CONTENTS

Preface liii
Audience liii
Purpose liii
Conventions liv
Related Publications liv
Obtaining Documentation and Submitting a Service Request lvi

CHAPTER 1

Overview 1-1

Software Features 1-1
Deployment Features 1-2
Deployment Features 1-2
Performance Features 1-4
Management Options 1-6
Manageability Features 1-7
Availability and Redundancy Features 1-9
VLAN Features 1-10
Security Features 1-11
QoS and CoS Features 1-15
Layer 3 Features 1-16
Power over Ethernet Features 1-18
Monitoring Features 1-18

Default Settings After Initial Switch Configuration 1-20

Network Configuration Examples 1-23
Design Concepts for Using the Switch 1-23
Small to Medium-Sized Network Using Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X Switches 1-30
Large Network Using Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X Switches 1-32
Multidwelling Network Using Catalyst 3750-E Catalyst 3750-X Switches 1-35
Long-Distance, High-Bandwidth Transport Configuration 1-36

Where to Go Next 1-37

CHAPTER 2

Using the Command-Line Interface 2-1

Understanding Command Modes 2-1
Understanding the Help System 2-3
Understanding Abbreviated Commands 2-3
Understanding no and default Forms of Commands 2-4
Understanding CLI Error Messages 2-4
Using Configuration Logging 2-4
Using Command History 2-5
 Changing the Command History Buffer Size 2-5
 Recalling Commands 2-6
 Disabling the Command History Feature 2-6
Using Editing Features 2-6
 Enabling and Disabling Editing Features 2-6
 Editing Commands through Keystrokes 2-7
 Editing Command Lines that Wrap 2-8
Searching and Filtering Output of show and more Commands 2-9
Accessing the CLI 2-9
 Accessing the CLI through a Console Connection or through Telnet 2-10

CHAPTER 3
Configuring Cisco IOS Configuration Engine 3-1
Understanding Cisco Configuration Engine Software 3-1
 Configuration Service 3-2
 Event Service 3-3
 NameSpace Mapper 3-3
 What You Should Know About the CNS IDs and Device Hostnames 3-3
 ConfigID 3-3
 DeviceID 3-4
 Hostname and DeviceID 3-4
 Using Hostname, DeviceID, and ConfigID 3-4
Understanding Cisco IOS Agents 3-5
 Initial Configuration 3-5
 Incremental (Partial) Configuration 3-6
 Synchronized Configuration 3-6
Configuring Cisco IOS Agents 3-6
 Enabling Automated CNS Configuration 3-6
 Enabling the CNS Event Agent 3-8
 Enabling the Cisco IOS CNS Agent 3-9
 Enabling an Initial Configuration 3-9
 Enabling a Partial Configuration 3-13
Displaying CNS Configuration 3-14
CHAPTER 4

Assigning the Switch IP Address and Default Gateway 4-1

Understanding the Boot Process 4-1
Assigning Switch Information 4-2
Default Switch Information 4-3
Understanding DHCP-Based Autoconfiguration 4-3
DHCP Client Request Process 4-4
Understanding DHCP-based Autoconfiguration and Image Update 4-5
DHCP Autoconfiguration 4-5
DHCP Auto-Image Update 4-5
Limitations and Restrictions 4-6
Configuring DHCP-Based Autoconfiguration 4-6
DHCP Server Configuration Guidelines 4-7
Configuring the TFTP Server 4-7
Configuring the DNS 4-8
Configuring the Relay Device 4-8
Obtaining Configuration Files 4-9
Example Configuration 4-10
Configuring the DHCP Auto Configuration and Image Update Features 4-11
Configuring DHCP Autoconfiguration (Only Configuration File) 4-11
Configuring DHCP Auto-Image Update (Configuration File and Image) 4-12
Configuring the Client 4-14
Manually Assigning IP Information 4-15
Checking and Saving the Running Configuration 4-16
Configuring the NVRAM Buffer Size 4-17
Modifying the Startup Configuration 4-18
Default Boot Configuration 4-18
Automatically Downloading a Configuration File 4-18
Specifying the Filename to Read and Write the System Configuration 4-19
Booting Manually 4-19
Booting a Specific Software Image 4-20
Controlling Environment Variables 4-21
Scheduling a Reload of the Software Image 4-23
Configuring a Scheduled Reload 4-24
Displaying Scheduled Reload Information 4-25
Boot Loader Upgrade and Image Verification for the FIPS Mode of Operation 4-25

CHAPTER 5

Managing Switch Stacks 5-1

Understanding Switch Stacks 5-2
Switch Stack Membership 5-4
Stack Master Election and Re-Election 5-6
Switch Stack Bridge ID and Router MAC Address 5-7
Stack Member Numbers 5-7
Stack Member Priority Values 5-8
Switch Stack Offline Configuration 5-8
 Effects of Adding a Provisioned Switch to a Switch Stack 5-9
 Effects of Replacing a Provisioned Switch in a Switch Stack 5-11
 Effects of Removing a Provisioned Switch from a Switch Stack 5-11
Hardware Compatibility and SDM Mismatch Mode in Switch Stacks 5-11
Switch Stack Software Compatibility Recommendations 5-11
Stack Protocol Version Compatibility 5-12
Major Version Number Incompatibility Among Switches 5-12
Minor Version Number Incompatibility Among Switches 5-12
 Understanding Auto-Upgrade and Auto-Advise 5-12
 Auto-Upgrade and Auto-Advise Example Messages 5-13
Incompatible Software and Stack Member Image Upgrades 5-16
Switch Stack Configuration Files 5-16
Additional Considerations for System-Wide Configuration on Switch Stacks 5-17
Switch Stack Management Connectivity 5-17
 Connectivity to the Switch Stack Through an IP Address 5-18
 Connectivity to the Switch Stack Through an SSH Session 5-18
 Connectivity to the Switch Stack Through Console Ports or Ethernet Management Ports 5-18
 Connectivity to Specific Stack Members 5-18
Switch Stack Configuration Scenarios 5-19
Rolling Stack Upgrade 5-21
 Stack Configuration 5-21
 Upgrade Process 5-21
 Upgrade Sequence Examples 5-22
Configuring the Switch Stack 5-24
 Default Switch Stack Configuration 5-24
 Enabling Persistent MAC Address 5-24
 Assigning Stack Member Information 5-26
 Assigning a Stack Member Number 5-26
 Setting the Stack Member Priority Value 5-26
 Provisioning a New Member for a Switch Stack 5-27
 Running a Rolling Stack Update 5-28
Accessing the CLI of a Specific Stack Member 5-30
Displaying Switch Stack Information 5-30
Troubleshooting Stacks 5-31
Manually Disabling a Stack Port 5-31
Re-Enabling a Stack Port While Another Member Starts 5-32
Understanding the show switch stack-ports summary Output 5-32
Identifying Loopback Problems 5-33
 Software Loopback 5-34
 Software Loopback Example: No Connected Stack Cable 5-35
 Software Loopback Examples: Connected Stack Cables 5-35
 Hardware Loopback 5-36
 Hardware Loopback Example: LINK OK event 5-36
 Hardware Loop Example: LINK NOT OK Event 5-37
Finding a Disconnected Stack Cable 5-38
Fixing a Bad Connection Between Stack Ports 5-39

CHAPTER 6
Clustering Switches 6-1
Understanding Switch Clusters 6-2
 Cluster Command Switch Characteristics 6-3
 Standby Cluster Command Switch Characteristics 6-3
 Candidate Switch and Cluster Member Switch Characteristics 6-4
Planning a Switch Cluster 6-4
Automatic Discovery of Cluster Candidates and Members 6-5
 Discovery Through CDP Hops 6-5
 Discovery Through Non-CDP-Capable and Noncluster-Capable Devices 6-6
 Discovery Through Different VLANs 6-7
 Discovery Through Different Management VLANs 6-7
 Discovery Through Routed Ports 6-8
 Discovery of Newly Installed Switches 6-9
HSRP and Standby Cluster Command Switches 6-10
 Virtual IP Addresses 6-11
 Other Considerations for Cluster Standby Groups 6-11
 Automatic Recovery of Cluster Configuration 6-12
IP Addresses 6-13
Hostnames 6-13
Passwords 6-14
SNMP Community Strings 6-14
Switch Clusters and Switch Stacks 6-14
TACACS+ and RADIUS 6-16
LRE Profiles 6-16
Using the CLI to Manage Switch Clusters 6-16
 Catalyst 1900 and Catalyst 2820 CLI Considerations 6-17
CHAPTER 7

Administering the Switch 7-1

Managing the System Time and Date 7-1
 Understanding the System Clock 7-2
 Understanding Network Time Protocol 7-2
 NTP Version 4 7-4
 Configuring Time and Date Manually 7-4
 Setting the System Clock 7-4
 Displaying the Time and Date Configuration 7-5
 Configuring the Time Zone 7-5
 Configuring Summer Time (Daylight Saving Time) 7-6
 Configuring a System Name and Prompt 7-7
 Default System Name and Prompt Configuration 7-8
 Configuring a System Name 7-8
 Understanding DNS 7-8
 Default DNS Configuration 7-9
 Setting Up DNS 7-9
 Displaying the DNS Configuration 7-10

Creating a Banner 7-10
 Default Banner Configuration 7-10
 Configuring a Message-of-the-Day Login Banner 7-11
 Configuring a Login Banner 7-12

Managing the MAC Address Table 7-12
 Building the Address Table 7-13
 MAC Addresses and VLANs 7-13
 MAC Addresses and Switch Stacks 7-14
 Default MAC Address Table Configuration 7-14
 Changing the Address Aging Time 7-14
 Removing Dynamic Address Entries 7-15
 Configuring MAC Address Change Notification Traps 7-15
 Configuring MAC Address Move Notification Traps 7-17
 Configuring MAC Threshold Notification Traps 7-18
 Adding and Removing Static Address Entries 7-20
 Configuring Unicast MAC Address Filtering 7-21
 Disabling MAC Address Learning on a VLAN 7-22
 Displaying Address Table Entries 7-23

Managing the ARP Table 7-24
CHAPTER 8
Configuring SDM Templates 8-1
Understanding the SDM Templates 8-1
 Dual IPv4 and IPv6 SDM Templates 8-3
 SDM Templates and Switch Stacks 8-4
Configuring the Switch SDM Template 8-5
 Default SDM Template 8-5
 SDM Template Configuration Guidelines 8-5
 Setting the SDM Template 8-6
 Displaying the SDM Templates 8-7

CHAPTER 9
Configuring Catalyst 3750-X StackPower 9-1
Understanding Cisco StackPower 9-2
 StackPower Modes 9-3
 Power Priority 9-3
 Load Shedding 9-4
 Immediate Load Shedding Example 9-4
Configuring Cisco StackPower 9-6
 Configuring Power Stack Parameters 9-7
 Configuring Power Stack Switch Power Parameters 9-8
 Configuring PoE Port Priority 9-9

CHAPTER 10
Configuring Switch-Based Authentication 10-1
Preventing Unauthorized Access to Your Switch 10-1
Protecting Access to Privileged EXEC Commands 10-2
 Default Password and Privilege Level Configuration 10-3
 Setting or Changing a Static Enable Password 10-3
 Protecting Enable and Enable Secret Passwords with Encryption 10-4
 Disabling Password Recovery 10-5
 Setting a Telnet Password for a Terminal Line 10-6
 Configuring Username and Password Pairs 10-7
 Configuring Multiple Privilege Levels 10-7
 Setting the Privilege Level for a Command 10-8
 Changing the Default Privilege Level for Lines 10-9
 Logging into and Exiting a Privilege Level 10-9
 Controlling Switch Access with TACACS+ 10-10
 Understanding TACACS+ 10-10
 TACACS+ Operation 10-12
 Configuring TACACS+ 10-12
Contents

Default TACACS+ Configuration 10-13
Identifying the TACACS+ Server Host and Setting the Authentication Key 10-13
Configuring TACACS+ Login Authentication 10-14
Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services 10-16
Starting TACACS+ Accounting 10-17
Establishing a Session with a Router if the AAA Server is Unreachable 10-17
Displaying the TACACS+ Configuration 10-17
Controlling Switch Access with RADIUS 10-17
Understanding RADIUS 10-18
RADIUS Operation 10-19
RADIUS Change of Authorization 10-20
Change-of-Authorization Requests 10-20
CoA Request Response Code 10-22
CoA Request Commands 10-23
Stacking Guidelines for Session Termination 10-25
Configuring RADIUS 10-26
Default RADIUS Configuration 10-27
Identifying the RADIUS Server Host 10-27
Configuring RADIUS Login Authentication 10-29
Defining AAA Server Groups 10-31
Configuring RADIUS Authorization for User Privileged Access and Network Services 10-33
Starting RADIUS Accounting 10-34
Establishing a Session with a Router if the AAA Server is Unreachable 10-34
Configuring Settings for All RADIUS Servers 10-35
Configuring the Switch to Use Vendor-Specific RADIUS Attributes 10-35
Configuring the Switch for Vendor-Proprietary RADIUS Server Communication 10-36
Configuring CoA on the Switch 10-37
Monitoring and Troubleshooting CoA Functionality 10-38
Configuring RADIUS Server Load Balancing 10-39
Displaying the RADIUS Configuration 10-39
Controlling Switch Access with Kerberos 10-39
Understanding Kerberos 10-39
Kerberos Operation 10-41
Authenticating to a Boundary Switch 10-41
Obtaining a TGT from a KDC 10-42
Authenticating to Network Services 10-42
Configuring Kerberos 10-42
Configuring the Switch for Local Authentication and Authorization 10-43
Configuring the Switch for Secure Shell 10-44
Understanding SSH 10-44
Contents

SSH Servers, Integrated Clients, and Supported Versions 10-44
Limitations 10-45
Configuring SSH 10-45
 Configuration Guidelines 10-45
 Setting Up the Switch to Run SSH 10-46
 Configuring the SSH Server 10-47
Displaying the SSH Configuration and Status 10-48
Configuring the Switch for Secure Socket Layer HTTP 10-48
Understanding Secure HTTP Servers and Clients 10-48
 Certificate Authority Trustpoints 10-49
 CipherSuites 10-50
Configuring Secure HTTP Servers and Clients 10-50
 Default SSL Configuration 10-51
 SSL Configuration Guidelines 10-51
 Configuring a CA Trustpoint 10-51
 Configuring the Secure HTTP Server 10-52
 Configuring the Secure HTTP Client 10-54
Displaying Secure HTTP Server and Client Status 10-54
Configuring the Switch for Secure Copy Protocol 10-54
 Information About Secure Copy 10-55

Chapter 11
Configuring IEEE 802.1x Port-Based Authentication 11-1
Understanding IEEE 802.1x Port-Based Authentication 11-1
 Device Roles 11-3
 Authentication Process 11-4
 Authentication Initiation and Message Exchange 11-6
 Authentication Manager 11-7
 Port-Based Authentication Methods 11-8
 Per-User ACLs and Filter-Ids 11-8
 Authentication Manager CLI Commands 11-9
 Ports in Authorized and Unauthorized States 11-10
 802.1x Authentication and Switch Stacks 11-11
 802.1x Host Mode 11-12
 802.1x Multiple Authentication Mode 11-12
 MAC Move 11-13
 MAC Replace 11-14
 802.1x Accounting 11-14
 802.1x Accounting Attribute-Value Pairs 11-14
 802.1x Readiness Check 11-15
802.1x Authentication with VLAN Assignment 11-16
802.1x Authentication with Per-User ACLs 11-17
802.1x Authentication with Downloadable ACLs and Redirect URLs 11-18
 Cisco Secure ACS and Attribute-Value Pairs for the Redirect URL 11-20
 Cisco Secure ACS and Attribute-Value Pairs for Downloadable ACLs 11-20
VLAN ID-based MAC Authentication 11-20
802.1x Authentication with Guest VLAN 11-21
802.1x Authentication with Restricted VLAN 11-22
802.1x Authentication with Inaccessible Authentication Bypass 11-23
 Support on Multiple-Authentication Ports 11-23
 Authentication Results 11-23
 Feature Interactions 11-24
802.1x Critical Voice VLAN Configuration 11-24
802.1x User Distribution 11-27
 802.1x User Distribution Configuration Guidelines 11-27
IEEE 802.1x Authentication with Voice VLAN Ports 11-28
IEEE 802.1x Authentication with Port Security 11-28
IEEE 802.1x Authentication with Wake-on-LAN 11-28
IEEE 802.1x Authentication with MAC Authentication Bypass 11-29
Network Admission Control Layer 2 IEEE 802.1x Validation 11-30
Flexible Authentication Ordering 11-31
Open1x Authentication 11-31
Multidomain Authentication 11-31
802.1x Supplicant and Authenticator Switches with Network Edge Access Topology (NEAT) 11-33
 Guidelines 11-34
Voice Aware 802.1x Security 11-34
Common Session ID 11-35
Device Sensor 11-35
 Guidelines 11-36
Configuring 802.1x Authentication 11-37
 Default 802.1x Authentication Configuration 11-38
802.1x Authentication Configuration Guidelines 11-39
 802.1x Authentication 11-39
 VLAN Assignment, Guest VLAN, Restricted VLAN, and Inaccessible Authentication Bypass 11-40
 MAC Authentication Bypass 11-41
 Maximum Number of Allowed Devices Per Port 11-41
Configuring 802.1x Readiness Check 11-41
Configuring Voice Aware 802.1x Security 11-42
Configuring 802.1x Violation Modes 11-43
Contents

Configuring 802.1x Authentication 11-44
Configuring the Switch-to-RADIUS-Server Communication 11-46
Configuring the Host Mode 11-47
Configuring Periodic Re-Authentication 11-48
Manually Re-Authenticating a Client Connected to a Port 11-49
Changing the Quiet Period 11-49
Changing the Switch-to-Client Retransmission Time 11-50
Setting the Switch-to-Client Frame-Retransmission Number 11-50
Setting the Re-Authentication Number 11-51
Enabling MAC Move 11-52
Enabling MAC Replace 11-52
Configuring 802.1x Accounting 11-53
Configuring Device Sensor 11-54
 Enabling Accounting Augmentation 11-54
 Creating a Cisco Discovery Protocol Filter 11-55
 Creating an LLDP Filter 11-56
 Creating a DHCP Filter 11-56
 Applying a Protocol Filter to the Device Sensor Output 11-57
 Tracking TLV Changes 11-58
 Verifying the Device Sensor Configuration 11-58
 Configuration Examples for the Device Sensor Feature 11-59
Configuring a Guest VLAN 11-60
Configuring a Restricted VLAN 11-62
Configuring Inaccessible Authentication Bypass and Critical Voice VLAN 11-63
Configuring 802.1x Authentication with WoL 11-66
Configuring MAC Authentication Bypass 11-66
Configuring 802.1x User Distribution 11-67
Configuring NAC Layer 2 802.1x Validation 11-68
Configuring an Authenticator and a Supplicant Switch with NEAT 11-69
 Configuring NEAT with Auto Smartports Macros 11-70
Configuring 802.1x Authentication with Downloadable ACLs and Redirect URLs 11-71
 Configuring Downloadable ACLs 11-71
 Configuring a Downloadable Policy 11-72
Configuring VLAN ID-based MAC Authentication 11-73
Configuring Flexible Authentication Ordering 11-74
Configuring Open1x 11-74
Configuring a Web Authentication Local Banner 11-75
Disabling 802.1x Authentication on the Port 11-75
Resetting the 802.1x Authentication Configuration to the Default Values 11-76
Displaying 802.1x Statistics and Status 11-76
CHAPTER 12

Configuring MACsec Encryption 12-1

Understanding Media Access Control Security and MACsec Key Agreement 12-2
 MKA Policies 12-2
 Virtual Ports 12-3
 MACsec and Stacking 12-3
 MACsec, MKA and 802.1x Host Modes 12-4
 Single-Host Mode 12-4
 Multiple-Host Mode 12-4
 MKA Statistics 12-5

Configuring MKA and MACsec 12-6
 Default MACsec MKA Configuration 12-6
 Configuring an MKA Policy 12-6
 Configuring MACsec on an Interface 12-7

Understanding Cisco TrustSec MACsec 12-8

Configuring Cisco TrustSec MACsec 12-10
 Configuring Cisco TrustSec Credentials on the Switch 12-10
 Configuring Cisco TrustSec Switch-to-Switch Link Security in 802.1x Mode 12-11
 Configuring Cisco TrustSec Switch-to-Switch Link Security in Manual Mode 12-12

Cisco TrustSec Switch-to-Switch Link Security Configuration Example 12-14

CHAPTER 13

Configuring Web-Based Authentication 13-1

Understanding Web-Based Authentication 13-1
 Device Roles 13-2
 Host Detection 13-2
 Session Creation 13-3
 Authentication Process 13-3
 Local Web Authentication Banner 13-4
 Web Authentication Customizable Web Pages 13-6
 Guidelines 13-6
 Web-based Authentication Interactions with Other Features 13-7
 Port Security 13-7
 LAN Port IP 13-8
 Gateway IP 13-8
 ACLs 13-8
 Context-Based Access Control 13-8
 802.1x Authentication 13-8
 EtherChannel 13-8

Configuring Web-Based Authentication 13-9
 Default Web-Based Authentication Configuration 13-9
Web-Based Authentication Configuration Guidelines and Restrictions 13-9
Web-Based Authentication Configuration Task List 13-10
Configuring the Authentication Rule and Interfaces 13-10
Configuring AAA Authentication 13-11
Configuring Switch-to-RADIUS-Server Communication 13-11
Configuring the HTTP Server 13-13
 Customizing the Authentication Proxy Web Pages 13-13
 Specifying a Redirection URL for Successful Login 13-15
Configuring the Web-Based Authentication Parameters 13-15
Configuring a Web Authentication Local Banner 13-16
Removing Web-Based Authentication Cache Entries 13-16
Displaying Web-Based Authentication Status 13-17

CHAPTER 14
Cisco TrustSec 14-1
Configuration Guidelines and Limitations 14-3

CHAPTER 15
Configuring Interface Characteristics 15-1
Interface Types 15-1
 Port-Based VLANs 15-2
Switch Ports 15-3
 Access Ports 15-3
 Trunk Ports 15-4
 Tunnel Ports 15-4
Routed Ports 15-4
Switch Virtual Interfaces 15-5
 SVI Autostate Exclude 15-6
EtherChannel Port Groups 15-6
10-Gigabit Ethernet Interfaces 15-7
Power over Ethernet Ports 15-7
 Supported Protocols and Standards 15-8
 Powered-Device Detection and Initial Power Allocation 15-8
 Power Management Modes 15-10
 Power Monitoring and Power Policing 15-11
Network Module Interfaces 15-13
 Network Services Module 15-13
 10-Gigabit Ethernet Network Module 15-13
Connecting Interfaces 15-13
Using the Switch USB Ports 15-14
 USB Mini-Type B Console Port 15-14
Console Port Change Logs 15-15
Configuring the Console Media Type 15-15
Configuring the USB Inactivity Timeout 15-16
USB Type A Port 15-17
Booting from the USB Flash Device 15-17
Using Interface Configuration Mode 15-19
Procedures for Configuring Interfaces 15-20
Configuring a Range of Interfaces 15-20
Configuring and Using Interface Range Macros 15-22
Using the Ethernet Management Port 15-24
Understanding the Ethernet Management Port 15-24
Supported Features on the Ethernet Management Port 15-26
Configuring the Ethernet Management Port 15-27
TFTP and the Ethernet Management Port 15-27
Configuring Ethernet Interfaces 15-28
Default Ethernet Interface Configuration 15-28
Configuring Interface Speed and Duplex Mode 15-29
 Speed and Duplex Configuration Guidelines 15-29
 Setting the Interface Speed and Duplex Parameters 15-30
Configuring IEEE 802.3x Flow Control 15-31
Configuring Auto-MDIX on an Interface 15-32
Configuring a Power Management Mode on a PoE Port 15-33
Budgeting Power for Devices Connected to a PoE Port 15-35
Configuring Power Policing 15-36
Adding a Description for an Interface 15-38
Configuring Layer 3 Interfaces 15-38
 Configuring SVI Autostate Exclude 15-40
Configuring the System MTU 15-41
Configuring the Power Supplies 15-45
Configuring the Cisco RPS 2300 in a Mixed Stack 15-46
Configuring the Cisco eXpandable Power System (XPS) 2200 15-48
 Configuring the System Names 15-48
 Configuring XPS Ports 15-50
 Configuring XPS Power Supplies 15-51
Monitoring and Maintaining the Interfaces 15-51
 Monitoring Interface Status 15-52
 Clearing and Resetting Interfaces and Counters 15-53
 Shutting Down and Restarting the Interface 15-53
CHAPTER 16
Configuring VLANs 16-1

Understanding VLANs 16-1
Supported VLANs 16-2
VLAN Port Membership Modes 16-3
Configuring Normal-Range VLANs 16-4
Token Ring VLANs 16-5
Normal-Range VLAN Configuration Guidelines 16-6
Configuring Normal-Range VLANs 16-6
Saving VLAN Configuration 16-7
Default Ethernet VLAN Configuration 16-7
Creating or Modifying an Ethernet VLAN 16-8
Deleting a VLAN 16-9
Assigning Static-Access Ports to a VLAN 16-9
Configuring Extended-Range VLANs 16-10
Default VLAN Configuration 16-11
Extended-Range VLAN Configuration Guidelines 16-11
Creating an Extended-Range VLAN 16-12
Creating an Extended-Range VLAN with an Internal VLAN ID 16-13
Displaying VLANs 16-14
Configuring VLAN Trunks 16-14
Trunking Overview 16-15
Encapsulation Types 16-16
IEEE 802.1Q Configuration Considerations 16-17
Default Layer 2 Ethernet Interface VLAN Configuration 16-17
Configuring an Ethernet Interface as a Trunk Port 16-18
Interaction with Other Features 16-18
Configuring a Trunk Port 16-19
Defining the Allowed VLANs on a Trunk 16-20
Changing the Pruning-Eligible List 16-21
Configuring the Native VLAN for Untagged Traffic 16-21
Configuring Trunk Ports for Load Sharing 16-22
Load Sharing Using STP Port Priorities 16-22
Load Sharing Using STP Path Cost 16-24
Configuring VMPS 16-26
Understanding VMPS 16-26
Dynamic-Access Port VLAN Membership 16-27
Default VMPS Client Configuration 16-27
VMPS Configuration Guidelines 16-27
Configuring the VMPS Client 16-28
Entering the IP Address of the VMPS 16-28
Configuring Dynamic-Access Ports on VMPS Clients 16-29
Reconfirming VLAN Memberships 16-29
Changing the Reconfirmation Interval 16-29
Changing the Retry Count 16-30
Monitoring the VMPS 16-30
Troubleshooting Dynamic-Access Port VLAN Membership 16-31
VMPS Configuration Example 16-31

CHAPTER 17
Configuring VTP 17-1
Understanding VTP 17-1
 The VTP Domain 17-2
 VTP Modes 17-3
 VTP Advertisements 17-4
 VTP Version 2 17-5
 VTP Version 3 17-5
 VTP Pruning 17-6
 VTP and Switch Stacks 17-8
Configuring VTP 17-8
 Default VTP Configuration 17-9
 VTP Configuration Guidelines 17-9
 Domain Names 17-9
 Passwords 17-10
 VTP Version 17-10
 Configuration Requirements 17-11
Configuring VTP Mode 17-11
 Configuring a VTP Version 3 Password 17-14
 Configuring a VTP Version 3 Primary Server 17-14
Enabling the VTP Version 17-15
Enabling VTP Pruning 17-16
Configuring VTP on a Per-Port Basis 17-16
 Adding a VTP Client Switch to a VTP Domain 17-17
Monitoring VTP 17-18

CHAPTER 18
Configuring Voice VLAN 18-1
Understanding Voice VLAN 18-1
 Cisco IP Phone Voice Traffic 18-2
 Cisco IP Phone Data Traffic 18-2
Configuring Voice VLAN 18-3
CHAPTER 19 Configuring Private VLANs 19-1
Understand Private VLANs 19-1
IP Addressing Scheme with Private VLANs 19-3
Private VLANs across Multiple Switches 19-4
Private-VLAN Interaction with Other Features 19-4
Private VLANs and Unicast, Broadcast, and Multicast Traffic 19-5
Private VLANs and SVIs 19-5
Private VLANs and Switch Stacks 19-5
Configuring Private VLANs 19-6
Tasks for Configuring Private VLANs 19-6
Default Private-VLAN Configuration 19-6
Private-VLAN Configuration Guidelines 19-7
Secondary and Primary VLAN Configuration 19-7
Private-VLAN Port Configuration 19-8
Limitations with Other Features 19-9
Configuring and Associating VLANs in a Private VLAN 19-10
Configuring a Layer 2 Interface as a Private-VLAN Host Port 19-11
Configuring a Layer 2 Interface as a Private-VLAN Promiscuous Port 19-13
Mapping Secondary VLANs to a Primary VLAN Layer 3 VLAN Interface 19-13
Monitoring Private VLANs 19-15

CHAPTER 20 Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling 20-1
Understanding IEEE 802.1Q Tunneling 20-1
Configuring IEEE 802.1Q Tunneling 20-4
Default IEEE 802.1Q Tunneling Configuration 20-4
IEEE 802.1Q Tunneling Configuration Guidelines 20-4
Native VLANs 20-4
System MTU 20-5
IEEE 802.1Q Tunneling and Other Features 20-6
Configuring an IEEE 802.1Q Tunneling Port 20-7
Understanding Layer 2 Protocol Tunneling 20-8
Configuring Layer 2 Protocol Tunneling 20-11
CHAPTER 21

Configuring STP 21-1

Understanding Spanning-Tree Features 21-1
 STP Overview 21-2
 Spanning-Tree Topology and BPDUs 21-3
 Bridge ID, Switch Priority, and Extended System ID 21-5
 Spanning-Tree Interface States 21-5
 Blocking State 21-6
 Listening State 21-7
 Learning State 21-7
 Forwarding State 21-7
 Disabled State 21-8
 How a Switch or Port Becomes the Root Switch or Root Port 21-8
 Spanning Tree and Redundant Connectivity 21-9
 Spanning-Tree Address Management 21-9
 Accelerated Aging to Retain Connectivity 21-9
 Spanning-Tree Modes and Protocols 21-10
 Supported Spanning-Tree Instances 21-10
 Spanning-Tree Interoperability and Backward Compatibility 21-11
 STP and IEEE 802.1Q Trunks 21-12
 VLAN-Bridge Spanning Tree 21-12
 Spanning Tree and Switch Stacks 21-12

Configuring Spanning-Tree Features 21-13
 Default Spanning-Tree Configuration 21-13
 Spanning-Tree Configuration Guidelines 21-14
 Changing the Spanning-Tree Mode 21-15
 Disabling Spanning Tree 21-16
 Configuring the Root Switch 21-17
 Configuring a Secondary Root Switch 21-18
 Configuring Port Priority 21-19
 Configuring Path Cost 21-21
 Configuring the Switch Priority of a VLAN 21-22
Configuring Spanning-Tree Timers 21-23
 Configuring the Hello Time 21-23
 Configuring the Forwarding-Delay Time for a VLAN 21-24
 Configuring the Maximum-Aging Time for a VLAN 21-24
 Configuring the Transmit Hold-Count 21-25
Displaying the Spanning-Tree Status 21-25

CHAPTER 22 Configuring MSTP 22-1

Understanding MSTP 22-2
 Multiple Spanning-Tree Regions 22-2
 IST, CIST, and CST 22-2
 Operations Within an MST Region 22-3
 Operations Between MST Regions 22-3
 IEEE 802.1s Terminology 22-5
 Hop Count 22-5
 Boundary Ports 22-6
 IEEE 802.1s Implementation 22-6
 Port Role Naming Change 22-6
 Interoperation Between Legacy and Standard Switches 22-7
 Detecting Unidirectional Link Failure 22-7
 MSTP and Switch Stacks 22-8
 Interoperability with IEEE 802.1D STP 22-8

Understanding RSTP 22-9
 Port Roles and the Active Topology 22-9
 Rapid Convergence 22-10
 Synchronization of Port Roles 22-11
 Bridge Protocol Data Unit Format and Processing 22-12
 Processing Superior BPDU Information 22-13
 Processing Inferior BPDU Information 22-13
 Topology Changes 22-13

Configuring MSTP Features 22-14
 Default MSTP Configuration 22-14
 MSTP Configuration Guidelines 22-15
 Specifying the MST Region Configuration and Enabling MSTP 22-16
 Configuring the Root Switch 22-18
 Configuring a Secondary Root Switch 22-19
 Configuring Port Priority 22-20
 Configuring Path Cost 22-21
 Configuring the Switch Priority 22-22
 Configuring the Hello Time 22-23
Configuring the Forwarding-Delay Time 22-24
Configuring the Maximum-Aging Time 22-24
Configuring the Maximum-Hop Count 22-25
Specifying the Link Type to Ensure Rapid Transitions 22-25
Designating the Neighbor Type 22-26
Restarting the Protocol Migration Process 22-26
Displaying the MST Configuration and Status 22-27

CHAPTER 23
Configuring Optional Spanning-Tree Features 23-1
Understanding Optional Spanning-Tree Features 23-1
Understanding Port Fast 23-2
Understanding BPDU Guard 23-2
Understanding BPDU Filtering 23-3
Understanding UplinkFast 23-3
Understanding Cross-Stack UplinkFast 23-5
How CSUF Works 23-6
Events that Cause Fast Convergence 23-7
Understanding BackboneFast 23-7
Understanding EtherChannel Guard 23-10
Understanding Root Guard 23-10
Understanding Loop Guard 23-11

Configuring Optional Spanning-Tree Features 23-11
Default Optional Spanning-Tree Configuration 23-12
Optional Spanning-Tree Configuration Guidelines 23-12
Enabling Port Fast 23-12
Enabling BPDU Guard 23-13
Enabling BPDU Filtering 23-14
Enabling UplinkFast for Use with Redundant Links 23-15
Enabling Cross-Stack UplinkFast 23-16
Enabling BackboneFast 23-16
Enabling Etherchannel Guard 23-17
Enabling Root Guard 23-18
Enabling Loop Guard 23-18
Displaying the Spanning-Tree Status 23-19

CHAPTER 38
Configuring Bidirection Forwarding Detection 38-1
Finding Feature Information 38-1
Contents 38-1
Prerequisites for Bidirectional Forwarding Detection 38-2
CHAPTER 38
Catalyst 3750-X and 3560-X Switch Software Configuration Guide

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrictions for Bidirectional Forwarding Detection</td>
<td>38-2</td>
</tr>
<tr>
<td>Information About Bidirectional Forwarding Detection</td>
<td>38-2</td>
</tr>
<tr>
<td>BFD Operation</td>
<td>38-2</td>
</tr>
<tr>
<td>Neighbor Relationships</td>
<td>38-3</td>
</tr>
<tr>
<td>BFD Detection of Failures</td>
<td>38-4</td>
</tr>
<tr>
<td>BFD Version Interoperability</td>
<td>38-4</td>
</tr>
<tr>
<td>BFD Session Limits</td>
<td>38-4</td>
</tr>
<tr>
<td>BFD Support for Nonbroadcast Media Interfaces</td>
<td>38-4</td>
</tr>
<tr>
<td>BFD Support for Nonstop Forwarding with Stateful Switchover</td>
<td>38-5</td>
</tr>
<tr>
<td>BFD Support for Stateful Switchover</td>
<td>38-5</td>
</tr>
<tr>
<td>BFD Support for Static Routing</td>
<td>38-6</td>
</tr>
<tr>
<td>Benefits of Using BFD for Failure Detection</td>
<td>38-6</td>
</tr>
<tr>
<td>How to Configure Bidirectional Forwarding Detection</td>
<td>38-7</td>
</tr>
<tr>
<td>Configuring BFD Session Parameters on the Interface</td>
<td>38-7</td>
</tr>
<tr>
<td>Configuring BFD Support for Dynamic Routing Protocols</td>
<td>38-8</td>
</tr>
<tr>
<td>Configuring BFD Support for BGP</td>
<td>38-8</td>
</tr>
<tr>
<td>Configuring BFD Support for EIGRP</td>
<td>38-9</td>
</tr>
<tr>
<td>Configuring BFD Support for OSPF</td>
<td>38-10</td>
</tr>
<tr>
<td>Configuring BFD Support for Static Routing</td>
<td>38-12</td>
</tr>
<tr>
<td>Configuring BFD Echo Mode</td>
<td>38-14</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>38-14</td>
</tr>
<tr>
<td>Restrictions</td>
<td>38-14</td>
</tr>
<tr>
<td>Configuring the BFD Slow Timer</td>
<td>38-15</td>
</tr>
<tr>
<td>Disabling BFD Echo Mode Without Asymmetry</td>
<td>38-15</td>
</tr>
<tr>
<td>Monitoring and Troubleshooting BFD</td>
<td>38-16</td>
</tr>
<tr>
<td>Configuration Examples for Bidirectional Forwarding Detection</td>
<td>38-16</td>
</tr>
<tr>
<td>Example: Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default</td>
<td>38-17</td>
</tr>
<tr>
<td>Example: Configuring BFD in an OSPF Network</td>
<td>38-21</td>
</tr>
<tr>
<td>Example: Configuring BFD Support for Static Routing</td>
<td>38-25</td>
</tr>
<tr>
<td>Additional References</td>
<td>38-25</td>
</tr>
<tr>
<td>Related Documents</td>
<td>38-25</td>
</tr>
<tr>
<td>Standards</td>
<td>38-26</td>
</tr>
<tr>
<td>MIBs</td>
<td>38-26</td>
</tr>
<tr>
<td>RFCs</td>
<td>38-26</td>
</tr>
<tr>
<td>Technical Assistance</td>
<td>38-26</td>
</tr>
</tbody>
</table>

CHAPTER 39
Configuring Resilient Ethernet Protocol

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding REP</td>
<td>39-1</td>
</tr>
<tr>
<td>Link Integrity</td>
<td>39-3</td>
</tr>
<tr>
<td>Chapter 40</td>
<td>Configuring Flex Links and the MAC Address-Table Move Update Feature</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Understanding Flex Links and the MAC Address-Table Move Update</td>
<td>40-1</td>
</tr>
<tr>
<td>Flex Links</td>
<td>40-1</td>
</tr>
<tr>
<td>VLAN Flex Link Load Balancing and Support</td>
<td>40-2</td>
</tr>
<tr>
<td>Flex Link Multicast Fast Convergence</td>
<td>40-3</td>
</tr>
<tr>
<td>Learning the Other Flex Link Port as the mrouter Port</td>
<td>40-3</td>
</tr>
<tr>
<td>Generating IGMP Reports</td>
<td>40-3</td>
</tr>
<tr>
<td>Leaking IGMP Reports</td>
<td>40-4</td>
</tr>
<tr>
<td>MAC Address-Table Move Update</td>
<td>40-6</td>
</tr>
<tr>
<td>Configuring Flex Links and MAC Address-Table Move Update</td>
<td>40-7</td>
</tr>
<tr>
<td>Configuration Guidelines</td>
<td>40-7</td>
</tr>
<tr>
<td>Default Configuration</td>
<td>40-8</td>
</tr>
<tr>
<td>Configuring Flex Links</td>
<td>40-8</td>
</tr>
<tr>
<td>Configuring VLAN Load Balancing on Flex Links</td>
<td>40-10</td>
</tr>
<tr>
<td>Configuring the MAC Address-Table Move Update Feature</td>
<td>40-12</td>
</tr>
<tr>
<td>Monitoring Flex Links and the MAC Address-Table Move Update</td>
<td>40-14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 41</th>
<th>Configuring DHCP Features and IP Source Guard</th>
<th>41-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding DHCP Features</td>
<td>41-1</td>
<td></td>
</tr>
<tr>
<td>DHCP Server</td>
<td>41-2</td>
<td></td>
</tr>
<tr>
<td>DHCP Relay Agent</td>
<td>41-2</td>
<td></td>
</tr>
<tr>
<td>DHCP Snooping</td>
<td>41-2</td>
<td></td>
</tr>
<tr>
<td>Option-82 Data Insertion</td>
<td>41-3</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS DHCP Server Database</td>
<td>41-6</td>
<td></td>
</tr>
<tr>
<td>DHCP Snooping Binding Database</td>
<td>41-6</td>
<td></td>
</tr>
<tr>
<td>DHCP Snooping and Switch Stacks</td>
<td>41-7</td>
<td></td>
</tr>
</tbody>
</table>
Configuring DHCP Features 41-8
 Default DHCP Configuration 41-8
 DHCP Snooping Configuration Guidelines 41-9
 Configuring the DHCP Server 41-10
 DHCP Server and Switch Stacks 41-10
 Configuring the DHCP Relay Agent 41-11
 Specifying the Packet Forwarding Address 41-11
 Enabling DHCP Snooping and Option 82 41-12
 Enabling DHCP Snooping on Private VLANs 41-14
 Enabling the Cisco IOS DHCP Server Database 41-14
 Enabling the DHCP Snooping Binding Database Agent 41-15
Displaying DHCP Snooping Information 41-16
Understanding IP Source Guard 41-16
 Source IP Address Filtering 41-17
 Source IP and MAC Address Filtering 41-17
 IP Source Guard for Static Hosts 41-17
Configuring IP Source Guard 41-18
 Default IP Source Guard Configuration 41-18
 IP Source Guard Configuration Guidelines 41-18
 Enabling IP Source Guard 41-19
 Configuring IP Source Guard for Static Hosts 41-20
 Configuring IP Source Guard for Static Hosts on a Layer 2 Access Port 41-21
 Configuring IP Source Guard for Static Hosts on a Private VLAN Host Port 41-24
Displaying IP Source Guard Information 41-26
Understanding DHCP Server Port-Based Address Allocation 41-26
Configuring DHCP Server Port-Based Address Allocation 41-27
 Default Port-Based Address Allocation Configuration 41-27
 Port-Based Address Allocation Configuration Guidelines 41-27
 Enabling DHCP Server Port-Based Address Allocation 41-27
Displaying DHCP Server Port-Based Address Allocation 41-29

CHAPTER 42
Configuring Dynamic ARP Inspection 42-1
 Understanding Dynamic ARP Inspection 42-1
 Interface Trust States and Network Security 42-3
 Rate Limiting of ARP Packets 42-4
 Relative Priority of ARP ACLs and DHCP Snooping Entries 42-4
 Logging of Dropped Packets 42-5
 Configuring Dynamic ARP Inspection 42-5
 Default Dynamic ARP Inspection Configuration 42-5
Contents

Dynamic ARP Inspection Configuration Guidelines 42-6
Configuring Dynamic ARP Inspection in DHCP Environments 42-7
Configuring ARP ACLs for Non-DHCP Environments 42-9
Limiting the Rate of Incoming ARP Packets 42-10
Performing Validation Checks 42-12
Configuring the Log Buffer 42-13
Displaying Dynamic ARP Inspection Information 42-14

CHAPTER 43
Configuring IGMP Snooping and MVR 43-1

Understanding IGMP Snooping 43-2
IGMP Versions 43-3
Joining a Multicast Group 43-3
Leaving a Multicast Group 43-5
Immediate Leave 43-6
IGMP Configurable-Leave Timer 43-6
IGMP Report Suppression 43-6
IGMP Snooping and Switch Stacks 43-7

Configuring IGMP Snooping 43-7
Default IGMP Snooping Configuration 43-7
Enabling or Disabling IGMP Snooping 43-8
Setting the Snooping Method 43-8
Configuring a Multicast Router Port 43-9
Configuring a Host Static to Join a Group 43-10
Enabling IGMP Immediate Leave 43-11
Configuring the IGMP Leave Timer 43-11
Configuring TCN-Related Commands 43-12
Controlling the Multicast Flooding Time After a TCN Event 43-12
Recovering from Flood Mode 43-13
Disabling Multicast Flooding During a TCN Event 43-13
Configuring the IGMP Snooping Querier 43-14
Disabling IGMP Report Suppression 43-15

Displaying IGMP Snooping Information 43-16
Understanding Multicast VLAN Registration 43-17
Using MVR in a Multicast Television Application 43-18

Configuring MVR 43-20
Default MVR Configuration 43-20
MVR Configuration Guidelines and Limitations 43-20
Configuring MVR Global Parameters 43-21
Configuring MVR Interfaces 43-22
Displaying MVR Information 43-23
Configuring IGMP Filtering and Throttling 43-24
 Default IGMP Filtering and Throttling Configuration 43-24
 Configuring IGMP Profiles 43-25
 Applying IGMP Profiles 43-26
 Setting the Maximum Number of IGMP Groups 43-27
 Configuring the IGMP Throttling Action 43-27
Displaying IGMP Filtering and Throttling Configuration 43-29

CHAPTER 44
Configuring IPv6 MLD Snooping 44-1
Understanding MLD Snooping 44-1
 MLD Messages 44-3
 MLD Queries 44-3
 Multicast Client Aging Robustness 44-3
 Multicast Router Discovery 44-4
 MLD Reports 44-4
 MLD Done Messages and Immediate-Leave 44-4
 Topology Change Notification Processing 44-5
 MLD Snooping in Switch Stacks 44-5
Configuring IPv6 MLD Snooping 44-5
 Default MLD Snooping Configuration 44-6
 MLD Snooping Configuration Guidelines 44-6
 Enabling or Disabling MLD Snooping 44-7
 Configuring a Static Multicast Group 44-8
 Configuring a Multicast Router Port 44-8
 Enabling MLD Immediate Leave 44-9
 Configuring MLD Snooping Queries 44-10
 Disabling MLD Listener Message Suppression 44-11
Displaying MLD Snooping Information 44-12

CHAPTER 45
Configuring CDP 45-1
Understanding CDP 45-1
 CDP and Switch Stacks 45-2
Configuring CDP 45-2
 Default CDP Configuration 45-2
 Configuring the CDP Characteristics 45-2
 Disabling and Enabling CDP 45-3
 Disabling and Enabling CDP on an Interface 45-4
 Monitoring and Maintaining CDP 45-5
CHAPTER 46
Configuring Port-Based Traffic Control 46-1
 Configuring Storm Control 46-1
 Understanding Storm Control 46-1
 Default Storm Control Configuration 46-3
 Configuring Storm Control and Threshold Levels 46-3
 Configuring Small-Frame Arrival Rate 46-5
 Configuring Protected Ports 46-6
 Default Protected Port Configuration 46-6
 Protected Port Configuration Guidelines 46-7
 Configuring a Protected Port 46-7
 Configuring Port Blocking 46-7
 Default Port Blocking Configuration 46-8
 Blocking Flooded Traffic on an Interface 46-8
 Configuring Port Security 46-8
 Understanding Port Security 46-9
 Secure MAC Addresses 46-9
 Security Violations 46-10
 Default Port Security Configuration 46-11
 Port Security Configuration Guidelines 46-11
 Enabling and Configuring Port Security 46-13
 Enabling and Configuring Port Security Aging 46-17
 Port Security and Switch Stacks 46-18
 Port Security and Private VLANs 46-18
 Configuring Protocol Storm Protection 46-19
 Understanding Protocol Storm Protection 46-19
 Default Protocol Storm Protection Configuration 46-20
 Enabling Protocol Storm Protection 46-20
 Displaying Port-Based Traffic Control Settings 46-21

CHAPTER 47
Configuring LLDP, LLDP-MED, and Wired Location Service 47-1
 Understanding LLDP, LLDP-MED, and Wired Location Service 47-1
 LLDP 47-1
 LLDP-MED 47-2
 Wired Location Service 47-3
 Configuring LLDP, LLDP-MED, and Wired Location Service 47-5
 Default LLDP Configuration 47-5
 Configuration Guidelines 47-5
 Enabling LLDP 47-6
Contents

<table>
<thead>
<tr>
<th>Chapter 47</th>
<th>Configuring LLDP Characteristics 47-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuring LLDP-MED TLVs 47-7</td>
</tr>
<tr>
<td></td>
<td>Configuring Network-Policy TLV 47-8</td>
</tr>
<tr>
<td></td>
<td>Configuring Location TLV and Wired Location Service 47-10</td>
</tr>
<tr>
<td></td>
<td>Monitoring and Maintaining LLDP, LLDP-MED, and Wired Location Service 47-11</td>
</tr>
</tbody>
</table>

CHAPTER 48

Configuring UDLD 48-1

Understanding UDLD 48-1

- Modes of Operation 48-1
- Methods to Detect Unidirectional Links 48-2

Configuring UDLD 48-4

- Default UDLD Configuration 48-4
- Configuration Guidelines 48-4
- Enabling UDLD Globally 48-5
- Enabling UDLD on an Interface 48-6
- Resetting an Interface Disabled by UDLD 48-6

Displaying UDLD Status 48-7

CHAPTER 49

Configuring SPAN and RSPAN 49-1

Understanding SPAN and RSPAN 49-1

- Local SPAN 49-2
- Remote SPAN 49-3

SPAN and RSPAN Concepts and Terminology 49-4

- SPAN Sessions 49-4
- Monitored Traffic 49-6
- Source Ports 49-7
- Source VLANs 49-7
- VLAN Filtering 49-8
- Destination Port 49-8
- Destination-Port Group 49-9
- RSPAN VLAN 49-9

SPAN and RSPAN Interaction with Other Features 49-10

SPAN and RSPAN and Switch Stacks 49-11

Understanding Flow-Based SPAN 49-11

Configuring SPAN and RSPAN 49-12

- Default SPAN and RSPAN Configuration 49-12
- Configuring Local SPAN 49-12

SPAN Configuration Guidelines 49-13

Creating a Local SPAN Session 49-14
Contents

Catalyst 3750-X and 3560-X Switch Software Configuration Guide

Configuring the UNIX System Logging Facility 51-13

Configuring Smart Logging 51-14
 Enabling Smart Logging 51-15
 Enabling Smart Logging for DHCP Snooping Violations 51-15
 Enabling Smart Logging for Dynamic ARP Inspection Violations 51-16
 Enabling Smart Logging for IP Source Guard Violations 51-16
 Enabling Smart Logging for Port ACL Deny or Permit Actions 51-17

Displaying the Logging Configuration 51-17

CHAPTER 52

Configuring SNMP 52-1

Understanding SNMP 52-1
 SNMP Versions 52-2
 SNMP Manager Functions 52-3
 SNMP Agent Functions 52-4
 SNMP Community Strings 52-4
 Using SNMP to Access MIB Variables 52-4
 SNMP Notifications 52-5
 SNMP ifIndex MIB Object Values 52-6
 SNMP Support for DOM MIB 52-6

Configuring SNMP 52-7
 Default SNMP Configuration 52-8
 SNMP Configuration Guidelines 52-8
 Disabling the SNMP Agent 52-9
 Configuring Community Strings 52-9
 Configuring SNMP Groups and Users 52-11
 Configuring SNMP Notifications 52-14
 Setting the CPU Threshold Notification Types and Values 52-18
 Setting the Agent Contact and Location Information 52-18
 Limiting TFTP Servers Used Through SNMP 52-19
 SNMP Examples 52-19

Displaying SNMP Status 52-21

CHAPTER 53

Configuring Embedded Event Manager 53-1

Understanding Embedded Event Manager 53-1
 Event Detectors 53-3
 Embedded Event Manager Actions 53-4
 Embedded Event Manager Policies 53-4
 Embedded Event Manager Environment Variables 53-5
 EEM 3.2 53-5
Configuring Embedded Event Manager 53-6
 Registering and Defining an Embedded Event Manager Applet 53-6
 Registering and Defining an Embedded Event Manager TCL Script 53-7
Displaying Embedded Event Manager Information 53-8

CHAPTER 54 Configuring Network Security with ACLs 54-1
Understanding ACLs 54-2
 Supported ACLs 54-2
 Port ACLs 54-4
 Router ACLs 54-5
 VLAN Maps 54-5
 Handling Fragmented and Unfragmented Traffic 54-6
 ACLs and Switch Stacks 54-7
Configuring IPv4 ACLs 54-7
 Creating Standard and Extended IPv4 ACLs 54-8
 Access List Numbers 54-9
 ACL Logging 54-9
 Smart Logging 54-10
 Creating a Numbered Standard ACL 54-10
 Creating a Numbered Extended ACL 54-11
 Resequencing ACEs in an ACL 54-16
 Creating Named Standard and Extended ACLs 54-16
 Using Time Ranges with ACLs 54-18
 Including Comments in ACLs 54-20
 Applying an IPv4 ACL to a Terminal Line 54-20
 Applying an IPv4 ACL to an Interface 54-21
 Hardware and Software Treatment of IP ACLs 54-23
Troubleshooting ACLs 54-23
IPv4 ACL Configuration Examples 54-24
 ACLs in a Small Networked Office 54-25
 Numbered ACLs 54-26
 Extended ACLs 54-26
 Named ACLs 54-27
 Time Range Applied to an IP ACL 54-27
 Commented IP ACL Entries 54-28
 ACL Logging 54-28
Creating Named MAC Extended ACLs 54-29
 Applying a MAC ACL to a Layer 2 Interface 54-31
Configuring VLAN Maps 54-32
CHAPTER 54

VLAN Map Configuration Guidelines 54-33
Creating a VLAN Map 54-34
Examples of ACLs and VLAN Maps 54-34
Applying a VLAN Map to a VLAN 54-36
Using VLAN Maps in Your Network 54-36
Wiring Closet Configuration 54-37
Denying Access to a Server on Another a VLAN 54-38
Configuring VACL Logging 54-39
Using VLAN Maps with Router ACLs 54-40
VLAN Maps and Router ACL Configuration Guidelines 54-40
Examples of Router ACLs and VLAN Maps Applied to VLANs 54-41
ACLs and Switched Packets 54-41
ACLs and Bridged Packets 54-42
ACLs and Routed Packets 54-43
ACLs and Multicast Packets 54-43
Displaying IPv4 ACL Configuration 54-44

CHAPTER 55

Configuring QoS 55-1
Understanding QoS 55-2
Basic QoS Model 55-4
Classification 55-5
Classification Based on QoS ACLs 55-7
Classification Based on Class Maps and Policy Maps 55-8
Policing and Marking 55-9
Policing on Physical Ports 55-10
Policing on SVIs 55-11
Mapping Tables 55-13
Queueing and Scheduling Overview 55-14
Weighted Tail Drop 55-15
SRR Shaping and Sharing 55-15
Queueing and Scheduling on Ingress Queues 55-16
Queueing and Scheduling on Egress Queues 55-19
Packet Modification 55-22
Configuring Auto-QoS 55-23
Generated Auto-QoS Configuration 55-24
VOIP Device Specifics 55-24
Enhanced Auto-QoS for Video, Trust, and Classification 55-25
Auto-QoS Configuration Migration 55-25
Global Auto-QoS Configuration 55-26
<table>
<thead>
<tr>
<th>Topics</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-QoS Generated Configuration For VoIP Devices</td>
<td>55-29</td>
</tr>
<tr>
<td>Auto-QoS Generated Configuration For Enhanced Video, Trust, and Classify Devices</td>
<td>55-30</td>
</tr>
<tr>
<td>Effects of Auto-QoS on the Configuration</td>
<td>55-33</td>
</tr>
<tr>
<td>Auto-QoS Configuration Guidelines</td>
<td>55-33</td>
</tr>
<tr>
<td>Auto-QoS VoIP Considerations</td>
<td>55-34</td>
</tr>
<tr>
<td>Auto-QoS Enhanced Considerations</td>
<td>55-34</td>
</tr>
<tr>
<td>Enabling Auto-QoS</td>
<td>55-34</td>
</tr>
<tr>
<td>Troubleshooting Auto QoS Commands</td>
<td>55-35</td>
</tr>
<tr>
<td>Displaying Auto-QoS Information</td>
<td>55-36</td>
</tr>
<tr>
<td>Configuring Standard QoS</td>
<td>55-36</td>
</tr>
<tr>
<td>Default Standard QoS Configuration</td>
<td>55-37</td>
</tr>
<tr>
<td>Default Ingress Queue Configuration</td>
<td>55-37</td>
</tr>
<tr>
<td>Default Egress Queue Configuration</td>
<td>55-39</td>
</tr>
<tr>
<td>Default Mapping Table Configuration</td>
<td>55-40</td>
</tr>
<tr>
<td>Standard QoS Configuration Guidelines</td>
<td>55-40</td>
</tr>
<tr>
<td>QoS ACL Guidelines</td>
<td>55-40</td>
</tr>
<tr>
<td>IPv6 QoS ACL Guidelines</td>
<td>55-40</td>
</tr>
<tr>
<td>Applying QoS on Interfaces</td>
<td>55-41</td>
</tr>
<tr>
<td>Configuring IPv6 QoS on Switch Stacks</td>
<td>55-41</td>
</tr>
<tr>
<td>Policing Guidelines</td>
<td>55-42</td>
</tr>
<tr>
<td>General QoS Guidelines</td>
<td>55-42</td>
</tr>
<tr>
<td>Enabling QoS Globally</td>
<td>55-43</td>
</tr>
<tr>
<td>Enabling VLAN-Based QoS on Physical Ports</td>
<td>55-43</td>
</tr>
<tr>
<td>Configuring Classification Using Port Trust States</td>
<td>55-44</td>
</tr>
<tr>
<td>Configuring the Trust State on Ports within the QoS Domain</td>
<td>55-44</td>
</tr>
<tr>
<td>Configuring the CoS Value for an Interface</td>
<td>55-45</td>
</tr>
<tr>
<td>Configuring a Trusted Boundary to Ensure Port Security</td>
<td>55-46</td>
</tr>
<tr>
<td>Enabling DSCP Transparency Mode</td>
<td>55-47</td>
</tr>
<tr>
<td>Configuring the DSCP Trust State on a Port Bordering Another QoS Domain</td>
<td>55-48</td>
</tr>
<tr>
<td>Configuring a QoS Policy</td>
<td>55-50</td>
</tr>
<tr>
<td>Classifying Traffic by Using ACLs</td>
<td>55-50</td>
</tr>
<tr>
<td>Classifying Traffic by Using Class Maps</td>
<td>55-55</td>
</tr>
<tr>
<td>Classifying Traffic by Using Class Maps and Filtering IPv6 Traffic</td>
<td>55-58</td>
</tr>
<tr>
<td>Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps</td>
<td>55-59</td>
</tr>
<tr>
<td>Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps</td>
<td>55-64</td>
</tr>
<tr>
<td>Classifying, Policing, and Marking Traffic by Using Aggregate Policers</td>
<td>55-72</td>
</tr>
<tr>
<td>Configuring DSCP Maps</td>
<td>55-74</td>
</tr>
<tr>
<td>Configuring the CoS-to-DSCP Map</td>
<td>55-74</td>
</tr>
<tr>
<td>Configuring the IP-Precedence-to-DSCP Map</td>
<td>55-75</td>
</tr>
<tr>
<td>Configuring the Policed-DSCP Map</td>
<td>55-76</td>
</tr>
</tbody>
</table>
Configuring the DSCP-to-CoS Map 55-77
Configuring the DSCP-to-DSCP-Mutation Map 55-78
Configuring Ingress Queue Characteristics 55-80
 Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds 55-81
 Allocating Buffer Space Between the Ingress Queues 55-82
 Allocating Bandwidth Between the Ingress Queues 55-82
 Configuring the Ingress Priority Queue 55-83
Configuring Egress Queue Characteristics 55-84
 Configuration Guidelines 55-85
 Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set 55-85
 Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID 55-87
 Configuring SRR Shaped Weights on Egress Queues 55-89
 Configuring SRR Shared Weights on Egress Queues 55-90
 Configuring the Egress Expedite Queue 55-90
 Limiting the Bandwidth on an Egress Interface 55-91
Displaying Standard QoS Information 55-92

CHAPTER 56
Configuring IPv6 ACLs 56-1
 Understanding IPv6 ACLs 56-2
 Supported ACL Features 56-2
 IPv6 ACL Limitations 56-3
 IPv6 ACLs and Switch Stacks 56-3
 Configuring IPv6 ACLs 56-4
 Default IPv6 ACL Configuration 56-4
 Interaction with Other Features and Switches 56-4
 Creating IPv6 ACLs 56-5
 Applying an IPv6 ACL to an Interface 56-7
 Displaying IPv6 ACLs 56-8

CHAPTER 57
Configuring EtherChannels and Link-State Tracking 57-1
 Understanding EtherChannels 57-1
 EtherChannel Overview 57-2
 Port-Channel Interfaces 57-4
 Port Aggregation Protocol 57-5
 PAgP Modes 57-6
 PAgP Interaction with Virtual Switches and Dual-Active Detection 57-6
 PAgP Interaction with Other Features 57-7
 Link Aggregation Control Protocol 57-7
 LACP Modes 57-7
Assigning IP Addresses to Network Interfaces 59-7
 Use of Subnet Zero 59-8
 Classless Routing 59-9
Configuring Address Resolution Methods 59-10
 Define a Static ARP Cache 59-11
 Set ARP Encapsulation 59-12
 Enable Proxy ARP 59-13
Routing Assistance When IP Routing is Disabled 59-13
 Proxy ARP 59-13
 Default Gateway 59-13
 ICMP Router Discovery Protocol (IRDP) 59-14
Configuring Broadcast Packet Handling 59-15
 Enabling Directed Broadcast-to-Physical Broadcast Translation 59-16
 Forwarding UDP Broadcast Packets and Protocols 59-17
 Establishing an IP Broadcast Address 59-17
 Flooding IP Broadcasts 59-18
Monitoring and Maintaining IP Addressing 59-19
Enabling IP Unicast Routing 59-20
Configuring RIP 59-21
 Default RIP Configuration 59-22
 Configuring Basic RIP Parameters 59-22
 Configuring RIP Authentication 59-24
 Configuring Summary Addresses and Split Horizon 59-24
 Configuring Split Horizon 59-26
Configuring OSPF 59-27
 Default OSPF Configuration 59-28
 OSPF for Routed Access 59-29
 OSPF Nonstop Forwarding 59-29
 Configuring Basic OSPF Parameters 59-31
 Configuring OSPF Interfaces 59-32
 Configuring OSPF Area Parameters 59-33
 Configuring Other OSPF Parameters 59-34
 Changing LSA Group Pacing 59-36
 Configuring a Loopback Interface 59-36
 Monitoring OSPF 59-37
Configuring EIGRP 59-37
 Default EIGRP Configuration 59-39
 EIGRP Nonstop Forwarding 59-40
 Configuring Basic EIGRP Parameters 59-41
Configuring EIGRP Interfaces 59-42
Configuring EIGRP Route Authentication 59-43
EIGRP Stub Routing 59-44
Monitoring and Maintaining EIGRP 59-45
Configuring BGP 59-45
Default BGP Configuration 59-47
Nonstop Forwarding Awareness 59-49
Enabling BGP Routing 59-50
Managing Routing Policy Changes 59-52
Configuring BGP Decision Attributes 59-54
Configuring BGP Filtering with Route Maps 59-56
Configuring BGP Filtering by Neighbor 59-56
Configuring Prefix Lists for BGP Filtering 59-58
Configuring BGP Community Filtering 59-59
Configuring BGP Neighbors and Peer Groups 59-60
Configuring Aggregate Addresses 59-62
Configuring Routing Domain Confederations 59-63
Configuring BGP Route Reflectors 59-63
Configuring Route Dampening 59-64
Monitoring and Maintaining BGP 59-65
Configuring ISO CLNS Routing 59-66
Configuring IS-IS Dynamic Routing 59-67
Default IS-IS Configuration 59-68
Nonstop Forwarding Awareness 59-69
Enabling IS-IS Routing 59-69
Configuring IS-IS Global Parameters 59-71
Configuring IS-IS Interface Parameters 59-73
Monitoring and Maintaining ISO IGRP and IS-IS 59-75
Configuring Multi-VRF CE 59-76
Understanding Multi-VRF CE 59-77
Default Multi-VRF CE Configuration 59-79
Multi-VRF CE Configuration Guidelines 59-79
Configuring VRFs 59-80
Configuring VRF-Aware Services 59-81
User Interface for ARP 59-82
User Interface for PING 59-82
User Interface for SNMP 59-82
User Interface for HSRP 59-82
User Interface for uRPF 59-83
User Interface for VRF-Aware RADIUS 59-83
User Interface for Syslog 59-84
User Interface for Traceroute 59-84
User Interface for FTP and TFTP 59-84
Configuring Multicast VRFs 59-85
Configuring a VPN Routing Session 59-86
Configuring BGP PE to CE Routing Sessions 59-86
Multi-VRF CE Configuration Example 59-87
Displaying Multi-VRF CE Status 59-91
Configuring Unicast Reverse Path Forwarding 59-91
Configuring Protocol-Independent Features 59-91
Configuring Distributed Cisco Express Forwarding 59-92
Configuring the Number of Equal-Cost Routing Paths 59-93
Configuring Static Unicast Routes 59-94
Specifying Default Routes and Networks 59-95
Using Route Maps to Redistribute Routing Information 59-96
Configuring Policy-Based Routing 59-99
 PBR Configuration Guidelines 59-100
 Enabling PBR 59-101
Filtering Routing Information 59-103
 Setting Passive Interfaces 59-103
 Controlling Advertising and Processing in Routing Updates 59-104
 Filtering Sources of Routing Information 59-104
Managing Authentication Keys 59-105
Monitoring and Maintaining the IP Network 59-106

CHAPTER 60

Configuring IPv6 Unicast Routing 60-1
Understanding IPv6 60-1
IPv6 Addresses 60-2
Supported IPv6 Unicast Routing Features 60-3
 128-Bit Wide Unicast Addresses 60-3
 DNS for IPv6 60-4
 Path MTU Discovery for IPv6 Unicast 60-4
 ICMPv6 60-4
Neighbor Discovery 60-4
First Hop Security in IPv6 60-5
Prerequisites for implementing first hop security 60-5
Restrictions for implementing first hop security 60-6
Default Router Preference 60-10
IPv6 Stateless Autoconfiguration and Duplicate Address Detection 60-10
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst 3750-X and 3560-X Switch Software Configuration Guide</td>
</tr>
<tr>
<td>OL-29703-01</td>
</tr>
<tr>
<td>Configuring EIGRP for IPv6 60-38</td>
</tr>
<tr>
<td>Configuring HSRP for IPv6 60-38</td>
</tr>
<tr>
<td>Enabling HSRP Version 2 60-39</td>
</tr>
<tr>
<td>Enabling an HSRP Group for IPv6 60-39</td>
</tr>
<tr>
<td>Configuring Multi-VRF CE 60-41</td>
</tr>
<tr>
<td>Default Multi-VRF CE Configuration 60-41</td>
</tr>
<tr>
<td>Configuring VRFs 60-41</td>
</tr>
<tr>
<td>Configuring VRF-Aware Services 60-42</td>
</tr>
<tr>
<td>User Interface for Neighbor Discovery 60-42</td>
</tr>
<tr>
<td>User Interface for PING 60-43</td>
</tr>
<tr>
<td>User Interface for HSRP 60-43</td>
</tr>
<tr>
<td>User Interface for Traceroute 60-43</td>
</tr>
<tr>
<td>User Interface for FTP and TFTP 60-43</td>
</tr>
<tr>
<td>Configuring a VPN Routing Session 60-44</td>
</tr>
<tr>
<td>Static Route 60-44</td>
</tr>
<tr>
<td>Routing Protocols 60-44</td>
</tr>
<tr>
<td>Configuring BGP PE to CE Routing Sessions 60-45</td>
</tr>
<tr>
<td>Multi-VRF CE Configuration Example 60-46</td>
</tr>
<tr>
<td>Displaying Multi-VRF CE Status 60-49</td>
</tr>
<tr>
<td>Displaying IPv6 60-49</td>
</tr>
</tbody>
</table>

CHAPTER 61

Implementing IPv6 Multicast 61-1

Information About Implementing IPv6 Multicast 61-1

IPv6 Multicast Overview 61-1

IPv6 Multicast Routing Implementation 61-2

MLD Access Group 61-3

Explicit Tracking of Receivers 61-3

IPv6 Multicast User Authentication and Profile Support 61-4

IPv6 MLD Proxy 61-4

Protocol Independent Multicast 61-4

PIM-Sparse Mode 61-4

IPv6 BSR: Configure RP Mapping 61-7

PIM-Source Specific Multicast 61-7

Routable Address Hello Option 61-9

Bidirectional PIM 61-9

Static Mroutes 61-10

MRIB 61-10

MFIB 61-10

Distributed MFIB 61-10
CHAPTER 63

Configuring Cisco IOS IP SLAs Operations 63-1

Understanding Cisco IOS IP SLAs 63-2

Using Cisco IOS IP SLAs to Measure Network Performance 63-3

IP SLAs Responder and IP SLAs Control Protocol 63-4

Response Time Computation for IP SLAs 63-4

IP SLAs Operation Scheduling 63-5

IP SLAs Operation Threshold Monitoring 63-5

Configuring IP SLAs Operations 63-6

Default Configuration 63-6

Configuration Guidelines 63-6

Configuring the IP SLAs Responder 63-7

Analyzing IP Service Levels by Using the UDP Jitter Operation 63-8

Analyzing IP Service Levels by Using the ICMP Echo Operation 63-11

Monitoring IP SLAs Operations 63-13

CHAPTER 64

Configuring Flexible NetFlow 64-1

Understanding Flexible NetFlow 64-1

Configuring Flexible NetFlow 64-2

Configuring a Customized Flow Record 64-2

Configuring the Flow Exporter 64-5

Configuring a Customized Flow Monitor 64-6

Applying a Flow Monitor to an Interface 64-7

Configuring and Enabling Flow Sampling 64-9

CHAPTER 65

Configuring Enhanced Object Tracking 65-1

Understanding Enhanced Object Tracking 65-1
Configuring Enhanced Object Tracking Features 65-2
 Default Configuration 65-2
 Tracking Interface Line-Protocol or IP Routing State 65-2
 Configuring a Tracked List 65-3
 Configuring a Tracked List with a Boolean Expression 65-4
 Configuring a Tracked List with a Weight Threshold 65-5
 Configuring a Tracked List with a Percentage Threshold 65-6
 Configuring HSRP Object Tracking 65-7
 Configuring Other Tracking Characteristics 65-8
 Configuring IP SLAs Object Tracking 65-8
 Configuring Static Routing Support 65-10
 Configuring a Primary Interface 65-10
 Configuring a Cisco IP SLAs Monitoring Agent and Track Object 65-11
 Configuring a Routing Policy and Default Route 65-12
Monitoring Enhanced Object Tracking 65-12

CHAPTER 66
Configuring Cache Services By Using WCCP 66-1
 Understanding WCCP 66-2
 WCCP Message Exchange 66-2
 WCCP Negotiation 66-3
 MD5 Security 66-3
 Packet Redirection and Service Groups 66-3
 WCCP and Switch Stacks 66-4
 Unsupported WCCP Features 66-5
 Configuring WCCP 66-5
 Default WCCP Configuration 66-5
 WCCP Configuration Guidelines 66-5
 Enabling the Cache Service 66-6
 Monitoring and Maintaining WCCP 66-10

CHAPTER 67
Configuring IP Multicast Routing 67-1
 Understanding Cisco’s Implementation of IP Multicast Routing 67-2
 Understanding IGMP 67-3
 IGMP Version 1 67-3
 IGMP Version 2 67-3
 Understanding PIM 67-4
 PIM Versions 67-4
 PIM Modes 67-4
 PIM Stub Routing 67-5
IGMP Helper 67-6
Auto-RP 67-7
Bootstrap Router 67-7
Multicast Forwarding and Reverse Path Check 67-8
Understanding DVMRP 67-9
Understanding CGMP 67-9
Multicast Routing and Switch Stacks 67-10
Configuring IP Multicast Routing 67-10
Default Multicast Routing Configuration 67-11
Multicast Routing Configuration Guidelines 67-11
PIMv1 and PIMv2 Interoperability 67-11
Auto-RP and BSR Configuration Guidelines 67-12
Configuring Basic Multicast Routing 67-12
Configuring Source-Specific Multicast 67-14
SSM Components Overview 67-14
How SSM Differs from Internet Standard Multicast 67-14
SSM IP Address Range 67-15
SSM Operations 67-15
IGMPv3 Host Signalling 67-15
Configuration Guidelines 67-16
Configuring SSM 67-17
Monitoring SSM 67-17
Configuring Source Specific Multicast Mapping 67-17
SSM Mapping Configuration Guidelines and Restrictions 67-17
SSM Mapping Overview 67-18
Configuring SSM Mapping 67-19
Monitoring SSM Mapping 67-22
Configuring PIM Stub Routing 67-22
PIM Stub Routing Configuration Guidelines 67-22
Enabling PIM Stub Routing 67-23
Configuring a Rendezvous Point 67-24
Manually Assigning an RP to Multicast Groups 67-24
Configuring Auto-RP 67-26
Configuring PIMv2 BSR 67-30
Using Auto-RP and a BSR 67-34
Monitoring the RP Mapping Information 67-35
Troubleshooting PIMv1 and PIMv2 Interoperability Problems 67-35
Configuring Advanced PIM Features 67-35
Understanding PIM Shared Tree and Source Tree 67-35
Delaying the Use of PIM Shortest-Path Tree 67-37
Modifying the PIM Router-Query Message Interval 67-38

Configuring Optional IGMP Features 67-38
 Default IGMP Configuration 67-39
 Configuring the Switch as a Member of a Group 67-39
 Controlling Access to IP Multicast Groups 67-40
 Changing the IGMP Version 67-41
 Modifying the IGMP Host-Query Message Interval 67-42
 Changing the IGMP Query Timeout for IGMPv2 67-42
 Changing the Maximum Query Response Time for IGMPv2 67-43
 Configuring the Switch as a Statically Connected Member 67-44

Configuring Optional Multicast Routing Features 67-44
 Enabling CGMP Server Support 67-45
 Configuring sdr Listener Support 67-46
 Enabling sdr Listener Support 67-46
 Limiting How Long an sdr Cache Entry Exists 67-46
 Configuring an IP Multicast Boundary 67-47

Configuring Basic DVMRP Interoperability Features 67-49
 Configuring DVMRP Interoperability 67-49
 Configuring a DVMRP Tunnel 67-51
 Advertising Network 0.0.0.0 to DVMRP Neighbors 67-53
 Responding to mrinfo Requests 67-54

Configuring Advanced DVMRP Interoperability Features 67-54
 Enabling DVMRP Unicast Routing 67-54
 Rejecting a DVMRP Nonpruning Neighbor 67-55
 Controlling Route Exchanges 67-58
 Limiting the Number of DVMRP Routes Advertised 67-58
 Changing the DVMRP Route Threshold 67-58
 Configuring a DVMRP Summary Address 67-59
 Disabling DVMRP Autosummarization 67-61
 Adding a Metric Offset to the DVMRP Route 67-62

Monitoring and Maintaining IP Multicast Routing 67-63
 Clearing Caches, Tables, and Databases 67-63
 Displaying System and Network Statistics 67-63
 Monitoring IP Multicast Routing 67-64

CHAPTER 68

Configuring MSDP 68-1
 Understanding MSDP 68-1
 MSDP Operation 68-2
MSDP Benefits 68-3
Configuring MSDP 68-3
 Default MSDP Configuration 68-4
 Configuring a Default MSDP Peer 68-4
 Caching Source-Active State 68-6
 Requesting Source Information from an MSDP Peer 68-8
 Controlling Source Information that Your Switch Originates 68-8
 Redistributing Sources 68-9
 Filtering Source-Active Request Messages 68-11
 Controlling Source Information that Your Switch Forwards 68-12
 Using a Filter 68-12
 Using TTL to Limit the Multicast Data Sent in SA Messages 68-14
 Controlling Source Information that Your Switch Receives 68-14
 Configuring an MSDP Mesh Group 68-16
 Shutting Down an MSDP Peer 68-16
 Including a Bordering PIM Dense-Mode Region in MSDP 68-17
 Configuring an Originating Address other than the RP Address 68-18
Monitoring and Maintaining MSDP 68-19

CHAPTER 69
Configuring Fallback Bridging 69-1
 Understanding Fallback Bridging 69-1
 Fallback Bridging Overview 69-1
 Fallback Bridging and Switch Stacks 69-3
 Configuring Fallback Bridging 69-3
 Default Fallback Bridging Configuration 69-3
 Fallback Bridging Configuration Guidelines 69-4
 Creating a Bridge Group 69-4
 Adjusting Spanning-Tree Parameters 69-5
 Changing the VLAN-Bridge Spanning-Tree Priority 69-6
 Changing the Interface Priority 69-6
 Assigning a Path Cost 69-7
 Adjusting BPDU Intervals 69-7
 Disabling the Spanning Tree on an Interface 69-9
 Monitoring and Maintaining Fallback Bridging 69-10

CHAPTER 70
Troubleshooting 70-1
 Recovering from a Software Failure 70-2
 Recovering from a Lost or Forgotten Password 70-3
 Procedure with Password Recovery Enabled 70-5
Procedure with Password Recovery Disabled 70-6
Preventing Switch Stack Problems 70-8
Recovering from a Command Switch Failure 70-9
 Replacing a Failed Command Switch with a Cluster Member 70-9
 Replacing a Failed Command Switch with Another Switch 70-11
Recovering from Lost Cluster Member Connectivity 70-12
Preventing Autonegotiation Mismatches 70-13
Troubleshooting Power over Ethernet Switch Ports 70-13
 Disabled Port Caused by Power Loss 70-13
 Disabled Port Caused by False Link Up 70-14
SFP Module Security and Identification 70-14
Monitoring SFP Module Status 70-14
Monitoring Temperature 70-15
Using Ping 70-15
 Understanding Ping 70-15
 Executing Ping 70-15
Using Layer 2 Traceroute 70-16
 Understanding Layer 2 Traceroute 70-16
 Usage Guidelines 70-17
 Displaying the Physical Path 70-17
Using IP Traceroute 70-18
 Understanding IP Traceroute 70-18
 Executing IP Traceroute 70-18
Using TDR 70-19
 Understanding TDR 70-19
 Running TDR and Displaying the Results 70-20
Using Debug Commands 70-20
 Enabling Debugging on a Specific Feature 70-21
 Enabling All-System Diagnostics 70-21
 Redirecting Debug and Error Message Output 70-22
Using the show platform forward Command 70-22
Using the crashinfo Files 70-24
 Basic crashinfo Files 70-25
 Extended crashinfo Files 70-25
Using Memory Consistency Check Routines 70-26
Using On-Board Failure Logging 70-26
 Understanding OBFL 70-27
 Configuring OBFL 70-27
Displaying OBFL Information 70-28
Fan Failures 70-28
Troubleshooting Tables 70-30
 Troubleshooting CPU Utilization 70-30
 Possible Symptoms of High CPU Utilization 70-30
 Verifying the Problem and Cause 70-30
 Troubleshooting Power over Ethernet (PoE) 70-32
 Troubleshooting Stackwise (Catalyst 3750-E 3750-X Switches Only) 70-35

CHAPTER 71

Configuring Online Diagnostics 71-1
 Understanding Online Diagnostics 71-1
 Configuring Online Diagnostics 71-1
 Scheduling Online Diagnostics 71-2
 Configuring Health-Monitoring Diagnostics 71-3
 Running Online Diagnostic Tests 71-5
 Starting Online Diagnostic Tests 71-5
 Displaying Online Diagnostic Tests and Test Results 71-6

APPENDIX A

Working with the Cisco IOS File System, Configuration Files, and Software Images A-1
 Working with the Flash File System A-1
 Displaying Available File Systems A-2
 Setting the Default File System A-3
 Displaying Information about Files on a File System A-3
 Changing Directories and Displaying the Working Directory A-4
 Creating and Removing Directories A-5
 Copying Files A-5
 Deleting Files A-6
 Creating, Displaying, and Extracting Files A-6
 Working with Configuration Files A-9
 Guidelines for Creating and Using Configuration Files A-10
 Configuration File Types and Location A-10
 Creating a Configuration File By Using a Text Editor A-11
 Copying Configuration Files By Using TFTP A-11
 Preparing to Download or Upload a Configuration File By Using TFTP A-11
 Downloading the Configuration File By Using TFTP A-12
 Uploading the Configuration File By Using TFTP A-13
 Copying Configuration Files By Using FTP A-13
 Preparing to Download or Upload a Configuration File By Using FTP A-14
 Downloading a Configuration File By Using FTP A-14
Contents

Uploading a Configuration File By Using FTP A-16
Copying Configuration Files By Using RCP A-17
 Preparing to Download or Upload a Configuration File By Using RCP A-17
 Downloading a Configuration File By Using RCP A-18
 Uploading a Configuration File By Using RCP A-19
Clearing Configuration Information A-20
 Clearing the Startup Configuration File A-20
 Deleting a Stored Configuration File A-20
Replacing and Rolling Back Configurations A-20
 Understanding Configuration Replacement and Rollback A-21
 Configuration Guidelines A-22
Configuring the Configuration Archive A-23
 Performing a Configuration Replacement or Rollback Operation A-23
Working with Software Images A-25
 Image Location on the Switch A-26
 File Format of Images on a Server or Cisco.com A-26
 Copying Image Files By Using TFTP A-27
 Preparing to Download or Upload an Image File By Using TFTP A-28
 Downloading an Image File By Using TFTP A-28
 Uploading an Image File By Using TFTP A-30
 Copying Image Files By Using FTP A-31
 Preparing to Download or Upload an Image File By Using FTP A-31
 Downloading an Image File By Using FTP A-32
 Uploading an Image File By Using FTP A-34
 Copying Image Files By Using RCP A-35
 Preparing to Download or Upload an Image File By Using RCP A-36
 Downloading an Image File By Using RCP A-37
 Uploading an Image File By Using RCP A-38
 Copying an Image File from One Stack Member to Another A-39
 Software for the Network Services Module Software A-40

APPENDIX B

Unsupported Commands in Cisco IOS Release 15.2(1)E B-1
 Access Control Lists B-1
 Unsupported Privileged EXEC Commands B-1
 Unsupported Global Configuration Commands B-1
 Unsupported Route-Map Configuration Commands B-2
 Archive Commands B-2
 Unsupported Privileged EXEC Commands B-2
 ARP Commands B-2
Unsupported Global Configuration Commands \textit{B-2}
Unsupported Interface Configuration Commands \textit{B-2}

Boot Loader Commands \textit{B-2}
Unsupported User EXEC Commands \textit{B-2}
Unsupported Global Configuration Commands \textit{B-2}

Debug Commands \textit{B-3}
Unsupported Privileged EXEC Commands \textit{B-3}

Embedded Event Manager \textit{B-3}
Unsupported Privileged EXEC Commands \textit{B-3}
Unsupported Global Configuration Commands \textit{B-3}
Unsupported Commands in Applet Configuration Mode \textit{B-3}
Unsupported Commands in Event Trigger Configuration Mode \textit{B-4}

Embedded Syslog Manager \textit{B-4}
Unsupported Global Configuration Commands \textit{B-4}
Unsupported Privileged EXEC Commands \textit{B-4}

Fallback Bridging \textit{B-4}
Unsupported Privileged EXEC Commands \textit{B-4}
Unsupported Global Configuration Commands \textit{B-4}
Unsupported Interface Configuration Commands \textit{B-5}

HSRP \textit{B-6}
Unsupported Global Configuration Commands \textit{B-6}
Unsupported Interface Configuration Commands \textit{B-6}

IGMP Snooping Commands \textit{B-6}
Unsupported Global Configuration Commands \textit{B-6}

Interface Commands \textit{B-6}
Unsupported Privileged EXEC Commands \textit{B-6}
Unsupported Global Configuration Commands \textit{B-6}
Unsupported Interface Configuration Commands \textit{B-7}

IP Multicast Routing \textit{B-8}
Unsupported Privileged EXEC Commands \textit{B-8}
Unsupported Global Configuration Commands \textit{B-8}
Unsupported Interface Configuration Commands \textit{B-8}

IP Unicast Routing \textit{B-9}
Unsupported Privileged EXEC or User EXEC Commands \textit{B-9}
Unsupported Global Configuration Commands \textit{B-9}
Unsupported Interface Configuration Commands \textit{B-10}
Unsupported BGP Router Configuration Commands \textit{B-10}
Unsupported VPN Configuration Commands \textit{B-10}
Unsupported Route Map Commands \textit{B-10}
MAC Address Commands B-11
 Unsupported Privileged EXEC Commands B-11
 Unsupported Global Configuration Commands B-11

Miscellaneous B-11
 Unsupported User EXEC Commands B-11
 Unsupported Privileged EXEC Commands B-12
 Unsupported Global Configuration Commands B-12

MSDP B-12
 Unsupported Privileged EXEC Commands B-12
 Unsupported Global Configuration Commands B-12

Multicast B-13
 Unsupported BiDirectional PIM Commands B-13
 Unsupported Multicast Routing Manager Commands B-13
 Unsupported IP Multicast Rate Limiting Commands B-13
 Unsupported UDLR Commands B-13
 Unsupported Multicast Over GRE Commands B-13

NetFlow Commands B-13
 Unsupported Global Configuration Commands B-13

Network Address Translation (NAT) Commands B-13
 Unsupported Privileged EXEC Commands B-13

QoS B-14
 Unsupported Global Configuration Command B-14
 Unsupported Interface Configuration Commands B-14
 Unsupported Policy-Map Configuration Command B-14

RADIUS B-14
 Unsupported Global Configuration Commands B-14

SNMP B-14
 Unsupported Global Configuration Commands B-14

Spanning Tree B-15
 Unsupported Global Configuration Command B-15
 Unsupported Interface Configuration Command B-15

VLAN B-15
 Unsupported Global Configuration Command B-15
 Unsupported User EXEC Commands B-15

VTP B-15
 Unsupported Privileged EXEC Command B-15
Preface

Audience

This guide is for the networking professional managing the standalone Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch or the Catalyst 3750-E Catalyst 3750-X switch stack, referred to as the switch. Before using this guide, you should have experience working with the Cisco IOS software and be familiar with the concepts and terminology of Ethernet and local area networking.

Purpose

This guide provides procedures for using the commands that have been created or changed for use with the Catalyst 3750-E and 3560-E Catalyst 3750-X or 3560-X switches. It does not provide detailed information about these commands.

- For detailed information about these commands, see the command reference for this release.
- For information about the standard Cisco IOS commands, see the Cisco IOS Master Command List, All Releases from the Cisco IOS Software Releases 15.0 Mainline Master Index page on Cisco.com: http://www.cisco.com/en/US/products/ps10591/products_product_indices_list.html

This guide does not provide detailed information on the GUIs for the embedded device manager or for Cisco Network Assistant (hereafter referred to as Network Assistant) that you can use to manage the switch. However, the concepts in this guide are applicable to the GUI user. For information about the device manager, see the switch online help. For information about Network Assistant, see Getting Started with Cisco Network Assistant, available on Cisco.com.

This guide does not describe system messages you might encounter or how to install your switch. For more information, see the system message guide for this release and the Catalyst 3750-E and 3560-E Switch Hardware Installation Guide Catalyst 3750-X and 3560-X Switch Hardware Installation Guide. For documentation updates, see the release notes for this release.
Conventions

This publication uses these conventions to convey instructions and information:

Command descriptions use these conventions:

- Commands and keywords are in **boldface** text.
- Arguments for which you supply values are in *italic*.
- Square brackets ([]) mean optional elements.
- Braces ({ }) group required choices, and vertical bars (|) separate the alternative elements.
- Braces and vertical bars within square brackets ([{ | }]) mean a required choice within an optional element.

Interactive examples use these conventions:

- Terminal sessions and system displays are in `screen` font.
- Information you enter is in **boldface screen** font.
- Nonprinting characters, such as passwords or tabs, are in angle brackets (< >).

Notes, cautions, and timesavers use these conventions and symbols:

<table>
<thead>
<tr>
<th>Note</th>
<th>Means reader take note. Notes contain helpful suggestions or references to materials not contained in this manual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution</td>
<td>Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.</td>
</tr>
</tbody>
</table>

Related Publications

Documents with complete information about the switch are available from these Cisco.com sites:

Catalyst 3750-X

Catalyst 3560-X

Catalyst 3750-E:

Catalyst 3560-E:

<table>
<thead>
<tr>
<th>Note</th>
<th>Before installing, configuring, or upgrading the switch, see these documents:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- For initial configuration information, see the “Using Express Setup” section in the getting started guide or the “Configuring the Switch with the CLI-Based Setup Program” appendix in the hardware installation guide.</td>
</tr>
<tr>
<td></td>
<td>- For device manager requirements, see the “System Requirements” section in the release notes.</td>
</tr>
</tbody>
</table>
• For Network Assistant requirements, see the Getting Started with Cisco Network Assistant.
• For cluster requirements, see the Release Notes for Cisco Network Assistant.
• For upgrading information, see the “Downloading Software” section in the release notes.

For more information, see these documents on Cisco.com.
• Release Notes for the Catalyst 3750-E and 3560-E Switches
• Catalyst 3750-E and 3560-E Switch Software Configuration Guide
• Catalyst 3750-E and 3560-E Switch Command Reference
• Catalyst 3750-X, 3750-E, 3560-X, and 3560-E Switch System Message Guide
• Cisco Software IOS Activation
• Catalyst 3750-E and 3560-E Switch Hardware Installation Guide
• Getting Started Guide for the Catalyst 3750-E Switch
• Getting Started Guide for the Catalyst 3560-E Switch
• Regulatory Compliance and Safety Information for the Catalyst 3750-E and 3560-E Switches
• Cisco Redundant Power System 2300 Hardware Installation Guide
• Installation Note for the Catalyst 3750-E and Catalyst 3560-E Switches, and RPS 2300 Power Supply Modules
• Installation Note for the Catalyst 3750-E and 3560-E Switch Fan Modules
• Release Notes for the Catalyst 3750-X and 3560-X Switch
• Catalyst 3750-X and 3560-X Switch Software Configuration Guide
• Catalyst 3750-X and 3560-X Switch Command Reference
• Catalyst 3750-X, 3750-E, 3560-X, and 3560-E Switch System Message Guide
• Cisco IOS Software Installation Document
• Catalyst 3750-X and 3560-X Switch Getting Started Guide
• Catalyst 3750-X and 3560-X Switch Hardware Installation Guide
• Regulatory Compliance and Safety Information for the Catalyst 3750-X and 3560-X Switch
• Installation Notes for the Catalyst 3750-X, Catalyst 3560-X Switch Power Supply Modules
• Installation Notes for the Catalyst 3750-X and 3560-X Switch Fan Module
• Installation Notes for the Catalyst 3750-X and 3560-X Switch Network Modules
• Cisco Expandable Power System XPS-2200 Hardware Installation Guide
• Regulatory Compliance and Safety Information for the Cisco Expandable Power System XPS-2200
• Auto Smartports Configuration Guide
• Cisco EnergyWise IOS Configuration Guide
• Getting Started with Cisco Network Assistant
• Release Notes for Cisco Network Assistant
• Information about Cisco SFP and SFP+ modules is available from this Cisco.com site:
 SFP compatibility matrix documents are available from this Cisco.com site:

- For information about the Network Admission Control (NAC) features, see the Network Admission Control Software Configuration Guide

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation:

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS Version 2.0.
Overview

This chapter provides an overview topics about the Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X switch software:

- Software Features, page 1-1
- Default Settings After Initial Switch Configuration, page 1-20
- Network Configuration Examples, page 1-23
- Where to Go Next, page 1-37

The term switch refers to a standalone switch and to a switch stack.

In this document, IP refers to IP Version 4 (IPv4) unless there is a specific reference to IP Version 6 (IPv6).

Note: The examples in this document are for a Catalyst 3750-E Catalyst 3750-X switch. When showing an interface in a command-line interface (CLI) command, the example is on the Catalyst 3750-E Catalyst 3750-X switch, for example, `gigabitethernet 1/0/5`. The examples also apply to the Catalyst 3560-E Catalyst 3560-X switch in which the specified interface on a Catalyst 3560-E Catalyst 3560-X switch is `gigabitethernet0/5` (without the stack member number of 1/).

Software Features

The switch supports the cryptographic (supports encryption) universal software image. The universal software image supports the IP base and the IP services feature sets.

The switch supports an IP Base software image (with or without payload encryption) for customers without a service support contract. This image supports the IP Base and LAN Base feature sets.

Customers with a service contract receive a universal image (with or without payload encryption), which includes the LAN Base, IP Base, and IP Services feature sets. On switches running payload-encryption images, management and data traffic can be encrypted. On switches running nonpayload-encryption images, only management traffic, such as a SSH management session, can be encrypted.

You must have a Cisco IOS software license for a specific feature set to enable it. For more information about the software license, see the Cisco IOS Software Installation document on Cisco.com.

The switch supports one of these feature sets:

- LAN Base feature set—Provides basic Layer 2+ features, including access control lists (ACLs) and quality of service (QoS). Starting with Cisco IOS Release 12.2(58)SE, the LAN Base feature set also supports static IP routing on switch virtual interfaces (SVIs) for 16 user-configured routes.
The switch has these features:

- **Deployment Features**, page 1-2
- **Performance Features**, page 1-4
- **Management Options**, page 1-6
- **Manageability Features**, page 1-7
- **Availability and Redundancy Features**, page 1-9
- **VLAN Features**, page 1-10
- **Security Features**, page 1-11
- **QoS and CoS Features**, page 1-15
- **Layer 3 Features**, page 1-16
- **Power over Ethernet Features**, page 1-18
- **Monitoring Features**, page 1-18

Deployment Features

- Express Setup for quickly configuring a switch for the first time with basic IP information, contact information, switch and Telnet passwords, and Simple Network Management Protocol (SNMP) information through a browser-based program. For more information about Express Setup, see the getting started guide.
- User-defined and Cisco-default Smartports macros for creating custom switch configurations for simplified deployment across the network.
- Auto Smartports Cisco-default and user-defined macros for dynamic port configuration based on the device type detected on the port.
- AutoSmartport enhancements, which add support for global macros, last-resort macros, event trigger control, access points, EtherChannels, auto-QoS with Cisco Medianet, and IP phones.
• AutoSmartports enhancement to enable auto-QoS on a CDP-capable Cisco digital media player.
• Auto Smartport features in Cisco IOS Release 15.0(1)SE with improved device classification capabilities and accuracy, increased device visibility, and enhanced macro management. The device classifier is enabled by default, and can classify devices based on DHCP options.
• An embedded Device Manager GUI for configuring and monitoring a single switch through a web browser. For information about starting Device Manager, see the getting started guide. For more information about Device Manager, see the switch online help.
• Cisco Network Assistant (referred to as Network Assistant) for
 – Managing communities, which are device groups like clusters, except that they can contain routers and access points and can be made more secure.
 – Simplifying and minimizing switch, switch stack, and switch cluster management from anywhere in your intranet.
 – Accomplishing multiple configuration tasks from a single graphical interface without needing to remember command-line interface (CLI) commands to accomplish specific tasks.
 – Interactive guide mode that guides you in configuring complex features such as VLANs, ACLs, and quality of service (QoS).
 – Configuration wizards that prompt you to provide only the minimum required information to configure complex features such as QoS priorities for video traffic, priority levels for data applications, and security.
 – Downloading an image to a switch.
 – Applying actions to multiple ports and multiple switches at the same time, such as VLAN and QoS settings, inventory and statistic reports, link- and switch-level monitoring and troubleshooting, and multiple switch software upgrades.
 – Viewing a topology of interconnected devices to identify existing switch clusters and eligible switches that can join a cluster and to identify link information between switches.
 – Monitoring real-time status of a switch or multiple switches from the LEDs on the front-panel images. The system, redundant power system (RPS), system and port LED colors on the images are similar to those used on the physical LEDs.
• Cisco StackWise Plus technology on Catalyst 3750-E Catalyst 3750-X switches for
 – Connecting up to nine switches through their StackWise Plus ports that operate as a single switch or switch-router in the network.
 – Creating a bidirectional 32-Gb/s switching fabric across the switch stack, with all stack members having full access to the system bandwidth.
 – Using a single IP address and configuration file to manage the entire switch stack.
 – Automatic Cisco IOS version-check of new stack members with the option to automatically load images from the stack master or from a TFTP server.
 – Adding, removing, and replacing switches in the stack without disrupting the operation of the stack.
 – Provisioning a new member for a switch stack with the offline configuration feature. You can configure in advance the interface configuration for a specific stack member number and for a specific switch type of a new switch that is not part of the stack. The switch stack retains this information across stack reloads whether or not the provisioned switch is part of the stack.
 – Displaying stack-ring activity statistics (the number of frames sent by each stack member to the ring).
– Rolling stack upgrade to minimize network disruption when the members of a switch stack are upgraded one at a time.

For information about the stacking interactions in Catalyst 3750-X, Catalyst 3750-E, and 3750 mixed switch stacks, see Chapter 1, “Managing Switch Stacks” and the Cisco Software Activation and Compatibility Document on Cisco.com.

• StackPower technology on Catalyst 3750-X switches running the IP Base or IP Services feature set. When power-stack cables connect up to four switches, you can manage the individual switch power supplies as a single power supply for power sharing or redundancy for switches and connected devices.

• Switch clustering technology for
 – Unified configuration, monitoring, authentication, and software upgrade of multiple, cluster-capable switches, regardless of their geographic proximity and interconnection media, including Ethernet, Fast Ethernet, Fast EtherChannel, small form-factor pluggable (SFP) modules, Gigabit Ethernet, Gigabit EtherChannel, 10-Gigabit Ethernet, and 10-Gigabit EtherChannel connections. For a list of cluster-capable switches, see the release notes.
 – Automatic discovery of candidate switches and creation of clusters of up to 16 switches that can be managed through a single IP address.
 – Extended discovery of cluster candidates that are not directly connected to the command switch.

• Smart Install to allow a single point of management (director) in a network. You can use Smart Install to provide zero touch image and configuration upgrade of newly deployed switches and image and configuration downloads for any client switches. For more information, see the Cisco Smart Install Configuration Guide on Cisco.com.

• Smart Install enhancements in Cisco IOS Release 12.2(55)SE supporting client backup files, zero-touch replacement for clients with the same product-ID, automatic generation of the imagelist file, configurable file repository, hostname changes, transparent connection of the director to client, and USB storage for image and seed configuration.

• Smart Install enhancements in Cisco IOS Release 12.2(58)SE including the ability to manually change a client switch health state from denied to allowed or hold for on-demand upgrades, to remove selected clients from the director database, to allow simultaneous on-demand upgrade of multiple clients, and to provide more information about client devices, including device status, health status, and upgrade status.

• Call Home to provide e-mail-based and web-based notification of critical system events. Users with a service contract directly with Cisco Systems can register Call Home devices for the Cisco Smart Call Home service that generates automatic service requests with the Cisco TAC.

Performance Features

• Cisco EnergyWise manages the energy usage of endpoints connected to domain members.
 For more information, see the Cisco EnergyWise documentation on Cisco.com.

• Cisco EnergyWise Phase 2.5 enhancements that add support for a query to analyze and display domain information and for Wake on LAN (WoL) to remotely power on a WoL-capable PC.

• Autosensing of port speed and autonegotiation of duplex mode on all switch ports for optimizing bandwidth.
• Automatic-medium-dependent interface crossover (auto-MDI X) capability on 10/100- and 10/100/1000-Mb/s interfaces and on 10/100/1000 BASE-TX SFP module interfaces that enables the interface to automatically detect the required cable connection type (straight-through or crossover) and to configure the connection appropriately.

• Support for the maximum packet size or maximum transmission unit (MTU) size for these types of frames:
 – Up to 9216 bytes for routed frames.
 – Up to 9216 bytes for frames that are bridged in hardware and software through Gigabit Ethernet ports and 10-Gigabit Ethernet ports.

• IEEE 802.3x flow control on all ports (the switch does not send pause frames).

• Up to 64 Gb/s of throughput in a Catalyst 3750-E-only Catalyst 3750-X-only switch stack.

• EtherChannel for enhanced fault tolerance and for providing up to 8 Gb/s (Gigabit EtherChannel) or 80 Gb/s (10-Gigabit EtherChannel) full-duplex bandwidth among switches, routers, and servers.

• Port Aggregation Protocol (PAgP) and Link Aggregation Control Protocol (LACP) for automatic creation of EtherChannel links.

• Forwarding of Layer 2 and Layer 3 packets at Gigabit line rate.

• Forwarding of Layer 2 and Layer 3 packets at Gigabit line rate across the switches in the stack.

• Per-port storm control for preventing broadcast, multicast, and unicast storms.

• Port blocking on forwarding unknown Layer 2 unknown unicast, multicast, and bridged broadcast traffic.

• Protocol storm protection to control the rate of incoming protocol traffic to a switch by dropping packets that exceed a specified ingress rate.

• Cisco Group Management Protocol (CGMP) server support and Internet Group Management Protocol (IGMP) snooping for IGMP Versions 1, 2, and 3:
 – (For CGMP devices) CGMP for limiting multicast traffic to specified end stations and reducing overall network traffic.
 – (For IGMP devices) IGMP snooping for efficiently forwarding multimedia and multicast traffic.

• IGMP report suppression for sending only one IGMP report per multicast router query to the multicast devices (supported only for IGMPv1 or IGMPv2 queries).

• IGMP snooping querier support to configure switch to generate periodic IGMP General Query messages.

• IGMP Helper to allow the switch to forward a host request to join a multicast stream to a specific IP destination address.

• Multicast Listener Discovery (MLD) snooping to enable efficient distribution of IP Version 6 (IPv6) multicast data to clients and routers in a switched network.

• Multicast VLAN registration (MVR) to continuously send multicast streams in a multicast VLAN while isolating the streams from subscriber VLANs for bandwidth and security reasons.

• IGMP filtering for controlling the set of multicast groups to which hosts on a switch port can belong.

• IGMP throttling for configuring the action when the maximum number of entries is in the IGMP forwarding table.

• IGMP leave timer for configuring the leave latency for the network.

• Switch Database Management (SDM) templates for allocating system resources to maximize support for user-selected features.
Software Features

- Introduction of a new switch database management (SDM) dual IPv4 and IPv6 template that supports more indirect routes (supported only on switches running the IP Base or IP Services feature set).
- Web Cache Communication Protocol (WCCP) for redirecting traffic to wide-area application engines, for enabling content requests to be fulfilled locally, and for localizing web-traffic patterns in the network (requires the IP Services feature set).
- Support in Cisco IOS Release 12.2(58)SE for deny ACL entries in Web Cache Communication Protocol (WCCP) redirect lists (requires the IP Services feature set). Previously only permit entries were supported.
- Configurable small-frame arrival threshold to prevent storm control when small frames (64 bytes or less) arrive on an interface at a specified rate (the threshold).
- Flex Link Multicast Fast Convergence to reduce the multicast traffic convergence time after a Flex Link failure.
- Support for IEEE 802.11n-enabled access points and support for powered devices that draw more than 15.4 watts.
- RADIUS server load balancing to allow access and authentication requests to be distributed evenly across a server group.
- Support for QoS marking of CPU-generated traffic and queue CPU-generated traffic on the egress network ports.
- Memory consistency check routine enhancements to detect and correct invalid ternary content addressable memory (TCAM) table entries that can affect switch performance.

Management Options

- An embedded Device Manager—Device Manager is a GUI that is integrated in the universal software image. You use it to configure and to monitor a single switch. For information about starting Device Manager, see the getting started guide. For more information about Device Manager, see the switch online help.
- Network Assistant—Network Assistant is a network management application that can be downloaded from Cisco.com. You use it to manage a single switch, a cluster of switches, or a community of devices. For more information about Network Assistant, see Getting Started with Cisco Network Assistant, available on Cisco.com.
- CLI—The Cisco IOS software supports desktop- and multilayer-switching features. You can access the CLI by connecting your management station directly to the switch console port, by connecting your PC directly to the Ethernet management port, or by using Telnet from a remote management station or PC. You can manage the switch stack by connecting to the console port or Ethernet management port of any stack member. For more information about the CLI, see Chapter 1, “Using the Command-Line Interface.”
- SNMP—SNMP management applications such as CiscoWorks2000 LAN Management Suite (LMS) and HP OpenView. You can manage from an SNMP-compatible management station or a PC that is running platforms such as HP OpenView or SunNet Manager. The switch supports a comprehensive set of MIB extensions and four remote monitoring (RMON) groups. For more information about using SNMP, see Chapter 1, “Configuring SNMP.”
Cisco IOS Configuration Engine (previously known to as the Cisco IOS CNS agent) — Configuration service automates the deployment and management of network devices and services. You can automate initial configurations and configuration updates by generating switch-specific configuration changes, sending them to the switch, executing the configuration change, and logging the results.

For more information about CNS, see Chapter 1, “Configuring Cisco IOS Configuration Engine.”

Manageability Features

- Wired location service sends location and attachment tracking information for connected devices to a Cisco Mobility Services Engine (MSE).
- CNS embedded agents for automating switch management, configuration storage, and delivery.
- DHCP for automating configuration of switch information (such as IP address, default gateway, hostname, and Domain Name System [DNS] and TFTP server names).
- DHCP relay for forwarding User Datagram Protocol (UDP) broadcasts, including IP address requests, from DHCP clients.
- DHCP server for automatic assignment of IP addresses and other DHCP options to IP hosts.
- DHCP server port-based address allocation for the preassignment of an IP address to a switch port.
- DHCPv6 bulk-lease query for requesting information about DHCPv6 bindings.
- DHCPv6 relay source configuration for configuring the source address for messages from the relay agent.
- DHCPv6 bulk-lease query to support new bulk lease query type (as defined in RFC5460).
- The DHCPv6 relay source configuration feature to configure a source address for DHCPv6 relay agent.
- Directed unicast requests to a DNS server for identifying a switch through its IP address and its corresponding hostname and to a TFTP server for administering software upgrades from a TFTP server.
- Address Resolution Protocol (ARP) for identifying a switch through its IP address and its corresponding MAC address.
- Unicast MAC address filtering to drop packets with specific source or destination MAC addresses.
- Configurable MAC address scaling that allows disabling MAC address learning on a VLAN to limit the size of the MAC address table.
- Disabling MAC address learning on a VLAN.
- Cisco Discovery Protocol (CDP) Versions 1 and 2 for network topology discovery and mapping between the switch and other Cisco devices on the network.
- Link Layer Discovery Protocol (LLDP) and LLDP Media Endpoint Discovery (LLDP-MED) for interoperability with third-party IP phones.
- Support for the LLDP-MED location TLV that provides location information from the switch to the endpoint device.
- CDP and LLDP enhancements for exchanging location information with video endpoints for dynamic location-based content distribution from servers.
- Network Time Protocol (NTP) version 4 for NTP time synchronization for both IPv4 and IPv6.
- Network Time Protocol version 4 (NTPv4) to support both IPv4 and IPv6 and compatibility with NTPv3.
- Cisco IOS File System (IFS) for providing a single interface to all file systems that the switch uses.
- Configuration logging to log and to view changes to the switch configuration.
- Configuration replacement and rollback to replace the running configuration on a switch with any saved Cisco IOS configuration file.
- Unique device identifier to provide product identification information through a show inventory user EXEC command display.
- In-band management access through the device manager over a Netscape Navigator or Microsoft Internet Explorer browser session.
- In-band management access for up to 16 simultaneous Telnet connections for multiple CLI-based sessions over the network.
- In-band management access for up to five simultaneous, encrypted Secure Shell (SSH) connections for multiple CLI-based sessions over the network.
- In-band management access through SNMP Versions 1, 2c, and 3 get and set requests.
- Out-of-band management access through the switch console port to a directly attached terminal or to a remote terminal through a serial connection or a modem.
- Out-of-band management access through the Ethernet management port to a PC.
- Secure Copy Protocol (SCP) feature to provide a secure and authenticated method for copying switch configuration or switch image files.
- DHCP-based autoconfiguration and image update to download a specified configuration a new image to a large number of switches.
- Source Specific Multicast (SSM) mapping for multicast applications to provide a mapping of source to allowing IGMPv2 clients to utilize SSM, allowing listeners to connect to multicast sources dynamically and reducing dependencies on the application.
- The HTTP client in Cisco IOS supports can send requests to both IPv4 and IPv6 HTTP servers, and the HTTP server in Cisco IOS can service HTTP requests from both IPv4 and IPv6 HTTP clients.
- Simple Network and Management Protocol (SNMP) can be configured over IPv6 transport so that an IPv6 host can send SNMP queries and receive SNMP notifications from a device running IPv6.
- IPv6 supports stateless autoconfiguration to manage link, subnet, and site addressing changes, such as management of host and mobile IP addresses.
- IETF IP-MIB and IP-FORWARD-MIB (RFC4292 and RFC4293) updates to support the IP version 6 (IPv6)-only and the IPv6 part of the protocol-version independent (PVI) objects and tables.
- Local web authentication banner so that custom banner or image file can be displayed at a web authentication login screen.
- CPU utilization threshold trap monitors CPU utilization.
- LLDP-MED network-policy profile time, length, value (TLV) for creating a profile for voice and voice-signalling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode.
- Support for including a hostname in the option 12 field of DHCPDISCOVER packets. This provides identical configuration files to be sent by using the DHCP protocol.
- DHCP Snooping enhancement to support the selection of a fixed string-based format for the circuit-id sub-option of the Option 82 DHCP field.
Software Features

- Increased support for LLPD-MED by allowing the switch to grant power to the power device (PD), based on the power policy TLV request.
- USB mini-Type B console port in addition to the standard RJ-45 console port. Console input is active on only one port at a time.
- USB Type A port for external Cisco USB flash memory devices (thumb drives or USB keys). You can use standard Cisco CLI commands to read, write, erase, copy, or boot from the flash memory.

Note

For additional descriptions of the management interfaces, see the “Network Configuration Examples” section on page 1-23.

Availability and Redundancy Features

- HSRP for command switch and Layer 3 router redundancy
- Automatic stack master re-election (failover support) for replacing stack masters that become unavailable (only on Catalyst 3750-E Catalyst 3750-X switches)
 The newly elected stack master begins accepting Layer 2 traffic in less than 1 second and Layer 3 traffic between 3 to 5 seconds.
- Cross-stack EtherChannel for providing redundant links across the switch stack (only on Catalyst 3750-E Catalyst 3750-X switches)
- UniDirectional Link Detection (UDLD) and aggressive UDLD for detecting and disabling unidirectional links on fiber-optic interfaces caused by incorrect fiber-optic wiring or port faults
- IEEE 802.1D Spanning Tree Protocol (STP) for redundant backbone connections and loop-free networks. STP has these features:
 - Up to 128 spanning-tree instances supported
 - Per-VLAN spanning-tree plus (PVST+) for load-balancing across VLANs
 - Rapid PVST+ for load-balancing across VLANs and providing rapid convergence of spanning-tree instances
- UplinkFast, cross-stack UplinkFast (only on Catalyst 3750-E Catalyst 3750-X switches) and BackboneFast for fast convergence after a spanning-tree topology change and for achieving load-balancing between redundant uplinks, including Gigabit uplinks and cross-stack Gigabit uplinks (only on Catalyst 3750-E Catalyst 3750-X switches)
- IEEE 802.1s Multiple Spanning Tree Protocol (MSTP) for grouping VLANs into a spanning-tree instance and for providing multiple forwarding paths for data traffic and load-balancing and rapid per-VLAN Spanning-Tree plus (rapid-PVST+) based on the IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) for rapid convergence of the spanning tree by immediately changing root and designated ports to the forwarding state
- Optional spanning-tree features available in PVST+, rapid-PVST+, and MSTP mode:
 - Port Fast for eliminating the forwarding delay by enabling a port to immediately change from the blocking state to the forwarding state
 - BPDU guard for shutting down Port Fast-enabled ports that receive bridge protocol data units (BPDUs)
 - BPDU filtering for preventing a Port Fast-enabled port from sending or receiving BPDUs
– Root guard for preventing switches outside the network core from becoming the spanning-tree root
– Loop guard for preventing alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link

• Equal-cost routing for link-level and switch-level redundancy
• Flex Link Layer 2 interfaces to back up one another as an alternative to STP for basic link redundancy
• Link-state tracking to mirror the state of the ports that carry upstream traffic from connected hosts and servers and to allow the failover of the server traffic to an operational link on another Cisco Ethernet switch
• RPS support through the Cisco Redundant Power System 2300, also referred to as the RPS 2300, for enhancing power reliability, configuring and managing the redundant power system. For more information about the RPS 2300, see the Cisco Redundant Power System 2300 Hardware Installation Guide that shipped with the device and that is also on Cisco.com
• StackPower redundancy option. You can configure power supplies in a stack in redundant mode so that an unused power supply will turn on if a power supply in the stack fails.

VLAN Features

• Support for up to 1005 VLANs on switches running the IP Base or IP Services feature set or 255 VLANs on switches running the LAN Base feature set for assigning users to VLANs associated with appropriate network resources, traffic patterns, and bandwidth.
• Support for VLAN IDs in the 1 to 4094 range as allowed by the IEEE 802.1Q standard.
• VLAN Query Protocol (VQP) for dynamic VLAN membership.
• Inter-Switch Link (ISL) and IEEE 802.1Q trunking encapsulation on all ports for network moves, adds, and changes; management and control of broadcast and multicast traffic; and network security by establishing VLAN groups for high-security users and network resources.
• Dynamic Trunking Protocol (DTP) for negotiating trunking on a link between two devices and for negotiating the type of trunking encapsulation (IEEE 802.1Q or ISL) to be used.
• VLAN Trunking Protocol (VTP) and VTP pruning for reducing network traffic by restricting flooded traffic to links destined for stations receiving the traffic.
• Voice VLAN for creating subnets for voice traffic from Cisco IP Phones.
• Dynamic voice virtual LAN (VLAN) for multidomain authentication (MDA) to allow a dynamic voice VLAN on an MDA-enabled port.
• VLAN 1 minimization for reducing the risk of spanning-tree loops or storms by allowing VLAN 1 to be disabled on any individual VLAN trunk link. With this feature enabled, no user traffic is sent or received on the trunk. The switch CPU continues to send and receive control protocol frames.
• Private VLANs to address VLAN scalability problems, to provide a more controlled IP address allocation, and to allow Layer 2 ports to be isolated from other ports on the switch.
• Port security on a PVLAN host to limit the number of MAC addresses learned on a port, or define which MAC addresses may be learned on a port.
• VLAN Flex Link Load Balancing to provide Layer 2 redundancy without requiring Spanning Tree Protocol (STP). A pair of interfaces configured as primary and backup links can load balance traffic based on VLAN.
Support for VTP version 3 that includes support for configuring extended range VLANs (VLANs 1006 to 4094) in any VTP mode, enhanced authentication (hidden or secret passwords), propagation of other databases in addition to VTP, VTP primary and secondary servers, and the option to turn VTP on or off by port.

Security Features

- Cisco IOS Release 15.2(1)E on the Catalyst 3750-X and 3560-X switches is now certified under the Federal Information Processing Standard Publication 140-2 (FIPS 140-2) and the Common Criteria for Information Technology Security Evaluation standard (Common Criteria or CC) EAL 2+.
- Cisco IOS Release 15.2(1)E on the Catalyst 3750-X and 3560-X switches has been submitted for certification under FIPS 140-2 and Common Criteria compliance with the US Government, Security Requirements for Network Devices (pp_nd_v1.0), version 1.0, dated 10 December 2010.

Note

The images for the Cisco IOS Release 15.2(1)E on the Catalyst 3750-X and 3560-X switches are FIPS certified. For information about using FIPS certified images, see the “Boot Loader Upgrade and Image Verification for the FIPS Mode of Operation” section on page 1-25 of the software configuration guide.

FIPS 140-2 is a cryptographic-focused certification, required by many government and enterprise customers, which ensures the compliance of the encryption and decryption operations performed by the switch to the approved FIPS cryptographic strengths and management methods for safeguarding these operations. For more information, see:

Common Criteria is an international standard (ISO/IEC 15408) for computer security certification. This standard is a set of requirements, tests, and evaluation methods that ensures that the Target of Evaluation complies with a specific Protection Profile or custom Security Target. For more information, see the security target document at: http://www.niap-ccevs.org/st/vid10488/

- Web authentication to allow a supplicant (client) that does not support IEEE 802.1x functionality to be authenticated using a web browser.
- Password-protected access (read-only and read-write access) to management interfaces (device manager, Network Assistant, and the CLI) for protection against unauthorized configuration changes
- Multilevel security for a choice of security level, notification, and resulting actions
- Static MAC addressing for ensuring security
- Protected port option for restricting the forwarding of traffic to designated ports on the same switch
- Port security option for limiting and identifying MAC addresses of the stations allowed to access the port
- VLAN aware port security option to shut down the VLAN on the port when a violation occurs, instead of shutting down the entire port
- Port security aging to set the aging time for secure addresses on a port
- BPDU guard for shutting down a Port Fast-configured port when an invalid configuration occurs
- Standard and extended IP access control lists (ACLs) for defining security policies in both directions on routed interfaces (router ACLs) and VLANs and inbound on Layer 2 interfaces (port ACLs)
- Extended MAC access control lists for defining security policies in the inbound direction on Layer 2 interfaces
- VLAN ACLs (VLAN maps) for providing intra-VLAN security by filtering traffic based on information in the MAC, IP, and TCP/UDP headers
- Source and destination MAC-based ACLs for filtering non-IP traffic
- IPv6 ACLs to be applied to interfaces to filter IPv6 traffic
- Support for dynamic creation or attachment of an auth-default ACL on a port that has no configured static ACLs (supported only on switches running the IP Base or IP Services feature set)
- VACL Logging to generate syslog messages for ACL denied IP packets (supported only on switches running the IP Base or IP Services feature set)
- DHCP snooping to filter untrusted DHCP messages between untrusted hosts and DHCP servers
- IP source guard to restrict traffic on nonrouted interfaces by filtering traffic based on the DHCP snooping database and IP source bindings
- Dynamic ARP inspection to prevent malicious attacks on the switch by not relaying invalid ARP requests and responses to other ports in the same VLAN
- IEEE 802.1Q tunneling so that customers with users at remote sites across a service-provider network can keep VLANs segregated from other customers and Layer 2 protocol tunneling to ensure that the customer’s network has complete STP, CDP, and VTP information about all users
- Layer 2 point-to-point tunneling to facilitate the automatic creation of EtherChannels
- Layer 2 protocol tunneling bypass feature to provide interoperability with third-party vendors
- IEEE 802.1x with open access to allow a host to access the network before being authenticated
- Flexible-authentication sequencing to configure the order of the authentication methods that a port tries when authenticating a new host
- IEEE 802.1x port-based authentication to prevent unauthorized devices (clients) from gaining access to the network. These features are supported:
 - Multidomain authentication (MDA) to allow both a data device and a voice device, such as an IP phone (Cisco or non-Cisco), to independently authenticate on the same IEEE 802.1x-enabled switch port
 - VLAN assignment for restricting IEEE 802.1x-authenticated users to a specified VLAN
 - Support for VLAN assignment on a port configured for multi-auth mode. The RADIUS server assigns a VLAN to the first host to authenticate on the port, and subsequent hosts use the same VLAN. Voice VLAN assignment is supported for one IP phone (supported only on switches running the IP Base or IP Services feature set).
 - Port security for controlling access to IEEE 802.1x ports
 - Voice VLAN to permit a Cisco IP Phone to access the voice VLAN regardless of the authorized or unauthorized state of the port
 - IP phone detection enhancement to detect and recognize a Cisco IP phone
 - Guest VLAN to provide limited services to non-IEEE 802.1x-compliant users
 - Restricted VLAN to provide limited services to users who are IEEE 802.1x compliant, but do not have the credentials to authenticate via the standard IEEE 802.1x processes
IEEE 802.1x accounting to track network usage
IEEE 802.1x with wake-on-LAN to allow dormant PCs to be powered on based on the receipt of a specific Ethernet frame
Voice aware 802.1x security to apply traffic violation actions only on the VLAN on which a security violation occurs
Network Edge Access Topology (NEAT) with 802.1x switch supplicant, host authorization with CISP, and auto enablement to authenticate a switch outside a wiring closet as a supplicant to another switch.
NEAT enhancement to control access to the supplicant port during authentication (supported only on switches running the IP Base or IP Services feature set)
IEEE 802.1x authentication with downloadable ACLs and redirect URLs to allow per-user ACL downloads from a Cisco Secure ACS server to an authenticated switch.
Multiple-user authentication to allow more than one host to authenticate on an 802.1x-enabled port.
MAC authentication bypass to authorize clients based on the client MAC address.
Critical voice VLAN to so that when authentication is enabled and the access control server is not available, traffic from the host tagged with the voice VLAN is put into the configured voice VLAN for the port (supported only on switches running the IP Base or IP Services feature set)
Voice aware IEEE 802.1x and MAC authentication bypass (MAB) security violation to shut down only the data VLAN on a port when a security violation occurs

Network Admission Control (NAC) features:
NAC Layer 2 IEEE 802.1x validation of the antivirus condition or posture of endpoint systems or clients before granting the devices network access.
For information about configuring NAC Layer 2 IEEE 802.1x validation, see the “Configuring NAC Layer 2 802.1x Validation” section on page 1-70.
NAC Layer 2 IP validation of the posture of endpoint systems or clients before granting the devices network access.
For information about configuring NAC Layer 2 IP validation, see the Network Admission Control Software Configuration Guide.
IEEE 802.1x inaccessible authentication bypass.
For information about configuring this feature, see the “Configuring Inaccessible Authentication Bypass and Critical Voice VLAN” section on page 1-65.
Authentication, authorization, and accounting (AAA) down policy for a NAC Layer 2 IP validation of a host if the AAA server is not available when the posture validation occurs.
For information about this feature, see the Network Admission Control Software Configuration Guide.

