Stack Manager and High Availability Commands

- debug platform stack-manager, page 3
- main-cpu, page 4
- mode sso, page 5
- policy config-sync prc reload, page 6
- redundancy, page 7
- redundancy config-sync mismatched-commands, page 8
- redundancy force-switchover, page 10
- redundancy reload, page 11
- reload, page 12
- session, page 14
- set trace capwap ap ha, page 16
- set trace mobility ha, page 18
- set trace qos ap ha, page 20
- show platform stack-manager, page 22
- show redundancy, page 23
- show redundancy config-sync, page 27
- show switch, page 29
- show trace messages capwap ap ha, page 34
- show trace messages mobility ha, page 35
- stack-mac persistent timer, page 36
- stack-mac update force, page 38
- standby console enable, page 40
- switch stack port, page 41
- switch priority, page 43
• switch provision, page 44
• switch renumber, page 46
debug platform stack-manager

To enable debugging of the stack manager software, use the `debug platform stack-manager` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
default platform stack-manager {level1| level2| level3| sdp| serviceability| sim| ssm| trace} [switch switch-number]
```

```
no debug platform stack-manager {level1| level2| level3| sdp| serviceability| sim| ssm| trace} [switch switch-number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>level1</td>
<td>Enables level 1 debug logs.</td>
</tr>
<tr>
<td>level2</td>
<td>Enables level 2 debug logs.</td>
</tr>
<tr>
<td>level3</td>
<td>Enables level 3 debug logs.</td>
</tr>
<tr>
<td>sdp</td>
<td>Displays the Stack Discovery Protocol (SDP) debug messages.</td>
</tr>
<tr>
<td>serviceability</td>
<td>Displays stack manager serviceability debug messages.</td>
</tr>
<tr>
<td>sim</td>
<td>Displays the stack information module debug messages.</td>
</tr>
<tr>
<td>ssm</td>
<td>Displays the stack state-machine debug messages.</td>
</tr>
<tr>
<td>trace</td>
<td>Traces the stack manager entry and exit debug messages.</td>
</tr>
<tr>
<td>switch switch-number</td>
<td>(Optional) Specifies the stack member number to enable debugging on. The range is 1 to 9.</td>
</tr>
</tbody>
</table>

Command Default

Debugging is disabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is supported only on stacking-capable switches.

The `undebug platform stack-manager` command is the same as the `no debug platform stack-manager` command.
main-cpu

To enter the redundancy main configuration submode and enable the standby switch, use the `main-cpu` command in redundancy configuration mode.

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command Modes
Redundancy configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
From the redundancy main configuration submode, use the `standby console enable` command to enable the standby switch.

Examples
This example shows how to enter the redundancy main configuration submode and enable the standby switch:

```
Switch(config)# redundancy
Switch(config-red)# main-cpu
Switch(config-r-mc)# standby console enable
Switch#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>standby console enable</td>
<td>Enables access to the standby console switch.</td>
</tr>
</tbody>
</table>
mode sso

To set the redundancy mode to stateful switchover (SSO), use the `mode sso` command in redundancy configuration mode.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command Modes

Redundancy configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `mode sso` command can be entered only from within redundancy configuration mode.

Follow these guidelines when configuring your system to SSO mode:

- You must use identical Cisco IOS images on the switches in the stack to support SSO mode. Redundancy may not work due to differences between the Cisco IOS releases.
- If you perform an online insertion and removal (OIR) of the module, the switch resets during the stateful switchover and the port states are restarted only if the module is in a transient state (any state other than Ready).
- The forwarding information base (FIB) tables are cleared on a switchover. Routed traffic is interrupted until route tables reconverge.

Examples

This example shows how to set the redundancy mode to SSO:

```
Switch(config)# redundancy
Switch(config-red)# mode sso
Switch(config-red)#
```
policy config-sync prc reload

To reload the standby switch if a parser return code (PRC) failure occurs during configuration synchronization, use the `policy config-sync reload` command in redundancy configuration mode. To specify that the standby switch is not reloaded if a parser return code (PRC) failure occurs, use the `no` form of this command.

```
policy config-sync {bulk|lbl} prc reload
no policy config-sync {bulk|lbl} prc reload
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bulk</td>
<td>Specifies bulk configuration mode.</td>
</tr>
<tr>
<td>lbl</td>
<td>Specifies line-by-line (lbl) config.</td>
</tr>
</tbody>
</table>

Command Default

The command is enabled by default.

Command Modes

Redundancy configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to specify that the standby switch is not reloaded if a parser return code (PRC) failure occurs during configuration synchronization:

```
Switch(config-red)# no policy config-sync bulk prc reload
```
To enter redundancy configuration mode, use the `redundancy` command in global configuration mode.

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The redundancy configuration mode is used to enter the main CPU submode, which is used to enable the standby switch.

To enter the main CPU submode, use the `main-cpu` command while in redundancy configuration mode.

From the main CPU submode, use the `standby console enable` command to enable the standby switch.

Use the `no` command to disable redundancy. If you disable redundancy and then reenable it, the switch returns to default redundancy settings.

Use the `exit` command to exit redundancy configuration mode.

Examples

This example shows how to enter redundancy configuration mode:

```
Switch(config)# redundancy
Switch(config-red)#
```

This example shows how to enter the main CPU submode:

```
Switch(config)# redundancy
Switch(config-red)# main-cpu
Switch(config-r-mc)#
```
redundancy config-sync mismatched-commands

To allow the standby switch to join the stack if a configuration mismatch occurs between the active and standby switches, use the `redundancy config-sync mismatched-commands` command in privileged EXEC mode.

```
redundancy config-sync {ignore|validate} mismatched-commands
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ignore</td>
<td>Ignores the mismatched command list.</td>
</tr>
<tr>
<td>validate</td>
<td>Revalidates the mismatched command list with the modified running-configuration.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If the command syntax check in the running configuration of the active switch fails while the standby switch is booting, use the `redundancy config-sync mismatched-commands` command to display the Mismatched Command List (MCL) on the active switch and to reboot the standby switch.

The following is a log entry example for mismatched commands:

