Configuring EtherChannels

- Finding Feature Information, on page 1
- Restrictions for EtherChannels, on page 1
- Information About EtherChannels, on page 2
- How to Configure EtherChannels, on page 19
- Monitoring EtherChannel, PAgP, and LACP Status, on page 39
- Configuration Examples for Configuring EtherChannels, on page 40
- Additional References for EtherChannels, on page 44

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for EtherChannels

The following are restrictions for EtherChannels:

- All ports in an EtherChannel must be assigned to the same VLAN or they must be configured as trunk ports.
- Layer 3 EtherChannels are not supported if running the LAN Base license feature set.
Information About EtherChannels

EtherChannel Overview

EtherChannel provides fault-tolerant high-speed links between switches, routers, and servers. You can use the EtherChannel to increase the bandwidth between the wiring closets and the data center, and you can deploy it anywhere in the network where bottlenecks are likely to occur. EtherChannel provides automatic recovery for the loss of a link by redistributing the load across the remaining links. If a link fails, EtherChannel redirects traffic from the failed link to the remaining links in the channel without intervention.

An EtherChannel consists of individual Ethernet links bundled into a single logical link.

![Figure 1: Typical EtherChannel Configuration](image)

The EtherChannel provides full-duplex bandwidth up to 8 Gb/s (Gigabit EtherChannel) or 80 Gb/s (10-Gigabit EtherChannel) between your switch and another switch or host.

Each EtherChannel can consist of up to eight compatibly configured Ethernet ports.

The number of EtherChannels is limited to 48.

All ports in each EtherChannel must be configured as either Layer 2 or Layer 3 ports. The EtherChannel Layer 3 ports are made up of routed ports. Routed ports are physical ports configured to be in Layer 3 mode by using the `no switchport` interface configuration command. For more information, see the Configuring Interface Characteristics chapter.

Layer 3 EtherChannels are not supported on switches running the LAN base feature set.

Related Topics

- Configuring Layer 2 EtherChannels, on page 19
- EtherChannel Configuration Guidelines, on page 15
You can configure an EtherChannel in one of these modes: Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), or On. Configure both ends of the EtherChannel in the same mode:

- When you configure one end of an EtherChannel in either PAgP or LACP mode, the system negotiates with the other end of the channel to determine which ports should become active. If the remote port cannot negotiate an EtherChannel, the local port is put into an independent state and continues to carry data traffic as would any other single link. The port configuration does not change, but the port does not participate in the EtherChannel.

- When you configure an EtherChannel in the on mode, no negotiations take place. The switch forces all compatible ports to become active in the EtherChannel. The other end of the channel (on the other switch) must also be configured in the on mode; otherwise, packet loss can occur.

Related Topics
- Configuring Layer 2 EtherChannels, on page 19
- EtherChannel Configuration Guidelines, on page 15
- Default EtherChannel Configuration, on page 14
- Layer 2 EtherChannel Configuration Guidelines, on page 16
- PAgP Modes, on page 6
- Silent Mode, on page 7
- LACP Modes, on page 9

EtherChannel on Switches

You can create an EtherChannel on a switch, on a single switch in the stack, or on multiple switches in the stack (known as cross-stack EtherChannel).
Figure 2: Single-Switch EtherChannel

Figure 3: Cross-Stack EtherChannel

Related Topics
- Configuring Layer 2 EtherChannels, on page 19
- EtherChannel Configuration Guidelines, on page 15
- Default EtherChannel Configuration, on page 14
- Layer 2 EtherChannel Configuration Guidelines, on page 16
- PAgP Modes, on page 6
- Silent Mode, on page 7
- LACP Modes, on page 9

EtherChannel Link Failover

If a link within an EtherChannel fails, traffic previously carried over that failed link moves to the remaining links within the EtherChannel. If traps are enabled on the switch, a trap is sent for a failure that identifies the
switch, the EtherChannel, and the failed link. Inbound broadcast and multicast packets on one link in an EtherChannel are blocked from returning on any other link of the EtherChannel.

Related Topics
- Configuring Layer 2 EtherChannels, on page 19
- EtherChannel Configuration Guidelines, on page 15
- Default EtherChannel Configuration, on page 14
- Layer 2 EtherChannel Configuration Guidelines, on page 16
- PAgP Modes, on page 6
- Silent Mode, on page 7
- LACP Modes, on page 9

Channel Groups and Port-Channel Interfaces

An EtherChannel comprises a channel group and a port-channel interface. The channel group binds physical ports to the port-channel interface. Configuration changes applied to the port-channel interface apply to all the physical ports bound together in the channel group.

Figure 4: Relationship of Physical Ports, Channel Group and Port-Channel Interface

The `channel-group` command binds the physical port and the port-channel interface together. Each EtherChannel has a port-channel logical interface numbered from 1 to 48. This port-channel interface number corresponds to the one specified with the `channel-group` interface configuration command.

- With Layer 2 ports, use the `channel-group` interface configuration command to dynamically create the port-channel interface.

 You also can use the `interface port-channel port-channel-number` global configuration command to manually create the port-channel interface, but then you must use the `channel-group channel-group-number` command to bind the logical interface to a physical port. The `channel-group-number` can be the same as the `port-channel-number`, or you can use a new number. If you use a new number, the `channel-group` command dynamically creates a new port channel.

- With Layer 3 ports, you should manually create the logical interface by using the `interface port-channel` global configuration command followed by the `no switchport` interface configuration command. You then manually assign an interface to the EtherChannel by using the `channel-group` interface configuration command.
Port Aggregation Protocol

The Port Aggregation Protocol (PAgP) is a Cisco-proprietary protocol that can be run only on Cisco switches and on those switches licensed by vendors to support PAgP. PAgP facilitates the automatic creation of EtherChannels by exchanging PAgP packets between Ethernet ports. You can use PAgP only in single-switch EtherChannel configurations. PAgP cannot be enabled on cross-stack EtherChannels.

By using PAgP, the switch or switch stack learns the identity of partners capable of supporting PAgP and the capabilities of each port. It then dynamically groups similarly configured ports (on a single switch in the stack) into a single logical link (channel or aggregate port). Similarly configured ports are grouped based on hardware, administrative, and port parameter constraints. For example, PAgP groups the ports with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, PAgP adds the group to the spanning tree as a single switch port.

PAgP Modes

PAgP modes specify whether a port can send PAgP packets, which start PAgP negotiations, or only respond to PAgP packets received.

Table 1: EtherChannel PAgP Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Places a port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This setting minimizes the transmission of PAgP packets. This mode is not supported when the EtherChannel members are from different switches in the switch stack (cross-stack EtherChannel).</td>
</tr>
<tr>
<td>desirable</td>
<td>Places a port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This mode is not supported when the EtherChannel members are from different switches in the switch stack (cross-stack EtherChannel).</td>
</tr>
</tbody>
</table>

Switch ports exchange PAgP packets only with partner ports configured in the auto or desirable modes. Ports configured in the on mode do not exchange PAgP packets.

Both the auto and desirable modes enable ports to negotiate with partner ports to form an EtherChannel based on criteria such as port speed and for Layer 2 EtherChannels, based on trunk state and VLAN numbers.

Ports can form an EtherChannel when they are in different PAgP modes as long as the modes are compatible. For example:
• A port in the **desirable** mode can form an EtherChannel with another port that is in the **desirable** or **auto** mode.

• A port in the **auto** mode can form an EtherChannel with another port in the **desirable** mode.

A port in the **auto** mode cannot form an EtherChannel with another port that is also in the **auto** mode because neither port starts PAgP negotiation.