TACACS+, a proprietary feature for managing network security through a TACACS server.
Beginning with Cisco IOS Release 12.2(58)SE, the switch supports TACACS+ for IPv6. For information about configuring this feature, see the “Implementing ADSL for IPv6” chapter in the Cisco IOS XE IPv6 Configuration Guide, Release 2.

RADIUS for verifying the identity of, granting access to, and tracking the actions of remote users through AAA services.
Beginning with Cisco IOS Release 12.2(58)SE, the switch supports RADIUS for IPv6. For information about configuring this feature, see the “Implementing ADSL for IPv6” chapter in the *Cisco IOS XE IPv6 Configuration Guide, Release 2*.

- Kerberos security system to authenticate requests for network resources by using a trusted third party
- Secure Socket Layer (SSL) Version 3.0 support for the HTTP 1.1 server authentication, encryption, and message integrity and HTTP client authentication to allow secure HTTP communications
- IEEE 802.1x readiness check to determine the readiness of connected end hosts before configuring IEEE 802.1x on the switch
- Support for IP source guard on static hosts
- RADIUS Change of Authorization (CoA) to change the attributes of a certain session after it is authenticated. When there is a change in policy for a user or user group in AAA, administrators can send the RADIUS CoA packets from the AAA server, such as Cisco Secure ACS to reinitialize authentication, and apply to the new policies
- IEEE 802.1x User Distribution to allow deployments with multiple VLANs (for a group of users) to improve scalability of the network by load balancing users across different VLANs. Authorized users are assigned to the least populated VLAN in the group, assigned by RADIUS server
- Support for critical VLAN with multi-host authentication so that when a port is configured for multi-auth, and an AAA server becomes unreachable, the port is placed in a critical VLAN in order to still permit access to critical resources
- Customizable web authentication enhancement to allow the creation of user-defined login, success, failure and expire web pages for local web authentication
- Support for Network Edge Access Topology (NEAT) to change the port host mode and to apply a standard port configuration on the authenticator switch port
- VLAN-ID based MAC authentication to use the combined VLAN and MAC address information for user authentication to prevent network access from unauthorized VLANs
- MAC move to allow hosts (including the hosts connected behind an IP phone) to move across ports within the same switch without any restrictions to enable mobility. With MAC move, the switch treats the reappearance of the same MAC address on another port in the same way as a completely new MAC address
- Support for 3DES and AES with version 3 of the Simple Network Management Protocol (SNMPv3). This release adds support for the 168-bit Triple Data Encryption Standard (3DES) and the 128-bit, 192-bit, and 256-bit Advanced Encryption Standard (AES) encryption algorithms to SNMPv3
- Support for the Security Group Tag (SCT) Exchange Protocol (SXP) component of Cisco TrustSec, a security architecture using authentication, encryption, and access control (supported only on switches running the IP Base or IP Services feature set)
- SXP version 2 with syslog messages and SNMP support for SXP (supported only on switches running the IP Base or IP Services feature set)
- Support for IEEE 802.1AE Media Access Control Security (MACsec) to provide MAC-layer encryption over wired networks using out-of-band methods for encryption keying. The MACsec Key Agreement (MKA) protocol provides the session keys and manages encryption keys (supported only on switches running the IP Base or IP Services feature set)
- MACsec link layer switch-to-switch security by using Cisco TrustSec Network Device Admission Control (NDAC) and the Security Association Protocol (SAP) key exchange (supported on switch downlink ports or on uplink ports on the Catalyst 3750-X and 3560-X network services module running the IP Base or IP Services feature set)
Software Features

- Support for SSH for both IPv4 and IPv6.
- Smart logging to capture and export packet flows to a NetFlow collector. This release supports smart logging for DHCP snooping or dynamic ARP inspection violations, IP source guard denied traffic, and ACL traffic permitted or denied on Layer 2 ports (supported only on switches running the IP Base or IP Services feature set)

QoS and CoS Features

- Automatic QoS (auto-QoS) to simplify the deployment of existing QoS features by classifying traffic and configuring egress queues
- Cross-stack QoS for configuring QoS features to all switches in a switch stack rather than on an individual-switch basis (only Catalyst 3750-E Catalyst 3750-X switches)
- Auto-QoS enhancements that add automatic configuration classification of traffic flow from video devices, such as the Cisco Telepresence System and Cisco Surveillance Camera.
- Classification
 - IP type-of-service/Differentiated Services Code Point (IP ToS/DSCP) and IEEE 802.1p CoS marking priorities on a per-port basis for protecting the performance of mission-critical applications
 - IP ToS/DSCP and IEEE 802.1p CoS marking based on flow-based packet classification (classification based on information in the MAC, IP, and TCP/UDP headers) for high-performance quality of service at the network edge, allowing for differentiated service levels for different types of network traffic and for prioritizing mission-critical traffic in the network
 - Trusted port states (CoS, DSCP, and IP precedence—both IPv4 and IPv6) within a QoS domain and with a port bordering another QoS domain
 - Trusted boundary for detecting the presence of a Cisco IP Phone, trusting the CoS value received, and ensuring port security
- Policing
 - Traffic-policing policies on the switch port for managing how much of the port bandwidth should be allocated to a specific traffic flow
 - If you configure multiple class maps for a hierarchical policy map, each class map can be associated with its own port-level (second-level) policy map. Each second-level policy map can have a different policer.
 - Aggregate policing for policing traffic flows in aggregate to restrict specific applications or traffic flows to metered, predefined rates
- Out-of-Profile
 - Out-of-profile markdown for packets that exceed bandwidth utilization limits
- Ingress queueing and scheduling
 - Two configurable ingress queues for user traffic (one queue can be the priority queue)
 - Weighted tail drop (WTD) as the congestion-avoidance mechanism for managing the queue lengths and providing drop precedences for different traffic classifications
 - Shaped round robin (SRR) as the scheduling service for specifying the rate at which packets are sent to the stack or internal ring (sharing is the only supported mode on ingress queues)
Egress queues and scheduling
- Four egress queues per port
- WTD as the congestion-avoidance mechanism for managing the queue lengths and providing drop precedences for different traffic classifications
- SRR as the scheduling service for specifying the rate at which packets are dequeued to the egress interface (shaping or sharing is supported on egress queues). Shaped egress queues are guaranteed but limited to using a share of port bandwidth. Shared egress queues are also guaranteed a configured share of bandwidth, but can use more than the guarantee if other queues become empty and do not use their share of the bandwidth.

Automatic quality of service (QoS) voice over IP (VoIP) enhancement for port-based trust of DSCP and priority queuing for egress traffic

IPv6 port-based trust with dual IPv4 and IPv6 SDM templates (not supported on switches running the LAN Base feature set)

Full QoS support for IPv6 traffic (not supported on switches running the LAN Base feature set)

Layer 3 Features

Note
Unless otherwise indicated, features listed in this section are not supported on switches running the LAN Base feature set. Some features noted are available only in the IP Services feature set.

- HSRP Version 1 (HSRPv1) and HSRP Version 2 (HSRPv2) for Layer 3 router redundancy
- IP routing protocols for load balancing and for constructing scalable, routed backbones:
 - RIP Versions 1 and 2
 - HSRP for IPv6 (requires the IP Base feature set)
 - Full OSPF (requires the IP Services feature set)
 Starting with Cisco IOS Release 12.2(55)SE, the IP Base feature set supports OSPF for routed access to enable customers to extend Layer 3 routing capabilities to the access or wiring closet.
 - Enhanced IGRP (EIGRP) (requires the IP Services feature set)
 - Border Gateway Protocol (BGP) Version 4 (requires the IP Services feature set)
- IP routing between VLANs (inter-VLAN routing) for full Layer 3 routing between two or more VLANs, allowing each VLAN to maintain its own autonomous data-link domain
- Policy-based routing (PBR) for configuring defined policies for traffic flows
- Multiple VPN routing/forwarding (multi-VRF) instances in customer edge devices to allow service providers to support multiple virtual private networks (VPNs) and overlap IP addresses between VPNs (requires the IP Services feature set)
- VRF Lite for configuring multiple private routing domains for network virtualization and virtual private multicast networks
- Support for these IP Services, making them VRF aware so that they can operate on multiple routing instances: HSRP, uRPF, ARP, SNMP, IP SLA, TFTP, FTP, syslog, traceroute, and ping
- Fallback bridging for forwarding non-IP traffic between two or more VLANs (requires the IP Services feature set)
- Static IP routing for manually building a routing table of network path information. Starting with Cisco IOS Release 12.2(58)SE, the LAN Base feature set also supports static IP routing on SVIs for 16 user-configured routes.
- Equal-cost routing for load-balancing and redundancy
- Internet Control Message Protocol (ICMP) and ICMP Router Discovery Protocol (IRDP) for using router advertisement and router solicitation messages to discover the addresses of routers on directly attached subnets.
- Protocol-Independent Multicast (PIM) for multicast routing within the network, allowing for devices in the network to receive the multicast feed requested and for switches not participating in the multicast to be pruned. Includes support for PIM sparse mode (PIM-SM), PIM dense mode (PIM-DM), and PIM sparse-dense mode (requires the IP Services feature set).
- Support for the SSM PIM protocol to optimize multicast applications, such as video.
- Multicast Source Discovery Protocol (MSDP) for connecting multiple PIM-SM domains (requires the IP Services feature set).
- Distance Vector Multicast Routing Protocol (DVMRP) tunneling for interconnecting two multicast-enabled networks across nonmulticast networks (requires the IP Services feature set).
- DHCP relay for forwarding UDP broadcasts, including IP address requests, from DHCP clients.
- DHCP for IPv6 relay, client, server address assignment and prefix delegation.
- IPv6 unicast routing capability for forwarding IPv6 traffic through configured interfaces (requires the IP Services feature set).
- IPv6 default router preference (DRP) for improving the ability of a host to select an appropriate router.
- Support for EIGRP IPv6, which utilizes IPv6 transport, communicates with IPv6 peers, and advertises IPv6 routes.
- IP unicast reverse path forwarding (unicast RPF) for confirming source packet IP addresses.
- Nonstop forwarding (NSF) awareness to enable the Layer 3 switch to continue forwarding packets from an NSF-capable neighboring router when the primary route processor (RP) is failing and the backup RP is taking over, or when the primary RP is manually reloaded for a nondisruptive software upgrade (requires the IP Services feature set).
- NSF-capable routing for OSPF and EIGRP that allows the switch to rebuild routing tables based on information from NSF-aware and NSF-capable neighbors (only Catalyst 3750-E Catalyst 3750-X switches).
- NSF IETF mode for OSPFv2—OSPFv2 graceful restart support for IPv4 (IP Services feature set only).
- NSF IETF mode for OSPFv3—OSPFv3 graceful restart support for IPv6 (IP Services feature set only).
- The ability to exclude a port in a VLAN from the SVI line-state up or down calculation.
- Support for the Virtual Router Redundancy Protocol (VRRP) for IPv4, which dynamically assigns responsibility for one or more virtual routers to the VRRP routers on a LAN, allowing multiple routers on a multiaccess link to utilize the same virtual IP address (supported only on switches running the IP Base or IP Services feature set).
Power over Ethernet Features

- Ability to provide power to connected Cisco pre-standard and IEEE 802.3af-compliant powered devices from Power over Ethernet (PoE)-capable ports if the switch detects that there is no power on the circuit.

Cisco IOS Release 12.2(44)SE and later supports enhanced PoE. An enhanced PoE port can support any additional powered device that requires up to 20 W of power, such as a Cisco AP1250 wireless access point.

- Support for IEEE 802.3at (PoE+), that increases the available power for powered devices from 15.4 W to 30 W per port.

- Support for CDP with power consumption. The powered device notifies the switch of the amount of power it is consuming.

- Support for Cisco intelligent power management. The powered device and the switch negotiate through power-negotiation CDP messages for an agreed power-consumption level. The negotiation allows a high-power Cisco powered device to operate at its highest power mode.

- Automatic detection and power budgeting; the switch maintains a power budget, monitors and tracks requests for power, and grants power only when it is available.

- Ability to monitor the real-time power consumption. On a per-PoE port basis, the switch senses the total power consumption, polices the power usage, and reports the power usage.

- StackPower technology on Catalyst 3750-X switches running the IP Base or IP Services feature set.

Monitoring Features

- Switch LEDs that provide port- and switch-level status on Catalyst 3560-E Catalyst 3560-X switches.

- Switch LEDs that provide port-, switch-, and stack-level status on Catalyst 3750-E Catalyst 3750-X switches.

- MAC address notification traps and RADIUS accounting for tracking users on a network by storing the MAC addresses that the switch has learned or removed.

- Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) for traffic monitoring on any port or VLAN.

- SPAN and RSPAN support of Intrusion Detection Systems (IDS) to monitor, repel, and report network security violations.

- Flow-based Switch Port Analyzer (FSPAN) to define filters for capturing traffic for analysis.

- Four groups (history, statistics, alarms, and events) of embedded RMON agents for network monitoring and traffic analysis.

- Syslog facility for logging system messages about authentication or authorization errors, resource issues, and timeout events.

- Layer 2 traceroute to identify the physical path that a packet takes from a source device to a destination device.

- Time Domain Reflector (TDR) to diagnose and resolve cabling problems on 10/100 and 10/100/1000 copper Ethernet ports.

- SFP module diagnostic management interface to monitor physical or operational status of an SFP module.
- Digital Optical Monitoring (DOM) of connected SFP modules.
- Online diagnostics to test the hardware functionality of the supervisor engine, modules, and switch while the switch is connected to a live network.
- On-board failure logging (OBFL) to collect information about the switch and the power supplies connected to it.
- Enhanced object tracking (EOT) for HSRP to determine the proportion of hosts in a LAN by tracking the routing table state or to trigger the standby router failover.
- Embedded event manager (EEM) for device and system management to monitor key system events and then act on them though a policy.
- Support for EEM 3.2, which introduces event detectors for Neighbor Discovery, Identity, and MAC-Address-Table.
- IP Service Level Agreements (IP SLAs) support to measure network performance by using active traffic monitoring.
- IP SLAs EOT to use the output from IP SLAs tracking operations triggered by an action such as latency, jitter, or packet loss for a standby router failover takeover.
- EOT and IP SLAs EOT static route support to identify when a preconfigured static route or a DHCP route goes down.
- Support for the Built-in Traffic Simulator using Cisco IOS IP SLAs video operations to generate synthetic traffic for a variety of video applications, such as Telepresence, IPTV and IP video surveillance camera. You can use the simulator tool:
 - For network assessment before deploying applications that have stringent network performance requirements.
 - Along with the Cisco Mediatrace for post-deployment troubleshooting for any network related performance issues.

The traffic simulator includes a sophisticated scheduler that allows the user to run several tests simultaneously or periodically and over extended time periods (supported only on switches running the IP Base or IP Services feature set). For information, see the Configuring Cisco IOS IP SLAs Video Operations document at:

- Flexible NetFlow to monitor user-defined flows, collect flow statistics, perform per-flow policing on uplink ports, and export the flow statistics to a collector device (supported only on the Catalyst 3750-X and 3560-X network services module running the IP Base or IP Services feature set)
- Cisco Medianet to enable intelligent services in the network infrastructure for a wide variety of video applications. One of the services of Medianet is auto provisioning for Cisco Digital Media Players and Cisco IP Video Surveillance cameras through Auto Smartports.
- Cisco Mediatrace and performance monitor
 - Cisco Mediatrace to troubleshoot and isolate network or application issues in traffic streams. It helps drill down to analyze one-way delay, one-way packet loss, one-way jitter, and connectivity in IPv4 networks that carry video traffic. This tool can be used for any UDP-based video or non-video traffic stream (supported only on switches running the IP Base or IP Services feature set).

For information:
http://www.cisco.com/en/US/docs/ios/media_monitoring/configuration/guide/15_1m_and_t/mm_15_1m_and_t.html
- Cisco Application Performance Monitor to track the video packet flow and to troubleshoot and isolate performance degradation in traffic streams. You can use the performance monitor for both video and nonvideo traffic (supported only on switches running the IP Base or IP Services feature set).

 For information:

- Configuration guidelines for Mediatrace and performance monitor:
 Video monitoring is supported only on physical ports. It is not supported on EtherChannels.
 When a switch receives excessive traffic, packets are dropped.
 The switch supports policy maps and port-based trust only on ingress ports.

- Limitations for Mediatrace and performance monitor:
 You cannot configure video monitoring and a router or VLAN ACL on the same interface.
 If you configure video monitoring before configuring the ACL, the ACL settings override the video monitoring settings, and a message appears.
 If you configure the ACL before configuring video monitoring, the switch rejects the video monitoring commands, and a message appears.
 As video monitoring packets pass through the network queues, they can be dropped.
 The switch cannot apply QoS settings to packets forwarded in software.
 The switch cannot match lost or dropped packets to a specific traffic or data flow. For information about these packets, see the ingress and egress QoS counters.

Default Settings After Initial Switch Configuration

The switch is designed for plug-and-play operation, requiring only that you assign basic IP information to the switch and connect it to the other devices in your network. If you have specific network needs, you can change the interface-specific and system- and stack-wide settings.

Note

For information about assigning an IP address by using the browser-based Express Setup program, see the getting started guide. For information about assigning an IP address by using the CLI-based setup program, see the hardware installation guide.

If you do not configure the switch at all, the switch operates with these default settings:

- Default switch IP address, subnet mask, and default gateway is 0.0.0.0. For more information, see Chapter 1, “Assigning the Switch IP Address and Default Gateway,” and Chapter 1, “Configuring DHCP Features and IP Source Guard.”

- Default domain name is not configured. For more information, see Chapter 1, “Assigning the Switch IP Address and Default Gateway.”

- DHCP client is enabled, the DHCP server is enabled (only if the device acting as a DHCP server is configured and is enabled), and the DHCP relay agent is enabled (only if the device is acting as a DHCP relay agent is configured and is enabled). For more information, see Chapter 1, “Assigning the Switch IP Address and Default Gateway,” and Chapter 1, “Configuring DHCP Features and IP Source Guard.”

- Switch stack is enabled (not configurable). For more information, see Chapter 1, “Managing Switch Stacks.”
Switch cluster is disabled. For more information about switch clusters, see Chapter 1, “Clustering Switches,” and the Getting Started with Cisco Network Assistant, available on Cisco.com.

No passwords are defined. For more information, see Chapter 1, “Administering the Switch.”

System name and prompt is Switch. For more information, see Chapter 1, “Administering the Switch.”

NTP is enabled. For more information, see Chapter 1, “Administering the Switch.”

DNS is enabled. For more information, see Chapter 1, “Administering the Switch.”

TACACS+ is disabled. For more information, see Chapter 1, “Configuring Switch-Based Authentication.”

RADIUS is disabled. For more information, see Chapter 1, “Configuring Switch-Based Authentication.”

The standard HTTP server and Secure Socket Layer (SSL) HTTPS server are both enabled. For more information, see Chapter 1, “Configuring Switch-Based Authentication.”

IEEE 802.1x is disabled. For more information, see Chapter 1, “Configuring IEEE 802.1x Port-Based Authentication.”

Port parameters
- Operating mode is Layer 2 (switchport). For more information, see Chapter 1, “Configuring Interface Characteristics.”
- Interface speed and duplex mode is autonegotiate. For more information, see Chapter 1, “Configuring Interface Characteristics.”
- Auto-MDIX is enabled. For more information, see Chapter 1, “Configuring Interface Characteristics.”
- Flow control is off. For more information, see Chapter 1, “Configuring Interface Characteristics.”
- PoE is autonegotiate. For more information, see Chapter 1, “Configuring Interface Characteristics.”

VLANs
- Default VLAN is VLAN 1. For more information, see Chapter 1, “Configuring VLANs.”
- VLAN trunking setting is dynamic auto (DTP). For more information, see Chapter 1, “Configuring VLANs.”
- Trunk encapsulation is negotiate. For more information, see Chapter 1, “Configuring VLANs.”
- VTP mode is server. For more information, see Chapter 1, “Configuring VTP.”
- VTP version is Version 1. For more information, see Chapter 1, “Configuring VTP.”
- No private VLANs are configured. For more information, see Chapter 1, “Configuring Private VLANs.”
- Voice VLAN is disabled. For more information, see Chapter 1, “Configuring Voice VLAN.”
- IEEE 802.1Q tunneling and Layer 2 protocol tunneling are disabled. For more information, see Chapter 1, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling.”
- STP, PVST+ is enabled on VLAN 1. For more information, see Chapter 1, “Configuring STP.”
- MSTP is disabled. For more information, see Chapter 1, “Configuring MSTP.”
- Optional spanning-tree features are disabled. For more information, see Chapter 1, “Configuring Optional Spanning-Tree Features.”
Flex Links are not configured. For more information, see Chapter 1, “Configuring Flex Links and the MAC Address-Table Move Update Feature.”

DHCP snooping is disabled. The DHCP snooping information option is enabled. For more information, see Chapter 1, “Configuring DHCP Features and IP Source Guard.”

IP source guard is disabled. For more information, see Chapter 1, “Configuring DHCP Features and IP Source Guard.”

Dynamic ARP inspection is disabled on all VLANs. For more information, see Chapter 1, “Configuring Dynamic ARP Inspection.”

IGMP snooping is enabled. No IGMP filters are applied. For more information, see Chapter 1, “Configuring IGMP Snooping and MVR.”

IGMP throttling setting is deny. For more information, see Chapter 1, “Configuring IGMP Snooping and MVR.”

The IGMP snooping querier feature is disabled. For more information, see Chapter 1, “Configuring IGMP Snooping and MVR.”

MVR is disabled. For more information, see Chapter 1, “Configuring IGMP Snooping and MVR.”

Port-based traffic
- Broadcast, multicast, and unicast storm control is disabled. For more information, see Chapter 1, “Configuring Port-Based Traffic Control.”
- No protected ports are defined. For more information, see Chapter 1, “Configuring Port-Based Traffic Control.”
- Unicast and multicast traffic flooding is not blocked. For more information, see Chapter 1, “Configuring Port-Based Traffic Control.”
- No secure ports are configured. For more information, see Chapter 1, “Configuring Port-Based Traffic Control.”

CDP is enabled. For more information, see Chapter 1, “Configuring CDP.”

UDLD is disabled. For more information, see Chapter 1, “Configuring UDLD.”

SPAN and RSPAN are disabled. For more information, see Chapter 1, “Configuring SPAN and RSPAN.”

RMON is disabled. For more information, see Chapter 1, “Configuring RMON.”

Syslog messages are enabled and appear on the console. For more information, see Chapter 1, “Configuring System Message Logging and Smart Logging.”

SNMP is enabled (Version 1). For more information, see Chapter 1, “Configuring SNMP.”

No ACLs are configured. For more information, see Chapter 1, “Configuring Network Security with ACLs.”

QoS is disabled. For more information, see Chapter 1, “Configuring QoS.”

No EtherChannels are configured. For more information, see Chapter 1, “Configuring EtherChannels and Link-State Tracking.”

IP unicast routing is disabled. For more information, see Chapter 1, “Configuring IP Unicast Routing.”

No HSRP groups are configured. For more information, see Chapter 1, “Configuring HSRP and VRRP.”

IP multicast routing is disabled on all interfaces. For more information, see Chapter 1, “Configuring IP Multicast Routing.”
Network Configuration Examples

This section provides network configuration concepts and includes examples of using the switch to create dedicated network segments and interconnecting the segments through Gigabit Ethernet and 10-Gigabit Ethernet connections.

- Design Concepts for Using the Switch, page 1-23
- Small to Medium-Sized Network Using Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X Switches, page 1-30
- Large Network Using Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X Switches, page 1-32
- Multidwelling Network Using Catalyst 3750-E Catalyst 3750-X Switches, page 1-35
- Long-Distance, High-Bandwidth Transport Configuration, page 1-36

Design Concepts for Using the Switch

As your network users compete for network bandwidth, it takes longer to send and receive data. When you configure your network, consider the bandwidth required by your network users and the relative priority of the network applications that they use.

Table 1-1 describes what can cause network performance to degrade and how you can configure your network to increase the bandwidth available to your network users.

<table>
<thead>
<tr>
<th>Network Demands</th>
<th>Suggested Design Methods</th>
</tr>
</thead>
</table>
| Too many users on a single network segment and a growing number of users accessing the Internet | • Create smaller network segments so that fewer users share the bandwidth, and use VLANs and IP subnets to place the network resources in the same logical network as the users who access those resources most.
• Use full-duplex operation between the switch and its connected workstations. |
| • Increased power of new PCs, workstations, and servers | • Connect global resources—such as servers and routers to which the network users require equal access—directly to the high-speed switch ports so that they have their own high-speed segment.
• Use the EtherChannel feature between the switch and its connected servers and routers. |
| • High bandwidth demand from networked applications (such as e-mail with large attached files) and from bandwidth-intensive applications (such as multimedia) | |

Bandwidth alone is not the only consideration when designing your network. As your network traffic profiles evolve, consider providing network services that can support applications for voice and data integration, multimedia integration, application prioritization, and security. Table 1-2 describes some network demands and how you can meet them.
You can use the switches and switch stacks to create the following:

- **Cost-effective wiring closet (Figure 1-1)**—A cost-effective way to connect many users to the wiring closet is to have a switch stack of up to nine Catalyst 3750-E Catalyst 3750-X switches. To preserve switch connectivity if one switch in the stack fails, connect the switches as recommended in the hardware installation guide, and enable either cross-stack EtherChannel or cross-stack UplinkFast. You can have redundant uplink connections, using SFP modules in the switch stack to a Gigabit backbone switch, such as a Catalyst 4500, Catalyst 3750-X, Catalyst 3750-E, or Catalyst 3560E-12D switch. You can also create backup paths by using Gigabit or EtherChannel links. If one of the redundant connections fails, the other can serve as a backup path. If the Gigabit switch is cluster-capable, you can configure it and the switch stack as a switch cluster to manage them through a single IP address. The Gigabit switch can be connected to a Gigabit server through a 1000BASE-T connection.
Figure 1-1 Cost-Effective Wiring Closet

Gigabit server

Catalyst Gigabit Ethernet multilayer switch

Layer 2 StackWise Plus switch stack
• High-performance wiring closet (Figure 1-2)—For high-speed access to network resources, you can use Catalyst 3750-E Catalyst 3750-X switches and switch stacks in the access layer to provide Gigabit Ethernet access to the desktop. To prevent congestion, use QoS DSCP marking priorities on these switches. For high-speed IP forwarding at the distribution layer, connect the switches in the access layer to a Gigabit multilayer switch in the backbone, such as a Catalyst 4500 Gigabit switch or Catalyst 6500 Gigabit switch.

• Cost-effective Gigabit-to-the-desktop (GTD) access for high-performance workgroups (Figure 1-3)—For high-speed access to network resources, you can use the Catalyst 3560-E Catalyst 3560-X switches in the access layer to provide Gigabit Ethernet to the desktop. To prevent congestion, use QoS DSCP marking priorities on these switches. For high-speed IP forwarding at the distribution layer, connect the switches in the access layer to a Gigabit switch with routing capability or to a router.

The first illustration is of an isolated high-performance workgroup, where the Catalyst 3560-E Catalyst 3560-X switches are connected to Catalyst 3750-E Catalyst 3750-X switches in the distribution layer. The second illustration is of a high-performance workgroup in the branch office, where the Catalyst 3560-E Catalyst 3560-X switches are connected to a router in the distribution layer.

Each switch in this configuration provides users with a dedicated 1-Gb/s connection to network resources. Using SFP modules also provides flexibility in media and distance options through fiber-optic connections.

Figure 1-2 High-Performance Wiring Closet
Figure 1-3 High-Performance Workgroup (Gigabit-to-the-Desktop) with Catalyst 3650-E Catalyst 3560-X Standalone Switches

Stacking-capable switches

Access-layer standalone switches

WAN

Cisco 2600 router

Access-layer standalone switches
- Redundant Gigabit backbone (Figure 1-4)—Using HSRP, you can create backup paths between two Catalyst 3750-E Catalyst 3750-X Gigabit switches to enhance network reliability and load-balancing for different VLANs and subnets. Using HSRP also provides faster network convergence if any network failure occurs. You can connect the Catalyst switches, again in a star configuration, to two Catalyst 3750-E Catalyst 3750-X backbone switches. If one of the backbone switches fails, the second backbone switch preserves connectivity between the switches and network resources.

![Redundant Gigabit Backbone](image)

- Server aggregation (Figure 1-5) and Linux server cluster (Figure 1-6)—You can use the Catalyst 3560-E Catalyst 3560-X switches and Catalyst 3750-E-only Catalyst 3750-X-only switch stacks to interconnect groups of servers, centralizing physical security and administration of your network. For high-speed IP forwarding at the distribution layer, connect the switches in the access layer to multilayer switches with routing capability. The Gigabit interconnections minimize latency in the data flow.

 QoS and policing on the switches provide preferential treatment for certain data streams. They segment traffic streams into different paths for processing. Security features on the switch ensure rapid handling of packets.

 Fault tolerance from the server racks to the core is achieved through dual homing of servers connected to dual switch stacks or the switches, which have redundant Gigabit EtherChannels and cross-stack EtherChannels.

 Using dual SFP module uplinks from the switches provides redundant uplinks to the network core. Using SFP modules provides flexibility in media and distance options through fiber-optic connections.

 The various lengths of stack cable available, ranging from 0.5 meter to 3 meters, provide extended connections to the switch stacks across multiple server racks, for multiple stack aggregation.
Figure 1-5 Server Aggregation

- Campus core
- Catalyst 6500 switches
- Catalyst 4500 multilayer switches
- StackWise Plus switch stacks
- Server racks
- Access-layer standalone switches
- StackWise switch stacks
- Campus core
- Catalyst 6500 switches
- StackWise switch stacks
- Server racks
Small to Medium-Sized Network Using Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X Switches

Figure 1-7 and Figure 1-8 show a configuration for a network of up to 500 employees. This network uses a Catalyst 3750-E-only Catalyst 3750-X-only Layer 3 switch stack or Catalyst 3560-E Catalyst 3560-X Layer 3 switches with high-speed connections to two routers. For network reliability and load-balancing, this network has HSRP enabled on the routers and on the switches. This ensures connectivity to the Internet, WAN, and mission-critical network resources in case one of the routers or switches fails. The switches are using routed uplinks for faster failover. They are also configured with equal-cost routing for load sharing and redundancy. (When the network uses Catalyst 3750-E Catalyst 3750-X switches, a Layer 2 switch stack can use cross-stack EtherChannel for load sharing.)

The switches are connected to workstations, and local servers, and IEEE 802.3af compliant and noncompliant powered devices (such as Cisco IP Phones). The server farm includes a call-processing server running Cisco CallManager software. Cisco CallManager controls call processing, routing, and Cisco IP Phone features and configuration. The switches are interconnected through Gigabit interfaces.

This network uses VLANs to logically segment the network into well-defined broadcast groups and for security management. Data and multimedia traffic are configured on the same VLAN. Voice traffic from the Cisco IP Phones are configured on separate VVIDs. If data, multimedia, and voice traffic are assigned to the same VLAN, only one VLAN can be configured per wiring closet.

When an end station in one VLAN needs to communicate with an end station in another VLAN, a router or Layer 3 switch routes the traffic to the destination VLAN. In this network, the Catalyst 3750-E-only Catalyst 3750-X-only switch stack or Catalyst 3560-E Catalyst 3560-X switches are
providing inter-VLAN routing. VLAN access control lists (VLAN maps) on the switch stack or switch provide intra-VLAN security and prevent unauthorized users from accessing critical areas of the network.

In addition to inter-VLAN routing, the multilayer switches provide QoS mechanisms such as DSCP priorities to prioritize the different types of network traffic and to deliver high-priority traffic. If congestion occurs, QoS drops low-priority traffic to allow delivery of high-priority traffic.

For prestandard and IEEE 802.3af-compliant powered devices connected to Catalyst PoE switches, IEEE 802.1p/Q QoS gives voice traffic forwarding-priority over data traffic.

Catalyst PoE switch ports automatically detect any Cisco prestandard and IEEE 802.3af-compliant powered devices that are connected. Each PoE switch port provides 15.4 W of power per port. The powered device, such as a Cisco IP Phone, can receive redundant power when it is also connected to an AC power source. Powered devices not connected to Catalyst PoE switches must be connected to AC power sources to receive power.

Cisco CallManager controls call processing, routing, and Cisco IP Phone features and configuration. Users with workstations running Cisco SoftPhone software can place, receive, and control calls from their PCs. Using Cisco IP Phones, Cisco CallManager software, and Cisco SoftPhone software integrates telephony and IP networks, and the IP network supports both voice and data.

With the multilayer switches providing inter-VLAN routing and other network services, the routers focus on firewall services, Network Address Translation (NAT) services, voice-over-IP (VoIP) gateway services, and WAN and Internet access.

Figure 1-7 Catalyst 3750-E-Only Catalyst 3750-X-Only Switch Stack in a Collapsed Backbone Configuration
Large Network Using Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X Switches

Switches in the wiring closet have traditionally been only Layer 2 devices, but as network traffic profiles evolve, switches in the wiring closet are increasingly employing multilayer services such as multicast management and traffic classification. Figure 1-9 shows a configuration for a network that uses only Catalyst 3750-E Catalyst 3750-X switch stacks in the wiring closets and two backbone switches, such as the Catalyst 6500 switches, to aggregate up to ten wiring closets. Figure 1-10 shows a configuration for a network that uses only Catalyst 3560-E Catalyst 3560-X switches in the wiring closets and two backbone switches, such as the Catalyst 6500 switches, to aggregate up to ten wiring closets.

In the wiring closet, each switch stack or switch has IGMP snooping enabled to efficiently forward multimedia and multicast traffic. QoS ACLs that either drop or mark nonconforming traffic based on bandwidth limits are also configured on each switch stack or switch. VLAN maps provide intra-VLAN security and prevent unauthorized users from accessing critical pieces of the network. QoS features can limit bandwidth on a per-port or per-user basis. The switch ports are configured as either trusted or untrusted. You can configure a trusted port to trust the CoS value, the DSCP value, or the IP precedence. If you configure the port as untrusted, you can use an ACL to mark the frame in accordance with the network policy.

Each switch stack or switch provides inter-VLAN routing. They provide proxy ARP services to get IP and MAC address mapping, thereby removing this task from the routers and decreasing this type of traffic on the WAN links. These switch stacks or switches also have redundant uplink connections to the backbone switches, with each uplink port configured as a trusted routed uplink to provide faster convergence in case of an uplink failure.

The routers and backbone switches have HSRP enabled for load-balancing and redundant connectivity to guarantee mission-critical traffic.
Figure 1-9 Catalyst 3750-E Catalyst 3750-X Switch Stacks in Wiring Closets in a Backbone Configuration

- Cisco 7x00 routers
- Catalyst 6500 multilayer switches
- Mixed hardware stack, including the Catalyst 3750G Integrated Wireless LAN Controller
- IEEE 802.3af-compliant powered device (such as a web cam)
- Aironet wireless access points
- Cisco IP Phones with workstations

- Mixed hardware stack, including the Catalyst 3750G Integrated Wireless LAN Controller
- IEEE 802.3af-compliant powered device (such as a web cam)
- Aironet wireless access points
- Cisco IP Phones with workstations
Figure 1-10 Catalyst 3560-E Catalyst 3560-X Switches in Wiring Closets in a Backbone Configuration

- **WAN**
- **Cisco 7x00 routers**
- **Catalyst 6500 multilayer switches**
- **Standalone switches**
 - **IEEE 802.3af-compliant powered device (such as a web cam)**
 - **Aironet wireless access points**
 - **Cisco IP Phones with workstations**
- **Standalone switches**
 - **IEEE 802.3af-compliant powered device (such as a web cam)**
 - **Aironet wireless access points**
 - **Cisco IP Phones with workstations**
Multidwelling Network Using Catalyst 3750-E Catalyst 3750-X Switches

A growing segment of residential and commercial customers are requiring high-speed access to Ethernet metropolitan-area networks (MANs). Figure 1-11 shows a configuration for a Gigabit Ethernet MAN ring using multilayer switch stacks as aggregation switches in the mini-point-of-presence (POP) location. These switches are connected through 1000BASE-X SFP module ports.

The resident switches can be Catalyst 3750-E Catalyst 3750-X switches, providing customers with high-speed connections to the MAN. The Catalyst 2950 LRE switch can also be used as a residential switch for customers requiring connectivity through existing phone lines. The Catalyst 2950 LRE switch can then connect to another residential switch or to a Catalyst 3750 aggregation switch. For more information about the Catalyst Long-Reach Ethernet (LRE) switches, see the documentation sets specific to these switches for LRE information.

All ports on the residential Catalyst 3750-E Catalyst 3750-X switches (and Catalyst 2950 LRE switches if they are included) are configured as IEEE 802.1Q trunks with protected port and STP root guard features enabled. The protected port feature provides security and isolation between ports on the switch, ensuring that subscribers cannot view packets destined for other subscribers. STP root guard prevents unauthorized devices from becoming the STP root switch. All ports have IGMP snooping or CGMP enabled for multicast traffic management. ACLs on the uplink ports to the aggregating Catalyst 3750 multilayer switches provide security and bandwidth management.

The aggregating switches and routers provide services such as those described in the examples in the “Small to Medium-Sized Network Using Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X Switches” section on page 1-30 and the “Large Network Using Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X Switches” section on page 1-32.
Long-Distance, High-Bandwidth Transport Configuration

Figure 1-12 shows a configuration for sending 8 Gigabits of data over a single fiber-optic cable. The Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switches have coarse wavelength-division multiplexing (CWDM) fiber-optic SFP modules installed. Depending on the CWDM SFP module, data is sent at wavelengths from 1470 to 1610 nm. The higher the wavelength, the farther the transmission can travel. A common wavelength used for long-distance transmissions is 1550 nm.

The CWDM SFP modules connect to CWDM optical add/drop multiplexer (OADM) modules over distances of up to 393,701 feet (74.5 miles or 120 km). The CWDM OADM modules combine (or multiplex) the different CWDM wavelengths, allowing them to travel simultaneously on the same fiber-optic cable. The CWDM OADM modules on the receiving end separate (or demultiplex) the different wavelengths.

For more information about the CWDM SFP modules and CWDM OADM modules, see the Cisco CWDM GBIC and CWDM SFP Installation Note.
Where to Go Next

Before configuring the switch, review these sections for startup information:

- Chapter 1, “Using the Command-Line Interface”
- Chapter 1, “Assigning the Switch IP Address and Default Gateway”

CHAPTER 1

Using the Command-Line Interface

This chapter describes the Cisco IOS command-line interface (CLI) and how to use it to configure your standalone Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch or a Catalyst 3750-E Catalyst 3750-X switch stack, referred to as the switch. It contains these sections:

- Understanding Command Modes, page 1-1
- Understanding the Help System, page 1-3
- Understanding Abbreviated Commands, page 1-3
- Understanding no and default Forms of Commands, page 1-4
- Understanding CLI Error Messages, page 1-4
- Using Configuration Logging, page 1-4
- Using Command History, page 1-5
- Using Editing Features, page 1-6
- Searching and Filtering Output of show and more Commands, page 1-9
- Accessing the CLI, page 1-9

Understanding Command Modes

The Cisco IOS user interface is divided into many different modes. The commands available to you depend on which mode you are currently in. Enter a question mark (?) at the system prompt to obtain a list of commands available for each command mode.

When you start a session on the switch, you begin in user mode, often called user EXEC mode. Only a limited subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time commands, such as `show` commands, which show the current configuration status, and `clear` commands, which clear counters or interfaces. The user EXEC commands are not saved when the switch reboots.

To have access to all commands, you must enter privileged EXEC mode. Normally, you must enter a password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.

Using the configuration modes (global, interface, and line), you can make changes to the running configuration. If you save the configuration, these commands are stored and used when the switch reboots. To access the various configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and line configuration mode.
Table 1-1 describes the main command modes, how to access each one, the prompt you see in that mode, and how to exit the mode. The examples in the table use the hostname `Switch`.

Table 1-1 Command Mode Summary

<table>
<thead>
<tr>
<th>Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>About This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Begin a session with your switch.</td>
<td><code>Switch></code></td>
<td>Enter <code>logout</code> or <code>quit</code>.</td>
<td>Use this mode to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Change terminal settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Perform basic tests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Display system information.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>While in user EXEC mode, enter the <code>enable</code> command.</td>
<td><code>Switch#</code></td>
<td>Enter <code>disable</code> to exit.</td>
<td>Use this mode to verify commands that you have entered. Use a password to protect access to this mode.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>While in privileged EXEC mode, enter the <code>configure</code> command.</td>
<td><code>Switch(config)#</code></td>
<td>To exit to privileged EXEC mode, enter <code>exit</code> or <code>end</code>, or press <code>Ctrl-Z</code>.</td>
<td>Use this mode to configure parameters that apply to the entire switch.</td>
</tr>
<tr>
<td>VLAN configuration</td>
<td>While in global configuration mode, enter the <code>vlan vlan-id</code> command.</td>
<td><code>Switch(config-vlan)#</code></td>
<td>To exit to global configuration mode, enter the <code>exit</code> command. To return to privileged EXEC mode, press <code>Ctrl-Z</code> or enter <code>end</code>.</td>
<td>Use this mode to configure VLAN parameters. When VTP mode is transparent, you can create extended-range VLANs (VLAN IDs greater than 1005) and save configurations in the switch startup configuration file.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>While in global configuration mode, enter the <code>interface</code> command (with a specific interface).</td>
<td><code>Switch(config-if)#</code></td>
<td>To exit to global configuration mode, enter <code>exit</code>. To return to privileged EXEC mode, press <code>Ctrl-Z</code> or enter <code>end</code>.</td>
<td>Use this mode to configure parameters for the Ethernet ports. For information about defining interfaces, see the “Using Interface Configuration Mode” section on page 1-19. To configure multiple interfaces with the same parameters, see the “Configuring a Range of Interfaces” section on page 1-20.</td>
</tr>
<tr>
<td>Line configuration</td>
<td>While in global configuration mode, specify a line with the <code>line vty</code> or <code>line console</code> command.</td>
<td><code>Switch(config-line)#</code></td>
<td>To exit to global configuration mode, enter <code>exit</code>. To return to privileged EXEC mode, press <code>Ctrl-Z</code> or enter <code>end</code>.</td>
<td>Use this mode to configure parameters for the terminal line.</td>
</tr>
</tbody>
</table>
For more detailed information on the command modes, see the command reference guide for this release.

Understanding the Help System

You can enter a question mark (?) at the system prompt to display a list of commands available for each command mode. You can also obtain a list of associated keywords and arguments for any command, as shown in Table 1-2.

<table>
<thead>
<tr>
<th>Table 1-2 Help Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
</tr>
<tr>
<td>help</td>
</tr>
<tr>
<td>abbreviated-command-entry?</td>
</tr>
<tr>
<td>abbreviated-command-entry<Tab></td>
</tr>
<tr>
<td>?</td>
</tr>
<tr>
<td>command ?</td>
</tr>
<tr>
<td>command keyword ?</td>
</tr>
</tbody>
</table>

Understanding Abbreviated Commands

You need to enter only enough characters for the switch to recognize the command as unique.

This example shows how to enter the `show configuration` privileged EXEC command in an abbreviated form:

```
Switch# show conf
```
Understanding no and default Forms of Commands

Almost every configuration command also has a no form. In general, use the no form to disable a feature or function or reverse the action of a command. For example, the no shutdown interface configuration command reverses the shutdown of an interface. Use the command without the keyword no to re-enable a disabled feature or to enable a feature that is disabled by default.

Configuration commands can also have a default form. The default form of a command returns the command setting to its default. Most commands are disabled by default, so the default form is the same as the no form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the default command enables the command and sets variables to their default values.

Understanding CLI Error Messages

Table 1-3 lists some error messages that you might encounter while using the CLI to configure your switch.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Ambiguous command: 'show con'</td>
<td>You did not enter enough characters for your switch to recognize the command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Incomplete command.</td>
<td>You did not enter all the keywords or values required by this command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Invalid input detected at '^' marker.</td>
<td>You entered the command incorrectly. The caret (^) marks the point of the error.</td>
<td>Enter a question mark (?) to display all the commands that are available in this command mode. The possible keywords that you can enter with the command appear.</td>
</tr>
</tbody>
</table>

Using Configuration Logging

You can log and view changes to the switch configuration. You can use the Configuration Change Logging and Notification feature to track changes on a per-session and per-user basis. The logger tracks each configuration command that is applied, the user who entered the command, the time that the
command was entered, and the parser return code for the command. This feature includes a mechanism for asynchronous notification to registered applications whenever the configuration changes. You can choose to have the notifications sent to the syslog.

Note

Only CLI or HTTP changes are logged.

Using Command History

The software provides a history or record of commands that you have entered. The command history feature is particularly useful for recalling long or complex commands or entries, including access lists. You can customize this feature to suit your needs as described in these sections:

- Changing the Command History Buffer Size, page 1-5 (optional)
- Recalling Commands, page 1-6 (optional)
- Disabling the Command History Feature, page 1-6 (optional)

Changing the Command History Buffer Size

By default, the switch records ten command lines in its history buffer. You can alter this number for a current terminal session or for all sessions on a particular line. These procedures are optional.

Beginning in privileged EXEC mode, enter this command to change the number of command lines that the switch records during the current terminal session:

```
Switch# terminal history [size number-of-lines]
```

The range is from 0 to 256.

Beginning in line configuration mode, enter this command to configure the number of command lines the switch records for all sessions on a particular line:

```
Switch(config-line)# history [size number-of-lines]
```

The range is from 0 to 256.
Recalling Commands

To recall commands from the history buffer, perform one of the actions listed in Table 1-4. These actions are optional.

<table>
<thead>
<tr>
<th>Table 1-4 Recalling Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
</tr>
<tr>
<td>Press Ctrl-P or the up arrow key.</td>
</tr>
<tr>
<td>Press Ctrl-N or the down arrow key.</td>
</tr>
<tr>
<td>show history</td>
</tr>
</tbody>
</table>

1. The arrow keys function only on ANSI-compatible terminals such as VT100s.

Disabling the Command History Feature

The command history feature is automatically enabled. You can disable it for the current terminal session or for the command line. These procedures are optional.

To disable the feature during the current terminal session, enter the terminal no history privileged EXEC command.

To disable command history for the line, enter the no history line configuration command.

Using Editing Features

This section describes the editing features that can help you manipulate the command line. It contains these sections:

- Enabling and Disabling Editing Features, page 1-6 (optional)
- Editing Commands through Keystrokes, page 1-7 (optional)
- Editing Command Lines that Wrap, page 1-8 (optional)

Enabling and Disabling Editing Features

Although enhanced editing mode is automatically enabled, you can disable it, re-enable it, or configure a specific line to have enhanced editing. These procedures are optional.

To globally disable enhanced editing mode, enter this command in line configuration mode:

```
Switch (config-line)# no editing
```
To re-enable the enhanced editing mode for the current terminal session, enter this command in privileged EXEC mode:

\[
\text{Switch}\# \text{ terminal editing}
\]

To reconfigure a specific line to have enhanced editing mode, enter this command in line configuration mode:

\[
\text{Switch(config-line)}\# \text{ editing}
\]

Editing Commands through Keystrokes

Table 1-5 shows the keystrokes that you need to edit command lines. These keystrokes are optional.

<table>
<thead>
<tr>
<th>Capability</th>
<th>Keystroke</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move around the command line to make</td>
<td>Press Ctrl-B, or press the</td>
<td>Move the cursor back one character.</td>
</tr>
<tr>
<td>changes or corrections.</td>
<td>left arrow key.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-F, or press the</td>
<td>Move the cursor forward one character.</td>
</tr>
<tr>
<td></td>
<td>right arrow key.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-A.</td>
<td>Move the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-E.</td>
<td>Move the cursor to the end of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Esc B.</td>
<td>Move the cursor back one word.</td>
</tr>
<tr>
<td></td>
<td>Press Esc F.</td>
<td>Move the cursor forward one word.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-T.</td>
<td>Transpose the character to the left of the cursor with the character</td>
</tr>
<tr>
<td></td>
<td></td>
<td>located at the cursor.</td>
</tr>
<tr>
<td>Recall commands from the buffer and</td>
<td>Press Ctrl-Y.</td>
<td>Recall the most recent entry in the buffer.</td>
</tr>
<tr>
<td>paste them in the command line. The</td>
<td></td>
<td></td>
</tr>
<tr>
<td>switch provides a buffer with the last</td>
<td>Press Esc Y.</td>
<td>Recall the next buffer entry. The buffer contains only the last 10</td>
</tr>
<tr>
<td>ten items that you deleted.</td>
<td></td>
<td>items that you have deleted or cut. If you press Esc Y more than ten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>times, you cycle to the first buffer entry.</td>
</tr>
<tr>
<td>Delete entries if you make a mistake</td>
<td>Press the Delete or</td>
<td>Erase the character to the left of the cursor.</td>
</tr>
<tr>
<td>or change your mind.</td>
<td>Backspace key.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-D.</td>
<td>Delete the character at the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-K.</td>
<td>Delete all characters from the cursor to the end of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-U or Ctrl-X.</td>
<td>Delete all characters from the cursor to the beginning of the command</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-W.</td>
<td>Delete the word to the left of the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Esc D.</td>
<td>Delete from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Capitalize or lowercase words or</td>
<td>Press Esc C.</td>
<td>Capitalize at the cursor.</td>
</tr>
<tr>
<td>capitalize a set of letters.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using Editing Features

Editing Command Lines that Wrap

You can use a wraparound feature for commands that extend beyond a single line on the screen. When the cursor reaches the right margin, the command line shifts ten spaces to the left. You cannot see the first ten characters of the line, but you can scroll back and check the syntax at the beginning of the command. The keystroke actions are optional.

To scroll back to the beginning of the command entry, press **Ctrl-B** or the left arrow key repeatedly. You can also press **Ctrl-A** to immediately move to the beginning of the line.

Note

The arrow keys function only on ANSI-compatible terminals such as VT100s.

In this example, the access-list global configuration command entry extends beyond one line. When the cursor first reaches the end of the line, the line is shifted ten spaces to the left and redisplayed. The dollar sign ($) shows that the line has been scrolled to the left. Each time the cursor reaches the end of the line, the line is again shifted ten spaces to the left.

```
Switch(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1
Switch(config)# $ 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1 20 255.255.255.0
Switch(config)# $t tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq
Switch(config)# $108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq 45
```
After you complete the entry, press Ctrl-A to check the complete syntax before pressing the Return key to execute the command. The dollar sign ($) appears at the end of the line to show that the line has been scrolled to the right:

```
Switch(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1$
```

The software assumes you have a terminal screen that is 80 columns wide. If you have a width other than that, use the terminal width privileged EXEC command to set the width of your terminal.

Use line wrapping with the command history feature to recall and modify previous complex command entries. For information about recalling previous command entries, see the “Editing Commands through Keystrokes” section on page 1-7.

Searching and Filtering Output of show and more Commands

You can search and filter the output for show and more commands. This is useful when you need to sort through large amounts of output or if you want to exclude output that you do not need to see. Using these commands is optional.

To use this functionality, enter a show or more command followed by the pipe character (|), one of the keywords begin, include, or exclude, and an expression that you want to search for or filter out:

```
command | {begin | include | exclude} regular-expression
```

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output are not displayed, but the lines that contain Output appear.

This example shows how to include in the output display only lines where the expression protocol appears:

```
Switch# show interfaces | include protocol
Vlan1 is up, line protocol is up
Vlan10 is up, line protocol is down
GigabitEthernet1/0/1 is up, line protocol is down
GigabitEthernet1/0/2 is up, line protocol is up
```

Accessing the CLI

You can access the CLI through a console connection, through Telnet, or by using the browser.

You manage the switch stack and the stack member interfaces through the stack master. You cannot manage stack members on an individual switch basis. You can connect to the stack master through the console port or the Ethernet management port of one or more stack members. Be careful with using multiple CLI sessions to the stack master. Commands you enter in one session are not displayed in the other sessions. Therefore, it is possible to lose track of the session from which you entered commands.

Note

We recommend using one CLI session when managing the switch stack.

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation. For more information about interface notations, see the “Using Interface Configuration Mode” section on page 1-19.
To debug a specific stack member, you can access it from the stack master by using the `session stack-member-number` privileged EXEC command. The stack member number is appended to the system prompt. For example, `Switch-2#` is the prompt in privileged EXEC mode for stack member 2, and where the system prompt for the stack master is `Switch`. Only the `show` and `debug` commands are available in a CLI session to a specific stack member.

Accessing the CLI through a Console Connection or through Telnet

Before you can access the CLI, you must connect a terminal or a PC to the switch console or connect a PC to the Ethernet management port and then power on the switch, as described in the hardware installation guide that shipped with your switch. Then, to understand the boot process and the options available for assigning IP information, see Chapter 1, “Assigning the Switch IP Address and Default Gateway.”

If your switch is already configured, you can access the CLI through a local console connection or through a remote Telnet session, but your switch must first be configured for this type of access. For more information, see the “Setting a Telnet Password for a Terminal Line” section on page 1-6.

You can use one of these methods to establish a connection with the switch:

- Connect the switch console port to a management station or dial-up modem, or connect the Ethernet management port to a PC. For information about connecting to the console or Ethernet management port, see the switch hardware installation guide.
- Use any Telnet TCP/IP or encrypted Secure Shell (SSH) package from a remote management station. The switch must have network connectivity with the Telnet or SSH client, and the switch must have an enable secret password configured.

For information about configuring the switch for Telnet access, see the “Setting a Telnet Password for a Terminal Line” section on page 1-6. The switch supports up to 16 simultaneous Telnet sessions. Changes made by one Telnet user are reflected in all other Telnet sessions.

For information about configuring the switch for SSH, see the “Configuring the Switch for Secure Shell” section on page 1-44. The switch supports up to five simultaneous secure SSH sessions.

After you connect through the console port, through the Ethernet management port, through a Telnet session or through an SSH session, the user EXEC prompt appears on the management station.
Configuring Cisco IOS Configuration Engine

This chapter describes how to configure the feature on the Catalyst 3750-E and 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note
For complete configuration information for the Cisco Configuration Engine

For complete syntax and usage information for the commands used in this chapter, go to the Cisco IOS Network Management Command Reference, Release 12.4

This chapter consists of these sections:

- Understanding Cisco Configuration Engine Software, page 1-1
- Understanding Cisco IOS Agents, page 1-5
- Configuring Cisco IOS Agents, page 1-6
- Displaying CNS Configuration, page 1-14

Understanding Cisco Configuration Engine Software

The Cisco Configuration Engine is network management software that acts as a configuration service for automating the deployment and management of network devices and services (see Figure 1-1). Each Configuration Engine manages a group of Cisco devices (switches and routers) and the services that they deliver, storing their configurations and delivering them as needed. The Configuration Engine automates initial configurations and configuration updates by generating device-specific configuration changes, sending them to the device, executing the configuration change, and logging the results.

The Configuration Engine supports standalone and server modes and has these CNS components:

- Configuration service (web server, file manager, and namespace mapping server)
- Event service (event gateway)
- Data service directory (data models and schema)

In standalone mode, the Configuration Engine supports an embedded Directory Service. In this mode, no external directory or other data store is required. In server mode, the Configuration Engine supports the use of a user-defined external directory.
These sections contain this conceptual information:

- Configuration Service, page 1-2
- Event Service, page 1-3
- What You Should Know About the CNS IDs and Device Hostnames, page 1-3

Configuration Service

The Configuration Service is the core component of the Cisco Configuration Engine. It consists of a configuration server that works with Cisco IOS CNS agents on the switch. The Configuration Service delivers device and service configurations to the switch for initial configuration and mass reconfiguration by logical groups. Switches receive their initial configuration from the Configuration Service when they start up on the network for the first time.

The Configuration Service uses the CNS Event Service to send and receive configuration change events and to send success and failure notifications.

The configuration server is a web server that uses configuration templates and the device-specific configuration information stored in the embedded (standalone mode) or remote (server mode) directory. Configuration templates are text files containing static configuration information in the form of CLI commands. In the templates, variables are specified by using Lightweight Directory Access Protocol (LDAP) URLs that reference the device-specific configuration information stored in a directory.

The Cisco IOS agent can perform a syntax check on received configuration files and publish events to show the success or failure of the syntax check. The configuration agent can either apply configurations immediately or delay the application until receipt of a synchronization event from the configuration server.
Event Service

The Configuration Engine uses the Event Service for receipt and generation of configuration events. The event agent is on the switch and facilitates the communication between the switch and the event gateway on the Configuration Engine.

The Event Service is a highly capable publish-and-subscribe communication method. The Event Service uses subject-based addressing to send messages to their destinations. Subject-based addressing conventions define a simple, uniform namespace for messages and their destinations.

NameSpace Mapper

The Configuration Engine includes the NameSpace Mapper (NSM) that provides a lookup service for managing logical groups of devices based on application, device or group ID, and event.

Cisco IOS devices recognize only event subject-names that match those configured in Cisco IOS software; for example, cisco.cns.config.load. You can use the namespace mapping service to designate events by using any desired naming convention. When you have populated your data store with your subject names, NSM changes your event subject-name strings to those known by Cisco IOS.

For a subscriber, when given a unique device ID and event, the namespace mapping service returns a set of events to which to subscribe. Similarly, for a publisher, when given a unique group ID, device ID, and event, the mapping service returns a set of events on which to publish.

What You Should Know About the CNS IDs and Device Hostnames

The Configuration Engine assumes that a unique identifier is associated with each configured switch. This unique identifier can take on multiple synonyms, where each synonym is unique within a particular namespace. The event service uses namespace content for subject-based addressing of messages.

The Configuration Engine intersects two namespaces, one for the event bus and the other for the configuration server. Within the scope of the configuration server namespace, the term ConfigID is the unique identifier for a device. Within the scope of the event bus namespace, the term DeviceID is the CNS unique identifier for a device.

Because the Configuration Engine uses both the event bus and the configuration server to provide configurations to devices, you must define both ConfigID and Device ID for each configured switch.

Within the scope of a single instance of the configuration server, no two configured switches can share the same value for ConfigID. Within the scope of a single instance of the event bus, no two configured switches can share the same value for DeviceID.

ConfigID

Each configured switch has a unique ConfigID, which serves as the key into the Configuration Engine directory for the corresponding set of switch CLI attributes. The ConfigID defined on the switch must match the ConfigID for the corresponding switch definition on the Configuration Engine.

The ConfigID is fixed at startup time and cannot be changed until the device restarts, even if the switch hostname is reconfigured.
DeviceID

Each configured switch participating on the event bus has a unique DeviceID, which is analogous to the switch source address so that the switch can be targeted as a specific destination on the bus. All switches configured with the `cns config partial` global configuration command must access the event bus. Therefore, the DeviceID, as originated on the switch, must match the DeviceID of the corresponding switch definition in the Configuration Engine.

The origin of the DeviceID is defined by the Cisco IOS hostname of the switch. However, the DeviceID variable and its usage reside within the event gateway adjacent to the switch.

The logical Cisco IOS termination point on the event bus is embedded in the event gateway, which in turn functions as a proxy on behalf of the switch. The event gateway represents the switch and its corresponding DeviceID to the event bus.

The switch declares its hostname to the event gateway immediately after the successful connection to the event gateway. The event gateway couples the DeviceID value to the Cisco IOS hostname each time this connection is established. The event gateway caches this DeviceID value for the duration of its connection to the switch.

Hostname and DeviceID

The DeviceID is fixed at the time of the connection to the event gateway and does not change even when the switch hostname is reconfigured.

When changing the switch hostname on the switch, the only way to refresh the DeviceID is to break the connection between the switch and the event gateway. Enter the `no cns event` global configuration command followed by the `cns event` global configuration command.

When the connection is re-established, the switch sends its modified hostname to the event gateway. The event gateway redefines the DeviceID to the new value.

⚠️ Caution

When using the Configuration Engine user interface, you must first set the DeviceID field to the hostname value that the switch acquires after—not before—you use the `cns config initial` global configuration command at the switch. Otherwise, subsequent `cns config partial` global configuration command operations malfunction.

Using Hostname, DeviceID, and ConfigID

In standalone mode, when a hostname value is set for a switch, the configuration server uses the hostname as the DeviceID when an event is sent on hostname. If the hostname has not been set, the event is sent on the `cn=<value>` of the device.

In server mode, the hostname is not used. In this mode, the unique DeviceID attribute is always used for sending an event on the bus. If this attribute is not set, you cannot update the switch.

These and other associated attributes (tag value pairs) are set when you run `Setup` on the Configuration Engine.

⚠️ Note

For more information about running the setup program on the Configuration Engine, see the Configuration Engine setup and configuration guide

Understanding Cisco IOS Agents

The CNS event agent feature allows the switch to publish and subscribe to events on the event bus and works with the Cisco IOS agent. The Cisco IOS agent feature supports the switch by providing these features:

- Initial Configuration, page 1-5
- Incremental (Partial) Configuration, page 1-6
- Synchronized Configuration, page 1-6

Initial Configuration

When the switch first comes up, it attempts to get an IP address by broadcasting a DHCP request on the network. Assuming there is no DHCP server on the subnet, the distribution switch acts as a DHCP relay agent and forwards the request to the DHCP server. Upon receiving the request, the DHCP server assigns an IP address to the new switch and includes the TFTP server IP address, the path to the bootstrap configuration file, and the default gateway IP address in a unicast reply to the DHCP relay agent. The DHCP relay agent forwards the reply to the switch.

The switch automatically configures the assigned IP address on interface VLAN 1 (the default) and downloads the bootstrap configuration file from the TFTP server. Upon successful download of the bootstrap configuration file, the switch loads the file in its running configuration.

The Cisco IOS agents initiate communication with the Configuration Engine by using the appropriate ConfigID and EventID. The Configuration Engine maps the Config ID to a template and downloads the full configuration file to the switch.

Figure 1-2 shows a sample network configuration for retrieving the initial bootstrap configuration file by using DHCP-based autoconfiguration.

Figure 1-2 Initial Configuration Overview
Incremental (Partial) Configuration

After the network is running, new services can be added by using the Cisco IOS agent. Incremental (partial) configurations can be sent to the switch. The actual configuration can be sent as an event payload by way of the event gateway (push operation) or as a signal event that triggers the switch to initiate a pull operation.

The switch can check the syntax of the configuration before applying it. If the syntax is correct, the switch applies the incremental configuration and publishes an event that signals success to the configuration server. If the switch does not apply the incremental configuration, it publishes an event showing an error status. When the switch has applied the incremental configuration, it can write it to NVRAM or wait until signaled to do so.

Synchronized Configuration

When the switch receives a configuration, it can defer application of the configuration upon receipt of a write-signal event. The write-signal event tells the switch not to save the updated configuration into its NVRAM. The switch uses the updated configuration as its running configuration. This ensures that the switch configuration is synchronized with other network activities before saving the configuration in NVRAM for use at the next reboot.

Configuring Cisco IOS Agents

The Cisco IOS agents embedded in the switch Cisco IOS software allow the switch to be connected and automatically configured as described in the “Enabling Automated CNS Configuration” section on page 1-6. If you want to change the configuration or install a custom configuration, see these sections for instructions:

- Enabling the CNS Event Agent, page 1-8
- Enabling the Cisco IOS CNS Agent, page 1-9

Enabling Automated CNS Configuration

To enable automated CNS configuration of the switch, you must first complete the prerequisites in Table 1-1. When you complete them, power on the switch. At the setup prompt, do nothing: The switch begins the initial configuration as described in the “Initial Configuration” section on page 1-5. When the full configuration file is loaded on your switch, you need to do nothing else.
Table 1-1 Prerequisites for Enabling Automatic Configuration

<table>
<thead>
<tr>
<th>Device</th>
<th>Required Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access switch</td>
<td>Factory default (no configuration file)</td>
</tr>
<tr>
<td>Distribution switch</td>
<td>- IP helper address</td>
</tr>
<tr>
<td></td>
<td>- Enable DHCP relay agent</td>
</tr>
<tr>
<td></td>
<td>- IP routing (if used as default gateway)</td>
</tr>
<tr>
<td>DHCP server</td>
<td>- IP address assignment</td>
</tr>
<tr>
<td></td>
<td>- TFTP server IP address</td>
</tr>
<tr>
<td></td>
<td>- Path to bootstrap configuration file on the TFTP server</td>
</tr>
<tr>
<td></td>
<td>- Default gateway IP address</td>
</tr>
<tr>
<td>TFTP server</td>
<td>- A bootstrap configuration file that includes the CNS configuration commands that enable the switch to communicate with the Configuration Engine</td>
</tr>
<tr>
<td></td>
<td>- The switch configured to use either the switch MAC address or the serial number (instead of the default hostname) to generate the ConfigID and EventID</td>
</tr>
<tr>
<td></td>
<td>- The CNS event agent configured to push the configuration file to the switch</td>
</tr>
<tr>
<td>CNS Configuration Engine</td>
<td>One or more templates for each type of device, with the ConfigID of the device mapped to the template.</td>
</tr>
</tbody>
</table>

Note

Enabling the CNS Event Agent

Note
You must enable the CNS event agent on the switch before you enable the CNS configuration agent.

Beginning in privileged EXEC mode, follow these steps to enable the CNS event agent on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **cns event** {hostname \| ip-address} [port-number] [backup] [failover-time seconds] [keepalive seconds retry-count] [reconnect time] [source ip-address] | Enable the event agent, and enter the gateway parameters.
 - For {hostname \| ip-address}, enter either the hostname or the IP address of the event gateway.
 - (Optional) For port number, enter the port number for the event gateway. The default port number is 11011.
 - (Optional) Enter backup to show that this is the backup gateway. (If omitted, this is the primary gateway.)
 - (Optional) For failover-time seconds, enter how long the switch waits for the primary gateway route after the route to the backup gateway is established.
 - (Optional) For keepalive seconds, enter how often the switch sends keepalive messages. For retry-count, enter the number of unanswered keepalive messages that the switch sends before the connection is terminated. The default for each is 0.
 - (Optional) For reconnect time, enter the maximum time interval that the switch waits before trying to reconnect to the event gateway.
 - (Optional) For source ip-address, enter the source IP address of this device.
 Note Though visible in the command-line help string, the encrypt and the clock-timeout time keywords are not supported. |
| end | Return to privileged EXEC mode. |
| show cns event connections | Verify information about the event agent. |
| show running-config | Verify your entries. |
| copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable the CNS event agent, use the **no cns event** {ip-address \| hostname} global configuration command.

This example shows how to enable the CNS event agent, set the IP address gateway to 10.180.1.27, set 120 seconds as the keepalive interval, and set 10 as the retry count.

```
Switch(config)# cns event 10.180.1.27 keepalive 120 retry 10
```
Enabling the Cisco IOS CNS Agent

After enabling the CNS event agent, start the Cisco IOS CNS agent on the switch. You can enable the Cisco IOS agent with these commands:

- The `cns config initial` global configuration command enables the Cisco IOS agent and initiates an initial configuration on the switch.
- The `cns config partial` global configuration command enables the Cisco IOS agent and initiates a partial configuration on the switch. You can then use the Configuration Engine to remotely send incremental configurations to the switch.

Enabling an Initial Configuration

Beginning in privileged EXEC mode, follow these steps to enable the CNS configuration agent and initiate an initial configuration on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>cns template connect name</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>cli config-text</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Repeat Steps 2 to 3 to configure another CNS connect template.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>cns connect name [retries number] [retry-interval seconds] [sleep seconds] [timeout seconds]</code></td>
</tr>
</tbody>
</table>

Enter CNS connect configuration mode, specify the name of the CNS connect profile, and define the profile parameters. The switch uses the CNS connect profile to connect to the Configuration Engine.

- Enter the name of the CNS connect profile.
- (Optional) For `retries number`, enter the number of connection retries. The range is 1 to 30. The default is 3.
- (Optional) For `retry-interval seconds`, enter the interval between successive connection attempts to the Configuration Engine. The range is 1 to 40 seconds. The default is 10 seconds.
- (Optional) For `sleep seconds`, enter the amount of time before which the first connection attempt occurs. The range is 0 to 250 seconds. The default is 0.
- (Optional) For `timeout seconds`, enter the amount of time after which the connection attempts end. The range is 10 to 2000 seconds. The default is 120.
Command

Step 7
```
discover {controller controller-type | dlci [subinterface subinterface-number] | interface [interface-type] | line line-type}
```

Purpose
Specify the interface parameters in the CNS connect profile.
- For `controller controller-type`, enter the controller type.
- For `dlci`, enter the active data-link connection identifiers (DLCIs).
 (Optional) For `subinterface subinterface-number`, specify the point-to-point subinterface number that is used to search for active DLCIs.
- For `interface [interface-type]`, enter the type of interface.
- For `line line-type`, enter the line type.

Step 8
```
template name [ ... name]
```

Specify the list of CNS connect templates in the CNS connect profile to be applied to the switch configuration. You can specify more than one template.

Step 9
```
extit
```
Repeat Steps 7 to 8 to specify more interface parameters and CNS connect templates in the CNS connect profile.

Step 10
```
extit
```
Return to global configuration mode.

Step 11
```
hostname name
```
Enter the hostname for the switch.

Step 12
```
ip route network-number
```
(Optional) Establish a static route to the Configuration Engine whose IP address is `network-number`.
Command

Step 13

```
cns id interface num [dns-reverse | ipaddress | mac-address] [event] [image]
```

or

```
cns id {hardware-serial | hostname | string string | udi} [event] [image]
```

Purpose

(Optional) Set the unique EventID or ConfigID used by the Configuration Engine.

- For `interface num`, enter the type of interface—for example, ethernet, group-async, loopback, or virtual-template. This setting specifies from which interface the IP or MAC address should be retrieved to define the unique ID.

- For `{dns-reverse | ipaddress | mac-address}`, enter `dns-reverse` to retrieve the hostname and assign it as the unique ID, enter `ipaddress` to use the IP address, or enter `mac-address` to use the MAC address as the unique ID.

- (Optional) Enter `event` to set the ID to be the event-id value used to identify the switch.

- (Optional) Enter `image` to set the ID to be the image-id value used to identify the switch.

Note
If both the `event` and `image` keywords are omitted, the image-id value is used to identify the switch.

- For `{hardware-serial | hostname | string string | udi}`, enter `hardware-serial` to set the switch serial number as the unique ID, enter `hostname` (the default) to select the switch hostname as the unique ID, enter an arbitrary text string for `string string` as the unique ID, or enter `udi` to set the unique device identifier (UDI) as the unique ID.
Configuring Cisco IOS Agents

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 14** | **cns config initial \{hostname | ip-address\} [port-number] [event] [no-persist] [page page] [source ip-address] [syntax-check]** | Enable the Cisco IOS agent, and initiate an initial configuration.
- For \{hostname | ip-address\}, enter the hostname or the IP address of the configuration server.
- (Optional) For port-number, enter the port number of the configuration server. The default port number is 80.
- (Optional) Enable event for configuration success, failure, or warning messages when the configuration is finished.
- (Optional) Enable no-persist to suppress the automatic writing to NVRAM of the configuration pulled as a result of entering the cns config initial global configuration command. If the no-persist keyword is not entered, using the cns config initial command causes the resultant configuration to be automatically written to NVRAM.
- (Optional) For page page, enter the web page of the initial configuration. The default is /Config/config/asp.
- (Optional) Enter source ip-address to use for source IP address.
- (Optional) Enable syntax-check to check the syntax when this parameter is entered.

Note Though visible in the command-line help string, the encrypt, status url, and inventory keywords are not supported. |

<table>
<thead>
<tr>
<th>Step 15</th>
<th>end</th>
<th>Return to privileged EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 16</td>
<td>show cns config connections</td>
<td>Verify information about the configuration agent.</td>
</tr>
<tr>
<td>Step 17</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

To disable the CNS Cisco IOS agent, use the **no cns config initial \{ip-address | hostname\}** global configuration command.

This example shows how to configure an initial configuration on a remote switch when the switch configuration is unknown (the CNS Zero Touch feature).

```
Switch(config)# cns template connect template-dhcp
Switch(config-tmpl-conn)# cli ip address dhcp
Switch(config-tmpl-conn)# exit
Switch(config)# cns template connect ip-route
Switch(config-tmpl-conn)# cli ip route 0.0.0.0 0.0.0.0 ${next-hop}
Switch(config-tmpl-conn)# exit
Switch(config)# cns connect dhcp
Switch(config-cns-conn)# discover interface gigabitethernet
Switch(config-cns-conn)# template template-dhcp
Switch(config-cns-conn)# template ip-route
Switch(config-cns-conn)# exit
Switch(config)# hostname RemoteSwitch
RemoteSwitch(config)# cns config initial 10.1.1.1 no-persist
```
This example shows how to configure an initial configuration on a remote switch when the switch IP address is known. The Configuration Engine IP address is 172.28.129.22.

```
Switch(config)# cns template connect template-dhcp
Switch(config-tmpl-conn)# cli ip address dhcp
Switch(config-tmpl-conn)# exit
Switch(config)# cns template connect ip-route
Switch(config-tmpl-conn)# cli ip route 0.0.0.0 0.0.0.0 $(next-hop)
Switch(config-tmpl-conn)# exit
Switch(config)# cns connect dhcp
Switch(config-cns-conn)# discover interface gigabitethernet
Switch(config-cns-conn)# template template-dhcp
Switch(config-cns-conn)# template ip-route
Switch(config-cns-conn)# exit
Switch(config)# hostname RemoteSwitch
RemoteSwitch(config)# ip route 172.28.129.22 255.255.255.255 11.11.11.1
RemoteSwitch(config)# cns id ethernet 0 ipaddress
RemoteSwitch(config)# cns config initial 172.28.129.22 no-persist
```

Enabling a Partial Configuration

Beginning in privileged EXEC mode, follow these steps to enable the Cisco IOS agent and to initiate a partial configuration on the switch:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>cns config partial [ip-address</td>
<td>hostname] [port-number] [source ip-address]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For [ip-address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For port-number, enter the port number of the configuration server. The default port number is 80.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Enter source ip-address to use for the source IP address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Though visible in the command-line help string, the encrypt keyword is not supported.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show cns config stats</td>
<td>Verify information about the configuration agent.</td>
</tr>
<tr>
<td></td>
<td>or show cns config outstanding</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the Cisco IOS agent, use the no cns config partial [ip-address | hostname] global configuration command. To cancel a partial configuration, use the cns config cancel privileged EXEC command.
Displaying CNS Configuration

You can use the privileged EXEC commands in Table 1-2 to display CNS configuration information.

Table 1-2 Displaying CNS Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cns config connections</td>
<td>Displays the status of the CNS Cisco IOS agent connections.</td>
</tr>
<tr>
<td>show cns config outstanding</td>
<td>Displays information about incremental (partial) CNS configurations that have started but are not yet completed.</td>
</tr>
<tr>
<td>show cns config stats</td>
<td>Displays statistics about the Cisco IOS agent.</td>
</tr>
<tr>
<td>show cns event connections</td>
<td>Displays the status of the CNS event agent connections.</td>
</tr>
<tr>
<td>show cns event stats</td>
<td>Displays statistics about the CNS event agent.</td>
</tr>
<tr>
<td>show cns event subject</td>
<td>Displays a list of event agent subjects that are subscribed to by applications.</td>
</tr>
</tbody>
</table>
CHAPTER 1

Assigning the Switch IP Address and Default Gateway

This chapter describes how to create the initial switch configuration (for example, assigning the IP address and default gateway information) by using a variety of automatic and manual methods. It also describes how to modify the switch startup configuration. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.4.

This chapter consists of these sections:

- Understanding the Boot Process, page 1-1
- Assigning Switch Information, page 1-2
- Checking and Saving the Running Configuration, page 1-16
- Modifying the Startup Configuration, page 1-18
- Scheduling a Reload of the Software Image, page 1-23
- Boot Loader Upgrade and Image Verification for the FIPS Mode of Operation, page 1-25

Note

Information in this chapter about configuring IP addresses and DHCP is specific to IP Version 4 (IPv4). If you plan to enable IP Version 6 (IPv6) forwarding on your switch, see Chapter 1, “Configuring IPv6 Unicast Routing” for information specific to IPv6 address format and configuration. To enable IPv6, the stack or switch must be running the IP services feature set.

Understanding the Boot Process

To start your switch, you need to follow the procedures in the hardware installation guide for installing and powering on the switch and setting up the initial switch configuration (IP address, subnet mask, default gateway, secret and Telnet passwords, and so forth).
The normal boot process involves the operation of the boot loader software and includes these activities:

- Performs low-level CPU initialization. It initializes the CPU registers, which control where physical memory is mapped, its quantity, its speed, and so forth.
- Performs power-on self-test (POST) for the CPU subsystem. It tests the CPU DRAM and the portion of the flash device that makes up the flash file system.
- Initializes the flash file system on the system board.
- Loads a default operating system software image into memory and boots up the switch.

The boot loader provides access to the flash file system before the operating system is loaded. Normally, the boot loader is used only to load, uncompress, and start the operating system. After the boot loader gives the operating system control of the CPU, the boot loader is not active until the next system reset or power-on.

The boot loader also provides trap-door access into the system if the operating system has problems serious enough that it cannot be used. The trap-door mechanism provides enough access to the system so that if it is necessary, you can format the flash file system, reinstall the operating system software image by using the Xmodem Protocol, recover from a lost or forgotten password, and finally restart the operating system. For more information, see the “Recovering from a Software Failure” section on page 1-2 and the “Recovering from a Lost or Forgotten Password” section on page 1-3.

Note

You can disable password recovery. For more information, see the “Disabling Password Recovery” section on page 1-5.

Before you can assign switch information, make sure you have connected a PC or terminal to the console port or a PC to the Ethernet management port, and make sure you have configured the PC or terminal-emulation software baud rate and character format to match these of the switch console port:

- Baud rate default is 9600.
- Data bits default is 8.

Note

If the data bits option is set to 8, set the parity option to none.

- Stop bits default is 1.
- Parity settings default is none.

Assigning Switch Information

You can assign IP information through the switch setup program, through a DHCP server, or manually. Use the switch setup program if you want to be prompted for specific IP information. With this program, you can also configure a hostname and an enable secret password. It gives you the option of assigning a Telnet password (to provide security during remote management) and configuring your switch as a command or member switch of a cluster or as a standalone switch. For more information about the setup program, see the hardware installation guide.

The switch stack is managed through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can still manage the stack through the same IP address even if you remove the stack master or any other stack member from the stack, provided there is IP connectivity.
Chapter 1 Assigning the Switch IP Address and Default Gateway

Assigning Switch Information

Note
Stack members retain their IP address when you remove them from a switch stack. To avoid a conflict by having two devices with the same IP address in your network, change the IP address of the switch that you removed from the switch stack.

Use a DHCP server for centralized control and automatic assignment of IP information after the server is configured.

Note
If you are using DHCP, do not respond to any of the questions in the setup program until the switch receives the dynamically assigned IP address and reads the configuration file.

If you are an experienced user familiar with the switch configuration steps, manually configure the switch. Otherwise, use the setup program described previously.

These sections contain this configuration information:
- Default Switch Information, page 1-3
- Understanding DHCP-Based Autoconfiguration, page 1-3
- Manually Assigning IP Information, page 1-15

Default Switch Information

Table 1-1 shows the default switch information.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address and subnet mask</td>
<td>No IP address or subnet mask are defined.</td>
</tr>
<tr>
<td>Default gateway</td>
<td>No default gateway is defined.</td>
</tr>
<tr>
<td>Enable secret password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Hostname</td>
<td>The factory-assigned default hostname is Switch.</td>
</tr>
<tr>
<td>Telnet password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Cluster command switch functionality</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Cluster name</td>
<td>No cluster name is defined.</td>
</tr>
</tbody>
</table>

Understanding DHCP-Based Autoconfiguration

DHCP provides configuration information to Internet hosts and internetworking devices. This protocol consists of two components: one for delivering configuration parameters from a DHCP server to a device and a mechanism for allocating network addresses to devices. DHCP is built on a client-server model, in which designated DHCP servers allocate network addresses and deliver configuration parameters to dynamically configured devices. The switch can act as both a DHCP client and a DHCP server.

During DHCP-based autoconfiguration, your switch (DHCP client) is automatically configured at startup with IP address information and a configuration file.
With DHCP-based autoconfiguration, no DHCP client-side configuration is needed on your switch. However, you need to configure the DHCP server for various lease options associated with IP addresses. If you are using DHCP to relay the configuration file location on the network, you might also need to configure a Trivial File Transfer Protocol (TFTP) server and a Domain Name System (DNS) server.

We recommend a redundant connection between a switch stack and the DHCP, DNS, and TFTP servers. This is to help ensure that these servers remain accessible in case one of the connected stack members is removed from the switch stack.

The DHCP server for your switch can be on the same LAN or on a different LAN than the switch. If the DHCP server is running on a different LAN, you should configure a DHCP relay device between your switch and the DHCP server. A relay device forwards broadcast traffic between two directly connected LANs. A router does not forward broadcast packets, but it forwards packets based on the destination IP address in the received packet.

DHCP-based autoconfiguration replaces the BOOTP client functionality on your switch.

DHCP Client Request Process

When you boot up your switch, the DHCP client is invoked and requests configuration information from a DHCP server when the configuration file is not present on the switch. If the configuration file is present and the configuration includes the `ip address dhcp` interface configuration command on specific routed interfaces, the DHCP client is invoked and requests the IP address information for those interfaces.

Figure 1-1 shows the sequence of messages that are exchanged between the DHCP client and the DHCP server.

Figure 1-1 DHCP Client and Server Message Exchange

<table>
<thead>
<tr>
<th>Switch A</th>
<th>DHCPDISCOVER (broadcast)</th>
<th>DHCPOFFER (unicast)</th>
<th>DHCPREQUEST (broadcast)</th>
<th>DHCPACK (unicast)</th>
<th>DHCP server</th>
</tr>
</thead>
</table>

The client, Switch A, broadcasts a DHCPDISCOVER message to locate a DHCP server. The DHCP server offers configuration parameters (such as an IP address, subnet mask, gateway IP address, DNS IP address, a lease for the IP address, and so forth) to the client in a DHCPOFFER unicast message.

In a DHCPREQUEST broadcast message, the client returns a formal request for the offered configuration information to the DHCP server. The formal request is broadcast so that all other DHCP servers that received the DHCPDISCOVER broadcast message from the client can reclaim the IP addresses that they offered to the client.

The DHCP server confirms that the IP address has been allocated to the client by returning a DHCPACK unicast message to the client. With this message, the client and server are bound, and the client uses configuration information received from the server. The amount of information the switch receives depends on how you configure the DHCP server. For more information, see the “Configuring the TFTP Server” section on page 1-7.

If the configuration parameters sent to the client in the DHCPOFFER unicast message are invalid (a configuration error exists), the client returns a DHCPDECLINE broadcast message to the DHCP server.
The DHCP server sends the client a DHCPNAK denial broadcast message, which means that the offered configuration parameters have not been assigned, that an error has occurred during the negotiation of the parameters, or that the client has been slow in responding to the DHCPoffer message (the DHCP server assigned the parameters to another client).

A DHCP client might receive offers from multiple DHCP or BOOTP servers and can accept any of the offers; however, the client usually accepts the first offer it receives. The offer from the DHCP server is not a guarantee that the IP address is allocated to the client; however, the server usually reserves the address until the client has had a chance to formally request the address. If the switch accepts replies from a BOOTP server and configures itself, the switch broadcasts, instead of unicasts, TFTP requests to obtain the switch configuration file.

The DHCP hostname option allows a group of switches to obtain hostnames and a standard configuration from the central management DHCP server. A client (switch) includes in its DHCPDISCOVER message an option 12 field used to request a hostname and other configuration parameters from the DHCP server. The configuration files on all clients are identical except for their DHCP-obtained hostnames.

If a client has a default hostname (the hostname name global configuration command is not configured or the no hostname global configuration command is entered to remove the hostname), the DHCP hostname option is not included in the packet when you enter the ip address dhcp interface configuration command. In this case, if the client receives the DHCP hostname option from the DHCP interaction while acquiring an IP address for an interface, the client accepts the DHCP hostname option and sets the flag to show that the system now has a hostname configured.

Understanding DHCP-based Autoconfiguration and Image Update

You can use the DHCP image upgrade features to configure a DHCP server to download both a new image and a new configuration file to one or more switches in a network. This helps ensure that each new switch added to a network receives the same image and configuration.

There are two types of DHCP image upgrades: DHCP autoconfiguration and DHCP auto-image update.

DHCP Autoconfiguration

DHCP autoconfiguration downloads a configuration file to one or more switches in your network from a DHCP server. The downloaded configuration file becomes the running configuration of the switch. It does not over write the bootup configuration saved in the flash, until you reload the switch.

DHCP Auto-Image Update

You can use DHCP auto-image upgrade with DHCP autoconfiguration to download both a configuration and a new image to one or more switches in your network. The switch (or switches) downloading the new configuration and the new image can be blank (or only have a default factory configuration loaded).

If the new configuration is downloaded to a switch that already has a configuration, the downloaded configuration is appended to the configuration file stored on the switch. (Any existing configuration is not overwritten by the downloaded one.)

To enable a DHCP auto-image update on the switch, the TFTP server where the image and configuration files are located must be configured with the correct option 67 (the configuration filename), option 66 (the DHCP server hostname) option 150 (the TFTP server address), and option 125 (description of the file) settings.
Chapter 1 Assigning the Switch IP Address and Default Gateway

Assigning Switch Information

Note For procedures to configure the switch as a DHCP server, see the “Configuring DHCP Autoconfiguration (Only Configuration File)” section on page 1-11 and the “Configuring DHCP” section of the “IP Addressing and Services” section of the Cisco IOS IP Configuration Guide, Release 12.4.

After you install the switch in your network, the auto-image update feature starts. The downloaded configuration file is saved in the running configuration of the switch, and the new image is downloaded and installed on the switch. When you reboot the switch, the configuration is stored in the saved configuration on the switch.

Limitations and Restrictions

These are the limitations:

- The DHCP-based autoconfiguration with a saved configuration process stops if there is not at least one Layer 3 interface in an up state without an assigned IP address in the network.
- Unless you configure a timeout, the DHCP-based autoconfiguration with a saved configuration feature tries indefinitely to download an IP address.
- The auto-install process stops if a configuration file cannot be downloaded or it the configuration file is corrupted.

Note The configuration file that is downloaded from TFTP is merged with the existing configuration in the running configuration but is not saved in the NVRAM unless you enter the write memory or copy running-configuration startup-configuration privileged EXEC command. Note that if the downloaded configuration is saved to the startup configuration, the feature is not triggered during subsequent system restarts.

Configuring DHCP-Based Autoconfiguration

These sections contain this configuration information:

- DHCP Server Configuration Guidelines, page 1-7
- Configuring the TFTP Server, page 1-7
- Configuring the DNS, page 1-8
- Configuring the Relay Device, page 1-8
- Obtaining Configuration Files, page 1-9
- Example Configuration, page 1-10

Note If your DHCP server is a Cisco device, for additional information about configuring DHCP see the “Configuring DHCP” section of the “IP Addressing and Services” section of the Cisco IOS IP Configuration Guide, Release 12.4.
DHCP Server Configuration Guidelines

Follow these guidelines if you are configuring a device as a DHCP server:

- You should configure the DHCP server with reserved leases that are bound to each switch by the switch hardware address.

- If you want the switch to receive IP address information, you must configure the DHCP server with these lease options:
 - IP address of the client (required)
 - Subnet mask of the client (required)
 - DNS server IP address (optional)
 - Router IP address (default gateway address to be used by the switch) (required)

- If you want the switch to receive the configuration file from a TFTP server, you must configure the DHCP server with these lease options:
 - TFTP server name (required)
 - Boot filename (the name of the configuration file that the client needs) (recommended)
 - Hostname (optional)

- Depending on the settings of the DHCP server, the switch can receive IP address information, the configuration file, or both.

- If you do not configure the DHCP server with the lease options described previously, it replies to client requests with only those parameters that are configured. If the IP address and the subnet mask are not in the reply, the switch is not configured. If the router IP address or the TFTP server name are not found, the switch might send broadcast, instead of unicast, TFTP requests. Unavailability of other lease options does not affect autoconfiguration.

- The switch can act as a DHCP server. By default, the Cisco IOS DHCP server and relay agent features are enabled on your switch but are not configured. These features are not operational. If your DHCP server is a Cisco device, for additional information about configuring DHCP, see the “Configuring DHCP” section of the “IP Addressing and Services” section of the Cisco IOS IP Configuration Guide.

Configuring the TFTP Server

Based on the DHCP server configuration, the switch attempts to download one or more configuration files from the TFTP server. If you configured the DHCP server to respond to the switch with all the options required for IP connectivity to the TFTP server, and if you configured the DHCP server with a TFTP server name, address, and configuration filename, the switch attempts to download the specified configuration file from the specified TFTP server.

If you did not specify the configuration filename, the TFTP server, or if the configuration file could not be downloaded, the switch attempts to download a configuration file by using various combinations of filenames and TFTP server addresses. The files include the specified configuration filename (if any) and these files: network-config, cisconet.cfg, hostname.config, or hostname.cfg, where hostname is the switch’s current hostname. The TFTP server addresses used include the specified TFTP server address (if any) and the broadcast address (255.255.255.255).
For the switch to successfully download a configuration file, the TFTP server must contain one or more configuration files in its base directory. The files can include these files:

- The configuration file named in the DHCP reply (the actual switch configuration file).
- The network-config or the cisconet.cfg file (known as the default configuration files).
- The router-config or the ciscortr.cfg file (These files contain commands common to all switches. Normally, if the DHCP and TFTP servers are properly configured, these files are not accessed.)

If you specify the TFTP server name in the DHCP server-lease database, you must also configure the TFTP server name-to-IP-address mapping in the DNS-server database.

If the TFTP server to be used is on a different LAN from the switch, or if it is to be accessed by the switch through the broadcast address (which occurs if the DHCP server response does not contain all the required information described previously), a relay must be configured to forward the TFTP packets to the TFTP server. For more information, see the “Configuring the Relay Device” section on page 1-8. The preferred solution is to configure the DHCP server with all the required information.

Configuring the DNS

The DHCP server uses the DNS server to resolve the TFTP server name to an IP address. You must configure the TFTP server name-to-IP address map on the DNS server. The TFTP server contains the configuration files for the switch.

You can configure the IP addresses of the DNS servers in the lease database of the DHCP server from where the DHCP replies will retrieve them. You can enter up to two DNS server IP addresses in the lease database.

The DNS server can be on the same or on a different LAN as the switch. If it is on a different LAN, the switch must be able to access it through a router.

Configuring the Relay Device

You must configure a relay device, also referred to as a relay agent, when a switch sends broadcast packets that require a response from a host on a different LAN. Examples of broadcast packets that the switch might send are DHCP, DNS, and in some cases, TFTP packets. You must configure this relay device to forward received broadcast packets on an interface to the destination host.

If the relay device is a Cisco router, enable IP routing (ip routing global configuration command), and configure helper addresses by using the ip helper-address interface configuration command.

For example, in Figure 1-2, configure the router interfaces as follows:

On interface 10.0.0.2:

```plaintext
router(config-if)# ip helper-address 20.0.0.2
router(config-if)# ip helper-address 20.0.0.3
router(config-if)# ip helper-address 20.0.0.4
```

On interface 20.0.0.1

```plaintext
router(config-if)# ip helper-address 10.0.0.1
```

Note

If the switch is acting as the relay device, configure the interface as a routed port. For more information, see the “Routed Ports” section on page 1-4 and the “Configuring Layer 3 Interfaces” section on page 1-38.
Obtaining Configuration Files

Depending on the availability of the IP address and the configuration filename in the DHCP reserved lease, the switch obtains its configuration information in these ways:

- The IP address and the configuration filename is reserved for the switch and provided in the DHCP reply (one-file read method).

 The switch receives its IP address, subnet mask, TFTP server address, and the configuration filename from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the named configuration file from the base directory of the server and upon receipt, it completes its boot up process.

- The IP address and the configuration filename is reserved for the switch, but the TFTP server address is not provided in the DHCP reply (one-file read method).

 The switch receives its IP address, subnet mask, and the configuration filename from the DHCP server. The switch sends a broadcast message to a TFTP server to retrieve the named configuration file from the base directory of the server, and upon receipt, it completes its boot up process.

- Only the IP address is reserved for the switch and provided in the DHCP reply. The configuration filename is not provided (two-file read method).

 The switch receives its IP address, subnet mask, and the TFTP server address from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the network-config or cisconet.cfg default configuration file. (If the network-config file cannot be read, the switch reads the cisconet.cfg file.)

 The default configuration file contains the hostnames-to-IP-address mapping for the switch. The switch fills its host table with the information in the file and obtains its hostname. If the hostname is not found in the file, the switch uses the hostname in the DHCP reply. If the hostname is not specified in the DHCP reply, the switch uses the default Switch as its hostname.

 After obtaining its hostname from the default configuration file or the DHCP reply, the switch reads the configuration file that has the same name as its hostname (hostname-config or hostname.cfg, depending on whether network-config or cisconet.cfg was read earlier) from the TFTP server. If the cisconet.cfg file is read, the filename of the host is truncated to eight characters.

 If the switch cannot read the network-config, cisconet.cfg, or the hostname file, it reads the router-config file. If the switch cannot read the router-config file, it reads the ciscorrr.cfg file.
Note

The switch broadcasts TFTP server requests if the TFTP server is not obtained from the DHCP replies, if all attempts to read the configuration file through unicast transmissions fail, or if the TFTP server name cannot be resolved to an IP address.

Example Configuration

Figure 1-3 shows a sample network for retrieving IP information by using DHCP-based autoconfiguration.

Figure 1-3 DHCP-Based Autoconfiguration Network Example

Table 1-2 shows the configuration of the reserved leases on the DHCP server.

Table 1-2 DHCP Server Configuration

<table>
<thead>
<tr>
<th></th>
<th>Switch A</th>
<th>Switch B</th>
<th>Switch C</th>
<th>Switch D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding key</td>
<td>00e0.9f1e.2001</td>
<td>00e0.9f1e.2002</td>
<td>00e0.9f1e.2003</td>
<td>00e0.9f1e.2004</td>
</tr>
<tr>
<td>Address</td>
<td>10.0.0.21</td>
<td>10.0.0.22</td>
<td>10.0.0.23</td>
<td>10.0.0.24</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Router address</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
</tr>
<tr>
<td>DNS server address</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
</tr>
<tr>
<td>TFTP server name</td>
<td>tftpserver or 10.0.0.3</td>
<td>tftpserver or 10.0.0.3</td>
<td>tftpserver or 10.0.0.3</td>
<td>tftpserver or 10.0.0.3</td>
</tr>
<tr>
<td>Boot filename</td>
<td>switcha-config</td>
<td>switchb-config</td>
<td>switchc-config</td>
<td>switchd-config</td>
</tr>
<tr>
<td>(optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hostname (optional)</td>
<td>switcha</td>
<td>switchb</td>
<td>switchc</td>
<td>switchd</td>
</tr>
</tbody>
</table>

DNS Server Configuration

The DNS server maps the TFTP server name tftpserver to IP address 10.0.0.3.
TFTP Server Configuration (on UNIX)

The TFTP server base directory is set to /tftpserver/work/. This directory contains the network-confg file used in the two-file read method. This file contains the hostname to be assigned to the switch based on its IP address. The base directory also contains a configuration file for each switch (switcha-confg, switchb-confg, and so forth) as shown in this display:

```
prompt> cd /tftpserver/work/
prompt> ls
network-confg
switcha-confg
switchb-confg
switchc-confg
switchd-confg
prompt> cat network-confg
ip host switcha 10.0.0.21
ip host switchb 10.0.0.22
ip host switchc 10.0.0.23
ip host switchd 10.0.0.24
```

DHCP Client Configuration

No configuration file is present on Switch A through Switch D.

Configuration Explanation

In Figure 1-3, Switch A reads its configuration file as follows:

- It obtains its IP address 10.0.0.21 from the DHCP server.
- If no configuration filename is given in the DHCP server reply, Switch A reads the network-confg file from the base directory of the TFTP server.
- It adds the contents of the network-confg file to its host table.
- It reads its host table by indexing its IP address 10.0.0.21 to its hostname (switcha).
- It reads the configuration file that corresponds to its hostname; for example, it reads switch1-confg from the TFTP server.

Switches B through D retrieve their configuration files and IP addresses in the same way.

Configuring the DHCP Auto Configuration and Image Update Features

Using DHCP to download a new image and a new configuration to a switch requires that you configure at least two switches: One switch acts as a DHCP and TFTP server. The client switch is configured to download either a new configuration file or a new configuration file and a new image file.

Configuring DHCP Autoconfiguration (Only Configuration File)

Beginning in privileged EXEC mode, follow these steps to configure DHCP autoconfiguration of the TFTP and DHCP settings on a new switch to download a new configuration file.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip dhcp poolname</td>
<td>Create a name for the DHCP Server address pool, and enter DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>bootfile filename</td>
<td>Specify the name of the configuration file that is used as a boot image.</td>
</tr>
</tbody>
</table>
Assigning Switch Information

Chapter 1 Assigning the Switch IP Address and Default Gateway

Assigning Switch Information

This example shows how to configure a switch as a DHCP server so that it will download a configuration file:

```
Switch# configure terminal
Switch(config)# ip dhcp pool pool1
Switch(config)# ip dhcp pool pool1
Switch(config)# network 10.10.10.0 255.255.255.0
Switch(config)# bootfile config-boot.text
Switch(config)# default-router 10.10.10.1
Switch(config)# option 150 10.10.10.1
Switch(config)# tftp-server flash:config-boot.text
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.10.10.1 255.255.255.0
Switch(config-if)# end
```

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>network network-number mask prefix-length</td>
<td>Specify the subnet network number and mask of the DHCP address pool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note The prefix length specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the network mask of the client. The prefix length must be preceded by a forward slash (/).</td>
</tr>
<tr>
<td>5</td>
<td>default-router address</td>
<td>Specify the IP address of the default router for a DHCP client.</td>
</tr>
<tr>
<td>6</td>
<td>option 150 address</td>
<td>Specify the IP address of the TFTP server.</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>8</td>
<td>tftp-server flash:filename.text</td>
<td>Specify the configuration file on the TFTP server.</td>
</tr>
<tr>
<td>9</td>
<td>interface interface-id</td>
<td>Specify the address of the client that will receive the configuration file.</td>
</tr>
<tr>
<td>10</td>
<td>no switchport</td>
<td>Put the interface into Layer 3 mode.</td>
</tr>
<tr>
<td>11</td>
<td>ip address address mask</td>
<td>Specify the IP address and mask for the interface.</td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>13</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring DHCP Auto-Image Update (Configuration File and Image)

Beginning in privileged EXEC mode, follow these steps to configure DHCP autoconfiguration to configure TFTP and DHCP settings on a new switch to download a new image and a new configuration file.

Note

Before following the steps in this table, you must create a text file (for example, autoinstall_dhcp) that will be uploaded to the switch. In the text file, put the name of the image that you want to download (for example, c3750e-ipservices-mz.122-44.3.SE.tarc3750e-ipservices-mz.122-53.3.SE2.tar). This image must be a tar and not a bin file.
Assigning Switch Information

This example shows how to configure a switch as a DHCP server so it downloads a configuration file:

```bash
Switch# config terminal
Switch(config)# ip dhcp pool pool1
Switch(dhcp-config)# network 10.10.10.0 255.255.255.0
Switch(dhcp-config)# bootfile config-boot.text
Switch(dhcp-config)# default-router 10.10.10.1
Switch(dhcp-config)# option 150 10.10.10.1
Switch(dhcp-config)# option 125 hex 0000.0009.0a05.08661.7574.6f69.6e73.7461.6c6c.5f64.686370
Switch(dhcp-config)# exit
Switch(config)# tftp-server flash:config-boot.text
Switch(config)# tftp-server flash:image_name
Switch(config)# tftp-server flash:bootstrap-config.text
Switch(config)# tftp-server flash: autoinstall_dhcp
Switch(config)# interface gigabitEthernet1/0/4
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.10.10.1 255.255.255.0
Switch(config-if)# end
```

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip dhcp pool name</td>
<td>Create a name for the DHCP server address pool and enter DHCP pool configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>bootfile filename</td>
<td>Specify the name of the file that is used as a boot image.</td>
</tr>
<tr>
<td>4</td>
<td>network network-number mask prefix-length</td>
<td>Specify the subnet network number and mask of the DHCP address pool. Note: The prefix length specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the network mask of the client. The prefix length must be preceded by a forward slash (/).</td>
</tr>
<tr>
<td>5</td>
<td>default-router address</td>
<td>Specify the IP address of the default router for a DHCP client.</td>
</tr>
<tr>
<td>6</td>
<td>option 150 address</td>
<td>Specify the IP address of the TFTP server.</td>
</tr>
<tr>
<td>7</td>
<td>option 125 hex</td>
<td>Specify the path to the text file that describes the path to the image file.</td>
</tr>
<tr>
<td>8</td>
<td>copy tftp flash filename</td>
<td>Upload the text file to the switch.</td>
</tr>
<tr>
<td>9</td>
<td>copy tftp flash imagename.tar</td>
<td>Upload the tar file for the new image to the switch.</td>
</tr>
<tr>
<td>10</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>11</td>
<td>tftp-server flash:config.text</td>
<td>Specify the Cisco IOS configuration file on the TFTP server.</td>
</tr>
<tr>
<td>12</td>
<td>tftp-server flash:imagename.tar</td>
<td>Specify the image name on the TFTP server.</td>
</tr>
<tr>
<td>13</td>
<td>tftp-server flash:filename.text</td>
<td>Specify the text file that contains the name of the image file to download.</td>
</tr>
<tr>
<td>14</td>
<td>interface interface-id</td>
<td>Specify the address of the client that will receive the configuration file.</td>
</tr>
<tr>
<td>15</td>
<td>no switchport</td>
<td>Put the interface into Layer 3 mode.</td>
</tr>
<tr>
<td>16</td>
<td>ip address address mask</td>
<td>Specify the IP address and mask for the interface.</td>
</tr>
<tr>
<td>17</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>18</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring the Client

Beginning in privileged EXEC mode, follow these steps to configure a switch to download a configuration file and new image from a DHCP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>boot host dhcp</td>
</tr>
<tr>
<td>Step 3</td>
<td>boot host retry timeout <code>timeout-value</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>banner config-save ^C <code>warning-message</code> ^C</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show boot</td>
</tr>
</tbody>
</table>

This example uses a Layer 3 SVI interface on VLAN 99 to enable DHCP-based autoconfiguration with a saved configuration:

```
Switch# configure terminal
Switch(config)# boot host dhcp
Switch(config)# boot host retry timeout 300
Switch(config)# banner config-save ^C Caution - Saving Configuration File to NVRAM May Cause You to No longer Automatically Download Configuration Files at Reboot^C
Switch(config)# vlan 99
Switch(config-vlan)# interface vlan 99
Switch(config-if)# no shutdown
Switch(config-if)# end
Switch# show boot
BOOT path-list:
  Config file:          flash:/config.text
  Private Config file:  flash:/private-config.text
   Enable Break:        no
   Manual Boot:         no
  HELPER path-list:
  NVRAM/Config file
    buffer size:    32768
  Timeout for Config Download:    300 seconds
    Config Download via DHCP: enabled (next boot: enabled)
Switch#
```

Note

You should only configure and enable the Layer 3 interface. Do not assign an IP address or DHCP-based autoconfiguration with a saved configuration.
Manually Assigning IP Information

Beginning in privileged EXEC mode, follow these steps to manually assign IP information to multiple switched virtual interfaces (SVIs):

Note
If the switch is running the IP services feature set, you can also manually assign IP information to a port if you first put the port into Layer 3 mode by using the `no switchport` interface configuration command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface vlan vlan-id</td>
<td>Enter interface configuration mode, and enter the VLAN to which the IP information is assigned. The range is 1 to 4094.</td>
</tr>
<tr>
<td>Step 3 ip address ip-address subnet-mask</td>
<td>Enter the IP address and subnet mask.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5 ip default-gateway ip-address</td>
<td>Enter the IP address of the next-hop router interface that is directly connected to the switch where a default gateway is being configured. The default gateway receives IP packets with unresolved destination IP addresses from the switch. Once the default gateway is configured, the switch has connectivity to the remote networks with which a host needs to communicate.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show interfaces vlan vlan-id</td>
<td>Verify the configured IP address.</td>
</tr>
<tr>
<td>Step 8 show ip redirects</td>
<td>Verify the configured default gateway.</td>
</tr>
<tr>
<td>Step 9 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the switch IP address, use the `no ip address` interface configuration command. If you are removing the address through a Telnet session, your connection to the switch will be lost. To remove the default gateway address, use the `no ip default-gateway` global configuration command.

For information on setting the switch system name, protecting access to privileged EXEC commands, and setting time and calendar services, see Chapter 1, “Administering the Switch.”
Checking and Saving the Running Configuration

You can check the configuration settings you entered or changes you made by entering this privileged EXEC command:

```
Switch# show running-config
```

```
Current configuration: 1363 bytes
!
version 12.4
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Stack1
!
enable secret 5 $1$ej9.$DMUvAUoZ0AmvqBEzIxE0
!
_interface gigabitethernet6/0/1
  no switchport
  ip address 172.20.137.50 255.255.255.0
!
_interface gigabitethernet6/0/2
  mvr type source

<output truncated>

...!
_interface VLAN1
  ip address 172.20.137.50 255.255.255.0
  no ip directed-broadcast
  ip default-gateway 172.20.137.1
!
  snmp-server community private RW
  snmp-server community private@es0 RW
  snmp-server community public@es0 RW
  snmp-server chassis-id 0x12
!
end
```

To store the configuration or changes you have made to your startup configuration in flash memory, enter this privileged EXEC command:

```
Switch# copy running-config startup-config
```

```
Destination filename [startup-config]?
Building configuration...
```

This command saves the configuration settings that you made. If you fail to do this, your configuration will be lost the next time you reload the system. To display information stored in the NVRAM section of flash memory, use the `show startup-config` or `more startup-config` privileged EXEC command.

For more information about alternative locations from which to copy the configuration file, see Appendix 1, “Working with the Cisco IOS File System, Configuration Files, and Software Images.”
Configuring the NVRAM Buffer Size

The default NVRAM buffer size is 512 KB. In some cases, the configuration file might be too large to save to NVRAM. Typically, this occurs when you have many switches in a switch stack. You can configure the size of the NVRAM buffer to support larger configuration files. The new NVRAM buffer size is synced to all current and new member switches.

Note
After you configure the NVRAM buffer size, reload the switch or switch stack.

When you add a switch to a stack and the NVRAM size differs, the new switch syncs with the stack and reloads automatically.

