, the password that is configured for the username in the AAA server is irrelevant because TACACS supports authorization without requiring authentication (the password is used for authentication).

In addition, if you are using TACACS, you must add a PKI service to the AAA server. The custom attribute “cert-application=all” is added under the PKI service for the particular user or usergroup to authorize the specific username.

Attribute-Value Pairs for PKI and AAA Server Integration

The table below lists the attribute-value (AV) pairs that are to be used when setting up PKI integration with a AAA server. (Note the values shown in the table are possible values.) The AV pairs must match the client configuration. If they do not match, the peer certificate is not authorized.

Note
Users can sometimes have AV pairs that are different from those of every other user. As a result, a unique username is required for each user. The all parameter (within the authorization username command) specifies that the entire subject name of the certificate will be used as the authorization username.
Table 63-1 AV Pairs that Must Match

<table>
<thead>
<tr>
<th>AV Pair</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cisco-avpair=pki:cert-application=all</code></td>
<td>Valid values are “all” and “none.”</td>
</tr>
<tr>
<td><code>cisco-avpair=pki:cert-trustpoint=msca</code></td>
<td>The value is a Cisco IOS command-line interface (CLI) configuration trustpoint label.</td>
</tr>
</tbody>
</table>

Note The cert-trustpoint AV pair is normally optional. If it is specified, the Cisco IOS router query must be coming from a certificate trustpoint that has a matching label, and the certificate that is authenticated must have the specified certificate serial number.
Chapter 63 Configuring Authorization and Revocation of Certificates in a PKI

Attribute-Value Pairs for PKI and AAA Server Integration

After a certificate is validated as a properly signed certificate, a certificate revocation method is performed to ensure that the certificate has not been revoked by the issuing CA. Cisco IOS software supports two revocation mechanisms--certificate revocation lists (CRLs) and Online Certificate Status Protocol (OCSP). Cisco IOS software also supports AAA integration for certificate checking; however, additional authorization functionality is included. For more information on PKI and AAA certificate authorization and status check, see the PKI and AAA Server Integration for Certificate Status section.

The following sections explain how each revocation mechanism works:

CRLs or OCSP Server Choosing a Certificate Revocation Mechanism

After a certificate is validated as a properly signed certificate, a certificate revocation method is performed to ensure that the certificate has not been revoked by the issuing CA. Cisco IOS software supports two revocation mechanisms--certificate revocation lists (CRLs) and Online Certificate Status Protocol (OCSP). Cisco IOS software also supports AAA integration for certificate checking; however, additional authorization functionality is included. For more information on PKI and AAA certificate authorization and status check, see the PKI and AAA Server Integration for Certificate Status section.

The following sections explain how each revocation mechanism works:

Table 63-1 AV Pairs that Must Match

<table>
<thead>
<tr>
<th>AV Pair</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco-avpair=pki:cert-serial=16318DB700010001671</td>
<td>The value is a certificate serial number.</td>
</tr>
<tr>
<td></td>
<td>Note The cert-serial AV pair is normally optional. If it is specified, the Cisco IOS router query must be coming from a certificate trustpoint that has a matching label, and the certificate that is authenticated must have the specified certificate serial number.</td>
</tr>
<tr>
<td>cisco-avpair=pki:cert-lifetime-end=1:00 Jan 1, 2003</td>
<td>The cert-lifetime-end AV pair is available to artificially extend a certificate lifetime beyond the time period that is indicated in the certificate itself. If the cert-lifetime-end AV pair is used, the cert-trustpoint and cert-serial AV pairs must also be specified. The value must match the following form: hours:minutes month day, year.</td>
</tr>
<tr>
<td></td>
<td>Note Only the first three characters of a month are used: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec. If more than three characters are entered for the month, the remaining characters are ignored (for example Janxxxx).</td>
</tr>
</tbody>
</table>
What Is a CRL

A certificate revocation list (CRL) is a list of revoked certificates. The CRL is created and digitally signed by the CA that originally issued the certificates. The CRL contains dates for when each certificate was issued and when it expires.

CAs publish new CRLs periodically or when a certificate for which the CA is responsible has been revoked. By default, a new CRL is downloaded after the currently cached CRL expires. An administrator may also configure the duration for which CRLs are cached in router memory or disable CRL caching completely. The CRL caching configuration applies to all CRLs associated with a trustpoint.

When the CRL expires, the router deletes it from its cache. A new CRL is downloaded when a certificate is presented for verification; however, if a newer version of the CRL that lists the certificate under examination is on the server but the router is still using the CRL in its cache, the router does not know that the certificate has been revoked. The certificate passes the revocation check even though it should have been denied.

When a CA issues a certificate, the CA can include in the certificate the CRL distribution point (CDP) for that certificate. Cisco IOS client devices use CDPS to locate and load the correct CRL. The Cisco IOS client supports multiple CDPS, but the Cisco IOS CA currently supports only one CDP; however, third-party vendor CAs may support multiple CDPS per certificate. If a CDP is not specified in the certificate, the client device uses the default Simple Certificate Enrollment Protocol (SCEP) method to retrieve the CRL. (The CDP location can be specified through the cdp-url command.)

When implementing CRLs, you should consider the following design considerations:

- CRL lifetimes and the security association (SA) and Internet Key Exchange (IKE) lifetimes.
- The CRL lifetime determines the length of time between CA-issued updates to the CRL. The default CRL lifetime value, which is 168 hours [1 week], can be changed through the lifetime crl command.
- The method of the CDP determines how the CRL is retrieved; some possible choices include HTTP, Lightweight Directory Access Protocol (LDAP), SCEP, or TFTP. HTTP, TFTP, and LDAP are the most commonly used methods. Although Cisco IOS software defaults to SCEP, an HTTP CDP is recommended for large installations using CRLs because HTTP can be made highly scalable.
- The location of the CDP determines from where the CRL is retrieved; for example, you can specify the server and file path from which to retrieve the CRL.

Querying All CDPS During Revocation Check

When a CDP server does not respond to a request, the Cisco IOS software reports an error, which may result in the peer certificate being rejected. To prevent a possible certificate rejection and if there are multiple CDPS in a certificate, the Cisco IOS software will attempt to use the CDPS in the order in which they appear in the certificate. The router will attempt to retrieve a CRL using each CDP URL or directory specification. If an error occurs using a CDP, an attempt will be made using the next CDP.

Tip
Prior to Cisco IOS Release 12.3(7)T, the Cisco IOS software makes only one attempt to retrieve the CRL, even when the certificate contains more than one CDP.

Although the Cisco IOS software will make every attempt to obtain the CRL from one of the indicated CDPS, it is recommended that you use an HTTP CDP server with high-speed redundant HTTP servers to avoid application timeouts because of slow CDP responses.
What Is OCSP

OCSP is an online mechanism that is used to determine certificate validity and provides the following flexibility as a revocation mechanism:

- OCSP can provide real-time certificate status checking.
- OCSP allows the network administrator to specify a central OCSP server, which can service all devices within a network.
- OCSP also allows the network administrator the flexibility to specify multiple OCSP servers, either per client certificate or per group of client certificates.
- OCSP server validation is usually based on the root CA certificate or a valid subordinate CA certificate, but may also be configured so that external CA certificates or self-signed certificates may be used. Using external CA certificates or self-signed certificates allows the OCSP servers certificate to be issued and validated from an alternative PKI hierarchy.

A network administrator can configure an OCSP server to collect and update CRLs from different CA servers. The devices within the network can rely on the OCSP server to check the certificate status without retrieving and caching each CRL for every peer. When peers have to check the revocation status of a certificate, they send a query to the OCSP server that includes the serial number of the certificate in question and an optional unique identifier for the OCSP request, or a nonce. The OCSP server holds a copy of the CRL to determine if the CA has listed the certificate as being revoked; the server then responds to the peer including the nonce. If the nonce in the response from the OCSP server does not match the original nonce sent by the peer, the response is considered invalid and certificate verification fails. The dialog between the OCSP server and the peer consumes less bandwidth than most CRL downloads.

If the OCSP server is using a CRL, CRL time limitations will be applicable; that is, a CRL that is still valid might be used by the OCSP server although a new CRL has been issued by the CRL containing additional certificate revocation information. Because fewer devices are downloading the CRL information on a regular basis, you can decrease the CRL lifetime value or configure the OCSP server not to cache the CRL. For more information, check your OCSP server documentation.

Note

OCSP multiple response handling: Support has been enabled for handling of multiple OCSP single responses from an OCSP responder in a response packet.

In addition to the debug log messages the following debug log message will be displayed:

CRYPTO_PKI: Number of single Responses in OCSP response:1 (this value can change depending upon the number of responses).

When to Use an OCSP Server

OCSP may be more appropriate than CRLs if your PKI has any of the following characteristics:

- Real-time certificate revocation status is necessary. CRLs are updated only periodically and the latest CRL may not always be cached by the client device. For example, if a client does not yet have the latest CRL cached and a newly revoked certificate is being checked, that revoked certificate will successfully pass the revocation check.
- There are a large number of revoked certificates or multiple CRLs. Caching a large CRL consumes large portions of Cisco IOS memory and may reduce resources available to other processes.
- CRLs expire frequently, causing the CDP to handle a larger load of CRLs.
When to Use Certificate-Based ACLs for Authorization or Revocation

Certificates contain several fields that are used to determine whether a device or user is authorized to perform a specified action.