Related Topics

- Configuring Layer 2 EtherChannels, on page 19
- EtherChannel Overview, on page 2
- EtherChannel Modes, on page 3
- EtherChannel on Switches, on page 3
- EtherChannel Link Failover, on page 4
- Creating Port-Channel Logical Interfaces, on page 24
- Configuring the Physical Interfaces, on page 25
- Channel Groups and Port-Channel Interfaces, on page 5

Silent Mode

If your switch is connected to a partner that is PAgP-capable, you can configure the switch port for nonsilent operation by using the **non-silent** keyword. If you do not specify **non-silent** with the **auto** or **desirable** mode, silent mode is assumed.

Use the silent mode when the switch is connected to a device that is not PAgP-capable and seldom, if ever, sends packets. An example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port connected to a silent partner prevents that switch port from ever becoming operational. However, the silent setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.

Related Topics

- Configuring Layer 2 EtherChannels, on page 19
- EtherChannel Overview, on page 2
- EtherChannel Modes, on page 3
- EtherChannel on Switches, on page 3
- EtherChannel Link Failover, on page 4
- Creating Port-Channel Logical Interfaces, on page 24
- Configuring the Physical Interfaces, on page 25
- Channel Groups and Port-Channel Interfaces, on page 5

PAgP Learn Method and Priority

Network devices are classified as PAgP physical learners or aggregate-port learners. A device is a physical learner if it learns addresses by physical ports and directs transmissions based on that knowledge. A device is an aggregate-port learner if it learns addresses by aggregate (logical) ports. The learn method must be configured the same at both ends of the link.

When a device and its partner are both aggregate-port learners, they learn the address on the logical port-channel. The device sends packets to the source by using any of the ports in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives.
PAgP cannot automatically detect when the partner device is a physical learner and when the local device is an aggregate-port learner. Therefore, you must manually set the learning method on the local device to learn addresses by physical ports. You also must set the load-distribution method to source-based distribution, so that any given source MAC address is always sent on the same physical port.

You also can configure a single port within the group for all transmissions and use other ports for hot-standby. The unused ports in the group can be swapped into operation in just a few seconds if the selected single port loses hardware-signal detection. You can configure which port is always selected for packet transmission by changing its priority with the `pagp port-priority` interface configuration command. The higher the priority, the more likely that the port will be selected.

Note

The switch supports address learning only on aggregate ports even though the `physical-port` keyword is provided in the CLI. The `pagp learn-method` command and the `pagp port-priority` command have no effect on the switch hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner of the switch is a physical learner, we recommend that you configure the switch as a physical-port learner by using the `pagp learn-method physical-port` interface configuration command. Set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` global configuration command. The switch then sends packets to the physical learner using the same port in the EtherChannel from which it learned the source address. Only use the `pagp learn-method` command in this situation.

Related Topics
- Configuring the PAgP Learn Method and Priority, on page 30
- EtherChannel Configuration Guidelines, on page 15
- Default EtherChannel Configuration, on page 14
- Monitoring EtherChannel, PAgP, and LACP Status, on page 39
- Layer 2 EtherChannel Configuration Guidelines, on page 16

PAgP Interaction with Virtual Switches and Dual-Active Detection

A virtual switch can be two or more core switches connected by virtual switch links (VSLs) that carry control and data traffic between them. One of the switches is in active mode. The others are in standby mode. For redundancy, remote switches are connected to the virtual switch by remote satellite links (RSLs).

If the VSL between two switches fails, one switch does not know the status of the other. Both switches could change to the active mode, causing a dual-active situation in the network with duplicate configurations (including duplicate IP addresses and bridge identifiers). The network might go down.

To prevent a dual-active situation, the core switches send PAgP protocol data units (PDUs) through the RSLs to the remote switches. The PAgP PDUs identify the active switch, and the remote switches forward the PDUs to core switches so that the core switches are in sync. If the active switch fails or resets, the standby switch takes over as the active switch. If the VSL goes down, one core switch knows the status of the other and does not change its state.

PAgP Interaction with Other Features

The Dynamic Trunking Protocol (DTP) and the Cisco Discovery Protocol (CDP) send and receive packets over the physical ports in the EtherChannel. Trunk ports send and receive PAgP protocol data units (PDUs) on the lowest numbered VLAN.
In Layer 2 EtherChannels, the first port in the channel that comes up provides its MAC address to the EtherChannel. If this port is removed from the bundle, one of the remaining ports in the bundle provides its MAC address to the EtherChannel. For Layer 3 EtherChannels, the MAC address is allocated by the active switch as soon as the interface is created (through the `interface port-channel` global configuration command).

PAgP sends and receives PAgP PDUs only from ports that are up and have PAgP enabled for the auto or desirable mode.

Link Aggregation Control Protocol

The LACP is defined in IEEE 802.3ad and enables Cisco switches to manage Ethernet channels between switches that conform to the IEEE 802.3ad protocol. LACP facilitates the automatic creation of EtherChannels by exchanging LACP packets between Ethernet ports.

By using LACP, the switch or switch stack learns the identity of partners capable of supporting LACP and the capabilities of each port. It then dynamically groups similarly configured ports into a single logical link (channel or aggregate port). Similarly configured ports are grouped based on hardware, administrative, and port parameter constraints. For example, LACP groups the ports with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, LACP adds the group to the spanning tree as a single switch port.

LACP Modes

LACP modes specify whether a port can send LACP packets or only receive LACP packets.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Places a port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets.</td>
</tr>
<tr>
<td>passive</td>
<td>Places a port into a passive negotiating state in which the port responds to LACP packets that it receives, but does not start LACP packet negotiation. This setting minimizes the transmission of LACP packets.</td>
</tr>
</tbody>
</table>

Both the `active` and `passive` LACP modes enable ports to negotiate with partner ports to an EtherChannel based on criteria such as port speed, and for Layer 2 EtherChannels, based on trunk state and VLAN numbers.

Ports can form an EtherChannel when they are in different LACP modes as long as the modes are compatible. For example:

- A port in the `active` mode can form an EtherChannel with another port that is in the `active` or `passive` mode.
- A port in the `passive` mode cannot form an EtherChannel with another port that is also in the `passive` mode because neither port starts LACP negotiation.

Related Topics

- Configuring Layer 2 EtherChannels, on page 19
- EtherChannel Overview, on page 2
- EtherChannel Modes, on page 3
- EtherChannel on Switches, on page 3
LACP Interaction with Other Features

The DTP and the CDP send and receive packets over the physical ports in the EtherChannel. Trunk ports send and receive LACP PDUs on the lowest numbered VLAN.

In Layer 2 EtherChannels, the first port in the channel that comes up provides its MAC address to the EtherChannel. If this port is removed from the bundle, one of the remaining ports in the bundle provides its MAC address to the EtherChannel. For Layer 3 EtherChannels, the MAC address is allocated by the active switch as soon as the interface is created through the `interface port-channel` global configuration command.

LACP sends and receives LACP PDUs only from ports that are up and have LACP enabled for the active or passive mode.

 EtherChannel On Mode

EtherChannel on mode can be used to manually configure an EtherChannel. The on mode forces a port to join an EtherChannel without negotiations. The on mode can be useful if the remote device does not support PAgP or LACP. In the on mode, a usable EtherChannel exists only when the switches at both ends of the link are configured in the on mode.

Ports that are configured in the on mode in the same channel group must have compatible port characteristics, such as speed and duplex. Ports that are not compatible are suspended, even though they are configured in the on mode.