Beginning in privileged EXEC mode, follow these steps to configure the NVRAM buffer size:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 boot buffersize size</td>
<td>Configure the NVRAM buffersize in KB. The valid range for size is from 4096 to 1048576.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show boot</td>
<td>Verify the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the NVRAM buffer size:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# boot buffersize 524288
Switch(config)# end
Switch# show boot
BOOT path-list : flash:/config.text
Config file   : flash:/config.text
Private Config file : flash:/private-config.text
Enable Break : no
Manual Boot   : no
HELPER path-list :
Auto upgrade : yes
Auto upgrade path :
NVRAM/Config file
    buffer size: 524288
Timeout for Config Download: 300 seconds
Config Download via DHCP: enabled (next boot: enabled)
Switch#
```
Modifying the Startup Configuration

These sections describe how to modify the switch startup configuration:

- Default Boot Configuration, page 1-18
- Automatically Downloading a Configuration File, page 1-18
- Booting Manually, page 1-19
- Booting a Specific Software Image, page 1-20
- Controlling Environment Variables, page 1-21

See also Appendix 1, “Working with the Cisco IOS File System, Configuration Files, and Software Images,” for information about switch configuration files. See the “Switch Stack Configuration Files” section on page 1-16 for information about switch stack configuration files.

Default Boot Configuration

Table 1-3 shows the default boot configuration.

Table 1-3 Default Boot Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system software image</td>
<td>The switch attempts to automatically boot up the system using information in the BOOT environment variable. If the variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the flash file system. The Cisco IOS image is stored in a directory that has the same name as the image file (excluding the .bin extension). In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory.</td>
</tr>
<tr>
<td>Configuration file</td>
<td>Configured switches use the config.text file stored on the system board in flash memory.</td>
</tr>
<tr>
<td></td>
<td>A new switch has no configuration file.</td>
</tr>
</tbody>
</table>

Automatically Downloading a Configuration File

You can automatically download a configuration file to your switch by using the DHCP-based autoconfiguration feature. For more information, see the “Understanding DHCP-Based Autoconfiguration” section on page 1-3.
Specifying the Filename to Read and Write the System Configuration

By default, the Cisco IOS software uses the file `config.text` to read and write a nonvolatile copy of the system configuration. However, you can specify a different filename, which will be loaded during the next boot cycle.

Note
This command only works properly from a standalone switch.

Beginning in privileged EXEC mode, follow these steps to specify a different configuration filename:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 boot config-file flash:file-url</td>
<td>Specify the configuration file to load during the next boot cycle.</td>
</tr>
<tr>
<td></td>
<td>For <code>file-url</code>, specify the path (directory) and the configuration filename.</td>
</tr>
<tr>
<td></td>
<td>Filenames and directory names are case sensitive.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show boot</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>The <code>boot config-file</code> global configuration command changes the setting of the CONFIG_FILE environment variable.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no boot config-file` global configuration command.

Booting Manually

By default, the switch automatically boots up; however, you can configure it to manually boot up.

Note
This command only works properly from a standalone switch.

Beginning in privileged EXEC mode, follow these steps to configure the switch to manually boot up during the next boot cycle:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 boot manual</td>
<td>Enable the switch to manually boot up during the next boot cycle.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
To disable manual booting, use the `no boot manual` global configuration command.

Booting a Specific Software Image

By default, the switch attempts to automatically boot up the system using information in the BOOT environment variable. If this variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the flash file system. In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory. However, you can specify a specific image to boot up.

Beginning in privileged EXEC mode, follow these steps to configure the switch to boot up a specific image during the next boot cycle:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>boot system filesystem:/file-url</code></td>
<td>Configure the switch to boot up a specific image in flash memory during the next boot cycle.</td>
</tr>
<tr>
<td></td>
<td>• For <code>filesystem:</code>, use <code>flash:</code> for the system board flash device.</td>
</tr>
<tr>
<td></td>
<td>• For <code>file-url</code>, specify the path (directory) and the name of the bootable image.</td>
</tr>
<tr>
<td></td>
<td>If you enter this command on a stack master, the specified software image is loaded only on the stack master during the next boot cycle.</td>
</tr>
<tr>
<td></td>
<td>Filenames and directory names are case sensitive.</td>
</tr>
</tbody>
</table>
Chapter 1 Assigning the Switch IP Address and Default Gateway

Modifying the Startup Configuration

To return to the default setting, use the `no boot system` global configuration command.

Controlling Environment Variables

With a normally operating switch, you enter the boot loader mode only through a switch console connection configured for 9600 b/s. Unplug the switch power cord, and press the switch Mode button while reconnecting the power cord. You can release the Mode button a second or two after the LED above port 1 turns off. Then the boot loader switch: prompt appears.

The switch boot loader software provides support for nonvolatile environment variables, which can be used to control how the boot loader, or any other software running on the system, behaves. Boot loader environment variables are similar to environment variables that can be set on UNIX or DOS systems.

Environment variables that have values are stored in flash memory outside of the flash file system.

Each line in these files contains an environment variable name and an equal sign followed by the value of the variable. A variable has no value if it is not listed in this file; it has a value if it is listed in the file even if the value is a null string. A variable that is set to a null string (for example, “”) is a variable with a value. Many environment variables are predefined and have default values.

Environment variables store two kinds of data:

- Data that controls code, which does not read the Cisco IOS configuration file. For example, the name of a boot loader helper file, which extends or patches the functionality of the boot loader can be stored as an environment variable.
- Data that controls code, which is responsible for reading the Cisco IOS configuration file. For example, the name of the Cisco IOS configuration file can be stored as an environment variable.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| | `boot system switch {number | all}` | (Optional) For switches in a stack, specify the switch members on which the system image is loaded during the next boot cycle:
- Use `number` to specify a stack member. (Specify only one stack member.)
- Use `all` to specify all stack members.
If you enter on a Catalyst 3750-X stack master or member, you can only specify the switch image for other Catalyst 3750-X stack members. If you enter on a Catalyst 3750-E stack master or member, you can only specify the switch image for other Catalyst 3750-E stack members. If you want to specify the image for a Catalyst 3750 switch, enter this command on the Catalyst 3750 stack member. |

<table>
<thead>
<tr>
<th>Step 4</th>
<th>end</th>
<th>Return to privileged EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>show boot</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <code>boot system</code> global command changes the setting of the BOOT environment variable. During the next boot cycle, the switch attempts to automatically boot up the system using information in the BOOT environment variable.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no boot system` global configuration command.

Command Purpose

- **Step 3**: `boot system switch {number | all}`
 (Optional) For switches in a stack, specify the switch members on which the system image is loaded during the next boot cycle:
 - Use `number` to specify a stack member. (Specify only one stack member.)
 - Use `all` to specify all stack members.
 If you enter on a Catalyst 3750-X stack master or member, you can only specify the switch image for other Catalyst 3750-X stack members. If you enter on a Catalyst 3750-E stack master or member, you can only specify the switch image for other Catalyst 3750-E stack members. If you want to specify the image for a Catalyst 3750 switch, enter this command on the Catalyst 3750 stack member.

- **Step 4**: `end`
 Return to privileged EXEC mode.

- **Step 5**: `show boot`
 Verify your entries.

- **Step 6**: `copy running-config startup-config`
 (Optional) Save your entries in the configuration file.
You can change the settings of the environment variables by accessing the boot loader or by using Cisco IOS commands. Under normal circumstances, it is not necessary to alter the setting of the environment variables.

Note For complete syntax and usage information for the boot loader commands and environment variables, see the command reference for this release.

Table 1-4 describes the function of the most common environment variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boot Loader Command</th>
<th>Cisco IOS Global Configuration Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOT</td>
<td>set BOOT filesystem:/file-url ...</td>
<td>boot system filesystem:/file-url ... switch {number</td>
</tr>
<tr>
<td></td>
<td>A semicolon-separated list of executable files to try to load and execute when automatically booting. If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the flash file system. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot up the first bootable file that it can find in the flash file system.</td>
<td>Note The switch {number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specifies the Cisco IOS image to load during the next boot cycle and the stack members on which the image is loaded. This command changes the setting of the BOOT environment variable.</td>
</tr>
<tr>
<td>MANUAL_BOOT</td>
<td>set MANUAL_BOOT yes</td>
<td>boot manual</td>
</tr>
<tr>
<td></td>
<td>Decides whether the switch automatically or manually boots.</td>
<td>Enables manually booting the switch during the next boot cycle and changes the setting of the MANUAL_BOOT environment variable.</td>
</tr>
<tr>
<td></td>
<td>Valid values are 1, yes, 0, and no. If it is set to no or 0, the boot loader attempts to automatically boot up the system. If it is set to anything else, you must manually boot up the switch from the boot loader mode.</td>
<td>The next time you reboot the system, the switch is in boot loader mode. To boot up the system, use the boot flash:filesystem:/file-url boot loader command, and specify the name of the bootable image.</td>
</tr>
<tr>
<td>CONFIG_FILE</td>
<td>set CONFIG_FILE filesystem:/file-url</td>
<td>boot config-file filesystem:/file-url</td>
</tr>
<tr>
<td></td>
<td>Changes the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.</td>
<td>Specifies the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration. This command changes the CONFIG_FILE environment variable.</td>
</tr>
</tbody>
</table>
When the switch is connected to a PC through the Ethernet management port, you can download or upload a configuration file to the boot loader by using TFTP. Make sure the environment variables in Table 1-5 are configured.

Table 1-5 Environment Variables for TFTP

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC_ADDR</td>
<td>Specifies the MAC address of the switch.</td>
</tr>
<tr>
<td></td>
<td>Note We recommend that you do not modify this variable.</td>
</tr>
<tr>
<td></td>
<td>However, if you modify this variable after the boot loader is up or the value</td>
</tr>
<tr>
<td></td>
<td>is different than the saved value, enter this command before using TFTP.</td>
</tr>
<tr>
<td>IP_ADDR</td>
<td>Specifies the IP address and the subnet mask for the associated IP subnet of</td>
</tr>
<tr>
<td></td>
<td>the switch.</td>
</tr>
<tr>
<td>DEFAULT_ROUTER</td>
<td>Specifies the IP address and subnet mask of the default gateway.</td>
</tr>
</tbody>
</table>

Scheduling a Reload of the Software Image

You can schedule a reload of the software image to occur on the switch at a later time (for example, late at night or during the weekend when the switch is used less), or you can synchronize a reload network-wide (for example, to perform a software upgrade on all switches in the network).

Note

A scheduled reload must take place within approximately 24 days.
Chapter 1 Assigning the Switch IP Address and Default Gateway

Configuring a Scheduled Reload

To configure your switch to reload the software image at a later time, use one of these commands in privileged EXEC mode:

- **reload in [hh:mm] [text]**

 This command schedules a reload of the software to take effect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days. You can specify the reason for the reload in a string up to 255 characters in length.

 To reload a specific switch in a switch stack, use the **reload slot stack-member-number** privileged EXEC command.

- **reload at hh:mm [month day | day month] [text]**

 This command schedules a reload of the software to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight.

 Note Use the at keyword only if the switch system clock has been set (through Network Time Protocol (NTP), the hardware calendar, or manually). The time is relative to the configured time zone on the switch. To schedule reloads across several switches to occur simultaneously, the time on each switch must be synchronized with NTP.

The **reload** command halts the system. If the system is not set to manually bootup, it reboots itself. Use the **reload** command after you save the switch configuration information to the startup configuration (**copy running-config startup-config**).

If your switch is configured for manual booting, do not reload it from a virtual terminal. This restriction prevents the switch from entering the boot loader mode and thereby taking it from the remote user's control.
If you modify your configuration file, the switch prompts you to save the configuration before reloading. During the save operation, the system requests whether you want to proceed with the save if the CONFIG_FILE environment variable points to a startup configuration file that no longer exists. If you proceed in this situation, the system enters setup mode upon reload.

This example shows how to reload the software on the switch on the current day at 7:30 p.m:

Switch# reload at 19:30
Reload scheduled for 19:30:00 UTC Wed Jun 5 1996 (in 2 hours and 25 minutes)
Proceed with reload? [confirm]

This example shows how to reload the software on the switch at a future time:

Switch# reload at 02:00 jun 20
Reload scheduled for 02:00:00 UTC Thu Jun 20 1996 (in 344 hours and 53 minutes)
Proceed with reload? [confirm]

To cancel a previously scheduled reload, use the reload cancel privileged EXEC command.

Displaying Scheduled Reload Information

To display information about a previously scheduled reload or to find out if a reload has been scheduled on the switch, use the show reload privileged EXEC command.

It displays reload information including the time the reload is scheduled to occur and the reason for the reload (if it was specified when the reload was scheduled).

Boot Loader Upgrade and Image Verification for the FIPS Mode of Operation

To operate in the FIPS mode, complete these steps:

- Enable the FIPS mode on the switch.

 To enable the FIPS mode, enter the fips authorization-key authorization-key global configuration command. To disable the FIPS mode, use the no version of the command.

- Use signed and validated images.

 Cisco IOS Release 15.2(1)E supports an updated boot loader that can validate the Cisco IOS image signature only in the FIPS mode of operation.

 Note

 Ensure that the power is not turned off while updating the boot loader. If the power is turned off during the update, you will have to replace the switch by using a Return Merchandise Authorization (RMA) license.
The following table describes upgrade and downgrade scenarios using different images and using the FIPS mode or non-FIPS mode:

<table>
<thead>
<tr>
<th>Upgrade/Downgrade Scenario</th>
<th>Action</th>
<th>Status or Result</th>
</tr>
</thead>
</table>
| Upgrade from an image that is in the FIPS mode to a Cisco IOS Release 15.2(1)E image in the FIPS mode. | Boot with the Cisco IOS Release 15.2(1)E image. | • The boot loader is upgraded.
• The image signature is verified.
• The following message appears in the boot sequence: “Image passed digital signature verification.” |
| Upgrade from a switch that is in the non-FIPS mode to a Cisco IOS Release 15.2(1)E image in the FIPS mode. | • Configure the **fips authorization-key** authorization-key global configuration command.
• Reload the switch for the FIPS key to be operational. By default, the switch automatically boots up; however, if you have configured it to boot up manually, you have to initiate the reboot.
• After the boot loader is upgraded, boot with the Cisco IOS Release 15.2(1)E image. | • The boot loader is upgraded.
• The image signature is verified.
Note If you upload a corrupt or unsigned image, the following message appears during boot up: “Image verification failed.” |
| Upgrade to Cisco IOS Release 15.2(1)E in the non-FIPS mode. | Boot with the Cisco IOS Release 15.2(1)E image. | • The boot loader is not updated.
• The image signature is not verified.
• The switch works normally. |
Table 1-6 Upgrade and Downgrade Scenarios Relating to FIPS Certified Images (continued)

<table>
<thead>
<tr>
<th>Upgrade/Downgrade Scenario</th>
<th>Action</th>
<th>Status or Result</th>
</tr>
</thead>
</table>
| Configure an existing FIPS complaint switch running Cisco IOS Release 15.2(1)E to work in a non-FIPS mode. | • Configure the `no fips authorization-key authorization-key` global configuration command.
• Reload the switch for the configuration to take effect. By default, the switch automatically boots up; however, if you have configured it to boot up manually, you have to initiate the reboot. | • The boot loader is not updated.
• The switch works normally and the FIPS commands are no longer available.
• The following message appears in the boot sequence: “Image passed digital signature verification”. |

| Downgrade from a Cisco IOS Release 15.2(1)E image in FIPS mode to an older release. | • Configure the `no fips authorization-key authorization-key` global configuration command.
• Reload the switch for the configuration to take effect. By default, the switch automatically boots up; however, if you have configured it to boot up manually, you have to initiate reboot.
• Upload and boot the older image. | • The boot loader is not downgraded.
• The switch work normally and the FIPS commands are no longer available.
• The following message appears in the boot sequence: “WARNING: Unable to determine image authentication. Image is either unsigned or is signed but corrupted.” |

Note
If you upload a corrupt or unsigned image, the following message appears during boot up: “WARNING: Unable to determine image authentication. Image is either unsigned or is signed but corrupted.”
Managing Switch Stacks

This chapter provides the concepts and procedures to manage Catalyst 3750-E 3750-X switch stacks.

Note

The LAN base feature set supports switch stacks only when all switches in the stack are run the LAN base feature set.

The switch command reference has command syntax and usage information.

This chapter consists of these sections:

- Restrictions for Switch Stacks, page 1-1
- Understanding Switch Stacks, page 1-2
- Configuring the Switch Stack, page 1-24
- Accessing the CLI of a Specific Stack Member, page 1-30
- Displaying Switch Stack Information, page 1-30
- Troubleshooting Stacks, page 1-31

For other switch stack-related information, such as cabling the switches through their StackWise Plus ports and using the LEDs to display switch stack status, see the hardware installation guide.

The Catalyst 3750-X stackable switch also supports StackPower, where up to four switches can be connected with power stack cables to allow the switch power supplies to share the load across multiple systems in a stack. Switches in a power stack must be members of the same switch (data) stack. For information about StackPower, see Chapter 1, “Configuring Catalyst 3750-X StackPower.”

This chapter describes how to manage Catalyst 3750-E-only 3750-X-only switch stacks. For information about managing hardware and software stacks and about using universal software images with software licenses, see the Cisco IOS Software Installation document on Cisco.com.

Restrictions for Switch Stacks

After changing a virtual routing and forwarding (VRF) configuration, followed by the switchover of the master switch, can cause the VRF functionality to not work correctly. Reload the entire switch stack after the VRF configuration change for the VRF functionality to work correctly after a switchover. That is, change the VRF configuration, save the configuration, and reload the entire switch stack.
Understanding Switch Stacks

A switch stack is a set of up to nine stacking-capable switches connected through their StackWise Plus or StackWise ports. You can connect only one switch type in a stack, or you can connect a mix of Catalyst 3750-X, Catalyst 3750-E, and Catalyst 3750 switches in the stack. Catalyst 3750-X and Catalyst 3750-E stack members have StackWise Plus ports, and Catalyst 3750 members have StackWise ports. The stack can have one of these configurations:

- **Homogeneous stack**—A Catalyst 3750-E-only stack with only Catalyst 3750-E switches as stack members or a Catalyst 3750-X-only stack with only Catalyst 3750-X switches as stack members.

- **Mixed stack**

 Note
 Mixed stacks are not supported with switches running the LAN base feature set.

 - A **mixed hardware stack** with a mixture of Catalyst 3750-X, Catalyst 3750-E, and 3750 switches as stack members.

 For example, a stack with Catalyst 3750-E 3750-X and 3750 switches supporting the IP services features.

 - A **mixed software stack** with only Catalyst 3750-X, only Catalyst 3750-E, or only Catalyst 3750 switches supporting different features as stack members.

 For example, a Catalyst 3750-E-only Catalyst 3750-X-only stack with some members running the IP base feature set, other members running the IP services feature set, and the remaining members running the IP services feature set.

 - A **mixed hardware and software stack** with Catalyst 3750-X, Catalyst 3750-E, and Catalyst 3750 switches supporting different features as stack members.

 For example, a stack with the Catalyst 3750-E 3750-X members running the IP services feature set and the Catalyst 3750 members running the IP services software image.

 For information about Catalyst 3750 switches, see the “Managing Switch Stacks” chapter in the Catalyst 3750 Switch Software Configuration Guide.

One of the switches controls the operation of the stack and is called the **stack master**. The stack master and the other switches in the stack are all **stack members**. The Catalyst 3750-E Catalyst 3750-E stack members use the Cisco StackWise Plus technology to work together as a unified system. Layer 2 and Layer 3 protocols present the entire switch stack as a single entity to the network.

Note
Switch stacks running the LAN base feature set do not support Layer 3 features.

In a mixed stack that has Catalyst 3750-X, Catalyst 3750-E, and Catalyst 3750 switches, we recommend that a Catalyst 3750-X switch be the master and that all stack members run Cisco IOS Release 12.2(53)SE2 or later. The Catalyst 3750 image is on the Catalyst 3750-X and 3750-E switches to simplify switch management.

To upgrade the stack, use the **archive download-sw** privileged EXEC command to download images to the master. For example, use the **archive download-sw /directory tftp://10.1.1.10/c3750-ipservicesk9-tar.122-55.SE1.tar c3750e-universalk9-tar.122-55.SE1.tar** command to specify a directory, following the command with the list of tar files to download for the members.

- The c3750-ipservicesk9-tar.122-55.SE1.tar is for the Catalyst 3750 members.

- The c3750e-universalk9-tar.122-55.SE1.tar is for the Catalyst 3750-X and 3750-E members.
You can display the file list that is in the flash memory:

Switch# dir flash: c3750e-universalk9-tar.122-55.SE1
Directory of flash:/c3750e-universalk9-tar.122-55.SE1/

5 -rwx 14313645 Mar 1 1993 00:13:55 +00:00 C3750e-universalk9-tar.122-55.SE1.tar
6 drwx 5632 Mar 1 1993 00:15:22 +00:00 html
443 -rwx 444 Mar 1 1993 00:15:58 +00:00 info
444 -rwx 14643200 Mar 1 1993 00:04:32 +00:00 c3750-ipservicesk9-tar.122-55.SE1.tar

The stack master is the single point of stack-wide management. From the stack master, you configure:

- System-level (global) features that apply to all stack members
- Interface-level features for each stack member

A switch stack is identified in the network by its bridge ID and, if it is operating as a Layer 3 device, its router MAC address. The bridge ID and router MAC address are determined by the MAC address of the stack master. Every stack member is identified by its own stack member number.

All stack members are eligible to be stack masters. If the stack master becomes unavailable, the remaining stack members elect a new stack master from among themselves. The switch with the highest stack member priority value becomes the new stack master.

The system-level features supported on the stack master are supported on the entire switch stack. If a switch in the stack is running the IP base or IP services feature set and the cryptographic (that is, supporting encryption) universal software image, we recommend that this switch be the stack master. Encryption features are unavailable if the stack master is running the IP base or IP services feature set and the noncryptographic software image.

Note

In a mixed stack, Catalyst 3750 or Catalyst 3750-E switches running Cisco IOS Release 12.2(53)SE and earlier could be running a noncryptographic image. Catalyst 3750-X switches and Catalyst 3750 and 3750-E switches with Cisco IOS Releases later than 12.2(53)SE run only the cryptographic software image.

The stack master contains the saved and running configuration files for the switch stack. The configuration files include the system-level settings for the switch stack and the interface-level settings for each stack member. Each stack member has a current copy of these files for back-up purposes.

You manage the switch stack through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can manage the stack through the same IP address even if you remove the stack master or any other stack member from the stack.

You can use these methods to manage switch stacks:

- Network Assistant (available on Cisco.com)
- Command-line interface (CLI) over a serial connection to the console port of any stack member or the Ethernet management port of a stack member
- A network management application through the Simple Network Management Protocol (SNMP)
 - Use SNMP to manage network features across the switch stack that are defined by supported MIBs. The switch does not support MIBs to manage stacking-specific features such as stack membership and election.
- CiscoWorks network management software

To manage switch stacks, you should understand:

- These concepts on how switch stacks are formed:
 - Switch Stack Membership, page 1-4
Understanding Switch Stacks

- Stack Master Election and Re-Election, page 1-6
- These concepts on how switch stacks and stack members are configured:
 - Switch Stack Bridge ID and Router MAC Address, page 1-7
 - Stack Member Numbers, page 1-7
 - Stack Member Priority Values, page 1-8
 - Switch Stack Offline Configuration, page 1-8
 - Hardware Compatibility and SDM Mismatch Mode in Switch Stacks, page 1-11
 - Switch Stack Software Compatibility Recommendations, page 1-11
 - Stack Protocol Version Compatibility, page 1-12
 - Major Version Number Incompatibility Among Switches, page 1-12
 - Minor Version Number Incompatibility Among Switches, page 1-12
 - Incompatible Software and Stack Member Image Upgrades, page 1-15
 - Switch Stack Configuration Files, page 1-16
 - Additional Considerations for System-Wide Configuration on Switch Stacks, page 1-16
 - Switch Stack Management Connectivity, page 1-17
 - Switch Stack Configuration Scenarios, page 1-19
 - Rolling Stack Upgrade, page 1-21

Note

A switch stack is different from a switch cluster. A switch cluster is a set of switches connected through their LAN ports, such as the 10/100/1000 ports. For more information about how switch stacks differ from switch clusters, see the “Planning and Creating Clusters” chapter in the Getting Started with Cisco Network Assistant on Cisco.com.

Switch Stack Membership

A switch stack has up to nine stack members connected through their StackWise Plus ports. A switch stack always has one stack master.

A standalone switch is a switch stack with one stack member that also operates as the stack master. You can connect one standalone switch to another (Figure 1-1 on page 1-5) to create a switch stack containing two stack members, with one of them as the stack master. You can connect standalone switches to an existing switch stack (Figure 1-2 on page 1-5) to increase the stack membership.

If you replace a stack member with an identical model, the new switch functions with exactly the same configuration as the replaced switch, assuming that the new switch is using the same member number as the replaced switch. For information about the benefits of provisioning a switch stack, see the “Switch Stack Offline Configuration” section on page 1-8. For information about replacing a failed switch, see the “Troubleshooting” chapter in the hardware installation guide.

The operation of the switch stack continues uninterrupted during membership changes unless you remove the stack master or you add powered-on standalone switches or switch stacks.

Note

Make sure that you power off the switches that you add to or remove from the switch stack.

After adding or removing stack members, make sure that the switch stack is operating at full bandwidth (64 Gb/s). Press the Mode button on a stack member until the Stack mode LED is on. The last two right
port LEDs on all switches in the stack should be green. Depending on the switch model, the last two right ports are 10-Gigabit Ethernet ports or small form-factor pluggable (SFP) module ports (10/100/1000 ports). If one or both of these LEDs are not green on any of the switches, the stack is not operating at full bandwidth.

- Adding powered-on switches (merging) causes the stack masters of the merging switch stacks to elect a stack master from among themselves. The re-elected stack master retains its role and configuration and so do its stack members. All remaining switches, including the former stack masters, reload and join the switch stack as stack members. They change their stack member numbers to the lowest available numbers and use the stack configuration of the re-elected stack master.

- Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. This can cause an IP address configuration conflict in your network. If you want the switch stacks to remain separate, change the IP address or addresses of the newly created switch stacks. If you did not intend to partition the switch stack:
 a. Power off the switches in the newly created switch stacks.
 b. Reconnect them to the original switch stack through their StackWise Plus ports.
 c. Power on the switches.

For more information about cabling and powering switch stacks, see the “Switch Installation” chapter in the hardware installation guide.
Stack Master Election and Re-Election

The stack master is elected or re-elected based on one of these factors and in the order listed:

1. The switch that is currently the stack master.
2. The switch with the highest stack member priority value.

Note We recommend assigning the highest priority value to the switch that you prefer to be the stack master. This ensures that the switch is re-elected as stack master if a re-election occurs.

3. The switch that is not using the default interface-level configuration.
4. The switch with the higher priority feature set and software image combination. These combinations are listed from highest to lowest priority.

Note The noncryptographic images apply only to mixed stacks that include Catalyst 3750-E or 3750 switches running Cisco IOS Release 12.2(53)SE or earlier. Catalyst 3750-X switches and Catalyst 3750-E or 3750 switches running later releases support only the cryptographic image.

- IP services feature set and the cryptographic software image
- IP services feature set and the noncryptographic software image
- IP base feature set and the cryptographic software image
- IP base feature set and the noncryptographic software image

Note In a switch stacks running the LAN base feature set, all switches in the stack must run the LAN base feature set.

During the stack master switch election, differences in start-up times between the feature sets determine the stack master. The switch with the shorter start-up time becomes the stack master.

For example, a switch running the IP services feature set has a higher priority than the switch running the IP base feature set, but the switch running the IP base feature set becomes the stack master because the other switch takes 10 seconds longer to start. To avoid this problem, upgrade the switch running the IP base feature set to the same feature set and software image as the other switch, or manually start the master switch and wait at least 8 seconds before starting the new member switch that running the IP base feature set.

5. The switch with the lowest MAC address.

A stack master retains its role unless one of these events occurs:

- The switch stack is reset.
- The stack master is removed from the switch stack.
- The stack master is reset or powered off.
- The stack master fails.
- The switch stack membership is increased by adding powered-on standalone switches or switch stacks.

In the events marked by an asterisk (*), the current stack master might be re-elected based on the listed factors.
When you power on or reset an entire switch stack, some stack members might not participate in the stack master election. Stack members that are powered on within the same 120-second time frame participate in the stack master election and have a chance to become the stack master. Stack members that are powered on after the 120-second time frame do not participate in this initial election and become stack members. All stack members participate in re-elections. For all powering considerations that affect stack-master elections, see the “Switch Installation” chapter in the hardware installation guide.

The new stack master becomes available after a few seconds. In the meantime, the switch stack uses the forwarding tables in memory to minimize network disruption. The physical interfaces on the other available stack members are not affected during a new stack master election and reset.

After a new stack master is elected and the previous stack master becomes available, the previous stack master does not resume its role as stack master.

As described in the hardware installation guide, you can use the Master LED on the switch to see if the switch is the stack master.

Switch Stack Bridge ID and Router MAC Address

The bridge ID and router MAC address identify the switch stack in the network. When the switch stack initializes, the MAC address of the stack master determines the bridge ID and router MAC address.

If the stack master changes, the MAC address of the new stack master determines the new bridge ID and router MAC address. However, when the persistent MAC address feature is enabled, the stack MAC address changes in approximately 4 minutes. During this time period, if the previous stack master rejoins the stack, the stack continues to use its MAC address as the stack MAC address, even if the switch is now a stack member and not a stack master. If the previous stack master does not rejoin the stack during this period, the switch stack takes the MAC address of the new stack master as the stack MAC address. See Enabling Persistent MAC Address, page 1-24 for more information.

Stack Member Numbers

The stack member number (1 to 9) identifies each member in the switch stack. The member number also determines the interface-level configuration that a stack member uses. You can display the stack member number by using the `show switch` user EXEC command.

A new, out-of-the-box switch (one that has not joined a switch stack or has not been manually assigned a stack member number) ships with a default stack member number of 1. When it joins a switch stack, its default stack member number changes to the lowest available member number in the stack.

Stack members in the same switch stack cannot have the same stack member number. Every stack member, including a standalone switch, retains its member number until you manually change the number or unless the number is already being used by another member in the stack.

- If you manually change the stack member number by using the `switch current-stack-member-number renumber new-stack-member-number` global configuration command, the new number goes into effect after that stack member resets (or after you use the `reload slot stack-member-number` privileged EXEC command) and only if that number is not already assigned to any other members in the stack. For more information, see the “Assigning a Stack Member Number” section on page 1-26. Another way to change the stack member number is by changing the SWITCH_NUMBER environment variable, as explained in the “Controlling Environment Variables” section on page 1-21.

If the number is being used by another member in the stack, the switch selects the lowest available number in the stack.
If you manually change the number of a stack member and no interface-level configuration is associated with that new member number, that stack member resets to its default configuration. For more information about stack member numbers and configurations, see the “Switch Stack Configuration Files” section on page 1-16.

You cannot use the `switch current-stack-member-number renumber new-stack-member-number` global configuration command on a provisioned switch. If you do, the command is rejected.

- If you move a stack member to a different switch stack, the stack member retains its number only if the number is not being used by another member in the stack. If it is being used, the switch selects the lowest available number in the stack.
- If you merge switch stacks, the switches that join the switch stack of a new stack master select the the lowest available numbers in the stack. For more information about merging switch stacks, see the “Switch Stack Membership” section on page 1-4.

As described in the hardware installation guide, you can use the switch port LEDs in Stack mode to visually determine the stack member number of each stack member.

Stack Member Priority Values

A higher priority value for a stack member increases its likelihood of being elected stack master and retaining its stack member number. The priority value can be 1 to 15. The default priority value is 1. You can display the stack member priority value by using the `show switch` user EXEC command.

Note

We recommend assigning the highest priority value to the switch that you prefer to be the stack master. This ensures that the switch is re-elected as stack master.

You can change the priority value for a stack member by using the `switch stack-member-number priority new-priority-value` global configuration command. For more information, see the “Setting the Stack Member Priority Value” section on page 1-26. Another way to change the member priority value is by changing the SWITCH_PRIORITY environment variable, as explained in the “Controlling Environment Variables” section on page 1-21.

The new priority value takes effect immediately but does not affect the current stack master. The new priority value helps determine which stack member is elected as the new stack master when the current stack master or the switch stack resets.

Switch Stack Offline Configuration

You can use the offline configuration feature to `provision` (to supply a configuration to) a new switch before it joins the switch stack. You can configure in advance the stack member number, the switch type, and the interfaces associated with a switch that is not currently part of the stack. The configuration that you create on the switch stack is called the *provisioned configuration*. The switch that is added to the switch stack and that receives this configuration is called the *provisioned switch*.

You manually create the provisioned configuration through the `switch stack-member-number provision type` global configuration command. The provisioned configuration is automatically created when a switch is added to a switch stack and when no provisioned configuration exists.

When you configure the interfaces associated with a provisioned switch (for example, as part of a VLAN), the switch stack accepts the configuration, and the information appears in the running configuration. The interface associated with the provisioned switch is not active, operates as if it is
administratively shut down, and the no shutdown interface configuration command does not return it to active service. The interface associated with the provisioned switch does not appear in the display of the specific feature; for example, it does not appear in the show vlan user EXEC command output.

The switch stack retains the provisioned configuration in the running configuration whether or not the provisioned switch is part of the stack. You can save the provisioned configuration to the startup configuration file by entering the copy running-config startup-config privileged EXEC command. The startup configuration file ensures that the switch stack can reload and can use the saved information whether or not the provisioned switch is part of the switch stack.

Effects of Adding a Provisioned Switch to a Switch Stack

When you add a provisioned switch to the switch stack, the stack applies either the provisioned configuration or the default configuration. Table 1-1 lists the events that occur when the switch stack compares the provisioned configuration with the provisioned switch.

<table>
<thead>
<tr>
<th>Table 1-1</th>
<th>Results of Comparing the Provisioned Configuration with the Provisioned Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario</td>
<td>Result</td>
</tr>
<tr>
<td>The stack member numbers and the switch types match.</td>
<td>1. If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, and 2. If the switch type of the provisioned switch matches the switch type in the provisioned configuration on the stack.</td>
</tr>
<tr>
<td></td>
<td>The switch stack applies the provisioned configuration to the provisioned switch and adds it to the stack.</td>
</tr>
<tr>
<td>The stack member numbers match but the switch types do not match.</td>
<td>1. If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, but 2. The switch type of the provisioned switch does not match the switch type in the provisioned configuration on the stack.</td>
</tr>
<tr>
<td></td>
<td>The switch stack applies the default configuration to the provisioned switch and adds it to the stack. The provisioned configuration is changed to reflect the new information.</td>
</tr>
<tr>
<td>The stack member number is not found in the provisioned configuration.</td>
<td></td>
</tr>
</tbody>
</table>
Table 1-1
Results of Comparing the Provisioned Configuration with the Provisioned Switch (continued)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
</table>
| The stack member number of the provisioned switch is in conflict with an existing stack member. | The stack master assigns a new stack member number to the provisioned switch. The stack member numbers and the switch types match:
1. If the new stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, and
2. If the switch type of the provisioned switch matches the switch type in the provisioned configuration on the stack. | The switch stack applies the provisioned configuration to the provisioned switch and adds it to the stack. The provisioned configuration is changed to reflect the new information. |
| The stack member numbers match, but the switch types do not match: | The switch stack applies the default configuration to the provisioned switch and adds it to the stack. The provisioned configuration is changed to reflect the new information. |
| 1. If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, but
2. The switch type of the provisioned switch does not match the switch type in the provisioned configuration on the stack. | |
| The stack member number of the provisioned switch is not found in the provisioned configuration. | The switch stack applies the default configuration to the provisioned switch and adds it to the stack. |

If you add a provisioned switch that is a different type than specified in the provisioned configuration to a powered-down switch stack and then apply power, the switch stack rejects the (now incorrect) `switch stack-member-number provision type` global configuration command in the startup configuration file. However, during stack initialization, the nondefault interface configuration information in the startup configuration file for the provisioned interfaces (potentially of the wrong type) is executed. Depending on the differences between the actual switch type and the previously provisioned switch type, some commands are rejected, and some commands are accepted.

For example, suppose the switch stack is provisioned for a 48-port switch with Power over Ethernet (PoE), the configuration is saved, and the stack is powered down. Then a 24-port switch without PoE support is connected to the switch stack, and the stack is powered up. In this situation, the configuration for ports 25 through 48 is rejected, and error messages appear during initialization. In addition, any configured PoE-related commands that are valid only on PoE-capable interfaces are rejected, even for ports 1 through 24.

Note
If the switch stack does not contain a provisioned configuration for a new switch, the switch joins the stack with the default interface configuration. The switch stack then adds to its running configuration a `switch stack-member-number provision type` global configuration command that matches the new switch.
For configuration information, see the “Provisioning a New Member for a Switch Stack” section on page 1-27.

Effects of Replacing a Provisioned Switch in a Switch Stack

When a provisioned switch in a switch stack fails, is removed from the stack, and is replaced with another switch, the stack applies either the provisioned configuration or the default configuration to it. The events that occur when the switch stack compares the provisioned configuration with the provisioned switch are the same as those described in the “Effects of Adding a Provisioned Switch to a Switch Stack” section on page 1-9.

Effects of Removing a Provisioned Switch from a Switch Stack

If you remove a provisioned switch from the switch stack, the configuration associated with the removed stack member remains in the running configuration as provisioned information. To completely remove the configuration, use the `no switch stack-member-number provision` global configuration command.

Hardware Compatibility and SDM Mismatch Mode in Switch Stacks

The Catalyst 3750-E Catalyst 3750-X switch supports only the desktop Switch Database Management (SDM) templates.

All stack members use the SDM template configured on the stack master.

Version-mismatch (VM) mode has priority over SDM-mismatch mode. If a VM-mode condition and an SDM-mismatch mode exist, the switch stack first attempts to resolve the VM-mode condition.

You can use the `show switch` privileged EXEC command to see if any stack members are in SDM-mismatch mode.

For more information about SDM templates and SDM-mismatch mode, see Chapter 1, “Configuring SDM Templates.”

For information about mixed hardware stacks, see the `Cisco Software Activation and Compatibility Document` on Cisco.com.

Switch Stack Software Compatibility Recommendations

To ensure complete compatibility between stack members, use the information in this section and also in the “Hardware Compatibility and SDM Mismatch Mode in Switch Stacks” section on page 1-11.

All stack members must run the same Cisco IOS software image and feature set to ensure compatibility between stack members. For example, all stack members should run the universal software image and have the IP services feature set enabled for the Cisco IOS Release 12.2(35)SE2 12.2(53)SE2 or later.

For more information, see the “Stack Protocol Version Compatibility” section on page 1-12 and the `Cisco Software Activation and Compatibility Document` on Cisco.com.

For information about mixed hardware and software stacks, see the `Cisco Software Activation and Compatibility Document` on Cisco.com.
Stack Protocol Version Compatibility

Each software image includes a stack protocol version. The stack protocol version has a major version number and a minor version number (for example 1.4, where 1 is the major version number and 4 is the minor version number). Both version numbers determine the level of compatibility among the stack members. You can display the stack protocol version by using the show platform stack-manager all privileged EXEC command.

Switches with the same Cisco IOS software version have the same stack protocol version. Such switches are fully compatible, and all features function properly across the switch stack. Switches with the same Cisco IOS software version as the stack master immediately join the switch stack.

If an incompatibility exists, the fully functional stack members generate a system message that describes the cause of the incompatibility on the specific stack members. The stack master sends the message to all stack members. For more information, see the “Major Version Number Incompatibility Among Switches” procedure on page 1-12 and the “Minor Version Number Incompatibility Among Switches” procedure on page 1-12.

Major Version Number Incompatibility Among Switches

Switches with different major Cisco IOS software versions usually have different stack protocol versions. Switches with different major version numbers are incompatible and cannot exist in the same switch stack.

Minor Version Number Incompatibility Among Switches

Switches with the same major version number but with a different minor version number are considered partially compatible. When connected to a switch stack, a partially compatible switch enters version-mismatch (VM) mode and cannot join the stack as a fully functioning member. The software detects the mismatched software and tries to upgrade (or downgrade) the switch in VM mode with the switch stack image or with a tar file image from the switch stack flash memory. The software uses the automatic upgrade (auto-upgrade) and the automatic advise (auto-advice) features. For more information, see the “Understanding Auto-Upgrade and Auto-Advise” section on page 1-12.

To see if there are switches in VM mode, use the show switch user EXEC command. The port LEDs on switches in VM mode stay off. Pressing the Mode button does not change the LED mode.

You can use the boot auto-download-sw global configuration command to specify a URL pathname for the master switch to use to get an image in case of version mismatch.

Understanding Auto-Upgrade and Auto-Advise

When the software detects mismatched software and tries to upgrade the switch in VM mode, two software processes are involved: automatic upgrade and automatic advise.

- The automatic upgrade (auto-upgrade) process includes an auto-copy process and an auto-extract process. By default, auto-upgrade is enabled (the boot auto-copy-sw global configuration command is enabled). You can disable auto-upgrade by using the no boot auto-copy-sw global configuration command on the stack master. You can check the status of auto-upgrade by using the show boot privileged EXEC command and by checking the Auto upgrade line in the display.
Auto-copy automatically copies the software image running on any stack member to the switch in VM mode to upgrade (auto-upgrade) it. Auto-copy occurs if auto-upgrade is enabled, if there is enough flash memory in the switch in VM mode, and if the software image running on the switch stack is suitable for the switch in VM mode.

Note
A switch in VM mode might not run all released software. For example, new switch hardware is not recognized in earlier versions of software.

Automatic extraction (auto-extract) occurs when the auto-upgrade process cannot find the appropriate software in the stack to copy to the switch in VM mode. In that case, the auto-extract process searches all switches in the stack, whether they are in VM mode or not, for the tar file needed to upgrade the switch stack or the switch in VM mode. The tar file can be in any flash file system in the switch stack (including the switch in VM mode). If a tar file suitable for the switch in VM mode is found, the process extracts the file and automatically upgrades that switch.

The auto-upgrade (auto-copy and auto-extract) processes wait for a few minutes after the mismatched software is detected before starting.

When the auto-upgrade process is complete, the switch that was in VM mode reloads and joins the stack as a fully functioning member. If you have both StackWise Plus cables connected during the reload, network downtime does not occur because the switch stack operates on two rings.

Note
Auto-upgrade performs the upgrade only when the two feature sets are the same type. For example, it does not automatically upgrade a switch in VM mode from IP services feature set to IP base feature set (or the reverse).

- Automatic advise (auto-advise) occurs when the auto-upgrade process cannot find appropriate stack member software to copy to the switch in VM mode. This process tells you the command (archive copy-sw or archive download-sw privileged EXEC command) and the image name (tar filename) needed to manually upgrade the switch stack or the switch in VM mode. The recommended image can be the running switch stack image or a tar file in any flash file system in the switch stack (including the switch in VM mode). If an appropriate image is not found in the stack flash file systems, the auto-advise process tells you to install new software on the switch stack. Auto-advise cannot be disabled, and there is no command to check its status.

The auto-advise software does not give suggestions when the switch stack software and the software of the switch in VM mode do not contain the same feature sets. For example, if the switch stack is running the IP base image and you add a switch that is running the IP services image, the auto-advise software does not provide a recommendation.

You can use the archive-download-sw /allow-feature-upgrade privileged EXEC command to allow installing a different software image.

Auto-Upgrade and Auto-Advise Example Messages

When you add a switch that has a different minor version number to the switch stack, the software displays messages in sequence (assuming that there are no other system messages generated by the switch).

This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts, finds suitable software to copy from a stack member to the switch in VM mode, upgrades the switch in VM mode, and then reloads it:
*Mar 11 20:31:19.247:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 11 20:31:23.232:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack (VERSION_MISMATCH)
*Mar 11 20:31:23.291:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack (VERSION_MISMATCH) (Stack_1-3)
*Mar 11 20:33:23.248:%IMAGEMGR-6-AUTO_COPY_SW_INITIATED:Auto-copy-software process initiated for switch number(s) 1
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Searching for stack member to act as software donor...
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Found donor (system #2) for member(s) 1
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:System software to be uploaded:
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:System Type: 0x00000000
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving c3750e-universal-mz.122-35.SE2(directory)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving c3750e-universal-mz.122-35.SE2/info (450 bytes)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving info (104 bytes)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving c3750e-universal-mz.122-35.SE2/exacting
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving info (104 bytes)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:exacting
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:exacting
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:exacting (directory)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Old image for switch 1:flash1:c3750e-universal-mz.122-35.SE2
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Old image will be deleted after download.
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Old image will be deleted after download.
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Extracting images from archive into flash on switch 1...
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Installing (renaming):`flash1:update/c3750e-universal-mz.122-0.0.313.SE2' -> `flash1:c3750e-universal-mz.122-0.0.313.SE2'
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:New software image installed in flash1:c3750e-i5-mz.122-35.SE2
This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts but cannot find software in the switch stack to copy to the VM-mode switch to make it compatible with the switch stack. The auto-advice process starts and recommends that you download a tar file from the network to the switch in VM mode:

```
*Mar  1 00:04:22.537:%IMAGEMGR-6-AUTO_ADVISE_SW:archive download-sw /force-reload
/overwrite /dest 1 flash1:c3750e-universal-mz.122-35.SE2.tar
*Mar  1 00:04:22.537:%IMAGEMGR-6-AUTO_ADVISE_SW:
```

For information about using the `archive download-sw` privileged EXEC command, see the “Working with Software Images” section on page 1-25.

Auto-advice and auto-copy identify which images are running by examining the info file and by searching the directory structure on the switch stack. If you download your image by using the `copy tftp:` boot loader command instead of the `archive download-sw` privileged EXEC command, the proper directory structure is not created. For more information about the info file, see the “File Format of Images on a Server or Cisco.com” section on page 1-26.

Incompatible Software and Stack Member Image Upgrades

You can upgrade a switch that has an incompatible universal software image by using the `archive copy-sw` privileged EXEC command. It copies the software image from an existing stack member to the one with incompatible software. That switch automatically reloads and joins the stack as a fully functioning member. For more information, see the “Copying an Image File from One Stack Member to
Chapter 1 Managing Switch Stacks

Understanding Switch Stacks

Another” section on page 1-39.

Switch Stack Configuration Files

The configuration files record these settings:

- System-level (global) configuration settings—such as IP, STP, VLAN, and SNMP settings—that apply to all stack members
- Stack member interface-specific configuration settings that are specific for each stack member

The stack master has the saved and running configuration files for the switch stack. All stack members periodically receive synchronized copies of the configuration files from the stack master. If the stack master becomes unavailable, any stack member assuming the role of stack master has the latest configuration files.

Note

We recommend that all stack members run Cisco IOS Release 12.2(35)SE2 or later. The interface-specific settings of the stack master are saved if the stack master is replaced without saving the running configuration to the startup configuration.

When a new, out-of-box switch joins a switch stack, it uses the system-level settings of that switch stack. If a switch is moved to a different switch stack, that switch loses its saved configuration file and uses the system-level configuration of the new switch stack.

The interface-specific configuration of each stack member is associated with the stack member number. As mentioned in the “Stack Member Numbers” section on page 1-7, stack members retain their numbers unless they are manually changed or they are already used by another member in the same switch stack.

- If an interface-specific configuration does not exist for that member number, the stack member uses its default interface-specific configuration.
- If an interface-specific configuration exists for that member number, the stack member uses the interface-specific configuration associated with that member number.

If a stack member fails and you replace it with an identical model, the replacement switch automatically uses the same interface-specific configuration as the failed switch. Hence, you do not need to reconfigure the interface settings. The replacement switch must have the same stack member number as the failed switch. For information about the benefits of provisioning a switch stack, see the “Switch Stack Offline Configuration” section on page 1-8.

You back up and restore the stack configuration in the same way as you would for a standalone switch configuration. For more information about file systems and configuration files, see Appendix 1, “Working with the Cisco IOS File System, Configuration Files, and Software Images.”

Additional Considerations for System-Wide Configuration on Switch Stacks

These sections provide additional considerations for configuring system-wide features on switch stacks:

- “Planning and Creating Clusters” chapter in the Getting Started with Cisco Network Assistant, available on Cisco.com
- “MAC Addresses and Switch Stacks” section on page 1-14
- “Setting the SDM Template” section on page 1-6
- “802.1x Authentication and Switch Stacks” section on page 1-11
Switch Stack Management Connectivity

You manage the switch stack and the stack member interfaces through the stack master. You can use the CLI, SNMP, Network Assistant, and CiscoWorks network management applications. You cannot manage stack members on an individual switch basis.

These sections provide switch stack connectivity information:

- Connectivity to the Switch Stack Through an IP Address, page 1-17
- Connectivity to the Switch Stack Through an SSH Session, page 1-18
- Connectivity to the Switch Stack Through Console Ports or Ethernet Management Ports, page 1-18
- Connectivity to Specific Stack Members, page 1-18

Connectivity to the Switch Stack Through an IP Address

The switch stack is managed through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can still manage the stack through the same IP address even if you remove the stack master or any other stack member from the stack, provided there is IP connectivity.

Note

Stack members retain their IP addresses when you remove them from a switch stack. To avoid a conflict by having two devices with the same IP address in your network, change the IP addresses of any switches that you remove from the switch stack.

For related information about switch stack configurations, see the “Switch Stack Configuration Files” section on page 1-16.
Connectivity to the Switch Stack Through an SSH Session

In a mixed stack, Secure Shell (SSH) connectivity to the switch stack can be lost if a stack master running the cryptographic software image and the IP base or IP services feature set fails and is replaced by a switch that is running the noncryptographic image and the same feature set. We recommend that a switch running the cryptographic software image and the IP base or IP services feature set be the stack master. Encryption features are unavailable if the stack master is running the noncryptographic software image.

Note

The noncryptographic software image was available only on Catalyst 3750 or Catalyst 3750-E switches running Cisco IOS Release 12.2(53)SE and earlier. The Catalyst 3750-X switches run only the cryptographic software image.

Connectivity to the Switch Stack Through Console Ports or Ethernet Management Ports

You can connect to the stack master by using one of these methods:

- You can connect a terminal or a PC to the stack master through the console port of one or more stack members.
- You can connect a PC to the stack master through the Ethernet management ports of one or more Catalyst 3750-E Catalyst 3750-X stack members. For more information about connecting to the switch stack through Ethernet management ports, see the “Using the Ethernet Management Port” section on page 1-24.

Be careful when using multiple CLI sessions to the stack master. Commands that you enter in one session are not displayed in the other sessions. Therefore, it is possible that you might not be able to identify the session from which you entered a command.

We recommend using only one CLI session when managing the switch stack.

Connectivity to Specific Stack Members

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation. For more information, see the “Using Interface Configuration Mode” section on page 1-19.

To debug a specific stack member, you can access it from the stack master by using the `session stack-member-number` privileged EXEC command. The stack member number is appended to the system prompt. For example, `Switch-2#` is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the stack master is `Switch`. Only the `show` and `debug` commands are available in a CLI session to a specific stack member.
Switch Stack Configuration Scenarios

Table 1-2 provides switch stack configuration scenarios. Most of the scenarios assume that at least two switches are connected through their StackWise Plus ports.

Table 1-2 Switch Stack Configuration Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack master election specifically determined by existing stack masters</td>
<td>Connect two powered-on switch stacks through the StackWise Plus ports.</td>
</tr>
<tr>
<td></td>
<td>Only one of the two stack masters becomes the new stack master. None of the other stack members become the stack master.</td>
</tr>
</tbody>
</table>
| Stack master election specifically determined by the stack member priority value | 1. Connect two switches through their StackWise Plus ports.
2. Use the **switch stack-member-number priority new-priority-number** global configuration command to set one stack member with a higher member priority value.
3. Restart both stack members at the same time. | The stack member with the higher priority value is elected stack master. |
| Stack master election specifically determined by the configuration file | Assuming that both stack members have the same priority value:
1. Make sure that one stack member has a default configuration and that the other stack member has a saved (nondefault) configuration file.
2. Restart both stack members at the same time. | The stack member with the saved configuration file is elected stack master. |
| Stack master election specifically determined by the cryptographic software image and the IP services feature set and the IP services feature set | Assuming that all stack members have the same priority value:
1. Make sure that one stack member has the cryptographic image installed and the IP services feature set enabled and that the other stack member has the noncryptographic image installed and the IP services feature set enabled.
2. Restart both stack members at the same time. | The stack member with the cryptographic image and the IP services feature set is elected stack master.
Note Only Catalyst 3650-E or 3750 switches running Cisco IOS Release 12.2(53)SE or earlier could be running the noncryptographic image. |
Understanding Switch Stacks

Stack master election specifically determined by the cryptographic software image and the IP base feature set

Assuming that all stack members have the same priority value:

1. Make sure that one stack member has the cryptographic image installed and the IP base feature set enabled and that the other stack member has the noncryptographic image installed and the IP base feature set enabled.
2. Restart both stack members at the same time.

The stack member with the cryptographic image and the IP base feature set is elected stack master.

Note Only Catalyst 3650-E or 3750 switches running Cisco IOS Release 12.2(53)SE or earlier could be running the noncryptographic image.

Stack master election specifically determined by the MAC address

Assuming that both stack members have the same priority value, configuration file, and feature set, restart both stack members at the same time.

The stack member with the lower MAC address is elected stack master.

Stack member number conflict

Assuming that one stack member has a higher priority value than the other stack member:

1. Ensure that both stack members have the same stack member number. If necessary, use the `switch current-stack-member-number renumber new-stack-member-number` global configuration command.
2. Restart both stack members at the same time.

The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number.

Add a stack member

1. Power off the new switch.
2. Through their StackWise Plus ports, connect the new switch to a powered-on switch stack.
3. Power on the new switch.

The stack master is retained. The new switch is added to the switch stack.

Stack master failure

Remove (or power off) the stack master. Based on the factors described in the “Stack Master Election and Re-Election” section on page 1-6, one of the remaining stack members becomes the new stack master. All other stack members in the stack remain as stack members and do not reboot.

Add more than nine stack members

1. Through their StackWise Plus ports, connect ten switches.
2. Power on all switches.

Two switches become stack masters. One stack master has nine stack members. The other stack master remains as a standalone switch.

Use the Mode button and port LEDs on the switches to identify which switches are stack masters and which switches belong to each stack master. For information about using the Mode button and the LEDs, see the hardware installation guide.

Table 1-2 Switch Stack Configuration Scenarios (continued)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
</table>
| Stack master election specifically determined by the cryptographic software image and the IP base feature set | Assuming that all stack members have the same priority value:
1. Make sure that one stack member has the cryptographic image installed and the IP base feature set enabled and that the other stack member has the noncryptographic image installed and the IP base feature set enabled.
2. Restart both stack members at the same time.
The stack member with the cryptographic image and the IP base feature set is elected stack master.
Note Only Catalyst 3650-E or 3750 switches running Cisco IOS Release 12.2(53)SE or earlier could be running the noncryptographic image. |
| Stack master election specifically determined by the MAC address | Assuming that both stack members have the same priority value, configuration file, and feature set, restart both stack members at the same time.
The stack member with the lower MAC address is elected stack master. |
| Stack member number conflict | Assuming that one stack member has a higher priority value than the other stack member:
1. Ensure that both stack members have the same stack member number. If necessary, use the `switch current-stack-member-number renumber new-stack-member-number` global configuration command.
2. Restart both stack members at the same time.
The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number. |
| Add a stack member | 1. Power off the new switch.
2. Through their StackWise Plus ports, connect the new switch to a powered-on switch stack.
3. Power on the new switch.
The stack master is retained. The new switch is added to the switch stack. |
| Stack master failure | Remove (or power off) the stack master. Based on the factors described in the “Stack Master Election and Re-Election” section on page 1-6, one of the remaining stack members becomes the new stack master. All other stack members in the stack remain as stack members and do not reboot. |
| Add more than nine stack members | 1. Through their StackWise Plus ports, connect ten switches.
2. Power on all switches.
Two switches become stack masters. One stack master has nine stack members. The other stack master remains as a standalone switch.
Use the Mode button and port LEDs on the switches to identify which switches are stack masters and which switches belong to each stack master. For information about using the Mode button and the LEDs, see the hardware installation guide. |
Rolling Stack Upgrade

After you upgrade or downgrade a stack, it reloads, and the connected hosts lose network connectivity. Use the rolling stack upgrade feature to minimize the network disruption only when your stack has redundant links. The members are upgraded one at a time.

Stack Configuration

You can run a rolling stack upgrade on a stack with this configuration:

- A dual-attached host, such as a server or an access point, is connected to two members through a cross-stack EtherChannel.
- The stack has these settings:
 - The members are connected through their StackWise Plus ports in a stack ring with redundant connections. For configuration examples, see the switch hardware installation guide.
 - The switch enables the persistent MAC address during the upgrade.
- At least one redundant uplink is connected to the network. The uplink has an active switch and a standby switch.
 - A member that has an interface with the active role is an active switch.
 - Another member that has an interface with the standby role is a standby switch.

Upgrade Process

Before you start the process, configure a redundant uplink to the network to ensure that the stack has network connectivity. You can also set the stack boot time.
Enter the `archive download-sw/rolling-stack-upgrade` privileged EXEC command to start the stack upgrade. During the upgrade, you can display the member upgrade sequence or the upgrade status on a member that is not being upgraded.

This process occurs in the software:

1. The stack is split into the unupgraded and the upgraded stacks. These stacks operate as separate stacks that do not exchange traffic. The Layer 3 interfaces in the upgraded stack are inactive.

2. The software determines the upgrade sequence:
 a. It first upgrades a standby member.
 b. It continues to upgrade the standby members that can be reached through Stack Port 1 on the first standby member until an active member is reached.
 c. It then upgrades the standby members that can be reached through Stack Port 2 on the first standby member until an active member is reached.

After the stack is upgraded, save the stack configuration in the configuration file. If you want the stack to keep the original master and not elect a new one, reload the stack.

Upgrade Sequence Examples

Figure 1-4 Stack Port 1 on Member 1 is Connected to Member 9

When Stack Port 1 on Member 1, the first standby switch, is connected to Stack Port 2 on Member 9, this is the upgrade sequence:

1. Member 1
2. Member 9
3. Member 8
4. Member 7
5. Member 6
6. Member 5
7. Member 2
8. Member 3
9. Member 4

Figure 1-5 Stack Port 1 on Member 1 is Connected to Member 2

When Stack Port 1 on Member 1, the first standby switch, is connected to Stack Port 2 on Member 2, this is the upgrade sequence:
1. Member 1
2. Member 2
3. Member 3
4. Member 9
5. Member 8
6. Member 7
7. Member 6
8. Member 5
9. Member 4
Configuring the Switch Stack

These sections contain this configuration information:

- Default Switch Stack Configuration, page 1-24
- Enabling Persistent MAC Address, page 1-24
- Assigning Stack Member Information, page 1-26
- Running a Rolling Stack Update, page 1-28

Default Switch Stack Configuration

Table 1-3 shows the default switch stack configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack MAC address timer</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Stack member number</td>
<td>1</td>
</tr>
<tr>
<td>Stack member priority value</td>
<td>1</td>
</tr>
<tr>
<td>Offline configuration</td>
<td>The switch stack is not provisioned.</td>
</tr>
</tbody>
</table>

Enabling Persistent MAC Address

The switch stack MAC address is determined by the MAC address of the stack master. When a stack master is removed from the stack and a new stack master takes over, the default is for the MAC address of the new stack master to immediately become the new stack MAC router address. However, you can enable the persistent MAC address feature to allow a time delay before the stack MAC address changes. During this time period, if the previous stack master rejoins the stack, the stack continues to use its MAC address as the stack MAC address, even if the switch is now a stack member and not a stack master. If the previous stack master does not rejoin the stack during this period, the switch stack takes the MAC address of the new stack master as the stack MAC address. You can also configure stack MAC persistency so that the stack never switches to the MAC address of the new stack master.

Note

When you enter the command to configure this feature, a warning message appears containing the consequences of your configuration. You should use this feature cautiously. Using the old stack master MAC address elsewhere in the same domain could result in lost traffic.

You can configure the time period as 0 to 60 minutes.

- If you enter the command with no value, the default delay is 4 minutes. We recommend that you always enter a value. If the command is entered without a value, the time delay appears in the running-config file with an explicit timer value of 4 minutes.
- If you enter 0, the stack MAC address of the previous stack master is used until you enter the `no stack-mac persistent timer` command, which immediately changes the stack MAC address to that of the current stack master. If you do not enter the `no stack-mac persistent timer` command, the stack MAC address never changes.
• If you enter a time delay of 1 to 60 minutes, the stack MAC address of the previous stack master is used until the configured time period expires or until you enter the no stack-mac persistent timer command.

Note

If the entire switch stack reloads, it uses the MAC address of the stack master as the stack MAC address.

Beginning in privileged EXEC mode, follow these steps to enable persistent MAC address. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | **stack-mac persistent timer [0 | time-value]** | Enable a time delay after a stack-master change before the stack MAC address changes to that of the new stack master. If the previous stack master rejoins the stack during this period, the stack uses that MAC address as the stack MAC address.
 • Enter the command with no value to set the default delay of approximately 4 minutes. We recommend that you always configure a value.
 • Enter 0 to continue using the MAC address of the current stack master indefinitely.
 • Enter a time-value from 1 to 60 minutes to configure the time period before the stack MAC address changes to the new stack master.
Note When you enter this command, a warning states that traffic might be lost if the old master MAC address appears elsewhere in the network domain. |
| **Step 3** | **end** | Return to privileged EXEC mode. |
| **Step 4** | **show running-config** or | Verify that the stack MAC address timer is enabled. If enabled, the output shows stack-mac persistent timer and the time in minutes. |
| **Step 5** | **show switch** | If enabled, the display includes:
 Mac persistency wait time, the number of minutes configured, and the current stack MAC address. |
| **Step 6** | **copy running-config startup-config** | (Optional) Save your entries in the configuration file. |

Use the no stack-mac persistent timer global configuration command to disable the persistent MAC address feature.

This example shows how to configure the persistent MAC address feature for a 7-minute time delay and to verify the configuration:

```bash
Switch(config)# stack-mac persistent timer 7
WARNING: The stack continues to use the base MAC of the old Master
WARNING: as the stack MAC after a master switchover until the MAC
WARNING: persistency timer expires. During this time the Network
WARNING: Administrators must make sure that the old stack-mac does
```
Assigning Stack Member Information

These sections describe how to assign stack member information:

- Assigning a Stack Member Number, page 1-26 (optional)
- Setting the Stack Member Priority Value, page 1-26 (optional)
- Provisioning a New Member for a Switch Stack, page 1-27 (optional)

Assigning a Stack Member Number

\[\text{Note} \]

This task is available only from the stack master.

Beginning in privileged EXEC mode, follow these steps to assign a member number to a stack member. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch current-stack-member-number renumber new-stack-member-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>reload slot stack-member-number</td>
</tr>
<tr>
<td>Step 5</td>
<td>show switch</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Setting the Stack Member Priority Value

\[\text{Note} \]

This task is available only from the stack master.
Beginning in privileged EXEC mode, follow these steps to assign a priority value to a stack member:
This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch stack-member-number priority new-priority-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>reload slot stack-member-number</td>
</tr>
<tr>
<td>Step 5</td>
<td>show switch stack-member-number</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Provisioning a New Member for a Switch Stack

Note This task is available only from the stack master.

Beginning in privileged EXEC mode, follow these steps to provision a new member for a switch stack. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show switch</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch stack-member-number provision type</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>show switch stack-member-number</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
To remove provisioned information and to avoid receiving an error message, remove the specified switch from the stack before you use the no form of this command.

For example, if you are removing a provisioned switch in a stack with this configuration:

- The stack has four members
- Stack member 1 is the master
- Stack member 3 is a provisioned switch

and want to remove the provisioned information and to avoid receiving an error message, you can remove power from stack member 3, disconnect the StackWise Plus cables between the stack member 3 and switches to which it is connected, reconnect the cables between the remaining stack members, and enter the no switch stack-member-number provision global configuration command.

This example shows how to provision a switch with a stack member number of 2 for the switch stack. The show running-config command output shows the interfaces associated with the provisioned switch:

```
Switch(config)# switch 2 provision switch_PID
Switch(config)# end
Switch# show running-config | include switch 2
!
interface GigabitEthernet2/0/1
!
interface GigabitEthernet2/0/2
!
interface GigabitEthernet2/0/3
<output truncated>
```

Running a Rolling Stack Update

Beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>boot time minutes</td>
<td>(Optional) Sets the stack boot time in minutes.</td>
</tr>
<tr>
<td></td>
<td>The range is from 7 to 30.</td>
</tr>
<tr>
<td></td>
<td>The default is 7.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specifies the port and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>rsu {active</td>
<td>standby}</td>
</tr>
<tr>
<td></td>
<td>• active—Sets the interface to active.</td>
</tr>
<tr>
<td></td>
<td>• standby—Sets the interface to standby.</td>
</tr>
<tr>
<td></td>
<td>Note If spanning tree protocol (STP) is enabled, set the standby role to the blocked interface.</td>
</tr>
<tr>
<td></td>
<td>By default, the role is not set.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specifies the port on another member, and enters interface configuration mode.</td>
</tr>
</tbody>
</table>
To run the rolling stack upgrade:

```plaintext
Switch# configure terminal
Switch(config)# boot time 15
Switch(config)# interface gigabitethernet 1/0/1
Switch(config-if)# rsu active
Switch(config-if)# exit
Switch(config)# interface gigabitethernet 4/0/1
Switch(config-if)# rsu standby
Switch(config-if)# end
Switch# archive download-sw /rolling-stack-upgrade
Switch# show switch stack-upgrade sequence
Upgrade Time Remaining: 21 minutes
Unupgraded Stack:
    Status
    1             RSU in Progress
    2             RSU in Progress
    3             RSU in Progress
Upgraded Stack:
Switch#   Status
Switch#       ...
Switch#  copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
      ...
Switch#  archive download-sw /force-reload
    ...
```

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>rsu {active</td>
<td>standby}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and assigns the other role to the member interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• active—Sets the interface to active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• standby—Sets the interface to standby.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note If spanning tree protocol (STP) is enabled, set the standby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>role to the blocked interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, the role is not set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To configure another pair, repeat Step 3 to Step 6.</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>archive download-sw</td>
<td>Starts the rolling state upgrade process to upgrade the members one at a</td>
</tr>
<tr>
<td></td>
<td>/rolling-stack-upgrade</td>
<td>time.</td>
</tr>
<tr>
<td>Step 9</td>
<td>show switch stack-upgrade sequence</td>
<td>(Optional) During the upgrade process, displays the member upgrade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sequence.</td>
</tr>
<tr>
<td>Step 10</td>
<td>show switch stack-upgrade status</td>
<td>(Optional) During the upgrade process, displays the rolling stack</td>
</tr>
<tr>
<td></td>
<td></td>
<td>upgrade status.</td>
</tr>
<tr>
<td>Step 11</td>
<td>show running-config</td>
<td>(Optional) Verifies the software image running on the member.</td>
</tr>
<tr>
<td>Step 12</td>
<td>copy running-config startup-config</td>
<td>Saves the stack configuration in the configuration file.</td>
</tr>
<tr>
<td>Step 13</td>
<td>archive download-sw /force-reload</td>
<td>(Optional) Forces a system reload after the rolling stack upgrade.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter this command only if you want the stack to keep the original</td>
</tr>
<tr>
<td></td>
<td></td>
<td>master and not elect a new one.</td>
</tr>
</tbody>
</table>
Accessing the CLI of a Specific Stack Member

Note
This task is only for debugging purposes, and is only available from the master.

You can access all or specific members by using the `remote command {all | stack-member-number}` privileged EXEC command. The stack member number range is 1 to 9.

You can access specific members by using the `session stack-member-number` privileged EXEC command. The member number is appended to the system prompt. For example, the prompt for member 2 is `Switch-2#`, and system prompt for the master is `Switch#`. Enter `exit` to return to the CLI session on the master. Only the `show` and `debug` commands are available on a specific member.

Displaying Switch Stack Information

To display saved configuration changes after resetting a specific member or the stack, use these privileged EXEC commands:

Table 1-4 Commands for Displaying Stack Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show platform stack manager all</code></td>
<td>Display all stack information, such as the stack protocol version.</td>
</tr>
<tr>
<td>`show platform stack ports {buffer</td>
<td>history}`</td>
</tr>
<tr>
<td><code>show switch</code></td>
<td>Display summary information about the stack, including the status of provisioned switches and switches in version-mismatch mode.</td>
</tr>
<tr>
<td><code>show switch stack-member-number</code></td>
<td>Display information about a specific member.</td>
</tr>
<tr>
<td><code>show switch detail</code></td>
<td>Display detailed information about the stack ring.</td>
</tr>
<tr>
<td><code>show switch neighbors</code></td>
<td>Display the stack neighbors.</td>
</tr>
</tbody>
</table>
Troubleshooting Stacks

- Manually Disabling a Stack Port, page 1-31
- Re-Enabling a Stack Port While Another Member Starts, page 1-32
- Understanding the show switch stack-ports summary Output, page 1-32
- Identifying Loopback Problems, page 1-33
- Finding a Disconnected Stack Cable, page 1-38
- Fixing a Bad Connection Between Stack Ports, page 1-39

Manually Disabling a Stack Port

If a stack port is flapping and causing instability in the stack ring, to disable the port, enter the `switch stack-member-number stack port port-number disable` privileged EXEC command. To re-enable the port, enter the `switch stack-member-number stack port port-number enable` command.

\[\text{Note}\]

Be careful when using the `switch stack-member-number stack port port-number disable` command. When you disable the stack port, the stack operates at half bandwidth.

- A stack is in the full-ring state when all members are connected through the stack ports and are in the ready state.
- The stack is in the partial-ring state when
 - All members are connected through the stack ports, but some all are not in the ready state.
 - Some members are not connected through the stack ports.

When you enter the `switch stack-member-number stack port port-number disable` privileged EXEC command and
- The stack is in the full-ring state, you can disable only one stack port. This message appears:
 \[\text{Enabling/disabling a stack port may cause undesired stack changes. Continue?[confirm]}\]
- The stack is in the partial-ring state, you cannot disable the port. This message appears:
 \[\text{Disabling stack port not allowed with current stack configuration.}\]
Re-Enabling a Stack Port While Another Member Starts

Stack Port 1 on Switch 1 is connected to Port 2 on Switch 4. If Port 1 is flapping, disable Port 1 with the `switch 1 stack port 1 disable` privileged EXEC command.

While Port 1 on Switch 1 is disabled and Switch 1 is still powered on:

1. Disconnect the stack cable between Port 1 on Switch 1 and Port 2 on Switch 4.
2. Remove Switch 4 from the stack.
3. Add a switch to replace Switch 4 and assign it switch-number 4.
4. Reconnect the cable between Port 1 on Switch 1 and Port 2 on Switch 4 (the replacement switch).
5. Re-enable the link between the switches. Enter the `switch 1 stack port 1 enable` privileged EXEC command to enable Port 1 on Switch 1.

Caution

Powering on Switch 4 before enabling the Port 1 on Switch 1 might cause one of the switches to reload.

If Switch 4 is powered on first, you might need to enter the `switch 1 stack port 1 enable` and the `switch 4 stack port 2 enable` privileged EXEC commands to bring up the link.

Understanding the show switch stack-ports summary Output

Only Port 1 on stack member 2 is disabled.

```
Switch# show switch stack-ports summary
Switch#/Port# Stack Neighbor Cable Length Link OK Link Active OK Sync Changes # Loopback To Link OK
-------- ------ -------- -------- ----- ----- ------ ---- ------- ------- --------- -------- -------------
1/1     OK     None    50 cm     Yes   Yes   Yes      1     No
1/2     Down   None    3 m      Yes   No    Yes      1     No
2/1     Down   None    3 m      Yes   No    Yes      1     No
2/2     OK     3       50 cm     Yes   Yes   Yes      1     No
3/1     OK     2       50 cm     Yes   Yes   Yes      1     No
3/2     OK     1       50 cm     Yes   Yes   Yes      1     No
```

Table 1-5 show switch stack-ports summary Command Output

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch#/Port#</td>
<td>Member number and its stack port number.</td>
</tr>
<tr>
<td>Stack Port Status</td>
<td>• Absent—No cable is detected on the stack port.</td>
</tr>
<tr>
<td></td>
<td>• Down—A cable is detected, but either no connected neighbor is up, or the stack port is disabled.</td>
</tr>
<tr>
<td></td>
<td>• OK—A cable is detected, and the connected neighbor is up.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>Switch number of the active member at the other end of the stack cable.</td>
</tr>
<tr>
<td>Cable Length</td>
<td>Valid lengths are 50 cm, 1 m, or 3 m.</td>
</tr>
<tr>
<td></td>
<td>If the switch cannot detect the cable length, the value is no cable. The cable might not be connected, or the link might be unreliable.</td>
</tr>
</tbody>
</table>
Identifying Loopback Problems

- Software Loopback, page 1-34
- Software Loopback Example: No Connected Stack Cable, page 1-35
- Software Loopback Examples: Connected Stack Cables, page 1-35
- Hardware Loopback, page 1-36
- Hardware Loopback Example: LINK OK event, page 1-36
- Hardware Loop Example: LINK NOT OK Event, page 1-37
Software Loopback

In a stack with three members, stack cables connect all the members.

<table>
<thead>
<tr>
<th>Switch#</th>
<th>show switch stack-ports summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port#</td>
<td>Stack</td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>1/1</td>
<td>OK</td>
</tr>
<tr>
<td>1/2</td>
<td>OK</td>
</tr>
<tr>
<td>2/1</td>
<td>OK</td>
</tr>
<tr>
<td>2/2</td>
<td>OK</td>
</tr>
<tr>
<td>3/1</td>
<td>OK</td>
</tr>
<tr>
<td>3/2</td>
<td>OK</td>
</tr>
</tbody>
</table>

If you disconnect the stack cable from Port 1 on Switch 1, these messages appear:

01:09:55: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 2 Switch 3 has changed to state DOWN
01:09:56: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 1 Switch 1 has changed to state DOWN

<table>
<thead>
<tr>
<th>Switch#</th>
<th>show switch stack-ports summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port#</td>
<td>Stack</td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>1/1</td>
<td>Absent</td>
</tr>
<tr>
<td>1/2</td>
<td>OK</td>
</tr>
<tr>
<td>2/1</td>
<td>OK</td>
</tr>
<tr>
<td>2/2</td>
<td>OK</td>
</tr>
<tr>
<td>3/1</td>
<td>OK</td>
</tr>
<tr>
<td>3/2</td>
<td>Down</td>
</tr>
</tbody>
</table>

If you disconnect the stack cable from Port 2 on Switch 1, the stack splits. Switch 2 and Switch 3 are now in a two-member stack connected through stack cables.

<table>
<thead>
<tr>
<th>Switch#</th>
<th>show sw stack-ports summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port#</td>
<td>Stack</td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>2/1</td>
<td>Down</td>
</tr>
<tr>
<td>2/2</td>
<td>OK</td>
</tr>
<tr>
<td>3/1</td>
<td>OK</td>
</tr>
<tr>
<td>3/2</td>
<td>Down</td>
</tr>
</tbody>
</table>

Switch 1 is a standalone switch.

<table>
<thead>
<tr>
<th>Switch#</th>
<th>show switch stack-ports summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port#</td>
<td>Stack</td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>1/1</td>
<td>Absent</td>
</tr>
<tr>
<td>1/2</td>
<td>Absent</td>
</tr>
</tbody>
</table>
Software Loopback Example: No Connected Stack Cable

Catalyst 3750 switch port status:

```
show switch stack-ports summary
```

```
Switch#  Stack  Neighbor  Cable   Link  Link  Sync  #  In
Port#    Port   Status   Length OK  Active OK  Changes Loopback
-------- ------ -------- -------- ---- ------ ---- -------- --------
1/1     Absent None    No cable Yes No Yes 1 Yes
1/2     Absent None    No cable Yes No Yes 1 Yes
```

Catalyst 3750-E or 3750-X switch port status:

```
show switch stack-ports summary
```

```
Switch#  Stack  Neighbor  Cable   Link  Link  Sync  #  In
Port#    Port   Status   Length OK  Active OK  Changes Loopback
-------- ------ -------- -------- ---- ------ ---- -------- --------
1/1     Absent None    No cable No No No 1 Yes
1/2     Absent None    No cable No No No 1 Yes
```

Software Loopback Examples: Connected Stack Cables

- On Port 1 on Switch 1, the port status is Down, and a cable is connected.

 On Port 2 on Switch 1, the port status is Absent, and no cable is connected.

```
show switch stack-ports summary
```

```
Switch#  Stack  Neighbor  Cable   Link  Link  Sync  #  In
Port#    Port   Status   Length OK  Active OK  Changes Loopback
-------- ------ -------- -------- ---- ------ ---- -------- --------
1/1     Down  None    50 cm     Yes Yes Yes 1 No
1/2     Absent None    No cable No No No 1 No
```

- In a physical loopback, a cable connects both stack ports on a switch. You can use this configuration to test
 - Cables on a switch that is running properly
 - Stack ports with a cable that works properly

```
show switch stack-ports summary
```

```
Switch#  Stack  Neighbor  Cable   Link  Link  Sync  #  In
Port#    Port   Status   Length OK  Active OK  Changes Loopback
-------- ------ -------- -------- ---- ------ ---- -------- --------
2/1     OK    2        50 cm     Yes Yes Yes 1 No
2/2     OK    2        50 cm     Yes Yes Yes 1 No
```

The port status shows that

- Switch 2 is a standalone switch.
- The ports can send and receive traffic.
Hardware Loopback

The `show platform stack ports buffer` privileged EXEC command output shows the hardware loopback values.

```
Switch# show platform stack ports buffer
Stack Debug Event Data Trace
===============================================================================
Event type LINK: Link status change
Event type RAC: RAC changes to Not OK
Event type SYNC: Sync changes to Not OK
===============================================================================
Event          Stack           Stack PCS Info              Ctrl-Status  Loopback   Cable
Count Port     IOS / HW   length
=============  ===========  =============  =========  =========  =========  =========
Event type: LINK OK Stack Port 1
0000000011 1 FF08FF00 860302A5 AA55FFFF FFFFFFFF 1CE61CE6     Yes/Yes  No cable
0000000011 2 FF08FF00 86031805 55AFFFFF FFFFFFFF 1CE61CE6     Yes/Yes  No cable
Event type: RAC
0000000012 1 FF08FF00 860302A5 AA55FFFF FFFFFFFF 1CE61CE6     Yes/Yes  No cable
0000000012 2 FF08FF00 86031805 55AFFFFF FFFFFFFF 1CE61CE6     Yes/Yes  No cable
```

On a Catalyst 3750 member,
- If at least one stack port has an connected stack cable, the *Loopback HW* value for both stack ports is *No*.
- If neither stack port has an connected stack cable, the *Loopback HW* value for both stack ports is *Yes*.

On a Catalyst 3750-E or Catalyst 3750-X member,
- If a stack port has an connected stack cable, the *Loopback HW* value for the stack port is *No*.
- If the stack port does not have an connected stack cable, the *Loopback HW* value for the stack port is *Yes*.

Hardware Loopback Example: LINK OK event

On a Catalyst 3750 switch:

```
Switch# show platform stack ports buffer
Stack Debug Event Data Trace
===============================================================================
Event type LINK: Link status change
Event type RAC: RAC changes to Not OK
Event type SYNC: Sync changes to Not OK
===============================================================================
Event          Stack           Stack PCS Info              Ctrl-Status  Loopback   Cable
Count Port     IOS / HW   length
=============  ===========  =============  =========  =========  =========  =========
Event type: LINK OK Stack Port 1
0000000008 1 FF08FF00 860302A5 55AFFFFF FFFFFFFF 0CE60C10     No /No   50 cm
0000000008 2 FF08FF00 0001DBDF 01000B00 FFFFFFFF 0CE60C10     No /No   No cable
Event type: RAC
0000000012 1 FF08FF00 860302A5 55AFFFFF FFFFFFFF 0CE60C10     No /No   50 cm
0000000012 2 FF08FF00 0001DC1F 02000100 FFFFFFFF 0CE60C10     No /No   No cable
```
On a Catalyst 3750-E or 3750-X switch:

Switch# `show platform stack ports buffer`

```
Stack Debug Event Data Trace

Event type LINK: Link status change
Event type RAC: RAC changes to Not OK
Event type SYNC: Sync changes to Not OK
```

<table>
<thead>
<tr>
<th>Event Count</th>
<th>Stack Port</th>
<th>Stack PCS Info</th>
<th>Ctrl-Status</th>
<th>Loopback</th>
<th>Cable length</th>
</tr>
</thead>
<tbody>
<tr>
<td>===========</td>
<td>===========</td>
<td>===============</td>
<td>===========</td>
<td>=========</td>
<td>=============</td>
</tr>
<tr>
<td>Event type: LINK OK Stack Port 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000000051 1 FF08FF00 86034DAC 5555FFFF FFFFFFFF 1CE61CE6 Yes/Yes No cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000000052 2 FF08FF00 86034DAC 5555FFFF FFFFFFFF 1CE61CE6 Yes/Yes No cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On a Catalyst 3750 switch:

Switch# `show platform stack ports buffer`

```
Stack Debug Event Data Trace

Event type LINK: Link status change
Event type RAC: RAC changes to Not OK
Event type SYNC: Sync changes to Not OK
```

<table>
<thead>
<tr>
<th>Event Count</th>
<th>Stack Port</th>
<th>Stack PCS Info</th>
<th>Ctrl-Status</th>
<th>Loopback</th>
<th>Cable length</th>
</tr>
</thead>
<tbody>
<tr>
<td>===========</td>
<td>===========</td>
<td>===============</td>
<td>===========</td>
<td>=========</td>
<td>=============</td>
</tr>
<tr>
<td>Event type: LINK OK Stack Port 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000000005 1 FF08FF00 0001FB0D 0801080B EFFFFFFF 0C100CE6 No /No 50 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000000006 2 FF08FF00 8603D4A9 5555FFFF FFFFFFFF 0C100CE6 No /No 50 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Loop Example: LINK NOT OK Event

On a Catalyst 3750 switch:

Switch# `show platform stack ports buffer`

```
Stack Debug Event Data Trace

Event type LINK: Link status change
Event type RAC: RAC changes to Not OK
Event type SYNC: Sync changes to Not OK
```

<table>
<thead>
<tr>
<th>Event Count</th>
<th>Stack Port</th>
<th>Stack PCS Info</th>
<th>Ctrl-Status</th>
<th>Loopback</th>
<th>Cable length</th>
</tr>
</thead>
<tbody>
<tr>
<td>===========</td>
<td>===========</td>
<td>===============</td>
<td>===========</td>
<td>=========</td>
<td>=============</td>
</tr>
<tr>
<td>Event type: LINK NOT OK Stack Port 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000000006 1 FF08FF00 0001FB0D 0801080B EFFFFFFF 0C100CE6 No /No 50 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000000007 2 FF08FF00 8603D4A9 5555FFFF FFFFFFFF 0C100CE6 No /No 50 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On a Catalyst 3750-E or 3750-X switch:

Switch# `show platform stack ports buffer`

```
Stack Debug Event Data Trace
```

Catalyst 3750-X and 3560-X Switch Software Configuration Guide

OL-29703-01

1-37
Event type LINK: Link status change
Event type RAC: RAC changes to Not OK
Event type SYNC: Sync changes to Not OK

Event Stack Stack PCS Info Ctrl-Status Loopback Cable
Count Port IOS / HW length
========= ===== =================================== =========== ======== ========
Event type: LINK OK Stack Port 1
0000000014 1 FF01FF00 860204A7 5555FFFF 00000000 0CE60CA6 No /No 50 cm
0000000014 2 FF01FF00 85020823 AAAAFFFF 00000000 0CE60CA6 No /No 3 m
Event type: RAC
0000000015 1 FF01FF00 860204A7 5555FFFF 00000000 0CE60CA6 No /No 50 cm
0000000015 2 FF01FF00 85020823 AAAAFFFF 00000000 0CE60CA6 No /No 3 m
Event type: LINK OK Stack Port 2
0000000029 1 FF01FF00 860204A7 5555FFFF 00000000 1CE61CE6 No /No 50 cm
0000000029 2 FF01FF00 85020823 AAAAFFFF 00000000 1CE61CE6 No /No 3 m
Event type: RAC
0000000030 1 FF01FF00 860204A7 5555FFFF 00000000 1CE61CE6 No /No 50 cm
0000000030 2 FF01FF00 85020823 AAAAFFFF 00000000 1CE61CE6 No /No 3 m
Event type: LINK NOT OK Stack Port 1
0000009732 1 FF01FF00 00015B12 5555FFFF A49CFFFF 0C140CE4 No /No 50 cm
0000009732 2 FF01FF00 86020823 AAAAFFFF 00000000 0C140CE4 No /No 3 m
Event type: RAC
0000009733 1 FF01FF00 00015B4A 5555FFFF A49CFFFF 0C140CE4 No /No 50 cm
0000009733 2 FF01FF00 86020823 AAAAFFFF 00000000 0C140CE4 No /No 3 m
Event type: LINK NOT OK Stack Port 2
0000010119 1 FF01FF00 00010E69 25953FFF FFFFFFFF 0C140C14 No /Yes No cable
0000010119 2 FF01FF00 0001D98C 81AAC7FF 0300FFFF 0C140C14 No /No 3 m
Event type: RAC
0000010120 1 FF01FF00 00010EEA 25953FFF FFFFFFFF 0C140C14 No /Yes No cable
0000010120 2 FF01FF00 0001DA0C 81AAC7FF 0300FFFF 0C140C14 No /No 3 m

Finding a Disconnected Stack Cable

Stack cables connect all stack members. Port 2 on Switch 1 connects to Port 1 on Switch 2.

This is the port status for the members:

<table>
<thead>
<tr>
<th>Switch#</th>
<th>show switch stack-ports summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show</td>
<td>Stack Neighbor Cable Length Link Link Link Sync # In</td>
</tr>
<tr>
<td>Port#</td>
<td>Port Status</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>1/1</td>
<td>OK</td>
</tr>
<tr>
<td>1/2</td>
<td>OK</td>
</tr>
<tr>
<td>2/1</td>
<td>OK</td>
</tr>
<tr>
<td>2/2</td>
<td>OK</td>
</tr>
</tbody>
</table>

If you disconnect the cable from Port 2 on Switch 1, these messages appear:

%STACKMGR-4-STACK_LINK_CHANGE: Stack Port 1 Switch 2 has changed to state DOWN

%STACKMGR-4-STACK_LINK_CHANGE: Stack Port 2 Switch 1 has changed to state DOWN
This is now the port status:

```
Switch# show switch stack-ports summary
Switch#/ Stack Neighbor Cable Link Link Sync # In
Port# Port Length OK Active OK Changes Loopback Status To LinkOK
-------- ------ -------- ------ ---- ---- ---- --------- --------
1/1   OK       2      50 cm   Yes   Yes   Yes        1        No
1/2 Absent   None    No cable   No   No   No         2        No
2/1   Down    None    50 cm    No    No   No         2        No
2/2   OK       1      50 cm   Yes   Yes   Yes       1          No
```

Only one end of the cable connects to a stack port, Port 1 on Switch 2.

- The `Stack Port Status` value for Port 2 on Switch 1 is *Absent*, and the value for Port 1 on Switch 2 is *Down*.
- The `Cable Length` value is *No cable*.

Diagnosing the problem:

- Verify the cable connection for Port 2 on Switch 1.
- Port 2 on Switch 1 has a port or cable problem if
 - The `In Loopback` value is *Yes*.
 - or
 - The `Link OK`, `Link Active`, or `Sync OK` value is *No*.

Fixing a Bad Connection Between Stack Ports

Stack cables connect all members. Port 2 on Switch 1 connects to Port 1 on Switch 2.

This is the port status:

```
Switch# show switch stack-ports summary
Switch#/ Stack Neighbor Cable Link Link Sync # In
Port# Port Length OK Active OK Changes Loopback Status To LinkOK
-------- ------ -------- ------ ---- ---- ---- --------- --------
1/1   OK       2      50 cm   Yes   Yes   Yes       1          No
1/2   Down    None    50 cm    No    No   No         2        No
2/1   Down    None    50 cm    No    No   No         2        No
2/2   OK       1      50 cm   Yes   Yes   Yes       1          No
```

Diagnosing the problem:

- The `Stack Port Status` value is *Down*.
- **Link OK, Link Active, and Sync OK values are No.**
- The `Cable Length` value is *50 cm*. The switch detects and correctly identifies the cable.

The connection between Port 2 on Switch 1 and Port 1 on Switch 2 is unreliable on at least one of the connector pins.
Clustering Switches

This chapter provides the concepts and procedures to create and manage Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X switch clusters. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

You can create and manage switch clusters by using Cisco Network Assistant (hereafter known as Network Assistant), the command-line interface (CLI), or SNMP. For complete procedures, see the online help. For the CLI cluster commands, see the switch command reference.

Network Assistant supports switch clusters, but we recommend that you instead group switches into communities. Network Assistant has a Cluster Conversion Wizard to help you convert a cluster to a community. For more information about Network Assistant, including introductory information on managing switch clusters and converting a switch cluster to a community, see Getting Started with Cisco Network Assistant, available on Cisco.com.

This chapter focuses on Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X switch clusters. It also includes guidelines and limitations for clusters mixed with other cluster-capable Catalyst switches, but it does not provide complete descriptions of the cluster features for these other switches. For complete cluster information for a specific Catalyst platform, see the software configuration guide for that switch.

This chapter consists of these sections:

- Understanding Switch Clusters, page 1-2
- Planning a Switch Cluster, page 1-4
- Using the CLI to Manage Switch Clusters, page 1-16
- Using SNMP to Manage Switch Clusters, page 1-17

We do not recommend using the `ip http access-class` global configuration command to limit access to specific hosts or networks. Access should be controlled through the cluster command switch or by applying access control lists (ACLs) on interfaces that are configured with IP address. For more information on ACLs, see Chapter 1, “Configuring Network Security with ACLs.”
Understanding Switch Clusters

A switch cluster is a set of up to 16 connected, cluster-capable Catalyst switches that are managed as a single entity. The switches in the cluster use the switch clustering technology so that you can configure and troubleshoot a group of different Catalyst desktop switch platforms through a single IP address.

In a switch cluster, 1 switch must be the cluster command switch and up to 15 other switches can be cluster member switches. The total number of switches in a cluster cannot exceed 16 switches. The cluster command switch is the single point of access used to configure, manage, and monitor the cluster member switches. Cluster members can belong to only one cluster at a time.

A switch cluster is different from a switch stack. A switch stack is a set of Catalyst 3750-X, Catalyst 3750-E, or Catalyst 3750 switches connected through their stack ports. For more information about how switch stacks differ from switch clusters, see the “Switch Clusters and Switch Stacks” section on page 1-14.

The benefits of clustering switches include:

- Management of Catalyst switches regardless of their interconnection media and their physical locations. The switches can be in the same location, or they can be distributed across a Layer 2 or Layer 3 (if your cluster is using a Catalyst 3560, Catalyst 3750, Catalyst 3560-E, Catalyst 3750-E, Catalyst 3560-X, or Catalyst 3750-X switch as a Layer 3 router between the Layer 2 switches in the cluster) network.

 Cluster members are connected to the cluster command switch according to the connectivity guidelines described in the “Automatic Discovery of Cluster Candidates and Members” section on page 1-5. This section includes management VLAN considerations for the Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches. For complete information about these switches in a switch-cluster environment, see the software configuration guide for that specific switch.

- Command-switch redundancy if a cluster command switch fails. One or more switches can be designated as standby cluster command switches to avoid loss of contact with cluster members. A cluster standby group is a group of standby cluster command switches.

- Management of a variety of Catalyst switches through a single IP address. This conserves on IP addresses, especially if you have a limited number of them. All communication with the switch cluster is through the cluster command switch IP address.

Table 1-1 lists the Catalyst switches eligible for switch clustering, including which ones can be cluster command switches and which ones can only be cluster member switches, and the required software versions.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Cisco IOS Release</th>
<th>Cluster Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst 3750-X</td>
<td>12.2(53)SE2 or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 3750-E</td>
<td>12.2(35)SE2 or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 3750</td>
<td>12.1(11)AX or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 3560-X</td>
<td>12.2(53)SE1 or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 3560-E</td>
<td>12.2(35)SE2 or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 3560</td>
<td>12.1(19)EA1b or later</td>
<td>Member or command switch</td>
</tr>
</tbody>
</table>
Table 1-1 Switch Software and Cluster Capability (continued)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Cisco IOS Release</th>
<th>Cluster Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst 3550</td>
<td>12.1(4)EA1 or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 2970</td>
<td>12.1(11)AX or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 2960</td>
<td>12.2(25)FX or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 2955</td>
<td>12.1(12c)EA1 or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 2950</td>
<td>12.0(5.2)WC(1) or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 2950 LRE</td>
<td>12.1(11)JY or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 2940</td>
<td>12.1(13)AY or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 3500 XL</td>
<td>12.0(5.1)XU or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 2900 XL (8-MB switches)</td>
<td>12.0(5.1)XU or later</td>
<td>Member or command switch</td>
</tr>
<tr>
<td>Catalyst 2900 XL (4-MB switches)</td>
<td>11.2(8.5)SA6 (recommended)</td>
<td>Member switch only</td>
</tr>
<tr>
<td>Catalyst 1900 and 2820</td>
<td>9.00(-A or -EN) or later</td>
<td>Member switch only</td>
</tr>
</tbody>
</table>

Cluster Command Switch Characteristics

A cluster command switch must meet these requirements:

- It is running a supported software release.
- It has an IP address.
- It has Cisco Discovery Protocol (CDP) Version 2 enabled (the default).
- It is not a command or cluster member switch of another cluster.
- It is connected to the standby cluster command switches through the management VLAN and to the cluster member switches through a common VLAN.

Standby Cluster Command Switch Characteristics

A standby cluster command switch must meet these requirements:

- It is running a supported software release.
- It has an IP address.
- It has CDP Version 2 enabled.
- It is connected to the command switch and to other standby command switches through its management VLAN.
- It is connected to all other cluster member switches (except the cluster command and standby command switches) through a common VLAN.
- It is redundantly connected to the cluster so that connectivity to cluster member switches is maintained.
- It is not a command or member switch of another cluster.
Candidate switch and Cluster Member Switch Characteristics

Candidate switches are cluster-capable switches and switch stacks that have not yet been added to a cluster. Cluster member switches are switches and switch stacks that have actually been added to a switch cluster. Although not required, a candidate or cluster member switch can have its own IP address and password (for related considerations, see the “IP Addresses” section on page 1-13 and “Passwords” section on page 1-14).

To join a cluster, a candidate switch must meet these requirements:

- It is running cluster-capable software.
- It has CDP Version 2 enabled.
- It is not a command or cluster member switch of another cluster.
- If a cluster standby group exists, it is connected to every standby cluster command switch through at least one common VLAN. The VLAN to each standby cluster command switch can be different.
- The ip http server global configuration command must be configured on the switch.
- It is connected to the cluster command switch through at least one common VLAN.

Note

Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, Catalyst 2940, Catalyst 2950, and Catalyst 3500 XL candidate and cluster member switches must be connected through their management VLAN to the cluster command switch and standby cluster command switches. For complete information about these switches in a switch-cluster environment, see the software configuration guide for that specific switch.

This requirement does not apply if you have a Catalyst 2960, Catalyst 2970, Catalyst 3550, Catalyst 3560, Catalyst 3560-E, Catalyst 3750, Catalyst 3750-E, Catalyst 3650-X, or Catalyst 3750-X cluster command switch. Candidate and cluster member switches can connect through any VLAN in common with the cluster command switch.

Planning a Switch Cluster

Anticipating conflicts and compatibility issues is a high priority when you manage several switches through a cluster. This section describes these guidelines, requirements, and caveats that you should understand before you create the cluster:

- Automatic Discovery of Cluster Candidates and Members, page 1-5
- HSRP and Standby Cluster Command Switches, page 1-10
- IP Addresses, page 1-13
- Hostnames, page 1-13
Automatic Discovery of Cluster Candidates and Members

The cluster command switch uses Cisco Discovery Protocol (CDP) to discover cluster member switches, candidate switches, neighboring switch clusters, and edge devices across multiple VLANs and in star or cascaded topologies.

Note
Do not disable CDP on the cluster command switch, on cluster members, or on any cluster-capable switches that you might want a cluster command switch to discover. For more information about CDP, see Chapter 1, “Configuring CDP.”

Following these connectivity guidelines ensures automatic discovery of the switch cluster, cluster candidates, connected switch clusters, and neighboring edge devices:

- Discovery Through CDP Hops, page 1-5
- Discovery Through Non-CDP-Capable and Noncluster-Capable Devices, page 1-6
- Discovery Through Different VLANs, page 1-7
- Discovery Through Different Management VLANs, page 1-7
- Discovery Through Routed Ports, page 1-8
- Discovery of Newly Installed Switches, page 1-9

Discovery Through CDP Hops

By using CDP, a cluster command switch can discover switches up to seven CDP hops away (the default is three hops) from the edge of the cluster. The edge of the cluster is where the last cluster member switches are connected to the cluster and to candidate switches. For example, cluster member switches 9 and 10 in Figure 1-1 are at the edge of the cluster.

In Figure 1-1, the cluster command switch has ports assigned to VLANs 16 and 62. The CDP hop count is three. The cluster command switch discovers switches 11, 12, 13, and 14 because they are within three hops from the edge of the cluster. It does not discover switch 15 because it is four hops from the edge of the cluster.
Discovery Through Non-CDP-Capable and Noncluster-Capable Devices

If a cluster command switch is connected to a non-CDP-capable third-party hub (such as a non-Cisco hub), it can discover cluster-enabled devices connected to that third-party hub. However, if the cluster command switch is connected to a noncluster-capable Cisco device, it cannot discover a cluster-enabled device connected beyond the noncluster-capable Cisco device.

Figure 1-2 shows that the cluster command switch discovers the switch that is connected to a third-party hub. However, the cluster command switch does not discover the switch that is connected to a Catalyst 5000 switch.
Discovery Through Different VLANs

If the cluster command switch is a Catalyst 3560-E, Catalyst 3750-E, Catalyst 3560-X, or Catalyst 3750-X switch, the cluster can have cluster member switches in different VLANs. As cluster member switches, they must be connected through at least one VLAN in common with the cluster command switch. The cluster command switch in Figure 1-3 has ports assigned to VLANs 9, 16, and 62 and therefore discovers the switches in those VLANs. It does not discover the switch in VLAN 50. It also does not discover the switch in VLAN 16 in the first column because the cluster command switch has no VLAN connectivity to it.

Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL cluster member switches must be connected to the cluster command switch through their management VLAN. For information about discovery through management VLANs, see the “Discovery Through Different Management VLANs” section on page 1-7. For more information about VLANs, see Chapter 1, “Configuring VLANs.”

For additional considerations about VLANs in switch stacks, see the “Switch Clusters and Switch Stacks” section on page 1-14.

Discovery Through Different Management VLANs

Catalyst 2960, Catalyst 2970, Catalyst 3550, Catalyst 3560, Catalyst 3560-E, Catalyst 3750, Catalyst 3750-E, Catalyst 3560-X, or Catalyst 3750-X cluster command switches can discover and manage cluster member switches in different VLANs and different management VLANs. As cluster member switches, they must be connected through at least one VLAN in common with the cluster command switch. They do not need to be connected to the cluster command switch through their management VLAN. The default management VLAN is VLAN 1.
If the switch cluster has a Catalyst 3750-E or Catalyst 3750-X switch or switch stack, that switch or switch stack must be the cluster command switch.

The cluster command switch and standby command switch in Figure 1-4 (assuming they are Catalyst 2960, Catalyst 2970, Catalyst 3550, Catalyst 3560, Catalyst 3560-E, Catalyst 3750, Catalyst 3750-E, Catalyst 3560-X, or Catalyst 3750-X cluster command switches) have ports assigned to VLANs 9, 16, and 62. The management VLAN on the cluster command switch is VLAN 9. Each cluster command switch discovers the switches in the different management VLANs except these:

- Switches 7 and 10 (switches in management VLAN 4) because they are not connected through a common VLAN (meaning VLANs 62 and 9) with the cluster command switch.
- Switch 9 because automatic discovery does not extend beyond a noncandidate device, which is switch 7.

Figure 1-4 Discovery Through Different Management VLANs with a Layer 3 Cluster Command Switch

Discovery Through Routed Ports

If the cluster command switch has a routed port (RP) configured, it discovers only candidate and cluster member switches in the same VLAN as the routed port. For more information about routed ports, see the “Routed Ports” section on page 1-4.

The Layer 3 cluster command switch in Figure 1-5 can discover the switches in VLANs 9 and 62 but not the switch in VLAN 4. If the routed port path between the cluster command switch and cluster member switch 7 is lost, connectivity with cluster member switch 7 is maintained because of the redundant path through VLAN 9.
Discovery of Newly Installed Switches

To join a cluster, the new, out-of-the-box switch must be connected to the cluster through one of its access ports. An access port (AP) carries the traffic of and belongs to only one VLAN. By default, the new switch and its access ports are assigned to VLAN 1.

When the new switch joins a cluster, its default VLAN changes to the VLAN of the immediately upstream neighbor. The new switch also configures its access port to belong to the VLAN of the immediately upstream neighbor.

The cluster command switch in Figure 1-6 belongs to VLANs 9 and 16. When new cluster-capable switches join the cluster:

- One cluster-capable switch and its access port are assigned to VLAN 9.
- The other cluster-capable switch and its access port are assigned to management VLAN 16.

Figure 1-6 Discovery of Newly Installed Switches
HSRP and Standby Cluster Command Switches

The switch supports Hot Standby Router Protocol (HSRP) so that you can configure a group of standby cluster command switches. Because a cluster command switch manages the forwarding of all communication and configuration information to all the cluster member switches, we strongly recommend the following:

- For a cluster command switch stack, a standby cluster command switch is necessary if the entire switch stack fails. However, if only the stack master in the command switch stack fails, the switch stack elects a new stack master and resumes its role as the cluster command switch stack.

- For a cluster command switch that is a standalone switch, configure a standby cluster command switch to take over if the primary cluster command switch fails.

A cluster standby group is a group of command-capable switches that meet the requirements described in the “Standby Cluster Command Switch Characteristics” section on page 1-3. Only one cluster standby group can be assigned per cluster.

Note

The cluster standby group is an HSRP group. Disabling HSRP disables the cluster standby group.

The switches in the cluster standby group are ranked according to HSRP priorities. The switch with the highest priority in the group is the active cluster command switch (AC). The switch with the next highest priority is the standby cluster command switch (SC). The other switches in the cluster standby group are the passive cluster command switches (PC). If the active cluster command switch and the standby cluster command switch become disabled at the same time, the passive cluster command switch with the highest priority becomes the active cluster command switch. For the limitations to automatic discovery, see the “Automatic Recovery of Cluster Configuration” section on page 1-12. For information about changing HSRP priority values, see the “Configuring HSRP Priority” section on page 1-8. The HSRP standby priority interface configuration commands are the same for changing the priority of cluster standby group members and router-redundancy group members.

Note

The HSRP standby hold time interval should be greater than or equal to three times the hello time interval. The default HSRP standby hold time interval is 10 seconds. The default HSRP standby hello time interval is 3 seconds. For more information about the standby hold time and standby hello time intervals, see the “Configuring HSRP Authentication and Timers” section on page 1-10.

These connectivity guidelines ensure automatic discovery of the switch cluster, cluster candidates, connected switch clusters, and neighboring edge devices. These topics also provide more detail about standby cluster command switches:

- Virtual IP Addresses, page 1-11
- Other Considerations for Cluster Standby Groups, page 1-11
- Automatic Recovery of Cluster Configuration, page 1-12
Virtual IP Addresses

You need to assign a unique virtual IP address and group number and name to the cluster standby group. This information must be configured on a specific VLAN or routed port on the active cluster command switch. The active cluster command switch receives traffic destined for the virtual IP address. To manage the cluster, you must access the active cluster command switch through the virtual IP address, not through the command-switch IP address. This is in case the IP address of the active cluster command switch is different from the virtual IP address of the cluster standby group.

If the active cluster command switch fails, the standby cluster command switch assumes ownership of the virtual IP address and becomes the active cluster command switch. The passive switches in the cluster standby group compare their assigned priorities to decide the new standby cluster command switch. The passive standby switch with the highest priority then becomes the standby cluster command switch. When the previously active cluster command switch becomes active again, it resumes its role as the active cluster command switch, and the current active cluster command switch becomes the standby cluster command switch again. For more information about IP address in switch clusters, see the “IP Addresses” section on page 1-13.

Other Considerations for Cluster Standby Groups

Note
For additional considerations about cluster standby groups in switch stacks, see the “Switch Clusters and Switch Stacks” section on page 1-14.

These requirements also apply:

- Standby cluster command switches must be the same type of switches as the cluster command switch. For example, if the cluster command switch is a Catalyst 3750-E or Catalyst 3750-X switch, the standby cluster command switches must also be Catalyst 3750-E or Catalyst 3750-X switches. See the switch configuration guide of other cluster-capable switches for their requirements on standby cluster command switches.

- If your switch cluster has a Catalyst 3750-X switch or a switch stack, it should be the cluster command switch. If not, when the cluster has a Catalyst 3750-E switch or switch stack, that switch should be the cluster command switch.

- Only one cluster standby group can be assigned to a cluster. You can have more than one router-redundancy standby group.

An HSRP group can be both a cluster standby group and a router-redundancy group. However, if a router-redundancy group becomes a cluster standby group, router redundancy becomes disabled on that group. You can re-enable it by using the CLI. For more information about HSRP and router redundancy, see Chapter 1, “Configuring HSRP and VRRP.”

- All standby-group members must be members of the cluster.

Note
There is no limit to the number of switches that you can assign as standby cluster command switches. However, the total number of switches in the cluster—which would include the active cluster command switch, standby-group members, and cluster member switches—cannot be more than 16.
Each standby-group member (Figure 1-7) must be connected to the cluster command switch through the same VLAN. In this example, the cluster command switch and standby cluster command switches are Catalyst 3560-E, Catalyst 3750-E, Catalyst 3560-X, or Catalyst 3750-X cluster command switches. Each standby-group member must also be redundantly connected to each other through at least one VLAN in common with the switch cluster.

Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL cluster member switches must be connected to the cluster standby group through their management VLANs. For more information about VLANs in switch clusters, see these sections:
- “Discovery Through Different VLANs” section on page 1-7
- “Discovery Through Different Management VLANs” section on page 1-7

Automatic Recovery of Cluster Configuration

The active cluster command switch continually forwards cluster-configuration information (but not device-configuration information) to the standby cluster command switch. This ensures that the standby cluster command switch can take over the cluster immediately after the active cluster command switch fails.

Automatic discovery has these limitations:
- This limitation applies only to clusters that have Catalyst 2950, Catalyst 2960, Catalyst 2970, Catalyst 3550, Catalyst 3560, Catalyst 3560-E, Catalyst 3560-X, Catalyst 3750, Catalyst 3750-E, and Catalyst 3750-X command and standby cluster command switches: If the active cluster command switch and standby cluster command switch become disabled at the same time, the passive cluster command switch with the highest priority becomes the active cluster command switch. However, because it was a passive standby cluster command switch, the previous cluster command switch did not forward cluster-configuration information to it. The active cluster command switch only forwards cluster-configuration information to the standby cluster command switch. You must therefore rebuild the cluster.
• This limitation applies to all clusters: If the active cluster command switch fails and there are more than two switches in the cluster standby group, the new cluster command switch does not discover any Catalyst 1900, Catalyst 2820, and Catalyst 2916M XL cluster member switches. You must re-add these cluster member switches to the cluster.

• This limitation applies to all clusters: If the active cluster command switch fails and becomes active again, it does not discover any Catalyst 1900, Catalyst 2820, and Catalyst 2916M XL cluster member switches. You must again add these cluster member switches to the cluster.

When the previously active cluster command switch resumes its active role, it receives a copy of the latest cluster configuration from the active cluster command switch, including members that were added while it was down. The active cluster command switch sends a copy of the cluster configuration to the cluster standby group.

IP Addresses

You must assign IP information to a cluster command switch. You can assign more than one IP address to the cluster command switch, and you can access the cluster through any of the command-switch IP addresses. If you configure a cluster standby group, you must use the standby-group virtual IP address to manage the cluster from the active cluster command switch. Using the virtual IP address ensures that you retain connectivity to the cluster if the active cluster command switch fails and that a standby cluster command switch becomes the active cluster command switch.

If the active cluster command switch fails and the standby cluster command switch takes over, you must either use the standby-group virtual IP address or any of the IP addresses available on the new active cluster command switch to access the cluster.

You can assign an IP address to a cluster-capable switch, but it is not necessary. A cluster member switch is managed and communicates with other cluster member switches through the command-switch IP address. If the cluster member switch leaves the cluster and it does not have its own IP address, you must assign an IP address to manage it as a standalone switch.

For more information about IP addresses, see Chapter 1, “Assigning the Switch IP Address and Default Gateway.”

Hostnames

You do not need to assign a host name to either a cluster command switch or an eligible cluster member. However, a hostname assigned to the cluster command switch can help to identify the switch cluster. The default hostname for the switch is *Switch*.

If a switch joins a cluster and it does not have a hostname, the cluster command switch appends a unique member number to its own hostname and assigns it sequentially as each switch joins the cluster. The number means the order in which the switch was added to the cluster. For example, a cluster command switch named *eng-cluster* could name the fifth cluster member *eng-cluster-5*.

If a switch has a hostname, it retains that name when it joins a cluster and when it leaves the cluster.

If a switch received its hostname from the cluster command switch, was removed from a cluster, was then added to a new cluster, and kept the same member number (such as 5), the switch overwrites the old hostname (such as *eng-cluster-5*) with the hostname of the cluster command switch in the new cluster (such as *mkg-cluster-5*). If the switch member number changes in the new cluster (such as 3), the switch retains the previous name (*eng-cluster-5*).
Passwords

You do not need to assign passwords to an individual switch if it will be a cluster member. When a switch joins a cluster, it inherits the command-switch password and retains it when it leaves the cluster. If no command-switch password is configured, the cluster member switch inherits a null password. Cluster member switches only inherit the command-switch password.

If you change the member-switch password to be different from the command-switch password and save the change, the switch is not manageable by the cluster command switch until you change the member-switch password to match the command-switch password. Rebooting the member switch does not revert the password back to the command-switch password. We recommend that you do not change the member-switch password after it joins a cluster.

For more information about passwords, see the “Preventing Unauthorized Access to Your Switch” section on page 1-1.

For password considerations specific to the Catalyst 1900 and Catalyst 2820 switches, see the installation and configuration guides for those switches.

SNMP Community Strings

A cluster member switch inherits the command-switch first read-only (RO) and read-write (RW) community strings with @esN appended to the community strings:

- command-switch-readonly-community-string@esN, where N is the member-switch number.
- command-switch-readwrite-community-string@esN, where N is the member-switch number.

If the cluster command switch has multiple read-only or read-write community strings, only the first read-only and read-write strings are propagated to the cluster member switch.

The switches support an unlimited number of community strings and string lengths. For more information about SNMP and community strings, see Chapter 1, “Configuring SNMP.”

For SNMP considerations specific to the Catalyst 1900 and Catalyst 2820 switches, see the installation and configuration guides specific to those switches.

Switch Clusters and Switch Stacks

A switch cluster can have one or more Catalyst 3750-E switch stacks. Each switch stack can act as the cluster command switch or as a single cluster member. Table 1-2 describes the basic differences between switch stacks and switch clusters. For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”

<table>
<thead>
<tr>
<th>Switch Stack</th>
<th>Switch Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Made up of Catalyst 3750-E or Catalyst 3750-X switches only</td>
<td>Made up of cluster-capable switches, such as Catalyst 3750-E, Catalyst 3560-E, Catalyst 3750, and Catalyst 2950 switches</td>
</tr>
<tr>
<td>Stack members are connected through StackWise Plus ports</td>
<td>Cluster members are connected through LAN ports</td>
</tr>
<tr>
<td>Requires one stack master and supports up to eight other stack members</td>
<td>Requires 1 cluster command switch and supports up to 15 other cluster member switches</td>
</tr>
</tbody>
</table>
Recall that stack members work together to behave as a unified system (as a single switch stack) in the network and are presented to the network as such by Layer 2 and Layer 3 protocols. Therefore, the switch cluster recognizes switch stacks, not individual stack members, as eligible cluster members. Individual stack members cannot join a switch cluster or participate as separate cluster members. Because a switch cluster must have 1 cluster command switch and can have up to 15 cluster members, a cluster can potentially have up to 16 switch stacks, totalling 144 devices.

Cluster configuration of switch stacks is through the stack master.

These are considerations to keep in mind when you have switch stacks in switch clusters:

- If the cluster command switch is not a Catalyst 3750-E switch or switch stack and a new stack master is elected in a cluster member switch stack, the switch stack loses its connectivity to the switch cluster if there are no redundant connections between the switch stack and the cluster command switch. You must add the switch stack to the switch cluster.

- If the cluster command switch is a switch stack and new stack masters are simultaneously elected in the cluster command switch stack and in cluster member switch stacks, connectivity between the switch stacks is lost if there are no redundant connections between the switch stack and the cluster command switch. You must add the switch stacks to the cluster, including the cluster command switch stack.

- All stack members should have redundant connectivity to all VLANs in the switch cluster. Otherwise, if a new stack master is elected, stack members connected to any VLANs not configured on the new stack master lose their connectivity to the switch cluster. You must change the VLAN configuration of the stack master or the stack members and add the stack members back to the switch cluster.

Table 1-2 Basic Comparison of Switch Stacks and Switch Clusters (continued)

<table>
<thead>
<tr>
<th>Switch Stack</th>
<th>Switch Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be a cluster command switch or a cluster member switch</td>
<td>Cannot be a stack master or stack member</td>
</tr>
<tr>
<td>Stack master is the single point of complete management for all stack members in a particular switch stack</td>
<td>Cluster command switch is the single point of some management for all cluster members in a particular switch cluster</td>
</tr>
<tr>
<td>Back-up stack master is automatically determined in case the stack master fails</td>
<td>Standby cluster command switch must be pre-assigned in case the cluster command switch fails</td>
</tr>
<tr>
<td>Switch stack supports up to eight simultaneous stack master failures</td>
<td>Switch cluster supports only one cluster command switch failure at a time</td>
</tr>
<tr>
<td>Stack members (as a switch stack) behave and is presented as a single, unified system in the network</td>
<td>Cluster members are various, independent switches that are not managed as and do not behave as a unified system</td>
</tr>
<tr>
<td>Integrated management of stack members through a single configuration file</td>
<td>Cluster members have separate, individual configuration files</td>
</tr>
<tr>
<td>Stack- and interface-level configurations are stored on each stack member</td>
<td>Cluster configuration are stored on the cluster command switch and the standby cluster command switch</td>
</tr>
<tr>
<td>New stack members are automatically added to the switch stack</td>
<td>New cluster members must be manually added to the switch cluster</td>
</tr>
</tbody>
</table>
• If a cluster member switch stack reloads and a new stack master is elected, the switch stack loses connectivity with the cluster command switch. You must add the switch stack back to the switch cluster.

• If a cluster command switch stack reloads, and the original stack master is not re-elected, you must rebuild the entire switch cluster.

For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”

TACACS+ and RADIUS

If Terminal Access Controller Access Control System Plus (TACACS+) is configured on a cluster member, it must be configured on all cluster members. Similarly, if RADIUS is configured on a cluster member, it must be configured on all cluster members. Further, the same switch cluster cannot have some members configured with TACACS+ and other members configured with RADIUS.

For more information about TACACS+, see the “Controlling Switch Access with TACACS+” section on page 1-10. For more information about RADIUS, see the “Controlling Switch Access with RADIUS” section on page 1-17.

LRE Profiles

A configuration conflict occurs if a switch cluster has Long-Reach Ethernet (LRE) switches that use both private and public profiles. If one LRE switch in a cluster is assigned a public profile, all LRE switches in that cluster must have that same public profile. Before you add an LRE switch to a cluster, make sure that you assign it the same public profile used by other LRE switches in the cluster.

A cluster can have a mix of LRE switches that use different private profiles.

Using the CLI to Manage Switch Clusters

You can configure cluster member switches from the CLI by first logging into the cluster command switch. Enter the rcommand user EXEC command and the cluster member switch number to start a Telnet session (through a console or Telnet connection) and to access the cluster member switch CLI. The command mode changes, and the Cisco IOS commands operate as usual. Enter the exit privileged EXEC command on the cluster member switch to return to the command-switch CLI.

This example shows how to log into member-switch 3 from the command-switch CLI:

```
switch# rcommand 3
```

If you do not know the member-switch number, enter the show cluster members privileged EXEC command on the cluster command switch. For more information about the rcommand command and all other cluster commands, see the switch command reference.

The Telnet session accesses the member-switch CLI at the same privilege level as on the cluster command switch. The Cisco IOS commands then operate as usual. For instructions on configuring the switch for a Telnet session, see the “Disabling Password Recovery” section on page 1-5.

Note

The CLI supports creating and maintaining switch clusters with up to 16 switch stacks. For more information about switch stack and switch cluster, see the “Switch Clusters and Switch Stacks” section on page 1-14.
Catalyst 1900 and Catalyst 2820 CLI Considerations

If your switch cluster has Catalyst 1900 and Catalyst 2820 switches running standard edition software, the Telnet session accesses the management console (a menu-driven interface) if the cluster command switch is at privilege level 15. If the cluster command switch is at privilege level 1 to 14, you are prompted for the password to access the menu console.

Command-switch privilege levels map to the Catalyst 1900 and Catalyst 2820 cluster member switches running standard and Enterprise Edition Software as follows:

- If the command-switch privilege level is 1 to 14, the cluster member switch is accessed at privilege level 1.
- If the command-switch privilege level is 15, the cluster member switch is accessed at privilege level 15.

Note: The Catalyst 1900 and Catalyst 2820 CLI is available only on switches running Enterprise Edition Software.

For more information about the Catalyst 1900 and Catalyst 2820 switches, see the installation and configuration guides for those switches.

Using SNMP to Manage Switch Clusters

When you first power on the switch, SNMP is enabled if you enter the IP information by using the setup program and accept its proposed configuration. If you did not use the setup program to enter the IP information and SNMP was not enabled, you can enable it as described in the “Configuring SNMP” section on page 1-7. On Catalyst 1900 and Catalyst 2820 switches, SNMP is enabled by default.

When you create a cluster, the cluster command switch manages the exchange of messages between cluster member switches and an SNMP application. The cluster software on the cluster command switch appends the cluster member switch number (@esN, where N is the switch number) to the first configured read-write and read-only community strings on the cluster command switch and propagates them to the cluster member switch. The cluster command switch uses this community string to control the forwarding of gets, sets, and get-next messages between the SNMP management station and the cluster member switches.

Note: When a cluster standby group is configured, the cluster command switch can change without your knowledge. Use the first read-write and read-only community strings to communicate with the cluster command switch if there is a cluster standby group configured for the cluster.

If the cluster member switch does not have an IP address, the cluster command switch redirects traps from the cluster member switch to the management station, as shown in Figure 1-8. If a cluster member switch has its own IP address and community strings, the cluster member switch can send traps directly to the management station, without going through the cluster command switch.

If a cluster member switch has its own IP address and community strings, they can be used in addition to the access provided by the cluster command switch. For more information about SNMP and community strings, see Chapter 1, “Configuring SNMP.”
Figure 1-8 SNMP Management for a Cluster

SNMP Manager

Trap 1, Trap 2, Trap 3

Command switch

Trap

Trap

Member 1

Member 2

Member 3
Administrating the Switch

This chapter describes how to perform one-time operations to administer the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

This chapter consists of these sections:

- Managing the System Time and Date, page 1-1
- Configuring a System Name and Prompt, page 1-7
- Creating a Banner, page 1-10
- Managing the MAC Address Table, page 1-12
- Managing the ARP Table, page 1-24

Managing the System Time and Date

You can manage the system time and date on your switch using automatic configuration, such as the Network Time Protocol (NTP), or manual configuration methods.

Note

For complete syntax and usage information for the commands used in this section, see the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4.

These sections contain this configuration information:

- Understanding the System Clock, page 1-2
- Understanding Network Time Protocol, page 1-2
- NTP Version 4, page 1-4
- Configuring Time and Date Manually, page 1-4
Understanding the System Clock

The heart of the time service is the system clock. This clock runs from the moment the system starts up and keeps track of the date and time.

The system clock can then be set from these sources:
- NTP
- Manual configuration

The system clock can provide time to these services:
- User `show` commands
- Logging and debugging messages

The system clock keeps track of time internally based on Universal Time Coordinated (UTC), also known as Greenwich Mean Time (GMT). You can configure information about the local time zone and summer time (daylight saving time) so that the time appears correctly for the local time zone.

The system clock keeps track of whether the time is authoritative or not (that is, whether it has been set by a time source considered to be authoritative). If it is not authoritative, the time is available only for display purposes and is not redistributed. For configuration information, see the “Configuring Time and Date Manually” section on page 1-4.

Understanding Network Time Protocol

The NTP is designed to time-synchronize a network of devices. NTP runs over User Datagram Protocol (UDP), which runs over IP. NTP is documented in RFC 1305.

An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the network. NTP is extremely efficient; no more than one packet per minute is necessary to synchronize two devices to within a millisecond of one another.

NTP uses the concept of a stratum to describe how many NTP hops away a device is from an authoritative time source. A stratum 1 time server has a radio or atomic clock directly attached, a stratum 2 time server receives its time through NTP from a stratum 1 time server, and so on. A device running NTP automatically chooses as its time source the device with the lowest stratum number with which it communicates through NTP. This strategy effectively builds a self-organizing tree of NTP speakers.

NTP avoids synchronizing to a device whose time might not be accurate by never synchronizing to a device that is not synchronized. NTP also compares the time reported by several devices and does not synchronize to a device whose time is significantly different than the others, even if its stratum is lower.

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP address of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, in that case, information flow is one-way only.

The time kept on a device is a critical resource; you should use the security features of NTP to avoid the accidental or malicious setting of an incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.
Cisco’s implementation of NTP does not support stratum 1 service; it is not possible to connect to a radio or atomic clock. We recommend that the time service for your network be derived from the public NTP servers available on the IP Internet.

Figure 1-1 shows a typical network example using NTP. Switch A is the NTP master, with the Switch B, C, and D configured in NTP server mode, in server association with Switch A. Switch E is configured as an NTP peer to the upstream and downstream switches, Switch B and Switch F, respectively.

If the network is isolated from the Internet, Cisco’s implementation of NTP allows a device to act as if it is synchronized through NTP, when in fact it has learned the time by using other means. Other devices then synchronize to that device through NTP.

When multiple sources of time are available, NTP is always considered to be more authoritative. NTP time overrides the time set by any other method.

Several manufacturers include NTP software for their host systems, and a publicly available version for systems running UNIX and its various derivatives is also available. This software allows host systems to be time-synchronized as well.
NTP Version 4

NTP version 4 is implemented on the switch. NTPv4 is an extension of NTP version 3. NTPv4 supports both IPv4 and IPv6 and is backward-compatible with NTPv3.

NTPv4 provides these capabilities:

- Support for IPv6.
- Improved security compared to NTPv3. The NTPv4 protocol provides a security framework based on public key cryptography and standard X509 certificates.
- Automatic calculation of the time-distribution hierarchy for a network. Using specific multicast groups, NTPv4 automatically configures the hierarchy of the servers to achieve the best time accuracy for the lowest bandwidth cost. This feature leverages site-local IPv6 multicast addresses.

Note: You can disable NTP packets from being received on routed ports and VLAN interfaces. You cannot disable NTP packets from being received on access ports. For details, see the “Disabling NTPv4 Services on a Specific Interface” section of the “Implementing NTPv4 in IPv6” chapter of the Cisco IOS IPv6 Configuration Guide, Release 12.4T.

For details about configuring NTPv4, see the “Implementing NTPv4 in IPv6” chapter of the Cisco IOS IPv6 Configuration Guide, Release 12.4T.

Configuring Time and Date Manually

If no other source of time is available, you can manually configure the time and date after the system is restarted. The time remains accurate until the next system restart. We recommend that you use manual configuration only as a last resort. If you have an outside source to which the switch can synchronize, you do not need to manually set the system clock.

Note: You must reset this setting if you have manually set the system clock and the stack master fails and different stack member resumes the role of stack master.

These sections contain this configuration information:

- Setting the System Clock, page 1-4
- Displaying the Time and Date Configuration, page 1-5
- Configuring the Time Zone, page 1-5
- Configuring Summer Time (Daylight Saving Time), page 1-6

Setting the System Clock

If you have an outside source on the network that provides time services, such as an NTP server, you do not need to manually set the system clock.
Beginning in privileged EXEC mode, follow these steps to set the system clock:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>clock set hh:mm:ss day month year</td>
<td>Manually set the system clock using one of these formats.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>clock set hh:mm:ss month day year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For hh:mm:ss, specify the time in hours (24-hour format), minutes, and seconds. The time specified is relative to the configured time zone.</td>
</tr>
<tr>
<td></td>
<td>• For day, specify the day by date in the month.</td>
</tr>
<tr>
<td></td>
<td>• For month, specify the month by name.</td>
</tr>
<tr>
<td></td>
<td>• For year, specify the year (no abbreviation).</td>
</tr>
</tbody>
</table>

This example shows how to manually set the system clock to 1:32 p.m. on July 23, 2001:

```
Switch# clock set 13:32:00 23 July 2001
```

Displaying the Time and Date Configuration

To display the time and date configuration, use the `show clock [detail]` privileged EXEC command. The system clock keeps an *authoritative* flag that shows whether the time is authoritative (believed to be accurate). If the system clock has been set by a timing source such as NTP, the flag is set. If the time is not authoritative, it is used only for display purposes. Until the clock is authoritative and the *authoritative* flag is set, the flag prevents peers from synchronizing to the clock when the peers' time is invalid.

The symbol that precedes the `show clock` display has this meaning:

- *—Time is not authoritative.
- (blank)—Time is authoritative.
- .—Time is authoritative, but NTP is not synchronized.

Configuring the Time Zone

Beginning in privileged EXEC mode, follow these steps to manually configure the time zone:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>clock timezone zone hours-offset [minutes-offset]</td>
<td>Set the time zone.</td>
</tr>
<tr>
<td></td>
<td>The switch keeps internal time in universal time coordinated (UTC), so this command is used only for display purposes and when the time is manually set.</td>
</tr>
<tr>
<td></td>
<td>• For zone, enter the name of the time zone to be displayed when standard time is in effect. The default is UTC.</td>
</tr>
<tr>
<td></td>
<td>• For hours-offset, enter the hours offset from UTC.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For minutes-offset, enter the minutes offset from UTC.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Managing the System Time and Date

Chapter 1 Administering the Switch

Managing the System Time and Date

The minutes-offset variable in the clock timezone global configuration command is available for those cases where a local time zone is a percentage of an hour different from UTC. For example, the time zone for some sections of Atlantic Canada (AST) is UTC-3.5, where the 3 means 3 hours and .5 means 50 percent. In this case, the necessary command is clock timezone AST -3.5.

To set the time to UTC, use the no clock timezone global configuration command.

Configuring Summer Time (Daylight Saving Time)

Beginning in privileged EXEC mode, follow these steps to configure summer time (daylight saving time) in areas where it starts and ends on a particular day of the week each year:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The first part of the clock summer-time global configuration command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere.

This example shows how to specify that summer time starts on the first Sunday in April at 02:00 and ends on the last Sunday in October at 02:00:

Switch(config)# clock summer-time PDT recurring 1 Sunday April 2:00 last Sunday October 2:00
Beginning in privileged EXEC mode, follow these steps if summer time in your area does not follow a recurring pattern (configure the exact date and time of the next summer time events):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>clock summer-time zone date [month date year hh:mm month date year hh:mm [offset]] or clock summer-time zone date [date month year hh:mm month year hh:mm [offset]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

The first part of the `clock summer-time` global configuration command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere.

To disable summer time, use the `no clock summer-time` global configuration command.

This example shows how to set summer time to start on October 12, 2000, at 02:00, and end on April 26, 2001, at 02:00:

```
Switch(config)# clock summer-time pdt date 12 October 2000 2:00 26 April 2001 2:00
```

Configuring a System Name and Prompt

You configure the system name on the switch to identify it. By default, the system name and prompt are `Switch`.

If you have not configured a system prompt, the first 20 characters of the system name are used as the system prompt. A greater-than symbol `>` is appended. The prompt is updated whenever the system name changes.

If you are accessing a stack member through the stack master, you must use the `session stack-member-number` privileged EXEC command. The stack member number range is from 1 through 9. When you use this command, the stack member number is appended to the system prompt. For example, `Switch-2#` is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the switch stack is `Switch`.
Default System Name and Prompt Configuration

The default switch system name and prompt is Switch.

Configuring a System Name

Beginning in privileged EXEC mode, follow these steps to manually configure a system name:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>hostname name</td>
<td>Manually configure a system name.</td>
</tr>
<tr>
<td></td>
<td>The default setting is switch.</td>
</tr>
<tr>
<td></td>
<td>The name must follow the rules for ARPANET hostnames. They must start</td>
</tr>
<tr>
<td></td>
<td>with a letter, end with a letter or digit, and have as interior</td>
</tr>
<tr>
<td></td>
<td>characters only letters, digits, and hyphens. Names can be up to 63</td>
</tr>
<tr>
<td></td>
<td>characters.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When you set the system name, it is also used as the system prompt.

To return to the default hostname, use the no hostname global configuration command.

Understanding DNS

The DNS protocol controls the Domain Name System (DNS), a distributed database with which you can map hostnames to IP addresses. When you configure DNS on your switch, you can substitute the hostname for the IP address with all IP commands, such as ping, telnet, connect, and related Telnet support operations.

IP defines a hierarchical naming scheme that allows a device to be identified by its location or domain. Domain names are pieced together with periods (.) as the delimiting characters. For example, Cisco Systems is a commercial organization that IP identifies by a com domain name, so its domain name is cisco.com. A specific device in this domain, for example, the File Transfer Protocol (FTP) system is identified as ftp.cisco.com.
To keep track of domain names, IP has defined the concept of a domain name server, which holds a cache (or database) of names mapped to IP addresses. To map domain names to IP addresses, you must first identify the hostnames, specify the name server that is present on your network, and enable the DNS.

These sections contain this configuration information:
- Default DNS Configuration, page 1-9
- Setting Up DNS, page 1-9
- Displaying the DNS Configuration, page 1-10

Default DNS Configuration

Table 1-1 shows the default DNS configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS enable state</td>
<td>Enabled.</td>
</tr>
<tr>
<td>DNS default domain name</td>
<td>None configured.</td>
</tr>
<tr>
<td>DNS servers</td>
<td>No name server addresses are configured.</td>
</tr>
</tbody>
</table>

Setting Up DNS

Beginning in privileged EXEC mode, follow these steps to set up your switch to use the DNS:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip domain-name</td>
<td>Define a default domain name that the software uses to complete unqualified hostnames (names without a dotted-decimal domain name). Do not include the initial period that separates an unqualified name from the domain name. At boot time, no domain name is configured; however, if the switch configuration comes from a BOOTP or Dynamic Host Configuration Protocol (DHCP) server, then the default domain name might be set by the BOOTP or DHCP server (if the servers were configured with this information).</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip name-server</td>
<td>Specify the address of one or more name servers to use for name and address resolution. You can specify up to six name servers. Separate each server address with a space. The first server specified is the primary server. The switch sends DNS queries to the primary server first. If that query fails, the backup servers are queried.</td>
</tr>
<tr>
<td></td>
<td>server-address1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[server-address2 ... server-address6]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>(Optional) Enable DNS-based hostname-to-address translation on your switch. This feature is enabled by default. If your network devices require connectivity with devices in networks for which you do not control name assignment, you can dynamically assign device names that uniquely identify your devices by using the global Internet naming scheme (DNS).</th>
</tr>
</thead>
</table>
Creating a Banner

You can configure a message-of-the-day (MOTD) and a login banner. The MOTD banner displays on all connected terminals at login and is useful for sending messages that affect all network users (such as impending system shutdowns).

The login banner also displays on all connected terminals. It appears after the MOTD banner and before the login prompts.

For complete syntax and usage information for the commands used in this section, see the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4.

These sections contain this configuration information:

- Default Banner Configuration, page 1-10
- Configuring a Message-of-the-Day Login Banner, page 1-11
- Configuring a Login Banner, page 1-12

Default Banner Configuration

The MOTD and login banners are not configured.
Configuring a Message-of-the-Day Login Banner

You can create a single or multiline message banner that appears on the screen when someone logs in to the switch.

Beginning in privileged EXEC mode, follow these steps to configure a MOTD login banner:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>banner motd c message c</td>
</tr>
<tr>
<td></td>
<td>For c, enter the delimiting character of your choice, for example, a</td>
</tr>
<tr>
<td></td>
<td>pound sign (#), and press the Return key.</td>
</tr>
<tr>
<td></td>
<td>For message, enter a banner message up to 255 characters. You cannot</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete the MOTD banner, use the **no banner motd** global configuration command.

This example shows how to configure a MOTD banner for the switch by using the pound sign (#) symbol as the beginning and ending delimiter:

```
Switch(config)# banner motd #
This is a secure site. Only authorized users are allowed.
For access, contact technical support.
#
Switch(config)#
```

This example shows the banner that appears from the previous configuration:

```
Unix> telnet 172.2.5.4
Trying 172.2.5.4...
Connected to 172.2.5.4.
Escape character is '^]'.

This is a secure site. Only authorized users are allowed.
For access, contact technical support.

