Troubleshooting the Software Configuration

This chapter describes how to identify and resolve software problems related to the Cisco IOS software on the switch. Depending on the nature of the problem, you can use the command-line interface (CLI), Device Manager, or Network Assistant to identify and solve problems.

Additional troubleshooting information, such as LED descriptions, is provided in the hardware installation guide.

- Finding Feature Information, page 1
- Information About Troubleshooting the Software Configuration, page 2
- How to Troubleshoot the Software Configuration, page 9
- Verifying Troubleshooting of the Software Configuration, page 21
- Scenarios for Troubleshooting the Software Configuration, page 24
- Configuration Examples for Troubleshooting Software, page 27
- Additional References for Troubleshooting Software Configuration, page 29
- Feature History and Information for Troubleshooting Software Configuration, page 30

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Related Topics

- Feature History and Information for Troubleshooting Software Configuration, on page 30
Information About Troubleshooting the Software Configuration

Software Failure on a Switch

Switch software can be corrupted during an upgrade by downloading the incorrect file to the switch, and by deleting the image file. In all of these cases, the switch does not pass the power-on self-test (POST), and there is no connectivity.

Related Topics

Recovering from a Software Failure, on page 9

Lost or Forgotten Password on a Switch

The default configuration for the switch allows an end user with physical access to the switch to recover from a lost password by interrupting the boot process during power-on and by entering a new password. These recovery procedures require that you have physical access to the switch.

Note

On these switches, a system administrator can disable some of the functionality of this feature by allowing an end user to reset a password only by agreeing to return to the default configuration. If you are an end user trying to reset a password when password recovery has been disabled, a status message reminds you to return to the default configuration during the recovery process.

Related Topics

Recovering from a Lost or Forgotten Password, on page 11

Power over Ethernet Ports

A Power over Ethernet (PoE) switch port automatically supplies power to one of these connected devices if the switch detects that there is no power on the circuit:

- a Cisco pre-standard powered device (such as a Cisco IP Phone or a Cisco Aironet Access Point)
- an IEEE 802.3af-compliant powered device
- an IEEE 802.3at-compliant powered device

A powered device can receive redundant power when it is connected to a PoE switch port and to an AC power source. The device does not receive redundant power when it is only connected to the PoE port.

After the switch detects a powered device, the switch determines the device power requirements and then grants or denies power to the device. The switch can also detect the real-time power consumption of the device by monitoring and policing the power usage.

For more information, see the "Configuring PoE" chapter in the Interface and Hardware Component Configuration Guide (Catalyst 3850 Switches).
Related Topics

Scenarios to Troubleshoot Power over Ethernet (PoE), on page 24

Disabled Port Caused by Power Loss

If a powered device (such as a Cisco IP Phone 7910) that is connected to a PoE switch port and powered by an AC power source loses power from the AC power source, the device might enter an error-disabled state. To recover from an error-disabled state, enter the `shutdown` interface configuration command, and then enter the `no shutdown` interface command. You can also configure automatic recovery on the switch to recover from the error-disabled state.

On a switch, the `errdisable recovery cause loopback` and the `errdisable recovery interval seconds` global configuration commands automatically take the interface out of the error-disabled state after the specified period of time.

Disabled Port Caused by False Link-Up

If a Cisco powered device is connected to a port and you configure the port by using the `power inline never` interface configuration command, a false link-up can occur, placing the port into an error-disabled state. To take the port out of the error-disabled state, enter the `shutdown` and the `no shutdown` interface configuration commands.

You should not connect a Cisco powered device to a port that has been configured with the `power inline never` command.

Ping

The switch supports IP ping, which you can use to test connectivity to remote hosts. Ping sends an echo request packet to an address and waits for a reply. Ping returns one of these responses:

- Normal response—The normal response (hostname is alive) occurs in 1 to 10 seconds, depending on network traffic.
- Destination does not respond—If the host does not respond, a no-answer message is returned.
- Unknown host—If the host does not exist, an unknown host message is returned.
- Destination unreachable—If the default gateway cannot reach the specified network, a destination-unreachable message is returned.
- Network or host unreachable—If there is no entry in the route table for the host or network, a network or host unreachable message is returned.

Related Topics

Executing Ping, on page 18
Example: Pinging an IP Host, on page 27
Layer 2 Traceroute

The Layer 2 traceroute feature allows the switch to identify the physical path that a packet takes from a source device to a destination device. Layer 2 traceroute supports only unicast source and destination MAC addresses. Traceroute finds the path by using the MAC address tables of the switches in the path. When the switch detects a device in the path that does not support Layer 2 traceroute, the switch continues to send Layer 2 trace queries and lets them time out.

The switch can only identify the path from the source device to the destination device. It cannot identify the path that a packet takes from source host to the source device or from the destination device to the destination host.

Layer 2 Traceroute Guidelines

- Cisco Discovery Protocol (CDP) must be enabled on all the devices in the network. For Layer 2 traceroute to function properly, do not disable CDP.

 If any devices in the physical path are transparent to CDP, the switch cannot identify the path through these devices.

- A switch is reachable from another switch when you can test connectivity by using the ping privileged EXEC command. All switches in the physical path must be reachable from each other.

- The maximum number of hops identified in the path is ten.

- You can enter the traceroute mac or the traceroute mac ip privileged EXEC command on a switch that is not in the physical path from the source device to the destination device. All switches in the path must be reachable from this switch.

- The traceroute mac command output shows the Layer 2 path only when the specified source and destination MAC addresses belong to the same VLAN. If you specify source and destination MAC addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message appears.

 - If you specify a multicast source or destination MAC address, the path is not identified, and an error message appears.