Caution

You should use care when using the on mode. This is a manual configuration, and ports on both ends of the EtherChannel must have the same configuration. If the group is misconfigured, packet loss or spanning-tree loops can occur.

Load-Balancing and Forwarding Methods

EtherChannel balances the traffic load across the links in a channel by reducing part of the binary pattern formed from the addresses in the frame to a numerical value that selects one of the links in the channel. You can specify one of several different load-balancing modes, including load distribution based on MAC addresses, IP addresses, source addresses, destination addresses, or both source and destination addresses. The selected mode applies to all EtherChannels configured on the switch.

Related Topics

- Configuring EtherChannel Load-Balancing
- EtherChannel Configuration Guidelines, on page 15
- Layer 2 EtherChannel Configuration Guidelines, on page 16
- Default EtherChannel Configuration, on page 14
- Layer 3 EtherChannel Configuration Guidelines, on page 17

MAC Address Forwarding

With source-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the source-MAC address of the incoming packet. Therefore, to provide
load-balancing, packets from different hosts use different ports in the channel, but packets from the same host use the same port in the channel.

With destination-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the destination host’s MAC address of the incoming packet. Therefore, packets to the same destination are forwarded over the same port, and packets to a different destination are sent on a different port in the channel.

With source-and-destination MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on both the source and destination MAC addresses. This forwarding method, a combination source-MAC and destination-MAC address forwarding methods of load distribution, can be used if it is not clear whether source-MAC or destination-MAC address forwarding is better suited on a particular switch. With source-and-destination MAC-address forwarding, packets sent from host A to host B, host A to host C, and host C to host B could all use different ports in the channel.

Related Topics

Configuring EtherChannel Load-Balancing
EtherChannel Configuration Guidelines, on page 15
Layer 2 EtherChannel Configuration Guidelines, on page 16
Default EtherChannel Configuration, on page 14
Layer 3 EtherChannel Configuration Guidelines, on page 17

IP Address Forwarding

With source-IP address-based forwarding, packets are distributed across the ports in the EtherChannel based on the source-IP address of the incoming packet. To provide load balancing, packets from different IP addresses use different ports in the channel, and packets from the same IP address use the same port in the channel.

With destination-IP address-based forwarding, packets are distributed across the ports in the EtherChannel based on the destination-IP address of the incoming packet. To provide load balancing, packets from the same IP source address sent to different IP destination addresses could be sent on different ports in the channel. Packets sent from different source IP addresses to the same destination IP address are always sent on the same port in the channel.

With source-and-destination IP address-based forwarding, packets are distributed across the ports in the EtherChannel based on both the source and destination IP addresses of the incoming packet. This forwarding method, a combination of source-IP and destination-IP address-based forwarding, can be used if it is not clear whether source-IP or destination-IP address-based forwarding is better suited on a particular switch. In this method, packets sent from the IP address A to IP address B, from IP address A to IP address C, and from IP address C to IP address B could all use different ports in the channel.

Related Topics

Configuring EtherChannel Load-Balancing
EtherChannel Configuration Guidelines, on page 15
Layer 2 EtherChannel Configuration Guidelines, on page 16
Default EtherChannel Configuration, on page 14
Layer 3 EtherChannel Configuration Guidelines, on page 17

Load-Balancing Advantages

Different load-balancing methods have different advantages, and the choice of a particular load-balancing method should be based on the position of the switch in the network and the kind of traffic that needs to be load-distributed.
In the following figure, an EtherChannel of four workstations communicates with a router. Because the router is a single MAC-address device, source-based forwarding on the switch EtherChannel ensures that the switch uses all available bandwidth to the router. The router is configured for destination-based forwarding because the large number of workstations ensures that the traffic is evenly distributed from the router EtherChannel.

Use the option that provides the greatest variety in your configuration. For example, if the traffic on a channel is going only to a single MAC address, using the destination-MAC address always chooses the same link in the channel. Using source addresses or IP addresses might result in better load-balancing.

Related Topics
- Configuring EtherChannel Load-Balancing
- EtherChannel Configuration Guidelines, on page 15
- Layer 2 EtherChannel Configuration Guidelines, on page 16
- Default EtherChannel Configuration, on page 14
- Layer 3 EtherChannel Configuration Guidelines, on page 17

EtherChannel Load Deferral Overview

In an Instant Access system, the EtherChannel Load Deferral feature allows ports to be bundled into port channels, but prevents the assignment of group mask values to these ports. This prevents the traffic from being forwarded to new instant access stack members and reduce data loss following a stateful swtichover (SSO).

Cisco Catalyst Instant Access creates a single network touch point and a single point of configuration across distribution and access layer switches. Instant Access enables the merging of physical distribution and access layer switches into a single logical entity with a single point of configuration, management, and troubleshooting.

The following illustration represents a sample network where an Instant Access system interacts with a switch (Catalyst 2960-X Series Switches) that is connected via a port channel to stacked clients (Member 1 and Member 2).
When the EtherChannel Load Deferral feature is configured and a new Instant Access client stack member comes up, ports of this newly-joined stack member is bundled into the port channel. In the transition period, the data path is not fully established on the distribution switch (Catalyst 6000 Series Switches), and traffic originating from the access layer switch (Catalyst 2960-X Series Switches) reaches the non-established ports and the traffic gets lost.

When load share deferral is enabled on a port channel, the assignment of a member port’s load share is delayed for a period that is configured globally by the `port-channel load-defer` command. During the deferral period, the load share of a deferred member port is set to 0. In this state, the deferred port is capable of receiving data and control traffic, and of sending control traffic, but the port is prevented from sending data traffic to the virtual switching system (VSS). Upon expiration of the global deferral timer, the deferred member port exits the deferral state and the port assumes its normal configured load share.

Load share deferral is applied only if at least one member port of the port channel is currently active with a nonzero load share. If a port enabled for load share deferral is the first member bringing up the EtherChannel, the deferral feature does not apply and the port will forward traffic immediately.

This feature is enabled on a per port-channel basis; however, the load deferral timer is configured globally and not per port-channel. As a result, when a new port is bundled, the timer starts only if it is not already running. If some other ports are already deferred then the new port will be deferred only for the remaining amount of time.

The load deferral is stopped as soon as a member in one of the deferred port channels is unbundled. As a result, all the ports that were deferred is assigned a group-mask in the event of an unbundling during the deferral period.

Note

When you try to enable this feature on a stack member switch, the following message is displayed:

`Load share deferral is supported only on stand-alone stack.`

EtherChannel and Switch Stacks

If a stack member that has ports participating in an EtherChannel fails or leaves the stack, the active switch removes the failed stack member switch ports from the EtherChannel. The remaining ports of the EtherChannel, if any, continue to provide connectivity.

When a switch is added to an existing stack, the new switch receives the running configuration from the active switch and updates itself with the EtherChannel-related stack configuration. The stack member also receives the operational information (the list of ports that are up and are members of a channel).

When two stacks merge that have EtherChannels configured between them, self-looped ports result. Spanning tree detects this condition and acts accordingly. Any PAgP or LACP configuration on a winning switch stack is not affected, but the PAgP or LACP configuration on the losing switch stack is lost after the stack reboots.

Switch Stack and PAgP

With PAgP, if the active switch fails or leaves the stack, the standby switch becomes the new active switch. The new active switch synchronizes the configuration of the stack members to that of the active switch. The PAgP configuration is not affected after an active switch change unless the EtherChannel has ports residing on the old active switch.
Switch Stacks and LACP

With LACP, the system ID uses the stack MAC address from the active switch. When an active switch fails or leaves the stack and the standby switch becomes the new active switch change, the LACP system ID is unchanged. By default, the LACP configuration is not affected after the active switch changes.