User Access Verification
Password:
```
Configuring a Login Banner

You can configure a login banner to be displayed on all connected terminals. This banner appears after the MOTD banner and before the login prompt.

Beginning in privileged EXEC mode, follow these steps to configure a login banner:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 banner login c message c</td>
<td>Specify the login message.</td>
</tr>
<tr>
<td></td>
<td>For c, enter the delimiting character of your choice, for example, a pound sign (#), and press the Return key. The delimiting character signifies the beginning and end of the banner text. Characters after the ending delimiter are discarded.</td>
</tr>
<tr>
<td></td>
<td>For message, enter a login message up to 255 characters. You cannot use the delimiting character in the message.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the login banner, use the **no banner login** global configuration command.

This example shows how to configure a login banner for the switch by using the dollar sign ($) symbol as the beginning and ending delimiter:

```
Switch(config)# banner login $
Access for authorized users only. Please enter your username and password.
$
Switch(config)#
```

Managing the MAC Address Table

The MAC address table contains address information that the switch uses to forward traffic between ports. All MAC addresses in the address table are associated with one or more ports. The address table includes these types of addresses:

- Dynamic address: a source MAC address that the switch learns and then ages when it is not in use.
- Static address: a manually entered unicast address that does not age and that is not lost when the switch resets.

The address table lists the destination MAC address, the associated VLAN ID, and port number associated with the address and the type (static or dynamic).

Note

For complete syntax and usage information for the commands used in this section, see the command reference for this release.
Building the Address Table

With multiple MAC addresses supported on all ports, you can connect any port on the switch to individual workstations, repeaters, switches, routers, or other network devices. The switch provides dynamic addressing by learning the source address of packets it receives on each port and adding the address and its associated port number to the address table. As stations are added or removed from the network, the switch updates the address table, adding new dynamic addresses and aging out those that are not in use.

The aging interval is globally configured on a standalone switch or on the switch stack. However, the switch maintains an address table for each VLAN, and STP can accelerate the aging interval on a per-VLAN basis.

The switch sends packets between any combination of ports, based on the destination address of the received packet. Using the MAC address table, the switch forwards the packet only to the port associated with the destination address. If the destination address is on the port that sent the packet, the packet is filtered and not forwarded. The switch always uses the store-and-forward method: complete packets are stored and checked for errors before transmission.

MAC Addresses and VLANs

All addresses are associated with a VLAN. An address can exist in more than one VLAN and have different destinations in each. Unicast addresses, for example, could be forwarded to port 1 in VLAN 1 and ports 9, 10, and 1 in VLAN 5.

Each VLAN maintains its own logical address table. A known address in one VLAN is unknown in another until it is learned or statically associated with a port in the other VLAN.
When private VLANs are configured, address learning depends on the type of MAC address:

- Dynamic MAC addresses learned in one VLAN of a private VLAN are replicated in the associated VLANs. For example, a MAC address learned in a private-VLAN secondary VLAN is replicated in the primary VLAN.
- Static MAC addresses configured in a primary or secondary VLAN are not replicated in the associated VLANs. When you configure a static MAC address in a private VLAN primary or secondary VLAN, you should also configure the same static MAC address in all associated VLANs.

For more information about private VLANs, see Chapter 1, “Configuring Private VLANs.”

MAC Addresses and Switch Stacks

The MAC address tables on all stack members are synchronized. At any given time, each stack member has the same copy of the address tables for each VLAN. When an address ages out, the address is removed from the address tables on all stack members. When a switch joins a switch stack, that switch receives the addresses for each VLAN learned on the other stack members. When a stack member leaves the switch stack, the remaining stack members age out or remove all addresses learned by the former stack member.

Default MAC Address Table Configuration

Table 1-2 shows the default MAC address table configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging time</td>
<td>300 seconds</td>
</tr>
<tr>
<td>Dynamic addresses</td>
<td>Automatically learned</td>
</tr>
<tr>
<td>Static addresses</td>
<td>None configured</td>
</tr>
</tbody>
</table>

Changing the Address Aging Time

Dynamic addresses are source MAC addresses that the switch learns and then ages when they are not in use. You can change the aging time setting for all VLANs or for a specified VLAN.

Setting too short an aging time can cause addresses to be prematurely removed from the table. Then when the switch receives a packet for an unknown destination, it floods the packet to all ports in the same VLAN as the receiving port. This unnecessary flooding can impact performance. Setting too long an aging time can cause the address table to be filled with unused addresses, which prevents new addresses from being learned. Flooding results, which can impact switch performance.
Beginning in privileged EXEC mode, follow these steps to configure the dynamic address table aging time:

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>mac address-table aging-time [0</td>
<td>10-1000000] [vlan vlan-id]</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show mac address-table aging-time</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default value, use the **no mac address-table aging-time** global configuration command.

Removing Dynamic Address Entries

To remove all dynamic entries, use the **clear mac address-table dynamic** command in privileged EXEC mode. You can also remove a specific MAC address (**clear mac address-table dynamic address mac-address**), remove all addresses on the specified physical port or port channel (**clear mac address-table dynamic interface interface-id**), or remove all addresses on a specified VLAN (**clear mac address-table dynamic vlan vlan-id**).

To verify that dynamic entries have been removed, use the **show mac address-table dynamic** privileged EXEC command.

Configuring MAC Address Change Notification Traps

MAC address change notification tracks users on a network by storing the MAC address change activity. When the switch learns or removes a MAC address, an SNMP notification trap can be sent to the NMS. If you have many users coming and going from the network, you can set a trap-interval time to bundle the notification traps to reduce network traffic. The MAC notification history table stores MAC address activity for each port for which the trap is set. MAC address change notifications are generated for dynamic and secure MAC addresses. Notifications are not generated for self addresses, multicast addresses, or other static addresses.
Beginning in privileged EXEC mode, follow these steps to configure the switch to send MAC address change notification traps to an NMS host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 snmp-server host host-addr {traps</td>
<td>informs} {version {1</td>
</tr>
<tr>
<td></td>
<td>For host-addr, specify the name or address of the NMS.</td>
</tr>
<tr>
<td></td>
<td>For community-string, specify the string to send with the notification operation. Though you can set this string by using the <code>snmp-server host</code> command, we recommend that you define this string by using the <code>snmp-server community</code> command before using the <code>snmp-server host</code> command.</td>
</tr>
<tr>
<td></td>
<td>For notification-type, use the <code>mac-notification</code> keyword.</td>
</tr>
<tr>
<td>Step 3 snmp-server enable traps mac-notification change</td>
<td>Enable the switch to send MAC address change notification traps to the NMS.</td>
</tr>
<tr>
<td>Step 4 mac address-table notification change</td>
<td>Enable the MAC address change notification feature.</td>
</tr>
<tr>
<td>Step 5 mac address-table notification change {interval *value} [history-size *value]\</td>
<td>Enter the trap interval time and the history table size.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For interval value, specify the notification trap interval in seconds between each set of traps that are generated to the NMS. The range is 0 to 2147483647 seconds; the default is 1 second.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For history-size value, specify the maximum number of entries in the MAC notification history table. The range is 0 to 500; the default is 1.</td>
</tr>
<tr>
<td>Step 6 interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 2 interface on which to enable the SNMP MAC address notification trap.</td>
</tr>
<tr>
<td>Step 7 snmp trap mac-notification change {added</td>
<td>removed}</td>
</tr>
<tr>
<td></td>
<td>For added, enable the trap when a MAC address is added on this interface.</td>
</tr>
<tr>
<td></td>
<td>For removed, enable the trap when a MAC address is removed from this interface.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
To disable MAC address-change notification traps, use the `no snmp-server enable traps mac-notification change` global configuration command. To disable the MAC address-change notification traps on a specific interface, use the `no snmp trap mac-notification change` interface configuration command. To disable the MAC address-change notification feature, use the `no mac address-table notification change` global configuration command.

This example shows how to specify 172.20.10.10 as the NMS, enable the switch to send MAC address notification traps to the NMS, enable the MAC address-change notification feature, set the interval time to 123 seconds, set the history-size to 100 entries, and enable traps whenever a MAC address is added on the specified port.

```
Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification
Switch(config)# snmp-server enable traps mac-notification change
Switch(config)# mac address-table notification change
Switch(config)# mac address-table notification change interval 123
Switch(config)# mac address-table notification change history-size 100
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# snmp trap mac-notification change added
```

You can verify your settings by entering the `show mac address-table notification change interface` and the `show mac address-table notification change` privileged EXEC commands.

Configuring MAC Address Move Notification Traps

When you configure MAC-move notification, an SNMP notification is generated and sent to the network management system whenever a MAC address moves from one port to another within the same VLAN.
Beginning in privileged EXEC mode, follow these steps to configure the switch to send MAC address-move notification traps to an NMS host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server host host-addr {traps</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>snmp-server enable traps mac-notification move</td>
</tr>
<tr>
<td>Step 4</td>
<td>mac address-table notification mac-move</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show mac address-table notification mac-move show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable MAC address-move notification traps, use the no snmp-server enable traps mac-notification move global configuration command. To disable the MAC address-move notification feature, use the no mac address-table notification mac-move global configuration command.

This example shows how to specify 172.20.10.10 as the NMS, enable the switch to send MAC address move notification traps to the NMS, enable the MAC address move notification feature, and enable traps when a MAC address moves from one port to another.

```
Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification
Switch(config)# snmp-server enable traps mac-notification move
Switch(config)# mac address-table notification mac-move
```

You can verify your settings by entering the show mac address-table notification mac-move privileged EXEC commands.

Configuring MAC Threshold Notification Traps

When you configure MAC threshold notification, an SNMP notification is generated and sent to the network management system when a MAC address table threshold limit is reached or exceeded.
Beginning in privileged EXEC mode, follow these steps to configure the switch to send MAC address table threshold notification traps to an NMS host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>`snmp-server host host-addr [traps</td>
<td>informs] {version [1</td>
</tr>
<tr>
<td></td>
<td>• For <code>host-addr</code>, specify the name or address of the NMS.</td>
</tr>
<tr>
<td></td>
<td>• Specify <code>traps</code> (the default) to send SNMP traps to the host.</td>
</tr>
<tr>
<td></td>
<td>• Specify <code>informs</code> to send SNMP informs to the host.</td>
</tr>
<tr>
<td></td>
<td>• Specify the SNMP version to support. Version 1, the default, is</td>
</tr>
<tr>
<td></td>
<td>not available with informs.</td>
</tr>
<tr>
<td></td>
<td>• For <code>community-string</code>, specify the string to send with the</td>
</tr>
<tr>
<td></td>
<td>notification operation. Though you can set this string by using</td>
</tr>
<tr>
<td></td>
<td>the <code>snmp-server host</code> command, we recommend that you define this</td>
</tr>
<tr>
<td></td>
<td>string by using the <code>snmp-server community</code> command before using the</td>
</tr>
<tr>
<td></td>
<td><code>snmp-server host</code> command.</td>
</tr>
<tr>
<td></td>
<td>• For <code>notification-type</code>, use the <code>mac-notification</code> keyword.</td>
</tr>
<tr>
<td><code>snmp-server enable traps mac-notification threshold</code></td>
<td>Enable the switch to send MAC threshold notification traps to the NMS.</td>
</tr>
<tr>
<td><code>mac address-table notification threshold</code></td>
<td>Enable the MAC address threshold notification feature.</td>
</tr>
<tr>
<td><code>mac address-table notification threshold [limit percentage] [interval time]</code></td>
<td>Enter the threshold value for the MAC address threshold usage monitoring.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For limit percentage, specify the percentage of the</td>
</tr>
<tr>
<td></td>
<td>MAC address table use; valid values are from 1 to 100 percent.</td>
</tr>
<tr>
<td></td>
<td>The default is 50 percent.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For interval time, specify the time between notifications;</td>
</tr>
<tr>
<td></td>
<td>valid values are greater than or equal to 120 seconds. The default</td>
</tr>
<tr>
<td></td>
<td>is 120 seconds.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show mac address-table notification threshold</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable MAC address-threshold notification traps, use the `no snmp-server enable traps mac-notification threshold` global configuration command. To disable the MAC address-threshold notification feature, use the `no mac address-table notification threshold` global configuration command.

This example shows how to specify 172.20.10.10 as the NMS, enable the MAC address threshold notification feature, set the interval time to 123 seconds, and set the limit to 78 percent.

```bash
Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification
Switch(config)# snmp-server enable traps mac-notification threshold
Switch(config)# mac address-table notification threshold
Switch(config)# mac address-table notification threshold interval 123
Switch(config)# mac address-table notification threshold limit 78
```
You can verify your settings by entering the `show mac address-table notification threshold` privileged EXEC commands.

Adding and Removing Static Address Entries

A static address has these characteristics:

- It is manually entered in the address table and must be manually removed.
- It can be a unicast or multicast address.
- It does not age and is retained when the switch restarts.

You can add and remove static addresses and define the forwarding behavior for them. The forwarding behavior defines how a port that receives a packet forwards it to another port for transmission. Because all ports are associated with at least one VLAN, the switch acquires the VLAN ID for the address from the ports that you specify. You can specify a different list of destination ports for each source port.

A packet with a static address that arrives on a VLAN where it has not been statically entered is flooded to all ports and not learned.

You add a static address to the address table by specifying the destination MAC unicast address and the VLAN from which it is received. Packets received with this destination address are forwarded to the interface specified with the `interface-id` option.

When you configure a static MAC address in a private-VLAN primary or secondary VLAN, you should also configure the same static MAC address in all associated VLANs. Static MAC addresses configured in a private-VLAN primary or secondary VLAN are not replicated in the associated VLAN. For more information about private VLANs, see Chapter 1, “Configuring Private VLANs.”

Beginning in privileged EXEC mode, follow these steps to add a static address:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 mac address-table static mac-addr</td>
<td>Add a static address to the MAC address table.</td>
</tr>
<tr>
<td>vlan vlan-id interface interface-id</td>
<td></td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show mac address-table static</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>mac-addr [interface interface-id]</td>
<td></td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove static entries from the address table, use the `no mac address-table static mac-addr vlan vlan-id [interface interface-id]` global configuration command.
Managing the MAC Address Table

This example shows how to add the static address c2f3.220a.12f4 to the MAC address table. When a packet is received in VLAN 4 with this MAC address as its destination address, the packet is forwarded to the specified port:

```
Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 interface gigabitethernet1/0/1
```

Configuring Unicast MAC Address Filtering

When unicast MAC address filtering is enabled, the switch drops packets with specific source or destination MAC addresses. This feature is disabled by default and only supports unicast static addresses.

Follow these guidelines when using this feature:

- Multicast MAC addresses, broadcast MAC addresses, and router MAC addresses are not supported. If you specify one of these addresses when entering the `mac address-table static mac-addr vlan vlan-id drop` global configuration command, one of these messages appears:

 `% Only unicast addresses can be configured to be dropped`

 `% CPU destined address cannot be configured as drop address`

- Packets that are forwarded to the CPU are also not supported.

- If you add a unicast MAC address as a static address and configure unicast MAC address filtering, the switch either adds the MAC address as a static address or drops packets with that MAC address, depending on which command was entered last. The second command that you entered overrides the first command.

 For example, if you enter the `mac address-table static mac-addr vlan vlan-id interface interface-id` global configuration command followed by the `mac address-table static mac-addr vlan vlan-id drop` command, the switch drops packets with the specified MAC address as a source or destination.

 If you enter the `mac address-table static mac-addr vlan vlan-id drop` global configuration command followed by the `mac address-table static mac-addr vlan vlan-id interface interface-id` command, the switch adds the MAC address as a static address.

You enable unicast MAC address filtering and configure the switch to drop packets with a specific address by specifying the source or destination unicast MAC address and the VLAN from which it is received.

Beginning in privileged EXEC mode, follow these steps to configure the switch to drop a source or destination unicast static address:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | mac address-table static mac-addr vlan vlan-id drop | Enable unicast MAC address filtering and configure the switch to drop a packet with the specified source or destination unicast static address.
 - For `mac-addr`, specify a source or destination unicast MAC address. Packets with this MAC address are dropped.
 - For `vlan-id`, specify the VLAN for which the packet with the specified MAC address is received. Valid VLAN IDs are 1 to 4094. |
| 3 | end | Return to privileged EXEC mode. |
Disabling MAC Address Learning on a VLAN

By default, MAC address learning is enabled on all VLANs on the switch. You can control MAC address learning on a VLAN to manage the available MAC address table space by controlling which VLANs, and therefore which ports, can learn MAC addresses. Before you disable MAC address learning, be sure that you are familiar with the network topology and the switch system configuration. Disabling MAC address learning on a VLAN could cause flooding in the network.

Follow these guidelines when disabling MAC address learning on a VLAN:

- Use caution before disabling MAC address learning on a VLAN with a configured switch virtual interface (SVI). The switch then floods all IP packets in the Layer 2 domain.
- You can disable MAC address learning on a single VLAN ID (for example, `no mac address-table learning vlan 223`) or on a range of VLAN IDs (for example, `no mac address-table learning vlan 1-20, 15`).
- We recommend that you disable MAC address learning only in VLANs with two ports. If you disable MAC address learning on a VLAN with more than two ports, every packet entering the switch is flooded in that VLAN domain.
- You cannot disable MAC address learning on a VLAN that is used internally by the switch. If the VLAN ID that you enter is an internal VLAN, the switch generates an error message and rejects the command. To view internal VLANs in use, enter the `show vlan internal usage` privileged EXEC command.
- If you disable MAC address learning on a VLAN configured as a private-VLAN primary VLAN, MAC addresses are still learned on the secondary VLAN that belongs to the private VLAN and are then replicated on the primary VLAN. If you disable MAC address learning on the secondary VLAN, but not the primary VLAN of a private VLAN, MAC address learning occurs on the primary VLAN and is replicated on the secondary VLAN.
- You cannot disable MAC address learning on an RSPAN VLAN. The configuration is not allowed.
- If you disable MAC address learning on a VLAN that includes a secure port, MAC address learning is not disabled on that port. If you disable port security, the configured MAC address learning state is enabled.

To disable unicast MAC address filtering, use the `no mac address-table static mac-addr vlan vlan-id` global configuration command.

This example shows how to enable unicast MAC address filtering and to configure the switch to drop packets that have a source or destination address of c2f3.220a.12f4. When a packet is received in VLAN 4 with this MAC address as its source or destination, the packet is dropped:

```
Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 drop
```

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac address-table static</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to disable MAC address learning on a VLAN:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>no mac address-table learning vlan vlan-id</td>
<td>Disable MAC address learning on the specified VLAN or VLANs. You can specify a single VLAN ID or a range of VLAN IDs separated by a hyphen or comma. Valid VLAN IDs are 1 to 4094. The VLAN cannot be an internal VLAN.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show mac address-table learning [vlan vlan-id]</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To reenable MAC address learning on a VLAN, use the `default mac address-table learning vlan vlan-id` global configuration command. You can also reenable MAC address learning on a VLAN by entering the `mac address-table learning vlan vlan-id` global configuration command. The first `(default)` command returns to a default condition and therefore does not appear in the output from the `show running-config` command. The second command causes the configuration to appear in the `show running-config` privileged EXEC command display.

This example shows how to disable MAC address learning on VLAN 200:

```
Switch(config)# no mac address-table learning vlan 200
```

You can display the MAC address learning status of all VLANs or a specified VLAN by entering the `show mac-address-table learning [vlan vlan-id]` privileged EXEC command.

Displaying Address Table Entries

You can display the MAC address table by using one or more of the privileged EXEC commands described in **Table 1-3:**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp snooping groups</td>
<td>Displays the Layer 2 multicast entries for all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table address</td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td>show mac address-table aging-time</td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table count</td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table dynamic</td>
<td>Displays only dynamic MAC address table entries.</td>
</tr>
<tr>
<td>show mac address-table interface</td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td>show mac address-table notification</td>
<td>Displays the MAC notification parameters and history table.</td>
</tr>
<tr>
<td>show mac address-table static</td>
<td>Displays only static MAC address table entries.</td>
</tr>
<tr>
<td>show mac address-table vlan</td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
Managing the ARP Table

To communicate with a device (over Ethernet, for example), the software first must learn the 48-bit MAC address or the local data link address of that device. The process of learning the local data link address from an IP address is called *address resolution*.

The Address Resolution Protocol (ARP) associates a host IP address with the corresponding media or MAC addresses and the VLAN ID. Using an IP address, ARP finds the associated MAC address. When a MAC address is found, the IP-MAC address association is stored in an ARP cache for rapid retrieval. Then the IP datagram is encapsulated in a link-layer frame and sent over the network. Encapsulation of IP datagrams and ARP requests and replies on IEEE 802 networks other than Ethernet is specified by the Subnetwork Access Protocol (SNAP). By default, standard Ethernet-style ARP encapsulation (represented by the *arpa* keyword) is enabled on the IP interface.

ARP entries added manually to the table do not age and must be manually removed.

For CLI procedures, see the Cisco IOS Release 12.4 documentation on Cisco.com.
Configuring SDM Templates

This chapter describes how to configure the Switch Database Management (SDM) templates on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:
- Understanding the SDM Templates, page 1-1
- Configuring the Switch SDM Template, page 1-5
- Displaying the SDM Templates, page 1-7

Understanding the SDM Templates

You can use SDM templates to configure system resources in the switch to optimize support for specific features, depending on how the switch is used in the network. You can select a template to provide maximum system usage for some functions; for example, use the default template to balance resources, and use the access template to obtain maximum ACL usage. The switch SDM templates allocate system hardware resources for different uses.

You can select SDM templates for IP Version 4 (IPv4) to optimize these features on switches running the IP Base or IP Services feature set:

Note
When the switch is running the LAN Base feature set, do not select a routing template (sdm prefer routing). The routing values shown in the templates are not valid on the switch. To configure IPv4 static routing on switches running the LAN Base feature set, you must use the default template.

- Routing—The routing template maximizes system resources for unicast routing, typically required for a router or aggregator in the center of a network.
- VLANs—The VLAN template disables routing and supports the maximum number of unicast MAC addresses. It would typically be selected for a Layer 2 switch.
- Default—The default template gives balance to all functions.
Note
Use this template when configuring IPv4 static routing on SVIs on switches running the LAN Base feature set. You can configure up to 16 static routes.

- Access—The access template maximizes system resources for access control lists (ACLs) to accommodate a large number of ACLs.

The switch also supports multiple dual IPv4 and IP Version 6 (IPv6) templates for environments with both types of traffic. See the “Dual IPv4 and IPv6 SDM Templates” section on page 1-3.

Table 1-1 lists the approximate numbers of each resource supported in each of the four IPv4 templates.

Note
Although these templates are visible on all switches, the resources on switches running the LAN Base feature do not match those shown in the templates:

- Switches running the LAN Base feature set support only 255 VLANs, not 1024 as shown in all templates.
- Although the routing template is visible, the template is not supported. The LAN Base feature set supports IPv4 static routing on SVIs (up to 16 static routes) and the switch must be running the default template.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Access</th>
<th>Default</th>
<th>Routing</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast MAC addresses</td>
<td>4 K</td>
<td>6 K</td>
<td>3 K</td>
<td>12 K</td>
</tr>
<tr>
<td>IGMP groups and multicast routes</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Unicast routes</td>
<td>6 K</td>
<td>8 K</td>
<td>11 K</td>
<td>0</td>
</tr>
<tr>
<td>• Directly connected hosts</td>
<td>4 K</td>
<td>6 K</td>
<td>3 K</td>
<td>0</td>
</tr>
<tr>
<td>• Indirect routes</td>
<td>2 K</td>
<td>2 K</td>
<td>8 K</td>
<td>0</td>
</tr>
<tr>
<td>Policy-based routing ACEs</td>
<td>0.5 K</td>
<td>0 K</td>
<td>0.5 K</td>
<td>0</td>
</tr>
<tr>
<td>QoS classification ACEs</td>
<td>0.5 K</td>
<td>0.5 K</td>
<td>0.5 K</td>
<td>0.5 K</td>
</tr>
<tr>
<td>Security ACEs</td>
<td>2 K</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
</tr>
<tr>
<td>VLANs</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Number of IPv6 security ACEs</td>
<td>52</td>
<td>60</td>
<td>58</td>
<td>60</td>
</tr>
</tbody>
</table>

The table represents approximate hardware boundaries set when a template is selected. If a section of a hardware resource is full, all processing overflow is sent to the CPU, seriously impacting switch performance.

In mixed stack scenarios such as lotr and pixar, the default template will be enabled with IPv6 FHS on pixar, but not on lotr. You cannot have mixed stack with default/vlan/routing/access templates with IPv6 FHS enabled.

You can use IPv6 FHS features such as RA Guard, DHCP Guard and NDP snooping by using the entries reserved for IPv6 Security Aces. Other IPv6 features such as IPv6 QoS or other IPv6 FHS features such as Source Guard will not work with this template.
Dual IPv4 and IPv6 SDM Templates

The dual IPv4 and IPv6 templates allow the switch to be used in dual-stack environments, supporting both IPv4 and IPv6 traffic. For more information about IPv6 and how to configure IPv6 unicast routing, see Chapter 1, “Configuring IPv6 Unicast Routing.”

Using the dual-stack templates results in less hardware capacity allowed for each resource. Do not use them if you plan to forward only IPv4 traffic. These SDM templates support IPv4 and IPv6 environments on switches running the IP Base or IP Services feature set:

- Dual IPv4 and IPv6 default template—Supports Layer 2, multicast, routing, QoS, and ACLs for IPv4; and Layer 2, routing, ACLs, and QoS for IPv6 on the switch.
- Dual IPv4 and IPv6 routing template—Supports Layer 2, multicast, routing (including policy-based routing), QoS, and ACLs for IPv4; and Layer 2, routing, ACLs, and QoS for IPv6 on the switch.
- Dual IPv4 and IPv6 VLAN template—Supports basic Layer 2, multicast, QoS, and ACLs for IPv4, and basic Layer 2, ACLs, and QoS for IPv6 on the switch.

Note: Do not select a routing template (sdm prefer routing, sdm prefer dual-ipv4-and-ipv6 routing, or indirect-ipv4-and-ipv6-routing) when the switch is running the LAN Base feature set. Although visible in the command-line help, the LAN Base feature set does not support IPv6 routing. On switches running the LAN Base feature set, routing values shown in all templates are not valid.

- Dual IPv4 and IPv6 default template—Supports Layer 2, multicast, routing, QoS, and ACLs for IPv4; and Layer 2, routing, ACLs, and QoS for IPv6 on the switch.
- Dual IPv4 and IPv6 routing template—Supports Layer 2, multicast, routing (including policy-based routing), QoS, and ACLs for IPv4; and Layer 2, routing, ACLs, and QoS for IPv6 on the switch.
- Dual IPv4 and IPv6 VLAN template—Supports basic Layer 2, multicast, QoS, and ACLs for IPv4, and basic Layer 2, ACLs, and QoS for IPv6 on the switch.

Note: Cisco IOS Release 12.2(46)SE and later supports IPv6 port-based trust with the dual IPv4 and IPv6 SDM templates.

With the indirect IPv4 and IPv6 routing template (introduced in Cisco IOS Release 12.2(58)SE), the switch supports more IPv6 indirect routes for deployments that do not need much direct IPv6 host route connectivity. Compared to the dual IPv4 and IPv6 routing template, the indirect IPv4 and IPv6 routing template also provides more unicast MAC addresses and IPv4 and IPv6 direct routes. However, the indirect IPv4 and IPv6 routing template allows fewer IPv4 policy-based routing entries and IPv6 ACL, QoS, and policy-based routes.

You must reload the switch with the dual IPv4 and IPv6 templates for switches running IPv6.

Table 1-2 defines the approximate feature resources allocated by each dual IPv4 and IPv6 template on switches running the IP Base or IP Services feature set. Template estimations are based on a switch with 8 routed interfaces and 1024 VLANs (255 VLANs on switches running the LAN Base feature set).

Note: Although these templates are visible on all switches, the resources on switches running the LAN Base feature set do not match those shown in the templates:

- Switches running the LAN Base feature set support only 255 VLANs, not 1024 VLANs as shown in all templates.
- Although the routing template is visible, the template is not supported. The LAN Base feature set supports only 16 static IPv4 routes on SVIs, and the switch must be running the default template.
Understanding the SDM Templates

SDM Templates and Switch Stacks

In only a Catalyst 3750-E-only 3750-X or a mixed hardware switch stack, all stack members must use the same SDM template that is stored on the active switch. When a new switch is added to a stack, the SDM configuration that is stored on the active switch overrides the template configured on an individual switch. For more information about stacking, see Chapter 1, “Managing Switch Stacks.”

You can use the show switch privileged EXEC command to see if any stack members are in SDM mismatch mode. This example shows the output from the show switch privileged EXEC command when an SDM mismatch exists:

```
Switch# show switch

Switch# Role    Mac Address      Priority  Current State
-----------------------------------------------
*2  Master     000a.fd7.0100     5        Ready
  4  Member     0003.6f63.9c00     5        SDM Mismatch
```

This is an example of a syslog message notifying the stack master that a stack member is in SDM mismatch mode:

```
2d23h:%STACKMGR-6-SWITCH_ADDED_SDM:Switch 2 has been ADDED to the stack (SDM_MISMATCH)
2d23h:%SDM-6-MISMATCH_ADVISE:
2d23h:%SDM-6-MISMATCH_ADVISE:
2d23h:%SDM-6-MISMATCH_ADVISE:
2d23h:%SDM-6-MISMATCH_ADVISE:
2d23h:%SDM-6-MISMATCH_ADVISE:will not function unless the stack is
downgraded. Issuing the following commands
```

Table 1-2 Approximate Feature Resources Allowed by Dual IPv4-IPv6 Templates

<table>
<thead>
<tr>
<th>Resource</th>
<th>Dual IPv4-and IPv6 Templates</th>
<th>Indirect IPv4 and IPv6 Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Default</td>
<td>VLAN</td>
</tr>
<tr>
<td>Unicast MAC addresses</td>
<td>2 K</td>
<td>8 K</td>
</tr>
<tr>
<td>IPv4 IGMP groups and multicast routes</td>
<td>1 K</td>
<td>0.5 K</td>
</tr>
<tr>
<td>Total IPv4 unicast routes:</td>
<td>3 K</td>
<td>0</td>
</tr>
<tr>
<td>• Directly connected IPv4 hosts</td>
<td>2 K</td>
<td>0</td>
</tr>
<tr>
<td>• Indirect IPv4 routes</td>
<td>1 K</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 policy-based routing ACEs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 or MAC QoS ACEs (total)</td>
<td>0.5 K</td>
<td>0.5 K</td>
</tr>
<tr>
<td>IPv4 or MAC security ACEs (total)</td>
<td>1 K</td>
<td>1 K</td>
</tr>
<tr>
<td>IPv6 multicast groups</td>
<td>1 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Directly connected IPv6 addresses</td>
<td>2 K</td>
<td>0</td>
</tr>
<tr>
<td>Indirect IPv6 unicast routes</td>
<td>1 K</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 policy-based routing ACEs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 QoS ACEs</td>
<td>0.5 K</td>
<td>0.5 K</td>
</tr>
<tr>
<td>IPv6 security ACEs</td>
<td>0.5 K</td>
<td>0.5 K</td>
</tr>
</tbody>
</table>
Configuring the Switch SDM Template

These sections contain this configuration information:

- Default SDM Template, page 1-5
- SDM Template Configuration Guidelines, page 1-5
- Setting the SDM Template, page 1-6

Default SDM Template

The default template is the default Switch Database Management (SDM) desktop template.

SDM Template Configuration Guidelines

- When you configure a new SDM template, you must reload the switch for the configuration to take effect.
- On switches running the IP Base or IP Services feature set, use the `sdm prefer vlan` global configuration command only on switches intended for Layer 2 switching with no routing.
- Use the `sdm prefer vlan` global configuration command only on switches intended for Layer 2 switching with no routing.
 When you use the VLAN template, no system resources are reserved for routing entries, and any routing is done through software. This overloads the CPU and severely degrades routing performance.
- Do not select a routing template (`sdm prefer routing`, `sdm prefer dual-ipv4-and-ipv6 routing`, or `indirect-ipv4-and-ipv6-routing`) when the switch is running the LAN Base feature set. Although visible in the command-line help, the LAN Base feature set does not support the routing templates. On switches running the LAN Base feature set, none of the routing values shown for the templates are valid.
- Beginning with Cisco IOS Release 12.2(58)SE, the LAN Base feature set supports configuration of 16 static IPv4 routes on SVIs. Use the default template when configuring static routing on switches running the LAN Base feature set.
- On switches running the LAN Base feature set, the number of supported VLANs displayed in the templates is incorrect. The LAN Base feature set supports only 255 VLANs.
- Do not use the routing template if you do not have routing enabled on your switch. To prevent other features from using the memory allocated to unicast routing in the routing template, use the `sdm prefer routing` global configuration command.
- If you try to configure IPv6 without first selecting a `dual` IPv4 and IPv6 template, a warning message appears.
- Using the dual stack template results in less hardware capacity allowed for each resource, so do not use it if you plan to forward only IPv4 traffic.
• Use the indirect-ipv4-and-ipv6-routing template to provide more space for IPv4 and IPv6 summary or indirect routes by providing less space for IPv4 policy-based routing entries and IPv6 ACL, QoS, and policy-based routes.

Setting the SDM Template

To configure an SDM template, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>sdm prefer {access</td>
</tr>
<tr>
<td>Specifies the SDM template to be used on the switch. The keywords have these meanings:</td>
<td></td>
</tr>
<tr>
<td>• access—Maximizes system resources for ACLs.</td>
<td></td>
</tr>
<tr>
<td>• default—Provides balance to all functions.</td>
<td></td>
</tr>
<tr>
<td>• dual-ipv4-and-ipv6—Specifies a template that supports both IPv4 and IPv6 routing.</td>
<td></td>
</tr>
<tr>
<td>– default—Balances IPv4 and IPv6 Layer 2 and Layer 3 functionality.</td>
<td></td>
</tr>
<tr>
<td>– routing—Provides maximum usage for IPv4 and IPv6 routing, including IPv4 policy-based routing.</td>
<td></td>
</tr>
<tr>
<td>– vlan—Provides maximum usage for IPv4 and IPv6 VLANs.</td>
<td></td>
</tr>
<tr>
<td>• indirect-ipv4-and-ipv6-routing—Maximizes IPv4 and IPv6 entries for indirect routes.</td>
<td></td>
</tr>
<tr>
<td>• routing—Maximizes routing on the switch.</td>
<td></td>
</tr>
<tr>
<td>• vlan—Maximizes VLAN configuration on the switch with no routing supported in hardware.</td>
<td></td>
</tr>
<tr>
<td>Note Do not select a routing template when the switch is running the LAN Base feature set. Although visible in the command-line help, the LAN Base feature set does not support the routing template. To configure IPv4 static routing (16 static routes) with the LAN Base feature set, use the default template.</td>
<td></td>
</tr>
<tr>
<td>Use the no sdm prefer command to reset the switch to the default desktop template. The default template balances the use of system resources.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>reload</td>
</tr>
<tr>
<td>Reloads the operating system.</td>
<td></td>
</tr>
</tbody>
</table>

After the system reboots, you can use the **show sdm prefer** privileged EXEC command to verify the new template configuration. If you enter the **show sdm prefer** command before you enter the **reload** privileged EXEC command, the **show sdm prefer** command shows the template currently in use and the template that will become active after a reload.

This is an example output when you have changed the template and have not reloaded the switch:

```
Switch# show sdm prefer
The current template is “desktop routing” template.
The selected template optimizes the resources in
```
the switch to support this level of features for 8 routed interfaces and 1024 VLANs.

- number of unicast mac addresses: 3K
- number of igmp groups + multicast routes: 1K
- number of unicast routes: 11K
 - number of directly connected hosts: 3K
 - number of indirect routes: 8K
- number of qos aces: 0.5K
- number of security aces: 1K

On next reload, template will be "desktop vlan" template.

To return to the default template, use the `no sdm prefer` global configuration command.

This example shows how to configure a switch running the IP Base or IP Services feature set with the routing template:

```
Switch(config)# sdm prefer routing
Switch(config)# end
Switch# reload
Proceed with reload? [confirm]
```

This example shows how to configure the IPv4-and-IPv6 default template:

```
Switch(config)# sdm prefer dual-ipv4-and-ipv6 default
Switch(config)# exit
Switch# reload
Proceed with reload? [confirm]
```

Displaying the SDM Templates

Use the `show sdm prefer` privileged EXEC command with no parameters to display the active template.

To display the resource numbers supported by the specified template, use the `show sdm prefer [access | default | dual-ipv4-and-ipv6 | default | vlan] | indirect-ipv4-and-ipv6-routing | routing | vlan]` privileged EXEC command.

Note

On switches running the LAN Base feature set, routing values shown in all templates are not valid.

This is an example of output from the `show sdm prefer` command that displays the template in use:

```
Switch# show sdm prefer
The current template is "desktop default" template.
The selected template optimizes the resources in the switch to support this level of features for 8 routed interfaces and 1024 VLANs.

- number of unicast mac addresses: 6K
- number of igmp groups + multicast routes: 1K
- number of unicast routes: 8K
- number of directly connected hosts: 6K
- number of indirect routes: 2K
- number of policy based routing aces: 0
- number of qos aces: 0.5K
- number of security aces: 1K
```

Although the outputs are the same on all switches, the outputs for the routing templates are valid only on switches running the IP Base or IP Services feature set. This is an example of output from the `show sdm prefer routing` command:
Switch# show sdm prefer routing
"desktop routing" template:
The selected template optimizes the resources in the switch to support this level of features for 8 routed interfaces and 1024 VLANs.

- number of unicast mac addresses: 3K
- number of igmp groups + multicast routes: 1K
- number of unicast routes: 11K
 - number of directly connected hosts: 3K
 - number of indirect routes: 8K
- number of policy based routing aces: 0.5K
- number of qos aces: 0.5K
- number of security aces: 1K

This is an example of output from the `show sdm prefer dual-ipv4-and-ipv6 routing` command:

Switch# show sdm prefer dual-ipv4-and-ipv6 routing
The current template is "desktop IPv4 and IPv6 routing" template. The selected template optimizes the resources in the switch to support this level of features for 8 routed interfaces and 1024 VLANs.

- number of unicast mac addresses: 1.5K
- number of IPv4 IGMP groups + multicast routes: 1K
- number of IPv4 unicast routes: 2.75K
 - number of directly-connected IPv4 hosts: 1.5K
 - number of indirect IPv4 routes: 1.25K
- number of IPv6 multicast groups: 1K
- number of directly-connected IPv6 addresses: 1.5K
- number of indirect IPv6 unicast routes: 1.25K
- number of IPv4 policy based routing aces: 0.25K
- number of IPv4/MAC qos aces: 0.5K
- number of IPv4/MAC security aces: 0.5K
- number of IPv6 policy based routing aces: 0.25K
- number of IPv6 qos aces: 0.5K
- number of IPv6 security aces: 0.5K
Configuring Catalyst 3750-X StackPower

The Catalyst 3750-X and 3560-X switches have two power supplies per system, allowing the power load to be split between them. This accommodates the increased maximum power of 30 watts per port provided to a powered device to meet the PoE+ standard (802.3at). With PoE+, a 48-port system would need 1440 Watts to provide 30 Watts per powered device for the PoE ports. Systems with fewer powered devices might require only one power supply. In this case, the additional power supply can provide one-to-one redundancy for the active supply.

In addition, the Catalyst 3750-X stackable switch supports Cisco StackPower, which allows the power supplies to share the load across multiple systems in a stack. By connecting the switches with power stack cables, you can manage the power supplies of up to four stack members as a one large power supply that provides power to all switches and to the powered devices connected to switch ports. Since power supplies are most effective when running at 30 to 90% of their maximum load, taking some of the power supplies offline provides maximum power efficiency. Switches in a power stack must be members of the same switch (data) stack.

The Cisco eXpandable Power System (XPS) 2200 is a standalone power system that you can connect to Catalyst 3560-X and Catalyst 3750-X switches that are running Cisco IOS Release 12.2(55)SE1 and later. The XPS 2200 can provide backup power to connected devices that experience a power supply failure or, in a Catalyst 3750-X power stack, it can supply additional power to the power stack budget. For more information about the XPS 2000, see the configuration notes on Cisco.com: http://www.cisco.com/en/US/docs/switches/power_supplies/xps2200/software/configuration/note/ol24241.html

The XPS 2200 power ports and internal power supplies can operate in redundant power supply (RPS) mode or stack power (SP) mode. Stack-power mode is used only on Catalyst 3750-X switches in a power stack. With no XPS, a power stack operates in ring topology with a maximum of four switches in the stack. If you merge two stacks, the total number of switches cannot exceed four. When an XPS is in the power stack, you can connect up to nine switches in the stack plus the XPS, providing power budgets to power stack members similar to stack-power ring topology operation.

All Catalyst 3750-X switches connected to an XPS on SP ports are part of the same power stack, and all power from the XPS and the switches is shared across all switches in the stack. Power sharing is the default mode, but the XPS supports the same stack power modes that are supported in a ring topology (strict and nonstrict power-sharing or redundant modes).

See the hardware installation guide for information on designing and connecting the power stack. For more information about PoE ports, see the “Power over Ethernet Ports” section on page 1-7 in the chapter on Configuring Interfaces. For more information about the commands in this chapter, see the command reference for this release.

This chapter includes these sections:

- Understanding Cisco StackPower, page 1-2
Some reasons for connecting individual switches in a power stack are:

- In case of power supply failure, if there is enough spare power budget in the rest of the power stack, switches can continue to function.
- You can replace a defective power supply without having to shut down all powered devices in the systems.
- System operation can become more green by maximizing power supply efficiency and working with the most efficient load (30 to 90% of their maximum load).

Cisco StackPower uses these terms:

- **Available power** is the total power available for PoE from all power supplies in the power stack. To see the available power in a stack, enter the `show power inline` privileged EXEC command.
- **Budgeted power** is the power allocated to all powered devices connected to PoE ports in the stack. Budgeted power is referred to as `Used (Watts)` in the output of the `show power inline` command.
- **Consumed power** is the actual power consumed by the powered devices. Consumed power is typically less that the budgeted power. To see the consumed power in a stack, enter the `show power inline police` privileged EXEC command.

These sections describe Cisco StackPower:

- **StackPower Modes**, page 1-2
- **Power Priority**, page 1-3
- **Load Shedding**, page 1-4

StackPower Modes

A power stack can run in one of two modes, configured by using the command-line interface:

- In power-sharing mode (the default), all input power is available to be used for power loads. The total available power in all switches in the power stack (up to four) is treated as a single large power supply, with power available to all switches and to all powered devices connected to PoE ports. In this mode, the total available power is used for power budgeting decisions and no power is reserved to accommodate power-supply failures. If a power supply fails, powered devices and switches could be shut down (load shedding).

- In redundant mode, the power from the largest power supply in the system is subtracted from the power budget, which reduces the total available power, but provides backup power in case of a power-supply failure. Although there is less available power in the pool for switches and powered devices to draw from, the possibility of having to shut down switches or powered devices in case of a power failure or extreme power load is reduced.

In addition, you can configure the mode to run a strict power budget or a non-strict (relaxed) power budget. In both modes, power is denied when there is no more power available in the power budget.

- In strict mode, when a power supply fails and the available power drops below the budgeted power, the system balances the budget through load shedding of powered devices, even if the actual power being consumed is less than the available power.
In non-strict mode, the power stack is allowed to run in an over-allocated state and is stable as long as the actual power does not exceed the available power. In this mode, a powered device drawing more than normal power could cause the power stack to start shedding loads. This is normally not a problem because most devices do not run at full power and the chances of multiple powered devices in the stack requiring maximum power at the same time is small.

You configure power modes at a power-stack level (that is, the mode is the same for all switches in the power stack). To configure power-stack parameters, enter the stack-power stack global configuration command followed by the name of the power stack to enter stack-power configuration mode.

You can also configure a switch connected in a power stack to not participate in the power stack by setting the switch to standalone power mode. This mode shuts down both stack power ports. This is a switch parameter and is configurable by entering the `stack-power switch` global configuration command followed by a switch number to enter switch stack power configuration mode.

Power Priority

You can configure the priority of a switch or powered device to receive power. This priority determines the order in which devices are shut down in case of a power shortage. You can configure three priorities per system: the system (or switch) priority, the priority of the high-priority PoE ports on a switch, and the priority of the low-priority PoE ports on a switch.

You set port priority at the interface level for powered devices connected to a PoE port by entering the `power inline port priority {high | low}` interface configuration command. By default, all ports are low priority. This command is visible only on PoE ports.

Note

Although the `power inline port priority {high | low}` command is visible on the Catalyst 3560-X switch PoE ports, it has no effect because Catalyst 3560-X switches do not participate in StackPower.

You configure the priority values of each switch in the power stack and of all high and low priority ports on that switch by using the `power priority` commands in power-stack configuration mode. These commands set the order in which switches and ports are shut down when power is lost and load shedding must occur. Priority values are from 1 to 27; switches and ports with highest values are shut down first.

Note

The 27 priorities are used to accommodate power stacks connected in a star configuration with the expandable power supply. In that case there would be nine members (switches) per system with three priorities per switch. See the hardware installation guide for more information on stack power star and ring configuration.

On any switch, the switch priority must be lower than port priorities. and the high priority value must be set lower than the low priority value. We recommend that you configure different priority values for each switch and for its high priority ports and low priority ports. This limits the number of devices shut down at one time during a loss of power. If you try to configure the same priority value on different switches in a power stack, the configuration is allowed, but you receive a warning message.

The default priority ranges, if none are configured, are 1-9 for switches, 10-18 for high-priority ports, and 19-27 for low-priority ports.
Load Shedding

Load shedding is the process of shutting down devices in case of power supply, cable, or system failures. In general, Cisco StackPower supports only single faults; for example, a single power supply failing, a single cable breaking, or a single system halting operation.

For power stacks in power-sharing mode, there are two types of load-shedding: immediate and graceful.

- Immediate load shed occurs when a failure could cause the power stack to fail very quickly. For example, if the largest power supply in the power stack fails, this could cause the stack to immediately start shutting down powered devices.

- Graceful load-shedding can occur when a smaller power supply fails. Switches and powered devices are shut down in order of their configured priority, starting with devices with priority 27, until the power budget matches the input power.

Graceful load shedding is always enabled and immediate load shedding occurs only when necessary, so both can occur at the same time.

Note

Load shedding does not occur in redundant mode unless two or more power supplies fail, because the largest power supply is used as a backup power source.

Notes on load shedding:

- The method (immediate or graceful) is not user-configurable, but is based on the power budget.
- Immediate load shedding also occurs in the order of configured priority, but occurs very quickly to prevent hardware damage caused by loss of power.
- If a switch is shut down because of load shedding, the output of the `show stack-power` privileged EXEC command still includes the MAC address of the shut down switch as a neighbor switch, even though the switch is down. This command output shows the StackPower topology, even if there is not enough power to power up a switch.

Immediate Load Shedding Example

For power stacks in power-sharing mode, if a large power supply in the power stack fails, the stack immediately starts shutting down powered devices until the power budget matches the input power. Cisco StackPower can support multiple power supply failures if the total amount of power lost is less than or equal to one-half the total input power. For example, in a power stack with four 1100 W power supplies, the power stack can lose two 1100 W power supplies and continue to operate. In addition, Cisco StackPower can support a loss of more than one-half of the total input power when the power supply failures are more than five minutes apart.

This example has a power stack of four switches (Powerstack1) in power sharing mode and shows which devices would be shut down in the immediate load shedding process caused by loss of either of two power supplies.

The output of the `show env all` command shows that power supplies included in power sharing are a 715 W power supply in switch 1, and one 350 W and one 1100 W power supply in switch 4. Other power supplies are inactive (disabled or not present).

```
Switch# show env all
FAN 1 is OK
FAN 2 is OK
FAN PS-1 is OK
FAN PS-2 is OK
TEMPERATURE is OK
Temperature Value: 30 Degree Celsius
```
Temperature State: GREEN
Yellow Threshold : 49 Degree Celsius
Red Threshold : 59 Degree Celsius

<table>
<thead>
<tr>
<th>SW</th>
<th>PID</th>
<th>Serial#</th>
<th>Status</th>
<th>Sys Pwr</th>
<th>PoE Pwr</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>NG3K-PWR-715WAC</td>
<td>LIT133705FH</td>
<td>OK</td>
<td>Good</td>
<td>Good</td>
<td>715/0</td>
</tr>
<tr>
<td>1B</td>
<td>C3KX-PWR-715WAC</td>
<td>DTN1341K018</td>
<td>Disabled</td>
<td>Good</td>
<td>Good</td>
<td>715/0</td>
</tr>
<tr>
<td>2A</td>
<td>Not Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>C3KX-PWR-325WAC</td>
<td>LIT13330FN3</td>
<td>Disabled</td>
<td>Good</td>
<td>Good</td>
<td>325/0</td>
</tr>
<tr>
<td>3A</td>
<td>C3KX-PWR-325WAC</td>
<td>LIT13330FN3</td>
<td>Disabled</td>
<td>Good</td>
<td>Good</td>
<td>325/0</td>
</tr>
<tr>
<td>3B</td>
<td>Not Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>C3KX-PWR-350WAC</td>
<td>DTN1342L00T</td>
<td>OK</td>
<td>Good</td>
<td>Good</td>
<td>350/0</td>
</tr>
<tr>
<td>4B</td>
<td>NG3K-PWR-1100WAC</td>
<td>LIT13370577</td>
<td>OK</td>
<td>Good</td>
<td>Good</td>
<td>1100/0</td>
</tr>
</tbody>
</table>

The output of the `show stack-power` privileged EXEC command shows the priorities of the powered devices and switches in the power stack.

Switch# `show stack-power`
Power stack name: Powerstack1
Stack mode: Power sharing
Switch 1:
 Power budget: 206
 Low port priority value: 17
 High port priority value: 16
 Switch priority value: 2
 Port A status: Not shut
 Port B status: Not shut
 Neighbor on port A: 0022.bdcf.ab00
 Neighbor on port B: 0022.bdd0.4380

Switch 2:
 Power budget: 206
 Low port priority value: 12
 High port priority value: 11
 Switch priority value: 1
 Port A status: Not shut
 Port B status: Not shut
 Neighbor on port A: 0022.bdd0.6d00
 Neighbor on port B: 0022.bdcf.af80

Switch 3:
 Power budget: 656
 Low port priority value: 22
 High port priority value: 21
 Switch priority value: 3
 Port A status: Not shut
 Port B status: Not shut
 Neighbor on port A: 0022.bdcf.af80
 Neighbor on port B: 0022.bdd0.6d00

Switch 4:
 Power budget: 682
 Low port priority value: 27
 High port priority value: 26
 Switch priority value: 4
 Port A status: Not shut
 Port B status: Not shut
 Neighbor on port A: 0022.bdd0.4380
 Neighbor on port B: 0022.bdcf.ab00
If the 715 W or 1100 W power supply fails, devices (powered devices connected to PoE ports and the switches themselves) would be shut down in the this order until power consumption drops below 105% of the rated power of the remaining power supplies:

- Devices connected to Switch 4 low priority ports (priority 27)
- Devices connected to Switch 4 high priority ports (priority 26)
- Devices connected to Switch 3 low priority ports (priority 22)
- Devices connected to Switch 3 high priority ports (priority 21)
- Devices connected to Switch 1 low priority ports (priority 17)
- Devices connected to Switch 1 high priority ports (priority 16)
- Devices connected to Switch 2 low priority ports (priority 12)
- Devices connected to Switch 2 high priority ports (priority 11)
- Switch 4 (priority 4)
- Switch 3 (priority 3)
- Switch 1 (priority 2)

Switch 2 would never have to be shut down because all power would have been lost by the time priority 1 devices were reached.

The output from the **show stack-power load-shedding order** command shows the order in which devices would shut down in the event of load-shedding:

```
Switch# show stack-power load-shedding order powerstack-1

<table>
<thead>
<tr>
<th>Power Stack Name</th>
<th>Stack Mode</th>
<th>Topolgy</th>
<th>Total Pwr (W)</th>
<th>Rsvd Pwr (W)</th>
<th>Alloc Pwr (W)</th>
<th>Unused Pwr (W)</th>
<th>Num SW</th>
<th>Num PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powerstack-1</td>
<td>SP-PS</td>
<td>Ring</td>
<td>2880</td>
<td>34</td>
<td>473</td>
<td>2373</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Priority Load Shed Order Type Devices Shed
22 Lo Gi2/0/16,
21 Lo Gi1/0/13, Gi1/0/20,
12 Hi Gi1/0/7,
4 Sw Switch: 2
3 Sw Switch: 1
```

Configuring Cisco StackPower

Configuring Cisco StackPower includes these tasks:

- Identifying a stack ID and setting the power stack mode for the power stack to power sharing or redundant with a strict or non-strict (loose) adherence to the power budget. See the “Configuring Power Stack Parameters” section on page 1-7.

- Configuring switches in the power stack with the power stack ID and setting the priority on PoE ports to high or low. See the “Configuring Power Stack Switch Power Parameters” section on page 1-8.

- Setting priority values for switches in the power stack and for the high and low priority ports on the switch to determine load-shedding order. See the “Configuring PoE Port Priority” section on page 1-9.
For information about configuring the XPS 2000, see the configuration notes on Cisco.com:

Note
A stack power member switch that does not have a PSU connected in Slot A or Slot B might fail during a Cisco IOS upgrade.

The workaround is to ensure that each stack member has at least one PSU connected. Alternatively, you can download and install the Cisco IOS image using the `archive download-sw /force-ucode-reload privileged EXEC command.

Configuring Power Stack Parameters

Beginning in privileged EXEC mode, follow these steps to configure a power stack:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>stack-power stack power stack name</td>
<td>Enter the stack power stack name and enter power stack configuration mode. The name can be up to 31 characters.</td>
</tr>
</tbody>
</table>
| 3 | mode {power-sharing | redundant | strict} | Set the operating mode for the power stack:
* power-sharing—The input power from all switches in the power stack can be used for loads, and the total available power appears as one huge power supply. This is the default.
* redundant—The largest power supply is removed from the power pool to be used as backup power in case one of the other power supplies fails. This is the recommended mode if enough power is available in the system.
* strict—(Optional) Configures the power stack mode to run a strict power budget. The stack power needs cannot exceed the available power. The default is non-strict. |
| 4 | end | Return to privileged EXEC mode. |
| 5 | show stack-power | Verify your entries. |
| 6 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

This is an example of setting the stack power mode for the stack named `power1` to redundant power mode. The largest power supply in the stack is removed from the power budget and used as a backup in case of power supply failure.

Switch(config)# stack-power stack power1
Switch(config-stackpower)# mode redundant
Switch(config-stackpower)# exit
Configuring Power Stack Switch Power Parameters

Beginning in privileged EXEC mode, follow these steps to configure a switch in a power stack:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>stack-power switch switch-number</td>
</tr>
<tr>
<td>Note</td>
<td>Only four switches can belong to the same power stack.</td>
</tr>
<tr>
<td>Step 3</td>
<td>stack [power-stack-name]</td>
</tr>
<tr>
<td>Step 4</td>
<td>power-priority switch value</td>
</tr>
<tr>
<td>Step 5</td>
<td>power-priority high value</td>
</tr>
<tr>
<td>Step 6</td>
<td>power-priority low value</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show stack-power</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

This is an example of setting the switch stack power parameters for switch 3 in the stack that is connected to the power stack with the stack ID `power2`. If load-shedding becomes necessary, switches and powered devices in the power stack with the higher numbers are shut down first, with shutdown proceeding in order.

```
Switch(config)# stack-power switch 3
Switch(config-switch-stackpower)# stack power2
Switch(config-switch-stackpower)# power-priority switch 5
Switch(config-switch-stackpower)# power-priority high 12
Switch(config-switch-stackpower)# power-priority low 20
Switch(config-switch-stackpower)# exit
```

Note Entering the `write erase` and `reload` privileged EXEC commands down not change the power priority or power mode non-default configuration saved in the switch flash memory.
Configuring PoE Port Priority

Beginning in privileged EXEC mode, follow these steps to configure the priority of a PoE port on a switch:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enter the interface ID of the port in the stack and enter interface configuration mode. The interface must be a PoE port.</td>
</tr>
<tr>
<td>Step 3</td>
<td>power inline port priority { high</td>
<td>low }</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show power inline priority</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This is an example of setting the power priority of a port to high so that it is one of the last ports to shut down in case of a power failure.

```
Switch(config)# interface gigabitetherent1/0/1
Switch(config-if)# power inline port priority high
Switch(config-if)# exit
```
Configuring Switch-Based Authentication

This chapter describes how to configure switch-based authentication on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term *switch* refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

This chapter consists of these sections:

- Preventing Unauthorized Access to Your Switch, page 1-1
- Protecting Access to Privileged EXEC Commands, page 1-2
- Controlling Switch Access with TACACS+, page 1-10
- Controlling Switch Access with RADIUS, page 1-17
- Controlling Switch Access with Kerberos, page 1-39
- Configuring the Switch for Local Authentication and Authorization, page 1-43
- Configuring the Switch for Secure Shell, page 1-44
- Configuring the Switch for Secure Socket Layer HTTP, page 1-48
- Configuring the Switch for Secure Copy Protocol, page 1-54

Preventing Unauthorized Access to Your Switch

You can prevent unauthorized users from reconfiguring your switch and viewing configuration information. Typically, you want network administrators to have access to your switch while you restrict access to users who dial from outside the network through an asynchronous port, connect from outside the network through a serial port, or connect through a terminal or workstation from within the local network.

To prevent unauthorized access into your switch, you should configure one or more of these security features:

- At a minimum, you should configure passwords and privileges at each switch port. These passwords are locally stored on the switch. When users attempt to access the switch through a port or line, they must enter the password specified for the port or line before they can access the switch. For more information, see the “Protecting Access to Privileged EXEC Commands” section on page 1-2.

- For an additional layer of security, you can also configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or ports and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair.
Protecting Access to Privileged EXEC Commands

A simple way of providing terminal access control in your network is to use passwords and assign privilege levels. Password protection restricts access to a network or network device. Privilege levels define what commands users can enter after they have logged into a network device.

Note

For complete syntax and usage information for the commands used in this section, see the Cisco IOS Security Command Reference, Release 12.4.

These sections contain this configuration information:

- Default Password and Privilege Level Configuration, page 1-2
- Setting or Changing a Static Enable Password, page 1-3
- Protecting Enable and Enable Secret Passwords with Encryption, page 1-3
- Disabling Password Recovery, page 1-5
- Setting a Telnet Password for a Terminal Line, page 1-6
- Configuring Username and Password Pairs, page 1-6
- Configuring Multiple Privilege Levels, page 1-7

Default Password and Privilege Level Configuration

Table 1-1 shows the default password and privilege level configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is not encrypted in the configuration file.</td>
</tr>
<tr>
<td>Enable secret password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is encrypted before it is written to the configuration file.</td>
</tr>
<tr>
<td>Line password</td>
<td>No password is defined.</td>
</tr>
</tbody>
</table>

For more information, see the “Configuring Username and Password Pairs” section on page 1-6.

- If you want to use username and password pairs, but you want to store them centrally on a server instead of locally, you can store them in a database on a security server. Multiple networking devices can then use the same database to obtain user authentication (and, if necessary, authorization) information. For more information, see the “Controlling Switch Access with TACACS+” section on page 1-10.
- You can also enable the login enhancements feature, which logs both failed and unsuccessful login attempts. Login enhancements can also be configured to block future login attempts after a set number of unsuccessful attempts are made. For more information, see the Cisco IOS Login Enhancements documentation: http://www.cisco.com/en/US/docs/ios/12_3t/12_3t4/feature/guide/gt_login.html
Setting or Changing a Static Enable Password

The enable password controls access to the privileged EXEC mode. Beginning in privileged EXEC mode, follow these steps to set or change a static enable password:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | enable password *password* | Define a new password or change an existing password for access to privileged EXEC mode.
By default, no password is defined.
For *password*, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. It can contain the question mark (?) character if you precede the question mark with the key combination Ctrl-v when you create the password; for example, to create the password abc?123, do this:
Enter abc.
Enter Ctrl-v.
Enter ?123.
When the system prompts you to enter the enable password, you need not precede the question mark with the Ctrl-v; you can simply enter abc?123 at the password prompt. |
| Step 3 | end | Return to privileged EXEC mode. |
| Step 4 | show running-config | Verify your entries. |
| Step 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file.
The enable password is not encrypted and can be read in the switch configuration file. |

To remove the password, use the no enable password global configuration command.

This example shows how to change the enable password to *llu2c3k4y5*. The password is not encrypted and provides access to level 15 (traditional privileged EXEC mode access):

Switch(config)# enable password llu2c3k4y5

Protecting Enable and Enable Secret Passwords with Encryption

To provide an additional layer of security, particularly for passwords that cross the network or that are stored on a Trivial File Transfer Protocol (TFTP) server, you can use either the enable password or enable secret global configuration commands. Both commands accomplish the same thing; that is, you can establish an encrypted password that users must enter to access privileged EXEC mode (the default) or any privilege level you specify.

We recommend that you use the enable secret command because it uses an improved encryption algorithm.

If you configure the enable secret command, it takes precedence over the enable password command; the two commands cannot be in effect simultaneously.
Beginning in privileged EXEC mode, follow these steps to configure encryption for enable and enable secret passwords:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>enable password [level level] {password</td>
</tr>
<tr>
<td></td>
<td>Define a new password or change an existing password for access to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>enable secret [level level] {password</td>
</tr>
<tr>
<td></td>
<td>Define a secret password, which is saved using a nonreversible encryption method.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For level, the range is from 0 to 15. Level 1 is normal user EXEC mode privileges. The default level is 15 (privileged EXEC mode privileges).</td>
</tr>
<tr>
<td></td>
<td>• For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For encryption-type, types 9, 8, and 5 are available. These are Cisco proprietary encryption algorithms. If you specify an encryption type, you must provide an encrypted password—an encrypted password that you copy from another switch configuration.</td>
</tr>
<tr>
<td></td>
<td>Note If you specify an encryption type and then enter a clear text password, you cannot re-enter privileged EXEC mode. You cannot recover a lost encrypted password by any method.</td>
</tr>
<tr>
<td>Step 3</td>
<td>service password-encryption</td>
</tr>
<tr>
<td></td>
<td>(Optional) Encrypt the password when the password is defined or when the configuration is written.</td>
</tr>
<tr>
<td></td>
<td>Encryption prevents the password from being readable in the configuration file.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

If both the enable and enable secret passwords are defined, users must enter the enable secret password.

Use the **level** keyword to define a password for a specific privilege level. After you specify the level and set a password, give the password only to users who need to have access at this level. Use the **privilege level** global configuration command to specify commands accessible at various levels. For more information, see the “Configuring Multiple Privilege Levels” section on page 1-7.

If you enable password encryption, it applies to all passwords including username passwords, authentication key passwords, the privileged command password, and console and virtual terminal line passwords.

To remove a password and level, use the **no enable password [level level]** or **no enable secret [level level]** global configuration command. To disable password encryption, use the **no service password-encryption** global configuration command.
Chapter 1 Configuring Switch-Based Authentication

Protecting Access to Privileged EXEC Commands

This example shows how to configure the encrypted password 1FaD0$Xyti5Rkls3LoyxzS8 for privilege level 2:

```
Switch(config)# enable secret level 2 5 $1$FaD0$Xyti5Rkls3LoyxzS8
```

Disabling Password Recovery

By default, any end user with physical access to the switch can recover from a lost password by interrupting the boot process while the switch is powering on and then by entering a new password.

The password-recovery disable feature protects access to the switch password by disabling part of this functionality. When this feature is enabled, the end user can interrupt the boot process only by agreeing to set the system back to the default configuration. With password recovery disabled, you can still interrupt the boot process and change the password, but the configuration file (config.text) and the VLAN database file (vlan.dat) are deleted.

Note
If you disable password recovery, we recommend that you keep a backup copy of the configuration file on a secure server in case the end user interrupts the boot process and sets the system back to default values. Do not keep a backup copy of the configuration file on the switch. If the switch is operating in VTP transparent mode, we recommend that you also keep a backup copy of the VLAN database file on a secure server. When the switch is returned to the default system configuration, you can download the saved files to the switch by using the Xmodem protocol. For more information, see the “Recovering from a Lost or Forgotten Password” section on page 1-3.

Beginning in privileged EXEC mode, follow these steps to disable password recovery:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no service password-recovery</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show version</td>
</tr>
</tbody>
</table>

To re-enable password recovery, use the `service password-recovery` global configuration command.

Note
Disabling password recovery will not work if you have set the switch to boot up manually by using the `boot manual` global configuration command. This command produces the boot loader prompt (`switch:`) after the switch is power cycled.
Chapter 1 Configuring Switch-Based Authentication

Setting a Telnet Password for a Terminal Line

When you power-up your switch for the first time, an automatic setup program runs to assign IP information and to create a default configuration for continued use. The setup program also prompts you to configure your switch for Telnet access through a password. If you did not configure this password during the setup program, you can configure it now through the command-line interface (CLI).

Beginning in privileged EXEC mode, follow these steps to configure your switch for Telnet access:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Attach a PC or workstation with emulation software to the switch console port, or attach a PC to the Ethernet management port. The default data characteristics of the console port are 9600, 8, 1, no parity. You might need to press the Return key several times to see the command-line prompt.</td>
</tr>
<tr>
<td>Step 2</td>
<td>enable password password Enter privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>line vty 0 15 Configure the number of Telnet sessions (lines), and enter line configuration mode. There are 16 possible sessions on a command-capable switch. The 0 and 15 mean that you are configuring all 16 possible Telnet sessions.</td>
</tr>
<tr>
<td>Step 5</td>
<td>password password Enter a Telnet password for the line or lines. For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config Verify your entries. The password is listed under the command line vty 0 15.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the password, use the **no password** global configuration command.

This example shows how to set the Telnet password to `let45me67in89`:

```bash
Switch(config)# line vty 10
Switch(config-line)# password let45me67in89
```

Configuring Username and Password Pairs

You can configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or ports and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair.
Beginning in privileged EXEC mode, follow these steps to establish a username-based authentication system that requests a login username and a password:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>configure terminal</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>username name [privilege level] {password encryption-type password}</th>
<th>Enter the username, privilege level, and password for each user.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• For name, specify the user ID as one word. Spaces and quotation marks are not allowed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• (Optional) For level, specify the privilege level the user has after gaining access. The range is 0 to 15. Level 15 gives privileged EXEC mode access. Level 1 gives user EXEC mode access.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For encryption-type, enter 0 to specify that an unencrypted password will follow. Enter 7 to specify that a hidden password will follow.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For password, specify the password the user must enter to gain access to the switch. The password must be from 1 to 25 characters, can contain embedded spaces, and must be the last option specified in the username command.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 3 | line console 0
or
line vty 0 15 | Enter line configuration mode, and configure the console port (line 0) or the VTY lines (line 0 to 15). |

| Step 4 | login local | Enable local password checking at login time. Authentication is based on the username specified in Step 2. |

| Step 5 | end | Return to privileged EXEC mode. |

| Step 6 | show running-config | Verify your entries. |

| Step 7 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable username authentication for a specific user, use the no username name global configuration command. To disable password checking and allow connections without a password, use the no login line configuration command.

Configuring Multiple Privilege Levels

By default, the Cisco IOS software has two modes of password security: user EXEC and privileged EXEC. You can configure up to 16 hierarchical levels of commands for each mode. By configuring multiple passwords, you can allow different sets of users to have access to specified commands.

For example, if you want many users to have access to the clear line command, you can assign it level 2 security and distribute the level 2 password fairly widely. But if you want more restricted access to the configure command, you can assign it level 3 security and distribute that password to a more restricted group of users.

These sections contain this configuration information:

- Setting the Privilege Level for a Command, page 1-8
- Changing the Default Privilege Level for Lines, page 1-9
- Logging into and Exiting a Privilege Level, page 1-9
Setting the Privilege Level for a Command

Beginning in privileged EXEC mode, follow these steps to set the privilege level for a command mode:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>privilege mode level level command</td>
<td>Set the privilege level for a command.</td>
</tr>
<tr>
<td></td>
<td>• For mode, enter configure for global configuration mode, exec for EXEC mode, interface for interface configuration mode, or line for line configuration mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For level, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges. Level 15 is the level of access permitted by the enable password.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For command, specify the command to which you want to restrict access.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable password level level password</td>
<td>Specify the enable password for the privilege level.</td>
</tr>
<tr>
<td></td>
<td>• For level, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>The first command shows the password and access level configuration.</td>
</tr>
<tr>
<td></td>
<td>show privilege</td>
<td>The second command shows the privilege level configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When you set a command to a privilege level, all commands whose syntax is a subset of that command are also set to that level. For example, if you set the show ip traffic command to level 15, the show commands and show ip commands are automatically set to privilege level 15 unless you set them individually to different levels.

To return to the default privilege for a given command, use the no privilege mode level level command global configuration command.

This example shows how to set the configure command to privilege level 14 and define SecretPswd14 as the password users must enter to use level 14 commands:

```
Switch(config)# privilege exec level 14 configure
Switch(config)# enable password level 14 SecretPswd14
```
Changing the Default Privilege Level for Lines

Beginning in privileged EXEC mode, follow these steps to change the default privilege level for a line:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>line vty line</code></td>
<td>Select the virtual terminal line on which to restrict access.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>privilege level level</code></td>
<td>Change the default privilege level for the line.</td>
</tr>
<tr>
<td></td>
<td>For level, the range is from 0 to 15. Level 1 is for normal user EXEC</td>
</tr>
<tr>
<td></td>
<td>mode privileges. Level 15 is the level of access permitted by the <code>enable</code></td>
</tr>
<tr>
<td></td>
<td>password.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>or</td>
<td>The first command shows the password and access level configuration.</td>
</tr>
<tr>
<td><code>show privilege</code></td>
<td>The second command shows the privilege level configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Users can override the privilege level you set using the `privilege level` line configuration command by logging in to the line and enabling a different privilege level. They can lower the privilege level by using the `disable` command. If users know the password to a higher privilege level, they can use that password to enable the higher privilege level. You might specify a high level or privilege level for your console line to restrict line usage.

To return to the default line privilege level, use the `no privilege level` line configuration command.

Logging into and Exiting a Privilege Level

Beginning in privileged EXEC mode, follow these steps to log in to a specified privilege level and to exit to a specified privilege level:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable level</code></td>
<td>Log in to a specified privilege level.</td>
</tr>
<tr>
<td></td>
<td>For level, the range is 0 to 15.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>disable level</code></td>
<td>Exit to a specified privilege level.</td>
</tr>
<tr>
<td></td>
<td>For level, the range is 0 to 15.</td>
</tr>
</tbody>
</table>
Controlling Switch Access with TACACS+

This section describes how to enable and configure Terminal Access Controller Access Control System Plus (TACACS+), which provides detailed accounting information and flexible administrative control over authentication and authorization processes. TACACS+ is facilitated through authentication, authorization, accounting (AAA) and can be enabled only through AAA commands.

For information about configuring this feature, see the “Configuring TACACS+ over IPv6” section of the “Implementing ADSL for IPv6” chapter in the Cisco IOS XE IPv6 Configuration Guide, Release 2.

Note

For complete syntax and usage information for the commands used in this section, see the Cisco IOS Security Command Reference, Release 12.4 and the Cisco IOS IPv6 Command Reference.

These sections contain this configuration information:

- Understanding TACACS+, page 1-10
- TACACS+ Operation, page 1-12
- Configuring TACACS+, page 1-12
- Displaying the TACACS+ Configuration, page 1-17

Understanding TACACS+

TACACS+ is a security application that provides centralized validation of users attempting to gain access to your switch. TACACS+ services are maintained in a database on a TACACS+ daemon typically running on a UNIX or Windows NT workstation. You should have access to and should configure a TACACS+ server before you configure TACACS+ features on your switch.

Note

We recommend a redundant connection between a switch stack and the TACACS+ server. This is to help ensure that the TACACS+ server remains accessible in case one of the connected stack members is removed from the switch stack.

TACACS+ provides for separate and modular authentication, authorization, and accounting facilities. TACACS+ allows for a single access control server (the TACACS+ daemon) to provide each service—authentication, authorization, and accounting—indeedently. Each service can be tied into its own database to take advantage of other services available on that server or on the network, depending on the capabilities of the daemon.

The goal of TACACS+ is to provide a method for managing multiple network access points from a single management service. Your switch can be a network access server along with other Cisco routers and access servers. A network access server provides connections to a single user, to a network or subnetwork, and to interconnected networks as shown in Figure 1-1.
TACACS+, administered through the AAA security services, can provide these services:

- **Authentication**—Provides complete control of authentication through login and password dialog, challenge and response, and messaging support.

 The authentication facility can conduct a dialog with the user (for example, after a username and password are provided, to challenge a user with several questions, such as home address, mother’s maiden name, service type, and social security number). The TACACS+ authentication service can also send messages to user screens. For example, a message could notify users that their passwords must be changed because of the company’s password aging policy.

- **Authorization**—Provides fine-grained control over user capabilities for the duration of the user’s session, including but not limited to setting autocommands, access control, session duration, or protocol support. You can also enforce restrictions on what commands a user can execute with the TACACS+ authorization feature.

- **Accounting**—Collects and sends information used for billing, auditing, and reporting to the TACACS+ daemon. Network managers can use the accounting facility to track user activity for a security audit or to provide information for user billing. Accounting records include user identities, start and stop times, executed commands (such as PPP), number of packets, and number of bytes.

The TACACS+ protocol provides authentication between the switch and the TACACS+ daemon, and it ensures confidentiality because all protocol exchanges between the switch and the TACACS+ daemon are encrypted.

You need a system running the TACACS+ daemon software to use TACACS+ on your switch.
TACACS+ Operation

When a user attempts a simple ASCII login by authenticating to a switch using TACACS+, this process occurs:

1. When the connection is established, the switch contacts the TACACS+ daemon to obtain a username prompt to show to the user. The user enters a username, and the switch then contacts the TACACS+ daemon to obtain a password prompt. The switch displays the password prompt to the user, the user enters a password, and the password is then sent to the TACACS+ daemon.

 TACACS+ allows a dialog between the daemon and the user until the daemon receives enough information to authenticate the user. The daemon prompts for a username and password combination, but can include other items, such as the user’s mother’s maiden name.

2. The switch eventually receives one of these responses from the TACACS+ daemon:
 - ACCEPT—The user is authenticated and service can begin. If the switch is configured to require authorization, authorization begins at this time.
 - REJECT—The user is not authenticated. The user can be denied access or is prompted to retry the login sequence, depending on the TACACS+ daemon.
 - ERROR—An error occurred at some time during authentication with the daemon or in the network connection between the daemon and the switch. If an ERROR response is received, the switch typically tries to use an alternative method for authenticating the user.
 - CONTINUE—The user is prompted for additional authentication information.

 After authentication, the user undergoes an additional authorization phase if authorization has been enabled on the switch. Users must first successfully complete TACACS+ authentication before proceeding to TACACS+ authorization.

3. If TACACS+ authorization is required, the TACACS+ daemon is again contacted, and it returns an ACCEPT or REJECT authorization response. If an ACCEPT response is returned, the response contains data in the form of attributes that direct the EXEC or NETWORK session for that user and the services that the user can access:
 - Telnet, Secure Shell (SSH), rlogin, or privileged EXEC services
 - Connection parameters, including the host or client IP address, access list, and user timeouts

Configuring TACACS+

This section describes how to configure your switch to support TACACS+. At a minimum, you must identify the host or hosts maintaining the TACACS+ daemon and define the method lists for TACACS+ authentication. You can optionally define method lists for TACACS+ authorization and accounting. A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used, thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.

These sections contain this configuration information:

- Default TACACS+ Configuration, page 1-13
- Identifying the TACACS+ Server Host and Setting the Authentication Key, page 1-13
- Configuring TACACS+ Login Authentication, page 1-14
• Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services, page 1-16
• Starting TACACS+ Accounting, page 1-17

Default TACACS+ Configuration

TACACS+ and AAA are disabled by default.
To prevent a lapse in security, you cannot configure TACACS+ through a network management application. When enabled, TACACS+ can authenticate users accessing the switch through the CLI.

Note
Although TACACS+ configuration is performed through the CLI, the TACACS+ server authorizes HTTP connections that have been configured with a privilege level of 15.

Identifying the TACACS+ Server Host and Setting the Authentication Key

You can configure the switch to use a single server or AAA server groups to group existing server hosts for authentication. You can group servers to select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list and contains the list of IP addresses of the selected server hosts.

Beginning in privileged EXEC mode, follow these steps to identify the IP host or host maintaining TACACS+ server and optionally set the encryption key:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | tacacs-server host hostname [port integer] [timeout integer] [key string] | Identify the IP host or hosts maintaining a TACACS+ server. Enter this command multiple times to create a list of preferred hosts. The software searches for hosts in the order in which you specify them.
* For `hostname`, specify the name or IP address of the host.
* (Optional) For `port integer`, specify a server port number. The default is port 49. The range is 1 to 65535.
* (Optional) For `timeout integer`, specify a time in seconds the switch waits for a response from the daemon before it times out and declares an error. The default is 5 seconds. The range is 1 to 1000 seconds.
* (Optional) For `key string`, specify the encryption key for encrypting and decrypting all traffic between the switch and the TACACS+ daemon. You must configure the same key on the TACACS+ daemon for encryption to be successful. |
| 3 | aaa new-model | Enable AAA. |
| 4 | aaa group server tacacs+ group-name | (Optional) Define the AAA server-group with a group name. |
| | | This command puts the switch in a server group subconfiguration mode. |
| 5 | server ip-address | (Optional) Associate a particular TACACS+ server with the defined server group. Repeat this step for each TACACS+ server in the AAA server group.
Each server in the group must be previously defined in Step 2. |
To remove the specified TACACS+ server name or address, use the `no tacacs-server host hostname` global configuration command. To remove a server group from the configuration list, use the `no aaa group server tacacs+ group-name` global configuration command. To remove the IP address of a TACACS+ server, use the `no server ip-address` server group subconfiguration command.

Configuring TACACS+ Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various ports. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific port before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named `default`). The default method list is automatically applied to all ports except those that have a named method list explicitly defined. A defined method list overrides the default method list.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

Beginning in privileged EXEC mode, follow these steps to configure login authentication:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>aaa new-model</code></td>
<td>Enable AAA.</td>
</tr>
</tbody>
</table>

To remove the specified TACACS+ server name or address, use the `no tacacs-server host hostname` global configuration command. To remove a server group from the configuration list, use the `no aaa group server tacacs+ group-name` global configuration command. To remove the IP address of a TACACS+ server, use the `no server ip-address` server group subconfiguration command.
Command

Step 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa authentication login {default | list-name} method1 [method2...]</td>
<td>Create a login authentication method list.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>To create a default list that is used when a named list is not specified in the <code>login authentication</code> command, use the <code>default</code> keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all ports.</td>
<td></td>
</tr>
<tr>
<td>For <code>list-name</code>, specify a character string to name the list you are creating.</td>
<td></td>
</tr>
<tr>
<td>For <code>method1...</code>, specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.</td>
<td></td>
</tr>
<tr>
<td>Select one of these methods:</td>
<td></td>
</tr>
<tr>
<td>enable—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the <code>enable password</code> global configuration command.</td>
<td></td>
</tr>
<tr>
<td>group tacacs+—Uses TACACS+ authentication. Before you can use this authentication method, you must configure the TACACS+ server. For more information, see the “Identifying the TACACS+ Server Host and Setting the Authentication Key” section on page 1-13.</td>
<td></td>
</tr>
<tr>
<td>line—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the <code>password password</code> line configuration command.</td>
<td></td>
</tr>
<tr>
<td>local—Use the local username database for authentication. You must enter username information in the database. Use the <code>username password</code> global configuration command.</td>
<td></td>
</tr>
<tr>
<td>local-case—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the <code>username name password</code> global configuration command.</td>
<td></td>
</tr>
<tr>
<td>none—Do not use any authentication for login.</td>
<td></td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>line [console | tty | vty] line-number [ending-line-number]</td>
<td>Enter line configuration mode, and configure the lines to which you want to apply the authentication list.</td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>login authentication {default | list-name}</td>
<td>Apply the authentication list to a line or set of lines.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>If you specify <code>default</code>, use the default list created with the <code>aaa authentication login</code> command.</td>
<td></td>
</tr>
<tr>
<td>For <code>list-name</code>, specify the list created with the <code>aaa authentication login</code> command.</td>
<td></td>
</tr>
</tbody>
</table>

Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

Step 8

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable AAA, use the `no aaa new-model` global configuration command. To disable AAA authentication, use the `no aaa authentication login \{default \| list-name\} method1 [method2...]` global configuration command. To either disable TACACS+ authentication for logins or to return to the default value, use the `no login authentication \{default \| list-name\}` line configuration command.
To secure the switch for HTTP access by using AAA methods, you must configure the switch with the `ip http authentication aaa` global configuration command. Configuring AAA authentication does not secure the switch for HTTP access by using AAA methods.

For more information about the `ip http authentication` command, see the *Cisco IOS Security Command Reference, Release 12.4*.

Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is located either in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

You can use the `aaa authorization` global configuration command with the `tacacs+` keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The `aaa authorization exec tacacs+ local` command sets these authorization parameters:

- Use TACACS+ for privileged EXEC access authorization if authentication was performed by using TACACS+.
- Use the local database if authentication was not performed by using TACACS+.

Note Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.

Beginning in privileged EXEC mode, follow these steps to specify TACACS+ authorization for privileged EXEC access and network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 aaa authorization network tacacs+</td>
<td>Configure the switch for user TACACS+ authorization for all network-related service requests.</td>
</tr>
<tr>
<td>Step 3 aaa authorization exec tacacs+</td>
<td>Configure the switch for user TACACS+ authorization if the user has privileged EXEC access. The <code>exec</code> keyword might return user profile information (such as <code>autocommand</code> information).</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.
Starting TACACS+ Accounting

The AAA accounting feature tracks the services that users are accessing and the amount of network resources that they are consuming. When AAA accounting is enabled, the switch reports user activity to the TACACS+ security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. This data can then be analyzed for network management, client billing, or auditing.

Beginning in privileged EXEC mode, follow these steps to enable TACACS+ accounting for each Cisco IOS privilege level and for network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 aaa accounting network start-stop tacacs+</td>
<td>Enable TACACS+ accounting for all network-related service requests.</td>
</tr>
<tr>
<td>Step 3 aaa accounting exec start-stop tacacs+</td>
<td>Enable TACACS+ accounting to send a start-record accounting notice at the beginning of a privileged EXEC process and a stop-record at the end.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable accounting, use the `no aaa accounting {network | exec} {start-stop} method1...` global configuration command.

Establishing a Session with a Router if the AAA Server is Unreachable

The `aaa accounting system guarantee-first` command guarantees system accounting as the first record, which is the default condition. In some situations, users might be prevented from starting a session on the console or terminal connection until after the system reloads, which can take more than 3 minutes.

To establish a console or Telnet session with the router if the AAA server is unreachable when the router reloads, use the `no aaa accounting system guarantee-first` command.

Displaying the TACACS+ Configuration

To display TACACS+ server statistics, use the `show tacacs` privileged EXEC command.

Controlling Switch Access with RADIUS

This section describes how to enable and configure the RADIUS, which provides detailed accounting information and flexible administrative control over authentication and authorization processes. RADIUS is facilitated through AAA and can be enabled only through AAA commands.

Understanding RADIUS

RADIUS is a distributed client/server system that secures networks against unauthorized access. RADIUS clients run on supported Cisco routers and switches. Clients send authentication requests to a central RADIUS server, which contains all user authentication and network service access information. The RADIUS host is normally a multiuser system running RADIUS server software from Cisco (Cisco Secure Access Control Server Version 3.0), Livingston, Merit, Microsoft, or another software provider. For more information, see the RADIUS server documentation.

We recommend a redundant connection between a switch stack and the RADIUS server. This is to help ensure that the RADIUS server remains accessible in case one of the connected stack members is removed from the switch stack.

Use RADIUS in these network environments that require access security:

- Networks with multiple-vendor access servers, each supporting RADIUS. For example, access servers from several vendors use a single RADIUS server-based security database. In an IP-based network with multiple vendors’ access servers, dial-in users are authenticated through a RADIUS server that has been customized to work with the Kerberos security system.
- Turnkey network security environments in which applications support the RADIUS protocol, such as in an access environment that uses a smart card access control system. In one case, RADIUS has been used with Enigma’s security cards to validates users and to grant access to network resources.
- Networks already using RADIUS. You can add a Cisco switch containing a RADIUS client to the network. This might be the first step when you make a transition to a TACACS+ server. See Figure 1-2 on page 1-19.
- Network in which the user must only access a single service. Using RADIUS, you can control user access to a single host, to a single utility such as Telnet, or to the network through a protocol such as IEEE 802.1x. For more information about this protocol, see Chapter 1, “Configuring IEEE 802.1x Port-Based Authentication.”
- Networks that require resource accounting. You can use RADIUS accounting independently of RADIUS authentication or authorization. The RADIUS accounting functions allow data to be sent at the start and end of services, showing the amount of resources (such as time, packets, bytes, and so forth) used during the session. An Internet service provider might use a freeware-based version of RADIUS access control and accounting software to meet special security and billing needs.
RADIUS is not suitable in these network security situations:

- Multiprotocol access environments. RADIUS does not support AppleTalk Remote Access (ARA), NetBIOS Frame Control Protocol (NBFCP), NetWare Asynchronous Services Interface (NASI), or X.25 PAD connections.
- Switch-to-switch or router-to-router situations. RADIUS does not provide two-way authentication. RADIUS can be used to authenticate from one device to a non-Cisco device if the non-Cisco device requires authentication.
- Networks using a variety of services. RADIUS generally binds a user to one service model.

Figure 1-2 Transitioning from RADIUS to TACACS+ Services

RADIUS Operation

When a user attempts to log in and authenticate to a switch that is access controlled by a RADIUS server, these events occur:

1. The user is prompted to enter a username and password.
2. The username and encrypted password are sent over the network to the RADIUS server.
3. The user receives one of these responses from the RADIUS server:
 a. ACCEPT—The user is authenticated.
 b. REJECT—The user is either not authenticated and is prompted to re-enter the username and password, or access is denied.
 c. CHALLENGE—A challenge requires additional data from the user.
 d. CHALLENGE PASSWORD—A response requests the user to select a new password.
The ACCEPT or REJECT response is bundled with additional data that is used for privileged EXEC or network authorization. Users must first successfully complete RADIUS authentication before proceeding to RADIUS authorization, if it is enabled. The additional data included with the ACCEPT or REJECT packets includes these items:

- Telnet, SSH, rlogin, or privileged EXEC services
- Connection parameters, including the host or client IP address, access list, and user timeouts

RADIUS Change of Authorization

This section provides an overview of the RADIUS interface including available primitives and how they are used during a Change of Authorization (CoA).

- Change-of-Authorization Requests, page 1-20
- CoA Request Response Code, page 1-22
- CoA Request Commands, page 1-23
- Session Reauthentication, page 1-23
- Stacking Guidelines for Session Termination, page 1-25

A standard RADIUS interface is typically used in a pulled model where the request originates from a network attached device and the response come from the queried servers. Catalyst switches support the RADIUS Change of Authorization (CoA) extensions defined in RFC 5176 that are typically used in a pushed model and allow for the dynamic reconfiguring of sessions from external authentication, authorization, and accounting (AAA) or policy servers.

Beginning with Cisco IOS Release 12.2(52)SE, the switch supports these per-session CoA requests:

- Session reauthentication
- Session termination
- Session termination with port shutdown
- Session termination with port bounce

This feature is integrated with the Cisco Secure Access Control Server (ACS) 5.1.

The RADIUS interface is enabled by default on Catalyst switches. However, some basic configuration is required for the following attributes:

- Security and Password—refer to the “Preventing Unauthorized Access to Your Switch” section in the Configuring Switch-Based Authentication chapter in the Catalyst 3750 Switch Software Configuration Guide, 12.2(50)SE.
- Accounting—refer to the “Starting RADIUS Accounting” section in the Configuring Switch-Based Authentication chapter in the Catalyst 3750 Switch Software Configuration Guide, 12.2(50)SE.

Change-of-Authorization Requests

Change of Authorization (CoA) requests, as described in RFC 5176, are used in a push model to allow for session identification, host reauthentication, and session termination. The model is comprised of one request (CoA-Request) and two possible response codes:

- CoA acknowledgement (ACK) [CoA-ACK]
- CoA non-acknowledgement (NAK) [CoA-NAK]
The request is initiated from a CoA client (typically a RADIUS or policy server) and directed to the switch that acts as a listener.

This section includes these topics:

- CoA Request Response Code
- CoA Request Commands
- Session Reauthentication

RFC 5176 Compliance

The Disconnect Request message, which is also referred to as Packet of Disconnect (POD), is supported by the switch for session termination.

Table 1-2 shows the IETF attributes are supported for this feature.

Table 1-2 Supported IETF Attributes

<table>
<thead>
<tr>
<th>Attribute Number</th>
<th>Attribute Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>State</td>
</tr>
<tr>
<td>31</td>
<td>Calling-Station-ID</td>
</tr>
<tr>
<td>44</td>
<td>Acct-Session-ID</td>
</tr>
<tr>
<td>80</td>
<td>Message-Authenticator</td>
</tr>
<tr>
<td>101</td>
<td>Error-Cause</td>
</tr>
</tbody>
</table>

Table 1-3 shows the possible values for the Error-Cause attribute.

Table 1-3 Error-Cause Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Residual Session Context Removed</td>
</tr>
<tr>
<td>202</td>
<td>Invalid EAP Packet (Ignored)</td>
</tr>
<tr>
<td>401</td>
<td>Unsupported Attribute</td>
</tr>
<tr>
<td>402</td>
<td>Missing Attribute</td>
</tr>
<tr>
<td>403</td>
<td>NAS Identification Mismatch</td>
</tr>
<tr>
<td>404</td>
<td>Invalid Request</td>
</tr>
<tr>
<td>405</td>
<td>Unsupported Service</td>
</tr>
<tr>
<td>406</td>
<td>Unsupported Extension</td>
</tr>
<tr>
<td>407</td>
<td>Invalid Attribute Value</td>
</tr>
<tr>
<td>501</td>
<td>Administratively Prohibited</td>
</tr>
<tr>
<td>502</td>
<td>Request Not Routable (Proxy)</td>
</tr>
<tr>
<td>503</td>
<td>Session Context Not Found</td>
</tr>
<tr>
<td>504</td>
<td>Session Context Not Removable</td>
</tr>
<tr>
<td>505</td>
<td>Other Proxy Processing Error</td>
</tr>
<tr>
<td>506</td>
<td>Resources Unavailable</td>
</tr>
</tbody>
</table>
Preconditions

To use the CoA interface, a session must already exist on the switch. CoA can be used to identify a session and enforce a disconnect request. The update affects only the specified session.

CoA Request Response Code

The CoA Request response code can be used to convey a command to the switch. The supported commands are listed in Table 1-4 on page 1-23.

Session Identification

For disconnect and CoA requests targeted at a particular session, the switch locates the session based on one or more of the following attributes:

- Calling-Station-Id (IETF attribute #31 which contains the host MAC address)
- Audit-Session-Id (Cisco VSA)
- Acct-Session-Id (IETF attribute #44)

Unless all session identification attributes included in the CoA message match the session, the switch returns a Disconnect-NAK or CoA-NAK with the “Invalid Attribute Value” error-code attribute.

For disconnect and CoA requests targeted to a particular session, any one of the following session identifiers can be used:

- Calling-Station-ID (IETF attribute #31, which should contain the MAC address)
- Audit-Session-ID (Cisco vendor-specific attribute)
- Accounting-Session-ID (IETF attribute #44).

If more than one session identification attribute is included in the message, all the attributes must match the session or the switch returns a Disconnect- negative acknowledgement (NAK) or CoA-NAK with the error code “Invalid Attribute Value.”

The packet format for a CoA Request code as defined in RFC 5176 consists of the fields: Code, Identifier, Length, Authenticator, and Attributes in Type:Length:Value (TLV) format.

![Packet Format](image)

The attributes field is used to carry Cisco VSAs.

<table>
<thead>
<tr>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>507</td>
<td>Request Initiated</td>
</tr>
<tr>
<td>508</td>
<td>Multiple Session Selection Unsupported</td>
</tr>
</tbody>
</table>

Table 1-3 Error-Cause Values (continued)
CoA ACK Response Code

If the authorization state is changed successfully, a positive acknowledgement (ACK) is sent. The attributes returned within CoA ACK will vary based on the CoA Request and are discussed in individual CoA Commands.

CoA NAK Response Code

A negative acknowledgement (NAK) indicates a failure to change the authorization state and can include attributes that indicate the reason for the failure. Use `show` commands to verify a successful CoA.

CoA Request Commands

This section includes:

- Session Reauthentication
- Session Reauthentication in a Switch Stack
- Session Termination
- CoA Disconnect-Request
- CoA Request: Disable Host Port
- CoA Request: Bounce-Port

Beginning with Cisco IOS Release 12.2(52)SE, the switch supports the commands shown in Table 1-4.

Table 1-4 CoA Commands Supported on the Switch

<table>
<thead>
<tr>
<th>Command1</th>
<th>Cisco VSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reauthenticate host</td>
<td>Cisco:Avpair="subscriber:command=reauthenticate"</td>
</tr>
<tr>
<td>Terminate session</td>
<td>This is a standard disconnect request that does not require a VSA.</td>
</tr>
<tr>
<td>Bounce host port</td>
<td>Cisco:Avpair="subscriber:command=bounce-host-port"</td>
</tr>
<tr>
<td>Disable host port</td>
<td>Cisco:Avpair="subscriber:command=disable-host-port"</td>
</tr>
</tbody>
</table>

1. All CoA commands must include the session identifier between the switch and the CoA client.

Session Reauthentication

The AAA server typically generates a session reauthentication request when a host with an unknown identity or posture joins the network and is associated with a restricted access authorization profile (such as a guest VLAN). A reauthentication request allows the host to be placed in the appropriate authorization group when its credentials are known.

To initiate session authentication, the AAA server sends a standard CoA-Request message which contains a Cisco vendor-specific attribute (VSA) in this form: `Cisco:Avpair="subscriber:command=reauthenticate"` and one or more session identification attributes.

The current session state determines the switch response to the message. If the session is currently authenticated by IEEE 802.1x, the switch responds by sending an EAPoL1-RequestId message (see footnote 1 below) to the server.

1. Extensible Authentication Protocol over Lan
If the session is currently authenticated by MAC authentication bypass (MAB), the switch sends an access-request to the server, passing the same identity attributes used for the initial successful authentication.

If session authentication is in progress when the switch receives the command, the switch terminates the process, and restarts the authentication sequence, starting with the method configured to be attempted first.

If the session is not yet authorized, or is authorized via guest VLAN, or critical VLAN, or similar policies, the reauthentication message restarts the access control methods, beginning with the method configured to be attempted first. The current authorization of the session is maintained until the reauthentication leads to a different authorization result.

Session Reauthentication in a Switch Stack

When a switch stack receives a session reauthentication message:

- It checkpoints the need for a re-authentication before returning an acknowledgement (ACK).
- It initiates reauthentication for the appropriate session.
- If authentication completes with either success or failure, the signal that triggered the reauthentication is removed from the stack member.
- If the stack master fails before authentication completes, reauthentication is initiated after stack master switch-over based on the original command (which is subsequently removed).
- If the stack master fails before sending an ACK, the new stack master treats the re-transmitted command as a new command.

Session Termination

There are three types of CoA requests that can trigger session termination. A CoA Disconnect-Request terminates the session, without disabling the host port. This command causes re-initialization of the authenticator state machine for the specified host, but does not restrict that host’s access to the network.

To restrict a host’s access to the network, use a CoA Request with the Cisco:Avpair="subscriber:command=disable-host-port" VSA. This command is useful when a host is known to be causing problems on the network, and you need to immediately block network access for the host. When you want to restore network access on the port, re-enable it using a non-RADIUS mechanism.

When a device with no supplicant, such as a printer, needs to acquire a new IP address (for example, after a VLAN change), terminate the session on the host port with port-bounce (temporarily disable and then re-enable the port).

CoA Disconnect-Request

This command is a standard Disconnect-Request. Because this command is session-oriented, it must be accompanied by one or more of the session identification attributes described in the “Session Identification” section on page 1-22. If the session cannot be located, the switch returns a Disconnect-NAK message with the “Session Context Not Found” error-code attribute. If the session is located, the switch terminates the session. After the session has been completely removed, the switch returns a Disconnect-ACK.

If the switch fails-over to a standby switch before returning a Disconnect-ACK to the client, the process is repeated on the new active switch when the request is re-sent from the client. If the session is not found following re-sending, a Disconnect-ACK is sent with the “Session Context Not Found” error-code attribute.
CoA Request: Disable Host Port

This command is carried in a standard CoA-Request message that has this new VSA:
Cisco:Avpair="subscriber:command=disable-host-port"

Because this command is session-oriented, it must be accompanied by one or more of the session identification attributes described in the “Session Identification” section on page 1-22. If the session cannot be located, the switch returns a CoA-NAK message with the “Session Context Not Found” error-code attribute. If the session is located, the switch disables the hosting port and returns a CoA-ACK message.

If the switch fails before returning a CoA-ACK to the client, the process is repeated on the new active switch when the request is re-sent from the client. If the switch fails after returning a CoA-ACK message to the client but before the operation has completed, the operation is restarted on the new active switch.

Note

A Disconnect-Request failure following command re-sending could be the result of either a successful session termination before change-over (if the Disconnect-ACK was not sent) or a session termination by other means (for example, a link failure) that occurred after the original command was issued and before the standby switch became active.

CoA Request: Bounce-Port

This command is carried in a standard CoA-Request message that contains the following new VSA:
Cisco:Avpair="subscriber:command=bounce-host-port"

Because this command is session-oriented, it must be accompanied by one or more of the session identification attributes described in the “Session Identification” section on page 1-22. If the session cannot be located, the switch returns a CoA-NAK message with the “Session Context Not Found” error-code attribute. If the session is located, the switch disables the hosting port for a period of 10 seconds, re-enables it (port-bounce), and returns a CoA-ACK.

If the switch fails before returning a CoA-ACK to the client, the process is repeated on the new active switch when the request is re-sent from the client. If the switch fails after returning a CoA-ACK message to the client but before the operation has completed, the operation is re-started on the new active switch.

Stacking Guidelines for Session Termination

No special handling is required for CoA Disconnect-Request messages in a switch stack.

Stacking Guidelines for CoA-Request Bounce-Port

Because the bounce-port command is targeted at a session, not a port, if the session is not found, the command cannot be executed.

When the Auth Manager command handler on the stack master receives a valid bounce-port command, it checkpoints the following information before returning a CoA-ACK message:

- the need for a port-bounce
- the port-id (found in the local session context)

The switch initiates a port-bounce (disables the port for 10 seconds, then re-enables it).

If the port-bounce is successful, the signal that triggered the port-bounce is removed from the standby stack master.
If the stack master fails before the port-bounce completes, a port-bounce is initiated after stack master change-over based on the original command (which is subsequently removed).

If the stack master fails before sending a CoA-ACK message, the new stack master treats the re-sent command as a new command.

Stacking Guidelines for CoA-Request Disable-Port

Because the `disable-port` command is targeted at a session, not a port, if the session is not found, the command cannot be executed.

When the Auth Manager command handler on the stack master receives a valid `disable-port` command, it verifies this information before returning a CoA-ACK message:

- the need for a port-disable
- the port-id (found in the local session context)

The switch attempts to disable the port.

If the port-disable operation is successful, the signal that triggered the port-disable is removed from the standby stack master.

If the stack master fails before the port-disable operation completes, the port is disabled after stack master change-over based on the original command (which is subsequently removed).

If the stack master fails before sending a CoA-ACK message, the new stack master treats the re-sent command as a new command.

Configuring RADIUS

This section describes how to configure your switch to support RADIUS. At a minimum, you must identify the host or hosts that run the RADIUS server software and define the method lists for RADIUS authentication. You can optionally define method lists for RADIUS authorization and accounting.

A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used (such as TACACS+ or local username lookup), thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.

You should have access to and should configure a RADIUS server before configuring RADIUS features on your switch.

These sections contain this configuration information:

- Default RADIUS Configuration, page 1-27
- Identifying the RADIUS Server Host, page 1-27 (required)
- Configuring RADIUS Login Authentication, page 1-29 (required)
- Defining AAA Server Groups, page 1-31 (optional)
- Configuring RADIUS Authorization for User Privileged Access and Network Services, page 1-33 (optional)
- Starting RADIUS Accounting, page 1-34 (optional)
- Configuring Settings for All RADIUS Servers, page 1-35 (optional)
- Configuring the Switch to Use Vendor-Specific RADIUS Attributes, page 1-35 (optional)
• Configuring the Switch for Vendor-Proprietary RADIUS Server Communication, page 1-36 (optional)
• Configuring CoA on the Switch, page 1-37
• Monitoring and Troubleshooting CoA Functionality, page 1-38
• Configuring RADIUS Server Load Balancing, page 1-39 (optional)

Default RADIUS Configuration

RADIUS and AAA are disabled by default.

To prevent a lapse in security, you cannot configure RADIUS through a network management application. When enabled, RADIUS can authenticate users accessing the switch through the CLI.

Identifying the RADIUS Server Host

Switch-to-RADIUS-server communication involves several components:

• Hostname or IP address
• Authentication destination port
• Accounting destination port
• Key string
• Timeout period
• Retransmission value

You identify RADIUS security servers by their hostname or IP address, hostname and specific UDP port numbers, or their IP address and specific UDP port numbers. The combination of the IP address and the UDP port number creates a unique identifier, allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. This unique identifier enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address.

If two different host entries on the same RADIUS server are configured for the same service—for example, accounting—the second host entry configured acts as a fail-over backup to the first one. Using this example, if the first host entry fails to provide accounting services, the %RADIUS-4-RADIUS_DEAD message appears, and then the switch tries the second host entry configured on the same device for accounting services. (The RADIUS host entries are tried in the order that they are configured.)

A RADIUS server and the switch use a shared secret text string to encrypt passwords and exchange responses. To configure RADIUS to use the AAA security commands, you must specify the host running the RADIUS server daemon and a secret text (key) string that it shares with the switch.

The timeout, retransmission, and encryption key values can be configured globally for all RADIUS servers, on a per-server basis, or in some combination of global and per-server settings. To apply these settings globally to all RADIUS servers communicating with the switch, use the three unique global configuration commands: radius-server timeout, radius-server retransmit, and radius-server key. To apply these values on a specific RADIUS server, use the radius-server host global configuration command.

Note

If you configure both global and per-server functions (timeout, retransmission, and key commands) on the switch, the per-server timer, retransmission, and key value commands override global timer, retransmission, and key value commands. For information on configuring these settings on all RADIUS servers, see the “Configuring Settings for All RADIUS Servers” section on page 1-35.
You can configure the switch to use AAA server groups to group existing server hosts for authentication. For more information, see the “Defining AAA Server Groups” section on page 1-31.

Beginning in privileged EXEC mode, follow these steps to configure per-server RADIUS server communication. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>radius-server host {hostname</td>
</tr>
<tr>
<td></td>
<td>Specify the IP address or hostname of the remote RADIUS server host.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For auth-port port-number, specify the UDP destination port for authentication requests.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For acct-port port-number, specify the UDP destination port for accounting requests.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For timeout seconds, specify the time interval that the switch waits for the RADIUS server to reply before resending. The range is 1 to 1000. This setting overrides the radius-server timeout global configuration command setting. If no timeout is set with the radius-server host command, the setting of the radius-server timeout command is used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For retransmit retries, specify the number of times a RADIUS request is resent to a server if that server is not responding or responding slowly. The range is 1 to 1000. If no retransmit value is set with the radius-server host command, the setting of the radius-server retransmit global configuration command is used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For key string, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.</td>
</tr>
<tr>
<td></td>
<td>The key is a text string that must match the encryption key used on the RADIUS server. Always configure the key as the last item in the radius-server host command. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To remove the specified RADIUS server, use the `no radius-server host hostname | ip-address` global configuration command.

This example shows how to configure one RADIUS server to be used for authentication and another to be used for accounting:

```
Switch(config)# radius-server host 172.29.36.49 auth-port 1612 key rad1
Switch(config)# radius-server host 172.20.36.50 acct-port 1618 key rad2
```

This example shows how to configure `host1` as the RADIUS server and to use the default ports for both authentication and accounting:

```
Switch(config)# radius-server host host1
```

Note You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, see the RADIUS server documentation.

Configuring RADIUS Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various ports. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific port before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named `default`). The default method list is automatically applied to all ports except those that have a named method list explicitly defined.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

Beginning in privileged EXEC mode, follow these steps to configure login authentication. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>aaa new-model</td>
<td>Enable AAA.</td>
</tr>
</tbody>
</table>
Controlling Switch Access with RADIUS

Step 3

```plaintext
aaa authentication login {default | list-name} method1 [method2...]
```

Create a login authentication method list.

- To create a default list that is used when a named list is *not* specified in the `login authentication` command, use the `default` keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all ports.
- For `list-name`, specify a character string to name the list you are creating.
- For `method1...`, specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.

Select one of these methods:

- **enable**—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the `enable password` global configuration command.
- **group radius**—Use RADIUS authentication. Before you can use this authentication method, you must configure the RADIUS server. For more information, see the “Identifying the RADIUS Server Host” section on page 1-27.
- **line**—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the `password password` line configuration command.
- **local**—Use the local username database for authentication. You must enter username information in the database. Use the `username name password` global configuration command.
- **local-case**—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the `username password` global configuration command.
- **none**—Do not use any authentication for login.

Step 4

```plaintext
line [console | tty | vty] line-number [ending-line-number]
```

Enter line configuration mode, and configure the lines to which you want to apply the authentication list.

Step 5

```plaintext
login authentication {default | list-name}
```

Apply the authentication list to a line or set of lines.

- If you specify `default`, use the default list created with the `aaa authentication login` command.
- For `list-name`, specify the list created with the `aaa authentication login` command.

Step 6

```plaintext
end
```

Return to privileged EXEC mode.

Step 7

```plaintext
show running-config
```

Verify your entries.

Step 8

```plaintext
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>`aaa authentication login {default</td>
</tr>
<tr>
<td></td>
<td>Create a login authentication method list.</td>
</tr>
<tr>
<td></td>
<td>- To create a default list that is used when a named list is not specified in the <code>login authentication</code> command, use the <code>default</code> keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all ports.</td>
</tr>
<tr>
<td></td>
<td>- For <code>list-name</code>, specify a character string to name the list you are creating.</td>
</tr>
<tr>
<td></td>
<td>- For <code>method1...</code>, specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.</td>
</tr>
<tr>
<td></td>
<td>Select one of these methods:</td>
</tr>
<tr>
<td></td>
<td>- enable—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the <code>enable password</code> global configuration command.</td>
</tr>
<tr>
<td></td>
<td>- group radius—Use RADIUS authentication. Before you can use this authentication method, you must configure the RADIUS server. For more information, see the “Identifying the RADIUS Server Host” section on page 1-27.</td>
</tr>
<tr>
<td></td>
<td>- line—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the <code>password password</code> line configuration command.</td>
</tr>
<tr>
<td></td>
<td>- local—Use the local username database for authentication. You must enter username information in the database. Use the <code>username name password</code> global configuration command.</td>
</tr>
<tr>
<td></td>
<td>- local-case—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the <code>username password</code> global configuration command.</td>
</tr>
<tr>
<td></td>
<td>- none—Do not use any authentication for login.</td>
</tr>
<tr>
<td>Step 4</td>
<td>`line [console</td>
</tr>
<tr>
<td></td>
<td>Enter line configuration mode, and configure the lines to which you want to apply the authentication list.</td>
</tr>
<tr>
<td>Step 5</td>
<td>`login authentication {default</td>
</tr>
<tr>
<td></td>
<td>Apply the authentication list to a line or set of lines.</td>
</tr>
<tr>
<td></td>
<td>- If you specify <code>default</code>, use the default list created with the <code>aaa authentication login</code> command.</td>
</tr>
<tr>
<td></td>
<td>- For <code>list-name</code>, specify the list created with the <code>aaa authentication login</code> command.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>show running-config</code></td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable AAA, use the `no aaa new-model` global configuration command. To disable AAA authentication, use the `no aaa authentication login {default | list-name} method1 [method2...]` global configuration command. To either disable RADIUS authentication for logins or to return to the default value, use the `no login authentication {default | list-name}` line configuration command.

Note

To secure the switch for HTTP access by using AAA methods, you must configure the switch with the `ip http authentication aaa` global configuration command. Configuring AAA authentication does not secure the switch for HTTP access by using AAA methods.

For more information about the `ip http authentication` command, see the *Cisco IOS Security Command Reference, Release 12.4*.

Defining AAA Server Groups

You can configure the switch to use AAA server groups to group existing server hosts for authentication. You select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list, which lists the IP addresses of the selected server hosts.

Server groups also can include multiple host entries for the same server if each entry has a unique identifier (the combination of the IP address and UDP port number), allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. If you configure two different host entries on the same RADIUS server for the same service, (for example, accounting), the second configured host entry acts as a fail-over backup to the first one.

You use the `server` group server configuration command to associate a particular server with a defined group server. You can either identify the server by its IP address or identify multiple host instances or entries by using the optional `auth-port` and `acct-port` keywords.
Beginning in privileged EXEC mode, follow these steps to define the AAA server group and associate a particular RADIUS server with it:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>radius-server host {hostname | ip-address} [auth-port port-number] [acct-port port-number] [timeout seconds] [retransmit retries] [key string]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>The key is a text string that must match the encryption key used on the RADIUS server. Always configure the key as the last item in the radius-server host command. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa new-model</td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa group server radius group-name</td>
</tr>
<tr>
<td>Step 5</td>
<td>server ip-address</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Switch-Based Authentication

Controlling Switch Access with RADIUS

To remove the specified RADIUS server, use the `no radius-server host hostname | ip-address` global configuration command. To remove a server group from the configuration list, use the `no aaa group server radius group-name` global configuration command. To remove the IP address of a RADIUS server, use the `no server ip-address` server group configuration command.

In this example, the switch is configured to recognize two different RADIUS group servers (`group1` and `group2`). `group1` has two different host entries on the same RADIUS server configured for the same services. The second host entry acts as a fail-over backup to the first entry.

```
Switch(config)# radius-server host 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config)# radius-server host 172.10.0.1 auth-port 1645 acct-port 1646
Switch(config)# aaa new-model
Switch(config)# aaa group server radius group1
Switch(config-sg-radius)# server 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config-sg-radius)# exit
Switch(config)# aaa group server radius group2
Switch(config-sg-radius)# server 172.20.0.1 auth-port 2000 acct-port 2001
Switch(config-sg-radius)# exit
```

Configuring RADIUS Authorization for User Privileged Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

You can use the `aaa authorization` global configuration command with the `radius` keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The `aaa authorization exec radius local` command sets these authorization parameters:

- Use RADIUS for privileged EXEC access authorization if authentication was performed by using RADIUS.
- Use the local database if authentication was not performed by using RADIUS.

Note

Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.

Beginning in privileged EXEC mode, follow these steps to specify RADIUS authorization for privileged EXEC access and network services:

```
Step 1  configure terminal
Step 2  aaa authorization network radius
```

Command	**Purpose**
`configure terminal` | Enter global configuration mode.
`aaa authorization network radius` | Configure the switch for user RADIUS authorization for all network-related service requests.

To remove the specified RADIUS server, use the `no radius-server host hostname | ip-address` global configuration command. To remove a server group from the configuration list, use the `no aaa group server radius group-name` global configuration command. To remove the IP address of a RADIUS server, use the `no server ip-address` server group configuration command.

In this example, the switch is configured to recognize two different RADIUS group servers (`group1` and `group2`). Group1 has two different host entries on the same RADIUS server configured for the same services. The second host entry acts as a fail-over backup to the first entry.

```
Switch(config)# radius-server host 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config)# radius-server host 172.10.0.1 auth-port 1645 acct-port 1646
Switch(config)# aaa new-model
Switch(config)# aaa group server radius group1
Switch(config-sg-radius)# server 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config-sg-radius)# exit
Switch(config)# aaa group server radius group2
Switch(config-sg-radius)# server 172.20.0.1 auth-port 2000 acct-port 2001
Switch(config-sg-radius)# exit
```
Controlling Switch Access with RADIUS

Chapter 1 Configuring Switch-Based Authentication

Chapter 1 Configuring Switch-Based Authentication

Controlling Switch Access with RADIUS

To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.

Starting RADIUS Accounting

The AAA accounting feature tracks the services that users are using and the amount of network resources that they are consuming. When you enable AAA accounting, the switch reports user activity to the RADIUS security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. You can then analyze the data for network management, client billing, or auditing.

Beginning in privileged EXEC mode, follow these steps to enable RADIUS accounting for each Cisco IOS privilege level and for network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa accounting network start-stop radius</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa accounting exec start-stop radius</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable accounting, use the `no aaa accounting {network | exec} {start-stop} method1...` global configuration command.

Establishing a Session with a Router if the AAA Server is Unreachable

The `aaa accounting system guarantee-first` command guarantees system accounting as the first record, which is the default condition. In some situations, users might be prevented from starting a session on the console or terminal connection until after the system reloads, which can take more than 3 minutes.

To establish a console or Telnet session with the router if the AAA server is unreachable when the router reloads, use the `no aaa accounting system guarantee-first` command.
Chapter 1 Configuring Switch-Based Authentication

Controlling Switch Access with RADIUS

Configuring Settings for All RADIUS Servers

Beginning in privileged EXEC mode, follow these steps to configure global communication settings between the switch and all RADIUS servers:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>radius-server key string</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 3</td>
<td>radius-server retransmit retries</td>
</tr>
<tr>
<td>Step 4</td>
<td>radius-server timeout seconds</td>
</tr>
<tr>
<td>Step 5</td>
<td>radius-server deadtime minutes</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting for the retransmit, timeout, and deadtime, use the no forms of these commands.

Configuring the Switch to Use Vendor-Specific RADIUS Attributes

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating vendor-specific information between the switch and the RADIUS server by using the vendor-specific attribute (attribute 26). Vendor-specific attributes (VSAs) allow vendors to support their own extended attributes not suitable for general use. The Cisco RADIUS implementation supports one vendor-specific option by using the format recommended in the specification. Cisco’s vendor-ID is 9, and the supported option has vendor-type 1, which is named cisco-avpair. The value is a string with this format:

```
protocol : attribute sep value *
```

Protocol is a value of the Cisco protocol attribute for a particular type of authorization. Attribute and value are an appropriate attribute-value (AV) pair defined in the Cisco TACACS+ specification, and sep is = for mandatory attributes and is * for optional attributes. The full set of features available for TACACS+ authorization can then be used for RADIUS.

For example, this AV pair activates Cisco’s multiple named ip address pools feature during IP authorization (during PPP IPCP address assignment):

```
cisco-avpair= "ip:addr-pool=first"
```
Chapter 1 Configuring Switch-Based Authentication

Controlling Switch Access with RADIUS

This example shows how to provide a user logging in from a switch with immediate access to privileged EXEC commands:

cisco-avpair= "shell:priv-lvl=15"

This example shows how to specify an authorized VLAN in the RADIUS server database:

cisco-avpair= "tunnel-type(#64)=VLAN(13)"
cisco-avpair= "tunnel-medium-type(#65)=802 media(6)"
cisco-avpair= "tunnel-private-group-id(#81)=vlanid"

This example shows how to apply an input ACL in ASCII format to an interface for the duration of this connection:

cisco-avpair= "ip:inacl#1=deny ip 10.10.10.10 0.0.255.255 20.20.20.20 255.255.0.0"
cisco-avpair= "ip:inacl#2=deny ip 10.10.10.10 0.0.255.255 any"
cisco-avpair= "mac:inacl#3=deny any any decnet-iv"

This example shows how to apply an output ACL in ASCII format to an interface for the duration of this connection:

cisco-avpair= "ip:outacl#2=deny ip 10.10.10.10 0.0.255.255 any"

Other vendors have their own unique vendor-IDs, options, and associated VSAs. For more information about vendor-IDs and VSAs, see RFC 2138, “Remote Authentication Dial-In User Service (RADIUS).”

Beginning in privileged EXEC mode, follow these steps to configure the switch to recognize and use VSAs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>radius-server vsa send [accounting</td>
</tr>
<tr>
<td></td>
<td>authentication]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

For a complete list of RADIUS attributes or more information about vendor-specific attribute 26, see the “RADIUS Attributes” appendix in the Cisco IOS Security Configuration Guide, Release 12.4.

Configuring the Switch for Vendor-Proprietary RADIUS Server Communication

Although an IETF draft standard for RADIUS specifies a method for communicating vendor-proprietary information between the switch and the RADIUS server, some vendors have extended the RADIUS attribute set in a unique way. Cisco IOS software supports a subset of vendor-proprietary RADIUS attributes.
As mentioned earlier, to configure RADIUS (whether vendor-proprietary or IETF draft-compliant), you must specify the host running the RADIUS server daemon and the secret text string it shares with the switch. You specify the RADIUS host and secret text string by using the `radius-server` global configuration commands.

Beginning in privileged EXEC mode, follow these steps to specify a vendor-proprietary RADIUS server host and a shared secret text string:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 radius-server host {hostname</td>
<td>ip-address} non-standard</td>
</tr>
<tr>
<td>Step 3 radius-server key string</td>
<td>Specify the shared secret text string used between the switch and the vendor-proprietary RADIUS server. The switch and the RADIUS server use this text string to encrypt passwords and exchange responses. Note The key is a text string that must match the encryption key used on the RADIUS server. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the vendor-proprietary RADIUS host, use the `no radius-server host \{hostname | ip-address\} non-standard` global configuration command. To disable the key, use the `no radius-server key` global configuration command.

This example shows how to specify a vendor-proprietary RADIUS host and to use a secret key of `rad124` between the switch and the server:

```
Switch(config)# radius-server host 172.20.30.15 nonstandard
Switch(config)# radius-server key rad124
```

Configuring CoA on the Switch

Beginning in privileged EXEC mode, follow these steps to configure CoA on a switch. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 aaa new-model</td>
<td>Enable AAA.</td>
</tr>
<tr>
<td>Step 3 aaa server radius dynamic-author</td>
<td>Configure the switch as an authentication, authorization, and accounting (AAA) server to facilitate interaction with an external policy server.</td>
</tr>
</tbody>
</table>
Configuring Switch Access with RADIUS

Command

Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td><code>client {ip-address \ name \ vrf \ vrfname} [server-key string]</code></td>
<td>Enter dynamic authorization local server configuration mode and specify a RADIUS client from which a device will accept CoA and disconnect requests.</td>
</tr>
<tr>
<td>5</td>
<td>`server-key [0</td>
<td>7] string`</td>
</tr>
<tr>
<td>6</td>
<td><code>port port-number</code></td>
<td>Specify the port on which a device listens for RADIUS requests from configured RADIUS clients.</td>
</tr>
<tr>
<td>7</td>
<td>`auth-type {any</td>
<td>all</td>
</tr>
<tr>
<td>8</td>
<td><code>ignore session-key</code></td>
<td>(Optional) Configure the switch to ignore the session-key. For more information about the <code>ignore</code> command, see the Cisco IOS Intelligent Services Gateway Command Reference on Cisco.com.</td>
</tr>
<tr>
<td>9</td>
<td><code>ignore server-key</code></td>
<td>(Optional) Configure the switch to ignore the server-key. For more information about the <code>ignore</code> command, see the Cisco IOS Intelligent Services Gateway Command Reference on Cisco.com.</td>
</tr>
<tr>
<td>10</td>
<td><code>authentication command bounce-port ignore</code></td>
<td>(Optional) Configure the switch to ignore a CoA request to temporarily disable the port hosting a session. The purpose of temporarily disabling the port is to trigger a DHCP renegotiation from the host when a VLAN change occurs and there is no supplicant on the endpoint to detect the change.</td>
</tr>
<tr>
<td></td>
<td><code>authentication command disable-port ignore</code></td>
<td>(Optional) Configure the switch to ignore a nonstandard command requesting that the port hosting a session be administratively shut down. Shutting down the port results in termination of the session. Use standard CLI or SNMP commands to re-enable the port.</td>
</tr>
<tr>
<td>12</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>13</td>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>14</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable AAA, use the `no aaa new-model` global configuration command. To disable the AAA server functionality on the switch, use the `no aaa server radius dynamic authorization` global configuration command.