 - If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong. If the VLAN is not specified, the path is not identified, and an error message appears.

- The traceroute mac ip command output shows the Layer 2 path when the specified source and destination IP addresses belong to the same subnet. When you specify the IP addresses, the switch uses the Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.

 - If an ARP entry exists for the specified IP address, the switch uses the associated MAC address and identifies the physical path.

 - If an ARP entry does not exist, the switch sends an ARP query and tries to resolve the IP address. If the IP address is not resolved, the path is not identified, and an error message appears.
• When multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port), the Layer 2 traceroute feature is not supported. When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.

• This feature is not supported in Token Ring VLANs.

IP Traceroute

You can use IP traceroute to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic passes through on the way to the destination.

Your switches can participate as the source or destination of the `traceroute` privileged EXEC command and might or might not appear as a hop in the `traceroute` command output. If the switch is the destination of the traceroute, it is displayed as the final destination in the traceroute output. Intermediate switches do not show up in the traceroute output if they are only bridging the packet from one port to another within the same VLAN. However, if the intermediate switch is a multilayer switch that is routing a particular packet, this switch shows up as a hop in the traceroute output.

The `traceroute` privileged EXEC command uses the Time To Live (TTL) field in the IP header to cause routers and servers to generate specific return messages. Traceroute starts by sending a User Datagram Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value of 1 or 0, it drops the datagram and sends an Internet Control Message Protocol (ICMP) time-to-live-exceeded message to the sender. Traceroute finds the address of the first hop by examining the source address field of the ICMP time-to-live-exceeded message.

To identify the next hop, traceroute sends a UDP packet with a TTL value of 2. The first router decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL value of 1, discards the datagram, and returns the time-to-live-exceeded message to the source. This process continues until the TTL is incremented to a value large enough for the datagram to reach the destination host (or until the maximum TTL is reached).

To learn when a datagram reaches its destination, traceroute sets the UDP destination port number in the datagram to a very large value that the destination host is unlikely to be using. When a host receives a datagram destined to itself containing a destination port number that is unused locally, it sends an ICMP `port-unreachable` error to the source. Because all errors except `port-unreachable` errors come from intermediate hops, the receipt of a `port-unreachable` error means that this message was sent by the destination port.

Related Topics

- Executing IP Traceroute, on page 19
- Example: Performing a Traceroute to an IP Host, on page 27

Time Domain Reflector Guidelines

You can use the Time Domain Reflector (TDR) feature to diagnose and resolve cabling problems. When running TDR, a local device sends a signal through a cable and compares the reflected signal to the initial signal.

TDR is supported on 10/100/1000 copper Ethernet ports and on Multigigabit Ethernet (100Mbps/1/2.5/5/10 Gbps) ports. It is not supported on SFP module ports.

TDR can detect these cabling problems:
• Open, broken, or cut twisted-pair wires—The wires are not connected to the wires from the remote device.

• Shorted twisted-pair wires—The wires are touching each other or the wires from the remote device. For example, a shorted twisted pair can occur if one wire of the twisted pair is soldered to the other wire.

If one of the twisted-pair wires is open, TDR can find the length at which the wire is open.

Note

When using the feature with Multigigabit Ethernet ports, the cable length is displayed only when an open or short condition is detected.

Use TDR to diagnose and resolve cabling problems in these situations:

• Replacing a Switch

• Setting up a wiring closet

• Troubleshooting a connection between two devices when a link cannot be established or when it is not operating properly

When you run TDR, the Switch reports accurate information in these situations:

• The cable for the gigabit link is a solid-core cable.

• The open-ended cable is not terminated.

When you run TDR, the Switch does not report accurate information in these situations:

• The cable for the gigabit link is a twisted-pair cable or is in series with a solid-core cable.

• The link is a 10-megabit or a 100-megabit link.

• The cable is a stranded cable.

• The link partner is a Cisco IP Phone.

• The link partner is not IEEE 802.3 compliant.

Debug Commands

Caution

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use `debug` commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use `debug` commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased `debug` command processing overhead will affect system use.

All `debug` commands are entered in privileged EXEC mode, and most `debug` commands take no arguments.

Related Topics

Redirecting Debug and Error Message Output, on page 20

Example: Enabling All System Diagnostics, on page 28
Crashinfo Files

The crashinfo files save information that helps Cisco technical support representatives to debug problems that caused the Cisco IOS image to fail (crash). The switch generates two files at the time of the failure: full core and crashinfo.

The information in the crashinfo file includes the Cisco IOS image name and version that failed, a list of the processor registers, and a stack trace. You can provide this information to the Cisco technical support representative by using the `show tech-support` privileged EXEC command.

The file names have the following format:

```
[fullcore | crashinfo]_[process that crashed]_[date]_[timestamp]-UTC
```

From IOS, you can view the crashinfo files on each switch by using the following command:

```
SwitchControllerDevice# dir crashinfo?
```

For example, to access the crashinfo directory for switch 1, enter

```
SwitchControllerDevice# dir crashinfo-1
```

From the ROMMON prompt, you can view the crashinfo files by using the `dir` command:

```
SwitchControllerDevice: dir sda1
```