```
00:06:31: Config Sync: Bulk-sync failure due to Servicing Incompatibility. Please check full list of mismatched commands via:
show redundancy config-sync failures mcl
00:06:31: Config Sync: Starting lines from MCL file:
interface GigabitEthernet7/7
! <submode> "interface"
- ip address 192.0.2.0 255.255.255.0
! </submode> "interface"
```

To display all mismatched commands, use the `show redundancy config-sync failures mcl` command.

To clean the MCL, follow these steps:

1. Remove all mismatched commands from the running configuration of the active switch.
2. Revalidate the MCL with a modified running configuration by using the `redundancy config-sync validate mismatched-commands` command.
3. Reload the standby switch.
You can ignore the MCL by doing the following:

1. Enter the `redundancy config-sync ignore mismatched-commands` command.

2. Reload the standby switch; the system changes to SSO mode.

Note

If you ignore the mismatched commands, the out-of-sync configuration at the active switch and the standby switch still exists.

3. Verify the ignored MCL with the `show redundancy config-sync ignored mcl` command.

If SSO mode cannot be established between the active and standby switches because of an incompatibility in the configuration file, a mismatched command list (MCL) is generated at the active switch and a reload into route processor redundancy (RPR) mode is forced for the standby switch.

Note

RPR mode is supported on Catalyst 3850 switches as a fallback in case of errors. It is not configurable.

If you attempt to establish an SSO after removing the offending configuration and rebooting the standby switch with the same image, the C3K_REDUNDANCY-2-IOS_VERSION_CHECK_FAIL and ISSU-3-PEER_IMAGE_INCOMPATIBLE messages appear because the peer image is listed as incompatible. You can clear the peer image from the incompatible list with the `redundancy config-sync ignore mismatched-commands` EXEC command while the peer is in a standby cold (RPR) state. This action allows the standby switch to boot in a standby hot (SSO) state when it reloads.

Examples

This example shows how to revalidate the mismatched command list with the modified configuration:

```
Switch# redundancy config-sync validate mismatched-commands
Switch# redundancy config-sync validate mismatched-commands
```
redundancy force-switchover

To force a switchover from the active switch to the standby switch, use the `redundancy force-switchover` command in privileged EXEC mode on a switch stack.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `redundancy force-switchover` command to manually switch over to the redundant switch. The redundant switch becomes the new active switch that runs the Cisco IOS image, and the modules are reset to their default settings.

The old active switch reboots with the new image and joins the stack.

If you use the `redundancy force-switchover` command on the active switch, the switchports on the active switch to go down.

If you use this command on a switch that is in a partial ring stack, the following warning message appears:

```
Switch# redundancy force-switchover
Stack is in Half ring setup; Reloading a switch might cause stack split
This will reload the active unit and force switchover to standby[confirm]
```

Examples

This example shows how to manually switch over from the active to the standby supervisor engine:

```
Switch# redundancy force-switchover
Switch#
```
redundancy reload

To force a reload of one or all of the switches in the stack, use the `redundancy reload` command in privileged EXEC mode.

```
redundancy reload [peer|shelf]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>peer</td>
<td>Reloads the peer unit.</td>
</tr>
<tr>
<td>shelf</td>
<td>Reboots all switches in the stack.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before using this command, see the "Performing a Software Upgrade" section of the *Stacking Configuration Guide (Catalyst 3850 Switches)* for additional information.

Use the `redundancy reload shelf` command to reboot all the switches in the stack.

Examples

This example shows how to manually reload all switches in the stack:

```
Switch# redundancy reload shelf
Switch#
```
reload

To reload the stack member and to apply a configuration change, use the `reload` command in privileged EXEC mode.

```
reload [/noverify] [/verify] [LINE] at| cancel| in| slot stack-member-number| standby-cpu]
```

Syntax Description

- **/noverify** (Optional) Specifies to not verify the file signature before the reload.
- **/verify** (Optional) Verifies the file signature before the reload.
- **LINE** (Optional) Reason for the reload.
- **at** (Optional) Specifies the time in hh:mm for the reload to occur.
- **cancel** (Optional) Cancels the pending reload.
- **in** (Optional) Specifies a time interval for reloads to occur.
- **slot** (Optional) Saves the changes on the specified stack member and then restarts it.
- **stack-member-number** (Optional) Stack member number on which to save the changes. The range is 1 to 9.
- **standby-cpu** (Optional) Reloads the standby route processor (RP).

Command Default

Immediately reloads the stack member and puts a configuration change into effect.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If there is more than one switch in the switch stack, and you enter the `reload slot stack-member-number` command, you are not prompted to save the configuration.

Examples

This example shows how to reload the switch stack:

Switch# reload
System configuration has been modified. Save? [yes/no]: yes
Reload command is being issued on Active unit, this will reload the whole stack
Proceed with reload? [confirm] yes

This example shows how to reload a specific stack member:
Switch# reload slot 6
Proceed with reload? [confirm] y

This example shows how to reload a single-switch switch stack (there is only one member switch):
Switch# reload slot 3
System configuration has been modified. Save? [yes/no]: y
Proceed to reload the whole Stack? [confirm] y

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show switch</td>
<td>Displays information related to the stack member or the switch stack.</td>
</tr>
<tr>
<td>switch priority</td>
<td>Changes the stack member priority value.</td>
</tr>
<tr>
<td>switch renumber</td>
<td>Changes the stack member number.</td>
</tr>
</tbody>
</table>
session

To access the diagnostic shell of a specific stack member or to access the Cisco IOS prompt of the standby Switch use the `session` command in privileged EXEC mode on the active Switch.

```
session {standby ios| switch [stack-member-number]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>standby ios</code></td>
<td>Accesses the Cisco IOS prompt of the standby Switch.</td>
</tr>
<tr>
<td><code>Note</code></td>
<td>You cannot configure the standby Switch using this command.</td>
</tr>
<tr>
<td><code>switch</code></td>
<td>Accesses the diagnostic shell of a stack member.</td>
</tr>
<tr>
<td><code>stack-member-number</code></td>
<td>(Optional) Stack member number to access from the active switch. The range is 1 to 9.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you access the Cisco IOS prompt on the standby Switch, `-stby` is appended to the system prompt. You cannot configure the standby Switch at the `Switch-stby>` prompt.

When you access the diagnostic shell of a stack member, `(diag)` is appended to the system prompt.

Examples

This example shows how to access stack member 3:

```
Switch# session switch 3
Switch(diag)>
```

This example shows how to access the standby Switch:

```
Switch# session standby ios
Switch-stby>
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reload</td>
<td>Reloads the stack member and applies a configuration change.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>show switch</td>
<td>Displays information related to the stack member or</td>
</tr>
<tr>
<td></td>
<td>the switch stack.</td>
</tr>
<tr>
<td>switch priority</td>
<td>Changes the stack member priority value.</td>
</tr>
<tr>
<td>switch renumber</td>
<td>Changes the stack member number.</td>
</tr>
</tbody>
</table>
set trace capwap ap ha