Monitoring and Troubleshooting CoA Functionality

The following Cisco IOS commands can be used to monitor and troubleshoot CoA functionality on the switch:

- `debug radius`
- `debug aaa coa`
- `debug aaa pod`
- `debug aaa subsys`
- `debug cmdhd [detail | error | events]`
- `show aaa attributes protocol radius`
Configuring RADIUS Server Load Balancing

This feature allows access and authentication requests to be evenly across all RADIUS servers in a server group. For more information, see the “RADIUS Server Load Balancing” chapter of the *Cisco IOS Security Configuration Guide, Release 12.4*.

Displaying the RADIUS Configuration

To display the RADIUS configuration, use the `show running-config` privileged EXEC command.

Controlling Switch Access with Kerberos

This section describes how to enable and configure the Kerberos security system, which authenticates requests for network resources by using a trusted third party.

These sections contain this information:
- Understanding Kerberos, page 1-39
- Kerberos Operation, page 1-41
- Configuring Kerberos, page 1-42

For Kerberos configuration examples, see the “Kerberos Configuration Examples” section in the “Security Server Protocols” chapter of the *Cisco IOS Security Configuration Guide, Release 12.4*.

For complete syntax and usage information for the commands used in this section, see the “Kerberos Commands” section in the “Security Server Protocols” chapter of the *Cisco IOS Security Command Reference, Release 12.4*.

Note

In the Kerberos configuration examples and in the *Cisco IOS Security Command Reference, Release 12.4*, the trusted third party can be a Catalyst 3750-E or 3560-E switch that supports Kerberos, that is configured as a network security server, and that can authenticate users by using the Kerberos protocol.

Understanding Kerberos

Kerberos is a secret-key network authentication protocol, which was developed at the Massachusetts Institute of Technology (MIT). It uses the Data Encryption Standard (DES) cryptographic algorithm for encryption and authentication and authenticates requests for network resources. Kerberos uses the concept of a trusted third party to perform secure verification of users and services. This trusted third party is called the *key distribution center* (KDC).

Kerberos verifies that users are who they claim to be and the network services that they use are what the services claim to be. To do this, a KDC or trusted Kerberos server issues tickets to users. These tickets, which have a limited lifespan, are stored in user credential caches. The Kerberos server uses the tickets instead of usernames and passwords to authenticate users and network services.

Note

A Kerberos server can be a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch that is configured as a network security server and that can authenticate users by using the Kerberos protocol.
The Kerberos credential scheme uses a process called *single logon*. This process authenticates a user once and then allows secure authentication (without encrypting another password) wherever that user credential is accepted.

This software release supports Kerberos 5, which allows organizations that are already using Kerberos 5 to use the same Kerberos authentication database on the KDC that they are already using on their other network hosts (such as UNIX servers and PCs).

In this software release, Kerberos supports these network services:

- Telnet
- rlogin
- rsh (Remote Shell Protocol)

Table 1-5 lists the common Kerberos-related terms and definitions:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>A process by which a user or service identifies itself to another service. For example, a client can authenticate to a switch or a switch can authenticate to another switch.</td>
</tr>
<tr>
<td>Authorization</td>
<td>A means by which the switch identifies what privileges the user has in a network or on the switch and what actions the user can perform.</td>
</tr>
<tr>
<td>Credential</td>
<td>A general term that refers to authentication tickets, such as TGTs(^1) and service credentials. Kerberos credentials verify the identity of a user or service. If a network service decides to trust the Kerberos server that issued a ticket, it can be used in place of re-entering a username and password. Credentials have a default lifespan of eight hours.</td>
</tr>
<tr>
<td>Instance</td>
<td>An authorization level label for Kerberos principals. Most Kerberos principals are of the form <code>user@REALM</code> (for example, smith@example.com). A Kerberos principal with a Kerberos instance has the form <code>user/instance@REALM</code> (for example, smith/admin@example.com). The Kerberos instance can be used to specify the authorization level for the user if authentication is successful. The server of each network service might implement and enforce the authorization mappings of Kerberos instances but is not required to do so.</td>
</tr>
<tr>
<td>Note</td>
<td>The Kerberos principal and instance names must be in all lowercase characters.</td>
</tr>
<tr>
<td>Note</td>
<td>The Kerberos realm name must be in all uppercase characters.</td>
</tr>
<tr>
<td>KDC(^2)</td>
<td>Key distribution center that consists of a Kerberos server and database program that is running on a network host.</td>
</tr>
<tr>
<td>Kerberized</td>
<td>A term that describes applications and services that have been modified to support the Kerberos credential infrastructure.</td>
</tr>
<tr>
<td>Kerberos realm</td>
<td>A domain consisting of users, hosts, and network services that are registered to a Kerberos server. The Kerberos server is trusted to verify the identity of a user or network service to another user or network service.</td>
</tr>
<tr>
<td>Note</td>
<td>The Kerberos realm name must be in all uppercase characters.</td>
</tr>
</tbody>
</table>
Kerberos Operation

A Kerberos server can be a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch that is configured as a network security server and that can authenticate remote users by using the Kerberos protocol. Although you can customize Kerberos in a number of ways, remote users attempting to access network services must pass through three layers of security before they can access network services.

To authenticate to network services by using a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch as a Kerberos server, remote users must follow these steps:

1. Authenticating to a Boundary Switch, page 1-41
2. Obtaining a TGT from a KDC, page 1-42
3. Authenticating to Network Services, page 1-42

Authenticating to a Boundary Switch

This section describes the first layer of security through which a remote user must pass. The user must first authenticate to the boundary switch. This process then occurs:

1. The user opens an un-Kerberized Telnet connection to the boundary switch.
2. The switch prompts the user for a username and password.
Controlling Switch Access with Kerberos

3. The switch requests a TGT from the KDC for this user.
4. The KDC sends an encrypted TGT that includes the user identity to the switch.
5. The switch attempts to decrypt the TGT by using the password that the user entered.
 - If the decryption is successful, the user is authenticated to the switch.
 - If the decryption is not successful, the user repeats Step 2 either by re-entering the username
 and password (noting if Caps Lock or Num Lock is on or off) or by entering a different username
 and password.

A remote user who initiates a un-Kerberized Telnet session and authenticates to a boundary switch is
inside the firewall, but the user must still authenticate directly to the KDC before getting access to the
network services. The user must authenticate to the KDC because the TGT that the KDC issues is stored
on the switch and cannot be used for additional authentication until the user logs on to the switch.

Obtaining a TGT from a KDC

This section describes the second layer of security through which a remote user must pass. The user must
now authenticate to a KDC and obtain a TGT from the KDC to access network services.

For instructions about how to authenticate to a KDC, see the “Obtaining a TGT from a KDC” section in

Authenticating to Network Services

This section describes the third layer of security through which a remote user must pass. The user with
a TGT must now authenticate to the network services in a Kerberos realm.

For instructions about how to authenticate to a network service, see the “Authenticating to Network
Services” section in the “Security Server Protocols” chapter of the Cisco IOS Security Configuration

Configuring Kerberos

So that remote users can authenticate to network services, you must configure the hosts and the KDC in
the Kerberos realm to communicate and mutually authenticate users and network services. To do this,
you must identify them to each other. You add entries for the hosts to the Kerberos database on the KDC
and add KEYTAB files generated by the KDC to all hosts in the Kerberos realm. You also create entries
for the users in the KDC database.

When you add or create entries for the hosts and users, follow these guidelines:
 - The Kerberos principal name must be in all lowercase characters.
 - The Kerberos instance name must be in all lowercase characters.
 - The Kerberos realm name must be in all uppercase characters.

Note
A Kerberos server can be a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch that is
configured as a network security server and that can authenticate users by using the Kerberos protocol.
To set up a Kerberos-authenticated server-client system, follow these steps:

- Configure the KDC by using Kerberos commands.
- Configure the switch to use the Kerberos protocol.

Configuring the Switch for Local Authentication and Authorization

You can configure AAA to operate without a server by setting the switch to implement AAA in local mode. The switch then handles authentication and authorization. No accounting is available in this configuration.

Beginning in privileged EXEC mode, follow these steps to configure the switch for local AAA:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa new-model</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authentication login default local</td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa authorization exec local</td>
</tr>
<tr>
<td>Step 5</td>
<td>aaa authorization network local</td>
</tr>
<tr>
<td>Step 6</td>
<td>username name [privilege level] [password encryption-type password]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
To disable AAA, use the `no aaa new-model` global configuration command. To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.

Note

To secure the switch for HTTP access by using AAA methods, you must configure the switch with the `ip http authentication aaa` global configuration command. Configuring AAA authentication does not secure the switch for HTTP access by using AAA methods.

For more information about the `ip http authentication` command, see the *Cisco IOS Security Command Reference, Release 12.4.*

Configuring the Switch for Secure Shell

These sections describe how to configure the Secure Shell (SSH) feature.

- Understanding SSH, page 1-44
- Configuring SSH, page 1-45
- Displaying the SSH Configuration and Status, page 1-48

For SSH configuration examples, see the “SSH Configuration Examples” section in the “Configuring Secure Shell” section in the “Other Security Features” chapter of the *Cisco IOS Security Configuration Guide, Cisco IOS Release 12.4.*

SSH functions the same in IPv6 as in IPv4. For IPv6, SSH supports IPv6 addresses and enables secure, encrypted connections with remote IPv6 nodes over an IPv6 transport.

Note

For complete syntax and usage information for the commands used in this section, see the command reference for this release and the “Secure Shell Commands” section of the “Other Security Features” chapter of the *Cisco IOS Security Command Reference, Release 12.4* and the *Cisco IOS IPv6 Command Reference.*

Understanding SSH

SSH is a protocol that provides a secure, remote connection to a device. SSH provides more security for remote connections than Telnet does by providing strong encryption when a device is authenticated. This software release supports SSH Version 1 (SSHv1) and SSH Version 2 (SSHv2).

This section consists of these topics:

- SSH Servers, Integrated Clients, and Supported Versions, page 1-44
- Limitations, page 1-45

SSH Servers, Integrated Clients, and Supported Versions

The SSH feature has an SSH server and an SSH integrated client, which are applications that run on the switch. You can use an SSH client to connect to a switch running the SSH server. The SSH server works with the SSH client supported in this release and with non-Cisco SSH clients. The SSH client also works with the SSH server supported in this release and with non-Cisco SSH servers.

The switch supports an SSHv1 or an SSHv2 server.
The switch supports an SSHv1 client.

SSH supports the Data Encryption Standard (DES) encryption algorithm, the Triple DES (3DES) encryption algorithm, and password-based user authentication.

SSH also supports these user authentication methods:

- TACACS+ (for more information, see the “Controlling Switch Access with TACACS+” section on page 1-10)
- RADIUS (for more information, see the “Controlling Switch Access with RADIUS” section on page 1-17)
- Local authentication and authorization (for more information, see the “Configuring the Switch for Local Authentication and Authorization” section on page 1-43)

Note: This software release does not support IP Security (IPSec).

Limitations

These limitations apply to SSH:

- The switch supports Rivest, Shamir, and Adelman (RSA) authentication.
- SSH supports only the execution-shell application.
- The SSH server and the SSH client are supported only on DES (56-bit) and 3DES (168-bit) data encryption software.
- The switch supports the Advanced Encryption Standard (AES) encryption algorithm with a 128-bit key, 192-bit key, or 256-bit key. However, symmetric cipher AES to encrypt the keys is not supported.

Configuring SSH

This section has this configuration information:

- Configuration Guidelines, page 1-45
- Setting Up the Switch to Run SSH, page 1-46 (required)
- Configuring the SSH Server, page 1-47 (required only if you are configuring the switch as an SSH server)

Configuration Guidelines

Follow these guidelines when configuring the switch as an SSH server or SSH client:

- An RSA key pair generated by a SSHv1 server can be used by an SSHv2 server, and the reverse.
- If the SSH server is running on a stack master and the stack master fails, the new stack master uses the RSA key pair generated by the previous stack master.
- If you get CLI error messages after entering the `crypto key generate rsa` global configuration command, an RSA key pair has not been generated. Reconfigure the hostname and domain, and then enter the `crypto key generate rsa` command. For more information, see the “Setting Up the Switch to Run SSH” section on page 1-46.
• When generating the RSA key pair, the message **No host name specified** might appear. If it does, you must configure a hostname by using the **hostname** global configuration command.

• When generating the RSA key pair, the message **No domain specified** might appear. If it does, you must configure an IP domain name by using the **ip domain-name** global configuration command.

• When configuring the local authentication and authorization authentication method, make sure that AAA is disabled on the console.

Setting Up the Switch to Run SSH

Follow these steps to set up your switch to run SSH:

1. Configure a hostname and IP domain name for the switch. Follow this procedure only if you are configuring the switch as an SSH server.

2. Generate an RSA key pair for the switch, which automatically enables SSH. Follow this procedure only if you are configuring the switch as an SSH server.

3. Configure user authentication for local or remote access. This step is required. For more information, see the “Configuring the Switch for Local Authentication and Authorization” section on page 1-43.

Beginning in privileged EXEC mode, follow these steps to configure a hostname and an IP domain name and to generate an RSA key pair. This procedure is required if you are configuring the switch as an SSH server.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>hostname hostname</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip domain-name domain_name</td>
</tr>
<tr>
<td>Step 4</td>
<td>crypto key generate rsa</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ip ssh</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete the RSA key pair, use the **crypto key zeroize rsa** global configuration command. After the RSA key pair is deleted, the SSH server is automatically disabled.
Configuring the SSH Server

Beginning in privileged EXEC mode, follow these steps to configure the SSH server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip ssh version [1</td>
</tr>
<tr>
<td></td>
<td>2]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip ssh [timeout seconds</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>authentication-retries number]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>line vty line_number [ending_line_number] transport input ssh</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ip ssh</td>
</tr>
<tr>
<td>or</td>
<td>show ssh</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default SSH control parameters, use the `no ip ssh {timeout | authentication-retries}` global configuration command.
Displaying the SSH Configuration and Status

To display the SSH server configuration and status, use one or more of the privileged EXEC commands in Table 1-6:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip ssh</td>
<td>Shows the version and configuration information for the SSH server.</td>
</tr>
<tr>
<td>show ssh</td>
<td>Shows the status of the SSH server.</td>
</tr>
</tbody>
</table>

For more information about these commands, see the “Secure Shell Commands” section in the “Other Security Features” chapter of the Cisco IOS Security Command Reference, Cisco IOS Release 12.4.

Configuring the Switch for Secure Socket Layer HTTP

This section describes how to configure Secure Socket Layer (SSL) Version 3.0 support for the HTTP 1.1 server and client. SSL provides server authentication, encryption, and message integrity, as well as HTTP client authentication, to allow secure HTTP communications.

These sections contain this information:
- Understanding Secure HTTP Servers and Clients, page 1-48
- Configuring Secure HTTP Servers and Clients, page 1-50
- Displaying Secure HTTP Server and Client Status, page 1-54

For configuration examples and complete syntax and usage information for the commands used in this section, see the “HTTPS - HTTP Server and Client with SSL 3.0” feature description for Cisco IOS Release 12.2(15)T.

Understanding Secure HTTP Servers and Clients

On a secure HTTP connection, data to and from an HTTP server is encrypted before being sent over the Internet. HTTP with SSL encryption provides a secure connection to allow such functions as configuring a switch from a Web browser. Cisco’s implementation of the secure HTTP server and secure HTTP client uses an implementation of SSL Version 3.0 with application-layer encryption. HTTP over SSL is abbreviated as HTTPS; the URL of a secure connection begins with https:// instead of http://.

The primary role of the HTTPS secure server (the switch) is to listen for HTTPS requests on a designated port (the default HTTPS port is 443) and pass the request to the HTTP 1.1 Web server. The HTTP 1.1 server processes requests and passes responses (pages) back to the HTTPS secure server, which, in turn, responds to the original request.

The primary role of the HTTPS secure client (the web browser) is to respond to Cisco IOS application requests for HTTPS User Agent services, perform HTTPS User Agent services for the application, and pass the response back to the application.
Certificate Authority Trustpoints

Certificate authorities (CAs) manage certificate requests and issue certificates to participating network devices. These services provide centralized security key and certificate management for the participating devices. Specific CA servers are referred to as trustpoints.

When a connection attempt is made, the HTTPS server provides a secure connection by issuing a certified X.509v3 certificate, obtained from a specified CA trustpoint, to the client. The client (usually a Web browser), in turn, has a public key that allows it to authenticate the certificate.

For secure HTTP connections, we highly recommend that you configure a CA trustpoint. If a CA trustpoint is not configured for the device running the HTTPS server, the server certifies itself and generates the needed RSA key pair. Because a self-certified (self-signed) certificate does not provide adequate security, the connecting client generates a notification that the certificate is self-certified, and the user has the opportunity to accept or reject the connection. This option is useful for internal network topologies (such as testing).

If you do not configure a CA trustpoint, when you enable a secure HTTP connection, either a temporary or a persistent self-signed certificate for the secure HTTP server (or client) is automatically generated.

- If the switch is not configured with a hostname and a domain name, a temporary self-signed certificate is generated. If the switch reboots, any temporary self-signed certificate is lost, and a new temporary new self-signed certificate is assigned.
- If the switch has been configured with a host and domain name, a persistent self-signed certificate is generated. This certificate remains active if you reboot the switch or if you disable the secure HTTP server so that it will be there the next time you re-enable a secure HTTP connection.

Note
The certificate authorities and trustpoints must be configured on each device individually. Copying them from other devices makes them invalid on the switch.

If a self-signed certificate has been generated, this information is included in the output of the `show running-config` privileged EXEC command. This is a partial sample output from that command displaying a self-signed certificate.

```
Switch# show running-config
Building configuration...

<output truncated>

crypto pki trustpoint TP-self-signed-3080755072
   enrollment selfsigned
   subject-name cn=IOS-Self-Signed-Certificate-3080755072
   revocation-check none
   rsakeypair TP-self-signed-3080755072
!
!
crypto ca certificate chain TP-self-signed-3080755072
   certificate self-signed 01
      3082029F 30820208 A0030201 02020101 300D0609 2A864886 F70D0101 04050030
      59312F10 2D060355 04031326 494F5330 383037353037323126 02460609 2A864886 F70D0109
      02161743 45322D33 3535302D 31332E73 75663034 32323335 3530301E 170D3933
      30333031 30333030 35395A17 0D323030 31333130 30333030 305A3059 312F302D

<output truncated>
```
You can remove this self-signed certificate by disabling the secure HTTP server and entering the `no crypto pki trustpoint TP-self-signed-30890755072` global configuration command. If you later re-enable a secure HTTP server, a new self-signed certificate is generated.

Note
The values that follow `TP self-signed` depend on the serial number of the device.

You can use an optional command (`ip http secure-client-auth`) to allow the HTTPS server to request an X.509v3 certificate from the client. Authenticating the client provides more security than server authentication by itself.

For additional information on Certificate Authorities, see the “Configuring Certification Authority Interoperability” chapter in the *Cisco IOS Security Configuration Guide, Release 12.4*.

CipherSuites

A CipherSuite specifies the encryption algorithm and the digest algorithm to use on a SSL connection. When connecting to the HTTPS server, the client Web browser offers a list of supported CipherSuites, and the client and server negotiate the best encryption algorithm to use from those on the list that are supported by both. For example, Netscape Communicator 4.76 supports U.S. security with RSA Public Key Cryptography, MD2, MD5, RC2-CBC, RC4, DES-CBC, and DES-EDE3-CBC.

For the best possible encryption, you should use a client browser that supports 128-bit encryption, such as Microsoft Internet Explorer Version 5.5 (or later) or Netscape Communicator Version 4.76 (or later). The `SSL_RSA_WITH_DES_CBC_SHA` CipherSuite provides less security than the other CipherSuites, as it does not offer 128-bit encryption.

The more secure and more complex CipherSuites require slightly more processing time. This list defines the CipherSuites supported by the switch and ranks them from fastest to slowest in terms of router processing load (speed):

1. `SSL_RSA_WITH_DES_CBC_SHA`—RSA key exchange (RSA Public Key Cryptography) with DES-CBC for message encryption and SHA for message digest
2. `SSL_RSA_WITH_RC4_128_MD5`—RSA key exchange with RC4 128-bit encryption and MD5 for message digest
3. `SSL_RSA_WITH_RC4_128_SHA`—RSA key exchange with RC4 128-bit encryption and SHA for message digest
4. `SSL_RSA_WITH_3DES_EDE_CBC_SHA`—RSA key exchange with 3DES and DES-EDE3-CBC for message encryption and SHA for message digest

RSA (in conjunction with the specified encryption and digest algorithm combinations) is used for both key generation and authentication on SSL connections. This usage is independent of whether or not a CA trustpoint is configured.

Configuring Secure HTTP Servers and Clients

These sections contain this configuration information:

- Default SSL Configuration, page 1-51
- SSL Configuration Guidelines, page 1-51
- Configuring a CA Trustpoint, page 1-51
Default SSL Configuration

The standard HTTP server is enabled.
SSL is enabled.
No CA trustpoints are configured.
No self-signed certificates are generated.

SSL Configuration Guidelines

When SSL is used in a switch cluster, the SSL session terminates at the cluster commander. Cluster member switches must run standard HTTP.

Before you configure a CA trustpoint, you should ensure that the system clock is set. If the clock is not set, the certificate is rejected due to an incorrect date.

In a switch stack, the SSL session terminates at the stack master.

Configuring a CA Trustpoint

For secure HTTP connections, we recommend that you configure an official CA trustpoint. A CA trustpoint is more secure than a self-signed certificate.

Beginning in privileged EXEC mode, follow these steps to configure a CA trustpoint:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>hostname hostname</td>
<td>Specify the hostname of the switch (required only if you have not previously configured a hostname). The hostname is required for security keys and certificates.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip domain-name domain-name</td>
<td>Specify the IP domain name of the switch (required only if you have not previously configured an IP domain name). The domain name is required for security keys and certificates.</td>
</tr>
<tr>
<td>Step 4</td>
<td>crypto key generate rsa</td>
<td>(Optional) Generate an RSA key pair. RSA key pairs are required before you can obtain a certificate for the switch. RSA key pairs are generated automatically. You can use this command to regenerate the keys, if needed.</td>
</tr>
<tr>
<td>Step 5</td>
<td>crypto ca trustpoint name</td>
<td>Specify a local configuration name for the CA trustpoint and enter CA trustpoint configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>enrollment url url</td>
<td>Specify the URL to which the switch should send certificate requests.</td>
</tr>
<tr>
<td>Step 7</td>
<td>enrollment http-proxy host-name port-number</td>
<td>(Optional) Configure the switch to obtain certificates from the CA through an HTTP proxy server.</td>
</tr>
<tr>
<td>Step 8</td>
<td>crl query url</td>
<td>Configure the switch to request a certificate revocation list (CRL) to ensure that the certificate of the peer has not been revoked.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Switch-Based Authentication

Configuring the Switch for Secure Socket Layer HTTP

If you are using a certificate authority for certification, you should use the previous procedure to configure the CA trustpoint on the switch before enabling the HTTP server. If you have not configured a CA trustpoint, a self-signed certificate is generated the first time that you enable the secure HTTP server. After you have configured the server, you can configure options (path, access list to apply, maximum number of connections, or timeout policy) that apply to both standard and secure HTTP servers.

Beginning in privileged EXEC mode, follow these steps to configure a secure HTTP server:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>show ip http server status</td>
<td>(Optional) Display the status of the HTTP server to determine if the secure HTTP server feature is supported in the software. You should see one of these lines in the output: HTTP secure server capability: Present or HTTP secure server capability: Not present</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>ip http secure-server</td>
<td>Enable the HTTPS server if it has been disabled. The HTTPS server is enabled by default.</td>
</tr>
<tr>
<td>4</td>
<td>ip http secure-port port-number</td>
<td>(Optional) Specify the port number to be used for the HTTPS server. The default port number is 443. Valid options are 443 or any number in the range 1025 to 65535.</td>
</tr>
<tr>
<td>5</td>
<td>ip http secure-ciphersuite [3des-ede-cbc-sha] [rc4-128-md5] [rc4-128-sha] [des-cbc-sha]</td>
<td>(Optional) Specify the CipherSuites (encryption algorithms) to be used for encryption over the HTTPS connection. If you do not have a reason to specify a particularly CipherSuite, you should allow the server and client to negotiate a CipherSuite that they both support. This is the default.</td>
</tr>
</tbody>
</table>

Use the no crypto ca trustpoint name global configuration command to delete all identity information and certificates associated with the CA.

Configure the Secure HTTP Server

If you are using a certificate authority for certification, you should use the previous procedure to configure the CA trustpoint on the switch before enabling the HTTP server. If you have not configured a CA trustpoint, a self-signed certificate is generated the first time that you enable the secure HTTP server. After you have configured the server, you can configure options (path, access list to apply, maximum number of connections, or timeout policy) that apply to both standard and secure HTTP servers.

Beginning in privileged EXEC mode, follow these steps to configure a secure HTTP server:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>primary</td>
<td>(Optional) Specify that the trustpoint should be used as the primary (default) trustpoint for CA requests.</td>
</tr>
<tr>
<td>10</td>
<td>exit</td>
<td>Exit CA trustpoint configuration mode and return to global configuration mode.</td>
</tr>
<tr>
<td>11</td>
<td>crypto ca authentication name</td>
<td>Authenticate the CA by getting the public key of the CA. Use the same name used in Step 5.</td>
</tr>
<tr>
<td>12</td>
<td>crypto ca enroll name</td>
<td>Obtain the certificate from the specified CA trustpoint. This command requests a signed certificate for each RSA key pair.</td>
</tr>
<tr>
<td>13</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>14</td>
<td>show crypto ca trustpoints</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>15</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Use the **no ip http server** global configuration command to disable the standard HTTP server. Use the **no ip http secure-server** global configuration command to disable the secure HTTP server. Use the **no ip http secure-port** and the **no ip http secure-ciphersuite** global configuration commands to return to the default settings. Use the **no ip http secure-client-auth** global configuration command to remove the requirement for client authentication.

To verify the secure HTTP connection by using a Web browser, enter https://URL, where the URL is the IP address or hostname of the server switch. If you configure a port other than the default port, you must also specify the port number after the URL. For example:

https://209.165.129:1026

or

https://host.domain.com:1026
Configuring the Secure HTTP Client

The standard HTTP client and secure HTTP client are always enabled. A certificate authority is required for secure HTTP client certification. This procedure assumes that you have previously configured a CA trustpoint on the switch. If a CA trustpoint is not configured and the remote HTTPS server requires client authentication, connections to the secure HTTP client fail.

Beginning in privileged EXEC mode, follow these steps to configure a secure HTTP client:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip http client secure-trustpoint name</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip http client secure-ciphersuite { [3des-ede-cbc-sha]</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip http client secure status</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the `no ip http client secure-trustpoint *name*` to remove a client trustpoint configuration. Use the `no ip http client secure-ciphersuite` to remove a previously configured CipherSuite specification for the client.

Displaying Secure HTTP Server and Client Status

To display the SSL secure server and client status, use the privileged EXEC commands in Table 1-7:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip http client secure status</td>
<td>Shows the HTTP secure client configuration.</td>
</tr>
<tr>
<td>show ip http server secure status</td>
<td>Shows the HTTP secure server configuration.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Shows the generated self-signed certificate for secure HTTP connections.</td>
</tr>
</tbody>
</table>

Configuring the Switch for Secure Copy Protocol

The Secure Copy Protocol (SCP) feature provides a secure and authenticated method for copying switch configurations or switch image files. SCP relies on Secure Shell (SSH), an application and a protocol that provides a secure replacement for the Berkeley r-tools.
For SSH to work, the switch needs an RSA public/private key pair. This is the same with SCP, which relies on SSH for its secure transport.

Because SSH also relies on AAA authentication, and SCP relies further on AAA authorization, correct configuration is necessary.

- Before enabling SCP, you must correctly configure SSH, authentication, and authorization on the switch.
- Because SCP relies on SSH for its secure transport, the router must have an Rivest, Shamir, and Adelman (RSA) key pair.

Note

When using SCP, you cannot enter the password into the copy command. You must enter the password when prompted.

Information About Secure Copy

To configure the Secure Copy feature, you should understand these concepts.

The behavior of SCP is similar to that of remote copy (rcp), which comes from the Berkeley r-tools suite, except that SCP relies on SSH for security. SCP also requires that authentication, authorization, and accounting (AAA) authorization be configured so the router can determine whether the user has the correct privilege level.

A user who has appropriate authorization can use SCP to copy any file in the Cisco IOS File System (IFS) to and from a switch by using the `copy` command. An authorized administrator can also do this from a workstation.

For information about how to configure and verify SCP, see the “Secure Copy Protocol” section in the *Cisco IOS Security Configuration Guide: Securing User Services, Release 12.4*.
Configuring IEEE 802.1x Port-Based Authentication

This chapter describes how to configure IEEE 802.1x port-based authentication on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. IEEE 802.1x authentication prevents unauthorized devices (clients) from gaining access to the network. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

The switch running the IP base or IP services feature set also supports Cisco TrustSec Security Group Tag (SGT) Exchange Protocol (SxP). This feature supports security group access control lists (SGACLs), which define ACL policies for a group of devices instead of an IP address. The SXP control protocol allows carrying the SGT information between access-layer devices at the Cisco TrustSec domain edge, and distribution layer devices within the Cisco TrustSec domain when the access-layer devices do not have the hardware capability to tag the packets. These switches operate as access layer switches in the Cisco TrustSec network.

Cisco IOS Release 15.0(1)SE supports SXP version 2, syslog messages, and SNMP support for SXP. For more information about Cisco TrustSec, see the “Cisco TrustSec Switch Configuration Guide” at this URL:

The sections on SXP define the capabilities supported on the switch.

For complete syntax and usage information for the commands used in this chapter, see the “RADIUS Commands” section in the Cisco IOS Security Command Reference, Release 12.4 and the command reference for this release.

- Understanding IEEE 802.1x Port-Based Authentication, page 1-1
- Configuring 802.1x Authentication, page 1-38
- Displaying 802.1x Statistics and Status, page 1-78

Understanding IEEE 802.1x Port-Based Authentication

The 802.1x standard defines a client-server-based access control and authentication protocol that prevents unauthorized clients from connecting to a LAN through publicly accessible ports unless they are properly authenticated. The authentication server authenticates each client connected to a switch port before making available any services offered by the switch or the LAN.
Until the client is authenticated, 802.1x access control allows only Extensible Authentication Protocol over LAN (EAPOL), Cisco Discovery Protocol (CDP), and Spanning Tree Protocol (STP) traffic through the port to which the client is connected. After authentication is successful, normal traffic can pass through the port.

- Device Roles, page 1-3
- Authentication Process, page 1-4
- Authentication Initiation and Message Exchange, page 1-6
- Authentication Manager, page 1-7
- Ports in Authorized and Unauthorized States, page 1-10
- 802.1x Authentication and Switch Stacks, page 1-11
- 802.1x Host Mode, page 1-12
- MAC Move, page 1-13
- MAC Replace, page 1-14
- 802.1x Accounting, page 1-14
- 802.1x Accounting Attribute-Value Pairs, page 1-15
- 802.1x Multiple Authentication Mode, page 1-12
- 802.1x Readiness Check, page 1-16
- 802.1x Authentication with Per-User ACLs, page 1-17
- 802.1x Authentication with Guest VLAN, page 1-22
- 802.1x Authentication with Restricted VLAN, page 1-23
- 802.1x Authentication with Inaccessible Authentication Bypass, page 1-24
- 802.1x Critical Voice VLAN Configuration, page 1-25
- 802.1x Authentication with Downloadable ACLs and Redirect URLs, page 1-18
- VLAN ID-based MAC Authentication, page 1-21
- IEEE 802.1x Authentication with Voice VLAN Ports, page 1-29
- IEEE 802.1x Authentication with Port Security, page 1-29
- IEEE 802.1x Authentication with Wake-on-LAN, page 1-29
- IEEE 802.1x Authentication with MAC Authentication Bypass, page 1-30
- 802.1x User Distribution, page 1-28
- Network Admission Control Layer 2 IEEE 802.1x Validation, page 1-31
- Multidomain Authentication, page 1-33
- Flexible Authentication Ordering, page 1-32
- Open1x Authentication, page 1-32
- 802.1x Supplicant and Authenticator Switches with Network Edge Access Topology (NEAT), page 1-34
- Voice Aware 802.1x Security, page 1-36
- Common Session ID, page 1-36
- Device Sensor, page 1-36
Device Roles

With 802.1x port-based authentication, the devices in the network have specific roles as shown in Figure 1-1.

Figure 1-1 802.1x Device Roles

- **Client**—the device (workstation) that requests access to the LAN and switch services and responds to requests from the switch. The workstation must be running 802.1x-compliant client software such as that offered in the Microsoft Windows XP operating system. (The client is the *supplicant* in the 802.1x standard.)

- **Authentication server**—performs the actual authentication of the client. The authentication server validates the identity of the client and notifies the switch whether or not the client is authorized to access the LAN and switch services. Because the switch acts as the proxy, the authentication service is transparent to the client. In this release, the RADIUS security system with Extensible Authentication Protocol (EAP) extensions is the only supported authentication server. It is available in Cisco Secure Access Control Server Version 3.0 or later. RADIUS operates in a client/server model in which secure authentication information is exchanged between the RADIUS server and one or more RADIUS clients.

- **Switch** (edge switch or wireless access point)—controls the physical access to the network based on the authentication status of the client. The switch acts as an intermediary (proxy) between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client. The switch includes the RADIUS client, which is responsible for encapsulating and decapsulating the EAP frames and interacting with the authentication server. (The switch is the *authenticator* in the 802.1x standard.)

When the switch receives EAPOL frames and relays them to the authentication server, the Ethernet header is stripped, and the remaining EAP frame is re-encapsulated in the RADIUS format. The EAP frames are not modified during encapsulation, and the authentication server must support EAP within the native frame format. When the switch receives frames from the authentication server, the server’s frame header is removed, leaving the EAP frame, which is then encapsulated for Ethernet and sent to the client.

Note To resolve Windows XP network connectivity and 802.1x authentication issues, read the Microsoft Knowledge Base article at this URL: http://support.microsoft.com/support/kb/articles/Q303/5/97.ASP
Understanding IEEE 802.1x Port-Based Authentication

The devices that can act as intermediaries include the Catalyst 3750-X, Catalyst 3750-E, Catalyst 3750, Catalyst 3650-X, Catalyst 3560-E, Catalyst 3560, Catalyst 3550, Catalyst 2970, Catalyst 2960, Catalyst 2955, Catalyst 2950, Catalyst 2940 switches, or a wireless access point. These devices must be running software that supports the RADIUS client and IEEE 802.1x authentication.

Authentication Process

When 802.1x port-based authentication is enabled and the client supports 802.1x-compliant client software, these events occur:

- If the client identity is valid and the 802.1x authentication succeeds, the switch grants the client access to the network.
- If 802.1x authentication times out while waiting for an EAPOL message exchange and MAC authentication bypass is enabled, the switch can use the client MAC address for authorization. If the client MAC address is valid and the authorization succeeds, the switch grants the client access to the network. If the client MAC address is invalid and the authorization fails, the switch assigns the client to a guest VLAN that provides limited services if a guest VLAN is configured.
- If the switch gets an invalid identity from an 802.1x-capable client and a restricted VLAN is specified, the switch can assign the client to a restricted VLAN that provides limited services.
- If the RADIUS authentication server is unavailable (down) and inaccessible authentication bypass is enabled, the switch grants the client access to the network by putting the port in the critical-authentication state in the RADIUS-configured or the user-specified access VLAN.

Note

Inaccessible authentication bypass is also referred to as critical authentication or the AAA fail policy.

Figure 1-2 shows the authentication process.

If Multi Domain Authentication (MDA) is enabled on a port, this flow can be used with some exceptions that are applicable to voice authorization. For more information on MDA, see “Multidomain Authentication” section on page 1-33.
Figure 1-2 Authentication Flowchart

The switch re-authenticates a client when one of these situations occurs:

- Periodic re-authentication is enabled, and the re-authentication timer expires.

You can configure the re-authentication timer to use a switch-specific value or to be based on values from the RADIUS server.

After 802.1x authentication using a RADIUS server is configured, the switch uses timers based on the Session-Timeout RADIUS attribute (Attribute[27]) and the Termination-Action RADIUS attribute (Attribute [29]).

The Session-Timeout RADIUS attribute (Attribute[27]) specifies the time after which re-authentication occurs.

The Termination-Action RADIUS attribute (Attribute[29]) specifies the action to take during re-authentication. The actions are Initialize and ReAuthenticate. When the Initialize action is set (the attribute value is DEFAULT), the 802.1x session ends, and connectivity is lost during re-authentication. When the ReAuthenticate action is set (the attribute value is RADIUS-Request), the session is not affected during re-authentication.

- You manually re-authenticate the client by entering the dot1x re-authenticate interface interface-id privileged EXEC command.
Authentication Initiation and Message Exchange

During 802.1x authentication, the switch or the client can initiate authentication. If you enable authentication on a port by using the `authentication port-control auto` or `dot1x port-control auto` interface configuration command, the switch initiates authentication when the link state changes from down to up or periodically as long as the port remains up and unauthenticated. The switch sends an EAP-request/identity frame to the client to request its identity. Upon receipt of the frame, the client responds with an EAP-response/identity frame.

However, if during bootup, the client does not receive an EAP-request/identity frame from the switch, the client can initiate authentication by sending an EAPOL-start frame, which prompts the switch to request the client’s identity.

Note

If 802.1x authentication is not enabled or supported on the network access device, any EAPOL frames from the client are dropped. If the client does not receive an EAP-request/identity frame after three attempts to start authentication, the client sends frames as if the port is in the authorized state. A port in the authorized state effectively means that the client has been successfully authenticated. For more information, see the “Ports in Authorized and Unauthorized States” section on page 1-10.

When the client supplies its identity, the switch begins its role as the intermediary, passing EAP frames between the client and the authentication server until authentication succeeds or fails. If the authentication succeeds, the switch port becomes authorized. If the authentication fails, authentication can be retried, the port might be assigned to a VLAN that provides limited services, or network access is not granted. For more information, see the “Ports in Authorized and Unauthorized States” section on page 1-10.

The specific exchange of EAP frames depends on the authentication method being used. Figure 1-3 shows a message exchange initiated by the client when the client uses the One-Time-Password (OTP) authentication method with a RADIUS server.

Figure 1-3 Message Exchange
If 802.1x authentication times out while waiting for an EAPOL message exchange and MAC authentication bypass is enabled, the switch can authorize the client when the switch detects an Ethernet packet from the client. The switch uses the MAC address of the client as its identity and includes this information in the RADIUS-access/request frame that is sent to the RADIUS server. After the server sends the switch the RADIUS-access/accept frame (authorization is successful), the port becomes authorized. If authorization fails and a guest VLAN is specified, the switch assigns the port to the guest VLAN. If the switch detects an EAPOL packet while waiting for an Ethernet packet, the switch stops the MAC authentication bypass process and stops 802.1x authentication.

Figure 1-4 shows the message exchange during MAC authentication bypass.

Figure 1-4 Message Exchange During MAC Authentication Bypass

![Message Exchange During MAC Authentication Bypass](image)

Authentication Manager

In Cisco IOS Release 12.2(46)SE and earlier, you could not use the same authorization methods, including CLI commands and messages, on this switch and also on other network devices, such as a Catalyst 6000. You had to use separate authentication configurations. Cisco IOS Release 12.2(50)SE and later supports the same authorization methods on all Catalyst switches in a network.

Cisco IOS Release 12.2(55)SE supports filtering verbose system messages from the authentication manager. For details, see the “Authentication Manager CLI Commands” section on page 1-9.

- Port-Based Authentication Methods, page 1-8
- Per-User ACLs and Filter-Ids, page 1-8
- Authentication Manager CLI Commands, page 1-9
Port-Based Authentication Methods

Table 1-1 802.1x Features

<table>
<thead>
<tr>
<th>Authentication method</th>
<th>Mode</th>
<th>Single host</th>
<th>Multiple host</th>
<th>MDA</th>
<th>Multiple Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1x</td>
<td></td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
<td>Per-user ACL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per-user ACL</td>
<td>Per-user ACL</td>
<td>Per-user ACL</td>
<td>Filter-Id attribute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filter-ID attribute</td>
<td>Filter-ID attribute</td>
<td>Filter-ID attribute</td>
<td>Redirect URL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Redirect URL</td>
</tr>
<tr>
<td>MAC authentication bypass</td>
<td></td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
<td>Per-user ACL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per-user ACL</td>
<td>Per-user ACL</td>
<td>Per-user ACL</td>
<td>Filter-Id attribute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filter-ID attribute</td>
<td>Filter-ID attribute</td>
<td>Filter-ID attribute</td>
<td>Redirect URL</td>
</tr>
<tr>
<td>Standalone web authentication^4</td>
<td>Proxy ACL, Filter-Id attribute, downloadable ACL</td>
</tr>
<tr>
<td>NAC Layer 2 IP validation</td>
<td>Filter-Id attribute</td>
<td>Filter-Id attribute</td>
<td>Filter-Id attribute</td>
<td>Filter-Id attribute</td>
<td>Filter-Id attribute</td>
</tr>
<tr>
<td></td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Redirect URL</td>
</tr>
<tr>
<td>Web authentication as fallback method^4</td>
<td>Proxy ACL</td>
<td>Proxy ACL</td>
<td>Proxy ACL</td>
<td>Proxy ACL</td>
<td>Proxy ACL</td>
</tr>
<tr>
<td></td>
<td>Filter-Id attribute</td>
<td>Filter-Id attribute</td>
<td>Filter-Id attribute</td>
<td>Filter-Id attribute</td>
<td>Filter-Id attribute</td>
</tr>
<tr>
<td></td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
</tr>
</tbody>
</table>

1. MDA = Multidomain authentication.
2. Also referred to as multiauth.
4. For clients that do not support 802.1x authentication.

Per-User ACLs and Filter-Ids

In releases earlier than Cisco IOS Release 12.2(50)SE, an ACL configured on the switch is not compatible with an ACL configured on another device running Cisco IOS software, such as a Catalyst 6000 switch.

In Cisco IOS Release 12.2(50)SE or later, the ACLs configured on the switch are compatible with other devices running Cisco IOS releases.

You can only set any as the source in the ACL.
Note: For any ACL configured for multiple-host mode, the source portion of statement must be *any*. (For example, `permit icmp any host 10.10.1.1`.)

Authentication Manager CLI Commands

The authentication-manager interface-configuration commands control all the authentication methods, such as 802.1x, MAC authentication bypass, and web authentication. The authentication manager commands determine the priority and order of authentication methods applied to a connected host.

The authentication manager commands control generic authentication features, such as host-mode, violation mode, and the authentication timer. Generic authentication commands include the `authentication host-mode`, `authentication violation`, and `authentication timer` interface configuration commands.

802.1x-specific commands begin with the `dot1x` keyword. For example, the `authentication port-control auto` interface configuration command enables authentication on an interface. However, the `dot1x system-auth-control` global configuration command only globally enables or disables 802.1x authentication.

Note: If 802.1x authentication is globally disabled, other authentication methods are still enabled on that port, such as web authentication.

The `authentication manager` commands provide the same functionality as earlier 802.1x commands.

<table>
<thead>
<tr>
<th>The authentication manager commands in Cisco IOS Release 12.2(50)SE or later</th>
<th>The equivalent 802.1x commands in Cisco IOS Release 12.2(46)SE and earlier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication control-direction {both</td>
<td>in}</td>
<td>`dot1x control-direction {both</td>
</tr>
<tr>
<td>authentication event</td>
<td><code>dot1x auth-fail vlan</code></td>
<td>Enable the restricted VLAN on a port.</td>
</tr>
<tr>
<td></td>
<td><code>dot1x critical (interface configuration)</code></td>
<td>Enable the inaccessible-authentication-bypass feature.</td>
</tr>
<tr>
<td></td>
<td><code>dot1x guest-vlan6</code></td>
<td>Specify an active VLAN as an 802.1x guest VLAN.</td>
</tr>
<tr>
<td>authentication fallback fallback-profile</td>
<td><code>dot1x fallback fallback-profile</code></td>
<td>Configure a port to use web authentication as a fallback method for clients that do not support 802.1x authentication.</td>
</tr>
<tr>
<td>authentication host-mode [multi-auth</td>
<td>multi-domain</td>
<td>multi-host</td>
</tr>
<tr>
<td>authentication order</td>
<td><code>dot1x mac-auth-bypass</code></td>
<td>Enable the MAC authentication bypass feature.</td>
</tr>
<tr>
<td>authentication periodic</td>
<td><code>dot1x reauthentication</code></td>
<td>Enable periodic re-authentication of the client.</td>
</tr>
</tbody>
</table>
Understanding IEEE 802.1x Port-Based Authentication

Beginning with Cisco IOS Release 12.2(55)SE, you can filter out verbose system messages generated by the authentication manager. The filtered content typically relates to authentication success. You can also filter verbose messages for 802.1x authentication and MAB authentication. There is a separate command for each authentication method:

- The `no authentication logging verbose` global configuration command filters verbose messages from the authentication manager.
- The `no dot1x logging verbose` global configuration command filters 802.1x authentication verbose messages.
- The `no mab logging verbose` global configuration command filters MAC authentication bypass (MAB) verbose messages

For more information, see the command reference for this release.

Ports in Authorized and Unauthorized States

During 802.1x authentication, depending on the switch port state, the switch can grant a client access to the network. The port starts in the `unauthorized` state. While in this state, the port that is not configured as a voice VLAN port disallows all ingress and egress traffic except for 802.1x authentication, CDP, and STP packets. When a client is successfully authenticated, the port changes to the `authorized` state, allowing all traffic for the client to flow normally. If the port is configured as a voice VLAN port, the port allows VoIP traffic and 802.1x protocol packets before the client is successfully authenticated.

Note

CDP bypass is not supported and may cause a port go into err-disabled state.

If a client that does not support 802.1x authentication connects to an unauthorized 802.1x port, the switch requests the client’s identity. In this situation, the client does not respond to the request, the port remains in the unauthorized state, and the client is not granted access to the network.
In contrast, when an 802.1x-enabled client connects to a port that is not running the 802.1x standard, the client initiates the authentication process by sending the EAPOL-start frame. When no response is received, the client sends the request for a fixed number of times. Because no response is received, the client begins sending frames as if the port is in the authorized state.

You control the port authorization state by using the `dot1x port-control` interface configuration command and these keywords:

- **force-authorized**—disables 802.1x authentication and causes the port to change to the authorized state without any authentication exchange required. The port sends and receives normal traffic without 802.1x-based authentication of the client. This is the default setting.
- **force-unauthorized**—causes the port to remain in the unauthorized state, ignoring all attempts by the client to authenticate. The switch cannot provide authentication services to the client through the port.
- **auto**—enables 802.1x authentication and causes the port to begin in the unauthorized state, allowing only EAPOL frames to be sent and received through the port. The authentication process begins when the link state of the port changes from down to up or when an EAPOL-start frame is received. The switch requests the identity of the client and begins relaying authentication messages between the client and the authentication server. Each client attempting to access the network is uniquely identified by the switch by using the client MAC address.

If the client is successfully authenticated (receives an Accept frame from the authentication server), the port state changes to authorized, and all frames from the authenticated client are allowed through the port. If the authentication fails, the port remains in the unauthorized state, but authentication can be retried. If the authentication server cannot be reached, the switch can resend the request. If no response is received from the server after the specified number of attempts, authentication fails, and network access is not granted.

When a client logs off, it sends an EAPOL-logoff message, causing the switch port to change to the unauthorized state.

If the link state of a port changes from up to down, or if an EAPOL-logoff frame is received, the port returns to the unauthorized state.

802.1x Authentication and Switch Stacks

If a switch is added to or removed from a switch stack, 802.1x authentication is not affected as long as the IP connectivity between the RADIUS server and the stack remains intact. This statement also applies if the stack master is removed from the switch stack. Note that if the stack master fails, a stack member becomes the new stack master by using the election process described in Chapter 1, “Managing Switch Stacks,” and the 802.1x authentication process continues as usual.

If IP connectivity to the RADIUS server is interrupted because the switch that was connected to the server is removed or fails, these events occur:

- Ports that are already authenticated and that do not have periodic re-authentication enabled remain in the authenticated state. Communication with the RADIUS server is not required.
- Ports that are already authenticated and that have periodic re-authentication enabled (with the `dot1x re-authentication` global configuration command) fail the authentication process when the re-authentication occurs. Ports return to the unauthenticated state during the re-authentication process. Communication with the RADIUS server is required.

For an ongoing authentication, the authentication fails immediately because there is no server connectivity.
If the switch that failed comes up and rejoins the switch stack, the authentications might or might not fail depending on the boot-up time and whether the connectivity to the RADIUS server is re-established by the time the authentication is attempted.

To avoid loss of connectivity to the RADIUS server, you should ensure that there is a redundant connection to it. For example, you can have a redundant connection to the stack master and another to a stack member, and if the stack master fails, the switch stack still has connectivity to the RADIUS server.

802.1x Host Mode

You can configure an 802.1x port for single-host or for multiple-hosts mode. In single-host mode (see Figure 1-1 on page 1-2), only one client can be connected to the 802.1x-enabled switch port. The switch detects the client by sending an EAPOL frame when the port link state changes to the up state. If a client leaves or is replaced with another client, the switch changes the port link state to down, and the port returns to the unauthorized state.

In multiple-hosts mode, you can attach multiple hosts to a single 802.1x-enabled port. Figure 1-5 on page 1-12 shows 802.1x port-based authentication in a wireless LAN. In this mode, only one of the attached clients must be authorized for all clients to be granted network access. If the port becomes unauthorized (re-authentication fails or an EAPOL-logoff message is received), the switch denies network access to all of the attached clients. In this topology, the wireless access point is responsible for authenticating the clients attached to it, and it also acts as a client to the switch.

Figure 1-5 Multiple Host Mode Example

For all host modes, the line protocol stays up before authorization when port-based authentication is configured.

802.1x Multiple Authentication Mode

Multiple-authentication (multiauth) mode allows one client on the voice VLAN and multiple authenticated clients on the data VLAN. When a hub or access point is connected to an 802.1x-enabled port, multiple-authentication mode provides enhanced security over multiple-hosts mode by requiring authentication of each connected client. For non-802.1x devices, you can use MAC authentication bypass or web authentication as the fallback method for individual host authentications to authenticate different hosts through by different methods on a single port.
Multiple-authentication mode also supports MDA functionality on the voice VLAN by assigning authenticated devices to either a data or voice VLAN, depending on the VSAs received from the authentication server.

Note

When a port is in multiple-authentication mode, the guest VLAN and authentication-failed VLAN features do not activate.

Beginning with Cisco IOS Release 12.2(55)SE, you can assign a RADIUS-server-supplied VLAN in multi-auth mode, under these conditions:

- The host is the first host authorized on the port, and the RADIUS server supplies VLAN information.
- Subsequent hosts are authorized with a VLAN that matches the operational VLAN.
- A host is authorized on the port with no VLAN assignment, and subsequent hosts either have no VLAN assignment, or their VLAN information matches the operational VLAN.
- The first host authorized on the port has a group VLAN assignment, and subsequent hosts either have no VLAN assignment, or their group VLAN matches the group VLAN on the port. Subsequent hosts must use the same VLAN from the VLAN group as the first host. If a VLAN list is used, all hosts are subject to the conditions specified in the VLAN list.
- Only one voice VLAN assignment is supported on a multi-auth port.
- After a VLAN is assigned to a host on the port, subsequent hosts must have matching VLAN information or be denied access to the port.
- You cannot configure a guest VLAN or an auth-fail VLAN in multi-auth mode.
- The behavior of the critical-auth VLAN is not changed for multi-auth mode. When a host tries to authenticate and the server is not reachable, all authorized hosts are reinitialized in the configured VLAN.

For more information about critical authentication mode and the critical VLAN, see the “802.1x Authentication with Inaccessible Authentication Bypass” section on page 1-24.

For more information see the “Configuring the Host Mode” section on page 1-48.

MAC Move

When a MAC address is authenticated on one switch port, that address is not allowed on another authentication manager-enabled port of the switch. If the switch detects that same MAC address on another authentication manager-enabled port, the address is not allowed.

There are situations where a MAC address might need to move from one port to another on the same switch. For example, when there is another device (for example a hub or an IP phone) between an authenticated host and a switch port, you might want to disconnect the host from the device and connect it directly to another port on the same switch.

You can globally enable MAC move so the device is reauthenticated on the new port. When a host moves to a second port, the session on the first port is deleted, and the host is reauthenticated on the new port.

MAC move is supported on all host modes. (The authenticated host can move to any port on the switch, no matter which host mode is enabled on the that port.)

When a MAC address moves from one port to another, the switch terminates the authenticated session on the original port and initiates a new authentication sequence on the new port.

The MAC move feature applies to both voice and data hosts.
In open authentication mode, a MAC address is immediately moved from the original port to the new port, with no requirement for authorization on the new port.

For more information see the “Enabling MAC Move” section on page 1-54.

MAC Replace

Beginning with Cisco IOS Release 12.2(55)SE, the MAC replace feature can be configured to address the violation that occurs when a host attempts to connect to a port where another host was previously authenticated.

Note

This feature does not apply to ports in multi-auth mode, because violations are not triggered in that mode. It does not apply to ports in multiple host mode, because in that mode, only the first host requires authentication.

If you configure the `authentication violation` interface configuration command with the `replace` keyword, the authentication process on a port in multi-domain mode is:

- A new MAC address is received on a port with an existing authenticated MAC address.
- The authentication manager replaces the MAC address of the current data host on the port with the new MAC address.
- The authentication manager initiates the authentication process for the new MAC address.
- If the authentication manager determines that the new host is a voice host, the original voice host is removed.

If a port is in open authentication mode, any new MAC address is immediately added to the MAC address table.

For more information see the “Enabling MAC Replace” section on page 1-54.

802.1x Accounting

The 802.1x standard defines how users are authorized and authenticated for network access but does not keep track of network usage. 802.1x accounting is disabled by default. You can enable 802.1x accounting to monitor this activity on 802.1x-enabled ports:

- User successfully authenticates.
- User logs off.
- Link-down occurs.
- Re-authentication successfully occurs.
- Re-authentication fails.

The switch does not log 802.1x accounting information. Instead, it sends this information to the RADIUS server, which must be configured to log accounting messages.

802.1x Accounting Attribute-Value Pairs

The information sent to the RADIUS server is represented in the form of Attribute-Value (AV) pairs. These AV pairs provide data for different applications. (For example, a billing application might require information that is in the Acct-Input-Octets or the Acct-Output-Octets attributes of a RADIUS packet.) AV pairs are automatically sent by a switch that is configured for 802.1x accounting. Three types of RADIUS accounting packets are sent by a switch:

- **START**—sent when a new user session starts
- **INTERIM**—sent during an existing session for updates
- **STOP**—sent when a session terminates

Table 1-3 lists the AV pairs and when they are sent are sent by the switch:

Table 1-3 Accounting AV Pairs

<table>
<thead>
<tr>
<th>Attribute Number</th>
<th>AV Pair Name</th>
<th>START</th>
<th>INTERIM</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute[1]</td>
<td>User-Name</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[4]</td>
<td>NAS-IP-Address</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[5]</td>
<td>NAS-Port</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[8]</td>
<td>Framed-IP-Address</td>
<td>Never</td>
<td>Sometimes(^1)</td>
<td>Sometimes(^1)</td>
</tr>
<tr>
<td>Attribute[25]</td>
<td>Class</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[30]</td>
<td>Called-Station-ID</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[31]</td>
<td>Calling-Station-ID</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[40]</td>
<td>Acct-Status-Type</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[41]</td>
<td>Acct-Delay-Time</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[42]</td>
<td>Acct-Input-Octets</td>
<td>Never</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[43]</td>
<td>Acct-Output-Octets</td>
<td>Never</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[44]</td>
<td>Acct-Session-ID</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[45]</td>
<td>Acct-Authentic</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[46]</td>
<td>Acct-Session-Time</td>
<td>Never</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[49]</td>
<td>Acct-Terminate-Cause</td>
<td>Never</td>
<td>Never</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[61]</td>
<td>NAS-Port-Type</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
</tbody>
</table>

\(^1\) The Framed-IP-Address AV pair is sent only if a valid Dynamic Host Control Protocol (DHCP) binding exists for the host in the DHCP snooping bindings table.

You can view the AV pairs that are being sent by the switch by entering the **debug radius accounting** privileged EXEC command. For more information about this command, see the *Cisco IOS Debug Command Reference, Release 12.4*.

For more information about AV pairs, see RFC 3580, “IEEE 802.1x Remote Authentication Dial In User Service (RADIUS) Usage Guidelines.”
802.1x Readiness Check

The 802.1x readiness check monitors 802.1x activity on all the switch ports and displays information about the devices connected to the ports that support 802.1x. You can use this feature to determine if the devices connected to the switch ports are 802.1x-capable. You use an alternate authentication such as MAC authentication bypass or web authentication for the devices that do not support 802.1x functionality.

This feature only works if the supplicant on the client supports a query with the NOTIFY EAP notification packet. The client must respond within the 802.1x timeout value.

For information on configuring the switch for the 802.1x readiness check, see the “Configuring 802.1x Readiness Check” section on page 1-43.

802.1x Authentication with VLAN Assignment

The switch supports 802.1x authentication with VLAN assignment. After successful 802.1x authentication of a port, the RADIUS server sends the VLAN assignment to configure the switch port. The RADIUS server database maintains the username-to-VLAN mappings, assigning the VLAN based on the username of the client connected to the switch port. You can use this feature to limit network access for certain users.

Voice device authentication is supported with multidomain host mode in Cisco IOS Release 12.2(37)SE. In Cisco IOS Release 12.2(40)SE and later. When a voice device is authorized and the RADIUS server returned an authorized VLAN, the voice VLAN on the port is configured to send and receive packets on the assigned voice VLAN. Voice VLAN assignment behaves the same as data VLAN assignment on multidomain authentication (MDA)-enabled ports. For more information, see the “Multidomain Authentication” section on page 1-33.

When configured on the switch and the RADIUS server, 802.1x authentication with VLAN assignment has these characteristics:

- If no VLAN is supplied by the RADIUS server or if 802.1x authentication is disabled, the port is configured in its access VLAN after successful authentication. Recall that an access VLAN is a VLAN assigned to an access port. All packets sent from or received on this port belong to this VLAN.
- If 802.1x authentication is enabled but the VLAN information from the RADIUS server is not valid, authorization fails and configured VLAN remains in use. This prevents ports from appearing unexpectedly in an inappropriate VLAN because of a configuration error.

 Configuration errors could include specifying a VLAN for a routed port, a malformed VLAN ID, a nonexistent or internal (routed port) VLAN ID, an RSPAN VLAN, a shut down or suspended VLAN. In the case of a mutlidomain host port, configuration errors can also be due to an attempted assignment of a data VLAN that matches the configured or assigned voice VLAN ID (or the reverse).
- If 802.1x authentication is enabled and all information from the RADIUS server is valid, the authorized device is placed in the specified VLAN after authentication.
- If the multiple-hosts mode is enabled on an 802.1x port, all hosts are placed in the same VLAN (specified by the RADIUS server) as the first authenticated host.
- Enabling port security does not impact the RADIUS server-assigned VLAN behavior.
- If 802.1x authentication is disabled on the port, it is returned to the configured access VLAN and configured voice VLAN.
When the port is in the force authorized, force unauthorized, unauthorized, or shutdown state, it is put into the configured access VLAN.

If an 802.1x port is authenticated and put in the RADIUS server-assigned VLAN, any change to the port access VLAN configuration does not take effect. In the case of a multidomain host, the same applies to voice devices when the port is fully authorized with these exceptions:

- If the VLAN configuration change of one device results in matching the other device configured or assigned VLAN, authorization of all devices on the port is terminated and multidomain host mode is disabled until a valid configuration is restored where data and voice device configured VLANs no longer match.
- If a voice device is authorized and is using a downloaded voice VLAN, the removal of the voice VLAN configuration, or modifying the configuration value to dot1p or untagged results in voice device un-authorization and the disablement of multi-domain host mode.

The 802.1x authentication with VLAN assignment feature is not supported on trunk ports, dynamic ports, or with dynamic-access port assignment through a VLAN Membership Policy Server (VMPS).

To configure VLAN assignment you need to perform these tasks:

- Enable AAA authorization by using the network keyword to allow interface configuration from the RADIUS server.
- Enable 802.1x authentication. (The VLAN assignment feature is automatically enabled when you configure 802.1x authentication on an access port).
- Assign vendor-specific tunnel attributes in the RADIUS server. The RADIUS server must return these attributes to the switch:
 - [64] Tunnel-Type = VLAN
 - [65] Tunnel-Medium-Type = 802
 - [81] Tunnel-Private-Group-ID = VLAN name or VLAN ID

Attribute [64] must contain the value VLAN (type 13). Attribute [65] must contain the value 802 (type 6). Attribute [81] specifies the VLAN name or VLAN ID assigned to the IEEE 802.1x-authenticated user.

For examples of tunnel attributes, see the “Configuring the Switch to Use Vendor-Specific RADIUS Attributes” section on page 1-35.

802.1x Authentication with Per-User ACLs

You can enable per-user access control lists (ACLs) to provide different levels of network access and service to an 802.1x-authenticated user. When the RADIUS server authenticates a user connected to an 802.1x port, it retrieves the ACL attributes based on the user identity and sends them to the switch. The switch applies the attributes to the 802.1x port for the duration of the user session. The switch removes the per-user ACL configuration when the session is over, if authentication fails, or if a link-down condition occurs. The switch does not save RADIUS-specified ACLs in the running configuration. When the port is unauthorized, the switch removes the ACL from the port.

You can configure router ACLs and input port ACLs on the same switch. However, a port ACL takes precedence over a router ACL. If you apply input port ACL to an interface that belongs to a VLAN, the port ACL takes precedence over an input router ACL applied to the VLAN interface. Incoming packets received on the port to which a port ACL is applied are filtered by the port ACL. Incoming routed packets received on other ports are filtered by the router ACL. Outgoing routed packets are filtered by the router ACL. To avoid configuration conflicts, you should carefully plan the user profiles stored on the RADIUS server.
RADIUS supports per-user attributes, including vendor-specific attributes. These vendor-specific attributes (VSAs) are in octet-string format and are passed to the switch during the authentication process. The VSAs used for per-user ACLs are \texttt{inac1\#<n>} for the ingress direction and \texttt{outac1\#<n>} for the egress direction. MAC ACLs are supported only in the ingress direction. The switch supports VSAs only in the ingress direction. It does not support port ACLs in the egress direction on Layer 2 ports. For more information, see Chapter 1, "Configuring Network Security with ACLs."

Use only the extended ACL syntax style to define the per-user configuration stored on the RADIUS server. When the definitions are passed from the RADIUS server, they are created by using the extended naming convention. However, if you use the Filter-Id attribute, it can point to a standard ACL.

You can use the Filter-Id attribute to specify an inbound or outbound ACL that is already configured on the switch. The attribute contains the ACL number followed by \texttt{.in} for ingress filtering or \texttt{.out} for egress filtering. If the RADIUS server does not allow the \texttt{.in} or \texttt{.out} syntax, the access list is applied to the outbound ACL by default. Because of limited support of Cisco IOS access lists on the switch, the Filter-Id attribute is supported only for IP ACLs numbered 1 to 199 and 1300 to 2699 (IP standard and IP extended ACLs).

Only one 802.1x-authenticated user is supported on a port. If the multiple-hosts mode is enabled on the port, the per-user ACL attribute is disabled for the associated port.

The maximum size of the per-user ACL is 4000 ASCII characters but is limited by the maximum size of RADIUS-server per-user ACLs.

For examples of vendor-specific attributes, see the “Configuring the Switch to Use Vendor-Specific RADIUS Attributes” section on page 1-35. For more information about configuring ACLs, see Chapter 1, “Configuring Network Security with ACLs.”

To configure per-user ACLs:

- Enable AAA authentication.
- Enable AAA authorization by using the \texttt{network} keyword to allow interface configuration from the RADIUS server.
- Enable 802.1x authentication.
- Configure the user profile and VSAs on the RADIUS server.
- Configure the 802.1x port for single-host mode.

\textbf{Note} Per-user ACLs are supported only in single-host mode.

802.1x Authentication with Downloadable ACLs and Redirect URLs

You can download ACLs and redirect URLs from a RADIUS server to the switch during 802.1x authentication or MAC authentication bypass of the host. You can also download ACLs during web authentication.

\textbf{Note} A downloadable ACL is also referred to as a \texttt{dACL}.

If more than one host is authenticated and the host is in single-host, MDA, or multiple-authentication mode, the switch changes the source address of the ACL to the host IP address.

You can apply the ACLs and redirect URLs to all the devices connected to the 802.1x-enabled port.
If no ACLs are downloaded during 802.1x authentication, the switch applies the static default ACL on the port to the host. On a voice VLAN port configured in multi-auth or MDA mode, the switch applies the ACL only to the phone as part of the authorization policies.

Beginning with Cisco IOS Release 12.2(55)SE, if there is no static ACL on a port, a dynamic auth-default ACL is created, and policies are enforced before dACLs are downloaded and applied.

Note
The auth-default-ACL does not appear in the running configuration.

The auth-default ACL is created when at least one host with an authorization policy is detected on the port. The auth-default ACL is removed from the port when the last authenticated session ends. You can configure the auth-default ACL by using the `ip access-list extended auth-default-acl` global configuration command.

Note
The auth-default-ACL does not support Cisco Discovery Protocol (CDP) bypass in the single host mode. You must configure a static ACL on the interface to support CDP bypass.

The 802.1x and MAB authentication methods support two authentication modes, *open* and *closed*. If there is no static ACL on a port in *closed* authentication mode:

- An auth-default-ACL is created.
- The auth-default-ACL allows only DHCP traffic until policies are enforced.
- When the first host authenticates, the authorization policy is applied without IP address insertion.
- When a second host is detected, the policies for the first host are refreshed, and policies for the first and subsequent sessions are enforced with IP address insertion.

If there is no static ACL on a port in *open* authentication mode:

- An auth-default-ACL-OPEN is created and allows all traffic.
- Policies are enforced with IP address insertion to prevent security breaches.
- Web authentication is subject to the auth-default-ACL-OPEN.

To control access for hosts with no authorization policy, you can configure a directive. The supported values for the directive are *open* and *default*. When you configure the *open* directive, all traffic is allowed. The *default* directive subjects traffic to the access provided by the port. You can configure the directive either in the user profile on the AAA server or on the switch. To configure the directive on the AAA server, use the `authz-directive =<open/default>` global command. To configure the directive on the switch, use the `epm access-control open` global configuration command.

Note
The default value of the directive is *default*.

If a host falls back to web authentication on a port without a configured ACL:

- If the port is in open authentication mode, the auth-default-ACL-OPEN is created.
- If the port is in closed authentication mode, the auth-default-ACL is created.

The access control entries (ACEs) in the fallback ACL are converted to per-user entries. If the configured fallback profile does not include a fallback ACL, the host is subject to the auth-default-ACL associated with the port.
Note

If you use a custom logo with web authentication and it is stored on an external server, the port ACL must allow access to the external server before authentication. You must either configure a static port ACL or change the auth-default-ACL to provide appropriate access to the external server.
Cisco Secure ACS and Attribute-Value Pairs for the Redirect URL

The switch uses these cisco-av-pair VSAs:
- url-redirect is the HTTP to HTTPS URL.
- url-redirect-acl is the switch ACL name or number.

The switch uses the CiscoSecure-defined-ACL attribute value pair to intercept an HTTP or HTTPS request from the end point. The switch then forwards the client web browser to the specified redirect address. The url-redirect AV pair on the Cisco Secure ACS contains the URL to which the web browser is redirected. The url-redirect-acl attribute value pair contains the name or number of an ACL that specifies the HTTP or HTTPS traffic to redirect. Traffic that matches a permit ACE in the ACL is redirected.

Note

Define the URL redirect ACL and the default port ACL on the switch.

If a redirect URL is configured for a client on the authentication server, a default port ACL on the connected client switch port must also be configured.

Cisco Secure ACS and Attribute-Value Pairs for Downloadable ACLs

You can set the CiscoSecure-Defined-ACL Attribute-Value (AV) pair on the Cisco Secure ACS with the RADIUS cisco-av-pair vendor-specific attributes (VSAs). This pair specifies the names of the downloadable ACLs on the Cisco Secure ACS with the #ACL#-IP-name-number attribute.
- The name is the ACL name.
- The number is the version number (for example, 3f783768).

If a downloadable ACL is configured for a client on the authentication server, a default port ACL on the connected client switch port must also be configured.

If the default ACL is configured on the switch and the Cisco Secure ACS sends a host-access-policy to the switch, it applies the policy to traffic from the host connected to a switch port. If the policy does not apply, the switch applies the default ACL. If the Cisco Secure ACS sends the switch a downloadable ACL, this ACL takes precedence over the default ACL that is configured on the switch port. However, if the switch receives an host access policy from the Cisco Secure ACS but the default ACL is not configured, the authorization failure is declared.

For configuration details, see the “Authentication Manager” section on page 1-7 and the “Configuring 802.1x Authentication with Downloadable ACLs and Redirect URLs” section on page 1-73.

VLAN ID-based MAC Authentication

You can use VLAN ID-based MAC authentication if you wish to authenticate hosts based on a static VLAN ID instead of a downloadable VLAN. When you have a static VLAN policy configured on your switch, VLAN information is sent to an IAS (Microsoft) RADIUS server along with the MAC address of each host for authentication. The VLAN ID configured on the connected port is used for MAC authentication. By using VLAN ID-based MAC authentication with an IAS server, you can have a fixed number of VLANs in the network.

The feature also limits the number of VLANs monitored and handled by STP. The network can be managed as a fixed VLAN.
Chapter 1 Configuring IEEE 802.1x Port-Based Authentication

Understanding IEEE 802.1x Port-Based Authentication

Note

This feature is not supported on Cisco ACS Server. (The ACS server ignores the sent VLAN-IDs for new hosts and only authenticates based on the MAC address.)

For configuration information, see the “Configuring VLAN ID-based MAC Authentication” section on page 1-75. Additional configuration is similar MAC authentication bypass, as described in the “Configuring MAC Authentication Bypass” section on page 1-68.

802.1x Authentication with Guest VLAN

You can configure a guest VLAN for each 802.1x port on the switch to provide limited services to clients, such as downloading the 802.1x client. These clients might be upgrading their system for 802.1x authentication, and some hosts, such as Windows 98 systems, might not be IEEE 802.1x-capable.

When you enable a guest VLAN on an 802.1x port, the switch assigns clients to a guest VLAN when the switch does not receive a response to its EAP request/identity frame or when EAPOL packets are not sent by the client.

The switch maintains the EAPOL packet history. If an EAPOL packet is detected on the interface during the lifetime of the link, the switch determines that the device connected to that interface is an IEEE 802.1x-capable supplicant, and the interface does not change to the guest VLAN state. EAPOL history is cleared if the interface link status goes down. If no EAPOL packet is detected on the interface, the interface changes to the guest VLAN state.

If the switch is trying to authorize an 802.1x-capable voice device and the AAA server is unavailable, the authorization attempt fails, but the detection of the EAPOL packet is saved in the EAPOL history. When the AAA server becomes available, the switch authorizes the voice device. However, the switch no longer allows other devices access to the guest VLAN. To prevent this situation, use one of these command sequences:

- Enter the `authentication event no-response action authorize vlan vlan-id` interface configuration command to allow access to the guest VLAN.
- Enter the `shutdown` interface configuration command followed by the `no shutdown` interface configuration command to restart the port.

Use a restricted VLAN to allow clients that failed authentication access to the network by entering the `dot1x auth-fail vlan vlan-id` interface configuration command.

If devices send EAPOL packets to the switch during the lifetime of the link, the switch no longer allows clients that fail authentication access to the guest VLAN.

Note

If an EAPOL packet is detected after the interface has changed to the guest VLAN, the interface reverts to an unauthorized state, and 802.1x authentication restarts.

Any number of 802.1x-incapable clients are allowed access when the switch port is moved to the guest VLAN. If an 802.1x-capable client joins the same port on which the guest VLAN is configured, the port is put into the unauthorized state in the user-configured access VLAN, and authentication is restarted.

Guest VLANs are supported on 802.1x ports in single host, multiple host, or multi-domain modes.

You can configure any active VLAN except an RSPAN VLAN, a private VLAN, or a voice VLAN as an 802.1x guest VLAN. The guest VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.
The switch supports *MAC authentication bypass*. When MAC authentication bypass is enabled on an 802.1x port, the switch can authorize clients based on the client MAC address when IEEE 802.1x authentication times out while waiting for an EAPOL message exchange. After detecting a client on an 802.1x port, the switch waits for an Ethernet packet from the client. The switch sends the authentication server a RADIUS-access/request frame with a username and password based on the MAC address. If authorization succeeds, the switch grants the client access to the network. If authorization fails, the switch assigns the port to the guest VLAN if one is specified. For more information, see the “IEEE 802.1x Authentication with MAC Authentication Bypass” section on page 1-30.

For more information, see the “Configuring a Guest VLAN” section on page 1-62.

802.1x Authentication with Restricted VLAN

You can configure a restricted VLAN (also referred to as an *authentication failed VLAN*) for each IEEE 802.1x port on a switch stack or a switch to provide limited services to clients that cannot access the guest VLAN. These clients are 802.1x-compliant and cannot access another VLAN because they fail the authentication process. A restricted VLAN allows users without valid credentials in an authentication server (typically, visitors to an enterprise) to access a limited set of services. The administrator can control the services available to the restricted VLAN.

Note

You can configure a VLAN to be both the guest VLAN and the restricted VLAN if you want to provide the same services to both types of users.

Without this feature, the client attempts and fails authentication indefinitely, and the switch port remains in the spanning-tree blocking state. With this feature, you can configure the switch port to be in the restricted VLAN after a specified number of authentication attempts (the default value is 3 attempts).

The authenticator counts the failed authentication attempts for the client. When this count exceeds the configured maximum number of authentication attempts, the port moves to the restricted VLAN. The failed attempt count increments when the RADIUS server replies with either an *EAP failure* or an empty response without an EAP packet. When the port moves into the restricted VLAN, the failed attempt counter resets.

Users who fail authentication remain in the restricted VLAN until the next re-authentication attempt. A port in the restricted VLAN tries to re-authenticate at configured intervals (the default is 60 seconds). If re-authentication fails, the port remains in the restricted VLAN. If re-authentication is successful, the port moves either to the configured VLAN or to a VLAN sent by the RADIUS server. You can disable re-authentication. If you do this, the only way to restart the authentication process is for the port to receive a *link down* or *EAP logoff* event. We recommend that you keep re-authentication enabled if a client might connect through a hub. When a client disconnects from the hub, the port might not receive the *link down* or *EAP logoff* event.

After a port moves to the restricted VLAN, a simulated EAP success message is sent to the client. This prevents clients from indefinitely attempting authentication. Some clients (for example, devices running Windows XP) cannot implement DHCP without EAP success.

Restricted VLANs are supported only on 802.1x ports in single-host mode and on Layer 2 ports.

You can configure any active VLAN except an RSPAN VLAN, a primary private VLAN, or a voice VLAN as an 802.1x restricted VLAN. The restricted VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.

Other security port features such as dynamic ARP Inspection, DHCP snooping, and IP source guard can be configured independently on a restricted VLAN.
For more information, see the “Configuring a Restricted VLAN” section on page 1-64.

802.1x Authentication with Inaccessible Authentication Bypass

Use the inaccessible authentication bypass feature, also referred to as critical authentication or the AAA fail policy, when the switch cannot reach the configured RADIUS servers and new hosts cannot be authenticated. You can configure the switch to connect those hosts to critical ports.

When a new host tries to connect to the critical port, that host is moved to a user-specified access VLAN, the critical VLAN. The administrator gives limited authentication to the hosts.

When the switch tries to authenticate a host connected to a critical port, the switch checks the status of the configured RADIUS server. If a server is available, the switch can authenticate the host. However, if all the RADIUS servers are unavailable, the switch grants network access to the host and puts the port in the critical-authentication state, which is a special case of the authentication state.

Support on Multiple-Authentication Ports

When a port is configured on any host mode and the AAA server is unavailable, the port is then configured to multi-host mode and moved to the critical VLAN. To support this inaccessible bypass on multiple-authentication (multiauth) ports, use the `authentication event server dead action reinitialize vlan vlan-id` command. When a new host tries to connect to the critical port, that port is reinitialized and all the connected hosts are moved to the user-specified access VLAN.

This command is supported on all host modes.

Authentication Results

The behavior of the inaccessible authentication bypass feature depends on the authorization state of the port:

- If the port is unauthorized when a host connected to a critical port tries to authenticate and all servers are unavailable, the switch puts the port in the critical-authentication state in the RADIUS-configured or user-specified access VLAN.

- If the port is already authorized and reauthentication occurs, the switch puts the critical port in the critical-authentication state in the current VLAN, which might be the one previously assigned by the RADIUS server.

- If the RADIUS server becomes unavailable during an authentication exchange, the current exchange times out, and the switch puts the critical port in the critical-authentication state during the next authentication attempt.

You can configure the critical port to reinitialize hosts and move them out of the critical VLAN when the RADIUS server is again available. When this is configured, all critical ports in the critical-authentication state are automatically re-authenticated. For more information, see the command reference for this release and the “Configuring Inaccessible Authentication Bypass and Critical Voice VLAN” section on page 1-65.
Feature Interactions

- Guest VLAN—Inaccessible authentication bypass is compatible with guest VLAN. When a guest VLAN is enabled on 802.1x port, the features interact as follows:
 - If at least one RADIUS server is available, the switch assigns a client to a guest VLAN when the switch does not receive a response to its EAP request/identity frame or when EAPOL packets are not sent by the client.
 - If all the RADIUS servers are not available and the client is connected to a critical port, the switch authenticates the client and puts the critical port in the critical-authentication state in the RADIUS-configured or user-specified access VLAN.
 - If all the RADIUS servers are not available and the client is not connected to a critical port, the switch might not assign clients to the guest VLAN if one is configured.
 - If all the RADIUS servers are not available and if a client is connected to a critical port and was previously assigned to a guest VLAN, the switch keeps the port in the guest VLAN.
- Restricted VLAN—If the port is already authorized in a restricted VLAN and the RADIUS servers are unavailable, the switch puts the critical port in the critical-authentication state in the restricted VLAN.
- 802.1x accounting—Accounting is not affected if the RADIUS servers are unavailable.
- Private VLAN—You can configure inaccessible authentication bypass on a private VLAN host port. The access VLAN must be a secondary private VLAN.
- Voice VLAN—Inaccessible authentication bypass is compatible with voice VLAN, but the RADIUS-configured or user-specified access VLAN and the voice VLAN must be different.
- Remote Switched Port Analyzer (RSPAN)—Do not configure an RSPAN VLAN as the RADIUS-configured or user-specified access VLAN for inaccessible authentication bypass.

In a switch stack, the stack master checks the status of the RADIUS servers by sending keepalive packets. When the status of a RADIUS server changes, the stack master sends the information to the stack members. The stack members can then check the status of RADIUS servers when re-authenticating critical ports.

If the new stack master is elected, the link between the switch stack and RADIUS server might change, and the new stack immediately sends keepalive packets to update the status of the RADIUS servers. If the server status changes from dead to alive, the switch re-authenticates all switch ports in the critical-authentication state.

When a member is added to the stack, the stack master sends the member the server status.

802.1x Critical Voice VLAN Configuration

When an IP phone connected to a port is authenticated by the access control server (ACS), the phone is put into the voice domain. If the ACS is not reachable, the switch cannot determine if the device is a voice device. If the server is unavailable, the phone cannot access the voice network and therefore cannot operate.

For data traffic, you can configure inaccessible authentication bypass, or critical authentication, to allow traffic to pass through on the native VLAN when the server is not available. If the RADIUS authentication server is unavailable (down) and inaccessible authentication bypass is enabled, the switch grants the client access to the network and puts the port in the critical-authentication state in the RADIUS-configured or the user-specified access VLAN. When the switch cannot reach the configured
RADIUS servers and new hosts cannot be authenticated, the switch connects those hosts to critical ports. A new host trying to connect to the critical port is moved to a user-specified access VLAN, the critical VLAN, and granted limited authentication.

With this release, you can enter the `authentication event server dead action authorize voice` interface configuration command to configure the critical voice VLAN feature. When the ACS does not respond, the port goes into critical authentication mode. When traffic coming from the host is tagged with the voice VLAN, the connected device (the phone) is put in the configured voice VLAN for the port. The IP phones learn the voice VLAN identification through CDP (Cisco devices) or through LLDP or DHCP.

You can configure the voice VLAN for a port by entering the `switchport voice vlan vlan-id` interface configuration command.

This feature is supported in multidomain and multi-auth host modes. Although you can enter the command when the switch in single-host or multi-host mode, the command has no effect unless the device changes to multidomain or multi-auth host mode.

Beginning in privileged EXEC mode, follow these steps to configure critical voice VLAN on a port and enable the inaccessible authentication bypass feature.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 radius-server dead-criteria time time tries tries</td>
<td>Sets the conditions that are used to decide when a RADIUS server is considered unavailable or down (dead).</td>
</tr>
<tr>
<td></td>
<td>• The range for <code>time</code> is from 1 to 120 seconds. The switch dynamically determines a default <code>seconds</code> value between 10 and 60 seconds.</td>
</tr>
<tr>
<td></td>
<td>• The range for <code>tries</code> is from 1 to 100. The switch dynamically determines a default <code>tries</code> parameter between 10 and 100.</td>
</tr>
<tr>
<td>Step 3 radius-server deadtime minutes</td>
<td>(Optional) Sets the number of minutes during which a RADIUS server is not sent requests. The range is from 0 to 1440 minutes (24 hours). The default is 0 minutes.</td>
</tr>
</tbody>
</table>
Understanding IEEE 802.1x Port-Based Authentication

This example shows how to configure the inaccessible authentication bypass feature and configure the critical voice VLAN:

```
Switch(config)# radius-server dead-criteria time 30 tries 20
Switch(config)# radius-server deadtime 60
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>radius-server host ip-address [acct-port udp-port] [auth-port udp-port] [test username name [idle-time time] [ignore-acct-port] [ignore-auth-port]] [key string]</td>
</tr>
<tr>
<td></td>
<td>Configures the RADIUS server parameters:</td>
</tr>
<tr>
<td></td>
<td>• <code>acct-port udp-port</code>—Specifies the UDP port for the RADIUS accounting server. The range for the UDP port number is from 0 to 65536. The default is 1646.</td>
</tr>
<tr>
<td></td>
<td>• <code>auth-port udp-port</code>—Specifies the UDP port for the RADIUS authentication server. The range for the UDP port number is from 0 to 65536. The default is 1645.</td>
</tr>
<tr>
<td></td>
<td>Note You should configure the UDP port for the RADIUS accounting server and the UDP port for the RADIUS authentication server to nondefault values.</td>
</tr>
<tr>
<td></td>
<td>• <code>test username name</code>—Enables automatic testing of the RADIUS server status, and specifies the username to be used.</td>
</tr>
<tr>
<td></td>
<td>• <code>idle-time time</code>—Sets the interval of time in minutes after which the switch sends test packets to the server. The range is from 1 to 35791 minutes. The default is 60 minutes (1 hour).</td>
</tr>
<tr>
<td></td>
<td>• <code>ignore-acct-port</code>—Disables testing on the RADIUS-server accounting port.</td>
</tr>
<tr>
<td></td>
<td>• <code>ignore-auth-port</code>—Disables testing on the RADIUS-server authentication port.</td>
</tr>
<tr>
<td></td>
<td>• For <code>key string</code>, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.</td>
</tr>
<tr>
<td></td>
<td>Note Always configure the key as the last item in the <code>radius-server host</code> command syntax because leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon.</td>
</tr>
<tr>
<td></td>
<td>You can also configure the authentication and encryption key by using the `radius-server key {0 string</td>
</tr>
<tr>
<td>Step 5</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specifies the port to be configured and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>authentication event server dead action {authorize</td>
</tr>
<tr>
<td></td>
<td>Configures a critical VLAN to move hosts on the port if the RADIUS server is unreachable:</td>
</tr>
<tr>
<td></td>
<td>• <code>authorize</code>—Moves any new hosts trying to authenticate to the user-specified critical VLAN.</td>
</tr>
<tr>
<td></td>
<td>• <code>reinitialize</code>—Moves all authorized hosts on the port to the user-specified critical VLAN.</td>
</tr>
<tr>
<td>Step 7</td>
<td>switchport voice vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>Specifies the voice VLAN for the port. The voice VLAN cannot be the same as the critical data VLAN configured in Step 6.</td>
</tr>
<tr>
<td>Step 8</td>
<td>authentication event server dead action authorize voice</td>
</tr>
<tr>
<td></td>
<td>Configures critical voice VLAN to move data traffic on the port to the voice VLAN if the RADIUS server is unreachable.</td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10</td>
<td>show authentication interface interface-id</td>
</tr>
<tr>
<td></td>
<td>(Optional) Verifies your entries.</td>
</tr>
</tbody>
</table>
Understanding IEEE 802.1x Port-Based Authentication

Switch(config)# radius-server host 1.1.1.2 acct-port 1550 auth-port 1560 test username user1 idle-time 30 key abc1234
Switch(config)# interface gigabitethernet 1/0/1
Switch(config)# radius-server deadtime 60
Switch(config-if)# authentication event server dead action reinitialize vlan 20
Switch(config-if)# switchport voice vlan
Switch(config-if)# authentication event server dead action authorize voice
Switch(config-if)# end

802.1x User Distribution

You can configure 802.1x user distribution to load-balance users with the same group name across multiple different VLANs.

The VLANs are either supplied by the RADIUS server or configured through the switch CLI under a VLAN group name.

- Configure the RADIUS server to send more than one VLAN name for a user. The multiple VLAN names can be sent as part of the response to the user. The 802.1x user distribution tracks all the users in a particular VLAN and achieves load balancing by moving the authorized user to the least populated VLAN.
- Configure the RADIUS server to send a VLAN group name for a user. The VLAN group name can be sent as part of the response to the user. You can search for the selected VLAN group name among the VLAN group names that you configured by using the switch CLI. If the VLAN group name is found, the corresponding VLANs under this VLAN group name are searched to find the least populated VLAN. Load balancing is achieved by moving the corresponding authorized user to that VLAN.

Note: The RADIUS server can send the VLAN information in any combination of VLAN-IDs, VLAN names, or VLAN groups.

802.1x User Distribution Configuration Guidelines

- Confirm that at least one VLAN is mapped to the VLAN group.
- You can map more than one VLAN to a VLAN group.
- You can modify the VLAN group by adding or deleting a VLAN.
- When you clear an existing VLAN from the VLAN group name, none of the authenticated ports in the VLAN are cleared, but the mappings are removed from the existing VLAN group.
- If you clear the last VLAN from the VLAN group name, the VLAN group is cleared.
- You can clear a VLAN group even when the active VLANs are mapped to the group. When you clear a VLAN group, none of the ports or users that are in the authenticated state in any VLAN within the group are cleared, but the VLAN mappings to the VLAN group are cleared.

For more information, see the “802.1x User Distribution” section on page 1-28.
IEEE 802.1x Authentication with Voice VLAN Ports

A voice VLAN port is a special access port associated with two VLAN identifiers:

- **VVID** to carry voice traffic to and from the IP phone. The VVID is used to configure the IP phone connected to the port.
- **PVID** to carry the data traffic to and from the workstation connected to the switch through the IP phone. The PVID is the native VLAN of the port.

The IP phone uses the VVID for its voice traffic, regardless of the authorization state of the port. This allows the phone to work independently of IEEE 802.1x authentication.

In single-host mode, only the IP phone is allowed on the voice VLAN. In multiple-hosts mode, additional clients can send traffic on the voice VLAN after a supplicant is authenticated on the PVID. When multiple-hosts mode is enabled, the supplicant authentication affects both the PVID and the VVID.

Note

If an IP phone and PC are connected to a switchport, and the port is configured in single- or multi-host mode, we do not recommend configuring that port in standalone MAC authentication bypass mode. We recommend only using MAC authentication bypass as a fallback method to 802.1x authentication with the timeout period set to the default of five seconds.

A voice VLAN port becomes active when there is a link, and the device MAC address appears after the first CDP message from the IP phone. Cisco IP phones do not relay CDP messages from other devices. As a result, if several IP phones are connected in series, the switch recognizes only the one directly connected to it. When IEEE 802.1x authentication is enabled on a voice VLAN port, the switch drops packets from unrecognized IP phones more than one hop away.

When IEEE 802.1x authentication is enabled on a port, you cannot configure a port VLAN that is equal to a voice VLAN.

Note

If you enable IEEE 802.1x authentication on an access port on which a voice VLAN is configured and to which a Cisco IP Phone is connected, the Cisco IP phone loses connectivity to the switch for up to 30 seconds.

For more information about voice VLANs, see Chapter 1, “Configuring Voice VLAN.”

IEEE 802.1x Authentication with Port Security

In general, Cisco does not recommend enabling port security when IEEE 802.1x is enabled. Since IEEE 802.1x enforces a single MAC address per port (or per VLAN when MDA is configured for IP telephony), port security is redundant and in some cases may interfere with expected IEEE 802.1x operations.

IEEE 802.1x Authentication with Wake-on-LAN

The IEEE 802.1x authentication with wake-on-LAN (WoL) feature allows dormant PCs to be powered when the switch receives a specific Ethernet frame, known as the magic packet. You can use this feature in environments where administrators need to connect to systems that have been powered down.
Understanding IEEE 802.1x Port-Based Authentication

When a host that uses WoL is attached through an IEEE 802.1x port and the host powers off, the IEEE 802.1x port becomes unauthorized. The port can only receive and send EAPOL packets, and WoL magic packets cannot reach the host. When the PC is powered off, it is not authorized, and the switch port is not opened.

When the switch uses IEEE 802.1x authentication with WoL, the switch forwards traffic to unauthorized IEEE 802.1x ports, including magic packets. While the port is unauthorized, the switch continues to block ingress traffic other than EAPOL packets. The host can receive packets but cannot send packets to other devices in the network.

Note

If PortFast is not enabled on the port, the port is forced to the bidirectional state.

When you configure a port as unidirectional by using the `authentication control-direction in` interface configuration command, the port changes to the spanning-tree forwarding state. The port can send packets to the host but cannot receive packets from the host.

When you configure a port as bidirectional by using the `authentication control-direction both` interface configuration command, the port is access-controlled in both directions. The port does not receive packets from or send packets to the host.

IEEE 802.1x Authentication with MAC Authentication Bypass

You can configure the switch to authorize clients based on the client MAC address (see Figure 1-2 on page 1-5) by using the MAC authentication bypass feature. For example, you can enable this feature on IEEE 802.1x ports connected to devices such as printers.

If IEEE 802.1x authentication times out while waiting for an EAPOL response from the client, the switch tries to authorize the client by using MAC authentication bypass.

When the MAC authentication bypass feature is enabled on an IEEE 802.1x port, the switch uses the MAC address as the client identity. The authentication server has a database of client MAC addresses that are allowed network access. After detecting a client on an IEEE 802.1x port, the switch waits for an Ethernet packet from the client. The switch sends the authentication server a RADIUS-access/request frame with a username and password based on the MAC address. If authorization succeeds, the switch grants the client access to the network. If authorization fails, the switch assigns the port to the guest VLAN if one is configured.

If an EAPOL packet is detected on the interface during the lifetime of the link, the switch determines that the device connected to that interface is an IEEE 802.1x-capable supplicant and uses IEEE 802.1x authentication (not MAC authentication bypass) to authorize the interface. EAPOL history is cleared if the interface link status goes down.

If the switch already authorized a port by using MAC authentication bypass and detects an IEEE 802.1x supplicant, the switch does not unauthorize the client connected to the port. When re-authentication occurs, the switch uses IEEE 802.1x authentication as the preferred re-authentication process if the previous session ended because the Termination-Action RADIUS attribute value is DEFAULT.

Clients that were authorized with MAC authentication bypass can be re-authenticated. The re-authentication process is the same as that for clients that were authenticated with IEEE 802.1x. During re-authentication, the port remains in the previously assigned VLAN. If re-authentication is successful, the switch keeps the port in the same VLAN. If re-authentication fails, the switch assigns the port to the guest VLAN, if one is configured.
If re-authentication is based on the Session-Timeout RADIUS attribute (Attribute[27]) and the Termination-Action RADIUS attribute (Attribute[29]) and if the Termination-Action RADIUS attribute (Attribute[29]) action is Initialize, (the attribute value is DEFAULT), the MAC authentication bypass session ends, and connectivity is lost during re-authentication. If MAC authentication bypass is enabled and the IEEE 802.1x authentication times out, the switch uses the MAC authentication bypass feature to initiate re-authorization. For more information about these AV pairs, see RFC 3580, “IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage Guidelines.”

MAC authentication bypass interacts with the features:

- IEEE 802.1x authentication—You can enable MAC authentication bypass only if IEEE 802.1x authentication is enabled on the port.
- Guest VLAN—If a client has an invalid MAC address identity, the switch assigns the client to a guest VLAN if one is configured.
- Restricted VLAN—This feature is not supported when the client connected to an IEEE 802.1x port is authenticated with MAC authentication bypass.
- Port security—See the “IEEE 802.1x Authentication with Port Security” section on page 1-29.
- Voice VLAN—See the “IEEE 802.1x Authentication with Voice VLAN Ports” section on page 1-29.
- VLAN Membership Policy Server (VMPS)—IEEE 802.1x and VMPS are mutually exclusive.
- Private VLAN—You can assign a client to a private VLAN.
- Network admission control (NAC) Layer 2 IP validation—This feature takes effect after an IEEE 802.1x port is authenticated with MAC authentication bypass, including hosts in the exception list.
- Network Edge Access Topology (NEAT)—MAB and NEAT are mutually exclusive. You cannot enable MAB when NEAT is enabled on an interface, and you cannot enable NEAT when MAB is enabled on an interface.

For more configuration information, see the “Authentication Manager” section on page 1-7.

Cisco IOS Release 12.2(55)SE and later supports filtering of verbose MAB system messages. See the “Authentication Manager CLI Commands” section on page 1-9.

Network Admission Control Layer 2 IEEE 802.1x Validation

The switch supports the Network Admission Control (NAC) Layer 2 IEEE 802.1x validation, which checks the antivirus condition or posture of endpoint systems or clients before granting the devices network access. With NAC Layer 2 IEEE 802.1x validation, you can do these tasks:

- Download the Session-Timeout RADIUS attribute (Attribute[27]) and the Termination-Action RADIUS attribute (Attribute[29]) from the authentication server.
- Set the number of seconds between re-authentication attempts as the value of the Session-Timeout RADIUS attribute (Attribute[27]) and get an access policy against the client from the RADIUS server.
- Set the action to be taken when the switch tries to re-authenticate the client by using the Termination-Action RADIUS attribute (Attribute[29]). If the value is the DEFAULT or is not set, the session ends. If the value is RADIUS-Request, the re-authentication process starts.
- View the NAC posture token, which shows the posture of the client, by using the show authentication privileged EXEC command.
- Configure secondary private VLANs as guest VLANs.
Configuring NAC Layer 2 IEEE 802.1x validation is similar to configuring IEEE 802.1x port-based authentication except that you must configure a posture token on the RADIUS server. For information about configuring NAC Layer 2 IEEE 802.1x validation, see the “Configuring NAC Layer 2 802.1x Validation” section on page 1-70 and the “Configuring Periodic Re-Authentication” section on page 1-49.

For more information about NAC, see the Network Admission Control Software Configuration Guide. For more configuration information, see the “Authentication Manager” section on page 1-7.

Flexible Authentication Ordering

You can use flexible authentication ordering to configure the order of methods that a port uses to authenticate a new host. MAC authentication bypass and 802.1x can be the primary or secondary authentication methods, and web authentication can be the fallback method if either or both of those authentication attempts fail. For more information see the “Configuring Flexible Authentication Ordering” section on page 1-76.

Open1x Authentication

Open1x authentication allows a device access to a port before that device is authenticated. When open authentication is configured, a new host can pass traffic according to the access control list (ACL) defined on the port. After the host is authenticated, the policies configured on the RADIUS server are applied to that host.

You can configure open authentication with these scenarios:

- Single-host mode with open authentication–Only one user is allowed network access before and after authentication.
- MDA mode with open authentication–Only one user in the voice domain and one user in the data domain are allowed.
- Multiple-hosts mode with open authentication–Any host can access the network.
- Multiple-authentication mode with open authentication–Similar to MDA, except multiple hosts can be authenticated.

For more information see the “Configuring the Host Mode” section on page 1-48.

Note

If open authentication is configured, it takes precedence over other authentication controls. This means that if you use the authentication open interface configuration command, the port will grant access to the host irrespective of the authentication port-control interface configuration command.

Use case of Open1x Authentication

This is based on a scenario where the end host/server is configured for High Availability (HA) and secondary host’s network link remains down until its role becomes active. i.e the end host/server and secondary host use the same IP address in Active role but have different MAC address.

When secondary host's network link comes up, with HA on end device, authentication is triggered on the respective switch port.
However, during the process of authentication on switch port (assuming PortFast is already enabled), Gratuitous ARP (GARP) requests sent by end host (with new MAC address) will be dropped by switch (This is an expected behavior during closed authentication mode). This could further result in blackholing traffic destined for that specific IP due to obsolete ARP entry present, for that specific IP, on other devices in same VLAN including the gateway switch/router.

That ARP entry remains obsolete, unless the local cache is cleared manually for that specific host IP (HA) or a new ARP request is received from the end host (source of HA IP).

This situation can be avoided using Open1x Authentication with pre-authorized ACL/DACLs.

Multidomain Authentication

The switch supports multidomain authentication (MDA), which allows both a data device and voice device, such as an IP phone (Cisco or non-Cisco), to authenticate on the same switch port. The port is divided into a data domain and a voice domain.

MDA does not enforce the order of device authentication. However, for best results, we recommend that a voice device is authenticated before a data device on an MDA-enabled port.

Follow these guidelines for configuring MDA:

- To configure a switch port for MDA, see the “Configuring the Host Mode” section on page 1-48.
- You must configure the voice VLAN for the IP phone when the host mode is set to multidomain. For more information, see Chapter 1, “Configuring Voice VLAN.”
- Voice VLAN assignment on an MDA-enabled port is supported in Cisco IOS Release 12.2(40)SE and later.

Note If you use a dynamic VLAN to assign a voice VLAN on an MDA-enabled switch port, the voice device fails authorization.

- To authorize a voice device, the AAA server must be configured to send a Cisco Attribute-Value (AV) pair attribute with a value of `device-traffic-class=voice`. Without this value, the switch treats the voice device as a data device.
- The guest VLAN and restricted VLAN features only apply to the data devices on an MDA-enabled port. The switch treats a voice device that fails authorization as a data device.
- If more than one device attempts authorization on either the voice or the data domain of a port, it is error disabled.
- Until a device is authorized, the port drops its traffic. Non-Cisco IP phones or voice devices are allowed into both the data and voice VLANs. The data VLAN allows the voice device to contact a DHCP server to obtain an IP address and acquire the voice VLAN information. After the voice device starts sending on the voice VLAN, its access to the data VLAN is blocked.
- A voice device MAC address that is binding on the data VLAN is not counted towards the port security MAC address limit.
- You can use dynamic VLAN assignment from a RADIUS server only for data devices.
- MDA can use MAC authentication bypass as a fallback mechanism to allow the switch port to connect to devices that do not support IEEE 802.1x authentication. For more information, see the “MAC Authentication Bypass” section on page 1-42.
- When a data or a voice device is detected on a port, its MAC address is blocked until authorization succeeds. If the authorization fails, the MAC address remains blocked for 5 minutes.
If more than five devices are detected on the data VLAN or more than one voice device is detected on the voice VLAN while a port is unauthorized, the port is error disabled.

When a port host mode is changed from single- or multihost to multidomain mode, an authorized data device remains authorized on the port. However, a Cisco IP phone that has been allowed on the port voice VLAN is automatically removed and must be reauthenticated on that port.

Active fallback mechanisms such as guest VLAN and restricted VLAN remain configured after a port changes from single- or multihost mode to multidomain mode.

Switching a port host mode from multidomain to single- or multihost mode removes all authorized devices from the port.

If a data domain is authorized first and placed in the guest VLAN, non-IEEE 802.1x-capable voice devices need to tag their packets on the voice VLAN to trigger authentication.

We do not recommend per-user ACLs with an MDA-enabled port. An authorized device with a per-user ACL policy might impact traffic on both the voice and data VLANs of the port. If used, only one device on the port should enforce per-user ACLs.

802.1x Supplicant and Authenticator Switches with Network Edge Access Topology (NEAT)

The Network Edge Access Topology (NEAT) feature extends identity to areas outside the wiring closet (such as conference rooms). This allows any type of device to authenticate on the port.

- 802.1x switch supplicant: You can configure a switch to act as a supplicant to another switch by using the 802.1x supplicant feature. This configuration is helpful in a scenario, where, for example, a switch is outside a wiring closet and is connected to an upstream switch through a trunk port. A switch configured with the 802.1x switch supplicant feature authenticates with the upstream switch for secure connectivity. Once the supplicant switch authenticates successfully the authenticator switch port mode changes from access to trunk.

- If the access VLAN is configured on the authenticator switch, it becomes the native VLAN for the trunk port after successful authentication.

NEAT can control traffic exiting the supplicant switch port during the authentication period. In the default state, when you connect a supplicant switch to an authenticator switch that has BPDU guard enabled, the authenticator port could be error-disabled if it receives Spanning Tree Protocol (STP) bridge protocol data unit (BPDU) packets before the supplicant switch has authenticated. Beginning with Cisco IOS Release 15.0(1)SE, you can control traffic exiting the supplicant port during the authentication period. Entering the `dot1x supplicant controlled transient` global configuration command temporarily blocks the supplicant port during authentication to ensure that the authenticator port does not shut down before authentication completes. If authentication fails, the supplicant port opens. Entering the `no dot1x supplicant controlled transient` global configuration command opens the supplicant port during the authentication period. This is the default behavior.

We strongly recommend using the `dot1x supplicant controlled transient` command on a supplicant switch when BPDU guard is enabled on the authenticator switch port with the `spanning-tree bpduguard enable` interface configuration command.

Note

If you globally enable BPDU guard on the authenticator switch by using the `spanning-tree portfast bpduguard default` global configuration command, entering the `dot1x supplicant controlled transient` command does not prevent the BPDU violation.
You can enable MDA or multiauth mode on the authenticator switch interface that connects to a supplicant switch. Multihost mode is not supported on the authenticator switch interface.

Use the `dot1x supplicant force-multicast` global configuration command on the supplicant switch for Network Edge Access Topology (NEAT) to work in all host modes.

- **Host Authorization**: Ensures that only traffic from authorized hosts (connecting to the switch with supplicant) is allowed on the network. The switches use Client Information Signalling Protocol (CISP) to send the MAC addresses connecting to the supplicant switch to the authenticator switch, as shown in Figure 1-6.

- **Auto enablement**: Automatically enables trunk configuration on the authenticator switch, allowing user traffic from multiple VLANs coming from supplicant switches. Configure the `cisco-av-pair` as `device-traffic-class=switch` at the ACS. (You can configure this under the `group` or the `user` settings.)

![Figure 1-6 Authenticator and Supplicant Switch using CISP](image)

Guidelines

- You can configure NEAT ports with the same configurations as the other authentication ports. When the supplicant switch authenticates, the port mode is changed from `access` to `trunk` based on the switch vendor-specific attributes (VSAs). (device-traffic-class=switch).

- The VSA changes the authenticator switch port mode from access to trunk and enables 802.1x trunk encapsulation and the access VLAN if any would be converted to a native trunk VLAN. VSA does not change any of the port configurations on the supplicant.

- To change the host mode *and* apply a standard port configuration on the authenticator switch port, you can also use AutoSmart ports user-defined macros, instead of the switch VSA. This allows you to remove unsupported configurations on the authenticator switch port and to change the port mode from `access` to `trunk`. For more information, see the *Auto Smartports Configuration Guide* for this release.

For more information, see the “Configuring an Authenticator and a Supplicant Switch with NEAT” section on page 1-71.
Voice Aware 802.1x Security

You use the voice aware 802.1x security feature to configure the switch to disable only the VLAN on which a security violation occurs, whether it is a data or voice VLAN. In previous releases, when an attempt to authenticate the data client caused a security violation, the entire port shut down, resulting in a complete loss of connectivity.

You can use this feature in IP phone deployments where a PC is connected to the IP phone. A security violation found on the data VLAN results in the shutdown of only the data VLAN. The traffic on the voice VLAN flows through the switch without interruption.

For information on configuring voice aware 802.1x security, see the “Configuring Voice Aware 802.1x Security” section on page 1-44.

Common Session ID

Authentication manager uses a single session ID (referred to as a common session ID) for a client no matter which authentication method is used. This ID is used for all reporting purposes, such as the show commands and MIBs. The session ID appears with all per-session syslog messages.

The session ID includes:
- The IP address of the Network Access Device (NAD)
- A monotonically increasing unique 32 bit integer
- The session start time stamp (a 32 bit integer)

This example shows how the session ID appears in the output of the show authentication command. The session ID in this example is 160000050000000B288508E5:

```
Switch# show authentication sessions
Interface  MAC Address     Method   Domain   Status         Session ID
Fa4/0/4    0000.0000.0203  mab      DATA     Authz Success  160000050000000B288508E5
```

This is an example of how the session ID appears in the syslog output. The session ID in this example is also 160000050000000B288508E5:

```
lw0d: %AUTHMGR-5-START: Starting 'mab' for client (0000.0000.0203) on Interface Fa4/0/4 AuditSessionID 160000050000000B288508E5
lw0d: %MAB-5-SUCCESS: Authentication successful for client (0000.0000.0203) on Interface Fa4/0/4 AuditSessionID 160000050000000B288508E5
lw0d: %AUTHMGR-7-RESULT: Authentication result 'success' from 'mab' for client (0000.0000.0203) on Interface Fa4/0/4 AuditSessionID 160000050000000B288508E5
```

The session ID is used by the NAD, the AAA server, and other report-analyzing applications to identify the client. The ID appears automatically. No configuration is required.

Device Sensor

Device Sensor uses protocols such as Cisco Discovery Protocol (CDP), Link Layer Discovery Protocol (LLDP), and DHCP to obtain endpoint information from network devices and make this information available to its clients. Device Sensor has internal clients, such as the embedded Device Classifier (local analyzer), Auto Smartports (ASP), MediaNet Service Interface (MSI)-Proxy, and EnergyWise. Device Sensor also has an external client, Identity Services Engine (ISE), which uses RADIUS accounting to receive and analyze endpoint data. When integrated with ISE, Device Sensor provides central policy management and device-profiling capabilities.
Device profiling capability consists of two parts:

- Collector--Gathers endpoint data from network devices.
- Analyzer--Processes the data and determines the type of device.

For more information about device profiling, see the “Configuring Endpoint Profiling Policies” chapter in the Cisco Identity Services Engine User Guide at this URL:

Device Sensor represents the embedded collector functionality. Figure 1-7 shows Device Sensor in the context of its internal clients and the ISE.

Figure 1-7 Device Sensor and Clients

Client notifications and accounting messages that contain profiling data and other session-related data are generated and sent to the internal clients and the ISE. By default, client notifications and accounting events are generated only when an incoming packet includes a Type-Length-Value (TLV) that has not previously been received within a given access session. You can enable client notifications and accounting events for TLV changes; that is, when a previously received TLV is received with a different value.

Device Sensor port security protects the switch from consuming memory and failing during deliberate or unintentional denial-of-service (DoS)-type attacks.

Guidelines

- Device Sensor limits the maximum number of device monitoring sessions to 32 per port.
- In the case of lack of activity from hosts, the age session limit is 12 hours.
• The length of one TLV must not be more than 1024 and the total length of TLVs (combined length of TLVs) of all protocols must not be more than 4096.

• Device Sensor profiles devices that are only one hop away.

• Only CDP, LLDP, and DHCP protocols are supported.

• To troubleshoot Device Sensor, use the **debug device-sensor** and the **debug authentication all** privileged EXEC commands.

For more information, see the “Configuring Device Sensor” section on page 1-56.

Configuring 802.1x Authentication

These sections contain this configuration information:

- Default 802.1x Authentication Configuration, page 1-39
- 802.1x Authentication Configuration Guidelines, page 1-40
- Configuring 802.1x Readiness Check, page 1-43 (optional)
- Configuring Voice Aware 802.1x Security, page 1-44 (optional)
- Configuring the Switch-to-RADIUS-Server Communication, page 1-47 (required)
- Configuring 802.1x Violation Modes, page 1-45
- Configuring 802.1x Authentication, page 1-46
- Configuring the Host Mode, page 1-48 (optional)
- Configuring Periodic Re-Authentication, page 1-49 (optional)
- Manually Re-Authenticating a Client Connected to a Port, page 1-51 (optional)
- Changing the Quiet Period, page 1-51 (optional)
- Changing the Switch-to-Client Retransmission Time, page 1-52 (optional)
- Setting the Switch-to-Client Frame-Retransmission Number, page 1-52 (optional)
- Setting the Re-Authentication Number, page 1-53 (optional)
- Enabling MAC Move, page 1-54 (optional)
- Enabling MAC Replace, page 1-54
- Configuring 802.1x Accounting, page 1-55 (optional)
- Configuring Device Sensor, page 1-56 (optional)
- Configuring a Guest VLAN, page 1-62 (optional)
- Configuring a Restricted VLAN, page 1-64 (optional)
- Configuring Inaccessible Authentication Bypass and Critical Voice VLAN, page 1-65 (optional)
- Configuring 802.1x Authentication with WoL, page 1-68 (optional)
- Configuring MAC Authentication Bypass, page 1-68 (optional)
- Configuring 802.1x User Distribution, page 1-69 (optional)
- Configuring NAC Layer 2 802.1x Validation, page 1-70 (optional)
- Resetting the 802.1x Authentication Configuration to the Default Values, page 1-78 (optional)
- Disabling 802.1x Authentication on the Port, page 1-77 (optional)
Chapter 1 Configuring IEEE 802.1x Port-Based Authentication

- Configuring an Authenticator and a Supplicant Switch with NEAT, page 1-71 (optional)
- Configuring 802.1x Authentication with Downloadable ACLs and Redirect URLs, page 1-73 (optional)
- Configuring VLAN ID-based MAC Authentication, page 1-75 (optional)
- Configuring Flexible Authentication Ordering, page 1-76 (optional)
- Configuring Open1x, page 1-76 (optional)
- Configuring a Web Authentication Local Banner, page 1-77 (optional)
- Disabling 802.1x Authentication on the Port, page 1-77 (optional)
- Resetting the 802.1x Authentication Configuration to the Default Values, page 1-78 (optional)

Default 802.1x Authentication Configuration

Table 1-4 Default 802.1x Authentication Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 802.1x enable state</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Per-port 802.1x enable state</td>
<td>Disabled (force-authorized). The port sends and receives normal traffic without 802.1x-based authentication of the client.</td>
</tr>
<tr>
<td>AAA</td>
<td>Disabled.</td>
</tr>
<tr>
<td>RADIUS server</td>
<td></td>
</tr>
<tr>
<td>• IP address</td>
<td>• None specified.</td>
</tr>
<tr>
<td>• UDP authentication port</td>
<td>• 1812.</td>
</tr>
<tr>
<td>• Key</td>
<td>• None specified.</td>
</tr>
<tr>
<td>Host mode</td>
<td>Single-host mode.</td>
</tr>
<tr>
<td>Control direction</td>
<td>Bidirectional control.</td>
</tr>
<tr>
<td>Periodic re-authentication</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Number of seconds between re-authentication attempts</td>
<td>3600 seconds.</td>
</tr>
<tr>
<td>Re-authentication number</td>
<td>2 times (number of times that the switch restarts the authentication process before the port changes to the unauthorized state).</td>
</tr>
<tr>
<td>Quiet period</td>
<td>60 seconds (number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client).</td>
</tr>
<tr>
<td>Retransmission time</td>
<td>30 seconds (number of seconds that the switch should wait for a response to an EAP request/identity frame from the client before resending the request).</td>
</tr>
<tr>
<td>Maximum retransmission number</td>
<td>2 times (number of times that the switch will send an EAP-request/identity frame before restarting the authentication process).</td>
</tr>
<tr>
<td>Client timeout period</td>
<td>30 seconds (when relaying a request from the authentication server to the client, the amount of time the switch waits for a response before resending the request to the client.)</td>
</tr>
</tbody>
</table>
Configuring 802.1x Port-Based Authentication

Chapter 1 Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Port-Based Authentication

802.1x Authentication Configuration Guidelines

These section has configuration guidelines for these features:
- 802.1x Authentication, page 1-40
- VLAN Assignment, Guest VLAN, Restricted VLAN, and Inaccessible Authentication Bypass, page 1-41
- MAC Authentication Bypass, page 1-42
- Maximum Number of Allowed Devices Per Port, page 1-42

802.1x Authentication

These are the 802.1x authentication configuration guidelines:
- When 802.1x authentication is enabled, ports are authenticated before any other Layer 2 or Layer 3 features are enabled.
- If the VLAN to which an 802.1x-enabled port is assigned changes, this change is transparent and does not affect the switch. For example, this change occurs if a port is assigned to a RADIUS server-assigned VLAN and is then assigned to a different VLAN after re-authentication. If the VLAN to which an 802.1x port is assigned to shut down, disabled, or removed, the port becomes unauthorized. For example, the port is unauthorized after the access VLAN to which a port is assigned shuts down or is removed.
- The 802.1x protocol is supported on Layer 2 static-access ports, voice VLAN ports, and Layer 3 routed ports, but it is not supported on these port types:
 - Trunk port—If you try to enable 802.1x authentication on a trunk port, an error message appears, and 802.1x authentication is not enabled. If you try to change the mode of an 802.1x-enabled port to trunk, an error message appears, and the port mode is not changed.
 - Dynamic ports—A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable 802.1x authentication on a dynamic port, an error message appears, and 802.1x authentication is not enabled. If you try to change the mode of an 802.1x-enabled port to dynamic, an error message appears, and the port mode is not changed.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication server timeout period</td>
<td>30 seconds (when relaying a response from the client to the authentication server, the amount of time the switch waits for a reply before resending the response to the server.) You can change this timeout period by using the <code>dot1x timeout server-timeout</code> interface configuration command.</td>
</tr>
<tr>
<td>Guest VLAN</td>
<td>None specified.</td>
</tr>
<tr>
<td>Inaccessible authentication bypass</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Restricted VLAN</td>
<td>None specified.</td>
</tr>
<tr>
<td>Authenticator (switch) mode</td>
<td>None specified.</td>
</tr>
<tr>
<td>MAC authentication bypass</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
Dynamic-access ports—If you try to enable 802.1x authentication on a dynamic-access (VLAN Query Protocol [VQP]) port, an error message appears, and 802.1x authentication is not enabled. If you try to change an 802.1x-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.

EtherChannel port—Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an 802.1x port. If you try to enable 802.1x authentication on an EtherChannel port, an error message appears, and 802.1x authentication is not enabled.

Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) destination ports—You can enable 802.1x authentication on a port that is a SPAN or RSPAN destination port. However, 802.1x authentication is disabled until the port is removed as a SPAN or RSPAN destination port. You can enable 802.1x authentication on a SPAN or RSPAN source port.

Before globally enabling 802.1x authentication on a switch by entering the `dot1x system-auth-control` global configuration command, remove the EtherChannel configuration from the interfaces on which 802.1x authentication and EtherChannel are configured.

If you are using a device running the Cisco Access Control Server (ACS) application for IEEE 802.1x authentication with EAP-Transparent LAN Services (TLS) and EAP-MD5, make sure that the device is running ACS Version 3.2.1 or later.

When IP phones are connected to an 802.1x-enabled switch port that is in single host mode, the switch grants the phones network access without authenticating them. We recommend that you use multidomain authentication (MDA) on the port to authenticate both a data device and a voice device, such as an IP phone.

Note
Only Catalyst 3750, 3560, and 2960 switches support CDP bypass. The Catalyst 3750-X, 3560-X, 3750-E, and 3560-E switches do not support CDP bypass.

Cisco IOS Release 12.2(55)SE and later supports filtering of system messages related to 802.1x authentication. See the “Authentication Manager CLI Commands” section on page 1-9.

Note
This switch does not support Cisco Discovery Protocol (CDP) bypass.

VLAN Assignment, Guest VLAN, Restricted VLAN, and Inaccessible Authentication Bypass

These are the configuration guidelines for VLAN assignment, guest VLAN, restricted VLAN, and inaccessible authentication bypass:

- When 802.1x authentication is enabled on a port, you cannot configure a port VLAN that is equal to a voice VLAN.
- The 802.1x authentication with VLAN assignment feature is not supported on trunk ports, dynamic ports, or with dynamic-access port assignment through a VMPS.
- You can configure 802.1x authentication on a private-VLAN port, but do not configure IEEE 802.1x authentication with port security, a voice VLAN, a guest VLAN, a restricted VLAN, or a per-user ACL on private-VLAN ports.
- You can configure any VLAN except an RSPAN VLAN, private VLAN, or a voice VLAN as an 802.1x guest VLAN. The guest VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.
After you configure a guest VLAN for an 802.1x port to which a DHCP client is connected, you might need to get a host IP address from a DHCP server. You can change the settings for restarting the 802.1x authentication process on the switch before the DHCP process on the client times out and tries to get a host IP address from the DHCP server. Decrease the settings for the 802.1x authentication process (authentication timer inactivity and authentication timer reauthentication interface configuration commands). The amount to decrease the settings depends on the connected 802.1x client type.

When configuring the inaccessible authentication bypass feature, follow these guidelines:
- The feature is supported on 802.1x port in single-host mode and multihosts mode.
- If the client is running Windows XP and the port to which the client is connected is in the critical-authentication state, Windows XP might report that the interface is not authenticated.
- If the Windows XP client is configured for DHCP and has an IP address from the DHCP server, receiving an EAP-Success message on a critical port might not re-initiate the DHCP configuration process.
- You can configure the inaccessible authentication bypass feature and the restricted VLAN on an 802.1x port. If the switch tries to re-authenticate a critical port in a restricted VLAN and all the RADIUS servers are unavailable, switch changes the port state to the critical authentication state and remains in the restricted VLAN.
- You can configure any VLAN except an RSPAN VLAN or a voice VLAN as an 802.1x restricted VLAN. The restricted VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.

MAC Authentication Bypass

These are the MAC authentication bypass configuration guidelines:
- Unless otherwise stated, the MAC authentication bypass guidelines are the same as the 802.1x authentication guidelines. For more information, see the “802.1x Authentication” section on page 1-40.
- If you disable MAC authentication bypass from a port after the port has been authorized with its MAC address, the port state is not affected.
- If the port is in the unauthorized state and the client MAC address is not the authentication-server database, the port remains in the unauthorized state. However, if the client MAC address is added to the database, the switch can use MAC authentication bypass to re-authorize the port.
- If the port is in the authorized state, the port remains in this state until re-authorization occurs.

Maximum Number of Allowed Devices Per Port

This is the maximum number of devices allowed on an 802.1x-enabled port:
- In single-host mode, only one device is allowed on the access VLAN. If the port is also configured with a voice VLAN, an unlimited number of Cisco IP phones can send and receive traffic through the voice VLAN.
- In multidomain authentication (MDA) mode, one device is allowed for the access VLAN, and one IP phone is allowed for the voice VLAN.
- In multihost mode, only one 802.1x supplicant is allowed on the port, but an unlimited number of non-802.1x hosts are allowed on the access VLAN. An unlimited number of devices are allowed on the voice VLAN.
Configuring 802.1x Readiness Check

The 802.1x readiness check monitors 802.1x activity on all the switch ports and displays information about the devices connected to the ports that support 802.1x. You can use this feature to determine if the devices connected to the switch ports are 802.1x-capable.

The 802.1x readiness check is allowed on all ports that can be configured for 802.1x. The readiness check is not available on a port that is configured as **dot1x force-unauthorized**.

Follow these guidelines to enable the readiness check on the switch:

- The readiness check is typically used before 802.1x is enabled on the switch.
- If you use the **dot1x test eapol-capable** privileged EXEC command without specifying an interface, all the ports on the switch stack are tested.
- When you configure the **dot1x test eapol-capable** command on an 802.1x-enabled port, and the link comes up, the port queries the connected client about its 802.1x capability. When the client responds with a notification packet, it is 802.1x-capable. A syslog message is generated if the client responds within the timeout period. If the client does not respond to the query, the client is not 802.1x-capable. No syslog message is generated.
- The readiness check can be sent on a port that handles multiple hosts (for example, a PC that is connected to an IP phone). A syslog message is generated for each of the clients that respond to the readiness check within the timer period.

Beginning in privileged EXEC mode, follow these steps to enable the 802.1x readiness check on the switch:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>dot1x test eapol-capable [interface interface-id]</td>
<td>Enable the 802.1x readiness check on the switch. (Optional) For interface-id specify the port on which to check for IEEE 802.1x readiness. Note If you omit the optional interface keyword, all interfaces on the switch are tested.</td>
</tr>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>(Optional) Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>dot1x test timeout timeout</td>
<td>(Optional) Configure the timeout used to wait for EAPOL response. The range is from 1 to 65535 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>(Optional) Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
<td>(Optional) Verify your modified timeout values.</td>
</tr>
</tbody>
</table>

This example shows how to enable a readiness check on a switch to query a port. It also shows the response received from the queried port verifying that the device connected to it is 802.1x-capable:

```
switch# dot1x test eapol-capable interface gigabitethernet1/0/13

DOT1X_PORT_EAPOL_CAPABLE:DOT1X: MAC 00-01-02-4b-f1-a3 on gigabitethernet1/0/13 is EAPOL capable
```
Configuring Voice Aware 802.1x Security

You use the voice aware 802.1x security feature on the switch to disable only the VLAN on which a security violation occurs, whether it is a data or voice VLAN. You can use this feature in IP phone deployments where a PC is connected to the IP phone. A security violation found on the data VLAN results in the shutdown of only the data VLAN. The traffic on the voice VLAN flows through the switch without interruption.

Follow these guidelines to configure voice aware 802.1x voice security on the switch:

- You enable voice aware 802.1x security by entering the `reducible detect cause security-violation shutdown vlan` global configuration command. You disable voice aware 802.1x security by entering the `no` version of this command. This command applies to all 802.1x-configured ports in the switch.

Note
If you do not include the `shutdown vlan` keywords, the entire port is shut down when it enters the error-disabled state.

- If you use the `errdisable recovery cause security-violation` global configuration command to configure error-disabled recovery, the port is automatically re-enabled. If error-disabled recovery is not configured for the port, you re-enable it by using the `shutdown` and `no-shutdown` interface configuration commands.

- You can re-enable individual VLANs by using the `clear errdisable interface interface-id vlan [vlan-list]` privileged EXEC command. If you do not specify a range, all VLANs on the port are enabled.

Beginning in privileged EXEC mode, follow these steps to enable voice aware 802.1x security:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>errdisable detect cause security-violation shutdown vlan</td>
</tr>
<tr>
<td>Step 3</td>
<td>errdisable recovery cause security-violation</td>
</tr>
</tbody>
</table>
| Step 4 | clear errdisable interface interface-id vlan [vlan-list] | (Optional) Reenable individual VLANs that have been error disabled.
 - For `interface-id` specify the port on which to reenable individual VLANs.
 - (Optional) For `vlan-list` specify a list of VLANs to be re-enabled. If `vlan-list` is not specified, all VLANs are re-enabled. |
| Step 5 | shutdown
 no-shutdown | (Optional) Re-enable an error-disabled VLAN, and clear all error-disable indications. |
| Step 6 | end | Return to privileged EXEC mode. |
| Step 7 | show errdisable detect | Verify your entries. |
| Step 8 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |
This example shows how to configure the switch to shut down any VLAN on which a security violation error occurs:

```plaintext
Switch(config)# errdisable detect cause security-violation shutdown vlan
```

This example shows how to re-enable all VLANs that were error disabled on port Gi4/0/2.