The following is sample output of a crashinfo file

```
SwitchControllerDevice# dir crashinfo:
Directory of crashinfo:/
12 -rwx 2768 Dec 31 1969 16:00:15 -08:00 koops.dat
15 -rwx 0 Jan 12 2000 22:53:40 -08:00 deleted_crash_files
16 -rwx 4246576 Jan 12 2000 22:53:40 -08:00 crashinfo_stack-mgr_20000113-065250-UTC
17 -rwx 50 Oct 2 2012 03:18:42 -08:00 last_crashinfo
26 -rwx 39 Jan 12 2000 22:53:41 -08:00 fullcore_stack-mgr_20000113-065250-UTC
18 -rwx 2866565 Jan 12 2000 22:53:41 -08:00 fullcore_stack-mgr_20000113-065250-UTC
20 -rwx 4391796 Feb 1 2000 17:50:44 -08:00 crashinfo_stack-mgr_20000202-014954-UTC
21 -rwx 2920325 Feb 1 2000 17:50:45 -08:00 fullcore_stack-mgr_20000202-014954-UTC
34817 -rwx 1050209 Jan 10 2013 20:26:23 -08:00 system-report_1_20130111-042535-UTC.gz
18434 -rwx 1016913 Jan 11 2013 10:35:28 -08:00 system-report_1_20130111-183440-UTC.gz
18435 -rwx 1136167 Jan 22 2013 14:14:11 -08:00 system-report_1_20130122-221322-UTC.gz
34821 -rwx 1094631 Jan 2 2013 17:59:23 -08:00 system-report_1_20130103-015835-UTC.gz
6147 -rwx 967429 Jan 3 2013 10:32:44 -08:00 system-report_1_20130103-183156-UTC.gz
34824 -rwx 50 Jan 22 2013 14:14:14 -08:00 deleted_sysreport_files
6155 -rwx 373 Jan 22 2013 14:14:13 -08:00 last_systemreport_log
145898496 bytes total (18569216 bytes free)
stack3#`

The file name of the most recent crashinfo file is stored in last_crashinfo.
The file name of the most recent system report is stored in last_systemreport.
System Reports

When a switch crashes, a system report is automatically generated for each switch in the switch stack. The system report file captures all the trace buffers, and other system-wide logs found on the switch. System reports are located in the crashinfo directory in the following format:

```
system-report_[switch number]_[date]-[timestamp]-UTC.gz
```

After a switch crash, you should check if a system report file was generated. The name of the most recently generated system report file is stored in the last_systemreport file under the crashinfo directory. The system report and crashinfo files assist TAC when troubleshooting your issue.

Onboard Failure Logging on the Switch

You can use the onboard failure logging (OBFL) feature to collect information about the switch. The information includes uptime, temperature, and voltage information and helps Cisco technical support representatives to troubleshoot switch problems. We recommend that you keep OBFL enabled and do not erase the data stored in the flash memory.

By default, OBFL is enabled. It collects information about the switch and small form-factor pluggable (SFP) modules. The switch stores this information in the flash memory:

- CLI commands—Record of the OBFL CLI commands that are entered on a standalone switch or a switch stack member.
- Environment data—Unique device identifier (UDI) information for a standalone switch or a stack member and for all the connected FRU devices: the product identification (PID), the version identification (VID), and the serial number.
- Message—Record of the hardware-related system messages generated by a standalone switch or a stack member.
- Power over Ethernet (PoE)—Record of the power consumption of PoE ports on a standalone switch or a stack member.
- Temperature—Temperature of a standalone switch or a stack member.
- Uptime data—Time when a standalone switch or a stack member starts, the reason the switch restarts, and the length of time the switch has been running since it last restarted.
- Voltage—System voltages of a standalone switch or a stack member.

You should manually set the system clock or configure it by using Network Time Protocol (NTP). When the switch is running, you can retrieve the OBFL data by using the `show logging onboard` privileged EXEC commands. If the switch fails, contact your Cisco technical support representative to find out how to retrieve the data.

Related Topics

- Configuring OBFL, on page 20
- Displaying OBFL Information, on page 21
Fan Failures

By default, the feature is disabled. When more than one of the fans fails in a field-replaceable unit (FRU) or in a power supply, the switch does not shut down, and this error message appears:

Multiple fan(FRU/PS) failure detected. System may get overheated. Change fan quickly.

The switch might overheat and shut down.

To enable the fan failures feature, enter the `system env fan-fail-action shut` privileged EXEC command. If more than one fan in the switch fails, the switch automatically shuts down, and this error message appears:

Faulty (FRU/PS) fans detected, shutting down system!

After the first fan shuts down, if the switch detects a second fan failure, the switch waits for 20 seconds before it shuts down.

To restart the switch, it must be power cycled.

Possible Symptoms of High CPU Utilization

Excessive CPU utilization might result in these symptoms, but the symptoms might also result from other causes:

- Spanning tree topology changes
- EtherChannel links brought down due to loss of communication
- Failure to respond to management requests (ICMP ping, SNMP timeouts, slow Telnet or SSH sessions)
- UDLD flapping
- IP SLAs failures because of SLAs responses beyond an acceptable threshold
- DHCP or IEEE 802.1x failures if the switch does not forward or respond to requests

How to Troubleshoot the Software Configuration

Recovering from a Software Failure

**Before You Begin**

This recovery procedure requires that you have physical access to the switch.
This procedure uses boot loader commands and TFTP to recover from a corrupted or incorrect image file.

**Step 1**
From your PC, download the software image file (image.bin) from Cisco.com.

**Step 2**
Load the software image to your TFTP server.

**Step 3**
Connect your PC to the switch Ethernet management port.

**Step 4**
Unplug the switch power cord.

**Step 5**
Press the **Mode** button, and at the same time, reconnect the power cord to the switch.

**Step 6**
From the bootloader (ROMMON) prompt, ensure that you can ping your TFTP server.

a) Set the IP address

```
switch: set IP_ADDR ip_address subnet_mask
```

**Example:**
```
switch: set IP_ADDR 192.0.2.123/255.255.255.0
```

b) Set the default router IP address