Because certificate-based ACLs are configured on the device, they do not scale well for large numbers of ACLs; however, certificate-based ACLs do provide very granular control of specific device behavior. Certificate-based ACLs are also leveraged by additional features to help determine when PKI components such as revocation, authorization, or a trustpoint should be used. They provide a general mechanism allowing users to select a specific certificate or a group of certificates that are being validated for either authorization or additional processing.

Certificate-based ACLs specify one or more fields within the certificate and an acceptable value for each specified field. You can specify which fields within a certificate should be checked and which values those fields may or may not have.

There are six logical tests for comparing the field with the value—equal, not equal, contains, does not contain, less than, and greater than or equal. If more than one field is specified within a single certificate-based ACL, the tests of all of the fields within the ACL must succeed to match the ACL. The same field may be specified multiple times within the same ACL. More than one ACL may be specified, and ACL will be processed in turn until a match is found or all of the ACLs have been processed.

Ignore Revocation Checks Using a Certificate-Based ACL

Certificate-based ACLs can be configured to instruct your router to ignore the revocation check and expired certificates of a valid peer. Thus, a certificate that meets the specified criteria can be accepted regardless of the validity period of the certificate, or if the certificate meets the specified criteria, revocation checking does not have to be performed. You can also use a certificate-based ACL to ignore the revocation check when the communication with a AAA server is protected with a certificate.

Ignoring Revocation Lists

To allow a trustpoint to enforce CRLs except for specific certificates, enter the `match certificate` command with the `skip revocation-check` keyword. This type of enforcement is most useful in a hub-and-spoke configuration in which you also want to allow direct spoke-to-spoke connections. In pure hub-and-spoke configurations, all spokes connect only to the hub, so CRL checking is necessary only on the hub. For one spoke to communicate directly with another spoke, the `match certificate` command with the `skip revocation-check` keyword can be used for neighboring peer certificates instead of requiring a CRL on each spoke.

Ignoring Expired Certificates

To configure your router to ignore expired certificates, enter the `match certificate` command with the `allow expired-certificate` keyword. This command has the following purposes:
PKI Certificate Chain Validation

A certificate chain establishes a sequence of trusted certificates --from a peer certificate to the root CA certificate. Within a PKI hierarchy, all enrolled peers can validate the certificate of one another if the peers share a trusted root CA certificate or a common subordinate CA. Each CA corresponds to a trustpoint.

When a certificate chain is received from a peer, the default processing of a certificate chain path continues until the first trusted certificate, or trustpoint, is reached. In Cisco IOS Release 12.4(6)T and later releases, an administrator may configure the level to which a certificate chain is processed on all certificates including subordinate CA certificates.

Configuring the level to which a certificate chain is processed allows for the reauthentication of trusted certificates, the extension of a trusted certificate chain, and the completion of a certificate chain that contains a gap.
Reauthentication of Trusted Certificates

The default behavior is for the router to remove any trusted certificates from the certificate chain sent by the peer before the chain is validated. An administrator may configure certificate chain path processing so that the router does not remove CA certificates that are already trusted before chain validation, so that all certificates in the chain are re-authenticated for the current session.

Extending the Trusted Certificate Chain

The default behavior is for the router to use its trusted certificates to extend the certificate chain if there are any missing certificates in the certificate chain sent by the peer. The router will validate only certificates in the chain sent by the peer. An administrator may configure certificate chain path processing so that the certificates in the peer’s certificate chain and the router’s trusted certificates are validated to a specified point.

Completing Gaps in a Certificate Chain

An administrator may configure certificate chain processing so that if there is a gap in the configured Cisco IOS trustpoint hierarchy, certificates sent by the peer can be used to complete the set of certificates to be validated.

Note

If the trustpoint is configured to require parent validation and the peer does not provide the full certificate chain, the gap cannot be completed and the certificate chain is rejected and invalid.

Note

It is a configuration error if the trustpoint is configured to require parent validation and there is no parent trustpoint configured. The resulting certificate chain gap cannot be completed and the subordinate CA certificate cannot be validated. The certificate chain is invalid.

High-Availability Support

High-availability support for the certificate server is provided by:

- Synchronizing revoke commands with the standby certificate server.
- Sending serial-number commands when new certificates are issued.

The means that the standby certificate server is ready to issue certificates and certificate revocation lists (CRLs) if it becomes active.

Further high-availability support is provided by the following synchronizations with the standby:

- Certificate-server configuration.
- Pending requests.
- Grant and reject commands.
- For box-to-box high availability, which does not support configuration synchronization, a basic configuration synchronization mechanism is layered over a redundancy facility.
- Trustpoint configuration synchronization support.
How to Configure Authorization and Revocation of Certificates for Your PKI

Configuring PKI Integration with a AAA Server

Perform this task to generate a AAA username from the certificate presented by the peer and specify which fields within a certificate should be used to build the AAA database username.

The following restrictions should be considered when using the `all` keyword as the subject name for the `authorization username` command:

Some AAA servers limit the length of the username (for example, to 64 characters). As a result, the entire certificate subject name cannot be longer than the limitation of the server.

Some AAA servers limit the available character set that may be used for the username (for example, a space [] and an equal sign [=] may not be acceptable). You cannot use the `all` keyword for a AAA server having such a character-set limitation.

The `subject-name` command in the trustpoint configuration may not always be the final AAA subject name. If the fully qualified domain name (FQDN), serial number, or IP address of the router are included in a certificate request, the subject name field of the issued certificate will also have these components. To turn off the components, use the `fqdn`, `serial-number`, and `ip-address` commands with the `none` keyword.

CA servers sometimes change the requested subject name field when they issue a certificate. For example, CA servers of some vendors switch the relative distinguished names (RDNs) in the requested subject names to the following order: CN, OU, O, L, ST, and C. However, another CA server might append the configured LDAP directory root (for example, O=cisco.com) to the end of the requested subject name.

Depending on the tools you choose for displaying a certificate, the printed order of the RDNs in the subject name could be different. Cisco IOS software always displays the least significant RDN first, but other software, such as Open Source Secure Socket Layer (OpenSSL), does the opposite. Therefore, if you are configuring a AAA server with a full distinguished name (DN) (subject name) as the corresponding username, ensure that the Cisco IOS software style (that is, with the least significant RDN first) is used.

or

```
radius-server hosthostname [key string]
```

Command Table

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure Authorization and Revocation of Certificates for Your PKI

Step 3

Command:

```
aaa new-model
```

Example:

```
Router(config)# aaa new-model
```

Purpose: Enables the AAA access control model.

Step 4

Command:

```
aaa authorization network listname [method]
```

Example:

```
Router(config)# aaa authorization network maxaaa group tacacs+
```

Purpose: Sets the parameters that restrict user access to a network.

- `method` --Can be `group radius`, `group tacacs+`, or `group group-name`.

Step 5

Command:

```
crypto pki trustpoint name
```

Example:

```
Router(config)# crypto pki trustpoint msc
```

Purpose: Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.

Step 6

Command:

```
enrollment [mode] [retry period minutes] [retry count number] url [pem]
```

Example:

```
Router (ca-trustpoint)# enrollment url http://caserver.myexample.com
```

Purpose: Specifies the following enrollment parameters of the CA:

- **(Optional) The `mode` keyword specifies the registration authority (RA) mode, if your CA system provides an RA. By default, RA mode is disabled.**
- **(Optional) The `retry period` keyword and minutes argument specifies the period, in minutes, in which the router waits before sending the CA another certificate request. Valid values are from 1 to 60. The default is 1.**
- **(Optional) The `retry count` keyword and number argument specifies the number of times a router will resend a certificate request when it does not receive a response from the previous request. Valid values are from 1 to 100. The default is 10.**
- **The `url` argument is the URL of the CA to which your router should send certificate requests.**

Note

With the introduction of Cisco IOS Release 15.2(1)T, an IPv6 address can be added to the http: enrolment method. For example:

```
http://[ipv6-address]:80
```

The IPv6 address must be enclosed in brackets in the URL. See the enrollment url (ca-trustpoint) command page for more information on the other enrollment methods that can be used.

- **(Optional) The `pem` keyword adds privacy-enhanced mail (PEM) boundaries to the certificate request.**

Step 7

Command:

```
revocation-check method
```

Example:

```
Router (ca-trustpoint)# revocation-check crl
```

Purpose: (Optional) Checks the revocation status of a certificate.
How to Configure Authorization and Revocation of Certificates for Your PKI

Step 8
exit

Example:
```
Router (ca-trustpoint)# exit
```

Exits ca-trustpoint configuration mode and returns to global configuration mode.

Step 9
authorization username subjectname

Example:
```
Router (config)# authorization username subjectname serialnumber
```

Sets parameters for the different certificate fields that are used to build the AAA username. The `subjectname` argument can be any of the following:
- `all` -- Entire distinguished name (subject name) of the certificate.
- `commonname` -- Certification common name.
- `country` -- Certificate country.
- `email` -- Certificate e-mail.
- `ipaddress` -- Certificate IP address.
- `locality` -- Certificate locality.
- `organization` -- Certificate organization.
- `organizationalunit` -- Certificate organizational unit.
- `postalcode` -- Certificate postal code.
- `serialnumber` -- Certificate serial number.
- `state` -- Certificate state field.
- `streetaddress` -- Certificate street address.
- `title` -- Certificate title.
- `unstructuredname` -- Certificate unstructured name.

Step 10
authorization list listname

Example:
```
Router (config)# authorization list maxaaa
```

Specifies the AAA authorization list.