To trace the control and provisioning of wireless access point high availability, use the **set trace capwap ap ha** privileged EXEC command.

```
set trace capwap ap ha [detail|event|dump | {filter [none [switch switch]]|filter_name [filter_value [switch switch]]]}|filteredswitchlevel {default|trace_level} [switch switch]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>(Optional) Specifies the wireless CAPWAP HA details.</td>
</tr>
<tr>
<td>event</td>
<td>(Optional) Specifies the wireless CAPWAP HA events.</td>
</tr>
<tr>
<td>dump</td>
<td>(Optional) Specifies the wireless CAPWAP HA output.</td>
</tr>
<tr>
<td>filter mac</td>
<td>Specifies the MAC address.</td>
</tr>
<tr>
<td>switch number</td>
<td>Specifies the switch number.</td>
</tr>
<tr>
<td>none</td>
<td>(Optional) Specifies the no filter option.</td>
</tr>
<tr>
<td>switch switch</td>
<td>(Optional) Specifies the switch number.</td>
</tr>
<tr>
<td>filter name</td>
<td>Trace adapted flag filter name.</td>
</tr>
<tr>
<td>filter_value</td>
<td>(Optional) Value of the filter.</td>
</tr>
<tr>
<td>switch switch</td>
<td>(Optional) Specifies the switch number.</td>
</tr>
<tr>
<td>filtered</td>
<td>Specifies the filtered traces messages.</td>
</tr>
<tr>
<td>switch</td>
<td>Specifies the switch number.</td>
</tr>
<tr>
<td>level</td>
<td>Specifies the trace level.</td>
</tr>
<tr>
<td>default</td>
<td>Specifies the unset trace level value.</td>
</tr>
<tr>
<td>trace_level</td>
<td>Specifies the trace level.</td>
</tr>
<tr>
<td>switch switch</td>
<td>(Optional) Specifies the switch number.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to display the wireless CAPWAP HA:

```
Switch# set trace capwap ap ha detail filter mac WORD switch number
```
set trace mobility ha

To debug the wireless mobility high availability in the switch, use the `set trace mobility ha` privileged EXEC command.

```
set trace mobility ha [event| detail| dump] [filter[mac WORD switch switch number] [none [switch switch]] filter_name [filter_value [switch switch]]] level {default| trace_level} [switch switch] [filtered| switch]
```

Syntax Description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>event</code></td>
<td>(Optional) Specifies the wireless mobility high availability events.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>(Optional) Specifies the wireless mobility high availability details.</td>
</tr>
<tr>
<td><code>dump</code></td>
<td>(Optional) Specifies the wireless mobility high availability output.</td>
</tr>
<tr>
<td><code>filter</code></td>
<td>Specifies to trace adapted flag filter.</td>
</tr>
<tr>
<td><code>mac</code></td>
<td>Specifies the MAC address.</td>
</tr>
<tr>
<td><code>WORD switch</code></td>
<td>Specifies the switch.</td>
</tr>
<tr>
<td><code>switch number</code></td>
<td>Specifies the switch number. The value ranges from one to four.</td>
</tr>
<tr>
<td><code>none</code></td>
<td>Specifies no trace adapted flag filter.</td>
</tr>
<tr>
<td><code>switch switch</code></td>
<td>(Optional) Specifies the switch number.</td>
</tr>
<tr>
<td><code>filter_name</code></td>
<td>Trace adapted flag filter name.</td>
</tr>
<tr>
<td><code>filter_value</code></td>
<td>Trace adapted flag filter value.</td>
</tr>
<tr>
<td><code>switch switch</code></td>
<td>Specifies the switch number.</td>
</tr>
<tr>
<td><code>level</code></td>
<td>Specifies the trace level value.</td>
</tr>
<tr>
<td><code>default</code></td>
<td>Specifies the un-set trace level value.</td>
</tr>
<tr>
<td><code>trace_level</code></td>
<td>Specifies the trace level value.</td>
</tr>
<tr>
<td><code>switch switch</code></td>
<td>Specifies the switch number.</td>
</tr>
</tbody>
</table>
Specifies the filtered trace messages.

Specifies the switch.

Command Default
None

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to display wireless mobility high availability details:

```
Switch# set trace mobility ha detail filter mac WORD
[08/27/13 10:38:35.349 UTC 1 8135] Invalid src ip: 169.254.1.1
[08/27/13 10:38:54.393 UTC 3 8135] Mobility version mismatch, v10 received, or msglen mismatch msglen=74 recvBytes=0, dropping
```
set trace qos ap ha

To trace wireless Quality of Service (QoS) high availability, use the `set trace qos ap ha` privileged EXEC command.

```
set trace QOS ap ha [event|error] {filter [MACnone [switch switch]]|filter_name [filter_value [switch switch]]]} [level {default|trace_level} [switch switch]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event</td>
<td>(Optional) Specifies trace QoS wireless AP event.</td>
</tr>
<tr>
<td>event mac</td>
<td>Specifies the MAC address of the AP.</td>
</tr>
<tr>
<td>event none</td>
<td>Specifies no MAC address value.</td>
</tr>
<tr>
<td>error</td>
<td>(Optional) Specifies trace QoS wireless AP errors.</td>
</tr>
<tr>
<td>error mac</td>
<td>Specifies the MAC address of the AP.</td>
</tr>
<tr>
<td>error none</td>
<td>Specifies no value.</td>
</tr>
<tr>
<td>filter</td>
<td>Specifies the trace adapted flag filter.</td>
</tr>
<tr>
<td>filter mac</td>
<td>Specifies the MAC address of the AP.</td>
</tr>
<tr>
<td>filter none</td>
<td>Specifies no value.</td>
</tr>
<tr>
<td>switch</td>
<td>Specifies the switch number.</td>
</tr>
<tr>
<td>switch switch</td>
<td>Specifies the switch number. Value is one.</td>
</tr>
<tr>
<td>filter_name</td>
<td>(Optional) Specifies the switch filter name.</td>
</tr>
<tr>
<td>filter_value</td>
<td>(Optional) Specifies the switch filter value. Value is one.</td>
</tr>
<tr>
<td>switch switch</td>
<td>(Optional) Specifies the switch number. Value is one.</td>
</tr>
<tr>
<td>level</td>
<td>Specifies the trace level.</td>
</tr>
<tr>
<td>default</td>
<td>Specifies the trace QoS wireless AP default.</td>
</tr>
<tr>
<td>trace_level</td>
<td>Trace level.</td>
</tr>
<tr>
<td>switch switch</td>
<td>(Optional) Specifies the switch number. Value is one.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to trace wireless QoS high availability:

Switch# set trace QOS ap ha
show platform stack-manager

To display platform-dependent switch-stack information, use the **show platform stack-manager** command in privileged EXEC mode.

```
show platform stack-manager  {oir-states| sdp-counters| sif-counters}  switch  stack-member-number
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oir-states</td>
<td>Displays Online Insertion and Removal (OIR) state information</td>
</tr>
<tr>
<td>sdp-counters</td>
<td>Displays Stack Discovery Protocol (SDP) counter information.</td>
</tr>
<tr>
<td>sif-counters</td>
<td>Displays Stack Interface (SIF) counter information.</td>
</tr>
<tr>
<td>switch stack-member-number</td>
<td>Specifies the stack member for which to display stack-manager information.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **show platform stack-manager** command to collect data and statistics for the switch stack.

Use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.
show redundancy

To display redundancy facility information, use the show redundancy command in privileged EXEC mode.

show redundancy [clients| config-sync| counters| history [reload] reverse]| slaves[slave-name] {clients| counters}| states| switchover history [domain default]]

Syntax Description

- **clients**: (Optional) Displays information about the redundancy facility client.
- **config-sync**: (Optional) Displays a configuration synchronization failure or the ignored mismatched command list (MCL). For more information, see show redundancy config-sync, on page 27.
- **counters**: (Optional) Displays information about the redundancy facility counter.
- **history**: (Optional) Displays a log of past status and related information for the redundancy facility.
- **history reload**: (Optional) Displays a log of past reload information for the redundancy facility.
- **history reverse**: (Optional) Displays a reverse log of past status and related information for the redundancy facility.
- **slaves**: (Optional) Displays all slaves in the redundancy facility.
- **slave-name**: (Optional) The name of the redundancy facility slave to display specific information for. Enter additional keywords to display all clients or counters in the specified slave.
- **clients**: Displays all redundancy facility clients in the specified slave.
- **counters**: Displays all counters in the specified slave.
- **states**: (Optional) Displays information about the redundancy facility state, such as disabled, initialization, standby or active.
- **switchover history**: (Optional) Displays information about the redundancy facility switchover history.
- **domain default**: (Optional) Displays the default domain as the domain to display switchover history for.

Command Default

None

Command Modes

Privileged EXEC
show redundancy

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to display information about the redundancy facility:

```
Switch# show redundancy
Redundant System Information :  
---------------------------------  
Available system uptime = 6 days, 9 hours, 23 minutes
Switchovers system experienced = 0
Standby failures = 0
Last switchover reason = not known

Hardware Mode = Simplex
Configured Redundancy Mode = SSO
Operating Redundancy Mode = SSO
Maintenance Mode = Disabled
Communications = Down Reason: Simplex mode

Current Processor Information :
---------------------------------  
Active Location = slot 1
Current Software state = ACTIVE
Uptime in current state = 6 days, 9 hours, 23 minutes
Image Version = Cisco IOS Software, IOS-XE Software, Catalyst 3850 L3 Switch Software (CAT3850-UNIVERSALK9-M), Version 03.08.59.EMD EARLY DEPLOYMENT ENGINEERING NOVA WEEKLY BUILD, synced to DSGS_PI2_POSTFC_FLO_DSBU7_NG3K_1105
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Sun 16-S
Configuration register = 0x102

Peer (slot: 0) information is not available because it is in 'DISABLED' state

Switch#
```

This example shows how to display redundancy facility client information:

```
Switch# show redundancy clients
Group ID = 1
  clientID = 20002 clientSeq = 4  EICORE HA Client
  clientID = 24100 clientSeq = 5  WCM_CAPWAP
  clientID = 24101 clientSeq = 6  WCM_IPM HA
  clientID = 24103 clientSeq = 8  WCM_QOS HA
  clientID = 24105 clientSeq = 10 WCM_MOBILITY
  clientID = 24106 clientSeq = 11 WCM_DOT1X
  clientID = 24107 clientSeq = 12 WCM_APPROGUE
  clientID = 24110 clientSeq = 15 WCM_CIDS
  clientID = 24111 clientSeq = 16 WCM_NETFLOW
  clientID = 24112 clientSeq = 17 WCM_MCAST
  clientID = 24120 clientSeq = 18 wcm_comet
  clientID = 24001 clientSeq = 21 Table Manager Client
  clientID = 20010 clientSeq = 24 SNMP SA HA Client
  clientID = 20007 clientSeq = 27 Installer HA Client
  clientID = 29 clientSeq = 60 Redundancy Mode RF
  clientID = 139 clientSeq = 61 IfIndex
  clientID = 3300 clientSeq = 62 Persistent Variable
  clientID = 25 clientSeq = 68 CHKPT RF
  clientID = 20005 clientSeq = 74 IIF-shim
  clientID = 10001 clientSeq = 82 QEMU Platform RF

<output truncated>
```

The output displays the following information:
• clientID displays the client's ID number.
• clientSeq displays the client's notification sequence number.
• Current redundancy facility state.

This example shows how to display the redundancy facility counter information:
```
Switch# show redundancy counters
Redundancy Facility OMs
    comm link up = 0
    comm link down = 0
    invalid client tx = 0
    tx failures = 0
    tx msg length invalid = 0
    client not rxing msgs = 0
    rx peer msg routing errors = 0
    null peer msg rx = 0
    errored peer msg rx = 0
    buffers tx = 0
    tx buffers unavailable = 0
    buffers rx = 0
    buffer release errors = 0
    duplicate client registers = 0
    failed to register client = 0
    Invalid client syncs = 0
```

Switch#

This example shows how to display redundancy facility history information:
```
Switch# show redundancy history
00:00:00 *my state = INITIALIZATION(2) peer state = DISABLED(1)
00:00:00 RF_EVENT_INITIALIZATION(524) op=0 rc=0
00:00:00 *my state = NEGOTIATION(3) peer state = DISABLED(1)
00:00:01 client added: Table Manager Client(24001) seq=21
00:00:01 client added: SNMP SA HA Client(20010) seq=24
00:00:06 client added: WCM_CAPWAP(24100) seq=5
00:00:06 client added: WCM QOS HA(24103) seq=8
00:00:07 client added: WCM_DOTIX(24106) seq=11
00:00:07 client added: EICORE HA Client(20002) seq=4
00:00:09 client added: WCM_MOBILITY(24105) seq=10
00:00:09 client added: WCM_NETFLOW(24111) seq=16
00:00:09 client added: WCM_APPFRGUE(24107) seq=12
00:00:09 client added: WCM_RRM HA(24101) seq=6
00:00:09 client added: WCM_MCAST(24112) seq=17
00:00:09 client added: WCM_CIDS(24110) seq=15
00:00:09 client added: wcm_comet(24120) seq=18
00:00:22 RF_STATUS_REDUNDANCY_MODE_CHANGE(405) First Slave(0) op=0 rc=0
00:00:22 RF_STATUS_REDUNDANCY_MODE_CHANGE(405) Slave(6107) op=0 rc=0
00:00:22 RF_STATUS_REDUNDANCY_MODECHANGE(405) Slave(6109) op=0 rc=0
00:00:22 RF_STATUS_REDUNDANCY_MODE_CHANGE(405) Slave(6128) op=0 rc=0
00:00:22 RF_STATUS_REDUNDANCY_MODE_CHANGE(405) Slave(8897) op=0 rc=0
00:00:22 RF_STATUS_REDUNDANCY_MODE_CHANGE(405) Slave(8898) op=0 rc=0
00:00:22 RF_STATUS_REDUNDANCY_MODE_CHANGE(405) Slave(8901) op=0 rc=0
00:00:22 RF_STATUS_REDUNDANCY_MODE_CHANGE(405) Redundancy Mode RF(29) op=0 rc=0
00:00:22 RF_STATUS_REDUNDANCY_MODE_CHANGE(405) IfIndex(139) op=0 rc=0
<output truncated>
```

This example shows how to display information about the redundancy facility slaves:
```
Switch# show redundancy slaves
Group ID = 1
Slave/Process ID = 6107 Slave Name = [installer]
```
This example shows how to display information about the redundancy facility state:

Switch# show redundancy states
 my state = 13 =ACTIVE
 peer state = 1 =DISABLED
 Mode = Simplex
 Unit ID = 1

 Redundancy Mode (Operational) = SSO
 Redundancy Mode (Configured) = SSO
 Redundancy State = Non Redundant
 Manual Swact = disabled (system is simplex (no peer unit))

 Communications = Down Reason: Simplex mode
 client count = 75
 client_notification_TMR = 360000 milliseconds
 keep_alive TMR = 9000 milliseconds
 keep_alive count = 0
 keep_alive threshold = 18
 RF debug mask = 0

Switch#
show redundancy config-sync

To display a configuration synchronization failure or the ignored mismatched command list (MCL), if any, use the `show redundancy config-sync` command in EXEC mode.