```
switch: set DEFAULT_ROUTER ip_address
```

**Example:**
```
switch: set DEFAULT_ROUTER 192.0.2.1
```

c) Verify that you can ping the TFTP server

```
switch: ping ip_address_of_TFTP_server
```

**Example:**
```
switch: ping 192.0.2.15
ping 192.0.2.1 with 32 bytes of data...
Host 192.0.2.1 is alive.
switch:
```

**Step 7**
Verify that you have a recovery image in your recovery partition (sda9:).

This recovery image is required for recovery using the emergency-install feature.

**Example:**
```
switch: dir sda9:
Directory of sda9:/
 2 drwx 1024 .
 2 drwx 1024 ..
 11 -rw- 18923068 c3850-recovery.bin

36939776 bytes available (20830208 bytes used)
switch:
```

**Step 8**
From the bootloader (ROMMON) prompt, initiate the emergency-install feature that assists you in recovering the software image on your switch.

**WARNING:** The emergency install command will erase your entire boot flash!

**Example:**
```
Switch# emergency-install
tftp://192.0.2.47/cat3k_caa-universalk9.SSA.03.12.02.EZP.150-12.02.EZP.150-12.02.EZP.bin
```

The bootflash will be erased during install operation, continue (y/n)?y
Starting emergency recovery
tftp://192.0.2.47/cat3k/cat3k_caa-universalk9.SPA.03.02.00.SE.150-1.EX.bin)...

Troubleshooting the Software Configuration

Recovering from a Software Failure
Recovering from a Lost or Forgotten Password

The default configuration for the switch allows an end user with physical access to the switch to recover from a lost password by interrupting the boot process during power-on and by entering a new password. These recovery procedures require that you have physical access to the switch.

Related Topics

Software Failure on a Switch, on page 2
On these switches, a system administrator can disable some of the functionality of this feature by allowing an end user to reset a password only by agreeing to return to the default configuration. If you are an end user trying to reset a password when password recovery has been disabled, a status message shows this during the recovery process.

**SUMMARY STEPS**

1. Connect a terminal or PC to the switch.
2. Set the line speed on the emulation software to 9600 baud.
3. Power off the standalone switch or the entire switch stack.
4. Reconnect the power cord to the or the active switch. Within 15 seconds, press the **Mode** button while the System LED is still flashing green. Continue pressing the **Mode** button until all the system LEDs turn on and remain solid; then release the **Mode** button.
5. After recovering the password, reload the switch or the active switch.
6. Power on the remaining switches in the stack.

**DETAILED STEPS**

**Step 1** Connect a terminal or PC to the switch.

- Connect a terminal or a PC with terminal-emulation software to the switch console port. If you are recovering the password for a switch stack, connect to the console port of the active switch or
- Connect a PC to the Ethernet management port. If you are recovering the password for a switch stack, connect to the Ethernet management port of a stack member.

**Step 2** Set the line speed on the emulation software to 9600 baud.

**Step 3** Power off the standalone switch or the entire switch stack.

**Step 4** Reconnect the power cord to the or the active switch. Within 15 seconds, press the **Mode** button while the System LED is still flashing green. Continue pressing the **Mode** button until all the system LEDs turn on and remain solid; then release the **Mode** button.

Switch:

- Xmodem file system is available.
- Base ethernet MAC Address: 20:37:06:4d:e9:80
- Verifying bootloader digital signature.

The system has been interrupted prior to loading the operating system software, console will be reset to 9600 baud rate.

proceed to the **Procedure with Password Recovery Enabled** section, and follow the steps.

**Step 5** After recovering the password, reload the switch or the active switch.
On a switch:

```
Switch> reload
Proceed with reload? [confirm] y
```

On the active switch:

```
Switch> reload slot <stack-active-member-number>
Proceed with reload? [confirm] y
```

**Step 6** Power on the remaining switches in the stack.

---

**Related Topics**

Lost or Forgotten Password on a Switch, on page 2

---

**Procedure with Password Recovery Enabled**

If the password-recovery operation is enabled, this message appears:

---

**Step 1** Initialize the flash file system.

```
SwitchControllerDevice: flash_init
```

**Step 2** Ignore the startup configuration with the following command:

```
SwitchControllerDevice: SWITCHIGNORESTARTUP_CFG=1
```

**Step 3** Boot the switch with the **packages.conf** file from flash.

```
SwitchControllerDevice: boot flash:packages.conf
```

**Step 4** Terminate the initial configuration dialog by answering **No**.

```
Would you like to enter the initial configuration dialog? [yes/no]: No
```

**Step 5** At the switch prompt, enter privileged EXEC mode.

```
SwitchControllerDevice> enable
Switch#
```

**Step 6** Copy the startup configuration to running configuration.

```
SwitchControllerDevice# copy startup-config running-config Destination filename [running-config]?
```
Press Return in response to the confirmation prompts. The configuration file is now reloaded, and you can change the password.

**Step 7** Enter global configuration mode and change the *enable* password.

```
SwitchControllerDevice# configure terminal
SwitchControllerDevice(config)#
```

**Step 8** Write the running configuration to the startup configuration file.

```
SwitchControllerDevice# copy running-config startup-config
```

**Step 9** Confirm that manual boot mode is enabled.

```
SwitchControllerDevice# show boot
BOOT variable = flash:packages.conf;
Manual Boot = yes
Enable Break = yes
```

**Step 10** Reload the switch.

```
SwitchControllerDevice# reload
```

**Step 11** Return the Bootloader parameters (previously changed in Steps 2 and 3) to their original values.

```
SwitchControllerDevice: switch: SWITCH_IGNORE_STARTUP_CFG=0
```

**Step 12** Boot the switch with the *packages.conf* file from flash.