Step 11
tacacs-server host hostname [key string]

Example:
```
Router(config)# tacacs-server host 192.0.2.2 key a_secret_key
```

Specifies a TACACS+ host.

or

```
Router(config)# radius-server host 192.0.2.1 key another_secret_key
```

Specifies a RADIUS host.
Troubleshooting Tips

To display debug messages for the trace of interaction (message type) between the CA and the router, use the debug crypto pki transactions command. (See the sample output, which shows a successful PKI integration with AAA server exchange and a failed PKI integration with AAA server exchange.)

Successful Exchange

Router# debug crypto pki transactions
Apr 22 23:15:03.695: CRYPTO_PKI: Found a issuer match
Apr 22 23:15:03.955: CRYPTO_PKI: cert revocation status unknown.
Apr 22 23:15:03.955: CRYPTO_PKI: Certificate validated without revocation check

Each line that shows “CRYPTO_PKI_AAA” indicates the state of the AAA authorization checks. Each of the AAA AV pairs is indicated, and then the results of the authorization check are shown.

Router# debug crypto pki transactions
Apr 22 23:15:04.019: CRYPTO_PKI_AAA: checking AAA authorization (ipsecca_script_aalist, PKIAAA-L, <all>)
Apr 22 23:15:04.503: CRYPTO_PKI_AAA: reply attribute ("cert-application" = "all")
Apr 22 23:15:04.503: CRYPTO_PKI_AAA: reply attribute ("cert-trustpoint" = "CA1")
Apr 22 23:15:04.503: CRYPTO_PKI_AAA: reply attribute ("cert-serial" = "15DE")
Apr 22 23:15:04.503: CRYPTO_PKI_AAA: authorization passed

Failed Exchange

Router# debug crypto pki transactions
Apr 22 23:11:13.703: CRYPTO_PKI_AAA: checking AAA authorization =
Apr 22 23:11:14.203: CRYPTO_PKI_AAA: reply attribute ("cert-application" = "all")
Apr 22 23:11:14.203: CRYPTO_PKI_AAA: reply attribute ("cert-trustpoint" = "CA1")
Apr 22 23:11:14.203: CRYPTO_PKI_AAA: reply attribute ("cert-serial" = "233D")
Apr 22 23:11:14.203: CRYPTO_PKI_AAA: parsed cert-lifetime-end as: 21:30:00
Apr 22 23:11:14.203: CRYPTO_PKI_AAA: cert-lifetime-end is expired

In the above failed exchange, the certificate has expired.

Configuring a Revocation Mechanism for PKI Certificate Status Checking

Perform this task to set up a CRL as the certificate revocation mechanism--CRLs or OCSP--that is used to check the status of certificates in a PKI.

The revocation-check Command

Use the revocation-check command to specify at least one method (OCSP, CRL, or skip the revocation check) that is to be used to ensure that the certificate of a peer has not been revoked. For multiple methods, the order in which the methods are applied is determined by the order specified via this command.
If your router does not have the applicable CRL and is unable to obtain one or if the OCSP server returns an error, your router will reject the peer’s certificate—unless you include the `none` keyword in your configuration. If the `none` keyword is configured, a revocation check will not be performed and the certificate will always be accepted.

Nonces and Peer Communications with OCSP Servers

When using OCSP, nonces, unique identifiers for OCSP requests, are sent by default during peer communications with your OCSP server. The use of nonces offers a more secure and reliable communication channel between the peer and OCSP server.

If your OCSP server does not support nonces, you may disable the sending of nonces. For more information, check your OCSP server documentation.

Before You Begin

- Before issuing any client certificates, the appropriate settings on the server (such as setting the CDP) should be configured.
- When configuring an OCSP server to return the revocation status for a CA server, the OCSP server must be configured with an OCSP response signing certificate that is issued by that CA server. Ensure that the signing certificate is in the correct format, or the router will not accept the OCSP response. See your OCSP manual for additional information.

Note

OCSP transports messages over HTTP, so there may be a time delay when you access the OCSP server. If the OCSP server depends on normal CRL processing to check revocation status, the same time delay that affects CRLs will also apply to OCSP.

Configuring a Revocation Mechanism for PKI Certificate Status Checking

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Revocation Mechanism for PKI Certificate Status Checking

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>crypto pki trustpoint name</td>
<td>Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# crypto pki trustpoint hazel</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ocsp url url</td>
<td>The url argument specifies the URL of an OCSP server so that the trustpoint can check the certificate status. This URL overrides the URL of the OCSP server (if one exists) in the Authority Info Access (AIA) extension of the certificate. All certificates associated with a configured trustpoint are checked by the OCSP server. The - or - URL can be a hostname, IPv4 address, or an IPv6 address.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(ca-trustpoint)# ocsp url http://ocsp-server - or - Router(ca-trustpoint)# ocsp url http://10.10.10.1:80 - or - Router(ca-trustpoint)# ocsp url http://[2001DB8:1:1::2]:80</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>revocation-check method1 [method2 method3]]</td>
<td>Checks the revocation status of a certificate.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(ca-trustpoint)# revocation-check ocsp none</td>
<td>crl --Certificate checking is performed by a CRL. This is the default option.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>none --Certificate checking is ignored.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocsp --Certificate checking is performed by an OCSP server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a second and third method are specified, each method will be used only if the previous method returns an error, such as a server being down.</td>
</tr>
<tr>
<td>6</td>
<td>ocsp disable-nonce</td>
<td>(Optional) Specifies that a nonce, or an OCSP request unique identifier, will not be sent during peer communications with the OCSP server.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(ca-trustpoint)# ocsp disable-nonce</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(ca-trustpoint)# exit</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>exit</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Perform this task to specify a certificate-based ACL, to ignore revocation checks or expired certificates, to manually override the default CDP location, to manually override the OCSP server setting, to configure CRL caching, or to set session acceptance or rejection based on a certificate serial number, as appropriate.

Configuring Certificate-Based ACLs to Ignore Revocation Checks

To configure your router to use certificate-based ACLs to ignore revocation checks and expired certificates, perform the following steps:

- Identify an existing trustpoint or create a new trustpoint to be used when verifying the certificate of the peer. Authenticate the trustpoint if it has not already been authenticated. The router may enroll with this trustpoint if you want. Do not set optional CRLs for the trustpoint if you plan to use the `match certificate` command and `skip revocation-check` keyword.
- Determine the unique characteristics of the certificates that should not have their CRL checked and of the expired certificates that should be allowed.
- Define a certificate map to match the characteristics identified in the prior step.
- You can add the `match certificate` command and `skip revocation-check` keyword and the `match certificate` command and `allow expired-certificate` keyword to the trustpoint that was created or identified in the first step.

Note

Certificate maps are checked even if the peer’s public key is cached. For example, when the public key is cached by the peer, and a certificate map is added to the trustpoint to ban a certificate, the certificate map is effective. This prevents a client with the banned certificate, which was once connected in the past, from reconnecting.

Manually Overriding CDPs in a Certificate

Users can override the CDPs in a certificate with a manually configured CDP. Manually overriding the CDPs in a certificate can be advantageous when a particular server is unavailable for an extended period of time. The certificate’s CDPs can be replaced with a URL or directory specification without reissuing all of the certificates that contain the original CDP.
Manually Overriding the OCSP Server Setting in a Certificate

Administrators can override the OCSP server setting specified in the Authority Information Access (AIA) field of the client certificate or set by the issuing the `ocsp url` command. One or more OCSP servers may be manually specified, either per client certificate or per group of client certificates by the `match certificate override ocsp` command. The `match certificate override ocsp` command overrides the client certificate AIA field or the `ocsp url` command setting if a client certificate is successfully matched to a certificate map during the revocation check.

Note: Only one OCSP server can be specified per client certificate.

Configuring CRL Cache Control

By default, a new CRL will be downloaded after the currently cached CRL expires. Administrators can either configure the maximum amount of time in minutes a CRL remains in the cache by issuing the `crl cache delete-after` command or disable CRL caching by issuing the `crl cache none` command. Only the `crl-cache delete-after` command or the `crl-cache none` command may be specified. If both commands are entered for a trustpoint, the last command executed will take effect and a message will be displayed.

Neither the `crl-cache none` command nor the `crl-cache delete-after` command affects the currently cached CRL. If you configure the `crl-cache none` command, all CRLs downloaded after this command is issued will not be cached. If you configure the `crl-cache delete-after` command, the configured lifetime will only affect CRLs downloaded after this command is issued.

This functionality is useful is when a CA issues CRLs with no expiration date or with expiration dates days or weeks ahead.

Configuring Certificate Serial Number Session Control

A certificate serial number can be specified to allow a certificate validation request to be accepted or rejected by the trustpoint for a session. A session may be rejected, depending on certificate serial number session control, even if a certificate is still valid. Certificate serial number session control may be configured by using either a certificate map with the serial-number field or an AAA attribute, with the `cert-serial-not` command.

Using certificate maps for session control allows an administrator to specify a single certificate serial number. Using the AAA attribute allows an administrator to specify one or more certificate serial numbers for session control.

