Managing Switch Stacks

- Finding Feature Information, page 1
- Prerequisites for Switch Stacks, page 1
- Restrictions for Switch Stacks, page 2
- Information About Switch Stacks, page 2
- How to Configure a Switch Stack, page 14
- Troubleshooting the Switch Stack, page 20
- Monitoring the Switch Stack, page 23
- Configuration Examples for Switch Stacks, page 23
- Additional References for Switch Stacks, page 31
- Feature History and Information for Switch Stacks, page 32

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Switch Stacks

All the switches in the switch stack need to be running the same license level as the active switch. For information about license levels, see the System Management Configuration Guide (Catalyst 3850 Switches).

All switches in the switch stack need to be running compatible software versions.
Restrictions for Switch Stacks

The following are restrictions for your switch stack configuration:

- Switch stacks running the LAN Base license level do not support Layer 3 features.
- A switch stack can have up to nine stacking-capable switches connected through their StackWise-480 ports.
- You cannot have a switch stack containing a mix of Catalyst 3850 and Catalyst 3650 switches.

Related Topics
Supported Features in a Switch Stack, on page 2

Information About Switch Stacks

Switch Stack Overview

A switch stack can have up to nine stacking-capable switches connected through their StackWise-480 ports. The stack members work together as a unified system. Layer 2 and Layer 3 protocols present the entire switch stack as a single entity to the network.

A switch stack always has one active switch and one standby switch. If the active switch becomes unavailable, the standby switch assumes the role of the active switch, and continues to keep the stack operational.

The active switch controls the operation of the switch stack, and is the single point of stack-wide management. From the active switch, you configure:

- System-level (global) features that apply to all stack members
- Interface-level features for each stack member

The active switch contains the saved and running configuration files for the switch stack. The configuration files include the system-level settings for the switch stack and the interface-level settings for each stack member. Each stack member has a current copy of these files for back-up purposes.

Supported Features in a Switch Stack

The system-level features supported on the active switch are supported on the entire switch stack.

Related Topics
Restrictions for Switch Stacks, on page 2

Encryption Features

If the active switch is running the cryptographic universal software image (supports encryption), the encryption features are available on the switch stack.
StackWise-480

The stack members use the StackWise-480 technology to work together as a unified system. Layer 2 and Layer 3 protocols support the entire switch stack as a single entity in the network.

Note

Switch stacks running the LAN Base image do not support Layer 3 features.

StackWise-480 has a stack bandwidth of 480 Gbps, and uses stateful switchover (SSO) to provide resiliency within the stack. The stack behaves as a single switching unit that is managed by an active switch elected by the member switches. The active switch automatically elects a standby switch within the stack. The active switch creates and updates all the switching, routing and wireless information and constantly synchronizes that information with the standby switch. If the active switch fails, the standby switch assumes the role of the active switch and continues to keep the stack operational. Access points continue to remain connected during an active-to-standby switchover unless the access point is directly connected to the active switch. In this case the access point will lose power and reboot. A working stack can accept new members or delete old ones without service interruption.

Fast Stack Convergence

When a single link in a full ring stack becomes inoperable, there is a disruption in the forwarding of packets, and the stack moves to a half ring. With Catalyst 3850 switches this disruption of traffic (or stack convergence time) takes milliseconds.

StackPower

StackPower allows the power supplies in a stack to be shared as a common resource among all the switches in the stack. StackPower unifies the individual power supplies installed in the switches and creates a pool of power, directing that power where it is needed. Up to four switches can be configured in a StackPower stack using the StackPower cable.

For more information about StackPower, see the Interface and Hardware Component Configuration Guide (Catalyst 3850 Switches).

Switch Stack Membership

A standalone switch is a switch stack with one stack member that also operates as the active switch. You can connect one standalone switch to another to create a switch stack containing two stack members, with one of them as the active switch. You can connect standalone switches to an existing switch stack to increase the stack membership.

Changes to Switch Stack Membership

If you replace a stack member with an identical model, the new switch functions with exactly the same configuration as the replaced switch, assuming that the new switch (referred to as the provisioned switch) is using the same member number as the replaced switch.

The operation of the switch stack continues uninterrupted during membership changes unless you remove the active switch or you add powered-on standalone switches or switch stacks.
• Adding powered-on switches (merging) causes all switches to reload and elect a new active switch from among themselves. The newly elected active switch retains its role and configuration. All other switches retain their stack member numbers and use the stack configuration of the newly elected active switch.

Note

In Cisco IOS XE 3.6.4E and later versions, when a new switch is powered-on as a standalone switch before it is added as part of the switch stack, only this switch is reloaded and not the whole switch stack.

• Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. This can cause:
 * An IP address conflict in your network. If you want the switch stacks to remain separate, change the IP address or addresses of the newly created switch stacks.
 * A MAC address conflict between two members in the stack. You can use the `stack-mac update force` command to resolve the conflict.

If a newly created switch stack does not have an active switch or standby switch, the switch stack will reload and elect a new active switch.

Note

Make sure that you power off the switches that you add to or remove from the switch stack. After adding or removing stack members, make sure that the switch stack is operating at full bandwidth (480 Gbps). Press the Mode button on a stack member until the Stack mode LED is on. The last two right port LEDs on all switches in the stack should be green. Depending on the switch model, the last two right ports are 10-Gigabit Ethernet ports or small form-factor pluggable (SFP) module ports (10/100/1000 ports). If one or both of these LEDs are not green on any of the switches, the stack is not operating at full bandwidth.

If you remove powered-on members but do not want to partition the stack:

• Power off the switches in the newly created switch stacks.
• Reconnect them to the original switch stack through their stack ports.
• Power on the switches.

For cabling and power considerations that affect switch stacks, see the *Catalyst 3850 Switch Hardware Installation Guide*.

Related Topics

Assigning a Stack Member Number, on page 15
Switch Stack Configuration Scenarios, on page 23

Stack Member Numbers

The stack member number (1 to 9) identifies each member in the switch stack. The member number also determines the interface-level configuration that a stack member uses. You can display the stack member number by using the `show switch` EXEC command.
A new, out-of-the-box switch (one that has not joined a switch stack or has not been manually assigned a stack member number) ships with a default stack member number of 1. When it joins a switch stack, its default stack member number changes to the lowest available member number in the stack.