Default EtherChannel Configuration

The default EtherChannel configuration is described in this table.

Table 3: Default EtherChannel Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel groups</td>
<td>None assigned.</td>
</tr>
<tr>
<td>Port-channel logical interface</td>
<td>None defined.</td>
</tr>
<tr>
<td>PAgP mode</td>
<td>No default.</td>
</tr>
<tr>
<td>PAgP learn method</td>
<td>Aggregate-port learning on all ports.</td>
</tr>
<tr>
<td>PAgP priority</td>
<td>128 on all ports.</td>
</tr>
<tr>
<td>LACP mode</td>
<td>No default.</td>
</tr>
<tr>
<td>LACP learn method</td>
<td>Aggregate-port learning on all ports.</td>
</tr>
<tr>
<td>LACP port priority</td>
<td>32768 on all ports.</td>
</tr>
<tr>
<td>LACP system priority</td>
<td>32768.</td>
</tr>
<tr>
<td>LACP system ID</td>
<td>LACP system priority and the switch or stack MAC address.</td>
</tr>
<tr>
<td>Load-balancing</td>
<td>Load distribution on the switch is based on the source-MAC address of the incoming packet.</td>
</tr>
</tbody>
</table>

Related Topics

- Configuring Layer 2 EtherChannels, on page 19
- EtherChannel Overview, on page 2
- EtherChannel Modes, on page 3
- EtherChannel on Switches, on page 3
- EtherChannel Link Failover, on page 4
- Creating Port-Channel Logical Interfaces, on page 24
- Configuring the Physical Interfaces, on page 25
- Configuring EtherChannel Load-Balancing
- Load-Balancing and Forwarding Methods, on page 10
- MAC Address Forwarding, on page 10
- IP Address Forwarding, on page 11
EtherChannel Configuration Guidelines

If improperly configured, some EtherChannel ports are automatically disabled to avoid network loops and other problems. Follow these guidelines to avoid configuration problems:

• Do not try to configure more than 48 EtherChannels on the switch or switch stack.

• Configure a PAgP EtherChannel with up to eight Ethernet ports of the same type.

• Configure a LACP EtherChannel with up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.

• Configure all ports in an EtherChannel to operate at the same speeds and duplex modes.

• Enable all ports in an EtherChannel. A port in an EtherChannel that is disabled by using the `shutdown` interface configuration command is treated as a link failure, and its traffic is transferred to one of the remaining ports in the EtherChannel.

• When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, you must also make the changes to all ports in the group:
 • Allowed-VLAN list
 • Spanning-tree path cost for each VLAN
 • Spanning-tree port priority for each VLAN
 • Spanning-tree Port Fast setting

• Do not configure a port to be a member of more than one EtherChannel group.

• Do not configure an EtherChannel in both the PAgP and LACP modes. EtherChannel groups running PAgP and LACP can coexist on the same switch or on different switches in the stack. Individual EtherChannel groups can run either PAgP or LACP, but they cannot interoperate.

• Do not configure a Switched Port Analyzer (SPAN) destination port as part of an EtherChannel.

• Do not configure a private-VLAN port as part of an EtherChannel.

• Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an IEEE 802.1x port. If you try to enable IEEE 802.1x on an EtherChannel port, an error message appears, and IEEE 802.1x is not enabled.

• If EtherChannels are configured on switch interfaces, remove the EtherChannel configuration from the interfaces before globally enabling IEEE 802.1x on a switch by using the `dot1x system-auth-control` global configuration command.

• Do not enable link-state tracking on individual interfaces that will be part of a downstream Etherchannel interface.
• For cross-stack EtherChannel configurations, ensure that all ports targeted for the EtherChannel are either configured for LACP or are manually configured to be in the channel group using the `channel-group channel-group-number` mode on interface configuration command. The PAgP protocol is not supported on cross-stack EtherChannels.

• If cross-stack EtherChannel is configured and the switch stack partitions, loops and forwarding issues can occur.

Related Topics
- Configuring Layer 2 EtherChannels, on page 19
- EtherChannel Overview, on page 2
- EtherChannel Modes, on page 3
- EtherChannel on Switches, on page 3
- EtherChannel Link Failover, on page 4
- Creating Port-Channel Logical Interfaces, on page 24
- Configuring the Physical Interfaces, on page 25
- Channel Groups and Port-Channel Interfaces, on page 5
- Configuring EtherChannel Load-Balancing
- Load-Balancing and Forwarding Methods, on page 10
- MAC Address Forwarding, on page 10
- IP Address Forwarding, on page 11
- Load-Balancing Advantages, on page 11
- Configuring the PAgP Learn Method and Priority, on page 30
- PAgP Learn Method and Priority, on page 7
- Configuring the LACP System Priority, on page 32
- Configuring the LACP Port Priority, on page 33

Layer 2 EtherChannel Configuration Guidelines

When configuring Layer 2 EtherChannels, follow these guidelines:

• Assign all ports in the EtherChannel to the same VLAN, or configure them as trunks. Ports with different native VLANs cannot form an EtherChannel.

• If you configure an EtherChannel from trunk ports, verify that the trunking mode (ISL or IEEE 802.1Q) is the same on all the trunks. Inconsistent trunk modes on EtherChannel ports can have unexpected results.

• An EtherChannel supports the same allowed range of VLANs on all the ports in a trunking Layer 2 EtherChannel. If the allowed range of VLANs is not the same, the ports do not form an EtherChannel even when PAgP is set to the `auto` or `desirable` mode.

• Ports with different spanning-tree path costs can form an EtherChannel if they are otherwise compatibly configured. Setting different spanning-tree path costs does not, by itself, make ports incompatible for the formation of an EtherChannel.

Related Topics
- Configuring Layer 2 EtherChannels, on page 19
- EtherChannel Overview, on page 2
- EtherChannel Modes, on page 3
- EtherChannel on Switches, on page 3
Layer 3 EtherChannel Configuration Guidelines

- For Layer 3 EtherChannels, assign the Layer 3 address to the port-channel logical interface, not to the physical ports in the channel.

Layer 3 EtherChannels are not supported on switches running the LAN base feature set.

Related Topics
- Configuring EtherChannel Load-Balancing
- Load-Balancing and Forwarding Methods, on page 10
- MAC Address Forwarding, on page 10
- IP Address Forwarding, on page 11
- Load-Balancing Advantages, on page 11

Auto-LAG

The auto-LAG feature provides the ability to auto create EtherChannels on ports connected to a switch. By default, auto-LAG is disabled globally and is enabled on all port interfaces. The auto-LAG applies to a switch only when it is enabled globally.

On enabling auto-LAG globally, the following scenarios are possible:

- All port interfaces participate in creation of auto EtherChannels provided the partner port interfaces have EtherChannel configured on them. For more information, see the "The supported auto-LAG configurations between the actor and partner devices" table below.

- Ports that are already part of manual EtherChannels cannot participate in creation of auto EtherChannels.

- When auto-LAG is disabled on a port interface that is already a part of an auto created EtherChannel, the port interface will unbundle from the auto EtherChannel.

The following table shows the supported auto-LAG configurations between the actor and partner devices:
Table 4: The supported auto-LAG configurations between the actor and partner devices

<table>
<thead>
<tr>
<th>Actor/Partner</th>
<th>Active</th>
<th>Passive</th>
<th>Auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Passive</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Auto</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

On disabling auto-LAG globally, all auto created Etherchannels become manual EtherChannels.