```
SwitchControllerDevice: boot flash:packages.conf
```

**Step 13** After the switch boots up, disable manual boot on the switch.

```
SwitchControllerDevice(config)# no boot manual
```

---

**Procedure with Password Recovery Disabled**

If the password-recovery mechanism is disabled, this message appears:

```
The password-recovery mechanism has been triggered, but is currently disabled. Access to the boot loader prompt through the password-recovery mechanism is disallowed at this point. However, if you agree to let the system be reset back to the default system configuration, access
```

---
to the boot loader prompt can still be allowed.

Would you like to reset the system back to the default configuration (y/n)?

---

**Caution**

Returning the switch to the default configuration results in the loss of all existing configurations. We recommend that you contact your system administrator to verify if there are backup switch and VLAN configuration files.

- If you enter `n` (no), the normal boot process continues as if the Mode button had not been pressed; you cannot access the boot loader prompt, and you cannot enter a new password. You see the message:

  Press Enter to continue........

- If you enter `y` (yes), the configuration file in flash memory and the VLAN database file are deleted. When the default configuration loads, you can reset the password.

---

**Step 1**

Choose to continue with password recovery and delete the existing configuration:

Would you like to reset the system back to the default configuration (y/n)? **Y**

**Step 2**

Display the contents of flash memory:

SwitchControllerDevice: `dir flash`:

The switch file system appears.

Directory of flash:/
.
.
..i'
15494 drwx 4096 Jan 1 2000 00:20:20 +00:00 kirch
15508 -rw- 258065648 Sep 4 2013 14:19:03 +00:00 cat3k_caa-universalk9.SSA.03.12.02.EZP.150-12.02.EZP.150-12.02.EZP.bin
162196684

**Step 3**

Boot up the system:

SwitchControllerDevice: `boot`:

You are prompted to start the setup program. To continue with password recovery, enter **N** at the prompt:

Continue with the configuration dialog? [yes/no]: **N**

**Step 4**

At the switch prompt, enter privileged EXEC mode:

SwitchControllerDevice> `enable`
Step 5  Enter global configuration mode:

SwitchControllerDevice# configure terminal

Step 6  Change the password:

SwitchControllerDevice(config)# enable secret password

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

Step 7  Return to privileged EXEC mode:

SwitchControllerDevice(config)# exit

SwitchControllerDevice#

Note  Before continuing to Step 9, power on any connected stack members and wait until they have completely initialized.

Step 8  Write the running configuration to the startup configuration file:

SwitchControllerDevice# copy running-config startup-config

The new password is now in the startup configuration.

Step 9  You must now reconfigure the switch. If the system administrator has the backup switch and VLAN configuration files available, you should use those.

Preventing Switch Stack Problems

To prevent switch stack problems, you should do the following:

- Make sure that the switches that you add to or remove from the switch stack are powered off. For all powering considerations in switch stacks, see the “Switch Installation” chapter in the hardware installation guide.

- Press the Mode button on a stack member until the Stack mode LED is on. The last two port LEDs on the switch should be green. Depending on the switch model, the last two ports are either 10/100/1000 ports or small form-factor pluggable (SFP) module. If one or both of the last two port LEDs are not green, the stack is not operating at full bandwidth.

- We recommend using only one CLI session when managing the switch stack. Be careful when using multiple CLI sessions to the active switch. Commands that you enter in one session are not displayed in the other sessions. Therefore, it is possible that you might not be able to identify the session from which you entered a command.

- Manually assigning stack member numbers according to the placement of the switches in the stack can make it easier to remotely troubleshoot the switch stack. However, you need to remember that the switches have manually assigned numbers if you add, remove, or rearrange switches later. Use the switch current-stack-member-number renumber new-stack-member-number global configuration command to manually assign a stack member number.
If you replace a stack member with an identical model, the new switch functions with the exact same configuration as the replaced switch. This is also assuming the new switch is using the same member number as the replaced switch.

Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. If you want the switch stacks to remain separate, change the IP address or addresses of the newly created switch stacks. To recover from a partitioned switch stack, follow these steps:

1. Power off the newly created switch stacks.
2. Reconnect them to the original switch stack through their StackWise Plus ports.
3. Power on the switches.

### Preventing Autonegotiation Mismatches

The IEEE 802.3ab autonegotiation protocol manages the switch settings for speed (10 Mb/s, 100 Mb/s, and 1000 Mb/s, excluding SFP module ports) and duplex (half or full). There are situations when this protocol can incorrectly align these settings, reducing performance. A mismatch occurs under these circumstances:

- A manually set speed or duplex parameter is different from the manually set speed or duplex parameter on the connected port.
- A port is set to autonegotiate, and the connected port is set to full duplex with no autonegotiation.

To maximize switch performance and ensure a link, follow one of these guidelines when changing the settings for duplex and speed:

- Let both ports autonegotiate both speed and duplex.
- Manually set the speed and duplex parameters for the ports on both ends of the connection.

---

**Note**

If a remote device does not autonegotiate, configure the duplex settings on the two ports to match. The speed parameter can adjust itself even if the connected port does not autonegotiate.

### Troubleshooting SFP Module Security and Identification

Cisco small form-factor pluggable (SFP) modules have a serial EEPROM that contains the module serial number, the vendor name and ID, a unique security code, and cyclic redundancy check (CRC). When an SFP module is inserted in the switch, the switch software reads the EEPROM to verify the serial number, vendor name and vendor ID, and recompute the security code and CRC. If the serial number, the vendor name or vendor ID, the security code, or CRC is invalid, the software generates a security error message and places the interface in an error-disabled state.
The security error message references the GBIC_SECURITY facility. The switch supports SFP modules and does not support GBIC modules. Although the error message text refers to GBIC interfaces and modules, the security messages actually refer to the SFP modules and module interfaces.

If you are using a non-Cisco SFP module, remove the SFP module from the switch, and replace it with a Cisco module. After inserting a Cisco SFP module, use the `errdisable recovery cause gbic-invalid` global configuration command to verify the port status, and enter a time interval for recovering from the error-disabled state. After the elapsed interval, the switch brings the interface out of the error-disabled state and retries the operation.