Stack members in the same switch stack cannot have the same stack member number. Every stack member, including a standalone switch, retains its member number until you manually change the number or unless the number is already being used by another member in the stack.

- If you manually change the stack member number by using the `switch current-stack-member-number renumber new-stack-member-number` EXEC command, the new number goes into effect after that stack member resets (or after you use the `reload slot stack-member-number` privileged EXEC command) and only if that number is not already assigned to any other members in the stack. Another way to change the stack member number is by changing the `SWITCH_NUMBER` environment variable.

 If the number is being used by another member in the stack, the switch selects the lowest available number in the stack.

 If you manually change the number of a stack member and no interface-level configuration is associated with that new member number, that stack member resets to its default configuration.

 You cannot use the `switch current-stack-member-number renumber new-stack-member-number` EXEC command on a provisioned switch. If you do, the command is rejected.

- If you move a stack member to a different switch stack, the stack member retains its number only if the number is not being used by another member in the stack. If it is being used, the switch selects the lowest available number in the stack.

- If you merge switch stacks, the switches that join the switch stack of a new active switch select the lowest available numbers in the stack.

As described in the hardware installation guide, you can use the switch port LEDs in Stack mode to visually determine the stack member number of each stack member.

Related Topics

- Assigning a Stack Member Number, on page 15
- Switch Stack Configuration Scenarios, on page 23

Stack Member Priority Values

A higher priority value for a stack member increases the probability of it being elected active switch and retaining its stack member number. The priority value can be 1 to 15. The default priority value is 1. You can display the stack member priority value by using the `show switch` EXEC command.

> **Note**
> We recommend assigning the highest priority value to the switch that you prefer to be the active switch. This ensures that the switch is reelected as the active switch if a reelection occurs.

To change the priority value for a stack member, use the `switch stack-member-number priority new priority-value` EXEC command.

The new priority value takes effect immediately but does not affect the current active switch. The new priority value helps determine which stack member is elected as the new active switch when the current active switch or the switch stack resets.
Switch Stack Bridge ID and MAC Address

A switch stack is identified in the network by its bridge ID and, if it is operating as a Layer 3 device, its router MAC address. The bridge ID and router MAC address are determined by the MAC address of the active switch.

If the active switch changes, the MAC address of the new active switch determines the new bridge ID and router MAC address.

If the entire switch stack reloads, the switch stack uses the MAC address of the active switch.

Persistent MAC Address on the Switch Stack

You can use the persistent MAC address feature to set a time delay before the stack MAC address changes. During this time period, if the previous active switch rejoins the stack, the stack continues to use its MAC address as the stack MAC address, even if the switch is now a stack member and not an active switch. If the previous active switch does not rejoin the stack during this period, the switch stack takes the MAC address of the new active switch as the stack MAC address. By default, the stack MAC address will be the MAC address of the first active switch, even if a new active switch takes over.

You can also configure stack MAC persistency so that the stack MAC address never changes to the new active switch MAC address.

Active and Standby Switch Election and Reelection

All stack members are eligible to be the active switch or the standby switch. If the active switch becomes unavailable, the standby switch becomes the active switch.

An active switch retains its role unless one of these events occurs:

• The switch stack is reset.
• The active switch is removed from the switch stack.
• The active switch is reset or powered off.
• The active switch fails.
• The switch stack membership is increased by adding powered-on standalone switches or switch stacks.

The active switch is elected or reelected based on one of these factors and in the order listed:

1. The switch that is currently the active switch.
2. The switch with the highest stack member priority value.
We recommend assigning the highest priority value to the switch that you prefer to be the active switch. This ensures that the switch is reelected as active switch if a reelection occurs.

3. The switch with the shortest start-up time.
4. The switch with the lowest MAC address.

Note: The factors for electing or reelecting a new standby switch are same as those for the active switch election or reelection, and are applied to all participating switches except the active switch.

After election, the new active switch becomes available after a few seconds. In the meantime, the switch stack uses the forwarding tables in memory to minimize network disruption. The physical interfaces on the other available stack members are not affected during a new active switch election and reset.

When the previous active switch becomes available, it does not resume its role as the active switch.

If you power on or reset an entire switch stack, some stack members might not participate in the active switch election. Stack members that are powered on within the same 2-minute timeframe participate in the active switch election and have a chance to become the active switch. Stack members that are powered on after the 120-second timeframe do not participate in this initial election and become stack members. For powering considerations that affect active-switch elections, see the switch hardware installation guide.

As described in the hardware installation guide, you can use the ACTV LED on the switch to see if the switch is the active switch.

Switch Stack Configuration Files

The active switch has the saved and running configuration file for the switch stack. The standby switch automatically receives the synchronized running configuration file. Stack members receive synchronized copies when the running configuration file is saved into the startup configuration file. If the active switch becomes unavailable, the standby switch takes over with the current running configuration.

The configuration files record these settings:

- System-level (global) configuration settings such as IP, STP, VLAN, and SNMP settings that apply to all stack members
- Stack member interface-specific configuration settings that are specific for each stack member

Note: The interface-specific settings of the active switch are saved if the active switch is replaced without saving the running configuration to the startup configuration.

A new, out-of-box switch joining a switch stack uses the system-level settings of that switch stack. If a switch is moved to a different switch stack before it is powered on, that switch loses its saved configuration file and uses the system-level configuration of the new switch stack. If the switch is powered on as a standalone switch before it joins the new switch stack, the stack will reload. When the stack reloads, the new switch may become the active switch, retain its configuration and overwrite the configuration files of the other stack members.
The interface-specific configuration of each stack member is associated with the stack member number. Stack members retain their numbers unless they are manually changed or they are already used by another member in the same switch stack. If the stack member number changes, the new number goes into effect after that stack member resets.

- If an interface-specific configuration does not exist for that member number, the stack member uses its default interface-specific configuration.
- If an interface-specific configuration exists for that member number, the stack member uses the interface-specific configuration associated with that member number.

If you replace a failed member with an identical model, the replacement member automatically uses the same interface-specific configuration as the failed switch. You do not need to reconfigure the interface settings. The replacement switch (referred to as the provisioned switch) must have the same stack member number as the failed switch.