```plaintext
Switch# clear errdisable interface GigabitEthernet4/0/2 vlan
```

You can verify your settings by entering the `show errdisable detect` privileged EXEC command.

Configuring 802.1x Violation Modes

You can configure an 802.1x port so that it shuts down, generates a syslog error, or discards packets from a new device when:

- a device connects to an 802.1x-enabled port
- the maximum number of allowed about devices have been authenticated on the port

Beginning in privileged EXEC mode, follow these steps to configure the security violation actions on the switch:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>aaa new-model</code></td>
<td>Enable AAA.</td>
</tr>
<tr>
<td>3</td>
<td><code>aaa authentication dot1x {default} method1</code></td>
<td>Create an 802.1x authentication method list. To create a default list that is used when a named list is not specified in the <code>authentication</code> command, use the <code>default</code> keyword followed by the method that is to be used in default situations. The default method list is automatically applied to all ports. For <code>method1</code>, enter the <code>group radius</code> keywords to use the list of all RADIUS servers for authentication. Note Though other keywords are visible in the command-line help string, only the <code>group radius</code> keywords are supported.</td>
</tr>
<tr>
<td>4</td>
<td><code>interface interface-id</code></td>
<td>Specify the port connected to the client that is to be enabled for IEEE 802.1x authentication, and enter interface configuration mode.</td>
</tr>
<tr>
<td>5</td>
<td><code>switchport mode access</code></td>
<td>Set the port to access mode.</td>
</tr>
</tbody>
</table>
| 6 | `authentication violation {shutdown | restrict | protect | replace}` | Configure the violation mode. The keywords have these meanings:
 - `shutdown`—Error disable the port.
 - `restrict`—Generate a syslog error.
 - `protect`—Drop packets from any new device that sends traffic to the port.
 - `replace`—Removes the current session and authenticates with the new host. |
| 7 | `end` | Return to privileged EXEC mode. |
| 8 | `show authentication` | Verify your entries. |
| 9 | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |
Configuring 802.1x Authentication

To configure 802.1x port-based authentication, you must enable authentication, authorization, and accounting (AAA) and specify the authentication method list. A method list describes the sequence and authentication method to be queried to authenticate a user.

To allow per-user ACLs or VLAN assignment, you must enable AAA authorization to configure the switch for all network-related service requests.

This is the 802.1x AAA process:

Step 1 A user connects to a port on the switch.

Step 2 Authentication is performed.

Step 3 VLAN assignment is enabled, as appropriate, based on the RADIUS server configuration.

Step 4 The switch sends a start message to an accounting server.

Step 5 Re-authentication is performed, as necessary.

Step 6 The switch sends an interim accounting update to the accounting server that is based on the result of re-authentication.

Step 7 The user disconnects from the port.

Step 8 The switch sends a stop message to the accounting server.

Beginning in privileged EXEC mode, follow these steps to configure 802.1x port-based authentication:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa new-model</td>
</tr>
<tr>
<td>Enable AAA.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authentication dot1x {default} method1</td>
</tr>
<tr>
<td>Create an 802.1x authentication method list.</td>
<td></td>
</tr>
<tr>
<td>To create a default list that is used when a named list is not specified in the <code>authentication</code> command, use the <code>default</code> keyword followed by the method that is to be used in default situations. The default method list is automatically applied to all ports.</td>
<td></td>
</tr>
<tr>
<td>For <code>method1</code>, enter the <code>group radius</code> keywords to use the list of all RADIUS servers for authentication.</td>
<td></td>
</tr>
<tr>
<td>Note Though other keywords are visible in the command-line help string, only the <code>group radius</code> keywords are supported.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>dot1x system-auth-control</td>
</tr>
<tr>
<td>Enable 802.1x authentication globally on the switch.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>aaa authorization network {default} group radius</td>
</tr>
<tr>
<td>(Optional) Configure the switch to use user-RADIUS authorization for all network-related service requests, such as per-user ACLs or VLAN assignment.</td>
<td></td>
</tr>
<tr>
<td>Note For per-user ACLs, single-host mode must be configured. This setting is the default.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>radius-server host ip-address</td>
</tr>
<tr>
<td>(Optional) Specify the IP address of the RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>radius-server key string</td>
</tr>
<tr>
<td>(Optional) Specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IEEE 802.1x Port-Based Authentication

Configuring IEEE 802.1x Port-Based Authentication

RADIUS security servers are identified by their hostname or IP address, hostname and specific UDP port numbers, or IP address and specific UDP port numbers. The combination of the IP address and UDP port number creates a unique identifier, which enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service—for example, authentication—the second host entry configured acts as the fail-over backup to the first one. The RADIUS host entries are tried in the order that they were configured.

Beginning in privileged EXEC mode, follow these steps to configure the RADIUS server parameters on the switch. This procedure is required.

Command Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>interface interface-id</td>
<td>Specify the port connected to the client that is to be enabled for IEEE 802.1x authentication, and enter interface configuration mode.</td>
</tr>
<tr>
<td>9</td>
<td>switchport mode access</td>
<td>(Optional) Set the port to access mode only if you configured the RADIUS server in Step 6 and Step 7.</td>
</tr>
<tr>
<td>10</td>
<td>dot1x port-control auto</td>
<td>Enable 802.1x authentication on the port. For feature interaction information, see the “802.1x Authentication Configuration Guidelines” section on page 1-40.</td>
</tr>
<tr>
<td>11</td>
<td>dot1x pae authenticator</td>
<td>Set the interface Port Access Entity to act only as an authenticator and ignore messages meant for a supplicant.</td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>13</td>
<td>show authentication</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>14</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring the Switch-to-RADIUS-Server Communication

RADIUS security servers are identified by their hostname or IP address, hostname and specific UDP port numbers, or IP address and specific UDP port numbers. The combination of the IP address and UDP port number creates a unique identifier, which enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service—for example, authentication—the second host entry configured acts as the fail-over backup to the first one. The RADIUS host entries are tried in the order that they were configured.

Beginning in privileged EXEC mode, follow these steps to configure the RADIUS server parameters on the switch. This procedure is required.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>radius-server host {hostname</td>
<td>ip-address} auth-port port-number key string</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show authentication</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring 802.1x Port-Based Authentication

Configuring 802.1x Authentication

To delete the specified RADIUS server, use the `no radius-server host {hostname | ip-address}` global configuration command.

This example shows how to specify the server with IP address 172.20.39.46 as the RADIUS server, to use port 1612 as the authorization port, and to set the encryption key to `rad123`, matching the key on the RADIUS server:

```
Switch(config)# radius-server host 172.20.39.46 auth-port 1612 key rad123
```

You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using the `radius-server host` global configuration command. If you want to configure these options on a per-server basis, use the `radius-server timeout`, `radius-server retransmit`, and the `radius-server key` global configuration commands. For more information, see the “Configuring Settings for All RADIUS Servers” section on page 1-35.

You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, see the RADIUS server documentation.

Configuring the Host Mode

Beginning in privileged EXEC mode, follow these steps to allow multiple hosts (clients) on an IEEE 802.1x-authorized port that has the `dot1x port-control` interface configuration command set to `auto`. Use the `multi-domain` keyword to configure and enable multidomain authentication (MDA), which allows both a host and a voice device, such as an IP phone (Cisco or non-Cisco), on the same switch port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>command terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the port to which multiple hosts are indirectly attached, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>

To delete the specified RADIUS server, use the `no radius-server host {hostname | ip-address}` global configuration command.

This example shows how to specify the server with IP address 172.20.39.46 as the RADIUS server, to use port 1612 as the authorization port, and to set the encryption key to `rad123`, matching the key on the RADIUS server:

```
Switch(config)# radius-server host 172.20.39.46 auth-port 1612 key rad123
```

You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using the `radius-server host` global configuration command. If you want to configure these options on a per-server basis, use the `radius-server timeout`, `radius-server retransmit`, and the `radius-server key` global configuration commands. For more information, see the “Configuring Settings for All RADIUS Servers” section on page 1-35.

You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, see the RADIUS server documentation.
Configuring IEEE 802.1x Port-Based Authentication

Chapter 1

Configuring 802.1x Authentication

To disable multiple hosts on the port, use the `no authentication host-mode` or the `no authentication host-mode multi-host` interface configuration command.

This example shows how to enable 802.1x authentication and to allow multiple hosts:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# authentication port-control auto
Switch(config-if)# authentication host-mode multi-host
```

This example shows how to enable MDA and to allow both a host and a voice device on the port:

```
Switch(config)# interface gigabitethernet3/0/1
Switch(config-if)# authentication port-control auto
Switch(config-if)# authentication host-mode multi-domain
Switch(config-if)# switchport voice vlan 101
Switch(config-if)# end
```

Configuring Periodic Re-Authentication

You can enable periodic 802.1x client re-authentication and specify how often it occurs. If you do not specify a time period before enabling re-authentication, the number of seconds between attempts is 3600.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication host-mode [multi-auth</td>
<td>Allow multiple hosts (clients) on an 802.1x-authorized port.</td>
<td></td>
</tr>
<tr>
<td>multi-domain</td>
<td>The keywords have these meanings:</td>
<td></td>
</tr>
<tr>
<td>multi-host</td>
<td>- multi-auth–Allow one client on the voice VLAN and multiple authenticated clients on the data VLAN.</td>
<td></td>
</tr>
<tr>
<td>single-host</td>
<td>Note The <code>multi-auth</code> keyword is only available with the <code>authentication host-mode</code> command.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- multi-host–Allow multiple hosts on an 802.1x-authorized port after a single host has been authenticated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- multi-domain–Allow both a host and a voice device, such as an IP phone (Cisco or non-Cisco), to be authenticated on an IEEE 802.1x-authorized port.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note You must configure the voice VLAN for the IP phone when the host mode is set to multi-domain. For more information, see Chapter 1, “Configuring Voice VLAN.”</td>
<td></td>
</tr>
</tbody>
</table>

Make sure that the `authentication port-control` interface configuration command set is set to `auto` for the specified interface.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show authentication interface interface-id</td>
<td>Verify your entries.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
<td></td>
</tr>
</tbody>
</table>

To disable multiple hosts on the port, use the `no authentication host-mode` or the `no authentication host-mode multi-host` interface configuration command.

This example shows how to enable 802.1x authentication and to allow multiple hosts:
Beginning in privileged EXEC mode, follow these steps to enable periodic re-authentication of the client and to configure the number of seconds between re-authentication attempts. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>authentication periodic</td>
</tr>
<tr>
<td>Step 4</td>
<td>authentication timer {{[inactivity</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show authentication interface interface-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable periodic re-authentication, use the no authentication periodic interface configuration command. To return to the default number of seconds between re-authentication attempts, use the no authentication timer interface configuration command.
This example shows how to enable periodic re-authentication and set the number of seconds between re-authentication attempts to 4000:

Switch(config-if)# authentication periodic
Switch(config-if)# authentication timer reauthenticate 4000

Manually Re-Authenticating a Client Connected to a Port

You can manually re-authenticate the client connected to a specific port at any time by entering the `dot1x re-authenticate interface interface-id` privileged EXEC command. This step is optional. If you want to enable or disable periodic re-authentication, see the “Configuring Periodic Re-Authentication” section on page 1-49.

This example shows how to manually re-authenticate the client connected to a port:

Switch# dot1x re-authenticate interface gigabitethernet2/0/1

Changing the Quiet Period

When the switch cannot authenticate the client, the switch remains idle for a set period of time and then tries again. The `authentication timer inactivity` interface configuration command controls the idle period. A failed authentication of the client might occur because the client provided an invalid password. You can provide a faster response time to the user by entering a number smaller than the default.

Beginning in privileged EXEC mode, follow these steps to change the quiet period. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>authentication timer inactivity seconds Set the number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client. The range is 1 to 65535 seconds; the default is 60.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show authentication interface interface-id Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default quiet time, use the `no authentication timer inactivity` interface configuration command.

This example shows how to set the quiet time on the switch to 30 seconds:

Switch(config-if)# authentication timer inactivity 30
Chapter 1 Configuring IEEE 802.1x Port-Based Authentication

Changing the Switch-to-Client Retransmission Time

The client responds to the EAP-request/identity frame from the switch with an EAP-response/identity frame. If the switch does not receive this response, it waits a set period of time (known as the retransmission time) and then resends the frame.

Note
You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to change the amount of time that the switch waits for client notification. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>authentication timer reauthenticate seconds</td>
</tr>
<tr>
<td></td>
<td>Set the number of seconds that the switch waits for a response to an</td>
</tr>
<tr>
<td></td>
<td>EAP-request/identity frame from the client before resending the request.</td>
</tr>
<tr>
<td></td>
<td>The range is 1 to 65535 seconds; the default is 5.</td>
</tr>
<tr>
<td></td>
<td>Step 4</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show authentication interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default retransmission time, use the **no authentication timer reauthenticate** interface configuration command.

This example shows how to set 60 as the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request:

```
Switch(config-if)# authentication timer reauthenticate 60
```

Setting the Switch-to-Client Frame-Retransmission Number

In addition to changing the switch-to-client retransmission time, you can change the number of times that the switch sends an EAP-request/identity frame (assuming no response is received) to the client before restarting the authentication process.

Note
You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.
Beginning in privileged EXEC mode, follow these steps to set the switch-to-client frame-retransmission number. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 dot1x max-reauth-req count</td>
<td>Set the number of times that the switch sends an EAP-request/identity frame to the client before restarting the authentication process. The range is 1 to 10; the default is 2.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show authentication interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default retransmission number, use the no dot1x max-req interface configuration command.

This example shows how to set 5 as the number of times that the switch sends an EAP-request/identity request before restarting the authentication process:

```
Switch(config-if)# dot1x max-reauth-req 5
```

Setting the Re-Authentication Number

You can also change the number of times that the switch restarts the authentication process before the port changes to the unauthorized state.

Note You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to set the re-authentication number. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 dot1x max-req count</td>
<td>Set the number of times that the switch restarts the authentication process before the port changes to the unauthorized state. The range is 0 to 10; the default is 2.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show authentication interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To return to the default re-authentication number, use the `no dot1x max-reauth-req` interface configuration command.

This example shows how to set 4 as the number of times that the switch restarts the authentication process before the port changes to the unauthorized state:

```
Switch(config-if)# dot1x max-reauth-req 4
```

Enabling MAC Move

MAC move allows an authenticated host to move from one port on the switch to another.

Beginning in privileged EXEC mode, follow these steps to globally enable MAC move on the switch. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>authentication mac-move permit</code></td>
<td>Enable MAC move on the switch.</td>
</tr>
<tr>
<td>Step 3: <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4: <code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5: <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to globally enable MAC move on a switch:

```
Switch(config)# authentication mac-move permit
```

Enabling MAC Replace

MAC replace allows a host to replace an authenticated host on a port.

Beginning in privileged EXEC mode, follow these steps to enable MAC replace on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>interface interface-id</code></td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
| Step 3: `authentication violation {protect | replace | restrict | shutdown}` | Use the `replace` keyword to enable MAC replace on the interface. The port removes the current session and initiates authentication with the new host. The other keywords have these effects:
 - `protect`: the port drops packets with unexpected MAC addresses without generating a system message.
 - `restrict`: violating packets are dropped by the CPU and a system message is generated.
 - `shutdown`: the port is error disabled when it receives an unexpected MAC address. |
| Step 4: `end` | Return to privileged EXEc mode. |
Chapter 1: Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

This example shows how to enable MAC replace on an interface:

```plaintext
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# authentication violation replace
```

Enabling AAA system accounting with 802.1x accounting allows system reload events to be sent to the accounting RADIUS server for logging. The server can then infer that all active 802.1x sessions are closed.

Because RADIUS uses the unreliable UDP transport protocol, accounting messages might be lost due to poor network conditions. If the switch does not receive the accounting response message from the RADIUS server after a configurable number of retransmissions of an accounting request, this system message appears:

```
Accounting message %s for session %s failed to receive Accounting Response.
```

When the stop message is not sent successfully, this message appears:

```
00:09:55: %RADIUS-4-RADIUS_DEAD: RADIUS server 172.20.246.201:1645,1646 is not responding.
```

Note

You must configure the RADIUS server to perform accounting tasks, such as logging start, stop, and interim-update messages and time stamps. To turn on these functions, enable logging of “Update/Watchdog packets from this AAA client” in your RADIUS server Network Configuration tab. Next, enable “CVS RADIUS Accounting” in your RADIUS server System Configuration tab.

Beginning in privileged EXEC mode, follow these steps to configure 802.1x accounting after AAA is enabled on your switch. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa accounting dot1x default start-stop group radius</td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa accounting system default start-stop group radius</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the `show radius statistics` privileged EXEC command to display the number of RADIUS messages that do not receive the accounting response message.
This example shows how to configure 802.1x accounting. The first command configures the RADIUS server, specifying 1813 as the UDP port for accounting:

```
Switch(config)# radius-server host 172.120.39.46 auth-port 1812 acct-port 1813 key rad123
Switch(config)# aaa accounting dot1x default start-stop group radius
Switch(config)# aaa accounting system default start-stop group radius
```

Configuring Device Sensor

Device Sensor is enabled by default. Complete the following tasks when you want Device Sensor to include or exclude a list of TLVs for a particular protocol. These lists are called filter lists.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you do not perform any Device Sensor configuration tasks, the following TLVs are included by default:</td>
</tr>
<tr>
<td>• CDP filter--secondport-status-type and powernet-event-type (types 28 and 29)</td>
</tr>
<tr>
<td>• LLDP filter--organizationally-specific (type 127)</td>
</tr>
<tr>
<td>• DHCP filter--message-type (type 53)</td>
</tr>
</tbody>
</table>

- Enabling Accounting Augmentation, page 1-56
- Creating a Cisco Discovery Protocol Filter, page 1-57
- Creating an LLDP Filter, page 1-58
- Creating a DHCP Filter, page 1-58
- Applying a Protocol Filter to the Device Sensor Output, page 1-59
- Tracking TLV Changes, page 1-60
- Verifying the Device Sensor Configuration, page 1-60

Enabling Accounting Augmentation

For the Device Sensor protocol data to be added to accounting messages, you must first enable session accounting by using the following standard Authentication, Authorization, and Accounting (AAA) and RADIUS configuration commands:

```
Switch(config)# aaa new-model
Switch(config)# aaa accounting dot1x default start-stop group radius
Switch(config)# radius-server host{hostname|ip-address}[auth-port port-number][acct-port port-number] [timeout seconds][retransmit retries][key string]
Switch(config)# radius-server vsa send accounting
```

Beginning in privileged EXEC mode, follow these steps to add Device Sensor protocol data to accounting records:
Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

Beginning in privileged EXEC mode, follow these steps to create a CDP filter containing a list of TLVs that can be included or excluded in the Device Sensor output:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal
Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>device-sensor accounting
Enables the addition of sensor protocol data to accounting records and also enables the generation of additional accounting events when new sensor data is detected.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# device-sensor accounting</td>
</tr>
<tr>
<td>Step 3</td>
<td>end
Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

Creating a Cisco Discovery Protocol Filter

Beginning in privileged EXEC mode, follow these steps to create a CDP filter containing a list of TLVs that can be included or excluded in the Device Sensor output:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal
Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>device-sensor filter-list cdp list tlv-list-name
Creates a TLV list and enters CDP sensor configuration mode, where you can configure individual TLVs.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# device-sensor filter-list cdp list cdp-list</td>
</tr>
<tr>
<td>Step 3</td>
<td>tlv
Adds individual CDP TLVs to the TLV list. You can delete the TLV list without individually removing TLVs from the list by using the no device-sensor filter-list cdp list tlv-list-name command.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-sensor-cdplist)# tlv number 10</td>
</tr>
<tr>
<td>Step 4</td>
<td>end
Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-sensor-cdplist)# end</td>
</tr>
</tbody>
</table>
Creating an LLDP Filter

Beginning in privileged EXEC mode, follow these steps to create an LLDP filter containing a list of TLVs that can be included or excluded in the Device Sensor output:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>device-sensor filter-list lldp list tlv-list-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# device-sensor filter-list lldp list lldp-list</td>
</tr>
<tr>
<td>Step 3</td>
<td>tlv {name tlv-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-sensor-cdplist)# tlv number 10</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-sensor-lldplist)# end</td>
</tr>
</tbody>
</table>

Creating a DHCP Filter

Beginning in privileged EXEC mode, follow these steps to create a DHCP filter containing a list of DHCP options that can be included or excluded in the Device Sensor output:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>device-sensor filter-list dhcp list option-list-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# device-sensor filter-list dhcp list dhcp-list</td>
</tr>
</tbody>
</table>
Applying a Protocol Filter to the Device Sensor Output

Beginning in privileged EXEC mode, follow these steps to apply a CDP, LLDP, or DHCP filter to the sensor output. The output is session notifications to internal sensor clients and accounting requests to the RADIUS server.

Note Only one filter list can be included or excluded at a time.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>device-sensor filter-spec [cdp</td>
</tr>
<tr>
<td></td>
<td>Applies a specific protocol filter containing a list of protocol TLV fields or DHCP options to the Device Sensor output.</td>
</tr>
<tr>
<td></td>
<td>• cdp--Applies a CDP TLV filter list to the device sensor output.</td>
</tr>
<tr>
<td></td>
<td>• lldp--Applies an LLDP TLV filter list to the device sensor output.</td>
</tr>
<tr>
<td></td>
<td>• dhcp--Applies a DHCP option filter list to the device sensor output.</td>
</tr>
<tr>
<td></td>
<td>• exclude--Specifies the TLVs that must be excluded from the device sensor output.</td>
</tr>
<tr>
<td></td>
<td>• include--Specifies the TLVs that must be included from the device sensor output.</td>
</tr>
<tr>
<td></td>
<td>• all--Disables all notifications for the associated protocol.</td>
</tr>
<tr>
<td></td>
<td>• list list-name--Specifies the protocol TLV filter list name.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# device-sensor filter-spec cdp include list list1</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>
Tracking TLV Changes

By default, client notifications and accounting events are generated only when an incoming packet includes a TLV that has not previously been received within a given session.

To enable client notifications and accounting events for TLV changes, begin in privileged EXEC mode and follow these steps.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>device-sensor notify all-changes</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# device-sensor notify all-changes</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

Verifying the Device Sensor Configuration

Beginning in privileged EXEC mode, follow these steps to verify the sensor cache entries for all devices.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show device-sensor cache mac mac-address</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# device-sensor notify all-changes</td>
</tr>
<tr>
<td>Step 2</td>
<td>show device-sensor cache all</td>
</tr>
</tbody>
</table>

This is an example of the `show device-sensor cache mac mac-address` privileged EXEC command output:

```
Switch# show device-sensor cache mac 0024.14dc.df4d
Device: 0024.14dc.df4d on port GigabitEthernet1/0/24
----------------------------------
Proto Type:Name       Len Value
cdp 26:power-available-type  16 00 1A 00 10 00 00 00 01 00 00 00 00 FF FF FF FF
   22:mgmt-address-type    17 00 16 00 11 00 00 00 01 01 01 CC 00 04 09 1B 65
```

Note: Use the default device-sensor notify or the device-sensor notify new-tlvs command to return to the default TLV.
Configuration Examples for the Device Sensor Feature

The following example shows how to create a CDP filter containing a list of TLVs:

```
Switch> enable
Switch# configure terminal
Switch(config)# device-sensor filter-list cdp list cdp-list
Switch(config-sensor-cdplist)# tlv name address-type
Switch(config-sensor-cdplist)# tlv name device-name
Switch(config-sensor-cdplist)# tlv number 34
Switch(config-sensor-cdplist)# end
```

The following example shows how to create an LLDP filter containing a list of TLVs:

```
Switch> enable
Switch# configure terminal
Switch(config)# device-sensor filter-list lldp list lldp-list
Switch(config-sensor-lldplist)# tlv name chassis-id
Switch(config-sensor-lldplist)# tlv name management-address
Switch(config-sensor-lldplist)# tlv number 28
Switch(config-sensor-lldplist)# end
```
Configuring 802.1x Port-Based Authentication

The following example shows how to create a DHCP filter containing a list of options:

Switch> enable
Switch# configure terminal
Switch(config)# device-sensor filter-list dhcp list dhcp-list
Switch(config)# device-sensor filter-list dhcp list dhcp-list
Switch(config-sensor-dhcpplist)# option name domain-name
Switch(config-sensor-dhcpplist)# option name host-name
Switch(config-sensor-dhcpplist)# option number 50
Switch(config-sensor-dhcpplist)# end

The following example shows how to apply a CDP TLV filter list to the Device Sensor output:

Switch> enable
Switch# configure terminal
Switch(config)# device-sensor filter-spec cdp include cdp-list1

The following example shows how to enable client notifications and accounting events for all TLV changes:

Switch> enable
Switch# configure terminal
Switch(config)# device-sensor notify all-changes

Configuring a Guest VLAN

When you configure a guest VLAN, clients that are not 802.1x-capable are put into the guest VLAN when the server does not receive a response to its EAP request/identity frame. Clients that are 802.1x-capable but that fail authentication are not granted network access. The switch supports guest VLANs in single-host or multiple-hosts mode.

Beginning in privileged EXEC mode, follow these steps to configure a guest VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Specify the port to be configured, and enter interface configuration mode. For the supported port types, see the “802.1x Authentication Configuration Guidelines” section on page 1-40.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport mode access or switchport mode private-vlan host Set the port to access mode, or Configure the Layer 2 port as a private-VLAN host port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>dot1x port-control auto Enable 802.1x authentication on the port.</td>
</tr>
<tr>
<td>Step 5</td>
<td>authentication event no-response action authorize vlan vlan-id Specify an active VLAN as an 802.1x guest VLAN. The range is 1 to 4094. You can configure any active VLAN except an internal VLAN (routed port), an RSPAN VLAN, a primary private VLAN, or a voice VLAN as an 802.1x guest VLAN.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring 802.1x Authentication

To disable and remove the guest VLAN, use the `no authentication event no-response action authorize vlan vlan-id` interface configuration command. The port returns to the unauthorized state.

This example shows how to enable VLAN 2 as an 802.1x guest VLAN:

```
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# authentication event no-response action authorize vlan 2
```

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show authentication interface</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td><code>interface-id</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable and remove the guest VLAN, use the `no authentication event no-response action authorize vlan vlan-id` interface configuration command. The port returns to the unauthorized state.

This example shows how to enable VLAN 2 as an 802.1x guest VLAN:

```
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# authentication event no-response action authorize vlan 2
```
This example shows how to set 3 as the quiet time on the switch, to set 15 as the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before re-sending the request, and to enable VLAN 2 as an 802.1x guest VLAN when an 802.1x port is connected to a DHCP client:

```
Switch(config-if)# authentication timer inactivity 3
Switch(config-if)# authentication timer reauthenticate 15
Switch(config-if)# authentication event no-response action authorize vlan 2
```

Configuring a Restricted VLAN

When you configure a restricted VLAN on a switch stack or a switch, clients that are IEEE 802.1x-compliant are moved into the restricted VLAN when the authentication server does not receive a valid username and password. The switch supports restricted VLANs only in single-host mode.

Beginning in privileged EXEC mode, follow these steps to configure a restricted VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode. For the supported port types, see the “802.1x Authentication Configuration Guidelines” section on page 1-40.</td>
</tr>
<tr>
<td>3</td>
<td>switchport mode access</td>
<td>Set the port to access mode, or</td>
</tr>
<tr>
<td></td>
<td>or switchport mode private-vlan host</td>
<td>Configure the Layer 2 port as a private-VLAN host port.</td>
</tr>
<tr>
<td>4</td>
<td>authentication port-control auto</td>
<td>Enable 802.1x authentication on the port.</td>
</tr>
<tr>
<td>5</td>
<td>authentication event fail action authorize vlan-id</td>
<td>Specify an active VLAN as an 802.1x restricted VLAN. The range is 1 to 4094. You can configure any active VLAN except an internal VLAN (routed port), an RSPAN VLAN, a primary private VLAN, or a voice VLAN as an 802.1x restricted VLAN.</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td>show authentication interface interface-id</td>
<td>(Optional) Verify your entries.</td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable and remove the restricted VLAN, use the `no authentication event fail action authorize vlan-id` interface configuration command. The port returns to the unauthorized state.

This example shows how to enable VLAN 2 as an 802.1x restricted VLAN:

```
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# authentication event fail action authorize 2
```

You can configure the maximum number of authentication attempts allowed before a user is assigned to the restricted VLAN by using the `authentication event retry retry count` interface configuration command. The range of allowable authentication attempts is 1 to 3. The default is 3 attempts.
Beginning in privileged EXEC mode, follow these steps to configure the maximum number of allowed authentication attempts. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode. For the supported port types, see the “802.1x Authentication Configuration Guidelines” section on page 1-40.</td>
</tr>
<tr>
<td>3</td>
<td>switchport mode access</td>
<td>Set the port to access mode, or configure the Layer 2 port as a private-VLAN host port.</td>
</tr>
<tr>
<td>4</td>
<td>authentication port-control auto</td>
<td>Enable 802.1x authentication on the port.</td>
</tr>
<tr>
<td>5</td>
<td>authentication event fail action authorize vlan-id</td>
<td>Specify an active VLAN as an 802.1x restricted VLAN. The range is 1 to 4094. You can configure any active VLAN except an internal VLAN (routed port), an RSPAN VLAN, a primary private VLAN, or a voice VLAN as an 802.1x restricted VLAN.</td>
</tr>
<tr>
<td>6</td>
<td>authentication event retry retry count</td>
<td>Specify a number of authentication attempts to allow before a port moves to the restricted VLAN. The range is 1 to 3, and the default is 3.</td>
</tr>
<tr>
<td>7</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>8</td>
<td>show authentication interface interface-id</td>
<td>(Optional) Verify your entries.</td>
</tr>
<tr>
<td>9</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default value, use the `no authentication event retry` interface configuration command.

This example shows how to set 2 as the number of authentication attempts allowed before the port moves to the restricted VLAN:

```bash
Switch(config-if)# authentication event retry 2
```

Configuring Inaccessible Authentication Bypass and Critical Voice VLAN

You can configure the inaccessible bypass feature, also referred to as critical authentication or the AAA fail policy, to allow data traffic to pass through on the native VLAN when the server is not available. You can also configure the critical voice VLAN feature so that if the server is not available and traffic from the host is tagged with the voice VLAN, the connected device (the phone) is put in the configured voice VLAN for the port.
Beginning in privileged EXEC mode, follow these steps to configure the port as a critical port and enable the inaccessible authentication bypass and critical voice VLAN features.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | **radius-server dead-criteria**
 time time *tries* tries | (Optional) Set the conditions that are used to decide when a RADIUS server is considered unavailable or dead. The range for *time* is from 1 to 120 seconds. The switch dynamically determines the default *seconds* value that is 10 to 60 seconds. The range for *tries* is from 1 to 100. The switch dynamically determines the default *tries* parameter that is 10 to 100. |
| Step 3 | **radius-server deadtime**
 minutes | (Optional) Set the number of minutes that a RADIUS server is not sent requests. The range is from 0 to 1440 minutes (24 hours). The default is 0 minutes. |
| Step 4 | **radius-server host**
 ip-address
 [acct-port udp-port] [auth-port udp-port][test *username* *name*
 [idle-time *time*]
 [ignore-acct-port]
 [ignore-auth-port]] [key *string*] | (Optional) Configure the RADIUS server parameters by using these keywords:
- **acct-port udp-port**—Specify the UDP port for the RADIUS accounting server. The range for the UDP port number is from 0 to 65536. The default is 1646.
- **auth-port udp-port**—Specify the UDP port for the RADIUS authentication server. The range for the UDP port number is from 0 to 65536. The default is 1645.

Note You should configure the UDP port for the RADIUS accounting server and the UDP port for the RADIUS authentication server to nondefault values.

- **test *username* *name***—Enable automated testing of the RADIUS server status, and specify the username to be used.
- **idle-time *time***—Set the interval of time in minutes after which the switch sends test packets to the server. The range is from 1 to 35791 minutes. The default is 60 minutes (1 hour).
- **ignore-acct-port**—Disable testing on the RADIUS-server accounting port.
- **ignore-auth-port**—Disable testing on the RADIUS-server authentication port.
- For **key *string***, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server. The key is a text string that must match the encryption key used on the RADIUS server.

Note Always configure the key as the last item in the **radius-server host** command syntax because leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon.

You can also configure the authentication and encryption key by using the **radius-server key** {0 string | 7 string | string} global configuration command.
Chapter 1 Configuring IEEE 802.1x Port-Based Authentication

Configuring IEEE 802.1x Port-Based Authentication

Command	Purpose
Step 5	**dot1x critical** (eapol
(Optional) Configure the parameters for inaccessible authentication bypass:	
eapol—Specify that the switch sends an EAPOL-Success message when the switch successfully authenticates the critical port.	
recovery delay milliseconds—Set the recovery delay period during which the switch waits to re-initialize a critical port when a RADIUS server that was unavailable becomes available. The range is from 1 to 10000 milliseconds. The default is 1000 milliseconds (a port can be re-initialized every second).	

Step 6 | **interface** interface-id
| Specify the port to be configured, and enter interface configuration mode. For the supported port types, see the “802.1x Authentication Configuration Guidelines” section on page 1-40.

Step 7 | **authentication event server dead action** {authorize | reinitialize} vlan vlan-id
| Use these keywords to move hosts on the port if the RADIUS server is unreachable:
| • authorize—Move any new hosts trying to authenticate to the user-specified critical VLAN.
| • reinitialize—Move all authorized hosts on the port to the user-specified critical VLAN.

Step 8 | **switchport voice vlan** vlan-id
| Specifies the voice VLAN for the port. The voice VLAN cannot be the same as the critical data VLAN configured in Step 6.

Step 9 | **authentication event server dead action authorize voice**
| Configures critical voice VLAN to move data traffic on the port to the voice VLAN if the RADIUS server is unreachable.

Step 10 | **end**
| Return to privileged EXEC mode.

Step 11 | **show authentication interface** interface-id
| (Optional) Verify your entries.

Step 12 | **copy running-config startup-config**
| (Optional) Save your entries in the configuration file.

To return to the RADIUS server default settings, use the **no radius-server dead-criteria**, the **no radius-server deadtime**, and the **no radius-server host** global configuration commands. To disable inaccessible authentication bypass, use the **no authentication event server dead action** interface configuration command. To disable critical voice VLAN, use the **no authentication event server dead action authorize voice** interface configuration command.

This example shows how to configure the inaccessible authentication bypass and critical voice VLAN features:

```
Switch(config)# radius-server dead-criteria time 30 tries 20
Switch(config)# radius-server deadtime 60
Switch(config)# radius-server host 1.1.1.2 acct-port 1550 auth-port 1560 test username
user1 idle-time 30 key abc1234
Switch(config)# dot1x critical eapol
Switch(config)# dot1x critical recovery delay 2000
Switch(config)# interface gigabitethernet 1/0/1
Switch(config-if)# authentication event server dead action reinitialize vlan 20
Switch(config-if)# switchport voice vlan
Switch(config-if)# authentication event server dead action authorize voice
Switch(config-if)# end
```
Configuring 802.1x Authentication with WoL

Beginning in privileged EXEC mode, follow these steps to enable 802.1x authentication with WoL. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>authentication control-direction { both</td>
</tr>
<tr>
<td></td>
<td>both—Sets the port as bidirectional. The port cannot receive packets from or send packets to the host. By default, the port is bidirectional.</td>
</tr>
<tr>
<td></td>
<td>in—Sets the port as unidirectional. The port can send packets to the host but cannot receive packets from the host.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show authentication interface interface-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable 802.1x authentication with WoL, use the no authentication control-direction interface configuration command.

This example shows how to enable 802.1x authentication with WoL and set the port as bidirectional:

```
Switch(config-if)# authentication control-direction both
```

Configuring MAC Authentication Bypass

Beginning in privileged EXEC mode, follow these steps to enable MAC authentication bypass. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>authentication port-control auto</td>
</tr>
<tr>
<td>Step 4</td>
<td>authentication order [mab] { webauth }</td>
</tr>
<tr>
<td></td>
<td>mab—(Optional) Add MAC authentication bypass (MAB) to the order of authentication methods.</td>
</tr>
<tr>
<td></td>
<td>webauth—Add web authentication to the order of authentication methods.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
</tbody>
</table>
To disable MAC authentication bypass, use the `no authentication order` interface configuration command.

This example shows how to enable MAC authentication bypass:

```
Switch(config-if)# authentication order
```

Configuring 802.1x User Distribution

Beginning in global configuration, follow these steps to configure a VLAN group and to map a VLAN to it:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>vlan group vlan-group-name vlan-list vlan-list</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>show vlan group all vlan-group-name</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>no vlan group vlan-group-name vlan-list vlan-list</code></td>
</tr>
</tbody>
</table>

This example shows how to configure the VLAN groups, to map the VLANs to the groups, to and verify the VLAN group configurations and mapping to the specified VLANs:

```
switch(config)# vlan group eng-dept vlan-list 10

switch(config)# show vlan group group-name eng-dept
Group Name       Vlans Mapped
---------------- ----------------
eng-dept         10
switch# show dot1x vlan-group all
Group Name       Vlans Mapped
---------------- ----------------
eng-dept         10
hr-dept          20
```

This example shows how to add a VLAN to an existing VLAN group and to verify that the VLAN was added:

```
switch(config)# vlan group eng-dept vlan-list 30
switch(config)# show vlan group eng-dept
Group Name       Vlans Mapped
---------------- ----------------
eng-dept         10,30
```

This example shows how to remove a VLAN from a VLAN group:

```
switch# no vlan group eng-dept vlan-list 10
```
This example shows that when all the VLANs are cleared from a VLAN group, the VLAN group is cleared:

```
switch(config)# no vlan group eng-dept vlan-list 30
Vlan 30 is successfully cleared from vlan group eng-dept.
```

```
switch(config)# show vlan group group-name eng-dept
```

This example shows how to clear all the VLAN groups:

```
switch(config)# no vlan group end-dept vlan-list all
switch(config)# show vlan-group all
```

For more information about these commands, see the *Cisco IOS Security Command Reference*.

Configuring NAC Layer 2 802.1x Validation

You can configure NAC Layer 2 802.1x validation, which is also referred to as 802.1x authentication with a RADIUS server.

Beginning in privileged EXEC mode, follow these steps to configure NAC Layer 2 802.1x validation. The procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>authentication event no-response action authorize vlan vlan-id</td>
<td>Specify an active VLAN as an 802.1x guest VLAN. The range is 1 to 4094. You can configure any active VLAN except an internal VLAN (routed port), an RSPAN VLAN, or a voice VLAN as an 802.1x guest VLAN.</td>
</tr>
<tr>
<td>Step 5</td>
<td>authentication periodic</td>
<td>Enable periodic re-authentication of the client, which is disabled by default.</td>
</tr>
<tr>
<td>Step 6</td>
<td>authentication timer reauthenticate</td>
<td>Set re-authentication attempt for the client (set to one hour). This command affects the behavior of the switch only if periodic re-authentication is enabled.</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>show authentication interface interface-id</td>
<td>Verify your 802.1x authentication configuration.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure NAC Layer 2 802.1x validation:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# authentication periodic
Switch(config-if)# authentication timer reauthenticate
```
Configuring an Authenticator and a Supplicant Switch with NEAT

Configuring this feature requires that one switch outside a wiring closet is configured as a supplicant and is connected to an authenticator switch.

For overview information, see the “802.1x Supplicant and Authenticator Switches with Network Edge Access Topology (NEAT)” section on page 1-34.

Note

The *cisco-av-pairs* must be configured as *device-traffic-class=switch* on the ACS, which sets the interface as a trunk after the supplicant is successfully authenticated.

Beginning in privileged EXEC mode, follow these steps to configure a switch as an authenticator:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>cisp enable</td>
<td>Enable CISP.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>switchport mode access</td>
<td>Set the port mode to access.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>authentication port-control auto</td>
<td>Set the port-authentication mode to auto.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>dot1x pae authenticator</td>
<td>Configure the interface as a port access entity (PAE) authenticator.</td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>spanning-tree portfast</td>
<td>Enable Port Fast on an access port connected to a single workstation or</td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>show running-config interface</td>
<td>Verify your configuration.</td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure a switch as an 802.1x authenticator:

```
Switch# configure terminal
Switch(config)# cisp enable
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# authentication port-control auto
Switch(config-if)# dot1x pae authenticator
Switch(config-if)# spanning-tree portfast trunk
```

Beginning in privileged EXEC mode, follow these steps to configure a switch as a supplicant:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>cisp enable</td>
<td>Enable CISP.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>dot1x credentials profile</td>
<td>Create 802.1x credentials profile. This must be attached to the port</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>username suppswitch</td>
<td>Create a username.</td>
</tr>
</tbody>
</table>
Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

This example shows how to configure a switch as a supplicant:

```bash
Switch# configure terminal
Switch(config)# cisp enable
Switch(config)# dot1x credentials test
Switch(config)# username suppswitch
Switch(config)# password myswitch
Switch(config)# dot1x supplicant force-multicast
Switch(config)# dot1x supplicant controlled transient
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# dot1x pae supplicant
Switch(config-if)# dot1x credentials test
Switch(config-if)# end
```

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>password password</td>
<td>Create a password for the new username.</td>
</tr>
<tr>
<td>6</td>
<td>dot1x supplicant force-multicast</td>
<td>Force the switch to send only multicast EAPOL packets when it receives either unicast or multicast packets. This also allows NEAT to work on the supplicant switch in all host modes.</td>
</tr>
<tr>
<td>7</td>
<td>dot1x supplicant controlled transient</td>
<td>(Optional) Configure the switch to block traffic exiting the supplicant port during the authentication period. We strongly recommend using this command when BPDU guard is enabled on the authenticator switch.</td>
</tr>
<tr>
<td>8</td>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>9</td>
<td>switchport trunk encapsulation dot1q</td>
<td>Set the port to trunk mode.</td>
</tr>
<tr>
<td>10</td>
<td>switchport mode trunk</td>
<td>Configure the interface as a VLAN trunk port.</td>
</tr>
<tr>
<td>11</td>
<td>dot1x pae supplicant</td>
<td>Configure the interface as a port access entity (PAE) supplicant.</td>
</tr>
<tr>
<td>12</td>
<td>dot1x credentials profile-name</td>
<td>Attach the 802.1x credentials profile to the interface.</td>
</tr>
<tr>
<td>13</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>14</td>
<td>show running-config interface</td>
<td>Verify your configuration.</td>
</tr>
<tr>
<td>15</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure a switch as a supplicant:

You can also use an Auto Smartports user-defined macro instead of the switch VSA to configure the authenticator switch. For more information, see the *Auto Smartports Configuration Guide* for this release.

Configuring NEAT with Auto Smartports Macros

You can also use an Auto Smartports user-defined macro instead of the switch VSA to configure the authenticator switch. For more information, see the *Auto Smartports Configuration Guide* for this release.
Configuring 802.1x Authentication with Downloadable ACLs and Redirect URLs

In addition to configuring 802.1x authentication on the switch, you need to configure the ACS. For more information, see the Configuration Guide for Cisco Secure ACS 4.2: http://www.cisco.com/en/US/docs/net_mgmt/cisco_secure_access_control_server_for_windows/4.2/configuration/guide/acs_config.pdf

Note
You must configure a downloadable ACL on the ACS before downloading it to the switch.

After authentication on the port, you can use the `show ip access-list` privileged EXEC command to display the downloaded ACLs on the port.

Configuring Downloadable ACLs

The policies take effect after client authentication and the client IP address addition to the IP device tracking table. The switch then applies the downloadable ACL to the port.

Beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip device tracking</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa new-model</td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa authorization network default local group radius</td>
</tr>
<tr>
<td>Step 5</td>
<td>radius-server vsa send authentication</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip access-group acl-id in</td>
</tr>
<tr>
<td>Step 8</td>
<td>show running-config interface interface-id</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Note: The acl-id is an access list name or number.
Configuring a Downloadable Policy

Beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | **access-list access-list-number deny source source-wildcard log** | Defines the default port ACL by using a source address and wildcard. The access-list-number is a decimal number from 1 to 99 or 1300 to 1999. Enter deny or permit to specify whether to deny or permit access if conditions are matched. The source is the source address of the network or host that sends a packet, such as this:
- The 32-bit quantity in dotted-decimal format.
- The keyword any as an abbreviation for source and source-wildcard value of 0.0.0.0 255.255.255.255. You do not need to enter a source-wildcard value.
- The keyword host as an abbreviation for source and source-wildcard of source 0.0.0.0.
(Optional) Applies the source-wildcard wildcard bits to the source.
(Optional) Enters log to cause an informational logging message about the packet that matches the entry to be sent to the console. |
| **Step 3** | **interface interface-id** | Enter interface configuration mode. |
| **Step 4** | **ip access-group acl-id in** | Configure the default ACL on the port in the input direction.
Note The acl-id is an access list name or number. |
| **Step 5** | **exit** | Returns to global configuration mode. |
| **Step 6** | **aaa new-model** | Enables AAA. |
| **Step 7** | **aaa authorization network default group radius** | Sets the authorization method to local. To remove the authorization method, use the no aaa authorization network default group radius command. |
| **Step 8** | **ip device tracking** | Enables the IP device tracking table.
To disable the IP device tracking table, use the no ip device tracking global configuration commands. |
| **Step 9** | **ip device tracking probe [count | interval | use-svi]** | (Optional) Configures the IP device tracking table:
- **count count**—Sets the number of times that the switch sends the ARP probe. The range is from 1 to 5. The default is 3.
- **interval interval**—Sets the number of seconds that the switch waits for a response before resending the ARP probe. The range is from 30 to 300 seconds. The default is 30 seconds.
- **use-svi**—Uses the switch virtual interface (SVI) IP address as source of ARP probes. |
Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

This example shows how to configure a switch for a downloadable policy:
```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# aaa new-model
Switch(config)# aaa authorization network default local group radius
Switch(config)# ip device tracking
Switch(config)# ip access-list extended default_acl
Switch(config-ext-nacl)# permit ip any any
Switch(config-ext-nacl)# exit
Switch(config)# radius-server vsa send authentication
Switch(config)# interface fastEthernet 2/13
Switch(config-if)# ip access-group default_acl in
Switch(config-if)# exit
```

Configuring VLAN ID-based MAC Authentication

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>mab request format attribute 32 vlan access-vlan</td>
<td>Enable VLAN ID-based MAC authentication.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>mab request format attribute 32 vlan access-vlan</td>
<td>Enable VLAN ID-based MAC authentication.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

There is no show command to confirm the status of VLAN ID-based MAC authentication. You can use the `debug radius accounting` privileged EXEC command to confirm the RADIUS attribute 32. For more information about this command, see the *Cisco IOS Debug Command Reference, Release 12.4*.

This example shows how to globally enable VLAN ID-based MAC authentication on a switch:
```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# mab request format attribute 32 vlan access-vlan
Switch(config-if)# exit
```
Configuring Flexible Authentication Ordering

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 authentication order dot1x</td>
<td>mab [webauth]</td>
</tr>
<tr>
<td>Step 4 authentication priority dot1x</td>
<td>mab [webauth]</td>
</tr>
<tr>
<td>Step 5 show authentication</td>
<td>(Optional) Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure a port attempt 802.1x authentication first, followed by web authentication as fallback method:

```plaintext
Switch# configure terminal
Switch(config)# interface gigabitethernet 1/0/1
Switch(config)# authentication order dot1x webauth
```

Configuring Open1x

Beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 authentication control-direction [both</td>
<td>in]</td>
</tr>
<tr>
<td>Step 4 authentication fallback name</td>
<td>(Optional) Configure a port to use web authentication as a fallback method for clients that do not support 802.1x authentication.</td>
</tr>
<tr>
<td>Step 5 authentication host-mode [multi-auth</td>
<td>multi-domain</td>
</tr>
<tr>
<td>Step 6 authentication open</td>
<td>(Optional) Enable or disable open access on a port.</td>
</tr>
<tr>
<td>Step 7 authentication order dot1x</td>
<td>mab [webauth]</td>
</tr>
<tr>
<td>Step 8 authentication periodic</td>
<td>(Optional) Enable or disable reauthentication on a port.</td>
</tr>
<tr>
<td>Step 9 authentication port-control [auto</td>
<td>force-authorized</td>
</tr>
<tr>
<td>Step 10 show authentication</td>
<td>(Optional) Verify your entries.</td>
</tr>
<tr>
<td>Step 11 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to configure open 802.1x on a port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet 1/0/1
Switch(config)# authentication control-direction both
Switch(config)# authentication fallback profile
Switch(config)# authentication host-mode multi-auth
Switch(config)# authentication open
Switch(config)# authentication order dot1x webauth
Switch(config)# authentication periodic
Switch(config)# authentication port-control auto
```

Configuring a Web Authentication Local Banner

Beginning in privileged EXEC mode, follow these steps to configure a local banner on a switch that has web authentication configured.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip admission auth-proxy-banner http [banner-text</td>
<td>file-path]</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

This example shows how to configure a local banner with the custom message *My Switch*:

```
Switch(config) configure terminal
Switch(config)# ip admission auth-proxy-banner http
Switch(config)# aaa new-model
Switch(config)# aaa ip auth-proxy auth-proxy-banner C My Switch C
Switch(config)# end
```

For more information about the `ip auth-proxy auth-proxy-banner` command, see the “Authentication Proxy Commands” section of the *Cisco IOS Security Command Reference* on Cisco.com.

Disabling 802.1x Authentication on the Port

You can disable 802.1x authentication on the port by using the `no dot1x pae` interface configuration command.

Beginning in privileged EXEC mode, follow these steps to disable 802.1x authentication on the port. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>no dot1x pae</td>
<td>Disable 802.1x authentication on the port.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IEEE 802.1x Port-Based Authentication

Displaying 802.1x Statistics and Status

To configure the port as an 802.1x port access entity (PAE) authenticator, which enables IEEE 802.1x on the port but does not allow clients connected to the port to be authorized, use the `dot1x pae authenticator` interface configuration command.

This example shows how to disable 802.1x authentication on the port:

```plaintext
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# no dot1x pae authenticator
```

Resetting the 802.1x Authentication Configuration to the Default Values

Beginning in privileged EXEC mode, follow these steps to reset the 802.1x authentication configuration to the default values. This procedure is optional.

To display 802.1x statistics for all ports, use the `show dot1x all statistics` privileged EXEC command.
To display 802.1x statistics for a specific port, use the `show dot1x statistics interface interface-id` privileged EXEC command.

To display the 802.1x administrative and operational status for the switch, use the `show dot1x all [details | statistics | summary]` privileged EXEC command. To display the 802.1x administrative and operational status for a specific port, use the `show dot1x interface interface-id` privileged EXEC command.

Beginning with Cisco IOS Release 12.2(55)SE, you can use the `no dot1x logging verbose` global configuration command to filter verbose 802.1x authentication messages. See the “Authentication Manager CLI Commands” section on page 1-9.

For detailed information about the fields in these displays, see the command reference for this release.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 show authentication interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the port to be configured.</td>
</tr>
<tr>
<td>Step 3 dot1x default</td>
<td>Reset the 802.1x parameters to the default values.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show authentication interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring MACsec Encryption

This chapter describes how to configure Media Access Control Security (MACsec) encryption on the Catalyst 3750-X and 3560-X switch. MACsec is the IEEE 802.1AE standard for authenticating and encrypting packets between two MACsec-capable devices. The Catalyst 3750-X and 3560-X switches support 802.1AE encryption with MACsec Key Agreement (MKA) on downlink ports for encryption between the switch and host devices. The switch also supports MACsec link layer switch-to-switch security by using Cisco TrustSec Network Device Admission Control (NDAC) and the Security Association Protocol (SAP) key exchange. Link layer security can include both packet authentication between switches and MACsec encryption between switches (encryption is optional).

MACsec is not supported on switches running the NPE or the LAN base image.

All downlink ports on the switch can run Cisco TrustSec MACsec link layer switch-to-switch security.

Table 1 MACsec Support on Switch Ports

<table>
<thead>
<tr>
<th>Interface</th>
<th>Connections</th>
<th>MACsec support</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-facing downlink ports</td>
<td>Switch-to-host</td>
<td>MKA MACsec encryption</td>
</tr>
<tr>
<td>Switchports connected to other</td>
<td>Switch-to-switch</td>
<td>Cisco TrustSec NDAC MACsec</td>
</tr>
<tr>
<td>switches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cisco TrustSec and Cisco SAP are meant only for switch-to-switch links and are not supported on switch ports connected to end hosts, such as PCs or IP phones. MKA is meant for switch-to-host facing links and is not supported on switch-to-switch links. Host-facing links typically use flexible authentication ordering for handling heterogeneous devices with or without IEEE 802.1x, and can optionally use MKA encryption. Cisco NDAC and SAP are mutually exclusive with Network Edge Access Topology (NEAT), which is used for compact switches to extend security outside the wiring closet.

- Understanding Media Access Control Security and MACsec Key Agreement, page 1-2
- Configuring MKA and MACsec, page 1-6
- Understanding Cisco TrustSec MACsec, page 1-8
- Configuring Cisco TrustSec MACsec, page 1-10
Understanding Media Access Control Security and MACsec Key Agreement

MACsec, defined in 802.1AE, provides MAC-layer encryption over wired networks by using out-of-band methods for encryption keying. The MACsec Key Agreement (MKA) Protocol provides the required session keys and manages the required encryption keys. MKA and MACsec are implemented after successful authentication using the 802.1x Extensible Authentication Protocol (EAP) framework. Only host facing links (links between network access devices and endpoint devices such as a PC or IP phone) can be secured using MACsec.

A switch using MACsec accepts either MACsec or non-MACsec frames, depending on the policy associated with the client. MACsec frames are encrypted and protected with an integrity check value (ICV). When the switch receives frames from the client, it decrypts them and calculates the correct ICV by using session keys provided by MKA. The switch compares that ICV to the ICV within the frame. If they are not identical, the frame is dropped. The switch also encrypts and adds an ICV to any frames sent over the secured port (the access point used to provide the secure MAC service to a client) using the current session key.

The MKA Protocol manages the encryption keys used by the underlying MACsec protocol. The basic requirements of MKA are defined in 802.1x-REV. The MKA Protocol extends 802.1x to allow peer discovery with confirmation of mutual authentication and sharing of MACsec secret keys to protect data exchanged by the peers.

The EAP framework implements MKA as a newly defined EAP-over-LAN (EAPOL) packet. EAP authentication produces a master session key (MSK) shared by both partners in the data exchange. Entering the EAP session ID generates a secure connectivity association key name (CKN). Because the switch is the authenticator, it is also the key server, generating a random 128-bit secure association key (SAK), which it sends to the client partner. The client is never a key server and can only interact with a single MKA entity, the key server. After key derivation and generation, the switch sends periodic transports to the partner at a default interval of 2 seconds.

The packet body in an EAPOL Protocol Data Unit (PDU) is referred to as a MACsec Key Agreement PDU (MKPDU). MKA sessions and participants are deleted when the MKA lifetime (6 seconds) passes with no MKPDU received from a participant. For example, if a client disconnects, the participant on the switch continues to operate MKA until 6 seconds have elapsed after the last MKPDU is received from the client.

These sections provide more details:

- MKA Policies, page 1-2
- Virtual Ports, page 1-3
- MACsec and Stacking, page 1-3
- MACsec, MKA and 802.1x Host Modes, page 1-4
- MKA Statistics, page 1-5

MKA Policies

You apply a defined MKA policy to an interface to enable MKA on the interface. Removing the MKA policy disables MKA on that interface. You can configure these options:

- Policy name, not to exceed 16 ASCII characters.
- Confidentiality (encryption) offset of 0, 30, or 50 bytes for each physical interface.
• Replay protection. You can configure MACsec window size, as defined by the number of out-of-order frames that are accepted. This value is used while installing the security associations in the MACsec. A value of 0 means that frames are accepted only in the correct order.

Virtual Ports

You use virtual ports for multiple secured connectivity associations on a single physical port. Each connectivity association (pair) represents a virtual port, with a maximum of two virtual ports per physical port. Only one of the two virtual ports can be part of a data VLAN; the other must externally tag its packets for the voice VLAN. You cannot simultaneously host secured and unsecured sessions in the same VLAN on the same port. Because of this limitation, 802.1x multiple authentication mode is not supported.

The exception to this limitation is in multiple-host mode when the first MACsec supplicant is successfully authenticated and connected to a hub that is connected to the switch. A non-MACsec host connected to the hub can send traffic without authentication because it is in multiple-host mode. We do not recommend using multi-host mode because after the first successful client, authentication is not required for other clients.

Virtual ports represent an arbitrary identifier for a connectivity association and have no meaning outside the MKA Protocol. A virtual port corresponds to a separate logical port ID. Valid port IDs for a virtual port are 0x0002 to 0xFFFF. Each virtual port receives a unique secure channel identifier (SCI) based on the MAC address of the physical interface concatenated with a 16-bit port ID.

MACsec and Stacking

A Catalyst 3750-X stack master running MACsec maintains the configuration files that show which ports on a member switch support MACsec. The stack master performs these functions:

• Processes secure channel and secure association creation and deletion.
• Sends secure association service requests to the stack members.
• Processes packet number and replay-window information from local or remote ports and notifies the key management protocol.
• Sends MACsec initialization requests with the globally configured options to new switches that are added to the stack.
• Sends any per-port configuration to the member switches.

A member switch performs these functions:

• Processes MACsec initialization requests from the stack master.
• Processes MACsec service requests sent by the stack master.
• Sends information about local ports to the stack master.

In case of a stack master changeover, all secured sessions are brought down and then reestablished. The authentication manager recognizes any secured sessions and initiates teardown of these sessions.
MACsec, MKA and 802.1x Host Modes

You can use MACsec and the MKA Protocol with 802.1x single-host mode, multiple-host mode, or Multi Domain Authentication (MDA) mode. Multiple authentication mode is not supported.

Single-Host Mode

Figure 1-1 shows how a single EAP authenticated session is secured by MACsec by using MKA.

![Figure 1-1: MACsec in Single-Host Mode with a Secured Data Session](image)

Multiple-Host Mode

In standard (not 802.1x REV) 802. multiple-host mode, a port is open or closed based on a single authentication. If one user, the primary secured client services client host, is authenticated, the same level of network access is provided to any host connected to the same port. If a secondary host is a MACsec supplicant, it cannot be authenticated and traffic would flow. A secondary host that is a non-MACsec host can send traffic to the network without authentication because it is in multiple-host mode. See Figure 1-2.

![Figure 1-2: MACsec in Standard Multiple-Host Mode - Unsecured](image)

We do not recommend using multi-host mode because after the first successful client, authentication is not required for other clients, which is not secure.
MKA Statistics

Some MKA counters are aggregated globally, while others are updated both globally and per session. You can also obtain information about the status of MKA sessions.

This is an example of the `show mka statistics` command output:

```
SWitch# show mka statistics
MKA Global Statistics
======================
MKA Session Totals
    Secured.................... 32
    Reauthentication Attempts.. 31
    Deleted (Secured)........... 1
    Keepalive Timeouts......... 0

CA Statistics
    Pairwise CAKs Derived...... 32
    Pairwise CAK Rekeys........ 31
    Group CAKs Generated....... 0
    Group CAKs Received....... 0

SA Statistics
    SAKs Generated............... 32
    SAKs Rekeyed................ 31
    SAKs Received............... 0
    SAK Responses Received..... 32

MKPDU Statistics
    MKPDUs Validated & Rx...... 580
        "Distributed SAK"...... 0
        "Distributed CAK"...... 0
    MKPDUs Transmitted......... 597
        "Distributed SAK"...... 32
        "Distributed CAK"...... 0

MKA Error Counter Totals
========================
    Bring-up Failures........... 0
    Reauthentication Failures... 0

SAK Failures
    SAK Generation............... 0
    Hash Key Generation.......... 0
    SAK Encryption/Wrap......... 0
    SAK Decryption/Unwrap....... 0

CA Failures
    Group CAK Generation....... 0
    Group CAK Encryption/Wrap.. 0
    Group CAK Decryption/Unwrap. 0
    Pairwise CAK Derivation..... 0
    CKN Derivation............... 0
    ICK Derivation............... 0
    KEK Derivation............... 0
    Invalid Peer MACsec Capability.. 2

MACsec Failures
    Rx SC Creation............... 0
    Tx SC Creation............... 0
    Rx SA Installation.......... 0
    Tx SA Installation.......... 0
```
MKPDU Failures
MKPDU Tx: 0
MKPDU Rx Validation: 0
MKPDU Rx Bad Peer MN: 0
MKPDU Rx Non-recent Peerlist MN: 0

For description of the output fields, see the command reference for this release.

Configuring MKA and MACsec

- Default MACsec MKA Configuration, page 1-6
- Configuring an MKA Policy, page 1-6
- Configuring MACsec on an Interface, page 1-7

Default MACsec MKA Configuration

MACsec is disabled. No MKA policies are configured.

Configuring an MKA Policy

Beginning in privileged EXEC mode, follow these steps to create an MKA Protocol policy. Note that MKA also requires that you enable 802.1x.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mka policy policy name Identify an MKA policy, and enter MKA policy configuration mode. The maximum policy name length is 16 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>replay-protection window-size frames Enable replay protection, and configure the window size in number of frames. The range is from 0 to 4294967295. The default window size is 0. Entering a window size of 0 is not the same as entering the no replay-protection command. Configuring a window size of 0 uses replay protection with a strict ordering of frames. Entering no replay-protection turns off MACsec replay-protection.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mka policy Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example configures the MKA policy relay-policy:

```
Switch(config)# mka policy relay-policy
Switch(config-mka-policy)# replay-protection window-size 300
Switch(config-mka-policy)# end
```
Configuring MACsec on an Interface

Beginning in privileged EXEC mode, follow these steps to configure MACsec on an interface with one MACsec session for voice and one for data:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport access vlan vlan-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode access</td>
</tr>
<tr>
<td>Step 5</td>
<td>macsec</td>
</tr>
<tr>
<td>Step 6</td>
<td>authentication event linksec fail action authorize vlan vlan-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>authentication host-mode multi-domain</td>
</tr>
<tr>
<td>Step 8</td>
<td>authentication linksec policy must-secure</td>
</tr>
<tr>
<td>Step 9</td>
<td>authentication port-control auto</td>
</tr>
<tr>
<td>Step 10</td>
<td>authentication violation protect</td>
</tr>
<tr>
<td>Step 11</td>
<td>mka policy policy name</td>
</tr>
<tr>
<td>Step 12</td>
<td>dot1x pae authenticator</td>
</tr>
<tr>
<td>Step 13</td>
<td>spanning-tree portfast</td>
</tr>
<tr>
<td>Step 14</td>
<td>end</td>
</tr>
<tr>
<td>Step 15</td>
<td>show authentication session interface interface-id</td>
</tr>
<tr>
<td>Step 16</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
This is an example of configuring and verifying MACsec on an interface:

```plaintext
Switch(config)# interface GigabitEthernet1/0/25
Switch(config-if)# switchport access vlan 10
Switch(config-if)# switchport mode access
Switch(config-if)# macsec
Switch(config-if)# authentication event linksec fail action authorize vlan 2
Switch(config-if)# authentication host-mode multi-domain
Switch(config-if)# authentication linksec policy must-secure
Switch(config-if)# authentication port-control auto
Switch(config-if)# authentication violation protect
Switch(config-if)# mka policy replay-policy
Switch(config-if)# dot1x pae authenticator
Switch(config-if)# spanning-tree portfast
Switch(config-if)# end
Switch(config)# show authentication sessions interface gigabitethernet1/0/25
```

Understanding Cisco TrustSec MACsec

Note

Cisco TrustSec MACsec for switch-to-switch security is supported only on switches running the IP base or IP services feature set. It is not supported on switches running the NPE or LAN base feature set.

Table 1-2 summarizes the Cisco TrustSec features supported on the switch. For more detailed explanations, see the Cisco TrustSec Switch Configuration Guide:

Chapter 1 Configuring MACsec Encryption

Understanding Cisco TrustSec MACsec

When both ends of a link support 802.1AE MACsec, SAP negotiation occurs. An EAPOL-key exchange occurs between the supplicant and the authenticator to negotiate a cipher suite, exchange security parameters, and manage keys. Successful completion of these tasks results in the establishment of a security association (SA).

Depending on your software version and licensing and link hardware support, SAP negotiation can use one of these modes of operation:

- Galois Counter Mode (GCM)—authentication and encryption
- GCM authentication (GMAC)—GCM authentication, no encryption
- No Encapsulation—no encapsulation (clear text)
- Null—encapsulation, no authentication or encryption

Cisco TrustSec uses AES-128 GCM and GMAC and is compliant with the 802.1AE standard. GCM is not supported on switches running the NPE or the LAN base image.

Cisco TrustSec NDAC SAP is supported on trunk ports because it is intended only for network device to network device links, that is, switch-to-switch links. It is not supported on:

- Host facing access ports (these ports support MKA MACsec)
- Switch virtual interfaces (SVIs)
- SPAN destination ports

<table>
<thead>
<tr>
<th>Table 1-2 Cisco TrustSec Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco TrustSec Feature</td>
</tr>
<tr>
<td>802.1AE Encryption (MACsec)</td>
</tr>
<tr>
<td>Network Device Admission Control (NDAC)</td>
</tr>
<tr>
<td>Security Association Protocol (SAP)</td>
</tr>
<tr>
<td>Security Group Tag (SGT)</td>
</tr>
<tr>
<td>SGT Exchange Protocol (SXP), including SXPv2</td>
</tr>
</tbody>
</table>
The switch also does not support security group ACLs.
You must set the Cisco TrustSec credentials to create the Cisco TrustSec network.
You can configure Cisco TrustSec link layer security in 802.1x mode or manual mode.

Configuring Cisco TrustSec MACsec

- Configuring Cisco TrustSec Credentials on the Switch, page 1-10
- Configuring Cisco TrustSec Switch-to-Switch Link Security in 802.1x Mode, page 1-11
- Configuring Cisco TrustSec Switch-to-Switch Link Security in Manual Mode, page 1-12
- Cisco TrustSec Switch-to-Switch Link Security Configuration Example, page 1-14

Note
The sample configuration in the last section shows the AAA and the RADIUS configuration. Use this example to configure RADIUS and AAA before configuring switch-to-switch security.

Configuring Cisco TrustSec Credentials on the Switch

To enable Cisco TrustSec features, you must create Cisco TrustSec credentials on the switch to use in other TrustSec configurations. Beginning in privilege EXEC mode, follow these steps to configure Cisco TrustSec credentials.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>cts credentials id device-id password cts-password</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>show cts credentials</td>
</tr>
<tr>
<td>Step 3</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete the Cisco TrustSec credentials, enter the clear cts credentials privileged EXEC command.
This example shows how to create Cisco TrustSec credentials.

Switch# cts credentials id trustsec password mypassword
CTS device ID and password have been inserted in the local keystore. Please make sure that the same ID and password are configured in the server database.

Switch# show cts credentials
CTS password is defined in keystore, device-id = trustsecchange-password Initiate password change with AAA server
Configuring Cisco TrustSec Switch-to-Switch Link Security in 802.1x Mode

You enable Cisco TrustSec link layer switch-to-switch security on an interface that connects to another Cisco TrustSec device. When configuring Cisco TrustSec in 802.1x mode on an interface, follow these guidelines:

- To use 802.1x mode, you must globally enable 802.1x on each device.
- If you select GCM as the SAP operating mode, you must have a MACsec encryption software license from Cisco. MACsec is supported on Catalyst 3750-X and 3560-X universal IP base and IP services licenses. It is not supported with the NPE license or with a LAN base service image.

If you select GCM without the required license, the interface is forced to a link-down state.

Beginning in privilege EXEC mode, follow these steps to configure Cisco TrustSec switch-to-switch link layer security with 802.1x.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>cts dot1x</td>
<td>Configures the interface to perform NDAC authentication.</td>
</tr>
</tbody>
</table>
| Step 4 | sap mode-list mode1 [mode2 [mode3 [mode4]]] | (Optional) Configures the SAP operation mode on the interface. The interface negotiates with the peer for a mutually acceptable mode. Enter the acceptable modes in your order of preference. Choices for mode are:
 - gcm-encrypt—Authentication and encryption
 Note Select this mode for MACsec authentication and encryption if your software license supports MACsec encryption.
 - gmac—Authentication, no encryption
 - no-encap—No encapsulation
 - null—Encapsulation, no authentication or encryption
 Note If the interface is not capable of data link encryption, **no-encap** is the default and the only available SAP operating mode. SGT is not supported. |
| Step 5 | exit | Exits Cisco TrustSec 802.1x interface configuration mode. |
| Step 6 | end | Returns to privileged EXEC mode. |

Note Although visible in the CLI help, the **timer reauthentication** and **propagate sgt** keywords are not supported.
Configuring Cisco TrustSec MACsec

Chapter 1 Configuring MACsec Encryption

Configuring Cisco TrustSec MACsec

This example shows how to enable Cisco TrustSec authentication in 802.1x mode on an interface using GCM as the preferred SAP mode:

```
Switch# configure terminal
Switch(config)# interface tengigabitethernet 1/1/2
Switch(config-if)# cts dot1x
Switch(config-if-cts-dot1x)# sap mode-list gcm-encrypt null no-encap
Switch(config-if-cts-dot1x)# exit
Switch(config-if)# end
```

Configuring Cisco TrustSec Switch-to-Switch Link Security in Manual Mode

If your switch does not have access to an authentication server or if 802.1X authentication is not needed, you can manually configure Cisco TrustSec on an interface. You must manually configure the interface on each end of the connection.

When manually configuring Cisco TrustSec on an interface, consider these usage guidelines and restrictions:

- If no SAP parameters are defined, MACsec encapsulation or encryption will not be performed.
- If you select GCM as the SAP operating mode, you must have a MACsec Encryption software license from Cisco. If you select GCM without the required license, the interface is forced to a link-down state.
- These protection levels are supported when you configure SAP pairwise master key (sap pmk):
 - SAP is not configured—no protection.
 - sap mode-list gcm-encrypt gmac no-encap—protection desirable but not mandatory.
 - sap mode-list gcm-encrypt gmac—confidentiality preferred and integrity required. The protection is selected by the supplicant according to supplicant preference.
 - sap mode-list gmac—integrity only.
 - sap mode-list gcm-encrypt—confidentiality required.
 - sap mode-list gmac gcm-encrypt—integrity required and preferred, confidentiality optional.

Beginning in privileged EXEC mode, follow these steps to manually configure Cisco TrustSec on an interface to another Cisco TrustSec device:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Note Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 cts manual</td>
<td>Enters Cisco TrustSec manual configuration mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring MACsec Encryption

Configuring Cisco TrustSec MACsec

This example shows how to configure Cisco TrustSec authentication in manual mode on an interface:

```
Switch# configure terminal
Switch(config)# interface tengigabitethernet 1/1/2
Switch(config-if)# cts manual
Switch(config-if-cts-manual)# sap pmk 1234abcdef mode-list gcm-encrypt null no-encap
Switch(config-if-cts-manual)# no propagate sgt
Switch(config-if-cts-manual)# exit
Switch(config-if)# end
```

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>sap pmk key [mode-list mode1 [mode2 [mode3 [mode4]]]]</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>key — A hexadecimal value with an even number of characters and a maximum length of 32 characters.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>The SAP operation mode options:</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>gcm-encrypt — Authentication and encryption</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Select this mode for MACsec authentication and encryption if your software license supports MACsec encryption.</td>
</tr>
<tr>
<td>Step 4</td>
<td>gmac — Authentication, no encryption</td>
</tr>
<tr>
<td>Step 4</td>
<td>no-encap — No encapsulation</td>
</tr>
<tr>
<td>Step 4</td>
<td>null — Encapsulation, no authentication or encryption</td>
</tr>
<tr>
<td>Note</td>
<td>If the interface is not capable of data link encryption, no-encap is the default and the only available SAP operating mode. SGT is not supported.</td>
</tr>
<tr>
<td>Step 5</td>
<td>no propagate sgt</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show cts interface [interface-id</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Cisco TrustSec Switch-to-Switch Link Security Configuration Example

This example shows the configuration necessary for a seed and non-seed device for Cisco TrustSec switch-to-switch security. You must configure the AAA and RADIUS for link security. In this example, ACS-1 through ACS-3 can be any server names and cts-radius is the Cisco TrustSec server.

Seed Device Configuration:

```
Switch(config)# aaa new-model
Switch(config)# radius server ACS-1 address ipv4 10.5.120.12 auth-port 1812 acct-port 1813
    pac key cisco123
Switch(config)# radius server ACS-2 address ipv4 10.5.120.14 auth-port 1812 acct-port 1813
    pac key cisco123
Switch(config)# radius server ACS-3 address ipv4 10.5.120.15 auth-port 1812 acct-port 1813
    pac key cisco123
Switch(config)# aaa group server radius cts-radius
Switch(config-sg-radius)# server name ACS-1
Switch(config-sg-radius)# server name ACS-2
Switch(config-sg-radius)# server name ACS-3
Switch(config-sg-radius)# exit
Switch(config)# aaa authentication login default none
Switch(config)# aaa authentication dot1x default group cts-radius
Switch(config)# aaa authentication network cts-radius group radius
Switch(config)# aaa session-id common
Switch(config)# cts authorization list cts-radius
Switch(config)# dot1x system-auth-control
```

```
Switch(config)# interface gi1/1/2
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# cts dot1x
Switch(config-if-cts-dot1x)# sap mode-list gcm-encrypt gmac
Switch(config-if-cts-dot1x)# exit
Switch(config-if)# exit
```

```
Switch(config)# interface gi1/1/4
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if-cts-dot1x)# cts manual
Switch(config-if-cts-dot1x)# sap pmk 033445AABBCCDDEEFF mode-list gcm-encrypt gmac
Switch(config-if-cts-dot1x)# no propagate sgt
Switch(config-if-cts-dot1x)# exit
Switch(config-if)# exit
```

```
Switch(config)# radius-server vsa send authentication
Switch(config)# end
Switch# cts credentials id cts-36 password trustsec123
```

Non-Seed Device:

```
Switch(config)# aaa new-model
Switch(config)# aaa session-id common
Switch(config)# dot1x system-auth-control
```

```
Switch(config)# interface gi1/1/2
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# shutdown
Switch(config-if)# cts dot1x
Switch(config-if-cts-dot1x)# sap mode-list gcm-encrypt gmac
Switch(config-if-cts-dot1x)# exit
Switch(config-if)# exit
```
Switch(config)# interface gi1/1/4
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# shutdown
Switch(config-if)# cts manual
Switch(config-if-cts-dot1x)# sap pmk 033445AABBCCDEEFF mode-list gcm-encrypt gmac
Switch(config-if-cts-dot1x)# no propagate sgt
Switch(config-if-cts-dot1x)# exit
Switch(config-if)# exit

Switch(config)# radius-server vsa send authentication
Switch(config)# end
Switch# cts credentials id cts-72 password trustsec123
Chapter 1 Configuring MACsec Encryption

Configuring Cisco TrustSec MACsec
Configuring Web-Based Authentication

This chapter describes how to configure web-based authentication on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. It contains these sections:

- Understanding Web-Based Authentication, page 1-1
- Configuring Web-Based Authentication, page 1-9
- Displaying Web-Based Authentication Status, page 1-17

Note
For complete syntax and usage information for the switch commands used in this chapter, refer to the command reference for this release.

Understanding Web-Based Authentication

Use the web-based authentication feature, known as *web authentication proxy*, to authenticate end users on host systems that do not run the IEEE 802.1x supplicant.

Note
You can configure web-based authentication on Layer 2 and Layer 3 interfaces. Layer 3 interfaces are not supported on switches running the LAN base feature set.

When you initiate an HTTP session, web-based authentication intercepts ingress HTTP packets from the host and sends an HTML login page to the users. The users enter their credentials, which the web-based authentication feature sends to the authentication, authorization, and accounting (AAA) server for authentication.

If authentication succeeds, web-based authentication sends a Login-Successful HTML page to the host and applies the access policies returned by the AAA server.

If authentication fails, web-based authentication forwards a Login-Fail HTML page to the user, prompting the user to retry the login. If the user exceeds the maximum number of attempts, web-based authentication forwards a Login-Expired HTML page to the host, and the user is placed on a watch list for a waiting period.

These sections describe the role of web-based authentication as part of AAA:

- Device Roles, page 1-2
- Host Detection, page 1-2
- Session Creation, page 1-3
Understanding Web-Based Authentication

Device Roles

With web-based authentication, the devices in the network have these specific roles:

- **Client**—The device (workstation) that requests access to the LAN and the services and responds to requests from the switch. The workstation must be running an HTML browser with JavaScript enabled.

- **Authentication server**—Authenticates the client. The authentication server validates the identity of the client and notifies the switch that the client is authorized to access the LAN and the switch services or that the client is denied.

- **Switch**—Controls the physical access to the network based on the authentication status of the client. The switch acts as an intermediary (proxy) between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client.

Figure 1-1 shows the roles of these devices in a network:

![Figure 1-1 Web-Based Authentication Device Roles](image)

Host Detection

The switch maintains an IP device tracking table to store information about detected hosts.

Note

By default, the IP device tracking feature is enabled on a switch.

For Layer 2 interfaces, web-based authentication detects IP hosts by using these mechanisms:

- **ARP based trigger**—ARP redirect ACL allows web-based authentication to detect hosts with a static IP address or a dynamic IP address.

- **Dynamic ARP inspection**

- **DHCP snooping**—Web-based authentication is notified when the switch creates a DHCP-binding entry for the host.
Session Creation

When web-based authentication detects a new host, it creates a session as follows:

- Reviews the exception list.
 If the host IP is included in the exception list, the policy from the exception list entry is applied, and the session is established.

- Reviews for authorization bypass
 If the host IP is not on the exception list, web-based authentication sends a nonresponsive-host (NRH) request to the server.
 If the server response is access accepted, authorization is bypassed for this host. The session is established.

- Sets up the HTTP intercept ACL
 If the server response to the NRH request is access rejected, the HTTP intercept ACL is activated, and the session waits for HTTP traffic from the host.

Authentication Process

When you enable web-based authentication, these events occur:

- The user initiates an HTTP session.

- The HTTP traffic is intercepted, and authorization is initiated. The switch sends the login page to the user. The user enters a username and password, and the switch sends the entries to the authentication server.

- If the authentication succeeds, the switch downloads and activates the user’s access policy from the authentication server. The login success page is sent to the user.

- If the authentication fails, the switch sends the login fail page. The user retries the login. If the maximum number of attempts fails, the switch sends the login expired page, and the host is placed in a watch list. After the watch list times out, the user can retry the authentication process.

- If the authentication server does not respond to the switch, and if an AAA fail policy is configured, the switch applies the failure access policy to the host. The login success page is sent to the user. (See the “Local Web Authentication Banner” section on page 1-4.)

- The switch reauthenticates a client when the host does not respond to an ARP probe on a Layer 2 interface, or when the host does not send any traffic within the idle timeout on a Layer 3 interface.

- The feature applies the downloaded timeout or the locally configured session timeout.

- If the terminate action is RADIUS, the feature sends a nonresponsive host (NRH) request to the server. The terminate action is included in the response from the server.

- If the terminate action is default, the session is dismantled, and the applied policy is removed.
Local Web Authentication Banner

You can create a banner that will appear when you log in to a switch by using web authentication. The banner appears on both the login page and the authentication-result pop-up pages.

- Authentication Successful
- Authentication Failed
- Authentication Expired

You create a banner by using the `ip admission auth-proxy-banner http` global configuration command. The default banner `Cisco Systems` and `Switch host-name Authentication` appear on the Login Page. `Cisco Systems` appears on the authentication result pop-up page, as shown in Figure 1-2.

Figure 1-2 Authentication Successful Banner

You can also customize the banner, as shown in Figure 1-3.

- Add a switch, router, or company name to the banner by using the `ip admission auth-proxy-banner http banner-text` global configuration command.
- Add a logo or text file to the banner by using the `ip admission auth-proxy-banner http file-path` global configuration command.
If you do not enable a banner, only the username and password dialog boxes appear in the web authentication login screen, and no banner appears when you log into the switch, as shown in Figure 1-4.

For more information, see the Cisco IOS Security Command Reference and the “Configuring a Web Authentication Local Banner” section on page 1-16.
Web Authentication Customizable Web Pages

During the web-based authentication process, the switch internal HTTP server hosts four HTML pages to deliver to an authenticating client. The server uses these pages to notify you of these four-authentication process states:

- Login—Your credentials are requested.
- Success—The login was successful.
- Fail—The login failed.
- Expire—The login session has expired because of excessive login failures.

Guidelines

- You can substitute your own HTML pages for the default internal HTML pages.
- You can use a logo or specify text in the login, success, failure, and expire web pages.
- On the banner page, you can specify text in the login page.
- The pages are in HTML.
- You must include an HTML redirect command in the success page to access a specific URL.
- The URL string must be a valid URL (for example, http://www.cisco.com). An incomplete URL might cause page not found or similar errors on a web browser.
- If you configure web pages for HTTP authentication, they must include the appropriate HTML commands (for example, to set the page time out, to set a hidden password, or to confirm that the same page is not submitted twice).
- The CLI command to redirect users to a specific URL is not available when the configured login form is enabled. The administrator should ensure that the redirection is configured in the web page.
- If the CLI command redirecting users to specific URL after authentication occurs is entered and then the command configuring web pages is entered, the CLI command redirecting users to a specific URL does not take effect.
- Configured web pages can be copied to the switch boot flash or flash.
- On stackable switches, configured pages can be accessed from the flash on the stack master or members.
- The login page can be on one flash, and the success and failure pages can be another flash (for example, the flash on the stack master or a member).
- You must configure all four pages.
- The banner page has no effect if it is configured with the web page.
- All of the logo files (image, flash, audio, video, and so on) that are stored in the system directory (for example, flash, disk0, or disk) and that must be displayed on the login page must use web_auth_<filename> as the file name.
- The configured authentication proxy feature supports both HTTP and SSL.

You can substitute your HTML pages, as shown in Figure 1-5 on page 1-7, for the default internal HTML pages. You can also specify a URL to which users are redirected after authentication occurs, which replaces the internal Success page.
For more information, see the “Customizing the Authentication Proxy Web Pages” section on page 1-13.

Web-based Authentication Interactions with Other Features

- Port Security, page 1-7
- LAN Port IP, page 1-8
- Gateway IP, page 1-8
- ACLs, page 1-8
- Context-Based Access Control, page 1-8
- 802.1x Authentication, page 1-8
- EtherChannel, page 1-8

Port Security

You can configure web-based authentication and port security on the same port. Web-based authentication authenticates the port, and port security manages network access for all MAC addresses, including that of the client. You can then limit the number or group of clients that can access the network through the port.

For more information about enabling port security, see the “Configuring Port Security” section on page 1-8.
LAN Port IP

You can configure LAN port IP (LPIP) and Layer 2 web-based authentication on the same port. The host is authenticated by using web-based authentication first, followed by LPIP posture validation. The LPIP host policy overrides the web-based authentication host policy.

If the web-based authentication idle timer expires, the NAC policy is removed. The host is authenticated, and posture is validated again.

Gateway IP

You cannot configure Gateway IP (GWIP) on a Layer 3 VLAN interface if web-based authentication is configured on any of the switch ports in the VLAN.

You can configure web-based authentication on the same Layer 3 interface as Gateway IP. The host policies for both features are applied in software. The GWIP policy overrides the web-based authentication host policy.

ACLs

If you configure a VLAN ACL or a Cisco IOS ACL on an interface, the ACL is applied to the host traffic only after the web-based authentication host policy is applied.

For Layer 2 web-based authentication, you must configure a port ACL (PACL) as the default access policy for ingress traffic from hosts connected to the port. After authentication, the web-based authentication host policy overrides the PACL.

You cannot configure a MAC ACL and web-based authentication on the same interface.

You cannot configure web-based authentication on a port whose access VLAN is configured for VACL capture.

Context-Based Access Control

Web-based authentication cannot be configured on a Layer 2 port if context-based access control (CBAC) is configured on the Layer 3 VLAN interface of the port VLAN.

802.1x Authentication

We recommend that you not configure web-based authentication on the same port as 802.1x authentication except as a fallback authentication method.

EtherChannel

You can configure web-based authentication on a Layer 2 EtherChannel interface. The web-based authentication configuration applies to all member channels.
Configuring Web-Based Authentication

- Default Web-Based Authentication Configuration, page 1-9
- Web-Based Authentication Configuration Guidelines and Restrictions, page 1-9
- Web-Based Authentication Configuration Task List, page 1-10
- Configuring the Authentication Rule and Interfaces, page 1-10
- Configuring AAA Authentication, page 1-11
- Configuring Switch-to-RADIUS-Server Communication, page 1-11
- Configuring the HTTP Server, page 1-13
- Configuring the Web-Based Authentication Parameters, page 1-15
- Removing Web-Based Authentication Cache Entries, page 1-16

Default Web-Based Authentication Configuration

Table 1-1 shows the default web-based authentication configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Disabled</td>
</tr>
<tr>
<td>RADIUS server</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>None specified</td>
</tr>
<tr>
<td>UDP authentication port</td>
<td>1812</td>
</tr>
<tr>
<td>Key</td>
<td>None specified</td>
</tr>
<tr>
<td>Default value of inactivity timeout</td>
<td>3600 seconds</td>
</tr>
<tr>
<td>Inactivity timeout</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Web-Based Authentication Configuration Guidelines and Restrictions

- Web-based authentication is an ingress-only feature.
- You can configure web-based authentication only on access ports. Web-based authentication is not supported on trunk ports, EtherChannel member ports, or dynamic trunk ports.
- You must configure the default ACL on the interface before configuring web-based authentication. Configure a port ACL for a Layer 2 interface or a Cisco IOS ACL for a Layer 3 interface.
- You cannot authenticate hosts on Layer 2 interfaces with static ARP cache assignment. These hosts are not detected by the web-based authentication feature because they do not send ARP messages.
- By default, the IP device tracking feature is enabled on a switch.
- You must configure at least one IP address to run the switch HTTP server. You must also configure routes to reach each host IP address. The HTTP server sends the HTTP login page to the host.
- Hosts that are more than one hop away might experience traffic disruption if an STP topology change results in the host traffic arriving on a different port. This occurs because the ARP and DHCP updates might not be sent after a Layer 2 (STP) topology change.
- Web-based authentication does not support VLAN assignment as a downloadable-host policy.
- Web-based authentication is not supported for IPv6 traffic.
- Web-based authentication and Network Edge Access Topology (NEAT) are mutually exclusive. You cannot use web-based authentication when NEAT is enabled on an interface, and you cannot use NEAT when web-based authentication is running on an interface.
- Web-based authentication NRH (Non-Responsive Host) is not supported for voice devices.

Web-Based Authentication Configuration Task List

- Configuring the Authentication Rule and Interfaces, page 1-10
- Configuring AAA Authentication, page 1-11
- Configuring Switch-to-RADIUS-Server Communication, page 1-11
- Configuring the HTTP Server, page 1-13
- Configuring the Web-Based Authentication Parameters, page 1-15
- Removing Web-Based Authentication Cache Entries, page 1-16

Configuring the Authentication Rule and Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>ip admission name name proxy http</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip access-group name</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip admission name</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip device tracking</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show ip admission configuration</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to enable web-based authentication on Fast Ethernet port 5/1:

```
Switch(config)# ip admission name webauth1 proxy http
Switch(config)# interface fastethernet 5/1
Switch(config-if)# ip admission webauth1
Switch(config-if)# exit
Switch(config)# ip device tracking
```
This example shows how to verify the configuration:

```
Switch# show ip admission configuration
Authentication Proxy Banner not configured
Authentication global cache time is 60 minutes
Authentication global absolute time is 0 minutes
Authentication global init state time is 2 minutes
Authentication Proxy Watch-list is disabled
```

Authentication Proxy Rule Configuration
```
Auth-proxy name webauth1
    http list not specified inactivity-time 60 minutes
```

Authentication Proxy Auditing is disabled
Max Login attempts per user is 5

Configuring AAA Authentication

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aaa new-model</td>
<td>Enables AAA functionality.</td>
</tr>
<tr>
<td>2</td>
<td>aaa authentication login default group {tacacs+</td>
<td>Defines the list of authentication methods at login.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radius}</td>
</tr>
<tr>
<td>3</td>
<td>aaa authorization auth-proxy default group {tacacs+</td>
<td>Create an authorization method list for web-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radius}</td>
</tr>
<tr>
<td>4</td>
<td>tacacs-server host {hostname</td>
<td>Specify an AAA server. For RADIUS servers, see the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ip_address}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Configuring Switch-to-RADIUS-Server Communication” section on page 1-11.</td>
</tr>
<tr>
<td>5</td>
<td>tacacs-server key {key-data}</td>
<td>Configure the authorization and encryption key used between the switch and the TACACS server.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to enable AAA:

```
Switch(config)# aaa new-model
Switch(config)# aaa authentication login default group tacacs+
Switch(config)# aaa authorization auth-proxy default group tacacs+
```

Configuring Switch-to-RADIUS-Server Communication

RADIUS security servers identification:
- Host name
- Host IP address
- Host name and specific UDP port numbers
- IP address and specific UDP port numbers
The combination of the IP address and UDP port number creates a unique identifier, that enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service (for example, authentication) the second host entry that is configured functions as the failover backup to the first one. The RADIUS host entries are chosen in the order that they were configured.

To configure the RADIUS server parameters, perform this task:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ip radius source-interface interface_name</td>
<td>Specify that the RADIUS packets have the IP address of the indicated interface.</td>
</tr>
</tbody>
</table>
| 2 | radius-server host { hostname | ip-address } test username username | Specify the host name or IP address of the remote RADIUS server.
 The test username username option enables automated testing of the RADIUS server connection. The specified username does not need to be a valid user name.
 The key option specifies an authentication and encryption key to use between the switch and the RADIUS server.
 To use multiple RADIUS servers, reenter this command for each server. |
| 3 | radius-server key string | Configure the authorization and encryption key used between the switch and the RADIUS daemon running on the RADIUS server. |
| 4 | radius-server vsa send authentication | Enable downloading of an ACL from the RADIUS server. This feature is supported in Cisco IOS Release 12.2(50)SG. |
| 5 | radius-server dead-criteria tries num-tries | Specify the number of unanswered sent messages to a RADIUS server before considering the server to be inactive. The range of num-tries is 1 to 100. |

When you configure the RADIUS server parameters:

- Specify the key string on a separate command line.
- For key string, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server. The key is a text string that must match the encryption key used on the RADIUS server.
- When you specify the key string, use spaces within and at the end of the key. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon.
- You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using with the radius-server host global configuration command. If you want to configure these options on a per-server basis, use the radius-server timeout, radius-server transmit, and the radius-server key global configuration commands. For more information, see the Cisco IOS Security Configuration Guide, Release 12.4 and the Cisco IOS Security Command Reference, Release 12.4.
You need to configure some settings on the RADIUS server, including: the switch IP address, the key string to be shared by both the server and the switch, and the downloadable ACL (DACL). For more information, see the RADIUS server documentation.

This example shows how to configure the RADIUS server parameters on a switch:

```bash
Switch(config)# ip radius source-interface Vlan80
Switch(config)# radius-server host 172.120.39.46 test username user1
Switch(config)# radius-server key rad123
Switch(config)# radius-server dead-criteria tries 2
```

Configuring the HTTP Server

To use web-based authentication, you must enable the HTTP server within the switch. You can enable the server for either HTTP or HTTPS.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>ip http server</code></td>
<td>Enable the HTTP server. The web-based authentication feature uses the HTTP server to communicate with the hosts for user authentication.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>ip http secure-server</code></td>
<td>Enable HTTPS.</td>
</tr>
</tbody>
</table>

You can configure custom authentication proxy web pages or specify a redirection URL for successful login.

Note

To ensure secure authentication when you enter the `ip http secure-secure` command, the login page is always in HTTPS (secure HTTP) even if the user sends an HTTP request.

- Customizing the Authentication Proxy Web Pages
- Specifying a Redirection URL for Successful Login

Customizing the Authentication Proxy Web Pages

You can configure web authentication to display four substitute HTML pages to the user in place of the switch default HTML pages during web-based authentication.

To specify the use of your custom authentication proxy web pages, first store your custom HTML files on the switch flash memory, then perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>ip admission proxy http login page file</code></td>
<td>Specify the location in the switch memory file system of the custom HTML file to use in place of the default login page. The device: is flash memory.</td>
</tr>
<tr>
<td><code>device:login-filename</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>ip admission proxy http success page file</code></td>
<td>Specify the location of the custom HTML file to use in place of the default login success page.</td>
</tr>
<tr>
<td><code>device:success-filename</code></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Web-Based Authentication

When configuring customized authentication proxy web pages, follow these guidelines:

- To enable the custom web pages feature, specify all four custom HTML files. If you specify fewer than four files, the internal default HTML pages are used.
- The four custom HTML files must be present on the flash memory of the switch. The maximum size of each HTML file is 8 KB.
- Any images on the custom pages must be on an accessible HTTP server. Configure an intercept ACL within the admission rule.
- Any external link from a custom page requires configuration of an intercept ACL within the admission rule.
- To access a valid DNS server, any name resolution required for external links or images requires configuration of an intercept ACL within the admission rule.
- If the custom web pages feature is enabled, a configured auth-proxy-banner is not used.
- If the custom web pages feature is enabled, the redirection URL for successful login feature is not available.
- To remove the specification of a custom file, use the no form of the command.

Because the custom login page is a public web form, consider these guidelines for the page:

- The login form must accept user entries for the username and password and must show them as `uname` and `pwd`.
- The custom login page should follow best practices for a web form, such as page timeout, hidden password, and prevention of redundant submissions.

This example shows how to configure custom authentication proxy web pages:

```
Switch(config)# ip admission proxy http login page file flash:login.htm
Switch(config)# ip admission proxy http success page file flash:success.htm
Switch(config)# ip admission proxy http fail page file flash:fail.htm
Switch(config)# ip admission proxy http login expired page flash flash:expired.htm
```

This example shows how to verify the configuration of a custom authentication proxy web pages:

```
Switch# show ip admission configuration
Authentication proxy webpage
Login page : flash:login.htm
Success page : flash:success.htm
Fail Page : flash:fail.htm
Login expired Page : flash:expired.htm

Authentication global cache time is 60 minutes
Authentication global absolute time is 0 minutes
Authentication global init state time is 2 minutes
Authentication Proxy Session ratelimit is 100
Authentication Proxy Watch-list is disabled
Authentication Proxy Auditing is disabled
Max Login attempts per user is 5
```
Specifying a Redirection URL for Successful Login

You can specify a URL to which the user is redirected after authentication, effectively replacing the internal Success HTML page.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip admission proxy http success redirect url-string</td>
<td>Specify a URL for redirection of the user in place of the default login success page.</td>
</tr>
</tbody>
</table>

When configuring a redirection URL for successful login, consider these guidelines:

- If the custom authentication proxy web pages feature is enabled, the redirection URL feature is disabled and is not available in the CLI. You can perform redirection in the custom-login success page.
- If the redirection URL feature is enabled, a configured auth-proxy-banner is not used.
- To remove the specification of a redirection URL, use the *no* form of the command.

This example shows how to configure a redirection URL for successful login:

Switch(config)# *ip admission proxy http success redirect www.cisco.com*

This example shows how to verify the redirection URL for successful login:

Switch# *show ip admission configuration*

Authentication Proxy Banner not configured
Customizable Authentication Proxy webpage not configured
HTTP Authentication success redirect to URL: http://www.cisco.com
Authentication global cache time is 60 minutes
Authentication global absolute time is 0 minutes
Authentication global init state time is 2 minutes
Authentication Proxy Watch-list is disabled
Authentication Proxy Max HTTP process is 7
Authentication Proxy Auditing is disabled
Max Login attempts per user is 5

Configuring the Web-Based Authentication Parameters

You can configure the maximum number of failed login attempts before the client is placed in a watch list for a waiting period.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 ip admission max-login-attempts number</td>
<td>Set the maximum number of failed login attempts. The range is 1 to 2147483647 attempts. The default is 5.</td>
</tr>
<tr>
<td>Step 2 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 3 show ip admission configuration</td>
<td>Display the authentication proxy configuration.</td>
</tr>
<tr>
<td>Step 4 show ip admission cache</td>
<td>Display the list of authentication entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to set the maximum number of failed login attempts to 10:

Switch(config)# *ip admission max-login-attempts 10*
Configuring a Web Authentication Local Banner

Beginning in privileged EXEC mode, follow these steps to configure a local banner on a switch that has web authentication configured.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip admission auth-proxy-banner http</td>
<td>Enable the local banner.</td>
</tr>
<tr>
<td>{banner-text</td>
<td>file-path}</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure a local banner with the custom message *My Switch*:

```
Switch(config) configure terminal
Switch(config)# aaa new-model
Switch(config)# aaa ip auth-proxy auth-proxy-banner C My Switch C
Switch(config) end
```

For more information about the ip auth-proxy auth-proxy-banner command, see the “Authentication Proxy Commands” section of the Cisco IOS Security Command Reference on Cisco.com.

Removing Web-Based Authentication Cache Entries

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip auth-proxy cache { *</td>
<td>host ip address}</td>
</tr>
<tr>
<td>clear ip admission cache { *</td>
<td>host ip address}</td>
</tr>
</tbody>
</table>

This example shows how to remove the web-based authentication session for the client at the IP address 209.165.201.1:

```
Switch# clear ip auth-proxy cache 209.165.201.1
```
Displaying Web-Based Authentication Status

Perform this task to display the web-based authentication settings for all interfaces or for specific ports:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show authentication sessions [interface type slot/port]</td>
<td>Displays the web-based authentication settings. type = fastethernet, gigabitethernet, or tengigabitethernet (Optional) Use the interface keyword to display the web-based authentication settings for a specific interface.</td>
</tr>
</tbody>
</table>

This example shows how to view only the global web-based authentication status:

Switch# show authentication sessions

This example shows how to view the web-based authentication settings for gigabit interface 3/27:

Switch# show authentication sessions interface gigabitethernet 3/27
Cisco TrustSec

Cisco TrustSec provides security improvements to Cisco network devices based on the capability to strongly identify users, hosts, and network devices within a network. TrustSec provides topology independent and scalable access controls by uniquely classifying data traffic for a particular role. TrustSec ensures data confidentiality and integrity by establishing trust among authenticated peers and encrypting links with those peers.

The key component of Cisco TrustSec is the Cisco Identity Services Engine (ISE). Cisco ISE can provision switches with TrustSec Identities and Security Group ACLs (SGACLs), though these may be configured manually on the switch.

To configure Cisco Trustsec on the switch, see the Cisco TrustSec Switch Configuration Guide at the following URL:

Release notes for Cisco TrustSec General Availability releases are at the following URL:

Additional information about the Cisco TrustSec solution, including overviews, datasheets, and case studies, is available at:

Table 1 lists the TrustSec features to be eventually implemented on TrustSec-enabled Cisco switches. Successive general availability releases of TrustSec will expand the number of switches supported and the number of TrustSec features supported per switch.

See the “Configuration Guidelines and Limitations” section on page 1-3 for more information about the limitations of TrustSec features on Catalyst 3750-X and Catalyst 3560-X switches.
<table>
<thead>
<tr>
<th>Cisco TrustSec Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1AE Tagging (MACSec)</td>
<td>Protocol for IEEE 802.1AE-based wire-rate hop-to-hop Layer 2 encryption. Between MACSec-capable devices, packets are encrypted on egress from the transmitting device, decrypted on ingress to the receiving device, and in the clear within the devices. This feature is only available between TrustSec hardware-capable devices.</td>
</tr>
<tr>
<td>Endpoint Admission Control (EAC)</td>
<td>EAC is an authentication process for an endpoint user or a device connecting to the TrustSec domain. Usually EAC takes place at the access level switch. Successful authentication and authorization in the EAC process results in Security Group Tag assignment for the user or device. Currently EAC can be 802.1X, MAC Authentication Bypass (MAB), and Web Authentication Proxy (WebAuth).</td>
</tr>
<tr>
<td>Network Device Admission Control (NDAC)</td>
<td>NDAC is an authentication process where each network device in the TrustSec domain can verify the credentials and trustworthiness of its peer device. NDAC utilizes an authentication framework based on IEEE 802.1X port-based authentication and uses EAP-FAST as its EAP method. Successful authentication and authorization in NDAC process results in Security Association Protocol negotiation for IEEE 802.1AE encryption.</td>
</tr>
<tr>
<td>Security Group Access Control List (SGACL)</td>
<td>A Security Group Access Control List (SGACL) associates a Security Group Tag with a policy. The policy is enforced upon SGT-tagged traffic egressing the TrustSec domain.</td>
</tr>
<tr>
<td>Security Association Protocol (SAP)</td>
<td>After NDAC authentication, the Security Association Protocol (SAP) automatically negotiates keys and the cipher suite for subsequent MACSec link encryption between TrustSec peers. SAP is defined in IEEE 802.11i.</td>
</tr>
<tr>
<td>Security Group Tag (SGT)</td>
<td>An SGT is a 16-bit single label indicating the security classification of a source in the TrustSec domain. It is appended to an Ethernet frame or an IP packet.</td>
</tr>
<tr>
<td>SGT Exchange Protocol (SXP)</td>
<td>Security Group Tag Exchange Protocol (SXP). With SXP, devices that are not TrustSec-hardware-capable can receive SGT attributes for authenticated users or devices from the Cisco Secure Access Control System (ACS). The devices can forward the sourceIP-to-SGT binding to a TrustSec-hardware-capable device for tagging and SGACL enforcement.</td>
</tr>
</tbody>
</table>
Configuration Guidelines and Limitations

The following guidelines and limitations apply to configuring Cisco TrustSec SGT and SGACL on Catalyst 3750-X and Catalyst 3560-X switches:

- You cannot statically map an IP-subnet to an SGT. You can only map IP addresses to an SGT. When you configure IP address-to-SGT mappings, the IP address prefix must be 32.

- If a port is configured in Multi-Auth mode, all hosts connecting on that port must be assigned the same SGT. When a host tries to authenticate, its assigned SGT must be the same as the SGT assigned to a previously authenticated host. If a host tries to authenticate and its SGT is different from the SGT of a previously authenticated host, the VLAN port (VP) to which these hosts belong is error-disabled.

- Cisco TrustSec enforcement is supported only on up to eight VLANs on a VLAN-trunk link. If there are more than eight VLANs configured on a VLAN-trunk link and Cisco TrustSec enforcement is enabled on those VLANs, the switch ports on those VLAN-trunk links will be error-disabled.

- The switch can assign SGT and apply corresponding SGACL to end-hosts based on SXP listening only if the end-hosts are Layer2 adjacent to the switch.

- Port-to-SGT mapping can be configured only on Cisco TrustSec links (that is, switch-to-switch links). Port-to-SGT mapping cannot be configured on host-to-switch links. When port-to-SGT mapping is configured on a port, an SGT is assigned to all ingress traffic on that port. There is no SGACL enforcement for egress traffic on the port.

- SGT/SGACL is supported on Cisco Catalyst 3750-X and 3650-X series switches with all network uplink modules: C3KX-NM-1G, C3KX-NM-10G, C3KX-NM-10GT and C3KX-SM-10G. The C3KX-SM-10G is only required for MACsec on the uplinks.

- The ASCI on Catalyst 3750X has a limitation because of which SGACL enforcement works only for directly connected clients to the switch.
Configuring Interface Characteristics

This chapter defines the types of interfaces on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch and describes how to configure them. Unless otherwise noted, the term *switch* refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

The chapter consists of these sections:

- Interface Types, page 1-1
- Using the Switch USB Ports, page 1-14
- Using Interface Configuration Mode, page 1-19
- Using the Ethernet Management Port, page 1-24
- Configuring Ethernet Interfaces, page 1-28
- Configuring Layer 3 Interfaces, page 1-38
- Configuring the System MTU, page 1-41
- Configuring the Power Supplies, page 1-45
- Configuring the Cisco RPS 2300 in a Mixed Stack, page 1-46
- Configuring the Cisco eXpandable Power System (XPS) 2200, page 1-48
- Monitoring and Maintaining the Interfaces, page 1-51

Note

For complete syntax and usage information for the commands used in this chapter, see the switch command reference for this release and the online *Cisco IOS Interface Command Reference, Release 12.4.*

Interface Types

This section describes the different types of interfaces supported by the switch with references to chapters that contain more detailed information about configuring these interface types. The rest of the chapter describes configuration procedures for physical interface characteristics.

Note

The stack ports on the rear of the Catalyst 3750-E Catalyst 3750-X switch are not Ethernet ports and cannot be configured.
These sections describe the interface types:

- **Port-Based VLANs**, page 1-2
- **Switch Ports**, page 1-3
- **Routed Ports**, page 1-4
- **Switch Virtual Interfaces**, page 1-5
- **EtherChannel Port Groups**, page 1-6
- **10-Gigabit Ethernet Interfaces**, page 1-7
- **Power over Ethernet Ports**, page 1-7
- **Network Module Interfaces**, page 1-13
- **Connecting Interfaces**, page 1-13

Port-Based VLANs

A VLAN is a switched network that is logically segmented by function, team, or application, without regard to the physical location of the users. For more information about VLANs, see Chapter 1, “Configuring VLANs.” Packets received on a port are forwarded only to ports that belong to the same VLAN as the receiving port. Network devices in different VLANs cannot communicate with one another without a Layer 3 device to route traffic between the VLANs.

VLAN partitions provide hard firewalls for traffic in the VLAN, and each VLAN has its own MAC address table. A VLAN comes into existence when a local port is configured to be associated with the VLAN, when the VLAN Trunking Protocol (VTP) learns of its existence from a neighbor on a trunk, or when a user creates a VLAN. VLANs can be formed with ports across the stack.

To configure VLANs, use the `vlan vlan-id` global configuration command to enter VLAN configuration mode. The VLAN configurations for normal-range VLANs (VLAN IDs 1 to 1005) are saved in the VLAN database. If VTP is version 1 or 2, to configure extended-range VLANs (VLAN IDs 1006 to 4094), you must first set VTP mode to transparent. Extended-range VLANs created in transparent mode are not added to the VLAN database but are saved in the switch running configuration. With VTP version 3, you can create extended-range VLANs in client or server mode. These VLANs are saved in the VLAN database.

In a switch stack, the VLAN database is downloaded to all switches in a stack, and all switches in the stack build the same VLAN database. The running configuration and the saved configuration are the same for all switches in a stack.

Add ports to a VLAN by using the `switchport` interface configuration commands:

- Identify the interface.
- For a trunk port, set trunk characteristics, and, if desired, define the VLANs to which it can belong.
- For an access port, set and define the VLAN to which it belongs.
- For a tunnel port, set and define the VLAN ID for the customer-specific VLAN tag. See Chapter 1, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling.”
Switch Ports

Switch ports are Layer 2-only interfaces associated with a physical port. Switch ports belong to one or more VLANs. A switch port can be an access port, a trunk port, or a tunnel port. You can configure a port as an access port or trunk port or let the Dynamic Trunking Protocol (DTP) operate on a per-port basis to set the switchport mode by negotiating with the port on the other end of the link. You must manually configure tunnel ports as part of an asymmetric link connected to an IEEE 802.1Q trunk port. Switch ports are used for managing the physical interface and associated Layer 2 protocols and do not handle routing or bridging.

Configure switch ports by using the `switchport` interface configuration commands. Use the `switchport` command with no keywords to put an interface that is in Layer 3 mode into Layer 2 mode.

Note

When you put an interface that is in Layer 3 mode into Layer 2 mode, the previous configuration information related to the affected interface might be lost, and the interface is returned to its default configuration.

For detailed information about configuring access port and trunk port characteristics, see Chapter 1, “Configuring VLANs.” For more information about tunnel ports, see Chapter 1, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling.”

Access Ports

An access port belongs to and carries the traffic of only one VLAN (unless it is configured as a voice VLAN port). Traffic is received and sent in native formats with no VLAN tagging. Traffic arriving on an access port is assumed to belong to the VLAN assigned to the port. If an access port receives a tagged packet (Inter-Switch Link [ISL] or IEEE 802.1Q tagged), the packet is dropped, and the source address is not learned.

Two types of access ports are supported:

- Static access ports are manually assigned to a VLAN (or through a RADIUS server for use with IEEE 802.1x. For more information, see the “802.1x Readiness Check” section on page 1-16.)
- VLAN membership of dynamic access ports is learned through incoming packets. By default, a dynamic access port is not a member of any VLAN, and forwarding to and from the port is enabled only when the VLAN membership of the port is discovered. Dynamic access ports on the switch are assigned to a VLAN by a VLAN Membership Policy Server (VMPS). The VMPS can be a Catalyst 6500 series switch; the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch cannot be a VMPS server.

You can also configure an access port with an attached Cisco IP Phone to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. For more information about voice VLAN ports, see Chapter 1, “Configuring Voice VLAN.”
Trunk Ports

A trunk port carries the traffic of multiple VLANs and by default is a member of all VLANs in the VLAN database. These trunk port types are supported:

- In an ISL trunk port, all received packets are expected to be encapsulated with an ISL header, and all transmitted packets are sent with an ISL header. Native (non-tagged) frames received from an ISL trunk port are dropped.

- An IEEE 802.1Q trunk port supports simultaneous tagged and untagged traffic. An IEEE 802.1Q trunk port is assigned a default port VLAN ID (PVID), and all untagged traffic travels on the port default PVID. All untagged traffic and tagged traffic with a NULL VLAN ID are assumed to belong to the port default PVID. A packet with a VLAN ID equal to the outgoing port default PVID is sent untagged. All other traffic is sent with a VLAN tag.

Although by default, a trunk port is a member of every VLAN known to the VTP, you can limit VLAN membership by configuring an allowed list of VLANs for each trunk port. The list of allowed VLANs does not affect any other port but the associated trunk port. By default, all possible VLANs (VLAN ID 1 to 4094) are in the allowed list. A trunk port can become a member of a VLAN only if VTP knows of the VLAN and if the VLAN is in the enabled state. If VTP learns of a new, enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of that VLAN and traffic is forwarded to and from the trunk port for that VLAN. If VTP learns of a new, enabled VLAN that is not in the allowed list for a trunk port, the port does not become a member of the VLAN, and no traffic for the VLAN is forwarded to or from the port.

For more information about trunk ports, see Chapter 1, “Configuring VLANs.”

Tunnel Ports

Tunnel ports are used in IEEE 802.1Q tunneling to segregate the traffic of customers in a service-provider network from other customers who are using the same VLAN number. You configure an asymmetric link from a tunnel port on a service-provider edge switch to an IEEE 802.1Q trunk port on the customer switch. Packets entering the tunnel port on the edge switch already are IEEE 802.1Q-tagged with the customer VLANs are encapsulated with another layer of an IEEE 802.1Q tag (called the metro tag), which contains a VLAN ID unique in the service-provider network for each customer. The double-tagged packets go through the service-provider network keeping the original customer VLANs separate from those of other customers. At the outbound interface, also a tunnel port, the metro tag is removed, and the original VLAN numbers from the customer network are retrieved.

Tunnel ports cannot be trunk ports or access ports and must belong to a VLAN unique to each customer.

For more information about tunnel ports, see Chapter 1, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling.”

Routed Ports

A routed port is a physical port that acts like a port on a router; it does not have to be connected to a router. A routed port is not associated with a particular VLAN, as is an access port. A routed port behaves like a regular router interface, except that it does not support VLAN subinterfaces. Routed ports can be configured with a Layer 3 routing protocol. A routed port is a Layer 3 interface only and does not support Layer 2 protocols, such as DTP and STP.
Chapter 1 Configuring Interface Characteristics

Interface Types

Note
Routed ports are not supported on switches running the LAN Base feature set. However, starting with Cisco IOS release 12.2(58)SE, you can configure up to 16 static routes on SVIs.

Configure routed ports by putting the interface into Layer 3 mode with the `no switchport` interface configuration command. Then assign an IP address to the port, enable routing, and assign routing protocol characteristics by using the `ip routing` and `router protocol` global configuration commands.

Note
Entering a `no switchport` interface configuration command shuts down the interface and then reenables it, which might generate messages on the device to which the interface is connected. When you put an interface that is in Layer 2 mode into Layer 3 mode, the previous configuration information related to the affected interface might be lost.

The number of routed ports that you can configure is not limited by software. However, the interrelationship between this number and the number of other features being configured might impact CPU performance because of hardware limitations. See the “Configuring Layer 3 Interfaces” section on page 1-38 for information about what happens when hardware resource limitations are reached.

For more information about IP unicast and multicast routing and routing protocols, see Chapter 1, “Configuring IP Unicast Routing” and Chapter 1, “Configuring IP Multicast Routing.”

Note
The IP Base feature set supports static routing and the Routing Information Protocol (RIP). Starting with Cisco IOS Release 12.2(58)E, the LAN Base feature set supports 16 user-configured static routes on SVIs. For full Layer 3 routing or for fallback bridging, you must enable the IP Services feature set on the standalone switch, or the active switch.

Switch Virtual Interfaces

A switch virtual interface (SVI) represents a VLAN of switch ports as one interface to the routing or bridging function in the system. Only one SVI can be associated with a VLAN, but you need to configure an SVI for a VLAN only when you want to route between VLANs, to fallback-bridge nonroutable protocols between VLANs, or to provide IP host connectivity to the switch. By default, an SVI is created for the default VLAN (VLAN 1) to permit remote switch administration. Additional SVIs must be explicitly configured.

Note
You cannot delete interface VLAN 1.

SVIs provide IP host connectivity only to the system; in Layer 3 mode, you can configure routing across SVIs.

Although the switch stack or switch supports a total of 1005 VLANs and SVIs (255 if the switch is running the LAN Base feature set), the interrelationship between the number of SVIs and routed ports and the number of other features being configured might impact CPU performance because of hardware limitations. See the “Configuring Layer 3 Interfaces” section on page 1-38 for information about what happens when hardware resource limitations are reached.

SVIs are created the first time that you enter the `vlan` interface configuration command for a VLAN interface. The VLAN corresponds to the VLAN tag associated with data frames on an ISL or IEEE 802.1Q encapsulated trunk or the VLAN ID configured for an access port. Configure a VLAN
interface for each VLAN for which you want to route traffic, and assign it an IP address. For more information, see the “Manually Assigning IP Information” section on page 1-15.

Note
When you create an SVI, it does not become active until it is associated with a physical port.

SVIs support routing protocols and bridging configurations. For more information about configuring IP routing, see Chapter 1, “Configuring IP Unicast Routing,” Chapter 1, “Configuring IP Multicast Routing,” and Chapter 1, “Configuring Fallback Bridging.”

Note
The LAN Base feature set supports only static routing on SVIs. The IP Base feature set supports static routing and RIP. For more advanced routing or for fallback bridging, enable the IP Services feature set on the standalone switch or the active switch. For information about using the software activation feature to install a software license for a specific feature set, see the *Cisco IOS Software Activation* document.

SVI Autostate Exclude

The line state of an SVI with multiple ports on a VLAN is in the *up* state when it meets these conditions:

- The VLAN exists and is active in the VLAN database on the switch.
- The VLAN interface exists and is not administratively down.
- At least one Layer 2 (access or trunk) port exists, has a link in the *up* state on this VLAN, and is in the spanning-tree forwarding state on the VLAN.

Note
The protocol link state for VLAN interfaces comes up when the first switch port belonging to the corresponding VLAN link comes up and is in STP forwarding state.

The default action, when a VLAN has multiple ports, is that the SVI goes down when all ports in the VLAN go down. You can use the SVI autostate exclude feature to configure a port so that it is not included in the SVI line-state up-an-down calculation. For example, if the only active port on the VLAN is a monitoring port, you might configure autostate exclude on that port so that the VLAN goes down when all other ports go down. When enabled on a port, autostate exclude applies to all VLANS that are enabled on that port.

The VLAN interface is brought up when one Layer 2 port in the VLAN has had time to converge (transition from STP listening-learning state to forwarding state). This prevents features such as routing protocols from using the VLAN interface as if it were fully operational and minimizes other problems, such as routing black holes. For information about configuring autostate exclude, see the “Configuring SVI Autostate Exclude” section on page 1-40.

EtherChannel Port Groups

EtherChannel port groups consider multiple switch ports to be one switch port. These port groups act as a single logical port for high-bandwidth connections between switches or between switches and servers. An EtherChannel balances the traffic load across the links in the channel. If a link within the EtherChannel fails, traffic previously carried over the failed link changes to the remaining links. You can group multiple trunk ports into one logical trunk port, group multiple access ports into one logical access port, group multiple tunnel ports into one logical tunnel port, or group multiple routed ports into one
logical routed port. Most protocols operate over either single ports or aggregated switch ports and do not recognize the physical ports within the port group. Exceptions are the DTP, the Cisco Discovery Protocol (CDP), and the Port Aggregation Protocol (PAgP), which operate only on physical ports.

When you configure an EtherChannel, you create a port-channel logical interface and assign an interface to the EtherChannel. For Layer 3 interfaces, you manually create the logical interface by using the `interface port-channel` global configuration command. Then you manually assign an interface to the EtherChannel by using the `channel-group` interface configuration command. For Layer 2 interfaces, use the `channel-group` interface configuration command to dynamically create the port-channel logical interface. This command binds the physical and logical ports together. For more information, see Chapter 1, “Configuring EtherChannels and Link-State Tracking.”