```
show redundancy config-sync {failures {bem| mcl| prc}| ignored failures mcl}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>failures</td>
<td>Displays MCL entries or best effort method (BEM)/Parser Return Code (PRC) failures.</td>
</tr>
<tr>
<td>bem</td>
<td>Displays a BEM failed command list, and forces the standby switch to reboot.</td>
</tr>
<tr>
<td>mcl</td>
<td>Displays commands that exist in the switch’s running configuration but are not supported by the image on the standby switch, and forces the standby switch to reboot.</td>
</tr>
<tr>
<td>prc</td>
<td>Displays a PRC failed command list and forces the standby switch to reboot.</td>
</tr>
<tr>
<td>ignored failures mcl</td>
<td>Displays the ignored MCL failures.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

User EXEC

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When two versions of Cisco IOS images are involved, the command sets supported by two images might differ. If any of those mismatched commands are executed on the active switch, the standby switch might not recognize those commands, which causes a configuration mismatch condition. If the syntax check for the command fails on the standby switch during a bulk synchronization, the command is moved into the MCL and the standby switch is reset. To display all the mismatched commands, use the `show redundancy config-sync failures mcl` command.

To clean the MCL, follow these steps:

1. Remove all mismatched commands from the active switch’s running configuration.

2. Revalidate the MCL with a modified running configuration by using the `redundancy config-sync validate mismatched-commands` command.
3 Reload the standby switch.

Alternatively, you could ignore the MCL by following these steps:

1 Enter the `redundancy config-sync ignore mismatched-commands` command.
2 Reload the standby switch; the system transitions to SSO mode.

Note
If you ignore the mismatched commands, the out-of-synchronization configuration on the active switch and the standby switch still exists.

3 You can verify the ignored MCL with the `show redundancy config-sync ignored mcl` command.

Each command sets a return code in the action function that implements the command. This return code indicates whether or not the command successfully executes. The active switch maintains the PRC after executing a command. The standby switch executes the command and sends the PRC back to the active switch. A PRC failure occurs if these two PRCs do not match. If a PRC error occurs at the standby switch either during bulk synchronization or line-by-line (LBL) synchronization, the standby switch is reset. To display all PRC failures, use the `show redundancy config-sync failures prc` command.

To display best effort method (BEM) errors, use the `show redundancy config-sync failures bem` command.

Examples

This example shows how to display the BEM failures:

```
Switch> show redundancy config-sync failures bem
BEM Failed Command List
--------------------
The list is Empty
```

This example shows how to display the MCL failures:

```
Switch> show redundancy config-sync failures mcl
Mismatched Command List
-----------------------
The list is Empty
```

This example shows how to display the PRC failures:

```
Switch# show redundancy config-sync failures prc
PRC Failed Command List
-----------------------
The list is Empty
```
show switch

To display information that is related to the stack member or the switch stack, use the `show switch` command in EXEC mode.

`show switch [stack-member-number| detail| neighbors| stack-ports [summary]]`

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack-member-number</td>
<td>(Optional) Number of the stack member. The range is 1 to 9.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed information about the stack ring.</td>
</tr>
<tr>
<td>neighbors</td>
<td>(Optional) Displays the neighbors of the entire switch stack.</td>
</tr>
<tr>
<td>stack-ports</td>
<td>(Optional) Displays port information for the entire switch stack.</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays the stack cable length, the stack link status, and the loopback status.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

User EXEC
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command displays these states:

- **Initializing**—A switch has been just added to the stack and it has not completed the basic initialization to go to the ready state.
- **HA Sync in Progress**—After the standby is elected, the corresponding switch remains in this state until the synchronization is completed.
- **Syncing**—A switch that is added to an already existing stack remains in this state until the switch add sequence is complete.
- **Ready**—The member has completed loading the system- and interface-level configurations and can forward traffic.
• V-Mismatch—A switch in version mismatch mode. Version-mismatch mode is when a switch that joins the stack has a software version that is incompatible with the active switch.

• Provisioned—The state of a preconfigured switch before it becomes an active member of a switch stack. The MAC address and the priority number in the display are always 0 for the provisioned switch.

• Unprovisioned—The state of a switch when the provisioned switch number was unprovisioned using the `no switch switch-number provision` command.

• Removed—A switch that was present in the stack was removed using the `reload slot` command.

• Sync not started—When multiple switches are added to an existing stack together, the active switch adds them one by one. The switch that is being added is in the Syncing state. The switches that have not been added yet are in the Sync not started state.

• Lic-Mismatch—A switch has a different license level than the active switch.

A typical state transition for a stack member (including an active switch) booting up is Waiting > Initializing > Ready.

A typical state transition for a stack member in version mismatch (VM) mode is Waiting > Ver Mismatch.

You can use the `show switch` command to identify whether the provisioned switch exists in the switch stack. The `show running-config` and the `show startup-config` privileged EXEC commands do not provide this information.