You back up and restore the stack configuration in the same way as you would for a standalone switch configuration.

Related Topics

Assigning a Stack Member Number, on page 15
Switch Stack Configuration Scenarios, on page 23

Offline Configuration to Provision a Stack Member

You can use the offline configuration feature to provision (to supply a configuration to) a new switch before it joins the switch stack. You can configure the stack member number, the switch type, and the interfaces associated with a switch that is not currently part of the stack. The configuration that you create on the switch stack is called the provisioned configuration. The switch that is added to the switch stack and that receives this configuration is called the provisioned switch.

You manually create the provisioned configuration through the switch stack-member-number provision type global configuration command. You must change the stack-member-number on the provisioned switch before you add it to the stack, and it must match the stack member number that you created for the new switch on the switch stack. The switch type in the provisioned configuration must match the switch type of the newly added switch. The provisioned configuration is automatically created when a switch is added to a switch stack and when no provisioned configuration exists.

When you configure the interfaces associated with a provisioned switch, the switch stack accepts the configuration, and the information appears in the running configuration. However, as the switch is not active, any configuration on the interface is not operational and the interface associated with the provisioned switch does not appear in the display of the specific feature. For example, VLAN configuration information associated with a provisioned switch does not appear in the show vlan user EXEC command output on the switch stack.

The switch stack retains the provisioned configuration in the running configuration whether or not the provisioned switch is part of the stack. You can save the provisioned configuration to the startup configuration file by entering the copy running-config startup-config privileged EXEC command output on the switch stack.

Related Topics

Removing Provisioned Switch Information, on page 18
Provisioning a New Member for a Switch Stack: Example, on page 26
Effects of Adding a Provisioned Switch to a Switch Stack

When you add a provisioned switch to the switch stack, the stack applies either the provisioned configuration or the default configuration. This table lists the events that occur when the switch stack compares the provisioned configuration with the provisioned switch.

Table 1: Results of Comparing the Provisioned Configuration with the Provisioned Switch

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stack member numbers and the switch types match.</td>
<td>1. If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, and 2. If the switch type of the provisioned switch matches the switch type in the provisioned configuration on the stack.</td>
</tr>
<tr>
<td>The stack member numbers match but the switch types do not match.</td>
<td>1. If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, but 2. The switch type of the provisioned switch does not match the switch type in the provisioned configuration on the stack.</td>
</tr>
<tr>
<td>The stack member number is not found in the provisioned configuration.</td>
<td></td>
</tr>
<tr>
<td>The stack member number of the provisioned switch is not found in the provisioned configuration.</td>
<td></td>
</tr>
</tbody>
</table>

If you add a provisioned switch that is a different type than specified in the provisioned configuration to a powered-down switch stack and then apply power, the switch stack rejects the (now incorrect) `switch stack-member-number provision type` global configuration command in the startup configuration file. However, during stack initialization, the nondefault interface configuration information in the startup configuration file
for the provisioned interfaces (potentially of the wrong type) is executed. Depending on the differences between
the actual switch type and the previously provisioned switch type, some commands are rejected, and some
commands are accepted.

Note

If the switch stack does not contain a provisioned configuration for a new switch, the switch joins the
stack with the default interface configuration. The switch stack then adds to its running configuration with
a `switch stack-member-number provision type` global configuration command that matches the new
switch.

Effects of Replacing a Provisioned Switch in a Switch Stack

When a provisioned switch in a switch stack fails, it is removed from the stack, and is replaced with another
switch, the stack applies either the provisioned configuration or the default configuration to it. The events that
occur when the switch stack compares the provisioned configuration with the provisioned switch are the same
as those when you add a provisioned switch to a stack.

Effects of Removing a Provisioned Switch from a Switch Stack

If you remove a provisioned switch from the switch stack, the configuration associated with the removed
stack member remains in the running configuration as provisioned information. To completely remove the
configuration, use the `no switch stack-member-number provision` global configuration command.

Upgrading a Switch Running Incompatible Software

The auto-upgrade and auto-advice features enable a switch with software packages that are incompatible with
the switch stack to be upgraded to a compatible software version so that it can join the switch stack.

Auto-Upgrade

The purpose of the auto-upgrade feature is to allow a switch to be upgraded to a compatible software image,
so that the switch can join the switch stack.

When a new switch attempts to join a switch stack, each stack member performs compatibility checks with
itself and the new switch. Each stack member sends the results of the compatibility checks to the active switch,
which uses the results to determine whether the switch can join the switch stack. If the software on the new
switch is incompatible with the switch stack, the new switch enters version-mismatch (VM) mode.

If the auto-upgrade feature is enabled on the existing switch stack, the active switch automatically upgrades
the new switch with the same software image running on a compatible stack member. Auto-upgrade starts a
few minutes after the mismatched software is detected before starting.

Auto-upgrade is disabled by default.

Auto-upgrade includes an auto-copy process and an auto-extract process.

- Auto-copy automatically copies the software image running on any stack member to the new switch to
 automatically upgrade it. Auto-copy occurs if auto-upgrade is enabled, if there is enough flash memory
 in the new switch, and if the software image running on the switch stack is suitable for the new switch.
A switch in VM mode might not run all released software. For example, new switch hardware is not recognized in earlier versions of software.

- Automatic extraction (auto-extract) occurs when the auto-upgrade process cannot find the appropriate software in the stack to copy to the new switch. In that case, the auto-extract process searches all switches in the stack for the bin file needed to upgrade the switch stack or the new switch. The bin file can be in any flash file system in the switch stack or in the new switch. If a bin file suitable for the new switch is found on a stack member, the process extracts the file and automatically upgrades the new switch.

The auto-upgrade feature is not available in bundle mode. The switch stack must be running in installed mode. If the switch stack is in bundle mode, use the `software expand` privileged EXEC command to change to installed mode.

You can enable auto-upgrade by using the `software auto-upgrade enable` global configuration command on the new switch. You can check the status of auto-upgrade by using the `show running-config` privileged EXEC command and by checking the Auto upgrade line in the display.

You can configure auto-upgrade to upgrade the new switch with a specific software bundle by using the `software auto-upgrade source url` global configuration command. If the software bundle is invalid, the new switch is upgraded with the same software image running on a compatible stack member.