10-Gigabit Ethernet Interfaces

The Catalyst 3750-E and 3560-E switches have two 10-Gigabit Ethernet module slots. For uplink connections to other switches and routers, use the Cisco TwinGig Converter Modules.

The Catalyst 3750-X and 3560-X switches have a network module slot into which you can insert a 10-Gigabit Ethernet network module, a 1-Gigabit Ethernet network module, or a blank module.

A 10-Gigabit Ethernet interface operates only in full-duplex mode. The interface can be configured as a switched or routed port.

For more information about the Cisco TwinGig Converter Module, see the switch hardware installation guide and your transceiver module documentation.

Power over Ethernet Ports

A PoE-capable switch port automatically supplies power to one of these connected devices if the switch senses that there is no power on the circuit:

- Cisco pre-standard powered device (such as a Cisco IP Phone or a Cisco Aironet Access Point)
- IEEE 802.3af-compliant powered device
- IEEE 802.3at-compliant powered device

In Cisco IOS Release 12.2(40)SE and earlier, each 10/100/1000 PoE port provides up to 15.4 W of power to the device. Cisco IOS Release 12.2(44)SE and later supports enhanced PoE. Enhanced PoE should be configured on a port to power a device requiring up to 20 W of power, such as the Cisco AP1250 wireless access point.

A powered device can receive redundant power when it is connected to a PoE switch port and to an AC power source. The device does not receive redundant power when it is only connected to the PoE port.

After the switch detects a powered device, the switch determines the device power requirements and then grants or denies power to the device. The switch can also sense the real-time power consumption of the device by monitoring and policing the power usage.

This section has this PoE information:

- Supported Protocols and Standards, page 1-8
- Powered-Device Detection and Initial Power Allocation, page 1-8
- Power Management Modes, page 1-10
- Power Monitoring and Power Policing, page 1-11
Supported Protocols and Standards

The switch uses these protocols and standards to support PoE:

- **CDP with power consumption**—The powered device notifies the switch of the amount of power it is consuming. The switch does not reply to the power-consumption messages. The switch can only supply power to or remove power from the PoE port.

- **Cisco intelligent power management**—The powered device and the switch negotiate through power-negotiation CDP messages for an agreed-upon power-consumption level. The negotiation allows a high-power Cisco powered device, which consumes more than 7 W, to operate at its highest power mode. The powered device first boots up in low-power mode, consumes less than 7 W, and negotiates to obtain enough power to operate in high-power mode. The device changes to high-power mode only when it receives confirmation from the switch. High-power devices can operate in low-power mode on switches that do not support power-negotiation CDP.

 Cisco intelligent power management is backward-compatible with CDP with power consumption; the switch responds according to the CDP message that it receives. CDP is not supported on third-party powered devices; therefore, the switch uses the IEEE classification to determine the power usage of the device.

- **IEEE 802.3af**—The major features of this standard are powered-device discovery, power administration, disconnect detection, and optional powered-device power classification. For more information, see the standard.

- **IEEE 802.3at**—The PoE+ standard increases the maximum power that can be drawn by a powered device from 15.4 W per port to 30 W per port.

- **IEEE 802.11n (pre-draft standard)**—This standard allows you to increase the power on an enhanced PoE port up to 20W.

Powered-Device Detection and Initial Power Allocation

The switch detects a Cisco prestandard or an IEEE-compliant powered device when the PoE-capable port is in the no-shutdown state, PoE is enabled (the default), and the connected device is not being powered by an AC adapter.

After device detection, the switch determines the device power requirements based on its type:

- A Cisco prestandard powered device does not provide its power requirement when the switch detects it, so the switch allocates 15.4 W as the initial allocation for power budgeting.

 The initial power allocation is the maximum amount of power that a powered device requires. The switch initially allocates this amount of power when it detects and powers the powered device. As the switch receives CDP messages from the powered device and as the powered device negotiates power levels with the switch through CDP power-negotiation messages, the initial power allocation might be adjusted.

 The switch classifies the detected IEEE device within a power consumption class. Based on the available power in the power budget, the switch determines if a port can be powered. Table 1-1 lists these levels.
The switch monitors and tracks requests for power and grants power only when it is available. The switch tracks its power budget (the amount of power available on the switch for PoE). The switch performs power-accounting calculations when a port is granted or denied power to keep the power budget up to date.

After power is applied to the port, the switch uses CDP to determine the CDP-specific power consumption requirement of the connected Cisco powered devices, which is the amount of power to allocate based on the CDP messages. The switch adjusts the power budget accordingly. This does not apply to third-party PoE devices. The switch processes a request and either grants or denies power. If the request is granted, the switch updates the power budget. If the request is denied, the switch ensures that power to the port is turned off, generates a syslog message, and updates the LEDs. Powered devices can also negotiate with the switch for more power.

With PoE+, powered devices use IEEE 802.3at and LLDP power with media dependent interface (MDI) type, length, and value descriptions (TLVs), and Power-via-MDA TLVs, for negotiating power up to 30 W. Cisco prestandard devices and Cisco IEEE powered devices can use CDP or the IEEE 802.3at power-via-MDI power negotiation mechanism to request power levels up to 30 W.

Table 1-1 IEEE Power Classifications

<table>
<thead>
<tr>
<th>Class</th>
<th>Maximum Power Level Required from the Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (class status unknown)</td>
<td>15.4 W</td>
</tr>
<tr>
<td>1</td>
<td>4 W</td>
</tr>
<tr>
<td>2</td>
<td>7 W</td>
</tr>
<tr>
<td>3</td>
<td>15.4 W</td>
</tr>
<tr>
<td>4 (reserved for future use)</td>
<td>Treat as class 0</td>
</tr>
<tr>
<td>4</td>
<td>30 W (For IEEE 802.3at Type 2 powered devices)</td>
</tr>
</tbody>
</table>

The switch monitors and tracks requests for power and grants power only when it is available. The switch tracks its power budget (the amount of power available on the switch for PoE). The switch performs power-accounting calculations when a port is granted or denied power to keep the power budget up to date.

After power is applied to the port, the switch uses CDP to determine the CDP-specific power consumption requirement of the connected Cisco powered devices, which is the amount of power to allocate based on the CDP messages. The switch adjusts the power budget accordingly. This does not apply to third-party PoE devices. The switch processes a request and either grants or denies power. If the request is granted, the switch updates the power budget. If the request is denied, the switch ensures that power to the port is turned off, generates a syslog message, and updates the LEDs. Powered devices can also negotiate with the switch for more power.

With PoE+, powered devices use IEEE 802.3at and LLDP power with media dependent interface (MDI) type, length, and value descriptions (TLVs), and Power-via-MDA TLVs, for negotiating power up to 30 W. Cisco prestandard devices and Cisco IEEE powered devices can use CDP or the IEEE 802.3at power-via-MDI power negotiation mechanism to request power levels up to 30 W.

The initial allocation for Class 0, Class 3, and Class 4 powered devices is 15.4 W. When a device starts up and uses CDP or LLDP to send a request for more than 15.4 W, it can be allocated up to the maximum of 30 W.

The CDP-specific power consumption requirement is referred to as the actual power consumption requirement in the Catalyst 3750 and 3560 software configuration guides and command references.

If the switch detects a fault caused by an undervoltage, overvoltage, overtemperature, oscillator-fault, or short-circuit condition, it turns off power to the port, generates a syslog message, and updates the power budget and LEDs.

On a Catalyst 3750-E switch, the PoE feature operates the same whether or not the switch is a stack member. The power budget is per-switch and independent of any other switch in the stack. Election of a new stack master does not affect PoE operation. The stack master keeps track of the PoE status for all switches and ports in the stack and includes the status in output displays.

The Catalyst 3750-X stackable switch also supports StackPower, which allows the power supplies to share the load across multiple systems in a stack when you connect the switches with power stack cables. You can manage the power supplies of up to four stack members as a one large power supply. For more information about StackPower, see Chapter 1, “Configuring Catalyst 3750-X StackPower.”
Power Management Modes

The switch supports these PoE modes:

- **auto**—The switch automatically detects if the connected device requires power. If the switch discovers a powered device connected to the port and if the switch has enough power, it grants power, updates the power budget, turns on power to the port on a first-come, first-served basis, and updates the LEDs. For LED information, see the hardware installation guide.

 If the switch has enough power for all the powered devices, they all come up. If enough power is available for all powered devices connected to the switch, power is turned on to all devices. If there is not enough available PoE, or if a device is disconnected and reconnected while other devices are waiting for power, it cannot be determined which devices are granted or are denied power.

 If granting power would exceed the system power budget, the switch denies power, ensures that power to the port is turned off, generates a syslog message, and updates the LEDs. After power has been denied, the switch periodically rechecks the power budget and continues to attempt to grant the request for power.

 If a device being powered by the switch is then connected to wall power, the switch might continue to power the device. The switch might continue to report that it is still powering the device whether the device is being powered by the switch or receiving power from an AC power source.

 If a powered device is removed, the switch automatically detects the disconnect and removes power from the port. You can connect a nonpowered device without damaging it.

 You can specify the maximum wattage that is allowed on the port. If the IEEE class maximum wattage of the powered device is greater than the configured maximum value, the switch does not provide power to the port. If the switch powers a powered device, but the powered device later requests through CDP messages more than the configured maximum value, the switch removes power to the port. The power that was allocated to the powered device is reclaimed into the global power budget. If you do not specify a wattage, the switch delivers the maximum value. Use the **auto** setting on any PoE port. The auto mode is the default setting.

- **static**—The switch pre-allocates power to the port (even when no powered device is connected) and guarantees that power will be available for the port. The switch allocates the port configured maximum wattage, and the amount is never adjusted through the IEEE class or by CDP messages from the powered device. Because power is pre-allocated, any powered device that uses less than or equal to the maximum wattage is guaranteed to be powered when it is connected to the static port. The port no longer participates in the first-come, first-served model.

 However, if the powered-device IEEE class is greater than the maximum wattage, the switch does not supply power to it. If the switch learns through CDP messages that the powered device needs more than the maximum wattage, the switch shuts down the powered device.

 If you do not specify a wattage, the switch pre-allocates the maximum value. The switch powers the port only if it discovers a powered device. Use the **static** setting on a high-priority interface.

- **never**—The switch disables powered-device detection and never powers the PoE port even if an unpowered device is connected. Use this mode only when you want to make sure that power is never applied to a PoE-capable port, making the port a data-only port.

For information on configuring a PoE port, see the “Configuring a Power Management Mode on a PoE Port” section on page 1-33.
Power Monitoring and Power Policing

When policing of the real-time power consumption is enabled, the switch takes action when a powered device consumes more power than the maximum amount allocated, also referred to as the cutoff-power value.

When PoE is enabled, the switch senses the real-time power consumption of the powered device. The switch monitors the real-time power consumption of the connected powered device; this is called power monitoring or power sensing. The switch also polices the power usage with the power policing feature.

Power monitoring is backward-compatible with Cisco intelligent power management and CDP-based power consumption. It works with these features to ensure that the PoE port can supply power to the powered device. For more information about these PoE features, see the “Supported Protocols and Standards” section on page 1-8.

The switch senses the real-time power consumption of the connected device as follows:

1. The switch monitors the real-time power consumption on individual ports.
2. The switch records the power consumption, including peak power usage. The switch reports the information through the CISCO-POWER-ETHERNET-EXT-MIB.
3. If power policing is enabled, the switch polices power usage by comparing the real-time power consumption to the maximum power allocated to the device. For more information about the maximum power consumption, also referred to as the cutoff power, on a PoE port, see the “Maximum Power Allocation (Cutoff Power) on a PoE Port” section on page 1-11.

 If the device uses more than the maximum power allocation on the port, the switch can either turn off power to the port, or the switch can generate a syslog message and update the LEDs (the port LED is now blinking amber) while still providing power to the device based on the switch configuration. By default, power-usage policing is disabled on all PoE ports.

 If error recovery from the PoE error-disabled state is enabled, the switch automatically takes the PoE port out of the error-disabled state after the specified amount of time.

 If error recovery is disabled, you can manually re-enable the PoE port by using the shutdown and no shutdown interface configuration commands.

 4. If policing is disabled, no action occurs when the powered device consumes more than the maximum power allocation on the PoE port, which could adversely affect the switch.

Maximum Power Allocation (Cutoff Power) on a PoE Port

When power policing is enabled, the switch determines one of these values as the cutoff power on the PoE port in this order:

1. Manually when you set the user-defined power level that the switch budgets for the port by using the power inline consumption default wattage global or interface configuration command
2. Manually when you set the user-defined power level that limits the power allowed on the port by using the power inline auto max max-wattage or the power inline static max max-wattage interface configuration command
3. Automatically when the switch sets the power usage of the device by using CDP power negotiation or by the IEEE classification and LLDP power negotiation.

Use the first or second method in the previous list to manually configure the cutoff-power value by entering the power inline consumption default wattage or the power inline [auto | static max] max-wattage command. If you do not manually configure the cutoff-power value, the switch automatically determines the value by using CDP power negotiation. If the switch cannot determine the value by using one of these methods, it uses the default value of 15.4 W. If you do not manually configure...
the cutoff-power value, the switch automatically determines it by using CDP power negotiation or the device IEEE classification and LLDP power negotiation. If CDP or LLDP are not enabled, the default value of 30 W is applied. However, without CDP or LLDP, the switch does not allow devices to consume more than 15.4 W of power because values from 15400 to 30000 mW are only allocated based on CDP or LLDP requests. If a powered device consumes more than 15.4 W without CDP or LLDP negotiation, the device might be in violation of the maximum current \(I_{\text{max}} \) limitation and might experience an \(I_{\text{cut}} \) fault for drawing more current than the maximum. The port remains in the fault state for a time before attempting to power on again. If the port continuously draws more than 15.4 W, the cycle repeats.

Note

When a powered device connected to a PoE+ port restarts and sends a CDP or LLDP packet with a power TLV, the switch locks to the power-negotiation protocol of that first packet and does not respond to power requests from the other protocol. For example, if the switch is locked to CDP, it does not provide power to devices that send LLDP requests. If CDP is disabled after the switch has locked on it, the switch does not respond to LLDP power requests and can no longer power on any accessories. In this case, you should restart the powered device.

Power Consumption Values

You can configure the initial power allocation and the maximum power allocation on a port. However, these values are only the configured values that determine when the switch should turn on or turn off power on the PoE port. The maximum power allocation is not the same as the actual power consumption of the powered device. The actual cutoff power value that the switch uses for power policing is not equal to the configured power value.

When power policing is enabled, the switch polices the power usage *at the switch port*, which is greater than the power consumption of the device. When you are manually set the maximum power allocation, you must consider the power loss over the cable from the switch port to the powered device. The cutoff power is the sum of the rated power consumption of the powered device and the worst-case power loss over the cable.

The actual amount of power consumed by a powered device on a PoE port is the cutoff-power value plus a calibration factor of 500 mW (0.5 W). The actual cutoff value is approximate and varies from the configured value by a percentage of the configured value. For example, if the configured cutoff power is 12 W, the actual cutoff-value is 11.4 W, which is 0.05% less than the configured value.

We recommend that you enable power policing when PoE is enabled on your switch. For example, if policing is disabled and you set the cutoff-power value by using the `power inline auto max 6300` interface configuration command, the configured maximum power allocation on the PoE port is 6.3 W (6300 mW). The switch provides power to the connected devices on the port if the device needs up to 6.3 W. If the CDP-power negotiated value or the IEEE classification value exceeds the configured cutoff value, the switch does not provide power to the connected device. After the switch turns on power on the PoE port, the switch does not police the real-time power consumption of the device, and the device can consume more power than the maximum allocated amount, which could adversely affect the switch and the devices connected to the other PoE ports.

Because the standalone switch supports internal power supplies and the Cisco Redundant Power System 2300 (also referred to as the RPS 2300), the total amount of power available for the powered devices varies depending on the power supply configuration.

- If a power supply is removed and replaced by a new power supply with less power and the switch does not have enough power for the powered devices, the switch denies power to the PoE ports in auto mode in descending order of the port numbers. If the switch still does not have enough power, the switch then denies power to the PoE ports in static mode in descending order of the port numbers.
• If the new power supply supports more power than the previous one and the switch now has more power available, the switch grants power to the PoE ports in static mode in ascending order of the port numbers. If it still has power available, the switch then grants power to the PoE ports in auto mode in ascending order of the port numbers.

The Catalyst 3750-X stackable switch also supports StackPower, which allows power supplies to share the load across multiple systems in a stack by connecting the switches with power stack cables. You can collectively manage the power supplies of up to four stack members as a one large power supply. For more information about StackPower, see Chapter 1, “Configuring Catalyst 3750-X StackPower.”

Network Module Interfaces

The uplink ports on the 10-Gigabit service module and on the 10-Gigabit Ethernet network module are labeled Te1/Gi2 and Te2/Gi4. These ports can operate at either 1 Gigabit per second or 10 Gigabits per second. They are identified in software as `gigabitethernet x/1/2` and `x/1/4` and `tengigabitethernet x/1/1` and `x/1/2`, with `x` being the switch number on Catalyst 3750-X stacks. The Catalyst 3560-X switch port numbers are the same, with no switch number.

Network Services Module

The Catalyst 3750-X and 3560-X Network Services Module (C3KX-SM-10G) uplink slots support either 1-Gigabit SFP modules or 10-Gigabit SFP+ modules. See the *Installation Notes for the Catalyst 3750-X and 3560-X Network Modules* for more details.

When you install a network services module in a Catalyst 3560-X or 3750-X switch, you can configure the 1-Gigabit and 10-Gigabit Ethernet uplink ports for the same features as any other ports in the switch. The network services module uplink ports also support Flexible NetFlow and switch-to-switch MACsec uplink encryption (link layer security).

10-Gigabit Ethernet Network Module

The C3KX-NM-10GT 10-Gigabit Ethernet Network Module has two 10-Gigabit Ethernet copper ports that can operate at either 1 Gigabit per second or 10 Gigabits per second. To configure the port speed to 1 Gigabit per second, use the `hw-module switch` global configuration command. See the command reference for command syntax description.

Note

10 Mb/s and 100 Mb/s speeds are not supported on this module.

Connecting Interfaces

Devices within a single VLAN can communicate directly through any switch. Ports in different VLANs cannot exchange data without going through a routing device. With a standard Layer 2 switch, ports in different VLANs have to exchange information through a router. By using the switch with routing enabled, when you configure both VLAN 20 and VLAN 30 with an SVI to which an IP address is assigned, packets can be sent from Host A to Host B directly through the switch with no need for an external router (Figure 1-1).
When the IP services feature set is running on the switch or the active switch, the switch uses two methods to forward traffic between interfaces: routing and fallback bridging. If the IP base feature set is on the switch or the active switch, only basic routing (static routing and RIP) is supported. Whenever possible, to maintain high performance, forwarding is done by the switch hardware. However, only IPv4 packets with Ethernet II encapsulation are routed in hardware. Non-IP traffic and traffic with other encapsulation methods are fallback-bridged by hardware.

- The routing function can be enabled on all SVIs and routed ports. The switch routes only IP traffic. When IP routing protocol parameters and address configuration are added to an SVI or routed port, any IP traffic received from these ports is routed. For more information, see Chapter 1, “Configuring IP Unicast Routing,” Chapter 1, “Configuring IP Multicast Routing,” and Chapter 1, “Configuring MSDP.”

- Fallback bridging forwards traffic that the switch does not route or traffic belonging to a nonroutable protocol, such as DECnet. Fallback bridging connects multiple VLANs into one bridge domain by bridging between two or more SVIs or routed ports. When configuring fallback bridging, you assign SVIs or routed ports to bridge groups with each SVI or routed port assigned to only one bridge group. All interfaces in the same group belong to the same bridge domain. For more information, see Chapter 1, “Configuring Fallback Bridging.”

Note

Switches running the LAN Base feature set support configuring only 16 static routes on SVIs. Fallback bridging is not supported on the LAN Base feature set.

Using the Switch USB Ports

- USB Mini-Type B Console Port, page 1-14
- USB Type A Port, page 1-17

USB Mini-Type B Console Port

The switch has two console ports available: a USB mini-Type B console connection and an RJ-45 console port. Console output appears on devices connected to both ports, but console input is active on only one port at a time. The USB connector takes precedence over the RJ-45 connector.
Windows PCs require a driver for the USB port. See the hardware installation guide for driver installation instructions.

Use the supplied USB Type A-to-USB mini-Type B cable to connect a PC or other device to the switch. The connected device must include a terminal emulation application. When the switch detects a valid USB connection to a powered-on device that supports host functionality (such as a PC), input from the RJ-45 console is immediately disabled, and input from the USB console is enabled. Removing the USB connection immediately reenables input from the RJ-45 console connection. An LED on the switch shows which console connection is in use.

Console Port Change Logs

At software startup, a log shows whether the USB or the RJ-45 console is active. Each switch in a stack issues this log. Every switch always first displays the RJ-45 media type.

In the sample output, switch 1 has a connected USB console cable. Because the bootloader did not change to the USB console, the first log from switch 1 shows the RJ-45 console. A short time later, the console changes and the USB console log appears. Switch 2 and switch 3 have connected RJ-45 console cables.

```
switch-stack-1
*Mar 1 00:01:00.171: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.
*Mar 1 00:01:00.431: %USB_CONSOLE-6-MEDIA_USB: Console media-type is USB.
```

```
switch-stack-2
*Mar 1 00:01:09.835: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.
```

```
switch-stack-3
*Mar 1 00:01:10.523: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.
```

When the USB cable is removed or the PC de-activates the USB connection, the hardware automatically changes to the RJ-45 console interface:

```
switch-stack-1
Mar 1 00:20:48.635: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.
```

You can configure the console type to always be RJ-45, and you can configure an inactivity timeout for the USB connector.

Configuring the Console Media Type

If you configure the RJ-45 console, USB console operation is disabled, and input always remains with the RJ-45 console. This configuration is global and applies to all switches in a stack.

To select the RJ-45 console media type, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 line console 0</td>
<td>Configures the console. Enter line configuration mode.</td>
</tr>
<tr>
<td>Step 3 media-type rj45</td>
<td>Configures the console media type to always be RJ-45. If you do not enter this command and both types are connected, the default is USB.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Interface Characteristics

Using the Switch USB Ports

This example disables the USB console media type and enables the RJ-45 console media type:

```
Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# media-type rj45
```

This configuration immediately terminates any active USB consoles in the stack. A log shows that this termination has occurred. This sample log shows that the console on switch 1 reverted to RJ-45.

```
*Mar 1 00:25:36.860: %USB_CONSOLE-6-CONFIG_DISABLE: Console media-type USB disabled by system configuration, media-type reverted to RJ45.
```

At this point no switches in the stack allow a USB console to have input. A log entry shows when a console cable is attached. If a USB console cable is connected to switch 2, it is prevented from providing input.

```
*Mar 1 00:34:27.498: %USB_CONSOLE-6-CONFIG_DISALLOW: Console media-type USB is disallowed by system configuration, media-type remains RJ45. (switch-stk-2)
```

This example reverses the previous configuration and immediately activates any USB console that is connected.

```
Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# no media-type rj45
```

Configuring the USB Inactivity Timeout

The configurable inactivity timeout reactivates the RJ-45 console if the USB console is activated but no input activity occurs on it for a specified time period. When the USB console is deactivated due to a timeout, you can restore its operation by disconnecting and reconnecting the USB cable.

```
Note
The configured inactivity timeout applies to all switches in a stack. However, a timeout on one switch does not cause a timeout on other switches in the stack.
```

To configure an inactivity timeout, follow these steps beginning in privileged EXEC mode:

```
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>line console 0</td>
<td>Configure the console port. Enter console line configuration mode.</td>
</tr>
<tr>
<td>usb-inactivity-timeout</td>
<td>Specify an inactivity timeout for the console port. The range is 1 to 240 minutes. The default is no timeout.</td>
</tr>
</tbody>
</table>
```

This example disables the USB console media type and enables the RJ-45 console media type:

```
Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# media-type rj45
```

This configuration immediately terminates any active USB consoles in the stack. A log shows that this termination has occurred. This sample log shows that the console on switch 1 reverted to RJ-45.

```
*Mar 1 00:25:36.860: %USB_CONSOLE-6-CONFIG_DISABLE: Console media-type USB disabled by system configuration, media-type reverted to RJ45.
```

At this point no switches in the stack allow a USB console to have input. A log entry shows when a console cable is attached. If a USB console cable is connected to switch 2, it is prevented from providing input.

```
*Mar 1 00:34:27.498: %USB_CONSOLE-6-CONFIG_DISALLOW: Console media-type USB is disallowed by system configuration, media-type remains RJ45. (switch-stk-2)
```

This example reverses the previous configuration and immediately activates any USB console that is connected.

```
Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# no media-type rj45
```

Configuring the USB Inactivity Timeout

The configurable inactivity timeout reactivates the RJ-45 console if the USB console is activated but no input activity occurs on it for a specified time period. When the USB console is deactivated due to a timeout, you can restore its operation by disconnecting and reconnecting the USB cable.

```
Note
The configured inactivity timeout applies to all switches in a stack. However, a timeout on one switch does not cause a timeout on other switches in the stack.
```

To configure an inactivity timeout, follow these steps beginning in privileged EXEC mode:

```
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>line console 0</td>
<td>Configure the console port. Enter console line configuration mode.</td>
</tr>
<tr>
<td>usb-inactivity-timeout</td>
<td>Specify an inactivity timeout for the console port. The range is 1 to 240 minutes. The default is no timeout.</td>
</tr>
</tbody>
</table>
```

This example disables the USB console media type and enables the RJ-45 console media type:

```
Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# media-type rj45
```

This configuration immediately terminates any active USB consoles in the stack. A log shows that this termination has occurred. This sample log shows that the console on switch 1 reverted to RJ-45.

```
*Mar 1 00:25:36.860: %USB_CONSOLE-6-CONFIG_DISABLE: Console media-type USB disabled by system configuration, media-type reverted to RJ45.
```

At this point no switches in the stack allow a USB console to have input. A log entry shows when a console cable is attached. If a USB console cable is connected to switch 2, it is prevented from providing input.

```
*Mar 1 00:34:27.498: %USB_CONSOLE-6-CONFIG_DISALLOW: Console media-type USB is disallowed by system configuration, media-type remains RJ45. (switch-stk-2)
```

This example reverses the previous configuration and immediately activates any USB console that is connected.

```
Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# no media-type rj45
```

Configuring the USB Inactivity Timeout

The configurable inactivity timeout reactivates the RJ-45 console if the USB console is activated but no input activity occurs on it for a specified time period. When the USB console is deactivated due to a timeout, you can restore its operation by disconnecting and reconnecting the USB cable.

```
Note
The configured inactivity timeout applies to all switches in a stack. However, a timeout on one switch does not cause a timeout on other switches in the stack.
```

To configure an inactivity timeout, follow these steps beginning in privileged EXEC mode:

```
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>line console 0</td>
<td>Configure the console port. Enter console line configuration mode.</td>
</tr>
<tr>
<td>usb-inactivity-timeout</td>
<td>Specify an inactivity timeout for the console port. The range is 1 to 240 minutes. The default is no timeout.</td>
</tr>
</tbody>
</table>
```
This example configures the inactivity timeout to 30 minutes:

```plaintext
Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# usb-inactivity-timeout 30
```

To disable the configuration, use these commands:

```plaintext
Switch(config)# line console 0
Switch(config-line)# no usb-inactivity-timeout
```

If there is no (input) activity on a USB console for the configured number of minutes, the console reverts to RJ-45, and a log shows this occurrence:

```
*Mar  1 00:47:25.625: %USB_CONSOLE-6-INACTIVITY_DISABLE: Console media-type USB disabled due to inactivity, media-type reverted to RJ45.
```

At this point, the only way to reactivate the USB console is to disconnect and reconnect the cable.

When the USB cable on the switch has been disconnected and reconnected, a log similar to this appears:

```
*Mar  1 00:48:28.640: %USB_CONSOLE-6-MEDIA_USB: Console media-type is USB.
```

USB Type A Port

The USB Type A port provides access to external Cisco USB flash devices, also known as thumb drives or USB keys. The switch supports Cisco 64 MB, 256 MB, 512 MB, and 1 GB flash drives. You can use standard Cisco IOS command-line interface (CLI) commands to read, write, erase, and copy to or from the flash device. You can also configure the switch to boot from the USB flash drive.

Booting from the USB Flash Device

To allow booting from the USB flash device, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>boot system flash usbflash0: image</td>
<td>Configures the switch to boot from the USB flash device. The image is the name of the bootable image.</td>
</tr>
<tr>
<td>3</td>
<td>show running-configuration</td>
<td>Verifies your setting.</td>
</tr>
<tr>
<td>4</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To get information about the USB device, use the `show usb {controllers | device | driver | port | tree}` privileged EXEC command.

This example configures the switch to boot from the Catalyst 3750-X flash device. The image is the Catalyst 3750-X universal image.

```plaintext
Switch# configure terminal
Switch(config)# boot system flash usbflash0: c3750x-universal-mz
```

To disable booting from flash, enter the `no` form of the command.

This is sample output from the `show usb device` command:

```
Switch# show usb device
Host Controller: 1
Address: 0x1
```
Device Configured: YES
Device Supported: YES
Description: STEC USB 1GB
Manufacturer: STEC
Version: 1.0
Serial Number: STI 3D508232204731
Device Handle: 0x1010000
USB Version Compliance: 2.0
Class Code: 0x0
Subclass Code: 0x0
Protocol: 0x0
Vendor ID: 0x136b
Product ID: 0x918
Max. Packet Size of Endpoint Zero: 64
Number of Configurations: 1
Speed: High
Selected Configuration: 1
Selected Interface: 0

Configuration:
 Number: 1
 Number of Interfaces: 1
 Description: Storage
 Attributes: None
 Max Power: 200 mA

Interface:
 Number: 0
 Description: Bulk
 Class Code: 8
 Subclass: 6
 Protocol: 80
 Number of Endpoints: 2

Endpoint:
 Number: 1
 Transfer Type: BULK
 Transfer Direction: Device to Host
 Max Packet: 512
 Interval: 0

Endpoint:
 Number: 2
 Transfer Type: BULK
 Transfer Direction: Host to Device
 Max Packet: 512
 Interval: 0

This is sample output from the `show usb port` command:

```
Switch# show usb port
Port Number: 0
Status: Enabled
Connection State: Connected
Speed: High
Power State: ON
```
Using Interface Configuration Mode

The switch supports these interface types:

- Physical ports—Switch ports and routed ports
- VLANs—Switch virtual interfaces
- Port channels—EtherChannel interfaces

You can also configure a range of interfaces (see the “Configuring a Range of Interfaces” section on page 1-20).

To configure a physical interface (port), specify the interface type, stack member number (only Catalyst 3750-E 3750-X switches), module number, and switch port number, and enter interface configuration mode.

- Type—Gigabit Ethernet (gigabitethernet or gi) for 10/100/1000 Mb/s Ethernet ports, 10-Gigabit Ethernet (tengigabitethernet or te) for 10,000 Mb/s, or small form-factor pluggable (SFP) module Gigabit Ethernet interfaces (gigabitethernet or gi).
- Stack member number—The number that identifies the switch within the stack. The switch number range is 1 to 9 and is assigned the first time the switch initializes. The default switch number, before it is integrated into a switch stack, is 1. When a switch has been assigned a stack member number, it keeps that number until another is assigned to it.
- Module number—The module or slot number on the switch that is always 0.
- Port number—The interface number on the switch. The 10/100/1000 port numbers always begin at 1, starting with the far left port when facing the front of the switch, for example, gigabitethernet1/0/1 or gigabitethernet1/0/8.

On a switch with 10/100/1000 ports and Cisco TwinGig Converter Modules in the 10-Gigabit Ethernet module slots, the port numbers restart with the 10-Gigabit Ethernet ports: tengigabitethernet1/0/1.

On a switch with 10/100/1000 ports and Cisco dual SFP X2 converter modules in the 10-Gigabit Ethernet module slots, the SFP module ports are numbered consecutively following the 10/100/1000 interfaces. For example, if the switch has 24 10/100/1000 ports, the SFP module ports are gigabitethernet1/0/25 through gigabitethernet1/0/28.

You can identify physical interfaces by physically checking the interface location on the switch. You can also use the show privileged EXEC commands to display information about a specific interface or all the interfaces on the switch. The remainder of this chapter primarily provides physical interface configuration procedures.

These are examples of how to identify interfaces on a Catalyst 3750-E 3750-X switch:

- To configure 10/100/1000 port 4 on a standalone switch, enter this command:

 Switch(config)# interface gigabitethernet1/0/4

- To configure 10-Gigabit Ethernet port 1 on a standalone switch, enter this command:

 Switch(config)# interface tengigabitethernet1/0/1

- To configure 10-Gigabit Ethernet port on stack member 3, enter this command:

 Switch(config)# interface tengigabitethernet3/0/1
If the switch has SFP modules, the port numbers continue consecutively. To configure the first SFP module port on stack member 1 with 16 10/100/1000 ports, enter this command:

```
Switch(config)# interface gigabitethernet1/0/25
```

Procedures for Configuring Interfaces

These general instructions apply to all interface configuration processes.

Step 1 Enter the `configure terminal` command at the privileged EXEC prompt:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#
```

Step 2 Enter the `interface` global configuration command. Identify the interface type, the switch number (only on Catalyst 3750-E 3750-X switches), and the number of the connector. In this example, Gigabit Ethernet port 1 on switch 1 is selected:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)#
```

Note You do not need to add a space between the interface type and the interface number. For example, in the preceding line, you can specify either `gigabitethernet 1/0/1`, `gigabitethernet1/0/1`, `gi 1/0/1`, or `gi1/0/1`.

Step 3 Follow each `interface` command with the interface configuration commands that the interface requires. The commands that you enter define the protocols and applications that will run on the interface. The commands are collected and applied to the interface when you enter another interface command or enter `end` to return to privileged EXEC mode.

You can also configure a range of interfaces by using the `interface range` or `interface range macro` global configuration commands. Interfaces configured in a range must be the same type and must be configured with the same feature options.

Step 4 After you configure an interface, verify its status by using the `show` privileged EXEC commands listed in the “Monitoring and Maintaining the Interfaces” section on page 1-51.

Enter the `show interfaces` privileged EXEC command to see a list of all interfaces on or configured for the switch. A report is provided for each interface that the device supports or for the specified interface.

Configuring a Range of Interfaces

You can use the `interface range` global configuration command to configure multiple interfaces with the same configuration parameters. When you enter the interface-range configuration mode, all command parameters that you enter are attributed to all interfaces within that range until you exit this mode.
To configure a range of interfaces with the same parameters, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>config terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>interface range</td>
<td>Specifies the range of interfaces (VLANs or physical ports) to be configured, and enter interface-range configuration mode.</td>
</tr>
<tr>
<td>{port-range</td>
<td>macro macro_name}</td>
</tr>
<tr>
<td></td>
<td>• The macro variable is explained in the “Configuring and Using Interface Range Macros” section on page 1-22.</td>
</tr>
<tr>
<td></td>
<td>• In a comma-separated port-range, you must enter the interface type for each entry and enter spaces before and after the comma.</td>
</tr>
<tr>
<td></td>
<td>• In a hyphen-separated port-range, you do not need to reenter the interface type, but you must enter a space before the hyphen.</td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Verifies the configuration of the interfaces in the range.</td>
</tr>
<tr>
<td>{interface-id}</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When using the **interface range** global configuration command, note these guidelines:

- Valid entries for **port-range**:
 - **vlan vlan-ID** - **vlan-ID**, where the VLAN **ID** is 1 to 4094
 - **gigabitethernet module/[first port] - {last port}** (for Catalyst 3560-E 3560-X switches), where the module is always 0
 - **gigabitethernet stack member/module/[first port] - {last port}** (for Catalyst 3750-E 3750-X switches), where the module is always 0.
 - **tengigabitethernet module/[first port] - {last port}** (for Catalyst 3560-E 3560-X switches), where the module is always 0.
 - **tengigabitethernet stack member/module/[first port] - {last port}** (for Catalyst 3750-E 3750-X switches), where the module is always 0.
 - **gigabitethernet stack member/module/[first port] - {last port}**, where the module is always 0.
 - **port-channel port-channel-number - port-channel-number**, where the **port-channel-number** is 1 to 48.

Note When you use the **interface range** command with port channels, the first and last port-channel number must be active port channels.
Chapter 1 Configuring Interface Characteristics

Using Interface Configuration Mode

- You must add a space between the first interface number and the hyphen when using the `interface range` command. For example, the command `interface range gigabitethernet1/0/1 - 4` is a valid range; the command `interface range gigabitethernet1/0/1-4` is not a valid range.

- The `interface range` command only works with VLAN interfaces that have been configured with the `interface vlan` command. The `show running-config` privileged EXEC command displays the configured VLAN interfaces. VLAN interfaces not displayed by the `show running-config` command cannot be used with the `interface range` command.

- All interfaces defined in a range must be the same type (all Gigabit Ethernet ports, all 10-Gigabit Ethernet ports, all EtherChannel ports, or all VLANs), but you can enter multiple ranges in a command.

This example shows how to use the `interface range` global configuration command to set the speed to 100 Mb/s on ports 1 to 4 on switch 1:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet1/0/1 - 4
Switch(config-if-range)# speed 100
```

This example shows how to use a comma to add different interface type strings to the range to enable Gigabit Ethernet ports 1 to 3 and 10-Gigabit Ethernet ports 1 and 2 to receive flow-control pause frames:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet1/0/1 - 3 , tengigabitethernet1/0/1 - 2
Switch(config-if-range)# flowcontrol receive on
```

If you enter multiple configuration commands while you are in interface-range mode, each command is executed as it is entered. The commands are not batched and executed after you exit interface-range mode. If you exit interface-range configuration mode while the commands are being executed, some commands might not be executed on all interfaces in the range. Wait until the command prompt reappears before exiting interface-range configuration mode.

Configuring and Using Interface Range Macros

You can create an interface range macro to automatically select a range of interfaces for configuration. Before you can use the `macro` keyword in the `interface range macro` global configuration command string, you must use the `define interface-range` global configuration command to define the macro.

To define an interface range macro, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
</tbody>
</table>
| **Step 2** | `define interface-range macro_name`
`interface-range` | Defines the interface-range macro, and saves it in NVRAM.
- The `macro_name` is a 32-character maximum character string.
- A macro can contain up to five comma-separated interface ranges.
- Each `interface-range` must consist of the same port type. |
| **Step 3** | `interface range macro macro_name` | Selects the interface range to be configured using the values saved in the interface-range macro called `macro_name`.
You can now use the normal configuration commands to apply the configuration to all interfaces in the defined macro. |
| **Step 4** | `end` | Returns to privileged EXEC mode. |
Use the `no define interface-range macro_name` global configuration command to delete a macro.

When using the `define interface-range` global configuration command, note these guidelines:

- Valid entries for `interface-range`:

 - `vlan vlan-ID - vlan-ID`, where the VLAN ID is 1 to 4094

 - `gigabitethernet module/{first port} - {last port}` (for Catalyst 3560-E 3560-X switches), where the module is always 0

 - `gigabitethernet stack member/module/{first port} - {last port}` (for Catalyst 3750-E 3750-X switches), where the module is always 0

 - `tengigabitethernet module/{first port} - {last port}` (for Catalyst 3560-E 3560-X switches), where the module is always 0

 - `tengigabitethernet stack member/module/{first port} - {last port}` (for Catalyst 3750-E 3750-X switches), where the module is always 0

 - `port-channel port-channel-number - port-channel-number`, where the `port-channel-number` is 1 to 48.

 Note When you use the interface ranges with port channels, the first and last port-channel number must be active port channels.

- You must add a space between the first interface number and the hyphen when entering an `interface-range`. For example, `gigabitethernet1/0/1 - 4` is a valid range; `gigabitethernet1/0/1-4` is not a valid range.

- The VLAN interfaces must have been configured with the `interface vlan` command. The `show running-config` privileged EXEC command displays the configured VLAN interfaces. VLAN interfaces not displayed by the `show running-config` command cannot be used as `interface-ranges`.

- All interfaces defined as in a range must be the same type (all Gigabit Ethernet ports, all 10-Gigabit Ethernet ports, all EtherChannel ports, or all VLANs), but you can combine multiple interface types in a macro.

This example shows how to define an interface-range named `enet_list` to include ports 1 and 2 on switch 1 and to verify the macro configuration:

```
Switch# configure terminal
Switch(config)# define interface-range enet_list gigabitethernet1/0/1 - 2
Switch(config)# end
Switch# show running-config | include define
define interface-range enet_list GigabitEthernet1/0/1 - 2
```
This example shows how to create a multiple-interface macro named *macro1*:

```
Switch# configure terminal
Switch(config)# define interface-range macro1 gigabitethernet1/0/1 - 2, gigabitethernet1/0/5 - 7, tengigabitethernet1/0/1 -2
Switch(config)# end
```

This example shows how to enter interface-range configuration mode for the interface-range macro *enet_list*:

```
Switch# configure terminal
Switch(config)# interface range macro enet_list
Switch(config-if-range)#
```

This example shows how to delete the interface-range macro *enet_list* and to verify that it was deleted.

```
Switch# configure terminal
Switch(config)# no define interface-range enet_list
Switch(config)# end
Switch# show run | include define
Switch#
```

Using the Ethernet Management Port

This section has this information:

- Understanding the Ethernet Management Port, page 1-24
- Supported Features on the Ethernet Management Port, page 1-26
- Configuring the Ethernet Management Port, page 1-27
- TFTP and the Ethernet Management Port, page 1-27

Understanding the Ethernet Management Port

The Ethernet management port, also referred to as the *Fa0 or fastethernet0* port, is a Layer 3 host port to which you can connect a PC. You can use the Ethernet management port instead of the switch console port for network management. When managing a switch stack, connect the PC to the Ethernet management port on a Catalyst 3750-X or Catalyst 3750-E stack member.

When connecting a PC to the Ethernet management port, you must assign an IP address.
For a Catalyst 3560-E Catalyst 3560-X switch or a standalone Catalyst 3750-E Catalyst 3750-X switch, connect the Ethernet management port to the PC as shown in Figure 1-2.

Figure 1-2 Connecting a Switch to a PC

In a stack with only Catalyst 3750-X or Catalyst 3750-E switches, all the Ethernet management ports on the stack members are connected to a hub to which the PC is connected. The active link is from the Ethernet management port on the active switch through the hub to the PC. If the active switch fails and a new active switch is elected, the active link is now from the Ethernet management port on the new active switch to the PC. See Figure 1-3.

In a mixed switch stack with Catalyst 3750 switches, only the Catalyst 3750-E and Catalyst 3750- X stack members are connected to the PC through the Ethernet management ports. The active link is from the active switch, a Catalyst 3750-E or Catalyst 3750- X switch to the PC. If the active switch fails and the elected active switch is not a Catalyst 3750-E or Catalyst 3750- X switch (switch 2), the active link can be from a stack member to the PC.

Figure 1-3 Connecting a Switch Stack to a PC

By default, the Ethernet management port is enabled. The switch cannot route packets from the Ethernet management port to a network port, and the reverse.

Even though the Ethernet management port does not support routing, you might need to enable routing protocols on the port (see Figure 1-4). For example, in Figure 1-4, you must enable routing protocols on the Ethernet management port when the PC is multiple hops away from the switch and the packets must pass through multiple Layer 3 devices to reach the PC.

Catalyst 3750 switches do not have Ethernet management ports. Catalyst 3750 switches in a mixed stack are not connected to the hub.
In Figure 1-4, if the Ethernet management port and the network ports are associated with the same routing process, the routes are propagated as follows:

- The routes from the Ethernet management port are propagated through the network ports to the network.
- The routes from the network ports are propagated through the Ethernet management port to the network.

Because routing is not supported between the Ethernet management port and the network ports, traffic between these ports cannot be sent or received. If this happens, data packet loops occur between the ports, which disrupt the switch and network operation. To prevent the loops, configure route filters to avoid routes between the Ethernet management port and the network ports.

Supported Features on the Ethernet Management Port

The Ethernet management port supports these features:

- Express Setup (only in switch stacks)
- Network Assistant
- Telnet with passwords
- TFTP
- Secure Shell (SSH)
- DHCP-based autoconfiguration
- SMNP (only the ENTITY-MIB and the IF-MIB)
- IP ping
- Interface features
 - Speed—10 Mb/s, 100 Mb/s, and autonegotiation
 - Duplex mode—Full, half, and autonegotiation
 - Loopback detection
- Cisco Discovery Protocol (CDP)
- DHCP relay agent
- IPv4 and IPv6 access control lists (ACLs)
- Routing protocols
Before enabling a feature on the Ethernet management port, make sure that the feature is supported. If you try to configure an unsupported feature on the Ethernet Management port, the feature might not work properly, and the switch might fail.

Configuring the Ethernet Management Port

To specify the Ethernet management port in the CLI, enter `fastethernet0`.

To disable the port, use the `shutdown` interface configuration command. To enable the port, use the `no shutdown` interface configuration command.

To find out the link status to the PC, you can monitor the LED for the Ethernet management port. The LED is green (on) when the link is active, and the LED is off when the link is down. The LED is amber when there is a POST failure.

To display the link status, use the `show interfaces fastethernet 0` privileged EXEC command.

TFTP and the Ethernet Management Port

Use the commands in Table 1-2 when using TFTP to download or upload a configuration file to the boot loader.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arp [ip_address]</code></td>
<td>Displays the currently cached ARP table when this command is entered without the <code>ip_address</code> parameter. Enables ARP to associate a MAC address with the specified IP address when this command is entered with the <code>ip_address</code> parameter.</td>
</tr>
<tr>
<td><code>mgmt_clr</code></td>
<td>Clears the statistics for the Ethernet management port.</td>
</tr>
<tr>
<td><code>mgmt_init</code></td>
<td>Starts the Ethernet management port.</td>
</tr>
<tr>
<td><code>mgmt_show</code></td>
<td>Displays the statistics for the Ethernet management port.</td>
</tr>
<tr>
<td><code>ping host_ip_address</code></td>
<td>Sends ICMP ECHO_REQUEST packets to the specified network host.</td>
</tr>
<tr>
<td><code>boot tftp://file-url ...</code></td>
<td>Loads and boots an executable image from the TFTP server and enters the command-line interface. For more details, see the command reference for this release.</td>
</tr>
<tr>
<td><code>copy tftp://source-file-url filesystem://destination-file-url</code></td>
<td>Copies a Cisco IOS image from the TFTP server to the specified location. For more details, see the command reference for this release.</td>
</tr>
</tbody>
</table>

1. ARP = Address Resolution Protocol.
Configuring Ethernet Interfaces

These sections contain this configuration information:

- Default Ethernet Interface Configuration, page 1-28
- Configuring Interface Speed and Duplex Mode, page 1-29
- Configuring IEEE 802.3x Flow Control, page 1-31
- Configuring Auto-MDIX on an Interface, page 1-32
- Configuring a Power Management Mode on a PoE Port, page 1-33
- Budgeting Power for Devices Connected to a PoE Port, page 1-35
- Configuring Power Policing, page 1-36
- Adding a Description for an Interface, page 1-38

Default Ethernet Interface Configuration

Table 1-3 shows the Ethernet interface default configuration, including some features that apply only to Layer 2 interfaces. For more details on the VLAN parameters listed in the table, see Chapter 1, “Configuring VLANs.” For details on controlling traffic to the port, see Chapter 1, “Configuring Port-Based Traffic Control.”

To configure Layer 2 parameters, if the interface is in Layer 3 mode, you must enter the `switchport` interface configuration command without any parameters to put the interface into Layer 2 mode. This shuts down the interface and then reenables it, which might generate messages on the device to which the interface is connected. When you put an interface that is in Layer 3 mode into Layer 2 mode, the previous configuration information related to the affected interface might be lost, and the interface is returned to its default configuration.

Table 1-3 Default Layer 2 Ethernet Interface Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
<td>Layer 2 or switching mode (<code>switchport</code> command).</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1–4094.</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1 (Layer 2 interfaces only).</td>
</tr>
<tr>
<td>Native VLAN (for IEEE 802.1Q trunks)</td>
<td>VLAN 1 (Layer 2 interfaces only).</td>
</tr>
<tr>
<td>VLAN trunking</td>
<td>Switchport mode dynamic auto (supports DTP) (Layer 2 interfaces only).</td>
</tr>
<tr>
<td>Port enable state</td>
<td>All ports are enabled.</td>
</tr>
<tr>
<td>Port description</td>
<td>None defined.</td>
</tr>
<tr>
<td>Speed</td>
<td>Autonegotiate. (Not supported on the 10-Gigabit interfaces.)</td>
</tr>
<tr>
<td>Duplex mode</td>
<td>Autonegotiate. (Not supported on the 10-Gigabit interfaces.)</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control is set to receive: <code>off</code>. It is always off for sent packets.</td>
</tr>
<tr>
<td>EtherChannel (PAgP)</td>
<td>Disabled on all Ethernet ports. See Chapter 1, “Configuring EtherChannels and Link-State Tracking.”</td>
</tr>
</tbody>
</table>
Configuring Interface Characteristics

Configuring Ethernet Interfaces

Chapter 1

Configuring Interface Characteristics

Configuring Interface Speed and Duplex Mode

Ethernet interfaces on the switch operate at 10, 100, 1000, or 10,000 Mb/s and in either full- or half-duplex mode. In full-duplex mode, two stations can send and receive traffic at the same time. Normally, 10-Mb/s ports operate in half-duplex mode, which means that stations can either receive or send traffic.

Switch models include Gigabit Ethernet (10/100/1000-Mb/s) ports, 10-Gigabit Ethernet ports, and small form-factor pluggable (SFP) module slots supporting SFP modules.

These sections describe how to configure the interface speed and duplex mode:

- Speed and Duplex Configuration Guidelines, page 1-29
- Setting the Interface Speed and Duplex Parameters, page 1-30

Speed and Duplex Configuration Guidelines

When configuring an interface speed and duplex mode, note these guidelines:

- The 10-Gigabit Ethernet ports do not support the speed and duplex features. These ports operate only at 10,000 Mb/s and in full-duplex mode.
- Gigabit Ethernet (10/100/1000-Mb/s) ports support all speed options and all duplex options (auto, half, and full). However, Gigabit Ethernet ports operating at 1000 Mb/s do not support half-duplex mode.
- For SFP module ports, the speed and duplex CLI options change depending on the SFP module type:
 - The 1000BASE-x (where -x is -BX, -CWDM, -LX, -SX, and -ZX) SFP module ports support the nonnegotiate keyword in the speed interface configuration command. Duplex options are not supported.
- The 1000BASE-T SFP module ports support the same speed and duplex options as the 10/100/1000-Mb/s ports.

For information about which SFP modules are supported on your switch, see the product release notes.

- If both ends of the line support autonegotiation, we highly recommend the default setting of **auto** negotiation.
- If one interface supports autonegotiation and the other end does not, configure duplex and speed on both interfaces; do not use the **auto** setting on the supported side.
- When STP is enabled and a port is reconfigured, the switch can take up to 30 seconds to check for loops. The port LED is amber while STP reconfigures.

⚠️ **Caution**

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.

Setting the Interface Speed and Duplex Parameters

To set the speed and duplex mode for a physical interface, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specifies the physical interface to be configured, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 3** speed { 10 | 100 | 1000 | auto [10 | 100 | 1000] | nonegotiate } | This command is not available on a 10-Gigabit Ethernet interface. Enters the appropriate speed parameter for the interface:
 - Enter **10**, **100**, or **1000** to set a specific speed for the interface. The **1000** keyword is available only for 10/100/1000 Mb/s ports.
 - Enter **auto** to enable the interface to autonegotiate speed with the connected device. If you use the **10**, **100**, or the **1000** keywords with the **auto** keyword, the port autonegotiates only at the specified speeds.
 - The **nonegotiate** keyword is available only for SFP module ports. SFP module ports operate only at 1000 Mb/s but can be configured to not negotiate if connected to a device that does not support autonegotiation.

For more information about speed settings, see the “Speed and Duplex Configuration Guidelines” section on page 1-29.
Step 4
Command: `duplex {auto | full | half}`
Purpose:
This command is not available on a 10-Gigabit Ethernet interface.
Enteres the duplex parameter for the interface.
Enables half-duplex mode (for interfaces operating only at 10 or 100 Mb/s). You cannot configure half-duplex mode for interfaces operating at 1000 Mb/s.
You can configure the duplex setting when the speed is set to `auto`.
For more information about duplex settings, see the “Speed and Duplex Configuration Guidelines” section on page 1-29.

Step 5
Command: `end`
Purpose:
Returns to privileged EXEC mode.

Step 6
Command: `show interfaces interface-id`
Purpose:
Displays the interface speed and duplex mode configuration.

Step 7
Command: `copy running-config startup-config`
Purpose:
(Optional) Saves your entries in the configuration file.

Use the `no speed` and `no duplex` interface configuration commands to return the interface to the default speed and duplex settings (autonegotiate). To return all interface settings to the defaults, use the `default interface interface-id` interface configuration command.

This example shows how to set the interface speed to 100 Mb/s and the duplex mode to half on a 10/100/1000 Mb/s port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# speed 10
Switch(config-if)# duplex half
```

This example shows how to set the interface speed to 100 Mb/s on a 10/100/1000 Mb/s port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# speed 100
```

Configuring IEEE 802.3x Flow Control

Flow control enables connected Ethernet ports to control traffic rates during congestion by allowing congested nodes to pause link operation at the other end. If one port experiences congestion and cannot receive any more traffic, it notifies the other port by sending a pause frame to stop sending until the condition clears. Upon receipt of a pause frame, the sending device stops sending any data packets, which prevents any loss of data packets during the congestion period.

Note

Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X ports can receive, but not send, pause frames.

You use the `flowcontrol` interface configuration command to set the interface’s ability to receive pause frames to `on`, `off`, or `desired`. The default state is `off`.

When set to desired, an interface can operate with an attached device that is required to send flow-control packets or with an attached device that is not required to but can send flow-control packets. These rules apply to flow control settings on the device:

- receive on (or desired): The port cannot send pause frames but can operate with an attached device that is required to or can send pause frames; the port can receive pause frames.
- receive off: Flow control does not operate in either direction. In case of congestion, no indication is given to the link partner, and no pause frames are sent or received by either device.

Note
For details on the command settings and the resulting flow control resolution on local and remote ports, see the flowcontrol interface configuration command in the command reference for this release.

To configure flow control on an interface, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the physical interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 flowcontrol {receive} {on</td>
<td>off</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces interface-id</td>
<td>Verify the interface flow control settings.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable flow control, use the flowcontrol receive off interface configuration command.

This example shows how to turn on flow control on a port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# flowcontrol receive on
Switch(config-if)# end
```

Configuring Auto-MDIX on an Interface

When automatic medium-dependent interface crossover (auto-MDIX) is enabled on an interface, the interface automatically detects the required cable connection type (straight through or crossover) and configures the connection appropriately. When connecting switches without the auto-MDIX feature, you must use straight-through cables to connect to devices such as servers, workstations, or routers and crossover cables to connect to other switches or repeaters. With auto-MDIX enabled, you can use either type of cable to connect to other devices, and the interface automatically corrects for any incorrect cabling. For more information about cabling requirements, see the hardware installation guide.

Auto-MDIX is enabled by default. Auto-MDIX is supported on all 10/100/1000-Mb/s and on 10/100/1000BASE-TX small form-factor pluggable (SFP)-module interfaces. It is not supported on 1000BASE-SX or -LX SFP module interfaces.
Table 1-4 shows the link states that result from auto-MDIX settings and correct and incorrect cabling.

Table 1-4 Link Conditions and Auto-MDIX Settings

<table>
<thead>
<tr>
<th>Local Side Auto-MDIX</th>
<th>Remote Side Auto-MDIX</th>
<th>With Correct Cabling</th>
<th>With Incorrect Cabling</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>On</td>
<td>Link up</td>
<td>Link up</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Link up</td>
<td>Link up</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Link up</td>
<td>Link up</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Link up</td>
<td>Link down</td>
</tr>
</tbody>
</table>

To configure auto-MDIX on an interface, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enters global configuration mode</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Specifies the physical interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>speed auto Configures the interface to autonegotiate speed with the connected device.</td>
</tr>
<tr>
<td>Step 4</td>
<td>duplex auto Configures the interface to autonegotiate duplex mode with the connected device.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show controllers ethernet-controller interface-id phy Verifies the operational state of the auto-MDIX feature on the interface.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config (Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable auto-MDIX, use the `no mdix auto` interface configuration command.

This example shows how to enable auto-MDIX on a port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# speed auto
Switch(config-if)# duplex auto
Switch(config-if)# mdix auto
Switch(config-if)# end
```

Configuring a Power Management Mode on a PoE Port

For most situations, the default configuration (auto mode) works well, providing plug-and-play operation. No further configuration is required. However, use the following procedure to give a PoE port higher priority, to make it data only, or to specify a maximum wattage to disallow high-power powered devices on a port.

Catalyst 3750-X switches also support StackPower, which allows switch power supplies to share the load across multiple systems in a stack by connecting up to four switches with power stack cables. See Chapter 1, “Configuring Catalyst 3750-X StackPower” for information on StackPower.
When you make PoE configuration changes, the port being configured drops power. Depending on the new configuration, the state of the other PoE ports, and the state of the power budget, the port might not be powered up again. For example, port 1 is in the auto and on state, and you configure it for static mode. The switch removes power from port 1, detects the powered device, and repowers the port. If port 1 is in the auto and on state and you configure it with a maximum wattage of 10 W, the switch removes power from the port and then redetects the powered device. The switch repowers the port only if the powered device is a class 1, class 2, or a Cisco-only powered device.

To configure a power management mode on a PoE-capable port, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specifies the physical port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 power inline { auto [max max-wattage]</td>
<td>Configures the PoE mode on the port. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>- auto—Enables powered-device detection. If enough power is available, automatically allocate power to the PoE port after device detection. This is the default setting.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) max max-wattage—Limits the power allowed on the port. The range is 4000 to 15400 mW 30000 mW. If no value is specified, the maximum is allowed.</td>
</tr>
<tr>
<td></td>
<td>- never—Disables device detection, and disable power to the port.</td>
</tr>
<tr>
<td>Note</td>
<td>If a port has a Cisco powered device connected to it, do not use the power inline never command to configure the port. A false linkup can occur, placing the port into the error-disabled state.</td>
</tr>
<tr>
<td></td>
<td>- static—Enables powered-device detection. Preallocate (reserve) power for a port before the switch discovers the powered device. The switch reserves power for this port even when no device is connected and guarantees that power will be provided upon device detection.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show power inline [interface-id</td>
<td>Displays PoE status for a switch or a switch stack for the specified interface or for a specified stack member. The module switch-number keywords are supported only on Catalyst 3750-E Catalyst 3750-X switches.</td>
</tr>
<tr>
<td>module switch-number]</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

For information about the output of the show power inline user EXEC command, see the command reference for this release. For more information about PoE-related commands, see the “Troubleshooting Power over Ethernet Switch Ports” section on page 1-13. For information about configuring voice VLAN, see Chapter 1, “Configuring Voice VLAN.”
Budgeting Power for Devices Connected to a PoE Port

When Cisco powered devices are connected to PoE ports, the switch uses Cisco Discovery Protocol (CDP) to determine the CDP-specific power consumption of the devices, and the switch adjusts the power budget accordingly. This does not apply to IEEE third-party powered devices. For these devices, when the switch grants a power request, the switch adjusts the power budget according to the powered-device IEEE classification. If the powered device is a class 0 (class status unknown) or a class 3, the switch budgets 15,400 mW for the device, regardless of the CDP-specific amount of power needed. If the powered device reports a higher class than its CDP-specific consumption or does not support power classification (defaults to class 0), the switch can power fewer devices because it uses the IEEE class information to track the global power budget.

By using the power inline consumption wattage interface configuration command or the power inline consumption default wattage global configuration command, you can override the default power requirement specified by the IEEE classification. The difference between what is mandated by the IEEE classification and what is actually needed by the device is reclaimed into the global power budget for use by additional devices. You can then extend the switch power budget and use it more effectively.

Caution

You should carefully plan your switch power budget, enable the power monitoring feature, and make certain not to oversubscribe the power supply.

Note

When you manually configure the power budget, you must also consider the power loss over the cable between the switch and the powered device.

When you enter the power inline consumption default wattage or the no power inline consumption default global configuration command or the power inline consumption wattage or the no power inline consumption interface configuration command, this caution message appears:

%CAUTION: Interface Gi1/0/1: Misconfiguring the 'power inline consumption/allocation' command may cause damage to the switch and void your warranty. Take precaution not to oversubscribe the power supply.

It is recommended to enable power policing if the switch supports it. Refer to documentation.

For more information about the IEEE power classifications, see the “Power over Ethernet Ports” section on page 1-7.

To configure the amount of power budgeted to a powered device connected to each PoE port on a switch, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2: no cdp run</td>
<td>(Optional) Disables CDP.</td>
</tr>
<tr>
<td>Step 3: power inline consumption</td>
<td>Configures the power consumption of powered devices connected to each</td>
</tr>
<tr>
<td>default wattage</td>
<td>the PoE port on the switch. The range for each device is 4000 to</td>
</tr>
<tr>
<td></td>
<td>15400 mW. The default is 15400 mW.</td>
</tr>
<tr>
<td></td>
<td>Note When you use this command, we recommend you also enable</td>
</tr>
<tr>
<td></td>
<td>power policing.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring Ethernet Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 show power inline consumption default</td>
<td>Displays the power consumption status.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no power inline consumption default** global configuration command.

To configure amount of power budgeted to a powered device connected to a specific PoE port, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no cdp run</td>
<td>(Optional) Disables CDP.</td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies the physical port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 4 power inline consumption wattage</td>
<td>Configures the power consumption of a powered device connected to a PoE port on the switch. The range for each device is 4000 to 15400 mW. The default is 15400 mW. Note When you use this command, we recommend you also enable power policing.</td>
</tr>
<tr>
<td>Step 5 power inline consumption wattage or</td>
<td>Configure the power consumption of a powered device connected to a PoE port on the switch. The range for each device is 4000 to 15400 mW. The default is 15400 mW.</td>
</tr>
<tr>
<td>power inline port maximum_wattage</td>
<td>Configure enhanced PoE to increase the maximum power supplied to a device (up to 20 W).</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show power inline consumption</td>
<td>Displays the power consumption data.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no power inline consumption** interface configuration command.

For information about the output of the **show power inline consumption** privileged EXEC command, see the command reference for this release.

Configuring Power Policing

By default, the switch monitors the real-time power consumption of connected powered devices. You can configure the switch to police the power usage. By default, policing is disabled.
For more information about the cutoff power value, the power consumption values that the switch uses, and the actual power consumption value of the connected device, see the “Power Monitoring and Power Policing” section in the “Configuring Interface Characteristics” chapter of the software configuration guide for this release.

To enable policing of the real-time power consumption of a powered device connected to a PoE port, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2
interface interface-id</td>
<td>Specifies the physical port to be configured, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 3**
power inline police [action log] | If the real-time power consumption exceeds the maximum power allocation on the port, configure the switch to take one of these actions:
 - Shut down the PoE port, turn off power to it, and put it in the error-disabled state—Enter the `power inline police` command.
 Note You can enable error detection for the PoE error-disabled cause by using the `errdisable detect cause inline-power` global configuration command. You can also enable the timer to recover from the PoE error-disabled state by using the `errdisable recovery cause inline-power interval` global configuration command.
 - Generate a syslog message while still providing power to the port—Enter the `power inline police action log` command.
 If you do not enter the `action log` keywords, the default action shuts down the port and puts the port in the error-disabled state. |
| **Step 4**
exit | Returns to global configuration mode. |
| **Step 5**
errdisable detect cause inline-power and errdisable recovery cause inline-power and errdisable recovery interval interval | (Optional) Enables error recovery from the PoE error-disabled state, and configures the PoE recover mechanism variables.
 By default, the recovery interval is 300 seconds.
 For `interval interval`, specify the time in seconds to recover from the error-disabled state. The range is 30 to 86400. |
| **Step 6**
exit | Returns to privileged EXEC mode. |
| **Step 7**
show power inline police show errdisable recovery | Displays the power monitoring status, and verify the error recovery settings. |
| **Step 8**
copy running-config startup-config | (Optional) Saves your entries in the configuration file. |

To disable policing of the real-time power consumption, use the `no power inline police` interface configuration command. To disable error recovery for PoE error-disabled cause, use the `no errdisable recovery cause inline-power` global configuration command.

For information about the output from the `show power inline police` privileged EXEC command, see the command reference for this release.
Adding a Description for an Interface

You can add a description about an interface to help you remember its function. The description appears in the output of these privileged EXEC commands: `show configuration`, `show running-config`, and `show interfaces`.

To add a description for an interface, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specifies the interface for which you are adding a description, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 description string</td>
<td>Adds a description (up to 240 characters) for an interface.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces interface-id description</td>
<td>Verifies your entry.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no description` interface configuration command to delete the description.

This example shows how to add a description on a port and how to verify the description:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# description Connects to Marketing
Switch(config-if)# end
Switch# show interfaces gigabitethernet1/0/2 description
Interface Status Protocol Description
Gi1/0/2 admin down down Connects to Marketing
```

Configuring Layer 3 Interfaces

Layer 3 interfaces are not supported on switches running the LAN Base feature set.

The switch supports these types of Layer 3 interfaces:

- SVIs—Configure SVIs for any VLANs for which you want to route traffic. SVIs are created when you enter a VLAN ID following the `interface vlan` global configuration command. To delete an SVI, use the `no interface vlan` global configuration command. You cannot delete interface VLAN 1.

Note When you create an SVI, it does not become active until it is associated with a physical port. For information about assigning Layer 2 ports to VLANs, see Chapter 1, “Configuring VLANs.”
When configuring SVIs, you can also configure SVI autostate exclude on a port in the SVI to exclude that port from being included in determining SVI line-state status. See the “Configuring SVI Autostate Exclude” section on page 1-40.

- Routed ports—Routed ports are physical ports configured to be in Layer 3 mode by using the `no switchport` interface configuration command.

- Layer 3 EtherChannel ports—EtherChannel interfaces made up of routed ports. EtherChannel port interfaces are described in Chapter 1, “Configuring EtherChannels and Link-State Tracking.”

A Layer 3 switch can have an IP address assigned to each routed port and SVI.

There is no defined limit to the number of SVIs and routed ports that can be configured in a switch or in a switch stack. However, the interrelationship between the number of SVIs and routed ports and the number of other features being configured might have an impact on CPU usage because of hardware limitations. If the switch is using its maximum hardware resources, attempts to create a routed port or SVI have these results:

- If you try to create a new routed port, the switch generates a message that there are not enough resources to convert the interface to a routed port, and the interface remains as a switch port.

- If you try to create an extended-range VLAN, an error message is generated, and the extended-range VLAN is rejected.

- If the switch is notified by VLAN Trunking Protocol (VTP) of a new VLAN, it sends a message that there are not enough hardware resources available and shuts down the VLAN. The output of the `show vlan` user EXEC command shows the VLAN in a suspended state.

- If the switch attempts to boot up with a configuration that has more VLANs and routed ports than hardware can support, the VLANs are created, but the routed ports are shut down, and the switch sends a message that this was due to insufficient hardware resources.

All Layer 3 interfaces require an IP address to route traffic. This procedure shows how to configure an interface as a Layer 3 interface and how to assign an IP address to an interface.

Note

If the physical port is in Layer 2 mode (the default), you must enter the `no switchport` interface configuration command to put the interface into Layer 3 mode. Entering a `no switchport` command disables and then reenables the interface, which might generate messages on the device to which the interface is connected. Furthermore, when you put an interface that is in Layer 2 mode into Layer 3 mode, the previous configuration information related to the affected interface might be lost, and the interface is returned to its default configuration.

To configure a Layer 3 interface, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>`interface { gigabitethernet interface-id }</td>
<td>{ vlan vlan-id }</td>
</tr>
<tr>
<td><code>no switchport</code></td>
<td>For physical ports only, enters Layer 3 mode.</td>
</tr>
<tr>
<td><code>ip address ip_address subnet_mask</code></td>
<td>Configures the IP address and IP subnet.</td>
</tr>
<tr>
<td><code>no shutdown</code></td>
<td>Enables the interface.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
To remove an IP address from an interface, use the **no ip address** interface configuration command.

This example shows how to configure a port as a routed port and to assign it an IP address:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 192.20.135.21 255.255.255.0
Switch(config-if)# no shutdown
```

Configuring SVI Autostate Exclude

Configuring SVI autostate exclude on an access or trunk port in an SVI excludes that port in the calculation of the status of the SVI line state (up or down) status even if it belongs to the same VLAN.

When the excluded port is in the up state, and all other ports in the VLAN are in the down state, the SVI state is changed to down.

At least one port in the VLAN should be up and not excluded to keep the SVI state up. You can use this command to exclude the monitoring port status when determining the status of the SVI.

To exclude a port from SVI state-change calculations, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Specifies a Layer 2 interface (physical port or port channel), and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport autostate exclude</td>
<td>Excludes the access or trunk port when defining the status of an SVI line state (up or down).</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running config interface interface-id</td>
<td>(Optional) Shows the running configuration.</td>
</tr>
<tr>
<td></td>
<td>show interface interface-id switchport</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure an access or trunk port in an SVI to be excluded from the line-state status calculation:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# no switchport
Switch(config-if)# switchport autostate exclude
Switch(config-if)# exit
```
Configuring the System MTU

The default maximum transmission unit (MTU) size for frames received and sent on all interfaces on the switch or switch stack is 1500 bytes. You can change the MTU size to support switched jumbo frames on all Gigabit Ethernet and 10-Gigabit Ethernet interfaces and to support routed frames on all routed ports.

- The system jumbo MTU value applies to switched packets on the Gigabit Ethernet and 10-Gigabit Ethernet ports of the switch or switch stack. Use the `system mtu jumbo bytes` global configuration command to specify the system jumbo MTU value.
- The system routing MTU value applies only to routed packets on all routed ports of the switch or switch stack. Use the `system mtu routing bytes` global configuration command to specify the system routing MTU value.

When configuring the system MTU values, follow these guidelines:

- The switch does not support the MTU on a per-interface basis.
- You can enter the `system mtu bytes` global configuration command on a Catalyst 3750-E Catalyst 3750-X switch, but the command does not take effect on the switch. This command only affects the system MTU size on Fast Ethernet ports on Catalyst 3750 members in a mixed hardware switch stack. In this stack, you can use the `system mtu bytes` global configuration command on a Catalyst 3750-E 3750-X member to configure the system MTU size on a Catalyst 3750 member.
- The `system mtu`, `system mtu jumbo`, and `system mtu routing` global configuration commands do not take effect in these cases:
 - When you enter the `system mtu` command on a Catalyst 3750-E 3750-X or 3560-E 3560-X switch
 - In a mixed stack when you enter the `system mtu jumbo` command for the Fast Ethernet ports on a Catalyst 3750 member
 - When you enter the `system mtu routing` command on a switch on which only Layer 2 ports are configured

Note

This command is not supported on switches running the LAN base feature set.

- When you use the `system mtu bytes` or `system mtu jumbo bytes` command to change the system MTU or system jumbo MTU size, you must reset the switch before the new configuration takes effect. The `system mtu routing` command does not require a switch reset to take effect.

The system MTU setting is saved in the switch environmental variable in NVRAM and becomes effective when the switch reloads. Unlike the system MTU routing configuration, the MTU settings you enter with the `system mtu` and `system mtu jumbo` commands are not saved in the switch Cisco IOS configuration file, even if you enter the `copy running-config startup-config` privileged EXEC command. Therefore, if you use TFTP to configure a new switch by using a backup configuration file and want the system MTU to be other than the default, you must explicitly configure the `system mtu` and `system mtu jumbo` settings on the new switch and then reload the switch.

In a switch stack, the MTU values applied to the members depend on the stack configuration:

- A stack consisting of only Catalyst 3750-X, Catalyst 3750-E, or Catalyst 3750 switches, also referred to as a Catalyst 3750-X-only, Catalyst 3750-X-only, or Catalyst 3750-only stack
- A stack consisting of Catalyst 3750-X and Catalyst 3750-E switches or either of these and Catalyst 3750 switches, also referred to as a mixed hardware stack
Table 1-5 shows how the MTU values are applied depending on the configuration.
The upper limit of the system routing MTU value is based on the switch or switch stack configuration and refers to either the currently applied system MTU or the system jumbo MTU value. For more information about setting the MTU sizes, see the `system mtu` global configuration command in the command reference for this release.

To change the MTU size for switched and routed packets, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>system mtu jumbo bytes</code></td>
<td>(Optional) Changes the MTU size for all Gigabit Ethernet and 10-Gigabit Ethernet interfaces on the switch or the switch stack. For information about the range for <code>bytes</code>, see Table 1-5.</td>
</tr>
<tr>
<td>Step 3: <code>system mtu routing bytes</code></td>
<td>(Optional) Changes the system MTU for routed ports. You can also set the maximum MTU to be advertised by the routing protocols that support the configured MTU size. The system routing MTU is the maximum MTU for routed packets and is also the maximum MTU that the switch advertises in routing updates for protocols such as OSPF. For information about the range for <code>bytes</code>, see Table 1-5. Note This command is not supported on switches running the LAN base feature set.</td>
</tr>
</tbody>
</table>

Table 1-5 System MTU Values

<table>
<thead>
<tr>
<th>Configuration</th>
<th>system mtu command</th>
<th>system jumbo mtu command</th>
<th>system routing mtu command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standalone Catalyst 3750-X, 3750-E, 3560-X or 3560-E switch or Catalyst 3750-X-only or Catalyst 3560-X-only stack</td>
<td>You can enter the command on a Catalyst 3750-X, Catalyst 3750-E, Catalyst 3560-X, or Catalyst 3560-E switch, but system MTU value does not take effect.</td>
<td>Use the <code>system mtu jumbo bytes</code> command. The range is from 1500 to 9198 bytes.</td>
<td>Use the <code>system mtu routing bytes</code> command. The range is from 1500 to the system jumbo MTU value (in bytes).</td>
</tr>
<tr>
<td>Mixed hardware stack</td>
<td>Use the <code>system mtu bytes</code> command, which takes effect only on Catalyst 3750 members. The range is from 1500 to 1998 bytes.</td>
<td>Use the <code>system mtu jumbo bytes</code> command. The range is from 1500 to 9000 bytes.</td>
<td>Use the <code>system mtu routing bytes</code> command. The range is from 1500 to the system MTU value (in bytes).</td>
</tr>
<tr>
<td>Catalyst 3750-only stack</td>
<td>Use the <code>system mtu bytes</code> command. The range is from 1500 to 1998 bytes.</td>
<td>Use the <code>system mtu jumbo bytes</code> command. The range is from 1500 to 9000 bytes.</td>
<td>Use the <code>system mtu routing bytes</code> command. The range is from 1500 to the system MTU value (in bytes).</td>
</tr>
</tbody>
</table>

1. If you use the `system mtu bytes` command on a Catalyst 3750-X or 3750-E member in a mixed hardware stack, the setting takes effect only on Catalyst 3750 members.2. The system routing MTU value is the applied value, not the configured value.
Configuring the System MTU

Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td><code>system mtu bytes</code></td>
<td>(Optional) In a mixed hardware stack, change the MTU size for all Fast Ethernet interfaces on the Catalyst 3750 members. The range is 1500 to 1998 bytes; the default is 1500 bytes. Note This command does not apply to Catalyst 3560-E 3560-X switches.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
<td>Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>reload</code></td>
<td>Reloads the operating system.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>show system mtu</code></td>
<td>Verifies your settings.</td>
</tr>
</tbody>
</table>

If you enter a value that is outside the allowed range for the specific type of interface, the value is not accepted.

This example shows how to set the maximum packet size for a Gigabit Ethernet port to 7500 bytes:

```bash
Switch(config)# system mtu jumbo 7500
Switch(config)# exit
Switch# reload
```

This example shows the response when you try to set Gigabit Ethernet interfaces to an out-of-range number:

```bash
Switch(config)# system mtu jumbo 25000
^%
% Invalid input detected at '^' marker.
```
Configuring the Power Supplies

You can use the `power supply` user EXEC command to configure and manage the internal power supply supplies on the switch.

To configure and manage the internal power supply supplies, follow these steps beginning in user EXEC mode:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| | `power supply switch-number {off | on}` | Set the switch power supply to `off` or `on` by using one of these keywords:
 - `off`—Set the power supply off.
 - `on`—Set the power supply on.
 The `switch-number` is supported only on Catalyst 3750-E switches.
 By default, the switch power supply is `on`. |
| | `power supply switch-number {reset {hard | soft} slot {A | B} {off | on}}` | Specifies a switch to reset or a power supply to set to `off` or `on`. By default, the switch power supply is `on`.
 - `reset`—Resets the software or switch:
 - `hard`—Resets everything on the switch, including the hardware.
 - `soft`—Resets only the switch software.
 - `slot A`—Selects the power supply in slot A.
 - `slot B`—Selects power supply in slot B.
 Note
 Power supply slot B slot is the closest to the outer edge of the switch.
 - `off`—Sets the power supply off.
 - `on`—Sets the power supply on.
 The `switch-number` is supported only on Catalyst 3750-X switches. |

| Step 2 | `show env power` | Verifies your settings. |
| Step 3 | `copy running-config startup-config` | (Optional) Saves your entries in the configuration file. |

The switch does not support the `no power supply` user EXEC command. To return to the default setting, use the `power supply switch-number on` command. To return to the default setting, use the `power supply switch-number slot {A | B} on` command.

For more information about using the `power supply` user EXEC command, see the command reference for this release.
Configuring the Cisco RPS 2300 in a Mixed Stack

In a mixed stack with Catalyst 3750-X and 3750-E switches, one or more Catalyst 3750-E switches can be connected to a Cisco Redundant Power System 2300, also known as the RPS 2300. You can configure and manage an RPS 2300 connected to a Catalyst 3750-E switch in the stack.

Note

The Catalyst 3750-X and 3560-X switches do not have RPS connectors. These switches can be connected to an XPS-2200 expandable power supply (not available at this time). The Catalyst 3750-X switch also has stack power connectors. See Chapter 1, “Configuring Catalyst 3750-X StackPower” for information on stack power.

You can configure and manage the Cisco Redundant Power System 2300, also known as the RPS 2300. Follow these guidelines when configuring the RPS-2300:

- The RPS name is a 16-character-maximum string.
- On a Catalyst 3560-E or a standalone Catalyst 3750-E switch, the RPS name applies to the connected RPS 2300.
- In a switch stack, the RPS name applies to the RPS ports connected to the specified switch.
- If you do not want the RPS 2300 to provide power to a switch, but do not want to disconnect the RPS cable between the switch and the RPS 2300, use the `power rps switch-number port rps-port-id mode standby` user EXEC command.
- You can configure the priority of an RPS 2300 port from 1 to 6. Specifying a value of 1 assigns the port and its connected devices the highest priority and specifying a value of 6 assigns the port and its connected devices the lowest priority.

If multiple switches connected to the RPS 2300 need power, the RPS 2300 provides power to the switches with the highest priority. If the RPS 2300 still has power available, it can then provide power to the switches with lower priorities.
To configure and manage the RPS 2300, follow these steps beginning in user EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
</tbody>
</table>
power rps switch-number name [string | serialnumber]
Specifies the name of the RPS 2300.
The keywords have these meanings:
• **switch-number**—Specifies the stack member to which the RPS 2300 is connected. The range is 1 to 9, depending on the switch member numbers in the stack. This keyword is supported only on Catalyst 3750-E switches.
• **name**—Sets the name of the RPS 2300 and enter one of these options:
 – **string**—Specifies the name such as *port1* or “*port 1*”. Using quotation marks before and after the name is optional, but you must use quotation marks if you want to include spaces in the port name. The name can have up to 16 characters.
 – **serialnumber**—Configures the switch to use the RPS 2300 serial number as the name. |
| **Step 2** |
power rps switch-number port rps-port-id mode [active | standby]
Specifies the mode of the RPS 2300 port.
The keywords have these meanings:
• **switch-number**—Specifies the stack member to which the RPS 2300 is connected. The range is 1 to 9, depending on the switch member numbers in the stack. This keyword is supported only on Catalyst 3750-E switches.
• **port rps-port-id**—Specifies the RPS 2300 port. The range is from 1 to 6.
• **mode**—Sets the mode of the RPS 2300 port:
 – **active**—The RPS 2300 can provide the power to a switch when the switch internal power supply cannot.
 – **standby**—The RPS 2300 is not providing power to a switch.
 The default mode for RPS ports is **active**. |
| **Step 3** |
power rps switch-number port rps-port-id priority priority
Sets the priority of the RPS 2300 port. The range is from 1 to 6, where 1 is the highest priority and 6 is the lowest priority.
The default port priority is 6. |
| **Step 4** |
show env rps
Verifies your settings. |
| **Step 5** |
copy running-config startup-config
(Optional) **Saves your entries in the configuration file.** |
To return to the RPS 2300 default settings, use these commands:

- To return to the default name setting (no name is configured), use the `power rps switch-number port rps-port-id name` user EXEC command with no space between the quotation marks.
- To return to the default port mode, use the `power rps switch-number port rps-port-id active` command.
- To return to the default port priority, use the `power rps switch-number port rps-port-id priority` command.

For more information about using the `power rps` user EXEC command, see the command reference for this release.

Configuring the Cisco eXpandable Power System (XPS) 2200

The Cisco XPS 2200 is a standalone power system that you can connect to Catalyst 3560-X and Catalyst 3750-X switches to provide backup power to connected devices or, in a Catalyst 3750-X power stack, to supply additional power to the power stack budget. The XPS 2200 power ports and internal power supplies can operate in redundant power supply (RPS) mode or stack power (SP) mode.

You use the switch CLI to configure the XPS:

- Configuring the System Names, page 1-48
- Configuring XPS Ports, page 1-50
- Configuring XPS Power Supplies, page 1-51

Configuring the System Names

To configure a name for the XPS 2200 system and for an XPS port connected to a switch, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Step 2</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>`power xps switch-number name [name</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td>Configures a name for the XPS 2200 system.</td>
</tr>
<tr>
<td></td>
<td>• <code>name</code>—Enter a name for the XPS 2000 port. The name can have up to 20 characters.</td>
</tr>
<tr>
<td></td>
<td>• <code>serialnumber</code>—Use the serial number of the XPS 2200 as the system name.</td>
</tr>
<tr>
<td></td>
<td>The <code>switch-number</code> appears only on Catalyst 3750-X switches and represents the switch number in the data stack, a value from 1 to 9.</td>
</tr>
</tbody>
</table>
Use the **no power xps switch-number** command to remove the system name. Use the **no power xps switch-number port** command to remove the port name.
Configuring XPS Ports

These commands apply to the XPS and are saved in the XPS, but the configuration is not saved in the
switch configuration file.

To configure XPS 2200 ports, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>`power xps switch-number port {number</td>
<td>connected} mode {disable</td>
</tr>
<tr>
<td>number—Enter the XPS 2200 port number. The range is 1 to 9.</td>
<td></td>
</tr>
<tr>
<td>connected—Enter this keyword if you do not know the port number to which the switch is connected.</td>
<td></td>
</tr>
<tr>
<td>mode disable—Disables (shut down) the XPS port.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Disabling an XPS port is like removing the cable and appears the same in the <code>show</code> command outputs. If the physical cable is connected, you can still use the <code>enable</code> keyword to enable the port.</td>
</tr>
<tr>
<td>mode enable—Enables the XPS port. This is the default.</td>
<td></td>
</tr>
<tr>
<td>The <code>switch-number</code> appears only on Catalyst 3750-X switches and represents the switch number in the data stack, a value from 1 to 9.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>`power xps switch-number port {number</td>
<td>connected} role {auto</td>
</tr>
<tr>
<td>role auto—The port mode is determined by the switch connected to the port. This is the default. When a Catalyst 3560-X switch or Catalyst 3750-X switch running the LAN base image is connected, the mode is RPS. When a Catalyst-3750-X switch is connected, the mode is stack power (SP).</td>
<td></td>
</tr>
<tr>
<td>role RPS—The XPS acts as a back up if the switch power supply fails. At least one RPS power supply must be in RPS mode for this configuration.</td>
<td></td>
</tr>
<tr>
<td>The <code>switch-number</code> appears only on Catalyst 3750-X switches and represents the switch number in the data stack, a value from 1 to 9.</td>
<td></td>
</tr>
<tr>
<td>The default role for a port is Auto-SP, where the power mode is determined by the switch connected to the port (RPS for Catalyst 3560-X or Catalyst 3750-X switches running the LAN base image, or SP for Catalyst 3750-X switches running the IP base or IP services image).</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>`power xps switch-number port {number</td>
<td>connected} priority port-priority`</td>
</tr>
<tr>
<td>priority port-priority—Sets the RPS priority of the port. The range is 1 to 9, with 1 being the highest priority. The default priority is the XPS port number.</td>
<td></td>
</tr>
<tr>
<td>The <code>switch-number</code> appears only on Catalyst 3750-X switches and represents the switch number in the data stack, a value from 1 to 9.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>show env xps port</code></td>
<td>Verifies the XPS configuration of the port.</td>
</tr>
</tbody>
</table>
For auto-SP ports participating in stack power, configure stack power characteristics by using the stack power commands described in Chapter 1, “Configuring Catalyst 3750-X StackPower.”

Configuring XPS Power Supplies

You can configure the mode of an XPS power supply and you can configure it to be on or off. To configure XPS 2200 power supplies, follow these steps beginning in privileged EXEC mode:

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `power xps switch-number supply {A | B} mode {rps | sp}` | Sets the XPS power supply mode.
 - `supply {A | B}`—Selects the power supply to configure. Power supply A is on the left (labeled PS1) and power supply B (PS2) is on the right.
 - `mode rps`—Sets the power supply mode to RPS, to back up connected switches. This is the default setting for power supply A (PS1).
 - `mode sp`—Sets the power supply mode to stack power (SP), to participate in the power stack. This is the default setting for power supply B (PS2).

The `switch-number` appears only on Catalyst 3750-X switches and represents the switch number in the data stack, a value from 1 to 9.

| Step 2 | `power xps switch-number supply {A | B} {on | off}` | Sets the XPS power supply to be on or off. The default is for both power supplies to be on.

 The `switch-number` appears only on Catalyst 3750-X switches and represents the switch number in the data stack, a value from 1 to 9.

| Step 3 | `end` | Returns to privileged EXEC mode. |
| Step 4 | `show env xps power` | Displays the status of the XPS power supplies. |

Monitoring and Maintaining the Interfaces

These sections contain interface monitoring and maintenance information:

- Monitoring Interface Status, page 1-52
- Clearing and Resetting Interfaces and Counters, page 1-53
- Shutting Down and Restarting the Interface, page 1-53
Monitoring Interface Status

Commands entered at the privileged EXEC prompt display information about the interface, including the versions of the software and the hardware, the configuration, and statistics about the interfaces. Table 1-6 lists some of these interface monitoring commands. (You can display the full list of show commands by using the show ? command at the privileged EXEC prompt.) These commands are fully described in the Cisco IOS Interface Command Reference, Release 12.4.

<table>
<thead>
<tr>
<th>Table 1-6</th>
<th>Show Commands for Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>show env power switch [switch-number]</code></td>
<td>(Optional) Displays the status of the internal power supplies for each switch in the stack or for the specified switch. The range is 1 to 9, depending on the switch member numbers in the stack. These keywords are available only on Catalyst 3750-E switches.</td>
</tr>
<tr>
<td><code>show env rps</code></td>
<td>Displays whether a redundant power system (RPS) is connected to the switch as follows:</td>
</tr>
<tr>
<td></td>
<td>- Catalyst 3750-E or 3560-E switch—Cisco Redundant Power System 2300, also referred to as the RPS 2300.</td>
</tr>
<tr>
<td></td>
<td>- Catalyst 3750v2 or 3560v2 switch—Cisco Redundant Power System 2300.</td>
</tr>
<tr>
<td></td>
<td>- Catalyst 3750, 3560, 2970, or 2960 switches—RPS 2300 or Cisco RPS 675 Redundant Power System, also referred to as the RPS 675.</td>
</tr>
<tr>
<td><code>show env rps detail</code></td>
<td>(Optional) Displays the details about the RPSs that are connected to the switch or switch stack.</td>
</tr>
<tr>
<td><code>show env rps switch [switch-number]</code></td>
<td>(Optional) Displays the RPSs that are connected to each switch in the stack or to the specified switch. The range is 1 to 9, depending on the switch member numbers in the stack. This keyword is available only on Catalyst 3750-E switches.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id]</code></td>
<td>Displays the status and configuration of all interfaces or a specific interface.</td>
</tr>
<tr>
<td><code>show interfaces interface-id status [err-disabled]</code></td>
<td>Displays interface status or a list of interfaces in the error-disabled state.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] switchport</code></td>
<td>Displays administrative and operational status of switching (nonrouting) ports. You can use this command to find out if a port is in routing or in switching mode.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] description</code></td>
<td>Displays the description configured on an interface or all interfaces and the interface status.</td>
</tr>
<tr>
<td><code>show ip interface [interface-id]</code></td>
<td>Displays the usability status of all interfaces configured for IP routing or the specified interface.</td>
</tr>
<tr>
<td><code>show interface [interface-id] stats</code></td>
<td>Displays the input and output packets by the switching path for the interface.</td>
</tr>
<tr>
<td><code>show interfaces interface-id</code></td>
<td>(Optional) Displays speed and duplex on the interface.</td>
</tr>
<tr>
<td><code>show interfaces transceiver dom-supported-list</code></td>
<td>(Optional) Displays Digital Optical Monitoring (DOM) status on the connect SFP modules.</td>
</tr>
</tbody>
</table>
Table 1-6 Show Commands for Interfaces (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces transceiver properties</td>
<td>(Optional) Displays temperature, voltage, or amount of current on the interface.</td>
</tr>
<tr>
<td>show interfaces [interface-id] [[transceiver properties</td>
<td>Displays physical and operational status about an SFP module.</td>
</tr>
<tr>
<td>properties</td>
<td>detail]</td>
</tr>
<tr>
<td>show running-config interface [interface-id]</td>
<td>Displays the running configuration in RAM for the interface.</td>
</tr>
<tr>
<td>show version</td>
<td>Displays the hardware configuration, software version, the names and sources of configuration files, and the boot images.</td>
</tr>
<tr>
<td>show controllers ethernet-controller interface-id phy</td>
<td>Displays the operational state of the auto-MDIX feature on the interface.</td>
</tr>
<tr>
<td>show power inline [interface-id</td>
<td>module switch-number]</td>
</tr>
<tr>
<td>show power inline consumption</td>
<td>Displays the power consumption data.</td>
</tr>
<tr>
<td>show power inline police</td>
<td>Displays the power policing data.</td>
</tr>
</tbody>
</table>

Clearing and Resetting Interfaces and Counters

Table 1-7 lists the privileged EXEC mode clear commands that you can use to clear counters and reset interfaces.

Table 1-7 Clear Commands for Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear counters [interface-id]</td>
<td>clears interface counters.</td>
</tr>
<tr>
<td>clear interface interface-id</td>
<td>Resets the hardware logic on an interface.</td>
</tr>
<tr>
<td>clear line [number</td>
<td>console 0</td>
</tr>
</tbody>
</table>

To clear the interface counters shown by the show interfaces privileged EXEC command, use the clear counters privileged EXEC command. The clear counters command clears all current interface counters from the interface unless you specify optional arguments that clear only a specific interface type from a specific interface number.

Note

The clear counters privileged EXEC command does not clear counters retrieved by using Simple Network Management Protocol (SNMP), but only those seen with the show interface privileged EXEC command.

Shutting Down and Restarting the Interface

Shutting down an interface disables all functions on the specified interface and marks the interface as unavailable on all monitoring command displays. This information is communicated to other network servers through all dynamic routing protocols. The interface is not mentioned in any routing updates.
To shut down an interface, follow these steps beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>interface { vlan vlan-id }</td>
<td>gigabitethernet interface-id }</td>
</tr>
<tr>
<td>shutdown</td>
<td>Shuts down an interface.</td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verifies your entry.</td>
</tr>
</tbody>
</table>

Use the `no shutdown` interface configuration command to restart the interface.

To verify that an interface is disabled, enter the `show interfaces` privileged EXEC command. A disabled interface is shown as `administratively down` in the display.
Configuring VLANs

This chapter describes how to configure normal-range VLANs (VLAN IDs 1 to 1005) and extended-range VLANs (VLAN IDs 1006 to 4094) on the Catalyst 3750-E and 3560-E Catalyst 3750-X or 3560-X switch. It includes information about VLAN membership modes, VLAN configuration modes, VLAN trunks, and dynamic VLAN assignment from a VLAN Membership Policy Server (VMPS). Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

The chapter consists of these sections:

- Understanding VLANs, page 1-1
- Configuring Normal-Range VLANs, page 1-4
- Configuring Extended-Range VLANs, page 1-11
- Displaying VLANs, page 1-14
- Configuring VLAN Trunks, page 1-15
- Configuring VMPS, page 1-26

Understanding VLANs

A VLAN is a switched network that is logically segmented by function, project team, or application, without regard to the physical locations of the users. VLANs have the same attributes as physical LANs, but you can group end stations even if they are not physically located on the same LAN segment. Any switch port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in the VLAN. Each VLAN is considered a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a router or a switch supporting fallback bridging, as shown in Figure 1-1. In a switch stack, VLANs can be formed with ports across the stack. Because a VLAN is considered a separate logical network, it contains its own bridge Management Information Base (MIB) information and can support its own implementation of spanning tree. See Chapter 1, “Configuring STP.”
Before you create VLANs, you must decide whether to use VLAN Trunking Protocol (VTP) to maintain global VLAN configuration for your network. For more information on VTP, see Chapter 1, “Configuring VTP.”

Figure 1-1 shows an example of VLANs segmented into logically defined networks.

VLANs are often associated with IP subnetworks. For example, all the end stations in a particular IP subnet belong to the same VLAN. Interface VLAN membership on the switch is assigned manually on an interface-by-interface basis. When you assign switch interfaces to VLANs by using this method, it is known as interface-based, or static, VLAN membership.

Traffic between VLANs must be routed or fallback bridged. The switch can route traffic between VLANs by using switch virtual interfaces (SVIs).

On switches running the LAN base feature set, static routing between VLANs is supported only on switches running Cisco IOS Release 12.2(58)SE or later.

An SVI must be explicitly configured and assigned an IP address to route traffic between VLANs. For more information, see the “Switch Virtual Interfaces” section on page 1-5 and the “Configuring Layer 3 Interfaces” section on page 1-38.

If you plan to configure many VLANs on the switch and to not enable routing, you can use the `sdm prefer vlan` global configuration command to set the Switch Database Management (sdm) feature to the VLAN template, which configures system resources to support the maximum number of unicast MAC addresses. For more information on the SDM templates, see Chapter 1, “Configuring SDM Templates,” or see the `sdm prefer` command in the command reference for this release.

Supported VLANs

The switch supports VLANs in VTP client, server, and transparent modes. VLANs are identified by a number from 1 to 4094. VLAN IDs 1002 through 1005 are reserved for Token Ring and FDDI VLANs. VTP version 1 and version 2 support only normal-range VLANs (VLAN IDs 1 to 1005). In these versions, the switch must be in VTP transparent mode when you create VLAN IDs from 1006 to 4094. Cisco IOS Release 12.2(52)SE and later support VTP version 3. VTP version 3 supports the entire
VLAN range (VLANs 1 to 4094). Extended range VLANs (VLANs 1006 to 4094) are supported only in VTP version 3. You cannot convert from VTP version 3 to VTP version 2 if extended VLANs are configured in the domain.

The switch or switch stack supports a total of 1005 (normal range and extended range) VLANs when running the IP base or IP services feature set, and 255 VLANs when running the LAN base feature set. However, the number of routed ports, SVIs, and other configured features affects the use of the switch hardware.

The switch supports per-VLAN spanning-tree plus (PVST+) or rapid PVST+ with a maximum of 128 spanning-tree instances. One spanning-tree instance is allowed per VLAN. See the “Normal-Range VLAN Configuration Guidelines” section on page 1-6 for more information about the number of spanning-tree instances and the number of VLANs. The switch supports both Inter-Switch Link (ISL) and IEEE 802.1Q trunking methods for sending VLAN traffic over Ethernet ports.

VLAN Port Membership Modes

You configure a port to belong to a VLAN by assigning a membership mode that specifies the kind of traffic the port carries and the number of VLANs to which it can belong. Table 1-1 lists the membership modes and membership and VTP characteristics.

<table>
<thead>
<tr>
<th>Membership Mode</th>
<th>VLAN Membership Characteristics</th>
<th>VTP Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static-access</td>
<td>A static-access port can belong to one VLAN and is manually assigned to that VLAN. For more information, see the “Assigning Static-Access Ports to a VLAN” section on page 1-10.</td>
<td>VTP is not required. If you do not want VTP to globally propagate information, set the VTP mode to transparent. To participate in VTP, there must be at least one trunk port on the switch or the switch stack connected to a trunk port of a second switch or switch stack.</td>
</tr>
<tr>
<td>Trunk (ISL or IEEE 802.1Q)</td>
<td>A trunk port is a member of all VLANs by default, including extended-range VLANs, but membership can be limited by configuring the allowed-VLAN list. You can also modify the pruning-eligible list to block flooded traffic to VLANs on trunk ports that are included in the list. For information about configuring trunk ports, see the “Configuring an Ethernet Interface as a Trunk Port” section on page 1-18.</td>
<td>VTP is recommended but not required. VTP maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP exchanges VLAN configuration messages with other switches over trunk links.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring VLANs

Configuring Normal-Range VLANs

Normal-range VLANs are VLANs with VLAN IDs 1 to 1005. If the switch is in VTP server or VTP transparent mode, you can add, modify or remove configurations for VLANs 2 to 1001 in the VLAN database. (VLAN IDs 1 and 1002 to 1005 are automatically created and cannot be removed.)

In VTP versions 1 and 2, the switch must be in VTP transparent mode when you create extended-range VLANs (VLANs with IDs from 1006 to 4094), but these VLANs are not saved in the VLAN database. VTP version 3 supports extended-range VLANs in VTP server and transparent mode. See the “Configuring Extended-Range VLANs” section on page 1-11.

Configurations for VLAN IDs 1 to 1005 are written to the file vlan.dat (VLAN database), and you can display them by entering the show vlan privileged EXEC command. The vlan.dat file is stored in flash memory. On a Catalyst 3750-E Catalyst 3750-X switch, the vlan.dat file is stored in flash memory on the stack master. Stack members have a vlan.dat file that is consistent with the stack master.

You can cause inconsistency in the VLAN database if you attempt to manually delete the vlan.dat file. If you want to modify the VLAN configuration, use the commands described in these sections and in the command reference for this release. To change the VTP configuration, see Chapter 1, “Configuring VTP.”

For more detailed definitions of access and trunk modes and their functions, see Table 1-4 on page 1-16. When a port belongs to a VLAN, the switch learns and manages the addresses associated with the port on a per-VLAN basis. For more information, see the “Managing the MAC Address Table” section on page 1-12.
You use the interface configuration mode to define the port membership mode and to add and remove ports from VLANs. The results of these commands are written to the running-configuration file, and you can display the file by entering the show running-config privileged EXEC command.

You can set these parameters when you create a new normal-range VLAN or modify an existing VLAN in the VLAN database:

- VLAN ID
- VLAN name
- VLAN type (Ethernet, Fiber Distributed Data Interface [FDDI], FDDI network entity title [NET], TrBRF, or TrCRF, Token Ring, Token Ring-Net)
- VLAN state (active or suspended)
- Maximum transmission unit (MTU) for the VLAN
- Security Association Identifier (SAID)
- Bridge identification number for TrBRF VLANs
- Ring number for FDDI and TrCRF VLANs
- Parent VLAN number for TrCRF VLANs
- Spanning Tree Protocol (STP) type for TrCRF VLANs
- VLAN number to use when translating from one VLAN type to another

Note
This section does not provide configuration details for most of these parameters. For complete information on the commands and parameters that control VLAN configuration, see the command reference for this release.

These sections contain normal-range VLAN configuration information:

- Token Ring VLANs, page 1-5
- Normal-Range VLAN Configuration Guidelines, page 1-6
- Configuring Normal-Range VLANs, page 1-7
- Saving VLAN Configuration, page 1-7
- Default Ethernet VLAN Configuration, page 1-7
- Creating or Modifying an Ethernet VLAN, page 1-8
- Deleting a VLAN, page 1-9
- Assigning Static-Access Ports to a VLAN, page 1-10

Token Ring VLANs

Although the switch does not support Token Ring connections, a remote device such as a Catalyst 5000 series switch with Token Ring connections could be managed from one of the supported switches. Switches running VTP Version 2 advertise information about these Token Ring VLANs:

- Token Ring TrBRF VLANs
- Token Ring TrCRF VLANs

For more information on configuring Token Ring VLANs, see the Catalyst 5000 Series Software Configuration Guide.
Normal-Range VLAN Configuration Guidelines

Follow these guidelines when creating and modifying normal-range VLANs in your network:

- The switch supports 1005 VLANs in VTP client, server, and transparent modes.
- Switches running the IP base or IP services feature set support 1005 VLANs in VTP client, server, and transparent modes. Switches running the LAN base feature set support 255 VLANs.
- Normal-range VLANs are identified with a number between 1 and 1001. VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs.
- VLAN configuration for VLANs 1 to 1005 are always saved in the VLAN database. If the VTP mode is transparent, VTP and VLAN configuration are also saved in the switch running configuration file.
- With VTP versions 1 and 2, the switch supports VLAN IDs 1006 through 4094 only in VTP transparent mode (VTP disabled). These are extended-range VLANs and configuration options are limited. Extended-range VLANs created in VTP transparent mode are not saved in the VLAN database and are not propagated. VTP version 3 supports extended range VLAN (VLANs 1006 to 4094) database propagation. If extended VLANs are configured, you cannot convert from VTP version 3 to version 1 or 2. See the “Configuring Extended-Range VLANs” section on page 1-11.
- Before you can create a VLAN, the switch must be in VTP server mode or VTP transparent mode. If the switch is a VTP server, you must define a VTP domain or VTP will not function.
- The switch does not support Token Ring or FDDI media. The switch does not forward FDDI, FDDI-Net, TrCRF, or TrBRF traffic, but it does propagate the VLAN configuration through VTP.
- The switch supports 128 spanning-tree instances. If a switch has more active VLANs than supported spanning-tree instances, spanning tree can be enabled on 128 VLANs and is disabled on the remaining VLANs. If you have already used all available spanning-tree instances on a switch, adding another VLAN anywhere in the VTP domain creates a VLAN on that switch that is not running spanning-tree. If you have the default allowed list on the trunk ports of that switch (which is to allow all VLANs), the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that would not be broken, particularly if there are several adjacent switches that all have run out of spanning-tree instances. You can prevent this possibility by setting allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances.

If the number of VLANs on the switch exceeds the number of supported spanning-tree instances, we recommend that you configure the IEEE 802.1s Multiple STP (MSTP) on your switch to map multiple VLANs to a single spanning-tree instance. For more information about MSTP, see Chapter 1, “Configuring MSTP.”

- To avoid warning messages of high CPU utilization, it is recommended to have no more than 256 VLANs. In such cases, approximately 10 access interfaces or 5 trunk interfaces can flap simultaneously with negligible impact to CPU utilization. (If there are more interfaces that flap simultaneously, CPU usage may be excessively high.)
- When a switch in a stack learns a new VLAN or deletes or modifies an existing VLAN (either through VTP over network ports or through the CLI), the VLAN information is communicated to all stack members.
- When a switch joins a stack or when stacks merge, VTP information (the vlan.dat file) on the new switches will be consistent with the stack master.
- From image 15.0(02)SE6, on vtp transparent and off modes, vlans gets created from startup-config even if they are not applied to the interface.
Configuring Normal-Range VLANs

You configure VLANs in `vlan` global configuration command by entering a VLAN ID. Enter a new VLAN ID to create a VLAN, or enter an existing VLAN ID to modify that VLAN. You can use the default VLAN configuration (Table 1-2) or enter multiple commands to configure the VLAN. For more information about commands available in this mode, see the `vlan` global configuration command description in the command reference for this release. When you have finished the configuration, you must exit VLAN configuration mode for the configuration to take effect. To display the VLAN configuration, enter the `show vlan` privileged EXEC command.

Saving VLAN Configuration

The configurations of VLAN IDs 1 to 1005 are always saved in the VLAN database (vlan.dat file). If the VTP mode is transparent, they are also saved in the switch running configuration file. You can enter the `copy running-config startup-config` privileged EXEC command to save the configuration in the startup configuration file. In a switch stack, the whole stack uses the same vlan.dat file and running configuration. To display the VLAN configuration, enter the `show vlan` privileged EXEC command.

When you save VLAN and VTP information (including extended-range VLAN configuration information) in the startup configuration file and reboot the switch, the switch configuration is selected as follows:

- If the VTP mode is transparent in the startup configuration, and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration does not match the VLAN database, the domain name and VTP mode and configuration for the VLAN IDs 1 to 1005 use the VLAN database information.
- In VTP versions 1 and 2, if VTP mode is server, the domain name and VLAN configuration for VLAN IDs 1 to 1005 use the VLAN database information. VTP version 3 also supports VLANs 1006 to 4094.

Default Ethernet VLAN Configuration

Table 1-2 shows the default configuration for Ethernet VLANs.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The switch supports Ethernet interfaces exclusively. Because FDDI and Token Ring VLANs are not locally supported, you only configure FDDI and Token Ring media-specific characteristics for VTP global advertisements to other switches.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring VLANs

Configuring Normal-Range VLANs

Creating or Modifying an Ethernet VLAN

Each Ethernet VLAN in the VLAN database has a unique, 4-digit ID that can be a number from 1 to 1001. VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs. To create a normal-range VLAN to be added to the VLAN database, assign a number and name to the VLAN.

Table 1-2 Ethernet VLAN Defaults and Ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1</td>
<td>1 to 4094.</td>
</tr>
</tbody>
</table>
| | | **Note** Extended-range VLANs (VLAN IDs 1006 to 4094) are only saved in the VLAN database in VTP version 3.
| VLAN name | VLANxxxx, where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number | No range |
| IEEE 802.10 SAID | 100001 (100000 plus the VLAN ID) | 1 to 4294967294 |
| MTU size | 1500 | 1500 to 18190 |
| Translational bridge 1 | 0 | 0 to 1005 |
| Translational bridge 2 | 0 | 0 to 1005 |
| VLAN state | active, suspend | |
| Remote SPAN | disabled, enabled | |
| Private VLANs | none configured | 2 to 1001, 1006 to 4094. |

For the list of default parameters that are assigned when you add a VLAN, see the “Configuring Normal-Range VLANs” section on page 1-4.

Beginning in privileged EXEC mode, follow these steps to create or modify an Ethernet VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>Enter a VLAN ID, and enter VLAN configuration mode. Enter a new VLAN ID to create a VLAN, or enter an existing VLAN ID to modify that VLAN. Note The available VLAN ID range for this command is 1 to 4094. For information about adding VLAN IDs greater than 1005 (extended-range VLANs), see the “Configuring Extended-Range VLANs” section on page 1-11.</td>
</tr>
</tbody>
</table>

With VTP version 1 and 2, if the switch is in VTP transparent mode, you can assign VLAN IDs greater than 1006, but they are not added to the VLAN database. See the “Configuring Extended-Range VLANs” section on page 1-11.
Chapter 1 Configuring VLANs

Configuring Normal-Range VLANs

To return the VLAN name to the default settings, use the **no name**, **no mtu**, or **no remote-span** commands.

This example shows how to create Ethernet VLAN 20, name it *test20*, and add it to the VLAN database:

```
Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# name test20
Switch(config-vlan)# end
```

Deleting a VLAN

When you delete a VLAN from a switch that is in VTP server mode, the VLAN is removed from the VLAN database for all switches in the VTP domain. When you delete a VLAN from a switch that is in VTP transparent mode, the VLAN is deleted only on that specific switch or a switch stack.

You cannot delete the default VLANs for the different media types: Ethernet VLAN 1 and FDDI or Token Ring VLANs 1002 to 1005.

Caution

When you delete a VLAN, any ports assigned to that VLAN become inactive. They remain associated with the VLAN (and thus inactive) until you assign them to a new VLAN.

Beginning in privileged EXEC mode, follow these steps to delete a VLAN on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no vlan vlan-id</td>
<td>Remove the VLAN by entering the VLAN ID.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Assigning Static-Access Ports to a VLAN

You can assign a static-access port to a VLAN without having VTP globally propagate VLAN configuration information by disabling VTP (VTP transparent mode).

If you are assigning a port on a cluster member switch to a VLAN, first use the `rcommand privilege EXEC` command to log in to the cluster member switch.

Note If you assign an interface to a VLAN that does not exist, the new VLAN is created. (See the “Creating or Modifying an Ethernet VLAN” section on page 1-8.)

Beginning in privileged EXEC mode, follow these steps to assign a port to a VLAN in the VLAN database:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter the interface to be added to the VLAN.</td>
</tr>
<tr>
<td>Step 3 switchport mode access</td>
<td>Define the VLAN membership mode for the port (Layer 2 access port).</td>
</tr>
<tr>
<td>Step 4 switchport access vlan vlan-id</td>
<td>Assign the port to a VLAN. Valid VLAN IDs are 1 to 4094.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode</td>
</tr>
<tr>
<td>Step 6 show running-config interface interface-id</td>
<td>Verify the VLAN membership mode of the interface.</td>
</tr>
<tr>
<td>Step 7 show interfaces interface-id switchport</td>
<td>Verify your entries in the Administrative Mode and the Access Mode VLAN fields of the display.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the `default interface interface-id` interface configuration command.

This example shows how to configure a port as an access port in VLAN 2:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 2
Switch(config-if)# end
```
Configuring Extended-Range VLANs

With VTP version 1 and version 2, when the switch is in VTP transparent mode (VTP disabled), you can create extended-range VLANs (in the range 1006 to 4094). VTP version supports extended-range VLANs in server or transparent move. Extended-range VLANs enable service providers to extend their infrastructure to a greater number of customers. The extended-range VLAN IDs are allowed for any switchport commands that allow VLAN IDs.

With VTP version 1 or 2, extended-range VLAN configurations are not stored in the VLAN database, but because VTP mode is transparent, they are stored in the switch running configuration file, and you can save the configuration in the startup configuration file by using the `copy running-config startup-config` privileged EXEC command. Extended-range VLANs created in VTP version 3 are stored in the VLAN database.

Note Although the switch supports 4094 VLAN IDs, see the “Supported VLANs” section on page 1-2 for the actual number of VLANs supported.

These sections contain extended-range VLAN configuration information:

- Default VLAN Configuration, page 1-11
- Extended-Range VLAN Configuration Guidelines, page 1-11
- Creating an Extended-Range VLAN, page 1-12
- Creating an Extended-Range VLAN with an Internal VLAN ID, page 1-13

Default VLAN Configuration

See Table 1-2 on page 1-8 for the default configuration for Ethernet VLANs. You can change only the MTU size, private VLAN, and the remote SPAN configuration state on extended-range VLANs; all other characteristics must remain at the default state.

Extended-Range VLAN Configuration Guidelines

Follow these guidelines when creating extended-range VLANs:

- VLAN IDs in the extended range are not saved in the VLAN database and are not recognized by VTP unless the switch is running VTP version 3.
- You cannot include extended-range VLANs in the pruning eligible range.
- In VTP version 1 and 2, a switch must be in VTP transparent mode when you create extended-range VLANs. If VTP mode is server or client, an error message is generated, and the extended-range VLAN is rejected. VTP version 3 supports extended VLANs in server and transparent modes.
- For VTP version 1 or 2, you can set the VTP mode to transparent in global configuration mode. See the “Configuring VTP Mode” section on page 1-11. You should save this configuration to the startup configuration so that the switch boots up in VTP transparent mode. Otherwise, you lose the extended-range VLAN configuration if the switch resets. If you create extended-range VLANs in VTP version 3, you cannot convert to VTP version 1 or 2.
- STP is enabled by default on extended-range VLANs, but you can disable it by using the `no spanning-tree vlan vlan-id` global configuration command. When the maximum number of spanning-tree instances are on the switch, spanning tree is disabled on any newly created VLANs.
If the number of VLANs on the switch exceeds the maximum number of spanning-tree instances, we recommend that you configure the IEEE 802.1s Multiple STP (MSTP) on your switch to map multiple VLANs to a single spanning-tree instance. For more information about MSTP, see Chapter 1, “Configuring MSTP.”

- Each routed port on the switch creates an internal VLAN for its use. These internal VLANs use extended-range VLAN numbers, and the internal VLAN ID cannot be used for an extended-range VLAN. If you try to create an extended-range VLAN with a VLAN ID that is already allocated as an internal VLAN, an error message is generated, and the command is rejected.

Note Switches running the LAN base feature set support only static routing on SVIs.

- Because internal VLAN IDs are in the lower part of the extended range, we recommend that you create extended-range VLANs beginning from the highest number (4094) and moving to the lowest (1006) to reduce the possibility of using an internal VLAN ID.
- Before configuring extended-range VLANs, enter the `show vlan internal usage` privileged EXEC command to see which VLANs have been allocated as internal VLANs.
- If necessary, you can shut down the routed port assigned to the internal VLAN, which frees up the internal VLAN, and then create the extended-range VLAN and re-enable the port, which then uses another VLAN as its internal VLAN. See the “Creating an Extended-Range VLAN with an Internal VLAN ID” section on page 1-13.

- Although the switch or switch stack supports a total of 1005 (normal-range and extended-range) VLANs with the IP base or IP services feature set and 255 VLANs with the LAN base feature set, the number of routed ports, SVIs, and other configured features affects the use of the switch hardware. If you try to create an extended-range VLAN and there are not enough hardware resources available, an error message is generated, and the extended-range VLAN is rejected.
- In a switch stack, the whole stack uses the same running configuration and saved configuration, and extended-range VLAN information is shared across the stack.

Creating an Extended-Range VLAN

You create an extended-range VLAN in global configuration mode by entering the `vlan global` configuration command with a VLAN ID from 1006 to 4094. The extended-range VLAN has the default Ethernet VLAN characteristics (see Table 1-2) and the MTU size, private VLAN, and RSPAN configuration are the only parameters you can change. See the description of the `vlan global` configuration command in the command reference for the default settings of all parameters. In VTP version 1 or 2, if you enter an extended-range VLAN ID when the switch is not in VTP transparent mode, an error message is generated when you exit VLAN configuration mode, and the extended-range VLAN is not created.

In VTP version 1 and 2, extended-range VLANs are not saved in the VLAN database; they are saved in the switch running configuration file. You can save the extended-range VLAN configuration in the switch startup configuration file by using the `copy running-config startup-config` privileged EXEC command. VTP version 3 saves extended-range VLANs in the VLAN database.

Before you create an extended-range VLAN, you can verify that the VLAN ID is not used internally by entering the `show vlan internal usage` privileged EXEC command. If the VLAN ID is used internally and you want to free it up, go to the “Creating an Extended-Range VLAN with an Internal VLAN ID” section on page 1-13 before creating the extended-range VLAN.
Beginning in privileged EXEC mode, follow these steps to create an extended-range VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vtp mode transparent</td>
<td>Configure the switch for VTP transparent mode, disabling VTP.</td>
</tr>
<tr>
<td>Step 3 vlan vlan-id</td>
<td>Enter an extended-range VLAN ID and enter VLAN configuration mode.</td>
</tr>
<tr>
<td>Step 4 mtu mtu-size</td>
<td>(Optional) Modify the VLAN by changing the MTU size.</td>
</tr>
<tr>
<td>Step 5 remote-span</td>
<td>(Optional) Configure the VLAN as the RSPAN VLAN. See the “Configuring a VLAN as an RSPAN VLAN” section on page 1-20.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show vlan id vlan-id</td>
<td>Verify that the VLAN has been created.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup config</td>
<td>Save your entries in the switch startup configuration file. To save extended-range VLAN configurations, you need to save the VTP transparent mode configuration and the extended-range VLAN configuration in the switch startup configuration file. Otherwise, if the switch resets, it will default to VTP server mode, and the extended-range VLAN IDs will not be saved. With VTP version 3, the VLAN configuration is also saved in the VLAN database.</td>
</tr>
</tbody>
</table>

To delete an extended-range VLAN, use the `no vlan vlan-id` global configuration command.

The procedure for assigning static-access ports to an extended-range VLAN is the same as for normal-range VLANs. See the “Assigning Static-Access Ports to a VLAN” section on page 1-10.

This example shows how to create a new extended-range VLAN with all default characteristics, enter VLAN configuration mode, and save the new VLAN in the switch startup configuration file:

```
Switch(config)# vtp mode transparent
Switch(config)# vlan 2000
Switch(config-vlan)# end
Switch# copy running-config startup config
```

Creating an Extended-Range VLAN with an Internal VLAN ID

If you enter an extended-range VLAN ID that is already assigned to an internal VLAN, an error message is generated, and the extended-range VLAN is rejected. To manually free an internal VLAN ID, you must temporarily shut down the routed port that is using the internal VLAN ID.

Note Switches running the LAN base feature set support only static routing on SVIs.
Displaying VLANs

Use the show vlan privileged EXEC command to display a list of all VLANs on the switch, including extended-range VLANs. The display includes VLAN status, ports, and configuration information.

Table 1-3 lists the commands for monitoring VLANs.

Table 1-3 VLAN Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Mode</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces [vlan vlan-id]</td>
<td>Privileged EXEC</td>
<td>Display characteristics for all interfaces or for the specified VLAN configured on the switch.</td>
</tr>
<tr>
<td>show vlan [id vlan-id]</td>
<td>Privileged EXEC</td>
<td>Display parameters for all VLANs or the specified VLAN on the switch.</td>
</tr>
</tbody>
</table>
For more details about the show command options and explanations of output fields, see the command reference for this release.

Configuring VLAN Trunks

These sections contain this conceptual information:
- Trunking Overview, page 1-15
- Encapsulation Types, page 1-17
- Default Layer 2 Ethernet Interface VLAN Configuration, page 1-18
- Configuring an Ethernet Interface as a Trunk Port, page 1-18
- Configuring Trunk Ports for Load Sharing, page 1-22

Trunking Overview

A trunk is a point-to-point link between one or more Ethernet switch interfaces and another networking device such as a router or a switch. Ethernet trunks carry the traffic of multiple VLANs over a single link, and you can extend the VLANs across an entire network.

Two trunking encapsulations are available on all Ethernet interfaces:
- Inter-Switch Link (ISL) — Cisco-proprietary trunking encapsulation.
- IEEE 802.1Q — industry-standard trunking encapsulation.

Figure 1-2 shows a network of switches that are connected by ISL trunks.

![Figure 1-2 Switches in an ISL Trunking Environment](image_url)

You can configure a trunk on a single Ethernet interface or on an EtherChannel bundle. For more information about EtherChannel, see Chapter 1, “Configuring EtherChannels and Link-State Tracking.”
Ethernet trunk interfaces support different trunking modes (see Table 1-4). You can set an interface as trunking or nontrunking or to negotiate trunking with the neighboring interface. To autonegotiate trunking, the interfaces must be in the same VTP domain.

Trunk negotiation is managed by the Dynamic Trunking Protocol (DTP), which is a Point-to-Point Protocol. However, some internetworking devices might forward DTP frames improperly, which could cause misconfigurations.

To avoid this, you should configure interfaces connected to devices that do not support DTP to not forward DTP frames, that is, to turn off DTP.

- If you do not intend to trunk across those links, use the `switchport mode access` interface configuration command to disable trunking.
- To enable trunking to a device that does not support DTP, use the `switchport mode trunk` and `switchport nonegotiate` interface configuration commands to cause the interface to become a trunk but to not generate DTP frames. Use the `switchport trunk encapsulation isl` or `switchport trunk encapsulation dot1q` interface to select the encapsulation type on the trunk port.

You can also specify on DTP interfaces whether the trunk uses ISL or IEEE 802.1Q encapsulation or if the encapsulation type is autonegotiated. The DTP supports autonegotiation of both ISL and IEEE 802.1Q trunks.

Note DTP is not supported on private-VLAN ports or tunnel ports.