You cannot add any configurations in an existing auto created EtherChannel. To add, you should first convert it into a manual EtherChannel by executing the `port-channel<channel-number> persistent`.

Note

Auto-LAG uses the LACP protocol to create auto EtherChannel. Only one EtherChannel can be automatically created with the unique partner devices.

Related Topics

- Configuring Auto-LAG Globally, on page 37
- Configuring Auto LAG: Examples, on page 42
- Configuring Auto-LAG on a Port Interface, on page 38
- Configuring Persistence with Auto-LAG, on page 39
- Auto-LAG Configuration Guidelines, on page 18

Auto-LAG Configuration Guidelines

Follow these guidelines when configuring the auto-LAG feature.

- When auto-LAG is enabled globally and on the port interface, and if you do not want the port interface to become a member of the auto EtherChannel, disable the auto-LAG on the port interface.

- A port interface will not bundle to an auto EtherChannel when it is already a member of a manual EtherChannel. To allow it to bundle with the auto EtherChannel, first unbundle the manual EtherChannel on the port interface.

- When auto-LAG is enabled and auto EtherChannel is created, you can create multiple EtherChannels manually with the same partner device. But by default, the port tries to create auto EtherChannel with the partner device.

- The auto-LAG is supported only on Layer 2 EtherChannel. It is not supported on Layer 3 interface and Layer 3 EtherChannel.

Related Topics

- Configuring Auto-LAG Globally, on page 37
- Configuring Auto LAG: Examples, on page 42
- Configuring Auto-LAG on a Port Interface, on page 38
- Configuring Persistence with Auto-LAG, on page 39
- Auto-LAG, on page 17
How to Configure EtherChannels

After you configure an EtherChannel, configuration changes applied to the port-channel interface apply to all the physical ports assigned to the port-channel interface, and configuration changes applied to the physical port affect only the port where you apply the configuration.

Configuring Layer 2 EtherChannels

You configure Layer 2 EtherChannels by assigning ports to a channel group with the `channel-group` interface configuration command. This command automatically creates the port-channel logical interface.

If you enabled PAgP on a port in the `auto` or `desirable` mode, you must reconfigure it for either the `on` mode or the LACP mode before adding this port to a cross-stack EtherChannel. PAgP does not support cross-stack EtherChannels.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>interface <code>interface-id</code></td>
<td>Specifies a physical port, and enters interface configuration mode. Valid interfaces are physical ports.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
<td>For a PAgP EtherChannel, you can configure up to eight ports of the same type and speed for the same group. For a LACP EtherChannel, you can configure up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport mode `{access</td>
<td>trunk}`</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# switchport mode access</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport access vlan <code>vlan-id</code></td>
<td>(Optional) If you configure the port as a static-access port, assign it to only one VLAN. The range is 1 to 4094.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# switchport access vlan 22</td>
<td></td>
</tr>
</tbody>
</table>
Assigns the port to a channel group, and specifies the PAgP or the LACP mode.

```
channel-group channel-group-number mode
{auto [non-silent] | desirable [non-silent ] | on } | { active | passive}
```

Example:

```
Switch(config-if)# channel-group 5 mode auto
```

For **channel-group-number**, the range is 1 to 48.

For **mode**, select one of these keywords:

- **auto**—Enables PAgP only if a PAgP device is detected. It places the port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This keyword is not supported when EtherChannel members are from different switches in the switch stack.

- **desirable**—Unconditionally enables PAgP. It places the port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This keyword is not supported when EtherChannel members are from different switches in the switch stack.

- **on**—Forces the port to channel without PAgP or LACP. In the **on** mode, an EtherChannel exists only when a port group in the **on** mode is connected to another port group in the **on** mode.

- **non-silent**—(Optional) If your switch is connected to a partner that is PAgP-capable, configures the switch port for nonsilent operation when the port is in the **auto** or **desirable** mode. If you do not specify **non-silent**, silent is assumed. The silent setting is for connections to file servers or packet analyzers. This setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.

- **active**—Enables LACP only if a LACP device is detected. It places the port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets.

- **passive**—Enables LACP on the port and places it into a passive negotiating state in which the port responds to LACP packets
Configuring LACP Port-Channel Standalone Disable

To disable the standalone EtherChannel member port state on a port channel, perform this task on the port channel interface:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface port-channel channel-group</td>
<td>Selects a port channel interface to configure.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface port-channel channel-group</td>
<td></td>
</tr>
<tr>
<td>Step 3 port-channel standalone-disable</td>
<td>Disables the standalone mode on the port-channel interface.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# port-channel standalone-disable</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Layer 3 EtherChannels

Follow these steps to assign an Ethernet port to a Layer 3 EtherChannel. This procedure is required.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specifies a physical port, and enters interface configuration mode. Valid interfaces include physical ports. For a PAgP EtherChannel, you can configure up to eight ports of the same type and speed for the same group. For a LACP EtherChannel, you can configure up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet 1/0/2</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>no ip address</td>
<td>Ensures that there is no IP address assigned to the physical port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

```
Switch(config-if)# no ip address
```

<table>
<thead>
<tr>
<th>Step 5</th>
<th><code>no switchport</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch(config-if)# <code>no switchport</code></td>
</tr>
</tbody>
</table>

Purpose

Puts the port into Layer 3 mode.

| Step 6 | `channel-group channel-group-number mode { auto [non-silent] | desirable [non-silent] | on } | { active | passive }` |
|--------|---|
| Example: | Switch(config-if)# `channel-group 5 mode auto` |

Assigns the port to a channel group, and specifies the PAgP or the LACP mode.

For **mode**, select one of these keywords:

- **auto**—Enables PAgP only if a PAgP device is detected. It places the port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This keyword is not supported when EtherChannel members are from different switches in the switch stack.

- **desirable**—Unconditionally enables PAgP. It places the port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This keyword is not supported when EtherChannel members are from different switches in the switch stack.

- **on**—Forces the port to channel without PAgP or LACP. In the **on** mode, an EtherChannel exists only when a port group in the **on** mode is connected to another port group in the **on** mode.

- **non-silent**—(Optional) If your switch is connected to a partner that is PAgP capable, configures the switch port for nonsilent operation when the port is in the **auto** or **desirable** mode. If you do not specify **non-silent**, silent is assumed. The silent setting is for connections to file servers or packet analyzers. This setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.

- **active**—Enables LACP only if a LACP device is detected. It places the port into
Creating Port-Channel Logical Interfaces

When configuring Layer 3 EtherChannels, you should first manually create the port-channel logical interface by using the `interface port-channel` global configuration command. Then put the logical interface into the channel group by using the `channel-group` interface configuration command.

Note

To move an IP address from a physical port to an EtherChannel, you must delete the IP address from the physical port before configuring it on the port-channel interface.