If the module is identified as a Cisco SFP module, but the system is unable to read vendor-data information to verify its accuracy, an SFP module error message is generated. In this case, you should remove and reinsert the SFP module. If it continues to fail, the SFP module might be defective.

Monitoring SFP Module Status

You can check the physical or operational status of an SFP module by using the `show interfaces transceiver` privileged EXEC command. This command shows the operational status, such as the temperature and the current for an SFP module on a specific interface and the alarm status. You can also use the command to check the speed and the duplex settings on an SFP module.

Executing Ping

If you attempt to ping a host in a different IP subnetwork, you must define a static route to the network or have IP routing configured to route between those subnets.

IP routing is disabled by default on all switches.

Note

Though other protocol keywords are available with the `ping` command, they are not supported in this release.

Use this command to ping another device on the network from the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`ping ip host</td>
<td>address`</td>
</tr>
</tbody>
</table>

SwitchControllerDevice# ping 172.20.52.3

Related Topics

- Ping, on page 3
- Example: Pinging an IP Host, on page 27
Monitoring Temperature

The switch monitors the temperature conditions and uses the temperature information to control the fans. Use the `show env temperature status` privileged EXEC command to display the temperature value, state, and thresholds. The temperature value is the temperature in the switch (not the external temperature). You can configure only the yellow threshold level (in Celsius) by using the `system env temperature threshold yellow value` global configuration command to set the difference between the yellow and red thresholds. You cannot configure the green or red thresholds.

Monitoring the Physical Path

You can monitor the physical path that a packet takes from a source device to a destination device.

### Table 1: Monitoring the Physical Path

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tracetroute mac [interface interface-id] \{source-mac-address\} \{destination-mac-address\} [vlan vlan-id] [detail]</code></td>
<td>Displays the Layer 2 path taken by the packets from the specified source MAC address to the specified destination MAC address.</td>
</tr>
<tr>
<td>`tracetroute mac ip {source-ip-address</td>
<td>source-hostname} {destination-ip-address</td>
</tr>
</tbody>
</table>

Executing IP Traceroute

**Note** Though other protocol keywords are available with the `tracertoute` privileged EXEC command, they are not supported in this release.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tracertoute ip host</code> SwitchControllerDevice# tracertoute ip 192.51.100.1</td>
<td>Traces the path that packets take through the network.</td>
</tr>
</tbody>
</table>

Related Topics

- IP Traceroute, on page 5
- Example: Performing a Traceroute to an IP Host, on page 27
Running TDR and Displaying the Results

When you run TDR on an interface, you can run it on the active switch or a stack member. To run TDR, enter the `test cable-diagnostics tdr interface interface-id` privileged EXEC command. To display the results, enter the `show cable-diagnostics tdr interface interface-id` privileged EXEC command.

Redirecting Debug and Error Message Output

By default, the network server sends the output from `debug` commands and system error messages to the console. If you use this default, you can use a virtual terminal connection to monitor debug output instead of connecting to the console port or the Ethernet management port. Possible destinations include the console, virtual terminals, internal buffer, and UNIX hosts running a syslog server. The syslog format is compatible with 4.3 Berkeley Standard Distribution (BSD) UNIX and its derivatives.

Note

Be aware that the debugging destination you use affects system overhead. When you log messages to the console, very high overhead occurs. When you log messages to a virtual terminal, less overhead occurs. Logging messages to a syslog server produces even less, and logging to an internal buffer produces the least overhead of any method.

Related Topics

Debug Commands, on page 6

Using the show platform forward Command

The output from the `show platform forward` privileged EXEC command provides some useful information about the forwarding results if a packet entering an interface is sent through the system. Depending upon the parameters entered about the packet, the output provides lookup table results and port maps used to calculate forwarding destinations, bitmaps, and egress information. Most of the information in the output from the command is useful mainly for technical support personnel, who have access to detailed information about the switch application-specific integrated circuits (ASICs). However, packet forwarding information can also be helpful in troubleshooting.

Configuring OBFL

Caution

We recommend that you do not disable OBFL and that you do not remove the data stored in the flash memory.
• To enable OBFL, use the `hw-switch switch [switch-number] logging onboard [message level level]` global configuration command. On switches, the range for `switch-number` is from 1 to 9. Use the `message level level` parameter to specify the severity of the hardware-related messages that the switch generates and stores in the flash memory.

• To copy the OBFL data to the local network or a specific file system, use the `copy onboard switch switch-number url url-destination` privileged EXEC command.

• To disable OBFL, use the `no hw-switch switch [switch-number] logging onboard [message level level]` global configuration command.

• To clear all the OBFL data in the flash memory except for the uptime and CLI command information, use the `clear onboard switch switch-number` privileged EXEC command.

• In a switch stack, you can enable OBFL on a standalone switch or on all stack members by using the `hw-switch switch [switch-number] logging onboard [message level level]` global configuration command.

• You can enable or disable OBFL on a member switch from the active switch.

Related Topics

  Onboard Failure Logging on the Switch, on page 8
  Displaying OBFL Information, on page 21

Verifying Troubleshooting of the Software Configuration

Displaying OBFL Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show onboard switch switch-number clilog</code></td>
<td>Displays the OBFL CLI commands that were entered on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>show onboard switch switch-number environment</code></td>
<td>Displays the UDI information for a standalone switch or the specified stack members and for all the connected FRU devices: the PID, the VID, and the serial number.</td>
</tr>
<tr>
<td><code>show onboard switch switch-number message</code></td>
<td>Displays the hardware-related messages generated by a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>show onboard switch switch-number counter</code></td>
<td>Displays the counter information on a standalone switch or the specified stack members.</td>
</tr>
</tbody>
</table>
## Example: Verifying the Problem and Cause for High CPU Utilization

To determine if high CPU utilization is a problem, enter the `show processes cpu sorted` privileged EXEC command. Note the underlined information in the first line of the output example.