When the auto-upgrade process is complete, the new switch reloads and joins the stack as a fully functioning member. If you have both stack cables connected during the reload, network downtime does not occur because the switch stack operates on two rings.

For more information about upgrading a switch running incompatible software see the *Cisco IOS File System, Configuration Files, and Bundle Files Appendix, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)*.

Auto-Advise

The auto-advise feature is triggered when:

- The auto-upgrade feature is disabled.

- The new switch is in bundle mode and the stack is in installed mode. Auto-advise displays syslog messages about using the `software auto-upgrade` privileged EXEC command to change the new switch to installed mode.

- The stack is in bundle mode. Auto-advise displays syslog messages about booting the new switch in bundle mode so that it can join the stack.

- An auto-upgrade attempt fails because the new switch is running incompatible software. After the switch stack performs compatibility checks with the new switch, auto-advise displays syslog messages about whether the new switch can be auto-upgraded.

Auto-advise cannot be disabled. It does not give suggestions when the switch stack software and the software of the switch in version-mismatch (VM) mode do not contain the same license level.
Examples of Auto-Advise Messages

Auto-Upgrade Is Disabled and Incompatible Switch Attempting to Join: Example

This sample auto-advise output shows the system messages displayed when the auto-upgrade feature is disabled and an incompatible switch 1 tries to join the switch stack:

Oct 18 08:36:19.379: %INSTALLER-6-AUTO_ADVISE_SW_INITIATED: 2 installer: Auto advise initiated for switch 1
Oct 18 08:36:19.380: %INSTALLER-6-AUTO_ADVISE_SW: 2 installer: Searching stack for software to upgrade switch 1
Oct 18 08:36:19.382: %INSTALLER-6-AUTO_ADVISE_SW: 2 installer: Switch 1 with incompatible software has been added to the stack. The software running on all stack members was scanned and it has been determined that the 'software auto-upgrade' command can be used to install compatible software on switch 1.

Auto-Upgrade is Disabled and New Switch is in Bundle Mode: Example

This sample auto-advise output shows the system messages displayed when auto-upgrade is disabled and a switch running in bundle mode tries to join the stack that is running in installed mode:

Oct 18 11:09:47.005: %INSTALLER-6-AUTO_ADVISE_SW_INITIATED: 2 installer: Auto advise initiated for switch 1
Oct 18 11:09:47.005: %INSTALLER-6-AUTO_ADVISE_SW: 2 installer: Switch 1 running bundled software has been added to the stack that is running installed software.
Oct 18 11:09:47.005: %INSTALLER-6-AUTO_ADVISE_SW: 2 installer: The 'software auto-upgrade' command can be used to convert switch 1 to the installed running mode by installing its running software.

SDM Template Mismatch in Switch Stacks

All stack members use the Switch Database Management (SDM) template configured on the active switch. When a new switch is added to a stack, the SDM configuration that is stored on the active switch overrides the template configured on an individual switch.

You can use the `show switch` privileged EXEC command to see if any stack members are in SDM-mismatch mode.

Version-mismatch (VM) mode has priority over SDM-mismatch mode. If a VM-mode condition and an SDM-mismatch mode exist, the switch stack first attempts to resolve the VM-mode condition.

Switch Stack Management Connectivity

You manage the switch stack and the stack member interfaces through the active switch. You can use the CLI, SNMP, and supported network management applications such as CiscoWorks. You cannot manage stack members on an individual switch basis.
Use SNMP to manage network features across the stack that are defined by supported MIBs. The switch does not support MIBs to manage stacking-specific features such as stack membership and election.

Connectivity to Specific Stack Members

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation.

To debug the standby switch, you can access it from the active switch using the `session standby ios privileged EXEC` command. To debug a specific stack member, use the `session switch stack-member-number privileged EXEC` command from the active switch to access the diagnostic shell of the stack member. Only the `show` and `debug` commands are available in a CLI session to a specific stack member.

Related Topics

Accessing the Diagnostic Console of a Stack Member, on page 20

Connectivity to the Switch Stack Through an IP Address

The switch stack is managed through a single IP address. The IP address is a system-level setting and is not specific to the active switch or to any other stack member. You can still manage the stack through the same IP address even if you remove the active switch or any other stack member from the stack, provided there is IP connectivity.

Note

Stack members retain their IP addresses when you remove them from a switch stack. To avoid a conflict by having two devices with the same IP address in your network, change the IP addresses of any switches that you remove from the switch stack.

Connectivity to the Switch Stack Through Console Ports or Ethernet Management Ports

You can connect to the active switch by using one of these methods:

- You can connect a terminal or a PC to the active switch through the console port of one or more stack members.
- You can connect a PC to the active switch through the Ethernet management ports of one or more stack members.

Be careful when using multiple CLI sessions to the active switch. Commands that you enter in one session are not displayed in the other sessions. Therefore, it is possible that you might not be able to identify the session from which you entered a command.

We recommend using only one CLI session when managing the switch stack.
How to Configure a Switch Stack

Default Switch Stack Configuration

The following table shows the default switch stack configuration settings:

Table 2: Default Switch Stack Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack MAC address timer</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Stack member number</td>
<td>1</td>
</tr>
<tr>
<td>Stack member priority value</td>
<td>1</td>
</tr>
<tr>
<td>Offline configuration</td>
<td>The switch stack is not provisioned.</td>
</tr>
<tr>
<td>Persistent MAC address</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

Enabling the Persistent MAC Address Feature

This procedure is optional.

Note

When you enter the command to configure this feature, a warning message appears with the consequences of your configuration. You should use this feature cautiously. Using the old active switch MAC address elsewhere in the same domain could result in lost traffic.

SUMMARY STEPS

1. configure terminal
2. stack-mac persistent timer [0 | time-value]
3. end
4. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>`stack-mac persistent timer [0</td>
<td>time-value]`</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# stack-mac persistent timer 7</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter the command with no value or with a value of 0 to continue using the MAC address of the current active switch indefinitely.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter a time-value from 1 to 60 minutes to configure the time period before the stack MAC address changes to the new active switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The stack MAC address of the previous active switch is used until the configured time period expires.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics
- Persistent MAC Address on the Switch Stack, on page 6
- Enabling the Persistent MAC Address Feature: Example, on page 26

Assigning a Stack Member Number

This optional task is available only from the active switch.