Follow these steps to create a port-channel interface for a Layer 3 EtherChannel. This procedure is required.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface port-channel port-channel-number</td>
<td>Specifies the port-channel logical interface, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface port-channel 5</td>
<td>For <code>port-channel-number</code>, the range is 1 to 48.</td>
</tr>
</tbody>
</table>
Configuring the Physical Interfaces

Follow these steps to assign an Ethernet port to a Layer 3 EtherChannel. This procedure is required.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

```
Switch> enable
```

Related Topics

- [EtherChannel Configuration Guidelines](#)
- [Default EtherChannel Configuration](#)
- [Layer 2 EtherChannel Configuration Guidelines](#)
- [PAgP Modes](#)
- [Silent Mode](#)
- [Channel Groups and Port-Channel Interfaces](#)

Purpose Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td><code>no switchport</code></td>
<td>Puts the interface into Layer 3 mode.</td>
</tr>
</tbody>
</table>

Example:

```
Switch(config-if)# no switchport
```

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td><code>ip address ip-address mask</code></td>
<td>Assigns an IP address and subnet mask to the EtherChannel.</td>
</tr>
</tbody>
</table>

Example:

```
Switch(config-if)# ip address 172.10.20.10 255.255.255.0
```

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

```
Switch(config-if)# end
```

This example shows how to create the logical port channel 5 and assign 172.10.20.10 as its IP address:

```
Switch# configure terminal
Switch(config)# interface port-channel 5
Switch(config-if)# no switchport
Switch(config-if)# ip address 172.10.20.10 255.255.255.0
Switch(config-if)# end
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies a physical port, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet 1/0/2</td>
<td>Valid interfaces include physical ports.</td>
</tr>
<tr>
<td>For a PAgP EtherChannel, you can configure up to eight ports of the same type and speed for the same group.</td>
<td></td>
</tr>
<tr>
<td>For a LACP EtherChannel, you can configure up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.</td>
<td></td>
</tr>
<tr>
<td>Step 4 no ip address</td>
<td>Ensures that there is no IP address assigned to the physical port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# no ip address</td>
<td></td>
</tr>
<tr>
<td>Step 5 no switchport</td>
<td>Puts the port into Layer 3 mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# no switchport</td>
<td></td>
</tr>
<tr>
<td>Step 6 channel-group channel-group-number mode { auto [non-silent]</td>
<td>desirable [non-silent]</td>
</tr>
<tr>
<td>{ active</td>
<td>passive }</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# channel-group 5 mode auto</td>
<td>For mode, select one of these keywords:</td>
</tr>
<tr>
<td>• auto—Enables PAgP only if a PAgP device is detected. It places the port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This keyword is not supported when EtherChannel members are from different switches in the switch stack.</td>
<td></td>
</tr>
<tr>
<td>• desirable—Unconditionally enables PAgP. It places the port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This keyword is not</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>supported when EtherChannel members are from different switches in the switch stack.</td>
</tr>
<tr>
<td></td>
<td>on—Forces the port to channel without PAgP or LACP. In the on mode, an EtherChannel exists only when a port group in the on mode is connected to another port group in the on mode.</td>
</tr>
<tr>
<td></td>
<td>non-silent—(Optional) If your switch is connected to a partner that is PAgP capable, configures the switch port for nonsilent operation when the port is in the auto or desirable mode. If you do not specify non-silent, silent is assumed. The silent setting is for connections to file servers or packet analyzers. This setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.</td>
</tr>
<tr>
<td></td>
<td>active—Enables LACP only if a LACP device is detected. It places the port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets.</td>
</tr>
<tr>
<td></td>
<td>passive—Enables LACP on the port and places it into a passive negotiating state in which the port responds to LACP packets that it receives, but does not start LACP packet negotiation.</td>
</tr>
</tbody>
</table>

Step 7

```
end
```

Example:

```
Switch(config-if)# end
```

Returns to privileged EXEC mode.

Related Topics

- Channel Groups and Port-Channel Interfaces, on page 5
- EtherChannel Configuration Guidelines, on page 15
- Default EtherChannel Configuration, on page 14
- Layer 2 EtherChannel Configuration Guidelines, on page 16
- PAgP Modes, on page 6
- Silent Mode, on page 7
Configuring EtherChannel Load-Balancing

You can configure EtherChannel load-balancing by using source-based or destination-based forwarding methods.

This task is optional.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>port-channel load-balance { dst-ip</td>
<td>dst-mac</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# port-channel load-balance src-mac</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Port Channel Load Deferral

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. • Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>port-channel load-defer seconds</td>
<td>Configures the port load share deferral interval for all port channels. • seconds—The time interval during which load sharing is initially 0 for deferred port channels. The range is 1 to 1800 seconds; the default is 120 seconds</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# port-channel load-defer 60</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>interface type number</td>
<td>Configures a port channel interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface port-channel 10</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>port-channel load-defer</td>
<td>Enables port load share deferral on the port channel.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# port-channel load-defer</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>show etherchannel channel-group port-channel</td>
<td>Displays port channel information.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show etherchannel 1 port-channel</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>show platform pm group-masks</td>
<td>Display EtherChannel group masks information.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show platform pm group-masks</td>
<td></td>
</tr>
</tbody>
</table>
Example
The following is sample output from the `show etherchannel channel-group port-channel` command. If the `channel-group` argument is not specified; the command displays information about all channel groups are displayed.

```
Switch# show etherchannel 1 port-channel

Port-channels in the group:
---------------------------
Port-channel: Po1
------------
Age of the Port-channel = 0d:00h:37m:08s
Logical slot/port = 9/1   Number of ports = 0
GC = 0x00000000   HotStandBy port = null
Port state = Port-channel Ag-Not-Inuse
Protocol = -
Port security = Disabled
Load share deferral = Enabled  defer period = 120 sec  time left = 0 sec
```

The following is sample output from the `show platform pm group-masks` command. Deferred ports have the group mask of 0xFFFF, when the defer timer is running.