```
SwitchControllerDevice# show processes cpu sorted
CPU utilization for five seconds: 8%/0%; one minute: 7%; five minutes: 8%
PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process
309 42289103 752750 56180 1.75% 1.20% 1.22% 0 RIP Timers
140 8820183 4942081 1784 0.63% 0.37% 0.30% 0 HRPC qos request
100 3427318 16150534 212 0.47% 0.14% 0.11% 0 HRPC pm-counters
192 3093252 14081112 219 0.31% 0.14% 0.11% 0 Spanning Tree
143 8 37 216 0.15% 0.01% 0.00% 0 Exec
...<output truncated>
```

This example shows normal CPU utilization. The output shows that utilization for the last 5 seconds is 8%/0%, which has this meaning:

- The total CPU utilization is 8 percent, including both time running Cisco IOS processes and time spent handling interrupts.
- The time spent handling interrupts is zero percent.
### Table 3: Troubleshooting CPU Utilization Problems

<table>
<thead>
<tr>
<th>Type of Problem</th>
<th>Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt percentage value is almost as high as total CPU utilization value.</td>
<td>The CPU is receiving too many packets from the network.</td>
<td>Determine the source of the network packet. Stop the flow, or change the switch configuration. See the section on “Analyzing Network Traffic.”</td>
</tr>
<tr>
<td>Total CPU utilization is greater than 50% with minimal time spent on interrupts.</td>
<td>One or more Cisco IOS process is consuming too much CPU time. This is usually triggered by an event that activated the process.</td>
<td>Identify the unusual event, and troubleshoot the root cause. See the section on “Debugging Active Processes.”</td>
</tr>
</tbody>
</table>
Scenarios for Troubleshooting the Software Configuration

Scenarios to Troubleshoot Power over Ethernet (PoE)

Table 4: Power over Ethernet Troubleshooting Scenarios

<table>
<thead>
<tr>
<th>Symptom or Problem</th>
<th>Possible Cause and Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only one port does not have PoE. Trouble is on only one switch port. PoE and non-PoE devices do not work on this port, but do on other ports.</td>
<td>Verify that the powered device works on another PoE port. Use the show run, or show interface status user EXEC commands to verify that the port is not shut down or error-disabled. Note Most switches turn off port power when the port is shut down, even though the IEEE specifications make this optional. Verify that the Ethernet cable from the powered device to the switch port is good: Connect a known good non-PoE Ethernet device to the Ethernet cable, and make sure that the powered device establishes a link and exchanges traffic with another host. Verify that the total cable length from the switch front panel to the powered device is not more than 100 meters. Disconnect the Ethernet cable from the switch port. Use a short Ethernet cable to connect a known good Ethernet device directly to this port on the switch front panel (not on a patch panel). Verify that it can establish an Ethernet link and exchange traffic with another host, or ping the port VLAN SVI. Next, connect a powered device to this port, and verify that it powers on. If a powered device does not power on when connected with a patch cord to the switch port, compare the total number of connected powered devices to the switch power budget (available PoE). Use the show inline power command to verify the amount of available power.</td>
</tr>
</tbody>
</table>
## Symptom or Problem

No PoE on all ports or a group of ports.

Trouble is on all switch ports. Nonpowered Ethernet devices cannot establish an Ethernet link on any port, and PoE devices do not power on.

## Possible Cause and Solution

If there is a continuous, intermittent, or reoccurring alarm related to power, replace the power supply if possible it is a field-replaceable unit. Otherwise, replace the switch.

If the problem is on a consecutive group of ports but not all ports, the power supply is probably not defective, and the problem could be related to PoE regulators in the switch.

Use the `show log` privileged EXEC command to review alarms or system messages that previously reported PoE conditions or status changes.

If there are no alarms, use the `show interface status` command to verify that the ports are not shut down or error-disabled. If ports are error-disabled, use the `shut` and `no shut` interface configuration commands to reenable the ports.

Use the `show env power` and `show power inline` privileged EXEC commands to review the PoE status and power budget (available PoE).

Review the running configuration to verify that `power inline never` is not configured on the ports.

Connect a nonpowered Ethernet device directly to a switch port. Use only a short patch cord. Do not use the existing distribution cables. Enter the `shut` and `no shut` interface configuration commands, and verify that an Ethernet link is established. If this connection is good, use a short patch cord to connect a powered device to this port and verify that it powers on. If the device powers on, verify that all intermediate patch panels are correctly connected.

Disconnect all but one of the Ethernet cables from switch ports. Using a short patch cord, connect a powered device to only one PoE port. Verify the powered device does not require more power than can be delivered by the switch port.

Use the `show power inline` privileged EXEC command to verify that the powered device can receive power when the port is not shut down. Alternatively, watch the powered device to verify that it powers on.

If a powered device can power on when only one powered device is connected to the switch, enter the `shut` and `no shut` interface configuration commands on the remaining ports, and then reconnect the Ethernet cables one at a time to the switch PoE ports. Use the `show interface status` and `show power inline` privileged EXEC commands to monitor inline power statistics and port status.

If there is still no PoE at any port, a fuse might be open in the PoE section of the power supply. This normally produces an alarm. Check the log again for alarms reported earlier by system messages.
<table>
<thead>
<tr>