Before You Begin

- The trustpoint should be defined and authenticated before attaching certificate maps to the trustpoint.
- The certificate map must be configured before the CDP override feature can be enabled or the `serial-number` command is issued.
- The PKI and AAA server integration must be successfully completed to use AAA attributes as described in “PKI and AAA Server Integration for Certificate Status.”
Configuring Certificate Authorization and Revocation Settings

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
- Enter your password if prompted |
| **Example:** | Router> enable |

| Step 2 | configure terminal | Enters global configuration mode.
Example: |
| Router# configure terminal |

| Step 3 | crypto pki certificate map label sequence-number | Defines values in a certificate that should be matched or not matched and enters ca-certificate-map configuration mode.
Example: |
| Router(config)# crypto pki certificate map Group 10 |
Configuring Certificate Authorization and Revocation Settings

Step 4

Command

`field-name match-criteria match-value`

Example:

```
Router(ca-certificate-map)#
subject-name co MyExample
```

Specifies one or more certificate fields together with their matching criteria and the value to match.

The `field-name` is one of the following case-insensitive name strings or a date:

- `alt-subject-name`
- `expires-on`
- `issuer-name`
- `name`
- `serial-number`
- `subject-name`
- `unstructured-subject-name`
- `valid-start`

Date field format is `dd mm yyyy hh:mm:ss` or `mmm dd yyyy hh:mm:ss`.

Note

The `match-criteria` is one of the following logical operators:

- `co` -- contains (valid only for name fields and serial number field)
- `eq` -- equal (valid for name, serial number, and date fields)
- `ge` -- greater than or equal (valid only for date fields)
- `lt` -- less than (valid only for date fields)
- `nc` -- does not contain (valid only for name fields and serial number field)
- `ne` -- not equal (valid for name, serial number, and date fields)

The match-value is the name or date to test with the logical operator assigned by `match-criteria`.

Step 5

Command

`exit`

Example:

```
Router(ca-certificate-map)# exit
```

Returns to global configuration mode.

Note

Use this command only when setting up a certificate-based ACL--not when setting up a certificate-based ACL to ignore revocation checks or expired certificates.
<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring</td>
<td>crypto pki trustpoint</td>
<td>Declares the trustpoint, given name and enters ca-trustpoint</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td>configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Router(config)# crypto pki trustpoint Access2</td>
</tr>
</tbody>
</table>

Step 7	Do one of the following:	(Optional) Disables CRL caching completely for all CRLs associated
		with the trustpoint.
	• crl-cache none	The crl-cache none command does not affect any currently cached
		CRLs. All CRLs downloaded after this command is configured will
		not be cached.
Example:		Router(ca-trustpoint)# crl-cache
		none
		Router(ca-trustpoint)# crl-cache delete-after 20

Step 8	match certificate	(Optional) Associates the certificate-based ACL (that was defined via
	certificate-map-label	the crypto pki certificate map command) to a trustpoint.
	[allow expired-certificate	certificate-map-label --Must match the label argument specified via
		crypto pki certificate map command.
	skip revocation-check	allow expired-certificate --Ignores expired certificates.
		skip revocation-check --Allows a trustpoint to enforce CRLs except
	skip authorization-check	for specific certificates.
Example:		Router(ca-trustpoint)# match certificate Group skip revocation-check

Step 9	match certificate	(Optional) Manually overrides the existing CDP entries for a	
	certificate-map-label	certificate with a URL or directory specification.	
	override cdp {url	directory} string	certificate-map-label --A user-specified label that must match the
		label argument specified in a previously defined crypto pki certificate	
		map command.	
		• url --Specifies that the certificate’s CDPs will be overridden with	
		an HTTP or LDAP URL.	
		• directory --Specifies that the certificate’s CDPs will be	
		overridden with an LDAP directory specification.	
		• string --The URL or directory specification.	
Example:		Router(ca-trustpoint)# match certificate Group1 override cdp url	
		http://server.cisco.com	

Note: Some applications may time out before all CDPs have been tried and will report an error message. The error message will not affect the router, and the Cisco IOS software will continue attempting to retrieve a CRL until all CDPs have been tried.
Command

Step 10

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>match certificate certificate-map-label override oscp [trustpoint trustpoint-label] sequence-number url oscp-url</code></td>
<td>(Optional) Specifies an OCSP server, either per client certificate or per group of client certificates, and may be issued more than once to specify additional OCSP servers and client certificate settings including alternative PKI hierarchies.</td>
</tr>
</tbody>
</table>

- `certificate-map-label` --The name of an existing certificate map.
- `trustpoint` --The trustpoint to be used when validating the OCSP server certificate.
- `sequence-number` --The order the `match certificate override oscp` command statements apply to the certificate being verified. Matches are performed from the lowest sequence number to the highest sequence number. If more than one command is issued with the same sequence number, it overwrites the previous OCSP server override setting.
- `url` --The URL of the OCSP server. When the certificate matches a configured certificate map, the AIA field of the client certificate and any previously issued `ocsp url` command settings are overwritten with the specified OCSP server. If no map-based match occurs, one of the following two cases will continue to apply to the client certificate.
 - If OCSP is specified as the revocation method, the AIA field value will continue to apply to the client certificate.
 - If the `ocsp url` configuration exists, the `ocsp url` configuration settings will continue to apply to the client certificates. |

Example:

Router(ca-trustpoint)# match certificate mycertmapname override oscp trustpoint mytp 15 url http://192.0.2.2

Step 11

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exit</code></td>
<td>Returns to global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

Router(ca-trustpoint)# exit

Step 12

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aaa new-mode</code></td>
<td>(Optional) Enables the AAA access control model.</td>
</tr>
</tbody>
</table>

Example:

Router(config)# aaa new-model

Step 13

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aaa attribute list list-name</code></td>
<td>(Optional) Defines an AAA attribute list locally on a router and enters config-attr-list configuration mode.</td>
</tr>
</tbody>
</table>

Example:

Router(config)# aaa attribute list crl
Example

The following is a sample certificate. The OCSP-related extensions are shown using exclamation points.

Certificate:

Data:

 Version: v3
 Serial Number: 0x14
 Signature Algorithm: SHAwithRSA - 1.2.840.113549.1.1.4
 Issuer: CN=CA server, OU=PKI, O=Cisco Systems
 Validity:
 Not Before: Thursday, August 8, 2002 4:38:05 PM PST
 Not After: Tuesday, August 7, 2003 4:38:05 PM PST
 Subject: CN=OCSP server, OU=PKI, O=Cisco Systems
 Subject Public Key Info:
 Algorithm: RSA - 1.2.840.113549.1.1.1
 Public Key:
 Exponent: 65537
 Public Key Modulus: (2048 bits):
 <snip>
 Extensions:
 Identifier: Subject Key Identifier - 2.5.29.14
 Critical: no
 Key Identifier:
 <snip>
 Identifier: Authority Key Identifier - 2.5.29.35

Command	Purpose
Step 14

```plaintext
attribute type {name}{value}
```

(Optionalal) Defines an AAA attribute type that is to be added to an AAA attribute list locally on a router.

To configure certificate serial number session control, an administrator may specify a specific certificate in the value field to be accepted or rejected based on its serial number where name is set to `cert-serial-not`. If the serial number of the certificate matches the serial number specified by the attribute type setting, the certificate will be rejected.

For a full list of available AAA attribute types, execute the `show aaa attributes` command.

Example:

Router(config-attr-list)# attribute type cert-serial-not 6C4A

Step 15

```plaintext
exit
```

Returns to global configuration mode.

Example:

Router(ca-trustpoint)# exit

Example:

Router(config-attr-list)# exit

Step 16

```plaintext
exit
```

Returns to privileged EXEC mode.

Example:

Router(config)# exit

Step 17

```plaintext
show crypto pki certificates
```

(Optionalal) Displays the components of the certificates installed on the router if the CA certificate has been authenticated.

Example:

Router# show crypto pki certificates
Chapter 63 Configuring Authorization and Revocation of Certificates in a PKI

Configuring Certificate Authorization and Revocation Settings

Critical:no
Key Identifier:
 <snip>
!
 Identifier:OCSP NoCheck:- 1.3.6.1.5.5.7.48.1.5
 Critical:no
 Identifier:Extended Key Usage:- 2.5.29.37
 Critical:no
 Extended Key Usage:
 OCSPSigning
!
 Identifier:CRL Distribution Points - 2.5.29.31
 Critical:no
 Number of Points:1
 Point 0
 Distribution Point:
 [URIName:ldap://CA-server/CN=CA server,OU=PKI,O=Cisco Systems]
 Signature:
 Algorithm:SHAwithRSA - 1.2.840.113549.1.1.4
 Signature:
 <snip>

The following example shows an excerpt of the running configuration output when adding a match certificate override ocsp command to the beginning of an existing sequence:

match certificate map3 override ocsp 5 url http://192.0.2.3/
show running-configuration
 .
 .
 match certificate map3 override ocsp 5 url http://192.0.2.3/
 match certificate map1 override ocsp 10 url http://192.0.2.1/
 match certificate map2 override ocsp 15 url http://192.0.2.2/

The following example shows an excerpt of the running configuration output when an existing match certificate override ocsp command is replaced and a trustpoint is specified to use an alternative PKI hierarchy:

match certificate map4 override ocsp trustpoint tp4 10 url http://192.0.2.4/newvalue
show running-configuration
 .
 .
 match certificate map3 override ocsp trustpoint tp3 5 url http://192.0.2.3/
 match certificate map1 override ocsp trustpoint tp1 10 url http://192.0.2.1/
 match certificate map4 override ocsp trustpoint tp4 10 url http://192.0.2.4/newvalue
 http://192.0.2.4/newvalue
 match certificate map2 override ocsp trustpoint tp2 15 url http://192.0.2.2/

Troubleshooting Tips

If you ignored revocation check or expired certificates, you should carefully check your configuration. Verify that the certificate map properly matches either the certificate or certificates that should be allowed or the AAA checks that should be skipped. In a controlled environment, try modifying the certificate map and determine what is not working as expected.