SUMMARY STEPS

1. `switch current-stack-member-number renumber new-stack-member-number`
2. `reload slot stack-member-number`
Setting the Stack Member Priority Value

This optional task is available only from the active switch.

Follow these steps to assign a priority value to a stack member:

SUMMARY STEPS

1. `enable`
2. `switch stack-member-number priority new-priority-number`
3. `show switch stack-member-number`
4. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Switch enable</code></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 2 | **switch stack-member-number priority new-priority-number**
Example:
Switch# switch 3 priority 2 | Specifies the stack member number and the new priority for the stack member. The stack member number range is 1 to 9. The priority value range is 1 to 15.
You can display the current priority value by using the `show switch` user EXEC command.
The new priority value takes effect immediately but does not affect the current active switch. The new priority value helps determine which stack member is elected as the new active switch when the current active switch or switch stack resets.

Step 3 | **show switch stack-member-number**
Example:
Switch# show switch | Verify the stack member priority value.

Step 4 | **copy running-config startup-config**
Example:
Switch# copy running-config startup-config | (Optional) Saves your entries in the configuration file.

Related Topics
Stack Member Priority Values, on page 5

Provisioning a New Member for a Switch Stack

This optional task is available only from the active switch.

SUMMARY STEPS
1. show switch
2. configure terminal
3. switch stack-member-number provision type
4. end
5. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>show switch</code></td>
<td>Displays summary information about the switch stack.</td>
</tr>
<tr>
<td>Example: <code>Switch# show switch</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>switch stack-member-number provision type</code></td>
<td>Specifies the stack member number for the preconfigured switch. By default, no switches are provisioned.</td>
</tr>
<tr>
<td>Example: <code>Switch(config)# switch 3 provision WS-xxxx</code></td>
<td>For <code>stack-member-number</code>, the range is 1 to 9. Specify a stack member number that is not already used in the switch stack. See Step 1. For <code>type</code>, enter the model number of a supported switch that is listed in the command-line help strings.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: <code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Removing Provisioned Switch Information

Before you begin, you must remove the provisioned switch from the stack. This optional task is available only from the active switch.

SUMMARY STEPS

1. `configure terminal`
2. `no switch stack-member-number provision`
3. `end`
4. `copy running-config startup-config`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>no switch stack-member-number provision</td>
<td>Removes the provisioning information for the specified member.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

If you are removing a provisioned switch in a stack with this configuration:
- The stack has four members
- Stack member 1 is the active switch
- Stack member 3 is a provisioned switch

and want to remove the provisioned information and to avoid receiving an error message, you can remove power from stack member 3, disconnect the StackWise-480 cables between the stack member 3 and switches to which it is connected, reconnect the cables between the remaining stack members, and enter the **no switch stack-member-number provision** global configuration command.

Related Topics
- Offline Configuration to Provision a Stack Member, on page 8
- Provisioning a New Member for a Switch Stack: Example, on page 26

Displaying Incompatible Switches in the Switch Stack

SUMMARY STEPS

1. show switch
Upgrading an Incompatible Switch in the Switch Stack

SUMMARY STEPS

1. software auto-upgrade
2. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show switch</td>
<td>Displays any incompatible switches in the switch stack (indicated by a 'Current State' of 'V-Mismatch'). The V-Mismatch state identifies the switches with incompatible software. The output displays Lic-Mismatch for switches that are not running the same license level as the active switch. For information about managing license levels, see the System Management Configuration Guide (Catalyst 3850 Switches).</td>
</tr>
</tbody>
</table>

Step 2 | copy running-config startup-config | (Optional) Saves your entries in the configuration file. |

Troubleshooting the Switch Stack

Accessing the Diagnostic Console of a Stack Member

Before You Begin

This optional task is available only from the active switch.
SUMMARY STEPS

1. session switch stack-member-number
2. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>session switch stack-member-number</td>
<td>Accesses the diagnostic shell of the stack member from the active switch.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# session switch 2</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Returns to the CLI session on the active switch.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(diag) > exit</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

Connectivity to Specific Stack Members, on page 13

Temporarily Disabling a Stack Port

If a stack port is flapping and causing instability in the stack ring, to disable the port, enter the `switch stack-member-number stack port port-number disable` privileged EXEC command. To reenable the port, enter the `switch stack-member-number stack port port-number enable` command.

Note

Be careful when using the `switch stack-member-number stack port port-number disable` command. When you disable the stack port, the stack operates at half bandwidth.

A stack is in the full-ring state when all members are connected through the stack ports and are in the ready state.

The stack is in the partial-ring state when the following occurs:

- All members are connected through their stack ports but some are not in the ready state.
- Some members are not connected through the stack ports.

SUMMARY STEPS

1. switch stack-member-number stack port port-number disable
2. switch stack-member-number stack port port-number enable
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch stack-member-number stack port port-number disable</code></td>
<td>Disables the specified stack port.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch# switch 2 stack port 1 disable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch stack-member-number stack port port-number enable</code></td>
<td>Reenables the stack port.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch# switch 2 stack port 1 enable</code></td>
<td></td>
</tr>
</tbody>
</table>

When you disable a stack port and the stack is in the full-ring state, you can disable only one stack port. This message appears:

```
Enabling/disabling a stack port may cause undesired stack changes. Continue?[confirm]
```

When you disable a stack port and the stack is in the partial-ring state, you cannot disable the port. This message appears:

```
Disabling stack port not allowed with current stack configuration.
```

Reenabling a Stack Port While Another Member Starts

Stack Port 1 on Switch 1 is connected to Port 2 on Switch 4. If Port 1 is flapping, you can disable Port 1 with the `switch 1 stack port 1 disable` privileged EXEC command. While Port 1 on Switch 1 is disabled and Switch 1 is still powered on, follow these steps to reenable a stack port:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Disconnect the stack cable between Port 1 on Switch 1 and Port 2 on Switch 4.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Remove Switch 4 from the stack.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Add a switch to replace Switch 4 and assign it switch-number 4.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Reconnect the cable between Port 1 on Switch 1 and Port 2 on Switch 4 (the replacement switch).</td>
</tr>
<tr>
<td>Step 5</td>
<td>Reenable the link between the switches. Enter the <code>switch 1 stack port 1 enable</code> privileged EXEC command to enable Port 1 on Switch 1.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Power on Switch 4.</td>
</tr>
</tbody>
</table>