The display also includes stack MAC-persistency wait-time if persistent MAC address is enabled.

Examples

This example shows how to display summary stack information:

```
Switch# show switch
Switch/Stack Mac Address : 6400.f124.e900

Switch# Role Mac Address Priority Version State
----------------------- --------------- -------------- -------------- ---------------------------------
1 Member 0000.0000.0000 0 0 Provisioned
2 Member 0000.0000.0000 0 0 Removed
*3 Active 6400.f124.e900 2 0 Ready
8 Member 0000.0000.0000 0 0 Unprovisioned
```

This example shows how to display detailed stack information:

```
Switch# show switch detail
Switch/Stack Mac Address : 2037.06ce.3f80 - Local Mac Address
Mac persistency wait time: Indefinite

Switch# Role Mac Address Priority Version State
-----------------------------------------------------
*1 Active 2037.06ce.3f80 1 0 Ready
2 Member 0000.0000.0000 0 0 Provisioned
6 Member 2037.06ce.1e00 1 0 Ready

Stack Port Status Neighbors
Switch# Port 1 Port 2 Port 1 Port 2
-------------------------------------------
1 Ok Down 6 None
6 Down Ok None 1
```

This example shows how to display the member 6 summary information:

```
Switch# show switch 6
Switch# Role Mac Address Priority State
----------------------------------------
6 Member 0003.e31a.1e00 1 Ready
```
This example shows how to display the neighbor information for a stack:

Switch# show switch neighbors

<table>
<thead>
<tr>
<th>Switch #</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>None</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>None</td>
</tr>
</tbody>
</table>

This example shows how to display stack-port information:

Switch# show switch stack-ports

<table>
<thead>
<tr>
<th>Switch #</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Down</td>
<td>Ok</td>
</tr>
<tr>
<td>8</td>
<td>Ok</td>
<td>Down</td>
</tr>
</tbody>
</table>

This example shows the output for the `show switch stack-ports summary` command. The table that follows describes the fields in the display.

Switch# show switch stack-ports summary

<table>
<thead>
<tr>
<th>Switch#/Port#</th>
<th>Stack Port Status</th>
<th>Neighbor</th>
<th>Cable Length</th>
<th>Link OK</th>
<th>Link Active</th>
<th>Link Sync</th>
<th># Changes</th>
<th>Loopback Status</th>
<th>LinkOK Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>Down</td>
<td>2</td>
<td>50 cm</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>10</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1/2</td>
<td>Ok</td>
<td>3</td>
<td>1 m</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2/1</td>
<td>Ok</td>
<td>5</td>
<td>3 m</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2/2</td>
<td>Down</td>
<td>1</td>
<td>50 cm</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>10</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3/1</td>
<td>Ok</td>
<td>1</td>
<td>1 m</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3/2</td>
<td>Ok</td>
<td>5</td>
<td>1 m</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5/1</td>
<td>Ok</td>
<td>3</td>
<td>1 m</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5/2</td>
<td>Ok</td>
<td>2</td>
<td>3 m</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1: Show switch stack-ports summary Command Output

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch#/Port#</td>
<td>Member number and its stack port number.</td>
</tr>
<tr>
<td>Stack Port Status</td>
<td>Status of the stack port.</td>
</tr>
<tr>
<td></td>
<td>• Absent—No cable is detected on the stack port.</td>
</tr>
<tr>
<td></td>
<td>• Down—A cable is detected, but either no connected neighbor is up, or the stack port is disabled.</td>
</tr>
<tr>
<td></td>
<td>• OK—A cable is detected, and the connected neighbor is up.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>Switch number of the active member at the other end of the stack cable.</td>
</tr>
<tr>
<td>Cable Length</td>
<td>Valid lengths are 50 cm, 1 m, or 3 m.</td>
</tr>
<tr>
<td></td>
<td>If the switch cannot detect the cable length, the value is no cable. The cable might not be connected, or the link might be unreliable.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Link OK</td>
<td>Whether the stack cable is connected and functional. There may or may not be a neighbor connected on the other end. The link partner is a stack port on a neighbor switch.</td>
</tr>
<tr>
<td></td>
<td>• No—There is no stack cable connected to this port or the stack cable is not functional.</td>
</tr>
<tr>
<td></td>
<td>• Yes—There is a functional stack cable connected to this port.</td>
</tr>
<tr>
<td>Link Active</td>
<td>Whether a neighbor is connected on the other end of the stack cable.</td>
</tr>
<tr>
<td></td>
<td>• No—No neighbor is detected on the other end. The port cannot send traffic over this link.</td>
</tr>
<tr>
<td></td>
<td>• Yes—A neighbor is detected on the other end. The port can send traffic over this link.</td>
</tr>
<tr>
<td>Sync OK</td>
<td>Whether the link partner sends valid protocol messages to the stack port.</td>
</tr>
<tr>
<td></td>
<td>• No—The link partner does not send valid protocol messages to the stack port.</td>
</tr>
<tr>
<td></td>
<td>• Yes—The link partner sends valid protocol messages to the port.</td>
</tr>
<tr>
<td># Changes to LinkOK</td>
<td>The relative stability of the link. If a large number of changes occur in a short period of time, link flapping can occur.</td>
</tr>
<tr>
<td>In Loopback</td>
<td>Whether a stack cable is attached to a stack port on the member.</td>
</tr>
<tr>
<td></td>
<td>• No—At least one stack port on the member has an attached stack cable.</td>
</tr>
<tr>
<td></td>
<td>• Yes—None of the stack ports on the member has an attached stack cable.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reload</td>
<td>Reloads the stack member and applies a configuration change.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>session</td>
<td>Accesses the diagnostic shell of a specific stack member or the Cisco IOS prompt of the standby Switch.</td>
</tr>
<tr>
<td>stack-mac update force</td>
<td>Updates the stack MAC address to the MAC address of the active switch.</td>
</tr>
<tr>
<td>switch priority</td>
<td>Changes the stack member priority value.</td>
</tr>
<tr>
<td>switch provision</td>
<td>Supplies a configuration to a new switch before it joins the switch stack.</td>
</tr>
<tr>
<td>switch renumber</td>
<td>Changes the stack member number.</td>
</tr>
</tbody>
</table>
show trace messages capwap ap ha

To display wireless control and provisioning of wireless access points (CAPWAP) high availability, use the `show trace messages capwap ap ha` privileged EXEC command.