```
Switch# show platform pm group-masks

Etherchannel members and group masks table
Group #ports group frame-dist slot port mask interface index
--------------------------------------------------------------------
1  0  1  src-mac
2  0  2  src-mac
3  0  3  src-mac
4  0  4  src-mac
5  0  5  src-mac
6  0  6  src-mac
7  0  7  src-mac
8  0  8  src-mac
9  0  9  src-mac
10 3  10  src-mac
     1  12  0000 Gi1/0/12  3
     1  10  FFFF Gi1/0/10  6
     1  11  FFFF Gi1/0/11  7
11 0  11  src-mac
12 0  12  src-mac
13 0  13  src-mac
14 0  14  src-mac
15 0  15  src-mac
```

Configuring the PAgP Learn Method and Priority
This task is optional.
Configuring EtherChannels

Configuring the PAGP Learn Method and Priority

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Specifies the port for transmission, and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# interface gigabitethernet 1/0/2</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Selects the PAGP learning method.</td>
</tr>
<tr>
<td><code>pagp learn-method physical-port</code></td>
<td>By default, aggregation-port learning is selected, which means the switch sends packets to the source by using any of the ports in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives.</td>
</tr>
<tr>
<td>Example:</td>
<td>Selects physical-port to connect with another switch that is a physical learner. Make sure to configure the port-channel load-balance global configuration command to src-mac.</td>
</tr>
<tr>
<td><code>Switch(config-if)# pagp learn-method physical port</code></td>
<td>The learning method must be configured the same at both ends of the link.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Assigns a priority so that the selected port is chosen for packet transmission.</td>
</tr>
<tr>
<td><code>pagp port-priority priority</code></td>
<td>For priority, the range is 0 to 255. The default is 128. The higher the priority, the more likely that the port will be used for PAGP transmission.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-if)# pagp port-priority 200</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- PAGP Learn Method and Priority, on page 7
- EtherChannel Configuration Guidelines, on page 15
- Default EtherChannel Configuration, on page 14
- Monitoring EtherChannel, PAGP, and LACP Status, on page 39
Configuring LACP Hot-Standby Ports

When LACP is enabled, the software, by default, tries to configure the maximum number of LACP-compatible ports in a channel, up to a maximum of 16 ports. Only eight LACP links can be active at one time; the remaining eight links are placed in hot-standby mode. If one of the active links becomes inactive, a link that is in the hot-standby mode becomes active in its place.

You can override the default behavior by specifying the maximum number of active ports in a channel, in which case, the remaining ports become hot-standby ports. For example, if you specify a maximum of five ports in a channel, up to 11 ports become hot-standby ports.

If you configure more than eight links for an EtherChannel group, the software automatically decides which of the hot-standby ports to make active based on the LACP priority. To every link between systems that operate LACP, the software assigns a unique priority made up of these elements (in priority order):

- LACP system priority
- System ID (the switch MAC address)
- LACP port priority
- Port number

In priority comparisons, numerically lower values have higher priority. The priority decides which ports should be put in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating.

Determining which ports are active and which are hot standby is a two-step procedure. First the system with a numerically lower system priority and system ID is placed in charge of the decision. Next, that system decides which ports are active and which are hot standby, based on its values for port priority and port number. The port priority and port number values for the other system are not used.

You can change the default values of the LACP system priority and the LACP port priority to affect how the software selects active and standby links.

Configuring the LACP System Priority

You can configure the system priority for all the EtherChannels that are enabled for LACP by using the `lacp system-priority` global configuration command. You cannot configure a system priority for each LACP-configured channel. By changing this value from the default, you can affect how the software selects active and standby links.

You can use the `show etherchannel summary` privileged EXEC command to see which ports are in the hot-standby mode (denoted with an H port-state flag).

Follow these steps to configure the LACP system priority. This procedure is optional.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:
Configuring EtherChannels

Configuring the LACP Port Priority

By default, all ports use the same port priority. If the local system has a lower value for the system priority and the system ID than the remote system, you can affect which of the hot-standby links become active first by changing the port priority of LACP EtherChannel ports to a lower value than the default. The hot-standby ports that have lower port numbers become active in the channel first. You can use the `show etherchannel summary` privileged EXEC command to see which ports are in the hot-standby mode (denoted with an H port-state flag).

Note

If LACP is not able to aggregate all the ports that are compatible (for example, the remote system might have more restrictive hardware limitations), all the ports that cannot be actively included in the EtherChannel are put in the hot-standby state and are used only if one of the channeled ports fails.

Follow these steps to configure the LACP port priority. This procedure is optional.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>lacp system-priority</code> <code>priority</code></td>
<td>Configures the LACP system priority.</td>
</tr>
<tr>
<td>Example: Switch(config)# lacp system-priority 32000</td>
<td>The range is 1 to 65535. The default is 32768. The lower the value, the higher the system priority.</td>
</tr>
<tr>
<td>Step 4 <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- EtherChannel Configuration Guidelines, on page 15
- Default EtherChannel Configuration, on page 14
- Layer 2 EtherChannel Configuration Guidelines, on page 16
- Monitoring EtherChannel, PAgP, and LACP Status, on page 39
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Command or Action</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> <code>enable</code></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>configure terminal</code></td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specifies the port to be configured, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# <code>interface gigabitethernet 1/0/2</code></td>
</tr>
<tr>
<td><code>lacp port-priority priority</code></td>
<td>Configures the LACP port priority.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# <code>lacp port-priority 32000</code></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# <code>end</code></td>
</tr>
</tbody>
</table>

Related Topics
- EtherChannel Configuration Guidelines, on page 15
- Default EtherChannel Configuration, on page 14
- Layer 2 EtherChannel Configuration Guidelines, on page 16
- Monitoring EtherChannel, PAgP, and LACP Status, on page 39

Configuring the LACP Port Channel Min-Links Feature

You can specify the minimum number of active ports that must be in the link-up state and bundled in an EtherChannel for the port channel interface to transition to the link-up state. Using EtherChannel min-links, you can prevent low-bandwidth LACP EtherChannels from becoming active. Port channel min-links also cause LACP EtherChannels to become inactive if they have too few active member ports to supply the required minimum bandwidth.
To configure the minimum number of links that are required for a port channel. Perform the following tasks.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface port-channel $channel$-number</td>
<td>Enters interface configuration mode for a port-channel.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# interface port-channel $channel$</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>port-channel min-links $min-links$-number</td>
<td>Specifies the minimum number of member ports that must be in the link-up state and bundled in the EtherChannel for the port channel interface to transition to the link-up state.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# port-channel min-links $min-links$</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

[Configuring LACP Port Channel Min-Links: Examples](#), on page 43

Configuring LACP Fast Rate Timer

You can change the LACP timer rate to modify the duration of the LACP timeout. Use the `lacp rate` command to set the rate at which LACP control packets are received by an LACP-supported interface. You can change the timeout rate from the default rate (30 seconds) to the fast rate (1 second). This command is supported only on LACP-enabled interfaces.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface { fastethernet</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitEthernet 2/1</td>
</tr>
<tr>
<td>Selects the interface to configure.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>lacp rate { normal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# lacp rate fast</td>
</tr>
<tr>
<td>Configures the rate at which LACP control packets are received by an LACP-supported interface.</td>
<td></td>
</tr>
<tr>
<td>To reset the timeout rate to its default, use the no lacp rate command</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>show lacp internal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show lacp internal</td>
</tr>
<tr>
<td>Switch# show lacp counters</td>
<td></td>
</tr>
<tr>
<td>Verifies your configuration.</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Configuring LACP Fast Rate Timer: Examples, on page 44
Configuring Auto-LAG Globally

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>[no] port-channel auto</code></td>
<td>Enables the auto-LAG feature on a switch globally. Use the no form of this command to disable the auto-LAG feature on the switch globally.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# port-channel auto</code></td>
<td>By default, the auto-LAG feature is enabled on the port.</td>
</tr>
<tr>
<td>4</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>show etherchannel auto</code></td>
<td>Displays that EtherChannel is created automatically.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# show etherchannel auto</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Auto-LAG, on page 17
- Auto-LAG Configuration Guidelines, on page 18
- Configuring Auto LAG: Examples, on page 42
- Configuring Auto-LAG on a Port Interface, on page 38
- Configuring Persistence with Auto-LAG, on page 39
Configuring Auto-LAG on a Port Interface

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
<td>Specifies the port interface to be enabled for auto-LAG, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>[no] channel-group auto</td>
<td>(Optional) Enables auto-LAG feature on individual port interface. Use the no form of this command to disable the auto-LAG feature on individual port interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# channel-group auto</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>By default, the auto-LAG feature is enabled on the port.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>show etherchannel auto</td>
<td>Displays that EtherChannel is created automatically.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show etherchannel auto</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

Related Topics

- Configuring Auto-LAG Globally, on page 37
- Auto-LAG, on page 17
- Auto-LAG Configuration Guidelines, on page 18
- Configuring Persistence with Auto-LAG, on page 39
- Configuring Auto LAG: Examples, on page 42
Configuring Persistence with Auto-LAG

You use the persistence command to convert the auto created EtherChannel into a manual one and allow you to add configuration on the existing EtherChannel.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable
Example:
Switch> enable | Enables privileged EXEC mode. Enter your password if prompted. |
| Step 2 | port-channel channel-number persistent
Example:
Switch# port-channel 1 persistent | Converts the auto created EtherChannel into a manual one and allows you to add configuration on the EtherChannel. |
| Step 3 | show etherchannel summary
Example:
Switch# show etherchannel summary | Displays the EtherChannel information. |

Related Topics

- [Configuring Auto-LAG Globally](#), on page 37
- [Auto-LAG](#), on page 17
- [Auto-LAG Configuration Guidelines](#), on page 18
- [Configuring Auto-LAG on a Port Interface](#), on page 38
- [Configuring Auto LAG: Examples](#), on page 42

Monitoring EtherChannel, PAgP, and LACP Status

You can display EtherChannel, PAgP, and LACP status using the commands listed in this table.

Table 5: Commands for Monitoring EtherChannel, PAgP, and LACP Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| clear lacp { channel-group-number | clears LACP channel-group information and traffic counters.

counters

| clear pagp { channel-group-number | clears PAgP channel-group information and traffic counters.

counters

| counters

| counters }

| counters }

| counters }

| counters }

| counters |}
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show etherchannel [channel-group-number] { detail</td>
<td>load-balance</td>
</tr>
<tr>
<td>`show pagp [channel-group-number] { counters</td>
<td>internal</td>
</tr>
<tr>
<td><code>show pagp [channel-group-number] dual-active</code></td>
<td>Displays the dual-active detection status.</td>
</tr>
<tr>
<td>`show lacp [channel-group-number] { counters</td>
<td>internal</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verifies your configuration entries.</td>
</tr>
<tr>
<td><code>show etherchannel load-balance</code></td>
<td>Displays the load balance or frame distribution scheme among ports in the port channel.</td>
</tr>
</tbody>
</table>

Related Topics
- Configuring the PAgP Learn Method and Priority, on page 30
- PAgP Learn Method and Priority, on page 7
- Configuring the LACP System Priority, on page 32
- Configuring the LACP Port Priority, on page 33

Configuration Examples for Configuring EtherChannels

Configuring Layer 2 EtherChannels: Examples

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two ports as static-access ports in VLAN 10 to channel 5 with the PAgP mode desirable:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode desirable non-silent
Switch(config-if-range)# end
```