Caution

Powering on Switch 4 before enabling the Port 1 on Switch 1 might cause one of the switches to reload. If Switch 4 is powered on first, you might need to enter the `switch 1 stack port 1 enable` and the `switch 4 stack port 2 enable` privileged EXEC commands to bring up the link.
Monitoring the Switch Stack

Table 3: Commands for Displaying Stack Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show switch</code></td>
<td>Displays summary information about the stack, including the status of provisioned switches and switches in version-mismatch mode.</td>
</tr>
<tr>
<td><code>show switch stack-member-number</code></td>
<td>Displays information about a specific member.</td>
</tr>
<tr>
<td><code>show switch detail</code></td>
<td>Displays detailed information about the stack.</td>
</tr>
<tr>
<td><code>show switch neighbors</code></td>
<td>Displays the stack neighbors.</td>
</tr>
<tr>
<td><code>show switch stack-ports [summary]</code></td>
<td>Displays port information for the stack. Use the <code>summary</code> keyword to display the stack cable length, the stack link status, and the loopback status.</td>
</tr>
<tr>
<td><code>show redundancy</code></td>
<td>Displays the redundant system and the current processor information. The redundant system information includes the system uptime, standby failures, switchover reason, hardware, configured and operating redundancy mode. The current processor information displayed includes the active location, the software state, the uptime in the current state and so on.</td>
</tr>
<tr>
<td><code>show redundancy state</code></td>
<td>Displays all the redundancy states of the active and standby switches.</td>
</tr>
</tbody>
</table>

Configuration Examples for Switch Stacks

Switch Stack Configuration Scenarios

Most of these switch stack configuration scenarios assume that at least two switches are connected through their StackWise-480 ports.
Table 4: Configuration Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only one of the two active switches becomes the new active switch.</td>
<td>Connect two powered-on switch stacks through the StackWise-480 ports.</td>
</tr>
<tr>
<td>Connect two powered-on switch stacks through the StackWise-480 ports.</td>
<td>Only one of the two active switches becomes the new active switch.</td>
</tr>
<tr>
<td>Active switch election specifically determined by existing active switches</td>
<td>Connect two switches through their StackWise-480 ports.</td>
</tr>
<tr>
<td>Active switch election specifically determined by the stack member priority value</td>
<td>Assumed that the stack member has the same priority value:</td>
</tr>
<tr>
<td>Active switch election specifically determined by the configuration file</td>
<td>The stack member with the higher priority value is elected active switch.</td>
</tr>
<tr>
<td>Active switch election specifically determined by the MAC address</td>
<td>The stack member with the saved configuration file is elected active switch.</td>
</tr>
<tr>
<td>Active switch election specifically determined by the MAC address</td>
<td>Assuming that both stack members have the same priority value:</td>
</tr>
<tr>
<td>Active switch election specifically determined by the MAC address</td>
<td>The stack member with the lower MAC address is elected active switch.</td>
</tr>
<tr>
<td>Active switch election specifically determined by the MAC address</td>
<td>The stack member with the lower MAC address is elected active switch.</td>
</tr>
<tr>
<td>Active switch election specifically determined by the MAC address</td>
<td>假定两个堆成员有相同的优先级值：</td>
</tr>
<tr>
<td>Active switch election specifically determined by the MAC address</td>
<td>假定两个堆成员有相同的优先级值，配置文件，和许可证级别，重启两个堆成员在相同时间。</td>
</tr>
<tr>
<td>Active switch election specifically determined by the MAC address</td>
<td>假定两个堆成员有相同的优先级值，配置文件，和许可证级别，重启两个堆成员在相同时间。</td>
</tr>
</tbody>
</table>
Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack member number conflict</td>
<td>Assuming that one stack member has a higher priority value than the other stack member:</td>
</tr>
<tr>
<td></td>
<td>1 Ensure that both stack members have the same stack member number. If necessary, use the switch current-stack-member-number renumber new-stack-member-number EXEC command.</td>
</tr>
<tr>
<td></td>
<td>2 Restart both stack members at the same time.</td>
</tr>
<tr>
<td></td>
<td>The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number.</td>
</tr>
<tr>
<td>Add a stack member</td>
<td>1 Power off the new switch.</td>
</tr>
<tr>
<td></td>
<td>2 Through their StackWise-480 ports, connect the new switch to a powered-on switch stack.</td>
</tr>
<tr>
<td></td>
<td>3 Power on the new switch.</td>
</tr>
<tr>
<td></td>
<td>The active switch is retained. The new switch is added to the switch stack.</td>
</tr>
<tr>
<td>Active switch failure</td>
<td>Remove (or power off) the active switch.</td>
</tr>
<tr>
<td></td>
<td>The standby switch becomes the new active switch. All other stack members in the stack remain as stack members and do not reboot.</td>
</tr>
<tr>
<td>Add more than nine stack members</td>
<td>1 Through their StackWise-480 ports, connect ten switches.</td>
</tr>
<tr>
<td></td>
<td>2 Power on all switches.</td>
</tr>
<tr>
<td></td>
<td>Two switches become active switches. One active switch has nine stack members. The other active switch remains as a standalone switch.</td>
</tr>
<tr>
<td></td>
<td>Use the Mode button and port LEDs on the switches to identify which switches are active switches and which switches belong to each active switch.</td>
</tr>
</tbody>
</table>

Related Topics
- Assigning a Stack Member Number, on page 15
- Changes to Switch Stack Membership, on page 3
- Stack Member Numbers, on page 4
- Switch Stack Configuration Files, on page 7
Enabling the Persistent MAC Address Feature: Example

This example shows how to configure the persistent MAC address feature for a 7-minute time delay and to verify the configuration:

Switch(config)# stack-mac persistent timer 7
WARNING: The stack continues to use the base MAC of the old Master
WARNING: as the stack MAC after a master switchover until the MAC
WARNING: persistency timer expires. During this time the Network
WARNING: Administrators must make sure that the old stack-mac does
WARNING: not appear elsewhere in this network domain. If it does,
WARNING: user traffic may be blackholed.
Switch(config)# end
Switch# show switch
Switch/Stack Mac Address: 0016.4727.a900
Mac persistency wait time: 7 mins

H/W Current
Switch# Role Mac Address Priority Version State
--
*1 Active 0016.4727.a900 1 P2B Ready

Related Topics
Enabling the Persistent MAC Address Feature, on page 14
Persistent MAC Address on the Switch Stack, on page 6

Provisioning a New Member for a Switch Stack: Example

This example shows how to provision a switch with a stack member number of 2 for the switch stack. The show running-config command output shows the interfaces associated with the provisioned switch:

Switch(config)# switch 2 provision switch_PID
Switch(config)# end
Switch# show running-config | include switch 2
! interface GigabitEthernet2/0/1
! interface GigabitEthernet2/0/2
! interface GigabitEthernet2/0/3
<output truncated>

Related Topics
Removing Provisioned Switch Information, on page 18
Offline Configuration to Provision a Stack Member, on page 8

show switch stack-ports summary Command Output: Example

Only Port 1 on stack member 2 is disabled.

Switch# show switch stack-ports summary
Switch/# Stack Neighbor Cable Link Link Sync # Changes In
Port Status Length OK Active OK OK
-------- -------- -------- ---- ---- ---- ---- ----
1/1 OK 3 50 cm Yes Yes Yes 1 No
Table 5: show switch stack-ports summary Command Output

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch#/Port#</td>
<td>Member number and its stack port number.</td>
</tr>
<tr>
<td>Stack Port Status</td>
<td>Status of the stack port.</td>
</tr>
<tr>
<td></td>
<td>• Absent—No cable is detected on the stack port.</td>
</tr>
<tr>
<td></td>
<td>• Down—A cable is detected, but either no connected neighbor is up, or the stack port is disabled.</td>
</tr>
<tr>
<td></td>
<td>• OK—A cable is detected, and the connected neighbor is up.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>Switch number of the active member at the other end of the stack cable.</td>
</tr>
<tr>
<td>Cable Length</td>
<td>Valid lengths are 50 cm, 1 m, or 3 m.</td>
</tr>
<tr>
<td></td>
<td>If the switch cannot detect the cable length, the value is no cable. The cable might not be connected, or the link might be unreliable.</td>
</tr>
<tr>
<td>Link OK</td>
<td>Whether the stack cable is connected and functional.</td>
</tr>
<tr>
<td></td>
<td>There may or may not be a neighbor connected on the other end.</td>
</tr>
<tr>
<td></td>
<td>The link partner is a stack port on a neighbor switch.</td>
</tr>
<tr>
<td></td>
<td>• No—There is no stack cable connected to this port or the stack cable is not functional.</td>
</tr>
<tr>
<td></td>
<td>• Yes—There is a functional stack cable connected to this port.</td>
</tr>
<tr>
<td>Link Active</td>
<td>Whether a neighbor is connected on the other end of the stack cable.</td>
</tr>
<tr>
<td></td>
<td>• No—No neighbor is detected on the other end. The port cannot send traffic over this link.</td>
</tr>
<tr>
<td></td>
<td>• Yes—A neighbor is detected on the other end. The port can send traffic over this link.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
Sync OK | Whether the link partner sends valid protocol messages to the stack port.
- **No**—The link partner does not send valid protocol messages to the stack port.
- **Yes**—The link partner sends valid protocol messages to the port.

Changes to LinkOK | The relative stability of the link.
If a large number of changes occur in a short period of time, link flapping can occur.

In Loopback | Whether a stack cable is attached to a stack port on the member.
- **No**—At least one stack port on the member has an attached stack cable.
- **Yes**—None of the stack ports on the member has an attached stack cable.

Software Loopback: Examples

In a stack with three members, stack cables connect all the members:

```
Switch# show switch stack-ports summary
Sw#/Port# Port Neighbor Cable Link Length OK Active OK To Sync #Changes In
Status # Status
-------- ------ -------- -------- ---- ------ ---- --------- --------
1/1 OK 3 50 cm Yes Yes Yes 1 No
1/2 OK 2 3 m Yes Yes Yes 1 No
2/1 OK 1 3 m Yes Yes Yes 1 No
2/2 OK 3 50 cm Yes Yes Yes 1 No
3/1 OK 2 50 cm Yes Yes Yes 1 No
3/2 OK 1 50 cm Yes Yes Yes 1 No
```

If you disconnect the stack cable from Port 1 on Switch 1, these messages appear:

```
01:09:55: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 2 Switch 3 has changed to state DOWN
01:09:56: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 1 Switch 1 has changed to state DOWN
```

```
Switch# show switch stack-ports summary
Sw#/Port# Port Neighbor Cable Length Link Status OK Active OK To Sync #Changes In
Status # Status
-------- ------ -------- -------- ---- ------ ---- --------- --------
1/1 Absent None No cable No No No No 1 No
1/2 OK 2 3 m Yes Yes Yes 1 No
2/1 OK 1 3 m Yes Yes Yes 1 No
2/2 OK 3 50 cm Yes Yes Yes 1 No
3/1 OK 2 50 cm Yes Yes Yes 1 No
3/2 Down None 50 cm No No No No 1 No
```
If you disconnect the stack cable from Port 2 on Switch 1, the stack splits.