`show trace messages capwap ap ha [detail| event| dump] [switch switch]`

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detail</code></td>
<td>(Optional) Displays wireless CAPWAP high availability details.</td>
</tr>
<tr>
<td><code>detail switch number</code></td>
<td>Specifies the switch number. Value is one.</td>
</tr>
<tr>
<td><code>event</code></td>
<td>(Optional) Displays wireless CAPWAP high availability events.</td>
</tr>
<tr>
<td><code>event switch number</code></td>
<td>Specifies the switch number. Value is one.</td>
</tr>
<tr>
<td><code>dump</code></td>
<td>(Optional) Displays wireless CAPWAP high availability output.</td>
</tr>
<tr>
<td><code>dump switch number</code></td>
<td>Specifies the switch number. Value is one.</td>
</tr>
<tr>
<td><code>switch</code></td>
<td>(Optional) Displays the switch number. The value is one.</td>
</tr>
<tr>
<td><code>switch switch number</code></td>
<td>Specifies the switch number. Value is one.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to display CAPWAP high availability output:

```
Switch# show trace messages mobility ha dump switch 1
| Output modifiers
<cr>
```
show trace messages mobility ha

To display wireless mobility high availability, use the `show trace messages mobility ha` privileged EXEC command.

```
show trace messages mobility ha [event| detail| dump] [switch switch]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>event</code></td>
<td>(Optional) Displays wireless mobility HA events.</td>
</tr>
<tr>
<td><code>event switch</code></td>
<td>Specifies the switch number. Value is one.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>(Optional) Displays wireless mobility HA details.</td>
</tr>
<tr>
<td><code>detail switch</code></td>
<td>Specifies the switch number. Value is one.</td>
</tr>
<tr>
<td><code>dump</code></td>
<td>(Optional) Displays the wireless mobility HA output debugging.</td>
</tr>
<tr>
<td><code>dump switch</code></td>
<td>Specifies the switch number. Value is one.</td>
</tr>
<tr>
<td><code>switch switch</code></td>
<td>(Optional) Displays the switch number.</td>
</tr>
<tr>
<td><code>switch switch</code></td>
<td>Specifies the switch number. Value is one.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to display wireless mobility high availability:

```
Switch# show trace messages mobility ha
```
stack-mac persistent timer

To enable the persistent MAC address feature, use the `stack-mac persistent timer` command in global configuration mode on the switch stack or on a standalone switch. To disable the persistent MAC address feature, use the `no` form of this command.

```
stack-mac persistent timer [0] time-value
no stack-mac persistent timer
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(Optional) Continues using the MAC address of the current active switch indefinitely, even after a new active switch takes over.</td>
</tr>
<tr>
<td><code>time-value</code></td>
<td>(Optional) Time period in minutes before the stack MAC address changes to that of the new active switch. The range is 1 to 60 minutes.</td>
</tr>
</tbody>
</table>

Command Default

Persistent MAC address is disabled. The MAC address of the stack is always that of the first active switch.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, the stack MAC address will always be the MAC address of the first active switch, even if a new active switch takes over. The same behavior occurs when you enter the `stack-mac persistent timer` command or the `stack-mac persistent timer 0` command.

When you enter the `stack-mac persistent timer` command with a `time-value`, the stack MAC address will change to that of the new active switch after the period of time that you entered whenever a new switch becomes the active switch. If the previous active switch rejoins the stack during that time period, the stack retains its MAC address for as long as the switch that has that MAC address is in the stack.

If the whole stack reloads the MAC address of the active switch is the stack MAC address.

If you do not change the stack MAC address, Layer 3 interface flapping does not occur. This also means that a foreign MAC address (a MAC address that does not belong to any of the switches in the stack) could be the stack MAC address. If the switch with this foreign MAC address joins another stack as the active switch, two stacks will have the same stack MAC address. You must use the `stack-mac update force` command to resolve the conflict.

Note

If you do not change the stack MAC address, Layer 3 interface flapping does not occur. This also means that a foreign MAC address (a MAC address that does not belong to any of the switches in the stack) could be the stack MAC address. If the switch with this foreign MAC address joins another stack as the active switch, two stacks will have the same stack MAC address. You must use the `stack-mac update force` command to resolve the conflict.
Examples

This example shows how to enable a persistent MAC address:

```
Switch(config)# stack-mac persistent timer
```

You can verify your settings by entering the `show running-config` privileged EXEC command. If enabled, `stack-mac persistent timer` is shown in the output.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack-mac update force</td>
<td>Updates the stack MAC address to the MAC address of the active switch.</td>
</tr>
</tbody>
</table>
stack-mac update force

To update the stack MAC address to the MAC address of the active switch, use the `stack-mac update force` command in EXEC mode on the active switch.

```
stack-mac update force
```

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command Modes
User EXEC
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, the stack MAC address is not changed to the MAC address of the new active switch during a high availability (HA) failover. Use the `stack-mac update force` command to force the stack MAC address to change to the MAC address of the new active switch.

If the switch with the same MAC address as the stack MAC address is currently a member of the stack, the `stack-mac update force` command has no effect. (It does not change the stack MAC address to the MAC address of the active switch.)

If you do not change the stack MAC address, Layer 3 interface flapping does not occur. It also means that a foreign MAC address (a MAC address that does not belong to any of the switches in the stack) could be the stack MAC address. If the switch with this foreign MAC address joins another stack as the active switch, two stacks will have the same stack MAC address. You must use the `stack-mac update force` command to resolve the conflict.

Examples

This example shows how to update the stack MAC address to the MAC address of the active switch:

```
Switch> stack-mac update force
Switch>
```

You can verify your settings by entering the `show switch` privileged EXEC command. The stack MAC address includes whether the MAC address is local or foreign.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show switch</td>
<td>Displays information related to the stack member or the switch stack.</td>
</tr>
<tr>
<td>stack-mac persistent timer</td>
<td>Enables the persistent MAC address feature.</td>
</tr>
</tbody>
</table>
standby console enable

To enable access to the standby console switch, use the `standby console enable` command in redundancy main configuration submode. To disable access to the standby console switch, use the `no` form of this command.

```
standby console enable
no standby console enable
```

Syntax Description

This command has no arguments or keywords.

Command Default

Access to the standby console switch is disabled.

Command Modes

Redundancy main configuration submode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is used to collect and review specific data about the standby console. The command is useful primarily for Cisco technical support representatives troubleshooting the switch.

Examples

This example shows how to enter the redundancy main configuration submode and enable access to the standby console switch:

```
Switch(config)# redundancy
Switch(config-red)# main-cpu
Switch(config-r-mc)# standby console enable
Switch(config-r-mc)#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>main-cpu</td>
<td>Enters the redundancy main configuration submode and enables the standby switch.</td>
</tr>
</tbody>
</table>
switch stack port

To disable or enable the specified stack port on the member, use the `switch` command in privileged EXEC mode on a stack member.