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two ports as static-access ports in VLAN 10 to channel 5 with the LACP mode active:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# switchport mode access
```
This example shows how to configure a cross-stack EtherChannel. It uses LACP passive mode and assigns two ports on stack member 1 and one port on stack member 2 as static-access ports in VLAN 10 to channel 5:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode passive
Switch(config-if-range)# exit
Switch(config)# interface gigabitethernet3/0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 10
Switch(config-if)# channel-group 5 mode passive
Switch(config-if)# exit
```

Configuring Layer 3 EtherChannels: Examples

This example shows how to configure a Layer 3 EtherChannel. It assigns two ports to channel 5 with the LACP mode active:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# no ip address
Switch(config-if-range)# no switchport
Switch(config-if-range)# channel-group 5 mode active
Switch(config-if-range)# exit
```

This example shows how to configure a cross-stack Layer 3 EtherChannel. It assigns two ports on stack member 2 and one port on stack member 3 to channel 7 using LACP active mode:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# no ip address
Switch(config-if-range)# no switchport
Switch(config-if-range)# channel-group 7 mode active
Switch(config-if-range)# exit
Switch(config)# interface gigabitethernet3/0/3
Switch(config-if)# no ip address
Switch(config-if)# no switchport
Switch(config-if)# channel-group 7 mode active
Switch(config-if)# exit
```
Example: Configuring Port Channel Load Deferral

Switch# configure terminal
Switch(config)# port-channel load-defer 60
Switch(config)# interface port-channel 10
Switch(config-if)# port-channel load-defer
Switch(config-if)# end

Configuring LACP Hot-Standby Ports: Example

This example shows how to configure an Etherchannel (port channel 2) that will be active when there are at least three active ports, will comprise up to seven active ports and the remaining ports (up to nine) as hot-standby ports:

Switch# configure terminal
Switch(config)# interface port-channel 2
Switch(config-if)# port-channel min-links 3
Switch(config-if)# lacp max-bundle 7

Configuring Auto LAG: Examples

This example shows how to configure Auto-LAG on a switch

switch> enable
switch# configure terminal
switch(config)# port-channel auto
switch(config-if)# end
switch# show etherchannel auto

The following example shows the summary of EtherChannel that was created automatically.

switch# show etherchannel auto
Flags: D - down P - bundled in port-channel
I - stand-alone s - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
U - in use f - failed to allocate aggregator
M - not in use, minimum links not met
u - unsuitable for bundling
w - waiting to be aggregated
d - default port
A - formed by Auto LAG

Number of channel-groups in use: 1
Number of aggregators: 1

Group Port-channel Protocol Ports

1 Po1(SUA) LACP Gi1/0/45(P) Gi2/0/21(P) Gi3/0/21(P)

The following example shows the summary of auto EtherChannel after executing the port-channel 1 persistent command.
switch# **port-channel 1 persistent**

switch# **show etherchannel summary**

Switch: P - bundled in port-channel
I - stand-alone s - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
U - in use f - failed to allocate aggregator
M - not in use, minimum links not met
u - unsuitable for bundling
w - waiting to be aggregated
d - default port
A - formed by Auto LAG

Number of channel-groups in use: 1
Number of aggregators: 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Port-channel</th>
<th>Protocol</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Po1 (SU)</td>
<td>LACP</td>
<td>Gi1/0/45(P) Gi2/0/21(P) Gi3/0/21(P)</td>
</tr>
</tbody>
</table>

Related Topics

- Configuring Auto-LAG Globally, on page 37
- Auto-LAG, on page 17
- Auto-LAG Configuration Guidelines, on page 18
- Configuring Persistence with Auto-LAG, on page 39
- Configuring Auto-LAG on a Port Interface, on page 38

Configuring LACP Port Channel Min-Links: Examples

This example shows how to configure LACP port-channel min-links:

```
switch > enable
switch# configure terminal
switch(config)# interface port-channel 25
switch(config-if)# port-channel min-links 3
switch# show etherchannel 25 summary
```

When the minimum links requirement is not met in standalone switches, the port-channel is flagged and assigned SM/SN or RM/RN state.

```
switch# show etherchannel 25 summary
```

Flags: D - down P - bundled in port-channel
I - stand-alone s - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
U - in use N - not in use, no aggregation
f - failed to allocate aggregator
M - not in use, no aggregation due to minimum links not met
m - not in use, port not aggregated due to minimum links not met
u - unsuitable for bundling
w - waiting to be aggregated
d - default port

Number of channel-groups in use: 125
Number of aggregators: 125

<table>
<thead>
<tr>
<th>Group</th>
<th>Port-channel</th>
<th>Protocol</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring LACP Fast Rate Timer: Examples

This example shows you how to configure the LACP rate:

```
switch > enable
switch# configure terminal
switch(config)# interface gigabitEthernet 2/1
switch(config-if)# lACP rate fast
switch(config-if)# exit
switch(config)# end
switch#
```

The `show lACP internal` command displays similar output:

```
switch# show lACP internal
Flags: S - Device is requesting Slow LACPDUs
      F - Device is requesting Fast LACPDUs
      A - Device is in Active mode P - Device is in Passive mode
Channel group 25
LACP port Admin Oper Port Port Flags State Priority Key Key Number State
Te1/49 FA bndl 32768 0x19 0x19 0x32 0x3F
Te1/50 FA bndl 32768 0x19 0x19 0x33 0x3F
Te1/51 FA bndl 32768 0x19 0x19 0x34 0x3F
Te1/52 FA bndl 32768 0x19 0x19 0x35 0x3F
```

The `show lACP counters` command displays similar output:

```
switch# show lACP counters
LACPDUss Marker Marker Response LACPDUss
Port Sent Recv Sent Recv Sent Recv Pkts Err
---------------------------------------------------------------------
Channel group: 24
Te1/1/27 2 2 0 0 0 0 0
Te2/1/25 2 2 0 0 0 0 0
```

Related Topics

- Configuring LACP Fast Rate Timer, on page 35
Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Additional References for EtherChannels