Switch 2 and Switch 3 are now in a two-member stack connected through stack cables:

```
Switch# show sw stack-ports summary

Sw#/Port# | Port Status | Neighbor | Cable Length | Link OK | Link Active | Sync OK | #Changes In Status | Length | OK | Active | OK | To LinkOK | Loopback
----------|-------------|----------|---------------|---------|-------------|--------|-------------------|--------|----|--------|----|----------|---------
2/1       | Down        | None     | 3 m           | No      | No          | No     | 1                 | No     | No | No     |   | No       | No
2/2       | OK          |          | 50 cm         | Yes     | Yes         | Yes    | 1                 | No     | No | No     |   | No       | No
3/1       | OK          | 2        | 50 cm         | Yes     | Yes         | Yes    | 1                 | No     | No | No     |   | No       | No
3/2       | Down        | None     | 50 cm         | No      | No          | No     | 1                 | No     | No | No     |   | No       | No
```

Switch 1 is a standalone switch:

```
Switch# show switch stack-ports summary

Sw#/Port# | Port Status | Neighbor | Cable Length | Link OK | Link Active | Sync OK | #Changes In Status | Length | OK | Active | OK | To LinkOK | Loopback
----------|-------------|----------|---------------|---------|-------------|--------|-------------------|--------|----|--------|----|----------|---------
1/1       | Absent      | None     |               | No      | No          | No     | 1                 | Yes    | Yes| No     |   | No       | Yes
1/2       | Absent      | None     |               | No      | No          | No     | 1                 | Yes    | Yes| No     |   | No       | Yes
```

Software Loopback with Connected Stack Cables: Examples

- On Port 1 on Switch 1, the port status is *Down*, and a cable is connected.

 On Port 2 on Switch 1, the port status is *Absent*, and no cable is connected.

```
Switch# show switch stack-ports summary

Sw#/Port# | Port Status | Neighbor | Cable Length | Link OK | Link Active | Sync OK | #Changes In Status | Length | OK | Active | OK | To LinkOK | Loopback
----------|-------------|----------|---------------|---------|-------------|--------|-------------------|--------|----|--------|----|----------|---------
1/1       | Down        | None     | 50 cm         | No      | No          | No     | 1                 | No     | No | No     |   | No       | No
1/2       | Absent      | None     | No cable      | No      | No          | No     | 1                 | Yes    | Yes| No     |   | No       | Yes
```

- In a *physical loopback*, a cable connects both stack ports on a switch. You can use this configuration to test

 - Cables on a switch that is running properly
 - Stack ports with a cable that works properly

```
Switch# show switch stack-ports summary

Sw#/Port# | Port Status | Neighbor | Cable Length | Link OK | Link Active | Sync OK | #Changes In Status | Length | OK | Active | OK | To LinkOK | Loopback
----------|-------------|----------|---------------|---------|-------------|--------|-------------------|--------|----|--------|----|----------|---------
2/1       | OK          | 2        | 50 cm         | Yes     | Yes         | Yes    | 1                 | No     | No | No     |   | No       | No
2/2       | OK          | 2        | 50 cm         | Yes     | Yes         | Yes    | 1                 | No     | No | No     |   | No       | No
```

The port status shows that

- Switch 2 is a standalone switch.
- The ports can send and receive traffic.
Software Loopback with no Connected Stack Cable: Example

Switch# show switch stack-ports summary
Switch#
Sw#/Port# Port Neighbor Cable Link Link Sync #Changes In
Status Length OK Active OK To LinkOK Loopback
-------- ------ -------- -------- ---- ------ ---- --------- --------
1/1 Absent None No cable No No No 1 Yes
1/2 Absent None No cable No No No 1 Yes

Finding a Disconnected Stack Cable: Example

Stack cables connect all stack members. Port 2 on Switch 1 connects to Port 1 on Switch 2.

This is the port status for the members:

Switch# show switch stack-ports summary
Switch#
Sw#/Port# Port Neighbor Cable Link Link Sync #Changes In
Status Length OK Active OK To LinkOK Loopback
-------- ------ -------- -------- ---- ------ ---- --------- --------
1/1 OK 2 50 cm Yes Yes Yes 0 No
1/2 OK 2 50 cm Yes Yes Yes 0 No
2/1 OK 1 50 cm Yes Yes Yes 0 No
2/2 OK 1 50 cm Yes Yes Yes 0 No

If you disconnect the cable from Port 2 on Switch 1, these messages appear:

%STACKMGR-4-STACK_LINK_CHANGE: Stack Port 1 Switch 2 has changed to state DOWN
%STACKMGR-4-STACK_LINK_CHANGE: Stack Port 2 Switch 1 has changed to state DOWN

This is now the port status:

Switch# show switch stack-ports summary
Switch#
Sw#/Port# Port Neighbor Cable Link Link Sync #Changes In
Status Length OK Active OK To LinkOK Loopback
-------- ------ -------- -------- ---- ------ ---- --------- --------
1/1 OK 2 50 cm Yes Yes Yes 1 No
1/2 Absent None No cable No No No 2 No
2/1 Down None 50 cm No No No 2 No
2/2 OK 1 50 cm Yes Yes Yes 1 No

Only one end of the cable connects to a stack port, Port 1 on Switch 2.

• The Stack Port Status value for Port 2 on Switch 1 is Absent, and the value for Port 1 on Switch 2 is Down.

• The Cable Length value is No cable.

Diagnosing the problem:

• Verify the cable connection for Port 2 on Switch 1.

• Port 2 on Switch 1 has a port or cable problem if
 • The In Loopback value is Yes.
or

* The Link OK, Link Active, or Sync OK value is No.

Fixing a Bad Connection Between Stack Ports: Example

Stack cables connect all members. Port 2 on Switch 1 connects to Port 1 on Switch 2.

This is the port status:

```
Switch# show switch stack-ports summary

Sw#/Port# Port Neighbor Cable Link Link Sync #Changes In
Status Length OK Active OK To LinkOK Loopback
-------- ------ -------- -------- ---- ------ ---- --------- --------
 1/1   OK   2      50 cm Yes   Yes   Yes   1   No
 1/2   Down None 50 cm No    No    No    2   No
 2/1   Down None 50 cm No    No    No    2   No
 2/2   OK   1      50 cm Yes   Yes   Yes   1   No
```

Diagnosing the problem:

• The Stack Port Status value is Down.

• Link OK, Link Active, and Sync OK values are No.

• The Cable Length value is 50 cm. The switch detects and correctly identifies the cable.

The connection between Port 2 on Switch 1 and Port 1 on Switch 2 is unreliable on at least one of the connector pins.

Additional References for Switch Stacks

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabling and powering on a switch stack.</td>
<td>Catalyst 3850 Switch Hardware Installation Guide</td>
</tr>
</tbody>
</table>

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and licensed feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for Switch Stacks

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>