```
switch stack-member-number stack port port-number {disable| enable}
```

Syntax Description

- `stack-member-number` (Current stack member number. The range is 1 to 9.)
- `stack port port-number` (Specifies the stack port on the member. The range is 1 to 2.)
- `disable` (Disables the specified port.)
- `enable` (Enables the specified port.)

Command Default

The stack port is enabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A stack is in the full-ring state when all members are connected through the stack ports and are in the ready state.

The stack is in the partial-ring state when the following occurs:

- All members are connected through their stack ports but some are not in the ready state.
- Some members are not connected through the stack ports.

Note

Be careful when using the `switch stack-member-number stack port port-number disable` command. When you disable the stack port, the stack operates at half bandwidth.

If you enter the `switch stack-member-number stack port port-number disable` privileged EXEC command and the stack is in the full-ring state, you can disable only one stack port. This message appears:

`Enabling/disabling a stack port may cause undesired stack changes. Continue?[confirm]`
If you enter the `switch stack-member-number stack port port-number disable` privileged EXEC command and the stack is in the partial-ring state, you cannot disable the port. This message appears:

Disabling stack port not allowed with current stack configuration.

Examples

This example shows how to disable stack port 2 on member 4:

Switch# `switch 4 stack port 2 disable`

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show switch</code></td>
<td>Displays information related to the stack member or the switch stack.</td>
</tr>
</tbody>
</table>
switch priority

To change the stack member priority value, use the `switch priority` command in EXEC mode on the active switch.

```
switch stack-member-number priority new-priority-value
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>stack-member-number</code></td>
<td>Current stack member number. The range is 1 to 9.</td>
</tr>
<tr>
<td><code>new-priority-value</code></td>
<td>New stack member priority value. The range is 1 to 15.</td>
</tr>
</tbody>
</table>

Command Default

The default priority value is 1.

Command Modes

User EXEC
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The new priority value is a factor when a new active switch is elected. When you change the priority value the active switch is not changed immediately.

Examples

This example shows how to change the priority value of stack member 6 to 8:

```
Switch# switch 6 priority 8
Changing the Switch Priority of Switch Number 6 to 8
Do you want to continue?[confirm]
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reload</td>
<td>Reloads the stack member and applies a configuration change.</td>
</tr>
<tr>
<td>session</td>
<td>Accesses the diagnostic shell of a specific stack member or the Cisco IOS prompt of the standby Switch</td>
</tr>
<tr>
<td>show switch</td>
<td>Displays information related to the stack member or the switch stack.</td>
</tr>
<tr>
<td>switch renumber</td>
<td>Changes the stack member number.</td>
</tr>
</tbody>
</table>
switch provision

To supply a configuration to a new switch before it joins the switch stack, use the `switch provision` command in global configuration mode on the active switch. To delete all configuration information that is associated with the removed switch (a stack member that has left the stack), use the `no` form of this command.

```
switch stack-member-number provision type
no switch stack-member-number provision
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>stack-member-number</code></td>
<td>Stack member number. The range is 1 to 9.</td>
</tr>
<tr>
<td><code>type</code></td>
<td>Switch type of the new switch before it joins the stack.</td>
</tr>
</tbody>
</table>

Command Default

The switch is not provisioned.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For `type`, enter the model number of a supported switch that is listed in the command-line help strings.

To avoid receiving an error message, you must remove the specified switch from the switch stack before using the `no` form of this command to delete a provisioned configuration.

To change the switch type, you must also remove the specified switch from the switch stack. You can change the stack member number of a provisioned switch that is physically present in the switch stack if you do not also change the switch type.

If the switch type of the provisioned switch does not match the switch type in the provisioned configuration on the stack, the switch stack applies the default configuration to the provisioned switch and adds it to the stack. The switch stack displays a message when it applies the default configuration.

Provisioned information appears in the running configuration of the switch stack. When you enter the `copy running-config startup-config` privileged EXEC command, the provisioned configuration is saved in the startup configuration file of the switch stack.
When you use the `switch provision` command, memory is allocated for the provisioned configuration. When a new switch type is configured, the previously allocated memory is not fully released. Therefore, do not use this command more than approximately 200 times, or the switch will run out of memory and unexpected behavior will result.

Caution

Examples

This example shows how to provision a switch with a stack member number of 2 for the switch stack. The `show running-config` command output shows the interfaces associated with the provisioned switch.

```
Switch(config)# switch 2 provision WS-xxxx
Switch(config)# end
Switch# show running-config | include switch 2
! interface GigabitEthernet2/0/1
! interface GigabitEthernet2/0/2
! interface GigabitEthernet2/0/3
<output truncated>
```

You also can enter the `show switch` user EXEC command to display the provisioning status of the switch stack.

This example shows how to delete all configuration information about stack member 5 when the switch is removed from the stack:

```
Switch(config)# no switch 5 provision
```

You can verify that the provisioned switch is added to or removed from the running configuration by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show switch</code></td>
<td>Displays information related to the stack member or the switch stack.</td>
</tr>
</tbody>
</table>
switch renumber

To change the stack member number, use the `switch renumber` command in EXEC mode on the active switch.

```
switch current-stack-member-number renumber new-stack-member-number
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>current-stack-member-number</code></td>
<td>Current stack member number. The range is 1 to 9.</td>
</tr>
<tr>
<td><code>new-stack-member-number</code></td>
<td>New stack member number for the stack member. The range is 1 to 9.</td>
</tr>
</tbody>
</table>

Command Default
The default stack member number is 1.

Command Modes
User EXEC
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE 3.2SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If another stack member is already using the member number that you just specified, the active switch assigns the lowest available number when you reload the stack member.

Note

If you change the number of a stack member, and no configuration is associated with the new stack member number, that stack member loses its current configuration and resets to its default configuration.

Do not use the `switch current-stack-member-number renumber new-stack-member-number` command on a provisioned switch. If you do, the command is rejected.

Use the `reload slot current stack member number` privileged EXEC command to reload the stack member and to apply this configuration change.

Examples

This example shows how to change the member number of stack member 6 to 7:

```
Switch# switch 6 renumber 7
WARNING:Changing the switch number may result in a configuration change for that switch. The interface configuration associated with the old switch number will remain as a provisioned configuration.
Do you want to continue?[confirm]
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reload</td>
<td>Reloads the stack member and applies a configuration change.</td>
</tr>
<tr>
<td>session</td>
<td>Accesses the diagnostic shell of a specific stack member or the Cisco IOS</td>
</tr>
<tr>
<td></td>
<td>prompt of the standby Switch.</td>
</tr>
<tr>
<td>show switch</td>
<td>Displays information related to the stack member or the switch stack.</td>
</tr>
<tr>
<td>switch priority</td>
<td>Changes the stack member priority value.</td>
</tr>
</tbody>
</table>
switch renumber