<th>Symptom or Problem</th>
<th>Possible Cause and Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IP Phone disconnects or resets. After working normally, a Cisco phone or</td>
<td>Verify all electrical connections from the switch to the powered device. Any unreliable connection results in power interruptions and irregular powered device functioning such as erratic powered device disconnects and reloads.</td>
</tr>
<tr>
<td>wireless access point intermittently reloads or disconnects from PoE.</td>
<td>Verify that the cable length is not more than 100 meters from the switch port to the powered device.</td>
</tr>
<tr>
<td></td>
<td>Notice what changes in the electrical environment at the switch location or what happens at the powered device when the disconnect occurs.</td>
</tr>
<tr>
<td></td>
<td>Notice whether any error messages appear at the same time a disconnect occurs. Use the <code>show log</code> privileged EXEC command to review error messages.</td>
</tr>
<tr>
<td></td>
<td>Verify that an IP phone is not losing access to the Call Manager immediately before the reload occurs. (It might be a network problem and not a PoE problem.)</td>
</tr>
<tr>
<td></td>
<td>Replace the powered device with a non-PoE device, and verify that the device works correctly. If a non-PoE device has link problems or a high error rate, the problem might be an unreliable cable connection between the switch port and the powered device.</td>
</tr>
<tr>
<td>Non-Cisco powered device does not work on Cisco PoE switch. A non-Cisco powered</td>
<td>Use the <code>show power inline</code> command to verify that the switch power budget (available PoE) is not depleted before or after the powered device is connected. Verify that sufficient power is available for the powered device type before you connect it.</td>
</tr>
<tr>
<td>device is connected to a Cisco PoE switch, but never powers on or powers on and</td>
<td>Use the <code>show interface status</code> command to verify that the switch detects the connected powered device.</td>
</tr>
<tr>
<td>then quickly powers off. Non-PoE devices work normally.</td>
<td>Use the <code>show log</code> command to review system messages that reported an overcurrent condition on the port. Identify the symptom precisely: Does the powered device initially power on, but then disconnect? If so, the problem might be an initial surge-in (or <em>inrush</em>) current that exceeds a current-limit threshold for the port.</td>
</tr>
</tbody>
</table>

**Related Topics**

- [Power over Ethernet Ports](#)
Configuration Examples for Troubleshooting Software

Example: Pinging an IP Host

This example shows how to ping an IP host:

SwitchControllerDevice# ping 172.20.52.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echoes to 172.20.52.3, timeout is 2 seconds:
!!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

SwitchControllerDevice#

Table 5: Ping Output Display Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Each exclamation point means receipt of a reply.</td>
</tr>
<tr>
<td>.</td>
<td>Each period means the network server timed out while waiting for a reply.</td>
</tr>
<tr>
<td>U</td>
<td>A destination unreachable error PDU was received.</td>
</tr>
<tr>
<td>C</td>
<td>A congestion experienced packet was received.</td>
</tr>
<tr>
<td>I</td>
<td>User interrupted test.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>&amp;</td>
<td>Packet lifetime exceeded.</td>
</tr>
</tbody>
</table>

To end a ping session, enter the escape sequence (\texttt{Ctrl-^ X} by default). Simultaneously press and release the \texttt{Ctrl}, \texttt{Shift}, and \texttt{6} keys and then press the \texttt{X} key.

Related Topics

- Ping, on page 3
- Executing Ping, on page 18

Example: Performing a Traceroute to an IP Host

This example shows how to perform a \texttt{traceroute} to an IP host:

SwitchControllerDevice# traceroute ip 192.0.2.10

Type escape sequence to abort.
Tracing the route to 192.0.2.10
The display shows the hop count, the IP address of the router, and the round-trip time in milliseconds for each of the three probes that are sent.

Table 6: Traceroute Output Display Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output means that an access list is blocking traffic.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>U</td>
<td>Port unreachable.</td>
</tr>
</tbody>
</table>

To end a trace in progress, enter the escape sequence (Ctrl-^ X by default). Simultaneously press and release the Ctrl, Shift, and 6 keys and then press the X key.

Related Topics

- IP Traceroute, on page 5
- Executing IP Traceroute, on page 19

Example: Enabling All System Diagnostics

Caution: Because debugging output takes priority over other network traffic, and because the `debug all` privileged EXEC command generates more output than any other `debug` command, it can severely diminish switch performance or even render it unusable. In virtually all cases, it is best to use more specific `debug` commands.
This command disables all-system diagnostics:

SwitchControllerDevice# debug all

The no debug all privileged EXEC command disables all diagnostic output. Using the no debug all command is a convenient way to ensure that you have not accidentally left any debug commands enabled.

Related Topics
Debug Commands, on page 6

Additional References for Troubleshooting Software Configuration

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>System management commands</td>
<td>System Management Command Reference (Catalyst 3850 Switches)</td>
</tr>
<tr>
<td>Platform-independent command reference</td>
<td>Configuration Fundamentals Command Reference, Cisco IOS XE Release 3S (Catalyst 3850 Switches)</td>
</tr>
<tr>
<td>Platform_independent configuration information</td>
<td>Configuration Fundamentals Configuration Guide, Cisco IOS XE Release 3S (Catalyst 3850 Switches)</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

MIBs Link
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>

Feature History and Information for Troubleshooting Software Configuration

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

Related Topics

Finding Feature Information