Configuring Certificate Chain Validation

Perform this task to configure the processing level for the certificate chain path of your peer certificates.
Before You Begin

- The device must be enrolled in your PKI hierarchy.
- The appropriate key pair must be associated with the certificate.

Note

A trustpoint associated with the root CA cannot be configured to be validated to the next level.

The `chain-validation` command is configured with the `continue` keyword for the trustpoint associated with the root CA, an error message will be displayed and the chain validation will revert to the default `chain-validation` command setting.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `enable` | Enables privileged EXEC mode.
Example:
Router> enable
- Enter your password if prompted. |
| 2 | `configure terminal` | Enters global configuration mode.
Example:
Router# configure terminal |
| 3 | `crypto pki trustpoint name` | Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.
Example:
Router(config)# crypto pki trustpoint ca-sub1 |
| 4 | `chain-validation [{stop | continue} [parent-trustpoint]]` | Configures the level to which a certificate chain is processed on all certificates including subordinate CA certificates.
Example:
Router(ca-trustpoint)#
chain-validation continue ca-sub1
- Use the `stop` keyword to specify that the certificate is already trusted.
This is the default setting.
- Use the `continue` keyword to specify that the that the subordinate CA certificate associated with the trustpoint must be validated.
The `parent-trustpoint` argument specifies the name of the parent trustpoint the certificate must be validated against. |
| 5 | `exit` | Returns to global configuration mode
Example:
Router(ca-trustpoint)# exit |
Configuring Certificate Servers for High Availability

You can configure certificate servers to synchronize revoke commands and send serial-number commands when new certificates are issued, preparing the standby certificate server to issue certificates and CRLs if it becomes active.

Prerequisites

The following conditions must be met for high availability on certificate servers:

- IPsec-secured SCTP must be configured on both the active and the standby routers.
- For synchronization to work, the redundancy mode on the certificate servers must be set to ACTIVE/STANDBY after you configure SCTP.

This section contains the following subsections:

Setting Redundancy Mode on Certificate Servers to ACTIVE STANDBY

Perform this task on the active router to enable synchronization by setting the redundancy mode on the certificate servers to ACTIVE/STANDBY.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>redundancy inter-device</td>
<td>Configures redundancy and enters interdevice configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# redundancy inter-device</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>scheme standby standby-group-name</td>
<td>Defines the redundancy scheme that is to be used.</td>
</tr>
</tbody>
</table>
| | Example: Router(config-red-interdevice)# scheme standby SB | - The only supported scheme is “standby.”
<p>| | | - standby-group-name --Must match the standby name specified in the standby name interface configuration command. Also, the standby name must be the same on both routers. |
| 4 | exit | Exits interdevice configuration mode and returns to global configuration mode. |
| | Example: Router(config-red-interdevice)# exit | |
| 5 | interface interface-name | Configures an interface type for the router and enters interface configuration mode. |
| | Example: Router(config) # interface gigabitethernet0/1 | |</p>
<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip address ip-address mask</td>
<td>Sets the local IP address for the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if) ip address 10.0.0.1 255.255.255.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no ip route-cache cef</td>
<td>Disables Cisco Express Forwarding operation on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if)# no ip route cache cef</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no ip route-cache</td>
<td>Disables fast switching on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if)# no ip route cache</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>standby ip ip-address</td>
<td>Activates the Hot Standby Router Protocol (HSRP),</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if)# standby ip 10.0.0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>standby priority priority</td>
<td>Sets the HSRP priority to 50.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if)# standby priority 50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>standby name group-name</td>
<td>Configures the name of the standby group.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if)# standby name SB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>standby delay minimum</td>
<td>Sets a delay for HSRP group initialization as follows:</td>
</tr>
<tr>
<td></td>
<td>[min-seconds]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>reload [reload-seconds]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if)# standby delay minimum 30 reload 60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 13</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Repeat Steps 1-12 on the standby router, configuring the interface with a different IP address from that of the interface on the active router (Step 6).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 14</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if)# exit</td>
</tr>
</tbody>
</table>
Configuring Certificate Authorization and Revocation Settings

Chapter 63 Configuring Authorization and Revocation of Certificates in a PKI

Configuring SCTP on the Active and Standby Certificate Servers

Perform this task on the active router to configure SCTP on both the active and the standby certificate server.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:
Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2
ipc zone default</td>
<td>Configures the interdevice communication protocol, Inter-Process Communication (IPC), and enters IPC zone configuration mode.</td>
</tr>
<tr>
<td>Example:
Switch(config)# ipc zone default</td>
<td>Use this command to initiate the communication link between the active router and the standby router.</td>
</tr>
<tr>
<td>Step 3
association association-ID</td>
<td>Configures an association between the two devices and enters IPC association configuration mode.</td>
</tr>
<tr>
<td>Step 4
no shutdown</td>
<td>Ensures that the server association is in the default (enabled) state.</td>
</tr>
<tr>
<td>Example:
Router(config-ipczone-assoc)# no shutdown</td>
<td></td>
</tr>
<tr>
<td>Step 5
protocol sctp</td>
<td>Configures SCTP as the transport protocol and enters SCTP protocol configuration mode.</td>
</tr>
<tr>
<td>Example:
Router(config-ipczone-assoc)# protocol sctp</td>
<td></td>
</tr>
<tr>
<td>Step 6
local-port local-port-number</td>
<td>Defines the local SCTP port number that is used to communicate with the redundant peer and enters IPC transport SCTP local configuration mode.</td>
</tr>
<tr>
<td>Example:
Router(config-ipc-protocol-sctp)# local-port 5000</td>
<td>local-port-number --There is not a default value. This argument must be configured for the local port to enable interdevice redundancy. Valid port values: 1 to 65535. The local port numbers should be the same as the remote port number on the peer router.</td>
</tr>
</tbody>
</table>

Step 15

Command

```
exit
```

Example:

```
Router(config)# exit
```

Returns to privileged EXEC mode.

Step 16

Command

```
show redundancy states
```

Example:

```
Router# show redundancy states
```

(Optional) Verifies the redundancy states: standby or active.
Configuring Certificate Authorization and Revocation Settings

Synchronizing the Active and Standby Certificate Servers

Perform this task to synchronize the active and standby servers.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>local-ip device-real-ip-address [device-real-ip-address2]</td>
<td>Defines at least one local IP address that is used to communicate with the redundant peer. The local IP addresses must match the remote IP addresses on the peer router. There can be either one or two IP addresses, which must be in global VPN routing and forwarding (VRF). A virtual IP address cannot be used.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ipc-local-sctp)# local-ip 10.0.0.1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>exit</td>
<td>Exits IPC transport - SCTP local configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ipc-local-sctp)# exit</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>remote-port remote-port-number</td>
<td>Defines the remote SCTP port number that is used to communicate with the redundant peer and enters IPC transport SCTP remote configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ipc-protocol-sctp)# remote-port 5000</td>
<td>Note remote-port-number -- There is not a default value. This argument must be configured for the remote port to enable interdevice redundancy. Valid port values: 1 to 65535. The remote port number should be the same as the local port number on the peer router.</td>
</tr>
<tr>
<td>10</td>
<td>remote-ip peer-real-ip-address</td>
<td>Defines a remote IP address of the redundant peer that is used to communicate with the local device. All remote IP addresses must refer to the same device. A virtual IP address cannot be used.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ipc-remote-sctp)# remote-ip 10.0.0.2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Repeat Steps 1 through 10 on the standby router, reversing the IP addresses of the local and remote peers specified in Steps 7 and 10.</td>
<td>The virtual IP address (10.0.0.3) will be the same on both routers.</td>
</tr>
<tr>
<td>Step</td>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>crypto key generate rsa general-keys redundancy label key-label modulus-size</td>
<td>Generates an RSA key pair named HA for the certificate server.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# crypto key generate rsa general-keys redundancy label HA modulus 2048</td>
<td>Note: Specifying the redundancy keyword means that the keys will be non-exportable.</td>
</tr>
<tr>
<td>3</td>
<td>exit</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>show crypto key mypubkey rsa</td>
<td>Verifies that redundancy is enabled.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# show crypto key mypubkey rsa</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ip http server</td>
<td>Enables the HTTP server on your system</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# ip http server</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>crypto pki server cs-label</td>
<td>Specifies the RSA key pair generated in Step 2 as the label for the certificate server and enters certificate server configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# crypto pki server HA</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>redundancy</td>
<td>Ensures that the server is synchronized to the standby server</td>
</tr>
<tr>
<td></td>
<td>Example: Router (cs-server)# redundancy</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>no shutdown</td>
<td>Enables the certificate server.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(cs-server)# no shutdown</td>
<td>Note: If the router interface with the SCTP traffic is not secure, you should ensure that the SCTP traffic between the high-availability devices is secured with IPsec.</td>
</tr>
</tbody>
</table>
Chapter 63 Configuring Authorization and Revocation of Certificates in a PKI

Configuration Examples for Setting Up Authorization and Revocation of Certificates

Configuring and Verifying PKI AAA Authorization Examples

This section provides configuration examples of PKI AAA authorizations:

Router Configuration Example

The following **show running-config** command output shows the working configuration of a router that is set up to authorize VPN connections using the PKI Integration with AAA Server feature:

```
Router# show running-config
Building configuration...
!
version 12.3
!
hostname router7200
!
 aaa new-model
!
 aaa authentication login default group tacacs+
 aaa authentication login no_tacacs enable
 aaa authentication ppp default group tacacs+
 aaa authorization exec ACSLab group tacacs+
 aaa authorization network ACSLab group tacacs+
 aaa accounting exec ACSLab start-stop group tacacs+
 aaa accounting network default start-stop group ACSLab
 aaa session-id common
!
ip domain name example.com
!
crypto pki trustpoint EM-CERT-SERV
    enrollment url http://192.0.2.33:80
    serial-number
    crl optional
    rsakeypair STOREVPN 2048
    auto-enroll
    authorization list ACSLab
!
crypto pki certificate chain EM-CERT-SERV
    certificate 04
        30820214 3082017D A0030201 02020104 300D609 2A864886 F70D0101 04050030
        17311530 13060355 0403130C 454D2D43 4552542D 53455256 301E70D 30343031
        31393232 30323535 5A170D30 35031313 38323230 3235355A 3030312E 300E0603
        35040513 07314437 45424434 301C0609 2A864886 F70D0109 02160F37 3230320D
        312E6772 696C2E63 6F6D2E30 09300D06 09023031 31803932 3235355A 30302E06
        03090230 1AA018A0 16861468 7474703A 2F2F3633 2E323437 2E313037 2E393330
        0B060355 1D0F0404

FD040443 0F555702 0300001 A3570355 30250603 551D1F04 1E301C30 1A001A00

16861468 7474703A 2F2F3F36 32352337 2E313037 2E393330 0E060355 1D0F0404

030205A0 301F0603 351D2304 18301608 14204C4B 0F00B1C5 6F5BD4C6 0A0F4D6

341A9F01 D130D0D6 09A28648 06700D01 010A0050 03818100 79E97018 F8955108

12F42A56 2A63B84C A08E22FE F1D6187F D5D6737C 0E241A1C A08C75D 3C743F59

08DEEFF2 08B1A703 D79ED3A9 D62DC20D 8E2798CD 2C13C3EC 3B2505A1 3897330C
```
Chapter 63: Configuring Authorization and Revocation of Certificates in a PKI

Configuration Examples for Setting Up Authorization and Revocation of Certificates

15A60D5A 8A13F06D 51043D37 E56E45DF A65F43D7 4E836093 9689784D C45FD61D
EC1F160C 8A13F06D 51043D37 E56E45DF A65F43D7 4E836093 9689784D C45FD61D
EC1F160C 8A13F06D 51043D37 E56E45DF A65F43D7 4E836093 9689784D C45FD61D
EC1F160C 8A13F06D 51043D37 E56E45DF A65F43D7 4E836093 9689784D C45FD61D

quit
certificate ca 01
30820207 30820170 A0030201 02020101 300D0609 2A864886 F70D0101 04050030
17311530 13060355 0403130C 454D2D43 4552542D 53455256 301B170D 30333132
31363231 34373432 5A170D30 36313231 35323134 3734325A 30173115 30130603
55403033 0C454D2D 43455254 2D534552 5630819F 300D0609 2A864886 F70D0101
01050003 8180D030 8180D028 8100C14D 833641CF D784F516 DA6B50C0 7B3CB3C9
589223AB 99A7D14C 04F74EF2 A3E9E87F E3BFA979 F2F980F7 D898E6A1 2C726C69
5A429870 7E7363F3 3CD1F991 5F3A7CFF 3FFDFD3D 09486C0A A2E34595 C2D078BB
E9DB9818 B733B868 AA8916C0 A8048607 D4B83C0 64BD1C01 161FC103 13C6500
22D6EE5E 7D6CF133 7F1B515F 32830203 010001A3 36306130 0F060355 1D130101
FPO40530 030101FF 300E0D03 551D00F0 01FP0404 03020186 301D0603 551D0E04
16041420 FC4BCF0B 1C56F5BD 4C060AFC 4E67341A E612D130 1F060355 1D230148
30168014 20FC48CF 0B1C56F5 BD4C060A FD4E6734 1AE8162D 300D0609 2A864886
F70D0101 04050003 8181008S 32381080 32E386F5 4107116B AD3AC990 CBEB8463 5FB2A65B
BD572026 528982ED 02F3A0AE 1803F2AE A4C082ED 0F59F18D 7B50264F 30442C41
0AF19C48 7B0D3CB5 0ADD8DE8 8EF636BD 24410DF4 DB62DAFC 67DA6E58 38799AAA8
12A1F1C3 2E27C827 EC74E1FC AEE2F5CF AA80B439 615AA8D5 6D6DED3 7F9C2C79
3963E363 F298F9B9 795BA8
quit
!
crypto isakmp policy 10
enr aes
group 14
cpyet ipsec transform-set ISC_TS_1 esp-aes esp-sha-hmac
!
cpyet ipsec profile ISC_IPSEC_PROFILE_2
set security-association lifetime kilobytes 53000000
set security-association lifetime seconds 14400
set transform-set ISC_TS_1
!
ccontrol ISA 1/1
!
interface Tunnel0
description MGRE Interface provisioned by ISC
bandwidth 10000
ip address 192.0.2.1 255.255.255.0
no ip redirects
ip mtu 1408
ip nhrp map multicast dynamic
ip nhrp network-id 101
ip nhrp holdtime 500
ip nhrp server-only
no ip split-horizon eigrp 101
tunnel source FastEthernet2/1
tunnel mode gre multipoint

tunnel key 101

tunnel protection ipsec profile ISC_IPSEC_PROFILE_2
!
interface FastEthernet2/0
ip address 192.0.2.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet2/1
ip address 192.0.2.2 255.255.255.0
duplex auto
Chapter 63 Configuring Authorization and Revocation of Certificates in a PKI

Debug of a Successful PKI AAA Authorization Example

The following `show debugging` command output shows a successful authorization using the PKI Integration with AAA Server feature:

```
Router# show debugging
General OS:
    TACACS access control debugging is on
    AAA Authentication debugging is on
    AAA Authorization debugging is on
Cryptographic Subsystem:
    Crypto PKI Trans debugging is on
Router#
May 28 19:36:11.117: CRYPTO_PKI: Trust-Point EM-CERT-SERV picked up
May 28 19:36:12.789: CRYPTO_PKI: Found a issuer match
May 28 19:36:12.813: CRYPTO_PKI_AAA: checking AAA authorization (ACSLab, POD5.example.com, <all>)
May 28 19:36:12.813: AAA/BIND(00000042): Bind i/f
May 28 19:36:12.813: AAA/AUTHOR (0x42): Pick method list 'ACSLab'
May 28 19:36:12.813: TPLUS: processing authorization request id 66
May 28 19:36:12.813: TPLUS: Protocol set to None ......Skipping
May 28 19:36:12.813: TPLUS: Sending AV service=pki
May 28 19:36:12.813: TPLUS: Authorization request created for 66(POD5.example.com)
May 28 19:36:12.813: TPLUS: Using server 192.0.2.55
May 28 19:36:12.813: TPLUS(00000042)/0/NB_WAIT/203A4628: Started 5 sec timeout
May 28 19:36:12.817: TPLUS(00000042)/0/READ: read entire 46 bytes request
May 28 19:36:12.817: TPLUS(00000042)/0/203A4628: Processing the reply packet
May 28 19:36:12.817: TPLUS: Processed AV cert-application=all
May 28 19:36:12.817: CRYPTO_PKI_AAA: reply attribute (cert-application" = "all")
May 28 19:36:12.817: CRYPTO_PKI_AAA: authorization passed
Router#
Router#
May 28 19:36:18.681: %DUAL-5-NBRCHANGE: IP-EIGRP(0) 101: Neighbor 192.0.2.171 (Tunnel0) is up: new adjacency
Router# show crypto isakmp sa
dst src state conn-id slot
192.0.2.22 192.0.2.102 QM_IDLE 84 0
```

```
Debbugs of a Failed PKI AAA Authorization Example

The following `show debugging` command output shows that the router is not authorized to connect using VPN. The messages are typical of those that you might see in such a situation.

In this example, the peer username was configured as not authorized, by moving the username to a Cisco Secure ACS group called VPN_Router_Disabled in Cisco Secure ACS. The router, router7200.example.com, has been configured to check with a Cisco Secure ACS AAA server prior to establishing a VPN connection to any peer.

Router# `show debugging`
General OS:
  TACACS access control debugging is on
  AAA Authentication debugging is on
  AAA Authorization debugging is on
Cryptographic Subsystem:
  Crypto PKI Trans debugging is on

Router#
May 28 19:48:29.837: CRYPTO_PKI: Trust-Point EM-CERT-SERV picked up
May 28 19:48:31.533: CRYPTO_PKI_AAA: checking AAA authorization (ACSLab, POD5.example.com, <all>)
May 28 19:48:31.533: AAA/AUTHOR (0x44): Pick method list 'ACSLab'
May 28 19:48:31.533: TPLUS: processing authorization request id 68
May 28 19:48:31.533: TPLUS(00000044)/0/NB_WAIT/203A4C50: Started 5 sec timeout
May 28 19:48:31.533: TPLUS(00000044)/0/NB_WAIT: wrote entire 46 bytes request
May 28 19:48:31.533: TPLUS(00000044)/0/NB_WAIT: read entire 12 header bytes (expect 6 bytes)
May 28 19:48:31.533: TPLUS(00000044)/0/NB_WAIT: read entire 18 bytes response
May 28 19:48:31.533: TPLUS(00000044)/0/NB_WAIT: processing the reply packet
May 28 19:48:31.533: CRYPTO_PKI_AAA: authorization declined by AAA, or AAA server not found.
May 28 19:48:31.537: %CRYPTO-5-IKMP_INVAL_CERT: Certificate received from 192.0.2.162 is bad: certificate invalid
May 28 19:48:41.481: CRYPTO_PKI: Found a issuer match
May 28 19:48:41.505: CRYPTO_PKI_AAA: checking AAA authorization (ACSLab, POD5.example.com, <all>)
May 28 19:48:41.505: AAA/AUTHOR (0x45): Pick method list 'ACSLab'
May 28 19:48:41.505: TPLUS: processing authorization request id 69
May 28 19:48:41.505: TPLUS: Protocol set to None .....Skipping
May 28 19:48:41.505: TPLUS: Sending AV service=pki
May 28 19:48:41.505: TPLUS: Authorization request created for 69(POD5.example.com)
Configuring a Revocation Mechanism Examples

This section contains the following configuration examples that can be used when specifying a revocation mechanism for your PKI:

Configuring an OCSP Server Example

The following example shows how to configure the router to use the OCSP server that is specified in the AIA extension of the certificate:

```
Router(config)# crypto pki trustpoint mytp
Router(ca-trustpoint)# revocation-check ocsp
```

Specifying a CRL and Then an OCSP Server Example

The following example shows how to configure the router to download the CRL from the CDP. If the CRL is unavailable, the OCSP server that is specified in the AIA extension of the certificate will be used. If both options fail, certificate verification will also fail.

```
Router(config)# crypto pki trustpoint mytp
Router(ca-trustpoint)# revocation-check crl ocsp
```

Specifying an OCSP Server Example

The following example shows how to configure your router to use the OCSP server at the HTTP URL “http://myocspserver:81.” If the server is down, the revocation check will be ignored.

```
Router(config)# crypto pki trustpoint mytp
Router(ca-trustpoint)# ocsp url http://myocspserver:81
Router(ca-trustpoint)# revocation-check ocsp none
```
Disabling Nonces in Communications with the OCSP Server Example

The following example shows communications when a nonce, or a unique identifier for the OCSP request, is disabled for communications with the OCSP server:

```
Router(config)# crypto pki trustpoint mytp
Router(ca-trustpoint)# ocsp url http://myocspserver:81
Router(ca-trustpoint)# revocation-check ocsp none
Router(ca-trustpoint)# ocsp disable-nonce
```

Configuring a Hub Router at a Central Site for Certificate Revocation Checks Example

The following example shows a hub router at a central site that is providing connectivity for several branch offices to the central site.

The branch offices are also able to communicate directly with each other using additional IPSec tunnels between the branch offices.

The CA publishes CRLs on an HTTP server at the central site. The central site checks CRLs for each peer when setting up an IPSec tunnel with that peer.

The example does not show the IPSec configuration—only the PKI-related configuration is shown.

Home Office Hub Configuration

```
crypto pki trustpoint VPN-GW
enrollment url http://ca.home-office.com:80/certsrv/mscep/mscep.dll
serial-number none
fqdn none
ip-address none
subject-name o=Home Office Inc,cn=Central VPN Gateway
revocation-check crl
```

Central Site Hub Router

```
Router# show crypto ca certificate
Certificate
Status: Available
Certificate Serial Number: 2F62BE1400000000000CA0
Certificate Usage: General Purpose
Issuer:
cn=Central Certificate Authority o=Home Office Inc
Subject:
Name: Central VPN Gateway cn=Central VPN Gateway o=Home Office Inc
CRL Distribution Points:
 http://ca.home-office.com/CertEnroll/home-office.crl Validity Date:
 start date: 00:43:26 GMT Sep 26 2003
 end date: 00:53:26 GMT Sep 26 2004
 renew date: 00:00:00 GMT Jan 1 1970 Associated Trustpoints: VPN-GW
CACertificate Status: Available
Certificate Serial Number: 1244325DE0369880465F977A18F61CA8 Certificate Usage: Signature
Issuer:
cn=Central Certificate Authority o=Home Office Inc
Subject:
cn=Central Certificate Authority o=Home Office Inc
CRL Distribution Points:
```
Chapter 63  Configuring Authorization and Revocation of Certificates in a PKI

Configuring a Revocation Mechanism Examples

Trustpoint on the Branch Office Router

crypto pki trustpoint home-office
enrollment url http://ca.home-office.com:80/certsrv/mscep/mscep.dll serial-number none
fqdn none
ip-address none
subject-name o=Home Office Inc,cn=Branch 1 revocation-check crl

A certificate map is entered on the branch office router.

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
branch1(config)# crypto pki certificate map central-site 10
branch1(ca-certificate-map)#

The output from the show certificate command on the central site hub router shows that the certificate was issued by the following:

cn=Central Certificate Authority
o=Home Office Inc

These two lines are combined into one line using a comma (,) to separate them, and the original lines are added as the first criteria for a match.

Router (ca-certificate-map)# issuer-name co cn=Central Certificate Authority, ou=Home Office Inc
!The above line wrapped but should be shown on one line with the line above it.

The same combination is done for the subject name from the certificate on the central site router (note that the line that begins with ?ame:?is not part of the subject name and must be ignored when creating the certificate map criteria). This is the subject name to be used in the certificate map.

cn=Central VPN Gateway
o=Home Office Inc

Router (ca-certificate-map)# subject-name eq cn=central vpn gateway, o=home office inc

Now the certificate map is added to the trustpoint that was configured earlier.

Router (ca-certificate-map)#
crypto pki trustpoint home-office
Router (ca-trustpoint)# match certificate central-site skip revocation-check
Router (ca-trustpoint)# exit
Router (config)# exit

The configuration is checked (most of configuration is not shown).

Router# write term
!Many lines left out
.
.
crypto pki trustpoint home-office

enrollment url http://ca.home-office.com:80/certsrv/mscep/mscep.dll serial-number none
Configuring a Revocation Mechanism Examples

crypto pki certificate map central-site 10
issuer-name co cn = Central Certificate Authority, ou = Home Office Inc subject-name eq cn = central vpn gateway, o = home office inc
tолько линий left out

Note that the issuer-name and subject-name lines have been reformatted to make them consistent for later matching with the certificate of the peer.

If the branch office is checking the AAA, the trustpoint will have lines similar to the following:
crypto pki trustpoint home-office auth list allow_list
auth user subj commonname

After the certificate map has been defined as was done above, the following command is added to the trustpoint to skip AAA checking for the central site hub.

match certificate central-site skip authorization-check

In both cases, the branch site router has to establish an IPSec tunnel to the central site to check CRLs or to contact the AAA server. However, without the match certificate command and central-site skip authorization-check (argument and keyword), the branch office cannot establish the tunnel until it has checked the CRL or the AAA server. (The tunnel will not be established unless the match certificate command and central-site skip authorization-check argument and keyword are used.)

The match certificate command and allow expired-certificate keyword would be used at the central site if the router at a branch site had an expired certificate and it had to establish a tunnel to the central site to renew its certificate.

Trustpoint on the Central Site Router

crypto pki trustpoint VPN-GW
enrollment url http://ca.home-office.com:80/certsrv/mscep/mscep.dll
serial-number none
fqdn none
ip-address none
subject-name o=Home Office Inc,cn=Central VPN Gateway revocation-check crl

Trustpoint on the Branch 1 Site Router

Router# show crypto ca certificate
Certificate
Status: Available
Certificate Serial Number: 2F62BE140000000000CA0 Certificate Usage: General Purpose
Issuer:
cn=Central Certificate Authority o=Home Office Inc
Subject:
Name: Branch 1 Site cn=Branch 1 Site o=Home Office Inc
CRL Distribution Points:
http://ca.home-office.com/CertEnroll/home-office.crl Validity Date:
start date: 00:43:26 GMT Sep 26 2003
end date: 00:53:26 GMT Oct 3 2003
renew date: 00:00:00 GMT Jan 1 1970
Associated Trustpoints: home-office
CA Certificate
Status: Available
Certificate Serial Number: 1244125DE0369880465F977A18F61CA8
Certificate Usage: Signature
Issuer:
cn=Central Certificate Authority o=Home Office Inc
Subject:
cn=Central Certificate Authority o=Home Office Inc
CRL Distribution Points:
  http://ca.home-office.com/CertEnroll/home-office.crl
Validity Date:
  start date: 22:19:29 GMT Oct 31 2002
  end date: 22:27:27 GMT Oct 31 2017
Associated Trustpoints: home-office
A certificate map is entered on the central site router.

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router (config)# crypto pki certificate map branch1 10
Router (ca-certificate-map)# issuer-name co cn=Central Certificate Authority, ou=Home Office Inc
  !The above line wrapped but should be part of the line above it.
Router (ca-certificate-map)# subject-name eq cn=Brahcn 1 Site,o=home office inc
The certificate map is added to the trustpoint.

Router (ca-certificate-map)# crypto pki trustpoint VPN-GW
Router (ca-trustpoint)# match certificate branch1 allow expired-certificate
Router (ca-trustpoint)# exit
Router (config)# exit

The configuration should be checked (most of the configuration is not shown).

Router# write term
!many lines left out
crypto pki trustpoint VPN-GW
  enrollment url http://ca.home-office.com:80/certsrv/mscep/mscep.dll serial-number none
  fqdn none
  ip-address none
  subject-name o=Home Office Inc,cn=Central VPN Gateway revocation-check crl
  match certificate branch1 allow expired-certificate
  !
  crypto pki certificate map central-site 10
  issuer-name co = Central Certificate Authority, ou = Home Office Inc
  subject-name eq cn = central vpn gateway, o = home office inc
  ! many lines left out
The match certificate command and branch1 allow expired-certificate (argument and keyword) and the certificate map should be removed as soon as the branch router has a new certificate.

Configuring Certificate Authorization and Revocation Settings Examples

This section contains the following configuration examples that can be used when specifying a CRL cache control setting or certificate serial number session control:
Configuring Certificate Authorization and Revocation Settings Examples

This section contains the following configuration examples that can be used when specifying a CRL cache control setting or certificate serial number session control:

Configuring CRL Cache Control

The following example shows how to disable CRL caching for all CRLs associated with the CA1 trustpoint:

crypto pki trustpoint CA1 enrollment url http://CA1:80 ip-address FastEthernet0/0 crl query ldap://ldap_CA1 revocation-check crl crl-cache none

The current CRL is still cached immediately after executing the example configuration shown above:

Router# show crypto pki crls
CRL Issuer Name: cn=name Cert Manager,ou=pki,o=example.com,c=US
LastUpdate: 18:57:42 GMT Nov 26 2005
NextUpdate: 22:57:42 GMT Nov 26 2005
Retrieved from CRL Distribution Point: ldap://ldap.example.com/CN=name Cert Manager,O=example.com

When the current CRL expires, a new CRL is then downloaded to the router at the next update. The crl-cache none command takes effect and all CRLs for the trustpoint are no longer cached; caching is disabled. You can verify that no CRL is cached by executing the show crypto pki crls command. No output will be shown because there are no CRLs cached.

The following example shows how to configure the maximum lifetime of 2 minutes for all CRLs associated with the CA1 trustpoint:

crypto pki trustpoint CA1 enrollment url http://CA1:80 ip-address FastEthernet0/0 crl query ldap://ldap_CA1 revocation-check crl crl-cache delete-after 2

The current CRL is still cached immediately after executing the example configuration above for setting the maximum lifetime of a CRL:

Router# show crypto pki crls
CRL Issuer Name: cn=name Cert Manager,ou=pki,o=example.com,c=US
LastUpdate: 22:57:42 GMT Nov 26 2005
NextUpdate: 22:57:42 GMT Nov 26 2005
Retrieved from CRL Distribution Point: ldap://ldap.example.com/CN=name Cert Manager,O=example.com

When the current CRL expires, a new CRL is downloaded to the router at the next update and the crl-cache delete-after command takes effect. This newly cached CRL and all subsequent CRLs will be deleted after a maximum lifetime of 2 minutes. You can verify that the CRL will be cached for 2 minutes by executing the show crypto pki crls command. Note that the NextUpdate time is 2 minutes after the LastUpdate time.

Router# show crypto pki crls
CRL Issuer Name: cn=name Cert Manager,ou=pki,o=example.com,c=US
LastUpdate: 22:57:42 GMT Nov 26 2005
Configuring Certificate Serial Number Session Control

The following example shows the configuration of certificate serial number session control using a certificate map for the CA1 trustpoint:

```plaintext
crypto pki trustpoint CA1 enrollment url http://CA1 chain-validation stop
crl query ldap://ldap_server revocation-check crl
match certificate crl
! crypto pki certificate map crl 10 serial-number co 279d
```

**Note**

If the match-criteria value is set to `eq` (equal) instead of `co` (contains), the serial number must match the certificate map serial number exactly, including any spaces.

The following example shows the configuration of certificate serial number session control using AAA attributes. In this case, all valid certificates will be accepted if the certificate does not have the serial number “4ACA.”

```plaintext
crypto pki trustpoint CA1 enrollment url http://CA1 ip-address FastEthernet0/0
crl query ldap://ldap_CA1 revocation-check crl
aaa new-model
!
aaa attribute list crl
attribute-type aaa-cert-serial-not 4ACA
```

The server log shows that the certificate with the serial number `7ACA` was rejected. The certificate rejection is shown using exclamation points.

```plaintext
Dec 3 04:24:39.051: CRYPTO_PKI: Trust-Point CA1 picked up
Dec 3 04:24:39.051: CRYPTO_PKI: locked trustpoint CA1, refcount is 1
Dec 3 04:24:39.051: CRYPTO_PKI: unlocked trustpoint CA1, refcount is 0
Dec 3 04:24:39.051: CRYPTO_PKI: locked trustpoint CA1, refcount is 1
Dec 3 04:24:39.135: CRYPTO_PKI: validation path has 1 certs
Dec 3 04:24:39.135: CRYPTO_PKI: Found a issuer match
Dec 3 04:24:39.135: CRYPTO_PKI: Using CA1 to validate certificate
Dec 3 04:24:39.135: CRYPTO_PKI: Anticipate checking AAA list:'CRL'
Dec 3 04:24:39.135: CRYPTO_PKI_AAA: checking AAA authorization (CRL, PKIAAA-L1, <all>)
Dec 3 04:24:39.135: CRYPTO_PKI_AAA: pre-authorization chain validation status (0x4)
Dec 3 04:24:39.135: AAA/AUTHOR (0x21): Pick method list 'CRL'
...
Dec 3 04:24:39.175: CRYPTO_PKI_AAA: reply attribute ("cert-application" = "all")
Dec 3 04:24:39.175: CRYPTO_PKI_AAA: reply attribute ("cert-trustpoint" = "CA1")
Dec 3 04:24:39.175: CRYPTO_PKI_AAA: reply attribute ("cert-serial-not" = "4ACA")
Dec 3 04:24:39.175: CRYPTO_PKI_AAA: cert-serial doesn't match ("4ACA" != "4ACA")
Dec 3 04:24:39.175: CRYPTO_PKI_AAA: post-authorization chain validation status (0x7)
Dec 3 04:24:39.175: CRYPTO_PKI: chain cert was anchored to trustpoint CA1, and chain...
validation result was: CRYPTO_PKI_CERT_NOTAUTHORIZED
!
Dec 3 04:24:39.175: %CRYPTO-5-IKMP_INVAL_CERT: Certificate received from 192.0.2.43 is bad:
certificate invalid
Dec 3 04:24:39.175: %CRYPTO-6-IKMP_MODE_FAILURE: Processing of Main mode failed with peer at 192.0.2.43

Configuring Certificate Chain Validation Examples

This section contains the following configuration examples that can be used to specify the level of certificate chain processing for your device certificates:

Configuring Certificate Chain Validation from Peer to Root CA

In the following configuration example, all of the certificates will be validated—the peer, SubCA11, SubCA1, and RootCA certificates.

crypto pki trustpoint RootCA enrollment terminal
 chain-validation stop revocation-check none rsakeypair RootCA
crypto pki trustpoint SubCA1 enrollment terminal
 chain-validation continue RootCA revocation-check none rsakeypair SubCA1
crypto pki trustpoint SubCA11 enrollment terminal
 chain-validation continue SubCA1 revocation-check none rsakeypair SubCA11

Configuring Certificate Chain Validation from Peer to Subordinate CA

In the following configuration example, the following certificates will be validated—the peer and SubCA1 certificates.

crypto pki trustpoint RootCA
 enrollment terminal
 chain-validation stop
 revocation-check none
 rsakeypair RootCA
crypto pki trustpoint SubCA1
 enrollment terminal
 chain-validation continue RootCA
 revocation-check none
 rsakeypair SubCA1
crypto pki trustpoint SubCA11
 enrollment terminal
 chain-validation continue SubCA1
 revocation-check none
 rsakeypair SubCA11

Configuring Certificate Chain Validation Through a Gap

In the following configuration example, SubCA1 is not in the configured Cisco IOS hierarchy but is expected to have been supplied in the certificate chain presented by the peer.
If the peer supplies the SubCA1 certificate in the presented certificate chain, the following certificates will be validated—the peer, SubCA1, and SubCA1 certificate.

If the peer does not supply the SubCA1 certificate in the presented certificate chain, the chain validation will fail.

crypto pki trustpoint RootCA
enrollment terminal
chain-validation stop
revocation-check none
rsakeypair RootCA
crypto pki trustpoint SubCA1
enrollment terminal
chain-validation continue RootCA
revocation-check none
rsakeypair SubCA1

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKI commands: complete command syntax, command mode, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
<tr>
<td>Overview of PKI, including RSA keys, certificate enrollment, and CAs</td>
<td>“Cisco IOS PKI Overview: Understanding and Planning a PKI” module</td>
</tr>
<tr>
<td>RSA key generation and deployment</td>
<td>“Deploying RSA Keys Within a PKI” module</td>
</tr>
<tr>
<td>Certificate enrollment: supported methods, enrollment profiles, configuration tasks</td>
<td>“Configuring Certificate Enrollment for a PKI” module</td>
</tr>
<tr>
<td>Cisco IOS certificate server overview information and configuration tasks</td>
<td>“Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment” module</td>
</tr>
<tr>
<td>Recommended cryptographic algorithms</td>
<td>Next Generation Encryption</td>
</tr>
</tbody>
</table>