<table>
<thead>
<tr>
<th>Table 1-4</th>
<th>Layer 2 Interface Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Function</td>
</tr>
<tr>
<td><code>switchport mode access</code></td>
<td>Puts the interface (access port) into permanent nontrunking mode and negotiates to convert the link into a nontrunk link. The interface becomes a nontrunk interface regardless of whether or not the neighboring interface is a trunk interface.</td>
</tr>
<tr>
<td><code>switchport mode dynamic auto</code></td>
<td>Makes the interface able to convert the link to a trunk link. The interface becomes a trunk interface if the neighboring interface is set to <code>trunk</code> or <code>desirable</code> mode. The default switchport mode for all Ethernet interfaces is <code>dynamic auto</code>.</td>
</tr>
<tr>
<td><code>switchport mode dynamic desirable</code></td>
<td>Makes the interface actively attempt to convert the link to a trunk link. The interface becomes a trunk interface if the neighboring interface is set to <code>trunk</code>, <code>desirable</code>, or <code>auto</code> mode.</td>
</tr>
<tr>
<td><code>switchport mode trunk</code></td>
<td>Puts the interface into permanent trunking mode and negotiates to convert the neighboring link into a trunk link. The interface becomes a trunk interface even if the neighboring interface is not a trunk interface.</td>
</tr>
<tr>
<td><code>switchport nonegotiate</code></td>
<td>Prevents the interface from generating DTP frames. You can use this command only when the interface switchport mode is <code>access</code> or <code>trunk</code>. You must manually configure the neighboring interface as a trunk interface to establish a trunk link.</td>
</tr>
<tr>
<td><code>switchport mode dot1q-tunnel</code></td>
<td>Configures the interface as a tunnel (nontrunking) port to be connected in an asymmetric link with an IEEE 802.1Q trunk port. The IEEE 802.1Q tunneling is used to maintain customer VLAN integrity across a service provider network. See Chapter 1, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling,” for more information on tunnel ports.</td>
</tr>
</tbody>
</table>
Encapsulation Types

Table 1-5 lists the Ethernet trunk encapsulation types and keywords.

<table>
<thead>
<tr>
<th>Encapsulation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport trunk encapsulation isl</td>
<td>Specifies ISL encapsulation on the trunk link.</td>
</tr>
<tr>
<td>switchport trunk encapsulation dot1q</td>
<td>Specifies IEEE 802.1Q encapsulation on the trunk link.</td>
</tr>
<tr>
<td>switchport trunk encapsulation negotiate</td>
<td>Specifies that the interface negotiate with the neighboring interface to</td>
</tr>
<tr>
<td></td>
<td>become an ISL (preferred) or IEEE 802.1Q trunk, depending on the</td>
</tr>
<tr>
<td></td>
<td>configuration and capabilities of the neighboring interface. This is the</td>
</tr>
<tr>
<td></td>
<td>default for the switch.</td>
</tr>
</tbody>
</table>

Note

The switch does not support Layer 3 trunks; you cannot configure subinterfaces or use the **encapsulation** keyword on Layer 3 interfaces. The switch does support Layer 2 trunks and Layer 3 VLAN interfaces, which provide equivalent capabilities.

The trunking mode, the trunk encapsulation type, and the hardware capabilities of the two connected interfaces decide whether a link becomes an ISL or IEEE 802.1Q trunk.

IEEE 802.1Q Configuration Considerations

The IEEE 802.1Q trunks impose these limitations on the trunking strategy for a network:

- In a network of Cisco switches connected through IEEE 802.1Q trunks, the switches maintain one spanning-tree instance for each VLAN allowed on the trunks. Non-Cisco devices might support one spanning-tree instance for all VLANs.

 When you connect a Cisco switch to a non-Cisco device through an IEEE 802.1Q trunk, the Cisco switch combines the spanning-tree instance of the VLAN of the trunk with the spanning-tree instance of the non-Cisco IEEE 802.1Q switch. However, spanning-tree information for each VLAN is maintained by Cisco switches separated by a cloud of non-Cisco IEEE 802.1Q switches. The non-Cisco IEEE 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

- Make sure the native VLAN for an IEEE 802.1Q trunk is the same on both ends of the trunk link. If the native VLAN on one end of the trunk is different from the native VLAN on the other end, spanning-tree loops might result.

- Disabling spanning tree on the native VLAN of an IEEE 802.1Q trunk without disabling spanning tree on every VLAN in the network can potentially cause spanning-tree loops. We recommend that you leave spanning tree enabled on the native VLAN of an IEEE 802.1Q trunk or disable spanning tree on every VLAN in the network. Make sure your network is loop-free before disabling spanning tree.
Default Layer 2 Ethernet Interface VLAN Configuration

Table 1-6 shows the default Layer 2 Ethernet interface VLAN configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface mode</td>
<td>switchport mode dynamic auto</td>
</tr>
<tr>
<td>Trunk encapsulation</td>
<td>switchport trunk encapsulation negotiate</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 to 4094</td>
</tr>
<tr>
<td>VLAN range eligible for pruning</td>
<td>VLANs 2 to 1001</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Native VLAN (for IEEE 802.1Q trunks)</td>
<td>VLAN 1</td>
</tr>
</tbody>
</table>

Configuring an Ethernet Interface as a Trunk Port

Because trunk ports send and receive VTP advertisements, to use VTP you must ensure that at least one trunk port is configured on the switch and that this trunk port is connected to the trunk port of a second switch. Otherwise, the switch cannot receive any VTP advertisements.

These sections contain this configuration information:

- Interaction with Other Features, page 1-18
- Defining the Allowed VLANs on a Trunk, page 1-20
- Changing the Pruning-Eligible List, page 1-21
- Configuring the Native VLAN for Untagged Traffic, page 1-22

Note

By default, an interface is in Layer 2 mode. The default mode for Layer 2 interfaces is `switchport mode dynamic auto`. If the neighboring interface supports trunking and is configured to allow trunking, the link is a Layer 2 trunk or, if the interface is in Layer 3 mode, it becomes a Layer 2 trunk when you enter the `switchport` interface configuration command. By default, trunks negotiate encapsulation. If the neighboring interface supports ISL and IEEE 802.1Q encapsulation and both interfaces are set to negotiate the encapsulation type, the trunk uses ISL encapsulation.

Interaction with Other Features

Trunking interacts with other features in these ways:

- A trunk port cannot be a secure port.
- A trunk port cannot be a tunnel port.
- Trunk ports can be grouped into EtherChannel port groups, but all trunks in the group must have the same configuration. When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, the switch propagates the setting you entered to all ports in the group:
 - allowed-VLAN list.
 - STP port priority for each VLAN.
STP Port Fast setting.
- trunk status: if one port in a port group ceases to be a trunk, all ports cease to be trunks.

- We recommend that you configure no more than 24 trunk ports in PVST mode and no more than 40 trunk ports in MST mode.
- If you try to enable IEEE 802.1x on a trunk port, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to trunk, the port mode is not changed.
- A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable IEEE 802.1x on a dynamic port, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to dynamic, the port mode is not changed.

Configuring VLAN Trunks

Configuring a Trunk Port

Beginning in privileged EXEC mode, follow these steps to configure a port as a trunk port:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Specify the port to be configured for trunking, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport trunk encapsulation {isl</td>
<td>dot1q</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode {dynamic {auto</td>
<td>desirable}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• dynamic auto—Set the interface to a trunk link if the neighboring interface is set to trunk or desirable mode. This is the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• dynamic desirable—Set the interface to a trunk link if the neighboring interface is set to trunk, desirable, or auto mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• trunk—Set the interface in permanent trunking mode and negotiate to convert the link to a trunk link even if the neighboring interface is not a trunk interface.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switchport access vlan vlan-id</td>
<td>(Optional) Specify the default VLAN, which is used if the interface stops trunking.</td>
</tr>
<tr>
<td>Step 6</td>
<td>switchport trunk native vlan vlan-id</td>
<td>Specify the native VLAN for IEEE 802.1Q trunks.</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>show interfaces interface-id switchport</td>
<td>Display the switchport configuration of the interface in the Administrative Mode and the Administrative Trunking Encapsulation fields of the display.</td>
</tr>
<tr>
<td>Step 9</td>
<td>show interfaces interface-id trunk</td>
<td>Display the trunk configuration of the interface.</td>
</tr>
<tr>
<td>Step 10</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To return an interface to its default configuration, use the `default interface interface-id` interface configuration command. To reset all trunking characteristics of a trunking interface to the defaults, use the `no switchport trunk` interface configuration command. To disable trunking, use the `switchport mode access` interface configuration command to configure the port as a static-access port.

This example shows how to configure a port as an IEEE 802.1Q trunk. The example assumes that the neighbor interface is configured to support IEEE 802.1Q trunking.

```text
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport mode dynamic desirable
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# end
```

Defining the Allowed VLANs on a Trunk

By default, a trunk port sends traffic to and receives traffic from all VLANs. All VLAN IDs, 1 to 4094, are allowed on each trunk. However, you can remove VLANs from the allowed list, preventing traffic from those VLANs from passing over the trunk. To restrict the traffic a trunk carries, use the `switchport trunk allowed vlan remove vlan-list` interface configuration command to remove specific VLANs from the allowed list.

Note

VLAN 1 is the default VLAN on all trunk ports in all Cisco switches, and it has previously been a requirement that VLAN 1 always be enabled on every trunk link. You can use the VLAN 1 minimization feature to disable VLAN 1 on any individual VLAN trunk link so that no user traffic (including spanning-tree advertisements) is sent or received on VLAN 1.

To reduce the risk of spanning-tree loops or storms, you can disable VLAN 1 on any individual VLAN trunk port by removing VLAN 1 from the allowed list. When you remove VLAN 1 from a trunk port, the interface continues to send and receive management traffic, for example, Cisco Discovery Protocol (CDP), Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), DTP, and VTP in VLAN 1.

If a trunk port with VLAN 1 disabled is converted to a nontrunk port, it is added to the access VLAN. If the access VLAN is set to 1, the port will be added to VLAN 1, regardless of the `switchport trunk allowed` setting. The same is true for any VLAN that has been disabled on the port.

A trunk port can become a member of a VLAN if the VLAN is enabled, if VTP knows of the VLAN, and if the VLAN is in the allowed list for the port. When VTP detects a newly enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of the enabled VLAN. When VTP detects a new VLAN and the VLAN is not in the allowed list for a trunk port, the trunk port does not become a member of the new VLAN.

Beginning in privileged EXEC mode, follow these steps to modify the allowed list of a trunk:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>switchport mode trunk</td>
<td>Configure the interface as a VLAN trunk port.</td>
</tr>
</tbody>
</table>
To return to the default allowed VLAN list of all VLANs, use the `no switchport trunk allowed vlan` interface configuration command.

This example shows how to remove VLAN 2 from the allowed VLAN list on a port:

```plaintext
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport trunk allowed vlan remove 2
Switch(config-if)# end
```

Changing the Pruning-Eligible List

The pruning-eligible list applies only to trunk ports. Each trunk port has its own eligibility list. VTP pruning must be enabled for this procedure to take effect. The “Enabling VTP Pruning” section on page 1-16 describes how to enable VTP pruning.

Beginning in privileged EXEC mode, follow these steps to remove VLANs from the pruning-eligible list on a trunk port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Select the trunk port for which VLANs should be pruned, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>`switchport trunk pruning vlan {add</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring VLANs

Configuring VLAN Trunks

To return to the default pruning-eligible list of all VLANs, use the `no switchport trunk pruning vlan` interface configuration command.

Configuring the Native VLAN for Untagged Traffic

A trunk port configured with IEEE 802.1Q tagging can receive both tagged and untagged traffic. By default, the switch forwards untagged traffic in the native VLAN configured for the port. The native VLAN is VLAN 1 by default.

![Note]
The native VLAN can be assigned any VLAN ID.

For information about IEEE 802.1Q configuration issues, see the “IEEE 802.1Q Configuration Considerations” section on page 1-17.

Beginning in privileged EXEC mode, follow these steps to configure the native VLAN on an IEEE 802.1Q trunk:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Define the interface that is configured as the IEEE 802.1Q trunk, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switchport trunk native vlan vlan-id</code> Configure the VLAN that is sending and receiving untagged traffic on the trunk port. For <code>vlan-id</code>, the range is 1 to 4094.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show interfaces interface-id switchport</code> Verify your entries in the Trunking Native Mode VLAN field.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default native VLAN, VLAN 1, use the `no switchport trunk native vlan` interface configuration command.

If a packet has a VLAN ID that is the same as the outgoing port native VLAN ID, the packet is sent untagged; otherwise, the switch sends the packet with a tag.

Configuring Trunk Ports for Load Sharing

Load sharing divides the bandwidth supplied by parallel trunks connecting switches. To avoid loops, STP normally blocks all but one parallel link between switches. Using load sharing, you divide the traffic between the links according to which VLAN the traffic belongs.
You configure load sharing on trunk ports by using STP port priorities or STP path costs. For load sharing using STP port priorities, both load-sharing links must be connected to the same switch. For load sharing using STP path costs, each load-sharing link can be connected to the same switch or to two different switches. For more information about STP, see Chapter 1, “Configuring STP.”

Load Sharing Using STP Port Priorities

When two ports on the same switch form a loop, the switch uses the STP port priority to decide which port is enabled and which port is in a blocking state. You can set the priorities on a parallel trunk port so that the port carries all the traffic for a given VLAN. The trunk port with the higher priority (lower values) for a VLAN is forwarding traffic for that VLAN. The trunk port with the lower priority (higher values) for the same VLAN remains in a blocking state for that VLAN. One trunk port sends or receives all traffic for the VLAN.

Figure 1-3 shows two trunks connecting supported switches. In this example, the switches are configured as follows:

- VLANs 8 through 10 are assigned a port priority of 16 on Trunk 1.
- VLANs 3 through 6 retain the default port priority of 128 on Trunk 1.
- VLANs 3 through 6 are assigned a port priority of 16 on Trunk 2.
- VLANs 8 through 10 retain the default port priority of 128 on Trunk 2.

In this way, Trunk 1 carries traffic for VLANs 8 through 10, and Trunk 2 carries traffic for VLANs 3 through 6. If the active trunk fails, the trunk with the lower priority takes over and carries the traffic for all of the VLANs. No duplication of traffic occurs over any trunk port.

Figure 1-3 Load Sharing by Using STP Port Priorities

If your switch is a member of a switch stack, you must use the `spanning-tree [vlan vlan-id] cost cost` interface configuration command instead of the `spanning-tree [vlan vlan-id] port-priority priority` interface configuration command to select an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. For more information, see the “Load Sharing Using STP Path Cost” section on page 1-25.
Beginning in privileged EXEC mode, follow these steps to configure the network shown in Figure 1-3.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vtp domain domain-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>vtp mode server</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show vtp status</td>
</tr>
<tr>
<td>Step 6</td>
<td>show vlan</td>
</tr>
<tr>
<td>Step 7</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 8</td>
<td>interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td>Step 9</td>
<td>switchport trunk encapsulation {isl</td>
</tr>
<tr>
<td>Step 10</td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td>Step 11</td>
<td>end</td>
</tr>
<tr>
<td>Step 12</td>
<td>show interfaces gigabitethernet1/0/1 switchport</td>
</tr>
<tr>
<td>Step 13</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>show vlan</td>
</tr>
<tr>
<td>Step 16</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 17</td>
<td>interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td>Step 18</td>
<td>spanning-tree vlan 8-10 port-priority 16</td>
</tr>
<tr>
<td>Step 19</td>
<td>exit</td>
</tr>
<tr>
<td>Step 20</td>
<td>interface gigabitethernet1/0/2</td>
</tr>
<tr>
<td>Step 21</td>
<td>spanning-tree vlan 3-6 port-priority 16</td>
</tr>
<tr>
<td>Step 22</td>
<td>end</td>
</tr>
<tr>
<td>Step 23</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 24</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Load Sharing Using STP Path Cost

You can configure parallel trunks to share VLAN traffic by setting different path costs on a trunk and associating the path costs with different sets of VLANs, blocking different ports for different VLANs. The VLANs keep the traffic separate and maintain redundancy in the event of a lost link.

In Figure 1-4, Trunk ports 1 and 2 are configured as 100BASE-T ports. These VLAN path costs are assigned:

- VLANs 2 through 4 are assigned a path cost of 30 on Trunk port 1.
- VLANs 8 through 10 retain the default 100BASE-T path cost on Trunk port 1 of 19.
- VLANs 8 through 10 are assigned a path cost of 30 on Trunk port 2.
- VLANs 2 through 4 retain the default 100BASE-T path cost on Trunk port 2 of 19.

Figure 1-4 Load-Sharing Trunks with Traffic Distributed by Path Cost

Beginning in privileged EXEC mode, follow these steps to configure the network shown in Figure 1-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode on Switch A.</td>
</tr>
<tr>
<td>Step 2 interface gigabitethernet1/0/1</td>
<td>Define the interface to be configured as a trunk, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switchport trunk encapsulation {isl</td>
<td>Configure the port to support ISL or IEEE 802.1Q encapsulation. You must configure each end of the link with the same encapsulation type.</td>
</tr>
<tr>
<td>Step 4 switchport mode trunk</td>
<td>Configure the port as a trunk port. The trunk defaults to ISL trunking.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8 show running-config</td>
<td>Verify your entries. In the display, make sure that the interfaces are configured as trunk ports.</td>
</tr>
<tr>
<td>Step 9 show vlan</td>
<td>When the trunk links come up, Switch A receives the VTP information from the other switches. Verify that Switch A has learned the VLAN configuration.</td>
</tr>
<tr>
<td>Step 10 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
Understanding VMPS

Each time the client switch receives the MAC address of a new host, it sends a VQP query to the VMPS. When the VMPS receives this query, it searches its database for a MAC-address-to-VLAN mapping. The server response is based on this mapping and whether or not the server is in open or secure mode. In secure mode, the server shuts down the port when an illegal host is detected. In open mode, the server simply denies the host access to the port.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>interface gigabitethernet1/0/1</td>
<td>Define the interface on which to set the STP cost, and enter interface configuration mode.</td>
</tr>
<tr>
<td>12</td>
<td>spanning-tree vlan 2-4 cost 30</td>
<td>Set the spanning-tree path cost to 30 for VLANs 2 through 4.</td>
</tr>
<tr>
<td>13</td>
<td>end</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Repeat Steps 9 through 13 on the other configured trunk interface on Switch A, and set the spanning-tree path cost to 30 for VLANs 8, 9, and 10.</td>
</tr>
<tr>
<td>15</td>
<td>exit</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>16</td>
<td>show running-config</td>
<td>Verify your entries. In the display, verify that the path costs are set correctly for both trunk interfaces.</td>
</tr>
<tr>
<td>17</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring VMPS

The VLAN Query Protocol (VQP) is used to support dynamic-access ports, which are not permanently assigned to a VLAN, but give VLAN assignments based on the MAC source addresses seen on the port. Each time an unknown MAC address is seen, the switch sends a VQP query to a remote VMPS; the query includes the newly seen MAC address and the port on which it was seen. The VMPS responds with a VLAN assignment for the port. The switch cannot be a VMPS server but can act as a client to the VMPS and communicate with it through VQP.

These sections contain this information:

- “Understanding VMPS” section on page 1-26
- “Default VMPS Client Configuration” section on page 1-28
- “VMPS Configuration Guidelines” section on page 1-28
- “Configuring the VMPS Client” section on page 1-28
- “Monitoring the VMPS” section on page 1-31
- “Troubleshooting Dynamic-Access Port VLAN Membership” section on page 1-32
- “VMPS Configuration Example” section on page 1-32
If the port is currently unassigned (that is, it does not yet have a VLAN assignment), the VMPS provides one of these responses:

- If the host is allowed on the port, the VMPS sends the client a vlan-assignment response containing the assigned VLAN name and allowing access to the host.
- If the host is not allowed on the port and the VMPS is in open mode, the VMPS sends an access-denied response.
- If the VLAN is not allowed on the port and the VMPS is in secure mode, the VMPS sends a port-shutdown response.

If the port already has a VLAN assignment, the VMPS provides one of these responses:

- If the VLAN in the database matches the current VLAN on the port, the VMPS sends a success response, allowing access to the host.
- If the VLAN in the database does not match the current VLAN on the port and active hosts exist on the port, the VMPS sends an access-denied or a port-shutdown response, depending on the secure mode of the VMPS.

If the switch receives an access-denied response from the VMPS, it continues to block traffic to and from the host MAC address. The switch continues to monitor the packets directed to the port and sends a query to the VMPS when it identifies a new host address. If the switch receives a port-shutdown response from the VMPS, it disables the port. The port must be manually re-enabled by using Network Assistant, the CLI, or SNMP.

Dynamic-Access Port VLAN Membership

A dynamic-access port can belong to only one VLAN with an ID from 1 to 4094. When the link comes up, the switch does not forward traffic to or from this port until the VMPS provides the VLAN assignment. The VMPS receives the source MAC address from the first packet of a new host connected to the dynamic-access port and attempts to match the MAC address to a VLAN in the VMPS database.

If there is a match, the VMPS sends the VLAN number for that port. If the client switch was not previously configured, it uses the domain name from the first VTP packet it receives on its trunk port from the VMPS. If the client switch was previously configured, it includes its domain name in the query packet to the VMPS to obtain its VLAN number. The VMPS verifies that the domain name in the packet matches its own domain name before accepting the request and responds to the client with the assigned VLAN number for the client. If there is no match, the VMPS either denies the request or shuts down the port (depending on the VMPS secure mode setting).

Multiple hosts (MAC addresses) can be active on a dynamic-access port if they are all in the same VLAN; however, the VMPS shuts down a dynamic-access port if more than 20 hosts are active on the port.

If the link goes down on a dynamic-access port, the port returns to an isolated state and does not belong to a VLAN. Any hosts that come online through the port are checked again through the VQP with the VMPS before the port is assigned to a VLAN.

Dynamic-access ports can be used for direct host connections, or they can connect to a network. A maximum of 20 MAC addresses are allowed per port on the switch. A dynamic-access port can belong to only one VLAN at a time, but the VLAN can change over time, depending on the MAC addresses seen.
Default VMPS Client Configuration

Table 1-7 shows the default VMPS and dynamic-access port configuration on client switches.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMPS domain server</td>
<td>None</td>
</tr>
<tr>
<td>VMPS reconfirm interval</td>
<td>60 minutes</td>
</tr>
<tr>
<td>VMPS server retry count</td>
<td>3</td>
</tr>
<tr>
<td>Dynamic-access ports</td>
<td>None configured</td>
</tr>
</tbody>
</table>

VMPS Configuration Guidelines

These guidelines and restrictions apply to dynamic-access port VLAN membership:

- You should configure the VMPS before you configure ports as dynamic-access ports.
- When you configure a port as a dynamic-access port, the spanning-tree Port Fast feature is automatically enabled for that port. The Port Fast mode accelerates the process of bringing the port into the forwarding state.
- IEEE 802.1x ports cannot be configured as dynamic-access ports. If you try to enable IEEE 802.1x on a dynamic-access (VQP) port, an error message appears, and IEEE 802.1x is not enabled. If you try to change an IEEE 802.1x-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.
- Trunk ports cannot be dynamic-access ports, but you can enter the `switchport access vlan dynamic` interface configuration command for a trunk port. In this case, the switch retains the setting and applies it if the port is later configured as an access port.

 You must turn off trunking on the port before the dynamic-access setting takes effect.
- Dynamic-access ports cannot be monitor ports.
- Secure ports cannot be dynamic-access ports. You must disable port security on a port before it becomes dynamic.
- Private VLAN ports cannot be dynamic-access ports.
- Dynamic-access ports cannot be members of an EtherChannel group.
- Port channels cannot be configured as dynamic-access ports.
- A dynamic-access port can participate in fallback bridging.
- The VTP management domain of the VMPS client and the VMPS server must be the same.
- The VLAN configured on the VMPS server should not be a voice VLAN.

Configuring the VMPS Client

You configure dynamic VLANs by using the VMPS (server). The switch can be a VMPS client; it cannot be a VMPS server.
Entering the IP Address of the VMPS

You must first enter the IP address of the server to configure the switch as a client.

Note
If the VMPS is being defined for a cluster of switches, enter the address on the command switch.

Beginning in privileged EXEC mode, follow these steps to enter the IP address of the VMPS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vmps server ipaddress primary</td>
<td>Enter the IP address of the switch acting as the primary VMPS server.</td>
</tr>
<tr>
<td>Step 3 vmps server ipaddress</td>
<td>(Optional) Enter the IP address of the switch acting as a secondary VMPS server. You can enter up to three secondary server addresses.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show vmps</td>
<td>Verify your entries in the VMPS Domain Server field of the display.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note
You must have IP connectivity to the VMPS for dynamic-access ports to work. You can test for IP connectivity by pinging the IP address of the VMPS and verifying that you get a response.

Configuring Dynamic-Access Ports on VMPS Clients

If you are configuring a port on a cluster member switch as a dynamic-access port, first use the rcommand privileged EXEC command to log in to the cluster member switch.

Caution
Dynamic-access port VLAN membership is for end stations or hubs connected to end stations. Connecting dynamic-access ports to other switches can cause a loss of connectivity.

Beginning in privileged EXEC mode, follow these steps to configure a dynamic-access port on a VMPS client switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the switch port that is connected to the end station, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switchport mode access</td>
<td>Set the port to access mode.</td>
</tr>
<tr>
<td>Step 4 switchport access vlan dynamic</td>
<td>Configure the port as eligible for dynamic VLAN membership. The dynamic-access port must be connected to an end station.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
To return an interface to its default configuration, use the `default interface interface-id` interface configuration command. To return an interface to its default switchport mode (dynamic auto), use the `no switchport mode` interface configuration command. To reset the access mode to the default VLAN for the switch, use the `no switchport access vlan` interface configuration command.

Reconfirming VLAN Memberships

Beginning in privileged EXEC mode, follow these steps to confirm the dynamic-access port VLAN membership assignments that the switch has received from the VMPS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 1: vmps reconfirm</td>
<td>Reconfirm dynamic-access port VLAN membership.</td>
</tr>
<tr>
<td>step 2: show vmps</td>
<td>Verify the dynamic VLAN reconfirmation status.</td>
</tr>
</tbody>
</table>

Changing the Reconfirmation Interval

VMPS clients periodically reconfirm the VLAN membership information received from the VMPS. You can set the number of minutes after which reconfirmation occurs.

If you are configuring a member switch in a cluster, this parameter must be equal to or greater than the reconfirmation setting on the command switch. You must also first use the `recommand` privileged EXEC command to log in to the member switch.

Beginning in privileged EXEC mode, follow these steps to change the reconfirmation interval:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>step 2: vmps reconfirm minutes</td>
<td>Enter the number of minutes between reconfirmations of the dynamic VLAN membership. The range is 1 to 120. The default is 60 minutes.</td>
</tr>
<tr>
<td>step 3: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>step 4: show vmps</td>
<td>Verify the dynamic VLAN reconfirmation status in the Reconfirm Interval field of the display.</td>
</tr>
<tr>
<td>step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no vmps reconfirm` global configuration command.
Changing the Retry Count

Beginning in privileged EXEC mode, follow these steps to change the number of times that the switch attempts to contact the VMPS before querying the next server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vmps retry count</td>
<td>Change the retry count. The retry range is 1 to 10; the default is 3.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show vmps</td>
<td>Verify your entry in the Server Retry Count field of the display.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no vmps retry global configuration command.

Monitoring the VMPS

You can display information about the VMPS by using the show vmps privileged EXEC command. The switch displays this information about the VMPS:

- VMPS VQP Version—the version of VQP used to communicate with the VMPS. The switch queries the VMPS that is using VQP Version 1.
- Reconfirm Interval—the number of minutes the switch waits before reconfirming the VLAN-to-MAC-address assignments.
- Server Retry Count—the number of times VQP resends a query to the VMPS. If no response is received after this many tries, the switch starts to query the secondary VMPS.
- VMPS domain server—the IP address of the configured VLAN membership policy servers. The switch sends queries to the one marked current. The one marked primary is the primary server.
- VMPS Action—the result of the most recent reconfirmation attempt. A reconfirmation attempt can occur automatically when the reconfirmation interval expires, or you can force it by entering the vmps reconfirm privileged EXEC command or its Network Assistant or SNMP equivalent.

This is an example of output for the show vmps privileged EXEC command:

```
Switch# show vmps
VQP Client Status:
---------------------
VMPS VQP Version: 1
Reconfirm Interval: 60 min
Server Retry Count: 3
VMPS domain server: 172.20.128.86 (primary, current)
172.20.128.87

Reconfirmation status
---------------------
VMPS Action: other
```
Troubleshooting Dynamic-Access Port VLAN Membership

The VMPS shuts down a dynamic-access port under these conditions:

- The VMPS is in secure mode, and it does not allow the host to connect to the port. The VMPS shuts down the port to prevent the host from connecting to the network.
- More than 20 active hosts reside on a dynamic-access port.

To re-enable a disabled dynamic-access port, enter the `shutdown` interface configuration command followed by the `no shutdown` interface configuration command.

VMPS Configuration Example

Figure 1-5 shows a network with a VMPS server switch and VMPS client switches with dynamic-access ports. In this example, these assumptions apply:

- The VMPS server and the VMPS client are separate switches.
- The Catalyst 6500 series Switch A is the primary VMPS server.
- The Catalyst 6500 series Switch C and Switch J are secondary VMPS servers.
- End stations are connected to the clients, Switch B and Switch I.
- The database configuration file is stored on the TFTP server with the IP address 172.20.22.7.
Figure 1-5 Dynamic Port VLAN Membership Configuration

- Catalyst 6500 series switch A
 - Primary VMPS Server 1
 - 172.20.26.150

- Dynamic-access port
- Client switch B
 - 172.20.26.151
 - Trunk port

- Catalyst 6500 series
 - Secondary VMPS Server 2
 - 172.20.26.152

- Switch C
 - 172.20.26.153

- Switch D
 - 172.20.26.154

- Switch E
 - 172.20.26.155

- Switch F
 - 172.20.26.156

- Switch G
 - 172.20.26.157

- Switch H
 - 172.20.26.158
 - Trunk port
 - 172.20.26.159

- Dynamic-access port
- Client switch I
 - 172.20.26.158
 - Trunk port

- End station 1

- End station 2

- Catalyst 6500 series
 - Secondary VMPS Server 3
 - 172.20.26.159

- Switch J

- Ethernet segment (Trunk link)

- TFTP server
 - 172.20.22.7

- Router
 - 10.136.3.101

- Client switch I
 - 172.20.26.158
 - Trunk port

- End station 1

- End station 2
Configuring VTP

This chapter describes how to use the VLAN Trunking Protocol (VTP) and the VLAN database for managing VLANs with the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

The chapter consists of these sections:

- Understanding VTP, page 1-1
- Configuring VTP, page 1-8
- Monitoring VTP, page 1-18

Understanding VTP

VTP is a Layer 2 messaging protocol that maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP minimizes misconfigurations and configuration inconsistencies that can cause several problems, such as duplicate VLAN names, incorrect VLAN-type specifications, and security violations.

Before you create VLANs, you must decide whether to use VTP in your network. Using VTP, you can make configuration changes centrally on one or more switches and have those changes automatically communicated to all the other switches in the network. Without VTP, you cannot send information about VLANs to other switches.

VTP is designed to work in an environment where updates are made on a single switch and are sent through VTP to other switches in the domain. It does not work well in a situation where multiple updates to the VLAN database occur simultaneously on switches in the same domain, which would result in an inconsistency in the VLAN database.

VTP functionality is supported across the stack, and all switches in the stack maintain the same VLAN and VTP configuration inherited from the stack master. When a switch learns of a new VLAN through VTP messages or when a new VLAN is configured by the user, the new VLAN information is communicated to all switches in the stack.

When a switch joins the stack or when stacks merge, the new switches get VTP information from the stack master.
The switch supports 1005 VLANs when running the IP base or IP services feature set and 255 VLANs when running the LAN base feature set. However, the number of routed ports, SVIs, and other configured features affects the usage of the switch hardware. If the switch is notified by VTP of a new VLAN and the switch is already using the maximum available hardware resources, it sends a message that there are not enough hardware resources available and shuts down the VLAN. The output of the `show vlan` user EXEC command shows the VLAN in a suspended state.

VTP version 1 and version 2 support only normal-range VLANs (VLAN IDs 1 to 1005). Cisco IOS Release 12.2(52)SE and later support VTP version 3. VTP version 3 supports the entire VLAN range (VLANs 1 to 4094). Extended range VLANs (VLANs 1006 to 4094) are supported only in VTP version 3. You cannot convert from VTP version 3 to VTP version 2 if extended VLANs are configured in the domain.

These sections contain this conceptual information:

- The VTP Domain, page 1-2
- VTP Modes, page 1-3
- VTP Advertisements, page 1-4
- VTP Version 2, page 1-5
- VTP Version 3, page 1-5
- VTP Pruning, page 1-6
- VTP and Switch Stacks, page 1-8

The VTP Domain

A VTP domain (also called a VLAN management domain) consists of one switch or several interconnected switches or switch stacks under the same administrative responsibility sharing the same VTP domain name. A switch can be in only one VTP domain. You make global VLAN configuration changes for the domain.

By default, the switch is in the VTP no-management-domain state until it receives an advertisement for a domain over a trunk link (a link that carries the traffic of multiple VLANs) or until you configure a domain name. Until the management domain name is specified or learned, you cannot create or modify VLANs on a VTP server, and VLAN information is not propagated over the network.

If the switch receives a VTP advertisement over a trunk link, it inherits the management domain name and the VTP configuration revision number. The switch then ignores advertisements with a different domain name or an earlier configuration revision number.

Caution

Before adding a VTP client switch to a VTP domain, always verify that its VTP configuration revision number is lower than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. If you add a switch that has a revision number higher than the revision number in the VTP domain, it can erase all VLAN information from the VTP server and VTP domain. See the “Adding a VTP Client Switch to a VTP Domain” section on page 1-17 for the procedure for verifying and resetting the VTP configuration revision number.
When you make a change to the VLAN configuration on a VTP server, the change is propagated to all switches in the VTP domain. VTP advertisements are sent over all IEEE trunk connections, including Inter-Switch Link (ISL) and IEEE 802.1Q. VTP dynamically maps VLANs with unique names and internal index associates across multiple LAN types. Mapping eliminates excessive device administration required from network administrators.

If you configure a switch for VTP transparent mode, you can create and modify VLANs, but the changes are not sent to other switches in the domain, and they affect only the individual switch. However, configuration changes made when the switch is in this mode are saved in the switch running configuration and can be saved to the switch startup configuration file.

For domain name and password configuration guidelines, see the “Domain Names” section on page 1-9.

VTP Modes

You can configure a supported switch or switch stack to be in one of the VTP modes listed in Table 1-1.

<table>
<thead>
<tr>
<th>VTP Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP server</td>
<td>In VTP server mode, you can create, modify, and delete VLANs, and specify other configuration parameters (such as the VTP version) for the entire VTP domain. VTP servers advertise their VLAN configurations to other switches in the same VTP domain and synchronize their VLAN configurations with other switches based on advertisements received over trunk links. VTP server is the default mode. In VTP server mode, VLAN configurations are saved in NVRAM. If the switch detects a failure while writing a configuration to NVRAM, VTP mode automatically changes from server mode to client mode. If this happens, the switch cannot be returned to VTP server mode until the NVRAM is functioning.</td>
</tr>
<tr>
<td>VTP client</td>
<td>A VTP client behaves like a VTP server and transmits and receives VTP updates on its trunks, but you cannot create, change, or delete VLANs on a VTP client. VLANs are configured on another switch in the domain that is in server mode. In VTP versions 1 and 2, in VTP client mode, VLAN configurations are not saved in NVRAM. In VTP version 3, VLAN configurations are saved in NVRAM in client mode.</td>
</tr>
</tbody>
</table>
Understanding VTP

VTP Advertisements

Each switch in the VTP domain sends periodic global configuration advertisements from each trunk port to a reserved multicast address. Neighboring switches receive these advertisements and update their VTP and VLAN configurations as necessary.

Because trunk ports send and receive VTP advertisements, you must ensure that at least one trunk port is configured on the switch or switch stack and that this trunk port is connected to the trunk port of another switch. Otherwise, the switch cannot receive any VTP advertisements. For more information on trunk ports, see the “Configuring VLAN Trunks” section on page 1-15.

VTP transparent

VTP transparent switches do not participate in VTP. A VTP transparent switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements. However, in VTP version 2 or version 3, transparent switches do forward VTP advertisements that they receive from other switches through their trunk interfaces. You can create, modify, and delete VLANs on a switch in VTP transparent mode.

In VTP versions 1 and 2, the switch must be in VTP transparent mode when you create extended-range VLANs. VTP version 3 also supports creating extended-range VLANs in client or server mode. See the “Configuring Extended-Range VLANs” section on page 1-11.

In VTP versions 1 and 2, the switch must be in VTP transparent mode when you create private VLANs and when they are configured, you should not change the VTP mode from transparent to client or server mode. VTP version 3 also supports private VLANs in client and server modes. See Chapter 1, “Configuring Private VLANs.” When private VLANs are configured, do not change the VTP mode from transparent to client or server mode.

When the switch is in VTP transparent mode, the VTP and VLAN configurations are saved in NVRAM, but they are not advertised to other switches. In this mode, VTP mode and domain name are saved in the switch running configuration, and you can save this information in the switch startup configuration file by using the `copy running-config startup-config` privileged EXEC command. In a switch stack, the running configuration and the saved configuration are the same for all switches in a stack.

VTP off

A switch in VTP off mode functions in the same manner as a VTP transparent switch, except that it does not forward VTP advertisements on trunks.

Table 1-1 VTP Modes (continued)

<table>
<thead>
<tr>
<th>VTP Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP transparent</td>
<td>VTP transparent switches do not participate in VTP. A VTP transparent switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements. However, in VTP version 2 or version 3, transparent switches do forward VTP advertisements that they receive from other switches through their trunk interfaces. You can create, modify, and delete VLANs on a switch in VTP transparent mode. In VTP versions 1 and 2, the switch must be in VTP transparent mode when you create extended-range VLANs. VTP version 3 also supports creating extended-range VLANs in client or server mode. See the “Configuring Extended-Range VLANs” section on page 1-11. In VTP versions 1 and 2, the switch must be in VTP transparent mode when you create private VLANs and when they are configured, you should not change the VTP mode from transparent to client or server mode. VTP version 3 also supports private VLANs in client and server modes. See Chapter 1, “Configuring Private VLANs.” When private VLANs are configured, do not change the VTP mode from transparent to client or server mode. When the switch is in VTP transparent mode, the VTP and VLAN configurations are saved in NVRAM, but they are not advertised to other switches. In this mode, VTP mode and domain name are saved in the switch running configuration, and you can save this information in the switch startup configuration file by using the <code>copy running-config startup-config</code> privileged EXEC command. In a switch stack, the running configuration and the saved configuration are the same for all switches in a stack.</td>
</tr>
<tr>
<td>VTP off</td>
<td>A switch in VTP off mode functions in the same manner as a VTP transparent switch, except that it does not forward VTP advertisements on trunks.</td>
</tr>
</tbody>
</table>
VTP Version 2

If you use VTP in your network, you must decide which version of VTP to use. By default, VTP operates in version 1.

VTP version 2 supports these features that are not supported in version 1:

- Token Ring support—VTP version 2 supports Token Ring Bridge Relay Function (TrBRF) and Token Ring Concentrator Relay Function (TrCRF) VLANs. For more information about Token Ring VLANs, see the “Configuring Normal-Range VLANs” section on page 1-4.
- Unrecognized Type-Length-Value (TLV) support—A VTP server or client propagates configuration changes to its other trunks, even for TLVs it is not able to parse. The unrecognized TLV is saved in NVRAM when the switch is operating in VTP server mode.
- Version-Dependent Transparent Mode—In VTP version 1, a VTP transparent switch inspects VTP messages for the domain name and version and forwards a message only if the version and domain name match. Although VTP version 2 supports only one domain, a VTP version 2 transparent switch forwards a message only when the domain name matches.
- Consistency Checks—In VTP version 2, VLAN consistency checks (such as VLAN names and values) are performed only when you enter new information through the CLI or SNMP. Consistency checks are not performed when new information is obtained from a VTP message or when information is read from NVRAM. If the MD5 digest on a received VTP message is correct, its information is accepted.

VTP Version 3

VTP version 3 supports these features that are not supported in version 1 or version 2:

- Enhanced authentication—You can configure the authentication as hidden or secret. When hidden, the secret key from the password string is saved in the VLAN database file, but it does not appear in plain text in the configuration. Instead, the key associated with the password is saved in hexadecimal format in the running configuration. You must reenter the password if you enter a takeover command in the domain. When you enter the secret keyword, you can directly configure the password secret key.
- Support for extended range VLAN (VLANs 1006 to 4094) database propagation. VTP versions 1 and 2 propagate only VLANs 1 to 1005. If extended VLANs are configured, you cannot convert from VTP version 3 to version 1 or 2.

Note VTP pruning still applies only to VLANs 1 to 1005, and VLANs 1002 to 1005 are still reserved and cannot be modified.

- Private VLAN support (if the switch is running the IP base or IP services feature set).
• Support for any database in a domain. In addition to propagating VTP information, version 3 can propagate Multiple Spanning Tree (MST) protocol database information. A separate instance of the VTP protocol runs for each application that uses VTP.

• VTP primary server and VTP secondary servers. A VTP primary server updates the database information and sends updates that are honored by all devices in the system. A VTP secondary server can only back up the updated VTP configurations received from the primary server to its NVRAM.

By default, all devices come up as secondary servers. You can enter the `vtp primary` privileged EXEC command to specify a primary server. Primary server status is only needed for database updates when the administrator issues a takeover message in the domain. You can have a working VTP domain without any primary servers. Primary server status is lost if the device reloads or domain parameters change, even when a password is configured on the switch.

• The option to turn VTP on or off on a per-trunk (per-port) basis. You can enable or disable VTP per port by entering the `no vtp` interface configuration command. When you disable VTP on trunking ports, all VTP instances for that port are disabled. You cannot set VTP to `off` for the MST database and `on` for the VLAN database on the same port.

When you globally set VTP mode to off, it applies to all the trunking ports in the system. However, you can specify on or off on a per-VTP instance basis. For example, you can configure the switch as a VTP server for the VLAN database but with VTP `off` for the MST database.

VTP Pruning

VTP pruning increases network available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to reach the destination devices. Without VTP pruning, a switch floods broadcast, multicast, and unknown unicast traffic across all trunk links within a VTP domain even though receiving switches might discard them. VTP pruning is disabled by default.

VTP pruning blocks unneeded flooded traffic to VLANs on trunk ports that are included in the pruning-eligible list. Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning eligible switch trunk ports. If the VLANs are configured as pruning-ineligible, the flooding continues. VTP pruning is supported in all VTP versions.

Figure 1-1 shows a switched network without VTP pruning enabled. Port 1 on Switch A and Port 2 on Switch D are assigned to the Red VLAN. If a broadcast is sent from the host connected to Switch A, Switch A floods the broadcast and every switch in the network receives it, even though Switches C, E, and F have no ports in the Red VLAN.
Chapter 1 Configuring VTP

Understanding VTP

Figure 1-1 **Flooding Traffic without VTP Pruning**

Figure 1-2 shows a switched network with VTP pruning enabled. The broadcast traffic from Switch A is not forwarded to Switches C, E, and F because traffic for the Red VLAN has been pruned on the links shown (Port 5 on Switch B and Port 4 on Switch D).

Figure 1-2 **Optimized Flooded Traffic with VTP Pruning**

Enabling VTP pruning on a VTP server enables pruning for the entire management domain. Making VLANs pruning-eligible or pruning-ineligible affects pruning eligibility for those VLANs on that trunk only (not on all switches in the VTP domain).

See the “Enabling VTP Pruning” section on page 1-16. VTP pruning takes effect several seconds after you enable it. VTP pruning does not prune traffic from VLANs that are pruning-ineligible. VLAN 1 and VLANs 1002 to 1005 are always pruning-ineligible; traffic from these VLANs cannot be pruned. Extended-range VLANs (VLAN IDs higher than 1005) are also pruning-ineligible.
VTP pruning is not designed to function in VTP transparent mode. If one or more switches in the network are in VTP transparent mode, you should do one of these:

- Turn off VTP pruning in the entire network.
- Turn off VTP pruning by making all VLANs on the trunk of the switch upstream to the VTP transparent switch pruning ineligible.

To configure VTP pruning on an interface, use the `switchport trunk pruning vlan` interface configuration command (see the “Changing the Pruning-Eligible List” section on page 1-21). VTP pruning operates when an interface is trunking. You can set VLAN pruning-eligibility, whether or not VTP pruning is enabled for the VTP domain, whether or not any given VLAN exists, and whether or not the interface is currently trunking.

VTP and Switch Stacks

VTP configuration is the same in all members of a switch stack. When the switch stack is in VTP server or client mode, all switches in the stack carry the same VTP configuration. When VTP mode is transparent, the stack is not taking part in VTP.

- When a switch joins the stack, it inherits the VTP and VLAN properties of the stack master.
- All VTP updates are carried across the stack.
- When VTP mode is changed in a switch in the stack, the other switches in the stack also change VTP mode, and the switch VLAN database remains consistent.

VTP version 3 functions the same on a standalone switch or a stack except when the switch stack is the primary server for the VTP database. In this case, the MAC address of the stack master is used as the primary server ID. If the master switch reloads or is powered off, a new stack master is elected.

- If you do not configure the persistent MAC address feature (by entering the `stack-mac persistent timer [0 | time-value]` global configuration command, when the new master is elected, it sends a takeover message with the new master MAC address as the primary server.
- If persistent MAC address is configured, the new master waits for the configured `stack-mac persistent timer` value. If the previous master switch does not rejoin the stack during this time, then the new master issues the takeover message.

For more information about the switch stack, see Chapter 1, “Managing Switch Stacks.”

Configuring VTP

These sections contain this configuration information:

- Default VTP Configuration, page 1-9
- VTP Configuration Guidelines, page 1-9
- Configuring VTP Mode, page 1-11
- Enabling the VTP Version, page 1-15
- Enabling VTP Pruning, page 1-16
- Configuring VTP on a Per-Port Basis, page 1-16
- Adding a VTP Client Switch to a VTP Domain, page 1-17
Default VTP Configuration

Table 1-2 shows the default VTP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP domain name</td>
<td>Null</td>
</tr>
<tr>
<td>VTP mode (VTP version 1 and version 2)</td>
<td>Server</td>
</tr>
<tr>
<td>VTP mode (VTP version 3)</td>
<td>The mode is the same as the mode in VTP version 1 or 2 before conversion to version 3.</td>
</tr>
<tr>
<td>VTP version</td>
<td>Version 1 (Version 2 is disabled).</td>
</tr>
<tr>
<td>MST database mode</td>
<td>Transparent</td>
</tr>
<tr>
<td>VTP version 3 server type</td>
<td>Secondary</td>
</tr>
<tr>
<td>VTP password</td>
<td>None</td>
</tr>
<tr>
<td>VTP pruning</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

VTP Configuration Guidelines

You use the `vtp` global configuration command to set the VTP password, the version, the VTP file name, the interface providing updated VTP information, the domain name, and the mode, and to disable or enable pruning. For more information about available keywords, see the command descriptions in the command reference for this release. The VTP information is saved in the VTP VLAN database. When VTP mode is transparent, the VTP domain name and mode are also saved in the switch running configuration file, and you can save it in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command. You must use this command if you want to save VTP mode as transparent, even if the switch resets.

When you save VTP information in the switch startup configuration file and reboot the switch, the switch configuration is selected as follows:

- If the VTP mode is transparent in the startup configuration and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration do not match the VLAN database, the domain name and VTP mode and configuration for VLAN IDs 1 to 1005 use the VLAN database information.

Domain Names

When configuring VTP for the first time, you must always assign a domain name. You must configure all switches in the VTP domain with the same domain name. Switches in VTP transparent mode do not exchange VTP messages with other switches, and you do not need to configure a VTP domain name for them.
Configuring VTP

Note
If NVRAM and DRAM storage is sufficient, all switches in a VTP domain should be in VTP server mode.

Caution
Do not configure a VTP domain if all switches are operating in VTP client mode. If you configure the domain, it is impossible to make changes to the VLAN configuration of that domain. Make sure that you configure at least one switch in the VTP domain for VTP server mode.

Passwords

You can configure a password for the VTP domain, but it is not required. If you do configure a domain password, all domain switches must share the same password and you must configure the password on each switch in the management domain. Switches without a password or with the wrong password reject VTP advertisements.

If you configure a VTP password for a domain, a switch that is booted without a VTP configuration does not accept VTP advertisements until you configure it with the correct password. After the configuration, the switch accepts the next VTP advertisement that uses the same password and domain name in the advertisement.

If you are adding a new switch to an existing network with VTP capability, the new switch learns the domain name only after the applicable password has been configured on it.

Caution
When you configure a VTP domain password, the management domain does not function properly if you do not assign a management domain password to each switch in the domain.

VTP Version

Follow these guidelines when deciding which VTP version to implement:

- All switches in a VTP domain must have the same domain name, but they do not need to run the same VTP version.
- A VTP version 2-capable switch can operate in the same VTP domain as a switch running VTP version 1 if version 2 is disabled on the version 2-capable switch (version 2 is disabled by default).
- If a switch running VTP version 1 but capable of running VTP version 2 receives VTP version 3 advertisements, it automatically moves to VTP version 2.
- If a switch running VTP version 3 is connected to a switch running VTP version 1, the VTP version 1 switch moves to VTP version 2, and the VTP version 3 switch sends scaled-down versions of the VTP packets so that the VTP version 2 switch can update its database.
- A switch running VTP version 3 cannot move to version 1 or 2 if it has extended VLANs.
- Do not enable VTP version 2 on a switch unless all of the switches in the same VTP domain are version-2-capable. When you enable version 2 on a switch, all of the version-2-capable switches in the domain enable version 2. If there is a version 1-only switch, it does not exchange VTP information with switches that have version 2 enabled.
- Cisco recommends placing VTP version 1 and 2 switches at the edge of the network because they do not forward VTP version 3 advertisements.
• If there are TrBRF and TrCRF Token Ring networks in your environment, you must enable VTP version 2 or version 3 for Token Ring VLAN switching to function properly. To run Token Ring and Token Ring-Net, disable VTP version 2.

• VTP version 1 and version 2 do not propagate configuration information for extended range VLANs (VLANs 1006 to 4094). You must configure these VLANs manually on each device. VTP version 3 supports extended-range VLANs. You cannot convert from VTP version 3 to VTP version 2 if extended VLANs are configured.

• When a VTP version 3 device trunk port receives messages from a VTP version 2 device, it sends a scaled-down version of the VLAN database on that particular trunk in VTP version 2 format. A VTP version 3 device does not send VTP version 2-formatted packets on a trunk unless it first receives VTP version 2 packets on that trunk port.

• When a VTP version 3 device detects a VTP version 2 device on a trunk port, it continues to send VTP version 3 packets, in addition to VTP version 2 packets, to allow both kinds of neighbors to coexist on the same trunk.

• A VTP version 3 device does not accept configuration information from a VTP version 2 or version 1 device.

• Two VTP version 3 regions can only communicate in transparent mode over a VTP version 1 or version 2 region.

• Devices that are only VTP version 1 capable cannot interoperate with VTP version 3 devices.

Configuration Requirements

When you configure VTP, you must configure a trunk port on the switch or switch stack so that the switch can send and receive VTP advertisements to and from other switches in the domain.

For more information, see the “Configuring VLAN Trunks” section on page 1-15.

If you are configuring VTP on a cluster member switch to a VLAN, use the `rcommand` privileged EXEC command to log in to the member switch. For more information about the command, see the command reference for this release.

In VTP versions 1 and 2, when you configure extended-range VLANs on the switch, the switch must be in VTP transparent mode. VTP version 3 also supports creating extended-range VLANs in client or server mode.

VTP versions 1 and 2 do not support private VLANs. VTP version 3 does support private VLANs. If you configure private VLANs, the switch must be in VTP transparent mode. When private VLANs are configured on the switch, do not change the VTP mode from transparent to client or server mode.

Configuring VTP Mode

You can configure VTP mode as one of these:

• When a switch is in VTP server mode, you can change the VLAN configuration and have it propagated throughout the network.

• When a switch is in VTP client mode, you cannot change its VLAN configuration. The client switch receives VTP updates from a VTP server in the VTP domain and then modifies its configuration accordingly.
• When you configure the switch for VTP transparent mode, VTP is disabled on the switch. The switch does not send VTP updates and does not act on VTP updates received from other switches. However, a VTP transparent switch running VTP version 2 does forward received VTP advertisements on its trunk links.

• VTP off mode is the same as VTP transparent mode except that VTP advertisements are not forwarded.

Follow these guidelines:

• For VTP version 1 and version 2, if extended-range VLANs are configured on the switch stack, you cannot change VTP mode to client or server. You receive an error message, and the configuration is not allowed. VTP version 1 and version 2 do not propagate configuration information for extended range VLANs (VLANs 1006 to 4094). You must manually configure these VLANs on each device.

Note For VTP version 1 and 2, before you create extended-range VLANs (VLAN IDs 1006 to 4094), you must set VTP mode to transparent by using the `vtp mode transparent` global configuration command. Save this configuration to the startup configuration so that the switch starts in VTP transparent mode. Otherwise, you lose the extended-range VLAN configuration if the switch resets and boots up in VTP server mode (the default).

• VTP version 3 supports extended-range VLANs. If extended VLANs are configured, you cannot convert from VTP version 3 to VTP version 2.

• If you configure the switch for VTP client mode, the switch does not create the VLAN database file (vlan.dat). If the switch is then powered off, it resets the VTP configuration to the default. To keep the VTP configuration with VTP client mode after the switch restarts, you must first configure the VTP domain name before the VTP mode.

Caution If all switches are operating in VTP client mode, do not configure a VTP domain name. If you do, it is impossible to make changes to the VLAN configuration of that domain. Therefore, make sure you configure at least one switch as a VTP server.

Beginning in privileged EXEC mode, follow these steps to configure the VTP mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>vtp domain domain-name</td>
<td>Configure the VTP administrative-domain name. The name can be 1 to 32 characters. All switches operating in VTP server or client mode under the same administrative responsibility must be configured with the same domain name. This command is optional for modes other than server mode. VTP server mode requires a domain name. If the switch has a trunk connection to a VTP domain, the switch learns the domain name from the VTP server in the domain. You should configure the VTP domain before configuring other VTP parameters.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring VTP

When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

To return a switch in another mode to VTP server mode, use the no vtp mode global configuration command. To return the switch to a no-password state, use the no vtp password global configuration command.

This example shows how to configure the switch as a VTP server with the domain name eng_group and the password mypassword:

Switch(config)# vtp domain eng_group
Setting VTP domain name to eng_group.
Switch(config)# vtp mode server
Setting device to VTP Server mode for VLANS.
Switch(config)# vtp password mypassword
Setting device VLAN database password to mypassword.
Switch(config)# end

OL-29703-01 Catalyst 3750-X and 3560-X Switch Software Configuration Guide 1-13
Configuring a VTP Version 3 Password

Beginning in privileged EXEC mode, follow these steps to configure the password when using VTP version 3:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** vtp password password [hidden | (Optional) Set the password for the VTP domain. The password can be 8 to secret]
 | 64 characters. |
| | • (Optional) hidden—Enter hidden to ensure that the secret key | |
| | generated from the password string is saved in the nvam:vlan.dat file. | |
| | If you configure a takeover by configuring a VTP primary server, you |
| | are prompted to reenter the password. |
| | • (Optional) secret—Enter secret to directly configure the password. |
| | The secret password must contain 32 hexadecimal characters. |
| **Step 3** end | Return to privileged EXEC mode. |
| **Step 4** show vtp password | Verify your entries. |
| **Step 5** copy running-config startup-config | (Optional) Save the configuration in the startup configuration file. |

To clear the password, enter the no vtp password global configuration command.

This example shows how to configure a hidden password and how it appears.

```
Switch(config)# vtp password mypassword hidden
Generating the secret associated to the password.
Switch(config)# end
Switch# show vtp password
VTP password: 89914640C8D90868B6A0D8103847A733
```

Configuring a VTP Version 3 Primary Server

Beginning in privileged EXEC mode, follow these steps on a VTP server to configure it as a VTP primary server (version 3 only), which starts a takeover operation:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** vtp primary-server [vlan | Change the operational state of a switch from a secondary server (the [mst]
 [force] | default) to a primary server and advertise the configuration to the domain. |
| | If the switch password is configured as hidden, you are prompted to reenter the password. |
| | • (Optional) vlan—Select the VLAN database as the takeover feature. |
| | This is the default. |
| | • (Optional) mst—Select the multiple spanning tree (MST) database as |
| | the takeover feature. |
| | • (Optional) force—Entering force overwrites the configuration of any |
| | conflicting servers. If you do not enter force, you are prompted for |
| | confirmation before the takeover. |
This example shows how to configure a switch as the primary server for the VLAN database (the default) when a hidden or secret password was configured:

```
Switch# vtp primary vlan
Enter VTP password: mypassword
This switch is becoming Primary server for vlan feature in the VTP domain
```

<table>
<thead>
<tr>
<th>VTP Database Conf Switch ID</th>
<th>Primary Server Revision System Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLANDB</td>
<td>Yes 00d0.00b8.1400=00d0.00b8.1400 1</td>
</tr>
</tbody>
</table>

Do you want to continue (y/n) [n]? y

Enabling the VTP Version

VTP version 2 and version 3 are disabled by default.

- When you enable VTP version 2 on a switch, every VTP version 2-capable switch in the VTP domain enables version 2. To enable VTP version 3, you must manually configure it on each switch.

- With VTP versions 1 and 2, you can configure the version only on switches in VTP server or transparent mode. If a switch is running VTP version 3, you can change to version 2 when the switch is in client mode if no extended VLANs exist, no private VLANs exist, and no hidden password was configured.

Caution

VTP version 1 and VTP version 2 are not interoperable on switches in the same VTP domain. Do not enable VTP version 2 unless every switch in the VTP domain supports version 2.

- In TrCRF and TrBRF Token ring environments, you must enable VTP version 2 or VTP version 3 for Token Ring VLAN switching to function properly. For Token Ring and Token Ring-Net media, disable VTP version 2 must be disabled.

- VTP version 3 is supported on switches running Cisco IOS Release 12.2(52) SE or later.

Caution

In VTP version 3, both the primary and secondary servers can exist on an instance in the domain.

For more information on VTP version configuration guidelines, see the “VTP Version” section on page 1-10.

Beginning in privileged EXEC mode, follow these steps to configure the VTP version:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>vtp version (1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>show vtp status</td>
<td>Verify that the configured VTP version is enabled.</td>
</tr>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Save the configuration in the startup configuration file.</td>
</tr>
</tbody>
</table>

To return to the default VTP version 1, use the `no vtp version` global configuration command.
Enabling VTP Pruning

Pruning increases available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to access the destination devices. You can only enable VTP pruning on a switch in VTP server mode.

Beginning in privileged EXEC mode, follow these steps to enable VTP pruning in the VTP domain:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>vtp pruning</td>
<td>Enable pruning in the VTP administrative domain.</td>
</tr>
<tr>
<td></td>
<td>By default, pruning is disabled. You need to enable pruning on only one switch in VTP server mode.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show vtp status</td>
<td>Verify your entries in the VTP Pruning Mode field of the display.</td>
</tr>
</tbody>
</table>

To disable VTP pruning, use the **no vtp pruning** global configuration command.

With VTP versions 1 and 2, when you enable pruning on the VTP server, it is enabled for the entire VTP domain. In VTP version 3, you must manually enable pruning on each switch in the domain.

Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning-eligible on trunk ports. Reserved VLANs and extended-range VLANs cannot be pruned. To change the pruning-eligible VLANs, see the “Changing the Pruning-Eligible List” section on page 1-21.

Configuring VTP on a Per-Port Basis

With VTP version 3, you can enable or disable VTP on a per-port basis. You can enable VTP only on ports that are in trunk mode. Incoming and outgoing VTP traffic are blocked, not forwarded.

Beginning in privileged EXEC mode, follow these steps to enable VTP on a port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Identify an interface, and enter interface configuration mode.</td>
</tr>
<tr>
<td>vtp</td>
<td>Enable VTP on the specified port.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config interface</td>
<td>Verify the change to the port.</td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
</tr>
<tr>
<td>show vtp status</td>
<td>Verify the configuration.</td>
</tr>
</tbody>
</table>

To disable VTP on the interface, use the **no vtp** interface configuration command.

```
Switch(config)# interface gigabitethernet 1/0/1
Switch(config-if)# vtp
Switch(config-if)# end
```
Adding a VTP Client Switch to a VTP Domain

Before adding a VTP client to a VTP domain, always verify that its VTP configuration revision number is lower than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. With VTP versions 1 and 2, adding a switch that has a revision number higher than the revision number in the VTP domain can erase all VLAN information from the VTP server and VTP domain. With VTP version 3, the VLAN information is not erased.

Beginning in privileged EXEC mode, follow these steps to verify and reset the VTP configuration revision number on a switch before adding it to a VTP domain:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show vtp status</td>
<td>Check the VTP configuration revision number.</td>
</tr>
<tr>
<td></td>
<td>If the number is 0, add the switch to the VTP domain.</td>
</tr>
<tr>
<td></td>
<td>If the number is greater than 0, follow these steps:</td>
</tr>
<tr>
<td></td>
<td>a. Write down the domain name.</td>
</tr>
<tr>
<td></td>
<td>b. Write down the configuration revision number.</td>
</tr>
<tr>
<td></td>
<td>c. Continue with the next steps to reset the switch configuration revision number.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3 vtp domain domain-name</td>
<td>Change the domain name from the original one displayed in Step 1 to a new name.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>The VLAN information on the switch is updated and the configuration revision number is reset to 0. You return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show vtp status</td>
<td>Verify that the configuration revision number has been reset to 0.</td>
</tr>
<tr>
<td>Step 6 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 7 vtp domain domain-name</td>
<td>Enter the original domain name on the switch.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>The VLAN information on the switch is updated, and you return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9 show vtp status</td>
<td>(Optional) Verify that the domain name is the same as in Step 1 and that the configuration revision number is 0.</td>
</tr>
</tbody>
</table>

After resetting the configuration revision number, add the switch to the VTP domain.

Note You can use the `vtp mode transparent` global configuration command to disable VTP on the switch and then to change its VLAN information without affecting the other switches in the VTP domain.
Monitoring VTP

You monitor VTP by displaying VTP configuration information: the domain name, the current VTP revision, and the number of VLANs. You can also display statistics about the advertisements sent and received by the switch.

Table 1-3 shows the privileged EXEC commands for monitoring VTP activity.

Table 1-3 VTP Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vtp counters</td>
<td>Display counters about VTP messages that have been sent and received.</td>
</tr>
<tr>
<td>show vtp devices</td>
<td>Display information about all VTP version 3 devices in the domain.</td>
</tr>
<tr>
<td></td>
<td>Conflicts are VTP version 3 devices with conflicting primary servers.</td>
</tr>
<tr>
<td></td>
<td>The show vtp devices command does not display information when the</td>
</tr>
<tr>
<td></td>
<td>switch is in transparent or off mode.</td>
</tr>
<tr>
<td>show vtp interface</td>
<td>Display VTP status and configuration for all interfaces or the specified</td>
</tr>
<tr>
<td>[interface-id]</td>
<td>interface.</td>
</tr>
<tr>
<td>show vtp password</td>
<td>Display the VTP password. The form of the password displayed depends</td>
</tr>
<tr>
<td></td>
<td>on whether or not the hidden keyword was entered and if encryption is</td>
</tr>
<tr>
<td></td>
<td>enabled on the switch.</td>
</tr>
<tr>
<td>show vtp status</td>
<td>Display the VTP switch configuration information.</td>
</tr>
</tbody>
</table>
Understanding Voice VLAN

The voice VLAN feature enables access ports to carry IP voice traffic from an IP phone. When the switch is connected to a Cisco 7960 IP Phone, the phone sends voice traffic with Layer 3 IP precedence and Layer 2 class of service (CoS) values, which are both set to 5 by default. Because the sound quality of an IP phone call can deteriorate if the data is unevenly sent, the switch supports quality of service (QoS) based on IEEE 802.1p CoS. QoS uses classification and scheduling to send network traffic from the switch in a predictable manner. For more information on QoS, see Chapter 1, “Configuring QoS.”

The Cisco 7960 IP Phone is a configurable device, and you can configure it to forward traffic with an IEEE 802.1p priority. You can configure the switch to trust or override the traffic priority assigned by a Cisco IP Phone.

The Cisco IP Phone contains an integrated three-port 10/100 switch as shown in Figure 1-1. The ports provide dedicated connections to these devices:

- Port 1 connects to the switch or other voice-over-IP (VoIP) device.
- Port 2 is an internal 10/100 interface that carries the IP Phone traffic.
- Port 3 (access port) connects to a PC or other device.
Figure 1-1 shows one way to connect a Cisco 7960 IP Phone.

Figure 1-1 Cisco 7960 IP Phone Connected to a Switch

Cisco IP Phone Voice Traffic

You can configure an access port with an attached Cisco IP Phone to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. You can configure access ports on the switch to send Cisco Discovery Protocol (CDP) packets that instruct an attached phone to send voice traffic to the switch in any of these ways:

- In the voice VLAN tagged with a Layer 2 CoS priority value
- In the access VLAN tagged with a Layer 2 CoS priority value
- In the access VLAN, untagged (no Layer 2 CoS priority value)

Note

In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5 for voice traffic and 3 for voice control traffic).

Cisco IP Phone Data Traffic

The switch can also process tagged data traffic (traffic in IEEE 802.1Q or IEEE 802.1p frame types) from the device attached to the access port on the Cisco IP Phone (see Figure 1-1). You can configure Layer 2 access ports on the switch to send CDP packets that instruct the attached phone to configure the phone access port in one of these modes:

- In trusted mode, all traffic received through the access port on the Cisco IP Phone passes through the phone unchanged.
- In untrusted mode, all traffic in IEEE 802.1Q or IEEE 802.1p frames received through the access port on the Cisco IP Phone receive a configured Layer 2 CoS value. The default Layer 2 CoS value is 0. Untrusted mode is the default.
Untagged traffic from the device attached to the Cisco IP Phone passes through the phone unchanged, regardless of the trust state of the access port on the phone.

Configuring Voice VLAN

These sections contain this configuration information:

- Default Voice VLAN Configuration, page 1-3
- Voice VLAN Configuration Guidelines, page 1-3
- Configuring a Port Connected to a Cisco 7960 IP Phone, page 1-4

Default Voice VLAN Configuration

The voice VLAN feature is disabled by default.

When the voice VLAN feature is enabled, all untagged traffic is sent according to the default CoS priority of the port.

The CoS value is not trusted for IEEE 802.1p or IEEE 802.1Q tagged traffic.

Voice VLAN Configuration Guidelines

These are the voice VLAN configuration guidelines:

- Voice VLAN configuration is only supported on switch access ports; voice VLAN configuration is not supported on trunk ports.

Note: Trunk ports can carry any number of voice VLANs, similar to regular VLANs. The configuration of voice VLANs is not required on trunk ports.

- The voice VLAN should be present and active on the switch for the IP phone to correctly communicate on the voice VLAN. Use the `show vlan` privileged EXEC command to see if the VLAN is present (listed in the display). If the VLAN is not listed, see Chapter 1, “Configuring VLANs,” for information on how to create the voice VLAN.

- Do not configure voice VLAN on private VLAN ports.

- The Power over Ethernet (PoE) switches are capable of automatically providing power to Cisco pre-standard and IEEE 802.3af-compliant powered devices if they are not being powered by an AC power source. For information about PoE interfaces, see the “Configuring a Power Management Mode on a PoE Port” section on page 1-33.

- Before you enable voice VLAN, we recommend that you enable QoS on the switch by entering the `mls qos` global configuration command and configure the port trust state to trust by entering the `mls qos trust cos` interface configuration command. If you use the auto-QoS feature, these settings are automatically configured. For more information, see Chapter 1, “Configuring QoS.”

- You must enable CDP on the switch port connected to the Cisco IP Phone to send the configuration to the phone. (CDP is globally enabled by default on all switch interfaces.)
• The Port Fast feature is automatically enabled when voice VLAN is configured. When you disable voice VLAN, the Port Fast feature is not automatically disabled.

• If the Cisco IP Phone and a device attached to the phone are in the same VLAN, they must be in the same IP subnet. These conditions indicate that they are in the same VLAN:
 – They both use IEEE 802.1p or untagged frames.
 – The Cisco IP Phone uses IEEE 802.1p frames, and the device uses untagged frames.
 – The Cisco IP Phone uses untagged frames, and the device uses IEEE 802.1p frames.
 – The Cisco IP Phone uses IEEE 802.1Q frames, and the voice VLAN is the same as the access VLAN.

• The Cisco IP Phone and a device attached to the phone cannot communicate if they are in the same VLAN and subnet but use different frame types because traffic in the same subnet is not routed (routing would eliminate the frame type difference).

• Voice VLAN ports can also be these port types:
 – Dynamic access port. See the “Configuring Dynamic-Access Ports on VMPS Clients” section on page 1-29 for more information.
 – IEEE 802.1x authenticated port. See the “Configuring 802.1x Readiness Check” section on page 1-43 for more information.

 Note If you enable IEEE 802.1x on an access port on which a voice VLAN is configured and to which a Cisco IP Phone is connected, the phone loses connectivity to the switch for up to 30 seconds.

 – Protected port. See the “Configuring Protected Ports’ section on page 1-6 for more information.
 – A source or destination port for a SPAN or RSPAN session.
 – Secure port. See the “Configuring Port Security” section on page 1-8 for more information.

 Note When you enable port security on an interface that is also configured with a voice VLAN, you must set the maximum allowed secure addresses on the port to two plus the maximum number of secure addresses allowed on the access VLAN. When the port is connected to a Cisco IP Phone, the phone requires up to two MAC addresses. The phone address is learned on the voice VLAN and might also be learned on the access VLAN. Connecting a PC to the phone requires additional MAC addresses.

Configuring a Port Connected to a Cisco 7960 IP Phone

Because a Cisco 7960 IP Phone also supports a connection to a PC or other device, a port connecting the switch to a Cisco IP Phone can carry mixed traffic. You can configure a port to decide how the Cisco IP Phone carries voice traffic and data traffic.

These sections contain this configuration information:

• **Configuring Cisco IP Phone Voice Traffic**, page 1-5
• **Configuring the Priority of Incoming Data Frames**, page 1-6
Configuring Cisco IP Phone Voice Traffic

You can configure a port connected to the Cisco IP Phone to send CDP packets to the phone to configure the way in which the phone sends voice traffic. The phone can carry voice traffic in IEEE 802.1Q frames for a specified voice VLAN with a Layer 2 CoS value. It can use IEEE 802.1p priority tagging to give voice traffic a higher priority and forward all voice traffic through the native (access) VLAN. The Cisco IP Phone can also send untagged voice traffic or use its own configuration to send voice traffic in the access VLAN. In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5).

Beginning in privileged EXEC mode, follow these steps to configure voice traffic on a port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the interface connected to the phone, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>mls qos trust cos</td>
</tr>
<tr>
<td></td>
<td>Configure the interface to classify incoming traffic packets by using the packet CoS value. For untagged packets, the port default CoS value is used.</td>
</tr>
<tr>
<td></td>
<td>Note Before configuring the port trust state, you must first globally enable QoS by using the mls qos global configuration command.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport voice {detect cisco-phone [full-duplex]</td>
</tr>
<tr>
<td></td>
<td>Configure how the Cisco IP Phone carries voice traffic:</td>
</tr>
<tr>
<td></td>
<td>• detect—Configure the interface to detect and recognize a Cisco IP phone.</td>
</tr>
<tr>
<td></td>
<td>• cisco-phone—When you initially implement the switchport voice detect command, this is the only allowed option. The default is no switchport voice detect cisco-phone [full-duplex].</td>
</tr>
<tr>
<td></td>
<td>• full-duplex—(Optional) Configure the switch to only accept a full-duplex Cisco IP phone.</td>
</tr>
<tr>
<td></td>
<td>Note Before configuring the switch port to detect and recognize a Cisco IP phone, confirm that the phone is powered by PoE. The configuration fails when power is provided by an AC source.</td>
</tr>
<tr>
<td></td>
<td>• vlan-id—Configure the phone to forward all voice traffic through the specified VLAN. By default, the Cisco IP Phone forwards the voice traffic with an IEEE 802.1Q priority of 5. Valid VLAN IDs are 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• dot1p—Configure the switch to accept voice and data IEEE 802.1p priority frames tagged with VLAN ID 0 (the native VLAN). By default, the switch drops all voice and data traffic tagged with VLAN 0. If configured for 802.1p the Cisco IP Phone forwards the traffic with an IEEE 802.1p priority of 5.</td>
</tr>
<tr>
<td></td>
<td>• none—Allow the phone to use its own configuration to send untagged voice traffic.</td>
</tr>
<tr>
<td></td>
<td>• untagged—Configure the phone to send untagged voice traffic.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Voice VLAN

Configuring Voice VLAN

This example shows how to configure a port connected to a Cisco IP Phone to use the CoS value to classify incoming traffic and to accept voice and data priority traffic tagged with VLAN ID 0:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust cos
Switch(config-if)# switchport voice vlan dot1p
Switch(config-if)# end

To return the port to its default setting, use the no switchport voice vlan interface configuration command.

This example shows how to enable switchport voice detect on a Cisco IP Phone:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet 1/0/1
Switch(config-if)# switchport voice detect
Switch(config-if)# switchport voice detect cisco-phone
Switch(config-if)# switchport voice detect cisco-phone full-duplex
Switch(config-if)# end

This example shows how to disable switchport voice detect on a Cisco IP Phone:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet 1/0/1
Switch(config-if)# no switchport voice detect cisco-phone
Switch(config-if)# no switchport voice detect cisco-phone full-duplex

Configuring the Priority of Incoming Data Frames

You can connect a PC or other data device to a Cisco IP Phone port. To process tagged data traffic (in IEEE 802.1Q or IEEE 802.1p frames), you can configure the switch to send CDP packets to instruct the phone how to send data packets from the device attached to the access port on the Cisco IP Phone. The PC can generate packets with an assigned CoS value. You can configure the phone to not change (trust) or to override (not trust) the priority of frames arriving on the phone port from connected devices.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>show interfaces interface-id switchport or show running-config interface interface-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to set the priority of data traffic received from the nonvoice port on the Cisco IP Phone:

This example shows how to configure a port connected to a Cisco IP Phone to not change the priority of frames received from the PC or the attached device:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport priority extend trust
Switch(config-if)# end
```

To return the port to its default setting, use the `no switchport priority extend` interface configuration command.

Displaying Voice VLAN

To display voice VLAN configuration for an interface, use the `show interfaces interface-id switchport` privileged EXEC command.
Configuring Private VLANs

This chapter describes how to configure private VLANs on the Catalyst 3750-E or 3560-E Catalyst 3750- or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note

Private VLANs are not supported on switches running the LAN base feature set.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

The chapter consists of these sections:

- Understanding Private VLANs, page 1-1
- Configuring Private VLANs, page 1-6
- Monitoring Private VLANs, page 1-15

Note

When you configure private VLANs on switches running VTP, the switch must be in VTP transparent mode. See Chapter 1, “Configuring VTP.”

Understanding Private VLANs

The private-VLAN feature addresses two problems that service providers face when using VLANs:

- Scalability: When running the IP base or IP services feature set, the switch supports up to 1005 active VLANs. The switch supports up to 1005 active VLANs. If a service provider assigns one VLAN per customer, this limits the numbers of customers the service provider can support.

- To enable IP routing, each VLAN is assigned a subnet address space or a block of addresses, which can result in wasting the unused IP addresses, and cause IP address management problems.

Using private VLANs addresses the scalability problem and provides IP address management benefits for service providers and Layer 2 security for customers. Private VLANs partition a regular VLAN domain into subdomains. A subdomain is represented by a pair of VLANs: a primary VLAN and a secondary VLAN. A private VLAN can have multiple VLAN pairs, one pair for each subdomain. All VLAN pairs in a private VLAN share the same primary VLAN. The secondary VLAN ID differentiates one subdomain from another. See Figure 1-1.
There are two types of secondary VLANs:

- **Isolated VLANs**—Ports within an isolated VLAN cannot communicate with each other at the Layer 2 level.
- **Community VLANs**—Ports within a community VLAN can communicate with each other but cannot communicate with ports in other communities at the Layer 2 level.

Private VLANs provide Layer 2 isolation between ports within the same private VLAN. Private-VLAN ports are access ports that are one of these types:

- **Promiscuous**—A promiscuous port belongs to the primary VLAN and can communicate with all interfaces, including the community and isolated host ports that belong to the secondary VLANs associated with the primary VLAN.
- **Isolated**—An isolated port is a host port that belongs to an isolated secondary VLAN. It has complete Layer 2 separation from other ports within the same private VLAN, except for the promiscuous ports. Private VLANs block all traffic to isolated ports except traffic from promiscuous ports. Traffic received from an isolated port is forwarded only to promiscuous ports.
- **Community**—A community port is a host port that belongs to a community secondary VLAN. Community ports communicate with other ports in the same community VLAN and with promiscuous ports. These interfaces are isolated at Layer 2 from all other interfaces in other communities and from isolated ports within their private VLAN.

Note

Trunk ports carry traffic from regular VLANs and also from primary, isolated, and community VLANs.
Primary and secondary VLANs have these characteristics:

- **Primary VLAN**—A private VLAN has only one primary VLAN. Every port in a private VLAN is a member of the primary VLAN. The primary VLAN carries unidirectional traffic downstream from the promiscuous ports to the (isolated and community) host ports and to other promiscuous ports.

- **Isolated VLAN**—A private VLAN has only one isolated VLAN. An isolated VLAN is a secondary VLAN that carries unidirectional traffic upstream from the hosts toward the promiscuous ports and the gateway.

- **Community VLAN**—A community VLAN is a secondary VLAN that carries upstream traffic from the community ports to the promiscuous port gateways and to other host ports in the same community. You can configure multiple community VLANs in a private VLAN.

A promiscuous port can serve only one primary VLAN, one isolated VLAN, and multiple community VLANs. Layer 3 gateways are typically connected to the switch through a promiscuous port. With a promiscuous port, you can connect a wide range of devices as access points to a private VLAN. For example, you can use a promiscuous port to monitor or back up all the private-VLAN servers from an administration workstation.

In a switched environment, you can assign an individual private VLAN and associated IP subnet to each individual or common group of end stations. The end stations need to communicate only with a default gateway to communicate outside the private VLAN.

You can use private VLANs to control access to end stations in these ways:

- Configure selected interfaces connected to end stations as isolated ports to prevent any communication at Layer 2. For example, if the end stations are servers, this configuration prevents Layer 2 communication between the servers.

- Configure interfaces connected to default gateways and selected end stations (for example, backup servers) as promiscuous ports to allow all end stations access to a default gateway.

You can extend private VLANs across multiple devices by trunking the primary, isolated, and community VLANs to other devices that support private VLANs. To maintain the security of your private-VLAN configuration and to avoid other use of the VLANs configured as private VLANs, configure private VLANs on all intermediate devices, including devices that have no private-VLAN ports.

IP Addressing Scheme with Private VLANs

Assigning a separate VLAN to each customer creates an inefficient IP addressing scheme:

- Assigning a block of addresses to a customer VLAN can result in unused IP addresses.

- If the number of devices in the VLAN increases, the number of assigned address might not be large enough to accommodate them.

These problems are reduced by using private VLANs, where all members in the private VLAN share a common address space, which is allocated to the primary VLAN. Hosts are connected to secondary VLANs, and the DHCP server assigns them IP addresses from the block of addresses allocated to the primary VLAN. Subsequent IP addresses can be assigned to customer devices in different secondary VLANs, but in the same primary VLAN. When new devices are added, the DHCP server assigns them the next available address from a large pool of subnet addresses.
Private VLANs across Multiple Switches

As with regular VLANs, private VLANs can span multiple switches. A trunk port carries the primary VLAN and secondary VLANs to a neighboring switch. The trunk port treats the private VLAN as any other VLAN. A feature of private VLANs across multiple switches is that traffic from an isolated port in switch A does not reach an isolated port on Switch B. See Figure 1-2.

Figure 1-2 Private VLANs across Switches

![Private VLANs across Switches](image)

VLAN 100 = Primary VLAN
VLAN 201 = Secondary isolated VLAN
VLAN 202 = Secondary community VLAN

Because VTP does not support private VLANs, you must manually configure private VLANs on all switches in the Layer 2 network. If you do not configure the primary and secondary VLAN association in some switches in the network, the Layer 2 databases in these switches are not merged. This can result in unnecessary flooding of private-VLAN traffic on those switches.

Note

When configuring private VLANs on the switch, always use the default Switch Database Management (SDM) template to balance system resources between unicast routes and Layer 2 entries. If another SDM template is configured, use the `sdm prefer default` global configuration command to set the default template. See Chapter 1, “Configuring SDM Templates.”

Private-VLAN Interaction with Other Features

Private VLANs have specific interaction with some other features, described in these sections:

- Private VLANs and Unicast, Broadcast, and Multicast Traffic, page 1-5
- Private VLANs and SVIs, page 1-5
- Private VLANs and Switch Stacks, page 1-5
Private VLANs and Unicast, Broadcast, and Multicast Traffic

In regular VLANs, devices in the same VLAN can communicate with each other at the Layer 2 level, but devices connected to interfaces in different VLANs must communicate at the Layer 3 level. In private VLANs, the promiscuous ports are members of the primary VLAN, while the host ports belong to secondary VLANs. Because the secondary VLAN is associated to the primary VLAN, members of the these VLANs can communicate with each other at the Layer 2 level.

In a regular VLAN, broadcasts are forwarded to all ports in that VLAN. Private VLAN broadcast forwarding depends on the port sending the broadcast:

- An isolated port sends a broadcast only to the promiscuous ports or trunk ports.
- A community port sends a broadcast to all promiscuous ports, trunk ports, and ports in the same community VLAN.
- A promiscuous port sends a broadcast to all ports in the private VLAN (other promiscuous ports, trunk ports, isolated ports, and community ports).

Multicast traffic is routed or bridged across private-VLAN boundaries and within a single community VLAN. Multicast traffic is not forwarded between ports in the same isolated VLAN or between ports in different secondary VLANs.

Private VLANs and SVIs

In a Layer 3 switch, a switch virtual interface (SVI) represents the Layer 3 interface of a VLAN. Layer 3 devices communicate with a private VLAN only through the primary VLAN and not through secondary VLANs. Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs. You cannot configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

- If you try to configure a VLAN with an active SVI as a secondary VLAN, the configuration is not allowed until you disable the SVI.
- If you try to create an SVI on a VLAN that is configured as a secondary VLAN and the secondary VLAN is already mapped at Layer 3, the SVI is not created, and an error is returned. If the SVI is not mapped at Layer 3, the SVI is created, but it is automatically shut down.

When the primary VLAN is associated with and mapped to the secondary VLAN, any configuration on the primary VLAN is propagated to the secondary VLAN SVIs. For example, if you assign an IP subnet to the primary VLAN SVI, this subnet is the IP subnet address of the entire private VLAN.

Private VLANs and Switch Stacks

Private VLANs can operate within the switch stack, and private-VLAN ports can reside on different stack members. However, some changes to the switch stack can impact private-VLAN operation:

- If a stack contains only one private-VLAN promiscuous port and the stack member that contains that port is removed from the stack, host ports in that private VLAN lose connectivity outside the private VLAN.
- If a stack master stack that contains the only private-VLAN promiscuous port in the stack fails or leaves the stack and a new stack master is elected, host ports in a private VLAN that had its promiscuous port on the old stack master lose connectivity outside of the private VLAN.
If two stacks merge, private VLANs on the winning stack are not affected, but private-VLAN configuration on the losing switch is lost when that switch reboots.

For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”

Configuring Private VLANs

These sections contain this configuration information:

- Tasks for Configuring Private VLANs, page 1-6
- Default Private-VLAN Configuration, page 1-6
- Private-VLAN Configuration Guidelines, page 1-7
- Configuring and Associating VLANs in a Private VLAN, page 1-10
- Configuring a Layer 2 Interface as a Private-VLAN Host Port, page 1-11
- Configuring a Layer 2 Interface as a Private-VLAN Promiscuous Port, page 1-13
- Mapping Secondary VLANs to a Primary VLAN Layer 3 VLAN Interface, page 1-13

Tasks for Configuring Private VLANs

To configure a private VLAN, perform these steps:

Step 1
Set VTP mode to transparent.

Step 2
Create the primary and secondary VLANs and associate them. See the “Configuring and Associating VLANs in a Private VLAN” section on page 1-10.

Note
If the VLAN is not created already, the private-VLAN configuration process creates it.

Step 3
Configure interfaces to be isolated or community host ports, and assign VLAN membership to the host port. See the “Configuring a Layer 2 Interface as a Private-VLAN Host Port” section on page 1-11.

Step 4
Configure interfaces as promiscuous ports, and map the promiscuous ports to the primary-secondary VLAN pair. See the “Configuring a Layer 2 Interface as a Private-VLAN Promiscuous Port” section on page 1-13.

Step 5
If inter-VLAN routing will be used, configure the primary SVI, and map secondary VLANs to the primary. See the “Mapping Secondary VLANs to a Primary VLAN Layer 3 VLAN Interface” section on page 1-13.

Step 6
Verify private-VLAN configuration.

Default Private-VLAN Configuration

No private VLANs are configured.
Private-VLAN Configuration Guidelines

Guidelines for configuring private VLANs fall into these categories:

- Secondary and Primary VLAN Configuration, page 1-7
- Private-VLAN Port Configuration, page 1-8
- Limitations with Other Features, page 1-9

Secondary and Primary VLAN Configuration

Follow these guidelines when configuring private VLANs:

- If the switch is running VTP version 1 or 2, you must set VTP to transparent mode. After you configure a private VLAN, you should not change the VTP mode to client or server. For information about VTP, see Chapter 1, “Configuring VTP.” VTP version 3 supports private VLANs in all modes.

- With VTP version 1 or 2, after you have configured private VLANs, use the `copy running-config startup-config` privileged EXEC command to save the VTP transparent mode configuration and private-VLAN configuration in the switch startup configuration file. Otherwise, if the switch resets, it defaults to VTP server mode, which does not support private VLANs. VTP version 3 does support private VLANs.

- VTP version 1 and 2 do not propagate private-VLAN configuration. You must configure private VLANs on each device where you want private-VLAN ports unless the devices are running VTP version 3.

- You cannot configure VLAN 1 or VLANs 1002 to 1005 as primary or secondary VLANs. Extended VLANs (VLAN IDs 1006 to 4094) can belong to private VLANs.

- A primary VLAN can have one isolated VLAN and multiple community VLANs associated with it. An isolated or community VLAN can have only one primary VLAN associated with it.

- Although a private VLAN contains more than one VLAN, only one Spanning Tree Protocol (STP) instance runs for the entire private VLAN. When a secondary VLAN is associated with the primary VLAN, the STP parameters of the primary VLAN are propagated to the secondary VLAN.

- You can enable DHCP snooping on private VLANs. When you enable DHCP snooping on the primary VLAN, it is propagated to the secondary VLANs. If you configure DHCP on a secondary VLAN, the configuration does not take effect if the primary VLAN is already configured.

- When you enable IP source guard on private-VLAN ports, you must enable DHCP snooping on the primary VLAN.

- We recommend that you prune the private VLANs from the trunks on devices that carry no traffic in the private VLANs.

- You can apply different quality of service (QoS) configurations to primary, isolated, and community VLANs.

- Sticky ARP
 - Sticky ARP entries are those learned on SVIs and Layer 3 interfaces. They entries do not age out.
 - The `ip sticky-arp` global configuration command is supported only on SVIs belonging to private VLANs.
 - The `ip sticky-arp` interface configuration command is only supported on Layer 3 interfaces.
SVIs belonging to normal VLANs
SVIs belonging to private VLANs

For more information about using the `ip sticky-arp global` configuration and the `ip sticky-arp interface` configuration commands, see the command reference for this release.

- You can configure VLAN maps on primary and secondary VLANs (see the “Configuring VLAN Maps” section on page 1-32). However, we recommend that you configure the same VLAN maps on private-VLAN primary and secondary VLANs.

- When a frame is Layer-2 forwarded within a private VLAN, the same VLAN map is applied at the ingress side and at the egress side. When a frame is routed from inside a private VLAN to an external port, the private-VLAN map is applied at the ingress side.
 - For frames going upstream from a host port to a promiscuous port, the VLAN map configured on the secondary VLAN is applied.
 - For frames going downstream from a promiscuous port to a host port, the VLAN map configured on the primary VLAN is applied.

To filter out specific IP traffic for a private VLAN, you should apply the VLAN map to both the primary and secondary VLANs.

- You can apply router ACLs only on the primary-VLAN SVIs. The ACL is applied to both primary and secondary VLAN Layer 3 traffic.

- Although private VLANs provide host isolation at Layer 2, hosts can communicate with each other at Layer 3.

- Private VLANs support these Switched Port Analyzer (SPAN) features:
 - You can configure a private-VLAN port as a SPAN source port.
 - You can use VLAN-based SPAN (VSPAN) on primary, isolated, and community VLANs or use SPAN on only one VLAN to separately monitor egress or ingress traffic.

Private-VLAN Port Configuration

Follow these guidelines when configuring private-VLAN ports:

- Use only the private-VLAN configuration commands to assign ports to primary, isolated, or community VLANs. Layer 2 access ports assigned to the VLANs that you configure as primary, isolated, or community VLANs are inactive while the VLAN is part of the private-VLAN configuration. Layer 2 trunk interfaces remain in the STP forwarding state.

- Do not configure ports that belong to a PAgP or LACP EtherChannel as private-VLAN ports. While a port is part of the private-VLAN configuration, any EtherChannel configuration for it is inactive.

- Enable Port Fast and BPDU guard on isolated and community host ports to prevent STP loops due to misconfigurations and to speed up STP convergence (see Chapter 1, “Configuring Optional Spanning-Tree Features”). When enabled, STP applies the BPDU guard feature to all Port Fast-configured Layer 2 LAN ports. Do not enable Port Fast and BPDU guard on promiscuous ports.

- If you delete a VLAN used in the private-VLAN configuration, the private-VLAN ports associated with the VLAN become inactive.

- Private-VLAN ports can be on different network devices if the devices are trunk-connected and the primary and secondary VLANs have not been removed from the trunk.
Limitations with Other Features

When configuring private VLANs, remember these limitations with other features:

Note
In some cases, the configuration is accepted with no error messages, but the commands have no effect.

- Do not configure fallback bridging on switches with private VLANs.
- When IGMP snooping is enabled on the switch (the default), the switch or switch stack supports no more than 20 private-VLAN domains.
- Do not configure a remote SPAN (RSPAN) VLAN as a private-VLAN primary or secondary VLAN. For more information about SPAN, see Chapter 1, “Configuring SPAN and RSPAN.”
- Do not configure private-VLAN ports on interfaces configured for these other features:
 - dynamic-access port VLAN membership
 - Dynamic Trunking Protocol (DTP)
 - Port Aggregation Protocol (PAgP)
 - Link Aggregation Control Protocol (LACP)
 - Multicast VLAN Registration (MVR)
 - voice VLAN
 - Web Cache Communication Protocol (WCCP)
- You can configure IEEE 802.1x port-based authentication on a private-VLAN port, but do not configure 802.1x with port security, voice VLAN, or per-user ACL on private-VLAN ports.
- A private-VLAN host or promiscuous port cannot be a SPAN destination port. If you configure a SPAN destination port as a private-VLAN port, the port becomes inactive.
- If you configure a static MAC address on a promiscuous port in the primary VLAN, you must add the same static address to all associated secondary VLANs. If you configure a static MAC address on a host port in a secondary VLAN, you must add the same static MAC address to the associated primary VLAN. When you delete a static MAC address from a private-VLAN port, you must remove all instances of the configured MAC address from the private VLAN.

Note
Dynamic MAC addresses learned in one VLAN of a private VLAN are replicated in the associated VLANs. For example, a MAC address learned in a secondary VLAN is replicated in the primary VLAN. When the original dynamic MAC address is deleted or aged out, the replicated addresses are removed from the MAC address table.

- Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs.
Configuring Private VLANs

Beginning in privileged EXEC mode, follow these steps to configure a private VLAN:

Note

The `private-vlan` commands do not take effect until you exit VLAN configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vtp mode transparent</td>
</tr>
<tr>
<td>Step 3</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>private-vlan primary</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>vlan vlan-id (Optional)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>private-vlan isolated</td>
</tr>
<tr>
<td>Step 8</td>
<td>exit</td>
</tr>
<tr>
<td>Step 9</td>
<td>vlan vlan-id (Optional)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>private-vlan community</td>
</tr>
<tr>
<td>Step 11</td>
<td>exit</td>
</tr>
<tr>
<td>Step 12</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>**private-vlan association [add</td>
</tr>
<tr>
<td>Step 14</td>
<td>end</td>
</tr>
<tr>
<td>Step 15</td>
<td>show vlan private-vlan [type]</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>show interfaces status</td>
</tr>
<tr>
<td>Step 16</td>
<td>copy running-config startup config</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When you associate secondary VLANs with a primary VLAN, note this syntax information:

- The `secondary_vlan_list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs.
- The `secondary_vlan_list` parameter can contain multiple community VLAN IDs but only one isolated VLAN ID.
- Enter a `secondary_vlan_list`, or use the `add` keyword with a `secondary_vlan_list` to associate secondary VLANs with a primary VLAN.
- Use the `remove` keyword with a `secondary_vlan_list` to clear the association between secondary VLANs and a primary VLAN.
- The command does not take effect until you exit VLAN configuration mode.

This example shows how to configure VLAN 20 as a primary VLAN, VLAN 501 as an isolated VLAN, and VLANs 502 and 503 as community VLANs, to associate them in a private VLAN, and to verify the configuration:

```plaintext
Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# private-vlan primary
Switch(config-vlan)# exit
Switch(config)# vlan 501
Switch(config-vlan)# private-vlan isolated
Switch(config-vlan)# exit
Switch(config)# vlan 502
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# exit
Switch(config)# vlan 503
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# exit
Switch(config)# vlan 20
Switch(config-vlan)# private-vlan association 501-503
Switch(config-vlan)# end
Switch(config)# show vlan private vlan
Primary Secondary Type              Ports
------- --------- ----------------- ------------------------------------------
20      501       isolated
20      502       community
20      503       community
20      504       non-operational
```

Configuring a Layer 2 Interface as a Private-VLAN Host Port

Beginning in privileged EXEC mode, follow these steps to configure a Layer 2 interface as a private-VLAN host port and to associate it with primary and secondary VLANs:

Note

Isolated and community VLANs are both secondary VLANs.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface <code>interface-id</code></td>
<td>Enter interface configuration mode for the Layer 2 interface to be configured.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Private VLANs

Configuring Private VLANs

This example shows how to configure an interface as a private-VLAN host port, associate it with a private-VLAN pair, and verify the configuration:

```plaintext
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/22
Switch(config-if)# switchport mode private-vlan host
Switch(config-if)# switchport private-vlan host-association 20 501
Switch(config-if)# end
Switch# show interfaces gigabitethernet1/0/22 switchport
Name: Gi1/0/22
Switchport: Enabled
Administrative Mode: private-vlan host
Operational Mode: private-vlan host
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: 20 501
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk private VLANs: none
Operational private-vlan:
20 501
<output truncated>
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 <code>switchport mode private-vlan host</code></td>
<td>Configure the Layer 2 port as a private-VLAN host port.</td>
</tr>
<tr>
<td>Step 4 <code>switchport private-vlan host-association primary_vlan_id secondary_vlan_id</code></td>
<td>Associate the Layer 2 port with a private VLAN.</td>
</tr>
<tr>
<td>Step 5 <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 <code>show interfaces [interface-id] switchport</code></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 7 <code>copy running-config startup config</code></td>
<td>(Optional) Save your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure an interface as a private-VLAN host port, associate it with a private-VLAN pair, and verify the configuration:

```plaintext
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/22
Switch(config-if)# switchport mode private-vlan host
Switch(config-if)# switchport private-vlan host-association 20 501
Switch(config-if)# end
Switch# show interfaces gigabitethernet1/0/22 switchport
Name: Gi1/0/22
Switchport: Enabled
Administrative Mode: private-vlan host
Operational Mode: private-vlan host
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: 20 501
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk private VLANs: none
Operational private-vlan:
20 501
<output truncated>
```
Configuring a Layer 2 Interface as a Private-VLAN Promiscuous Port

Beginning in privileged EXEC mode, follow these steps to configure a Layer 2 interface as a private-VLAN promiscuous port and map it to primary and secondary VLANs:

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode for the Layer 2 interface to be configured.</td>
</tr>
<tr>
<td>3</td>
<td>switchport mode private-vlan promiscuous</td>
<td>Configure the Layer 2 port as a private-VLAN promiscuous port.</td>
</tr>
<tr>
<td>4</td>
<td>switchport private-vlan mapping primary_vlan_id {add</td>
<td>remove} secondary_vlan_list</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show interfaces [interface-id] switchport</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup config</td>
<td>(Optional) Save your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

When you configure a Layer 2 interface as a private-VLAN promiscuous port, note this syntax information:

- The `secondary_vlan_list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs.
- Enter a `secondary_vlan_list`, or use the `add` keyword with a `secondary_vlan_list` to map the secondary VLANs to the private-VLAN promiscuous port.
- Use the `remove` keyword with a `secondary_vlan_list` to clear the mapping between secondary VLANs and the private-VLAN promiscuous port.

This example shows how to configure an interface as a private-VLAN promiscuous port and map it to a private VLAN. The interface is a member of primary VLAN 20 and secondary VLANs 501 to 503 are mapped to it.

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport mode private-vlan promiscuous
Switch(config-if)# switchport private-vlan mapping 20 add 501-503
Switch(config-if)# end
```

Use the `show vlan private-vlan` or the `show interface status` privileged EXEC command to display primary and secondary VLANs and private-VLAN ports on the switch.

Mapping Secondary VLANs to a Primary VLAN Layer 3 VLAN Interface

If the private VLAN will be used for inter-VLAN routing, you configure an SVI for the primary VLAN and map secondary VLANs to the SVI.
Isolated and community VLANs are both secondary VLANs.

Beginning in privileged EXEC mode, follow these steps to map secondary VLANs to the SVI of a primary VLAN to allow Layer 3 switching of private-VLAN traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface vlan primary_vlan_id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode for the primary VLAN, and configure the VLAN as an SVI. The VLAN ID range is 2 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>Step 3</td>
<td>private-vlan mapping [add</td>
</tr>
<tr>
<td></td>
<td>Map the secondary VLANs to the Layer 3 VLAN interface of a primary VLAN to allow Layer 3 switching of private-VLAN ingress traffic.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interface private-vlan mapping</td>
</tr>
<tr>
<td></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

Note: The `private-vlan mapping` interface configuration command only affects private-VLAN traffic that is Layer 3 switched.

When you map secondary VLANs to the Layer 3 VLAN interface of a primary VLAN, note this syntax information:

- The `secondary_vlan_list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs.
- Enter a `secondary_vlan_list`, or use the `add` keyword with a `secondary_vlan_list` to map the secondary VLANs to the primary VLAN.
- Use the `remove` keyword with a `secondary_vlan_list` to clear the mapping between secondary VLANs and the primary VLAN.

This example shows how to map the interfaces of VLANs 501 and 502 to primary VLAN 10, which permits routing of secondary VLAN ingress traffic from private VLANs 501 to 502:

```
Switch# configure terminal
Switch(config)# interface vlan 10
Switch(config-if)# private-vlan mapping 501-502
Switch(config-if)# end
Switch# show interfaces private-vlan mapping
Interface Secondary VLAN Type
---------- -------------- ----------------- 
vlan10 501 isolated
vlan10 502 community
```
Monitoring Private VLANs

Table 1-1 shows the privileged EXEC commands for monitoring private-VLAN activity.

Table 1-1 Private VLAN Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces status</code></td>
<td>Displays the status of interfaces, including the VLANs to which they belong.</td>
</tr>
<tr>
<td><code>show vlan private-vlan [type]</code></td>
<td>Display the private-VLAN information for the switch or switch stack.</td>
</tr>
<tr>
<td><code>show interface switchport</code></td>
<td>Display private-VLAN configuration on interfaces.</td>
</tr>
<tr>
<td><code>show interface private-vlan mapping</code></td>
<td>Display information about the private-VLAN mapping for VLAN SVIs.</td>
</tr>
</tbody>
</table>

This is an example of the output from the `show vlan private-vlan` command:

```
Switch(config)# show vlan private-vlan
Primary Secondary Type               Ports
------- --------- ----------------- ------------------------------------------
10      501      isolated          Gi2/0/1, Gi3/0/1, Gi3/0/2
10      502      community         Gi2/0/11, Gi3/0/1, Gi3/0/4
10      503      non-operational  |
```
Virtual private networks (VPNs) provide enterprise-scale connectivity on a shared infrastructure, often Ethernet-based, with the same security, prioritization, reliability, and manageability requirements of private networks. Tunneling is a feature designed for service providers who carry traffic of multiple customers across their networks and are required to maintain the VLAN and Layer 2 protocol configurations of each customer without impacting the traffic of other customers. The Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch supports IEEE 802.1Q tunneling and Layer 2 protocol tunneling. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note

IEEE 802.1Q and Layer 2 protocol tunneling is supported on switches running the LAN base feature set.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter contains these sections:

- Understanding IEEE 802.1Q Tunneling, page 1-1
- Configuring IEEE 802.1Q Tunneling, page 1-4
- Understanding Layer 2 Protocol Tunneling, page 1-8
- Configuring Layer 2 Protocol Tunneling, page 1-11
- Monitoring and Maintaining Tunneling Status, page 1-19

Understanding IEEE 802.1Q Tunneling

Business customers of service providers often have specific requirements for VLAN IDs and the number of VLANs to be supported. The VLAN ranges required by different customers in the same service-provider network might overlap, and traffic of customers through the infrastructure might be mixed. Assigning a unique range of VLAN IDs to each customer would restrict customer configurations and could easily exceed the VLAN limit (4096) of the IEEE 802.1Q specification.

Using the IEEE 802.1Q tunneling feature, service providers can use a single VLAN to support customers who have multiple VLANs. Customer VLAN IDs are preserved, and traffic from different customers is segregated within the service-provider network, even when they appear to be in the same VLAN. Using IEEE 802.1Q tunneling expands VLAN space by using a VLAN-in-VLAN hierarchy and retagging the
tagged packets. A port configured to support IEEE 802.1Q tunneling is called a tunnel port. When you configure tunneling, you assign a tunnel port to a VLAN ID that is dedicated to tunneling. Each customer requires a separate service-provider VLAN ID, but that VLAN ID supports all of the customer’s VLANs.

Customer traffic tagged in the normal way with appropriate VLAN IDs comes from an IEEE 802.1Q trunk port on the customer device and into a tunnel port on the service-provider edge switch. The link between the customer device and the edge switch is asymmetric because one end is configured as an IEEE 802.1Q trunk port, and the other end is configured as a tunnel port. You assign the tunnel port interface to an access VLAN ID that is unique to each customer. See Figure 1-1.

Figure 1-1 IEEE 802.1Q Tunnel Ports in a Service-Provider Network

Packets coming from the customer trunk port into the tunnel port on the service-provider edge switch are normally IEEE 802.1Q-tagged with the appropriate VLAN ID. The tagged packets remain intact inside the switch and when they exit the trunk port into the service-provider network, they are encapsulated with another layer of an IEEE 802.1Q tag (called the metro tag) that contains the VLAN ID that is unique to the customer. The original customer IEEE 802.1Q tag is preserved in the encapsulated packet. Therefore, packets entering the service-provider network are double-tagged, with the outer (metro) tag containing the customer’s access VLAN ID, and the inner VLAN ID being that of the incoming traffic.

When the double-tagged packet enters another trunk port in a service-provider core switch, the outer tag is stripped as the switch processes the packet. When the packet exits another trunk port on the same core switch, the same metro tag is again added to the packet. Figure 1-2 shows the tag structures of the double-tagged packets.
When the packet enters the trunk port of the service-provider egress switch, the outer tag is again stripped as the switch internally processes the packet. However, the metro tag is not added when the packet is sent out the tunnel port on the edge switch into the customer network. The packet is sent as a normal IEEE 802.1Q-tagged frame to preserve the original VLAN numbers in the customer network.

In Figure 1-1, Customer A was assigned VLAN 30, and Customer B was assigned VLAN 40. Packets entering the edge switch tunnel ports with IEEE 802.1Q tags are double-tagged when they enter the service-provider network, with the outer tag containing VLAN ID 30 or 40, appropriately, and the inner tag containing the original VLAN number, for example, VLAN 100. Even if both Customers A and B have VLAN 100 in their networks, the traffic remains segregated within the service-provider network because the outer tag is different. Each customer controls its own VLAN numbering space, which is independent of the VLAN numbering space used by other customers and the VLAN numbering space used by the service-provider network.

At the outbound tunnel port, the original VLAN numbers on the customer’s network are recovered. It is possible to have multiple levels of tunneling and tagging, but the switch supports only one level in this release.

If traffic coming from a customer network is not tagged (native VLAN frames), these packets are bridged or routed as normal packets. All packets entering the service-provider network through a tunnel port on an edge switch are treated as untagged packets, whether they are untagged or already tagged with IEEE 802.1Q headers. The packets are encapsulated with the metro tag VLAN ID (set to the access VLAN of the tunnel port) when they are sent through the service-provider network on an IEEE 802.1Q trunk port. The priority field on the metro tag is set to the interface class of service (CoS) priority configured on the tunnel port. (The default is zero if none is configured.)

On Catalyst 3750-E Catalyst 3750-X switches, because 802.1Q tunneling is configured on a per-port basis, it does not matter whether the switch is a standalone switch or a stack member. All configuration is done on the stack master.
Configuring IEEE 802.1Q Tunneling

These sections contain this configuration information:

- Default IEEE 802.1Q Tunneling Configuration, page 1-4
- IEEE 802.1Q Tunneling Configuration Guidelines, page 1-4
- IEEE 802.1Q Tunneling and Other Features, page 1-6
- Configuring an IEEE 802.1Q Tunneling Port, page 1-7

Default IEEE 802.1Q Tunneling Configuration

By default, IEEE 802.1Q tunneling is disabled because the default switchport mode is dynamic auto. Tagging of IEEE 802.1Q native VLAN packets on all IEEE 802.1Q trunk ports is also disabled.

IEEE 802.1Q Tunneling Configuration Guidelines

When you configure IEEE 802.1Q tunneling, you should always use an asymmetrical link between the customer device and the edge switch, with the customer device port configured as an IEEE 802.1Q trunk port and the edge switch port configured as a tunnel port.

Assign tunnel ports only to VLANs that are used for tunneling.

Configuration requirements for native VLANs and for and maximum transmission units (MTUs) are explained in these next sections.

Native VLANs

When configuring IEEE 802.1Q tunneling on an edge switch, you must use IEEE 802.1Q trunk ports for sending packets into the service-provider network. However, packets going through the core of the service-provider network can be carried through IEEE 802.1Q trunks, ISL trunks, or nontrunking links.

When IEEE 802.1Q trunks are used in these core switches, the native VLANs of the IEEE 802.1Q trunks must not match any native VLAN of the nontrunking (tunneling) port on the same switch because traffic on the native VLAN would not be tagged on the IEEE 802.1Q sending trunk port.

See Figure 1-3. VLAN 40 is configured as the native VLAN for the IEEE 802.1Q trunk port from Customer X at the ingress edge switch in the service-provider network (Switch B). Switch A of Customer X sends a tagged packet on VLAN 30 to the ingress tunnel port of Switch B in the service-provider network, which belongs to access VLAN 40. Because the access VLAN of the tunnel port (VLAN 40) is the same as the native VLAN of the edge-switch trunk port (VLAN 40), the metro tag is not added to tagged packets received from the tunnel port. The packet carries only the VLAN 30 tag through the service-provider network to the trunk port of the egress-edge switch (Switch C) and is misdirected through the egress switch tunnel port to Customer Y.
These are some ways to solve this problem:

- Use ISL trunks between core switches in the service-provider network. Although customer interfaces connected to edge switches must be IEEE 802.1Q trunks, we recommend using ISL trunks for connecting switches in the core layer.

- Use the `vlan dot1q tag native` global configuration command to configure the edge switch so that all packets going out an IEEE 802.1Q trunk, including the native VLAN, are tagged. If the switch is configured to tag native VLAN packets on all IEEE 802.1Q trunks, the switch accepts untagged packets, but sends only tagged packets.

- Ensure that the native VLAN ID on the edge-switch trunk port is not within the customer VLAN range. For example, if the trunk port carries traffic of VLANs 100 to 200, assign the native VLAN a number outside that range.

Figure 1-3 Potential Problem with IEEE 802.1Q Tunneling and Native VLANs

System MTU

The default system MTU for traffic on the switch is 1500 bytes. You can configure Fast Ethernet ports on the Catalyst 3750 members in the mixed hardware switch stack to support frames larger than 1500 bytes by using the `system mtu` global configuration command.

You can configure 10-Gigabit and Gigabit Ethernet ports to support frames larger than 1500 bytes by using the `system mtu jumbo` global configuration command.

The system MTU and system jumbo MTU values do not include the IEEE 802.1Q header. Because the IEEE 802.1Q tunneling feature increases the frame size by 4 bytes when the metro tag is added, you must configure all switches in the service-provider network to be able to process maximum frames by adding 4 bytes to the system MTU and system jumbo MTU sizes.
For example, the switch supports a maximum frame size of 1496 bytes with one of these configurations:

- The switch has a system jumbo MTU value of 1500 bytes, and the `switchport mode dot1q tunnel` interface configuration command is configured on a 10-Gigabit or Gigabit Ethernet switch port.
- The Catalyst 3750 member has a system MTU value of 1500 bytes, and the `switchport mode dot1q tunnel` interface configuration command is configured on a Fast Ethernet port of the member.

For information about the maximum allowable system MTU on 10-Gigabit and Gigabit Ethernet interfaces, see Table 1-5 on page 1-43.

IEEE 802.1Q Tunneling and Other Features

Although IEEE 802.1Q tunneling works well for Layer 2 packet switching, there are incompatibilities between some Layer 2 features and Layer 3 switching.

- A tunnel port cannot be a routed port.
- IP routing is not supported on a VLAN that includes IEEE 802.1Q ports. Packets received from a tunnel port are forwarded based only on Layer 2 information. If routing is enabled on a switch virtual interface (SVI) that includes tunnel ports, untagged IP packets received from the tunnel port are recognized and routed by the switch. Customer can access the internet through its native VLAN. If this access is not needed, you should not configure SVIs on VLANs that include tunnel ports.
- Fallback bridging is not supported on tunnel ports. Because all IEEE 802.1Q-tagged packets received from a tunnel port are treated as non-IP packets, if fallback bridging is enabled on VLANs that have tunnel ports configured, IP packets would be improperly bridged across VLANs. Therefore, you must not enable fallback bridging on VLANs with tunnel ports.
- Tunnel ports do not support IP access control lists (ACLs).
- Layer 3 quality of service (QoS) ACLs and other QoS features related to Layer 3 information are not supported on tunnel ports. MAC-based QoS is supported on tunnel ports.
- EtherChannel port groups are compatible with tunnel ports as long as the IEEE 802.1Q configuration is consistent within an EtherChannel port group.
- Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), and UniDirectional Link Detection (UDLD) are supported on IEEE 802.1Q tunnel ports.
- Dynamic Trunking Protocol (DTP) is not compatible with IEEE 802.1Q tunneling because you must manually configure asymmetric links with tunnel ports and trunk ports.
- VLAN Trunking Protocol (VTP) does not work between devices that are connected by an asymmetrical link or devices that communicate through a tunnel.
- Loopback detection is supported on IEEE 802.1Q tunnel ports.
- When a port is configured as an IEEE 802.1Q tunnel port, spanning-tree bridge protocol data unit (BPDU) filtering is automatically enabled on the interface. Cisco Discovery Protocol (CDP) and the Layer Link Discovery Protocol (LLDP) are automatically disabled on the interface.
Configuring an IEEE 802.1Q Tunneling Port

Beginning in privileged EXEC mode, follow these steps to configure a port as an IEEE 802.1Q tunnel port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport access vlan vlan-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode dot1q-tunnel</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>vlan dot1q tag native</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>show dot1q-tunnel</td>
</tr>
<tr>
<td>Step 9</td>
<td>show vlan dot1q tag native</td>
</tr>
<tr>
<td>Step 10</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the `no switchport mode dot1q-tunnel` interface configuration command to return the port to the default state of dynamic desirable. Use the `no vlan dot1q tag native` global configuration command to disable tagging of native VLAN packets.

This example shows how to configure an interface as a tunnel port, enable tagging of native VLAN packets, and verify the configuration. In this configuration, the VLAN ID for the customer connected to Gigabit Ethernet interface 7 on stack member 1 is VLAN 22.

```
Switch(config)# interface gigabitethernet1/0/7
Switch(config-if)# switchport access vlan 22
% Access VLAN does not exist. Creating vlan 22
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# exit
Switch(config-if)# vlan dot1q tag native
Switch(config)# end
Switch# show dot1q-tunnel interface gigabitethernet1/0/7
Port
-----
G11/0/1Port
-----
Switch# show vlan dot1q tag native
dot1q native vlan tagging is enabled
```
Understanding Layer 2 Protocol Tunneling

Customers at different sites connected across a service-provider network need to use various Layer 2 protocols to scale their topologies to include all remote sites, as well as the local sites. STP must run properly, and every VLAN should build a proper spanning tree that includes the local site and all remote sites across the service-provider network. Cisco Discovery Protocol (CDP) must discover neighboring Cisco devices from local and remote sites. VLAN Trunking Protocol (VTP) must provide consistent VLAN configuration throughout all sites in the customer network.

When protocol tunneling is enabled, edge switches on the inbound side of the service-provider network encapsulate Layer 2 protocol packets with a special MAC address and send them across the service-provider network. Core switches in the network do not process these packets but forward them as normal packets. Layer 2 protocol data units (PDUs) for CDP, STP, or VTP cross the service-provider network and are delivered to customer switches on the outbound side of the service-provider network. Identical packets are received by all customer ports on the same VLANs with these results:

- Users on each of a customer’s sites can properly run STP, and every VLAN can build a correct spanning tree based on parameters from all sites and not just from the local site.
- CDP discovers and shows information about the other Cisco devices connected through the service-provider network.
- VTP provides consistent VLAN configuration throughout the customer network, propagating to all switches through the service provider.

To provide interoperability with third-party vendors, you can use the Layer 2 protocol-tunnel bypass feature. Bypass mode transparently forwards control PDUs to vendor switches that have different ways of controlling protocol tunneling. You implement bypass mode by enabling Layer 2 protocol tunneling on the egress trunk port. When Layer 2 protocol tunneling is enabled on the trunk port, the encapsulated tunnel MAC address is removed and the protocol packets have their normal MAC address.

Layer 2 protocol tunneling can be used independently or can enhance IEEE 802.1Q tunneling. If protocol tunneling is not enabled on IEEE 802.1Q tunneling ports, remote switches at the receiving end of the service-provider network do not receive the PDUs and cannot properly run STP, CDP, and VTP. When protocol tunneling is enabled, Layer 2 protocols within each customer’s network are totally separate from those running within the service-provider network. Customer switches on different sites that send traffic through the service-provider network with IEEE 802.1Q tunneling achieve complete knowledge of the customer’s VLAN. If IEEE 802.1Q tunneling is not used, you can still enable Layer 2 protocol tunneling by connecting to the customer switch through access ports and by enabling tunneling on the service-provider access port.

For example, in Figure 1-4, Customer X has four switches in the same VLAN, that are connected through the service-provider network. If the network does not tunnel PDUs, switches on the far ends of the network cannot properly run STP, CDP, and VTP. For example, STP for a VLAN on a switch in Customer X, Site 1, will build a spanning tree on the switches at that site without considering convergence parameters based on Customer X’s switch in Site 2. This could result in the topology shown in Figure 1-5.
Figure 1-4 Layer 2 Protocol Tunneling

Customer X Site 1
VLANs 1 to 100

Customer X Site 2
VLANs 1 to 100

Customer Y Site 1
VLANs 1 to 200

Customer Y Site 2
VLANs 1 to 200

VLAN 30
Trunk ports
Switch A

VLAN 30
Trunk ports
Switch B

VLAN 30
Trunk ports
Switch C

VLAN 30
Trunk ports
Switch D

VLAN 40

Trunk

Asymmetric link
Understanding Layer 2 Protocol Tunneling

In an SP network, you can use Layer 2 protocol tunneling to enhance the creation of EtherChannels by emulating a point-to-point network topology. When you enable protocol tunneling (PAgP or LACP) on the SP switch, remote customer switches receive the PDUs and can negotiate the automatic creation of EtherChannels.

For example, in Figure 1-6, Customer A has two switches in the same VLAN that are connected through the SP network. When the network tunnels PDUs, switches on the far ends of the network can negotiate the automatic creation of EtherChannels without needing dedicated lines. See the “Configuring Layer 2 Tunneling for EtherChannels” section on page 1-15 for instructions.
Configuring Layer 2 Protocol Tunneling

You can enable Layer 2 protocol tunneling (by protocol) on the ports that are connected to the customer in the edge switches of the service-provider network. The service-provider edge switches connected to the customer switch perform the tunneling process. Edge-switch tunnel ports are connected to customer IEEE 802.1Q trunk ports. Edge-switch access ports are connected to customer access ports. The edge switches connected to the customer switch perform the tunneling process.

You can enable Layer 2 protocol tunneling on ports that are configured as access ports or tunnel ports. You cannot enable Layer 2 protocol tunneling on ports configured in either switchport mode dynamic auto (the default mode) or switchport mode dynamic desirable.

The switch supports Layer 2 protocol tunneling for CDP, STP, and VTP. For emulated point-to-point network topologies, it also supports PAgP, LACP, and UDLD protocols. The switch does not support Layer 2 protocol tunneling for LLDP.

Caution

PAgP, LACP, and UDLD protocol tunneling is only intended to emulate a point-to-point topology. An erroneous configuration that sends tunneled packets to many ports could lead to a network failure.

When the Layer 2 PDUs that entered the service-provider inbound edge switch through a Layer 2 protocol-enabled port exit through the trunk port into the service-provider network, the switch overwrites the customer PDU-destination MAC address with a well-known Cisco proprietary multicast address (01-00-0c-cd-cd-d0). If IEEE 802.1Q tunneling is enabled, packets are also double-tagged; the outer tag is the customer metro tag, and the inner tag is the customer’s VLAN tag. The core switches ignore the inner tags and forward the packet to all trunk ports in the same metro VLAN. The edge switches on the outbound side restore the proper Layer 2 protocol and MAC address information and forward the packets to all tunnel or access ports in the same metro VLAN. Therefore, the Layer 2 PDUs remain intact and are delivered across the service-provider infrastructure to the other side of the customer network.
Configuring Layer 2 Protocol Tunneling

See Figure 1-4, with Customer X and Customer Y in access VLANs 30 and 40, respectively. Asymmetric links connect the customers in Site 1 to edge switches in the service-provider network. The Layer 2 PDUs (for example, BPDUs) coming into Switch B from Customer Y in Site 1 are forwarded to the infrastructure as double-tagged packets with the well-known MAC address as the destination MAC address. These double-tagged packets have the metro VLAN tag of 40, as well as an inner VLAN tag (for example, VLAN 100). When the double-tagged packets enter Switch D, the outer VLAN tag 40 is removed, the well-known MAC address is replaced with the respective Layer 2 protocol MAC address, and the packet is sent to Customer Y on Site 2 as a single-tagged frame in VLAN 100.

You can also enable Layer 2 protocol tunneling on access ports on the edge switch connected to access or trunk ports on the customer switch. In this case, the encapsulation and decapsulation process is the same as described in the previous paragraph, except that the packets are not double-tagged in the service-provider network. The single tag is the customer-specific access VLAN tag.

In switch stacks, Layer 2 protocol tunneling configuration is distributed among all stack members. Each stack member that receives an ingress packet on a local port encapsulates or decapsulates the packet and forwards it to the appropriate destination port. On a single switch, ingress Layer 2 protocol-tunneled traffic is sent across all local ports in the same VLAN on which Layer 2 protocol tunneling is enabled. In a stack, packets received by a Layer 2 protocol-tunneled port are distributed to all ports in the stack that are configured for Layer 2 protocol tunneling and are in the same VLAN. All Layer 2 protocol tunneling configuration is handled by the stack master and distributed to all stack members.

These sections contain this configuration information:

- Default Layer 2 Protocol Tunneling Configuration, page 1-12
- Configuring Layer 2 Protocol Tunneling, page 1-14
- Configuring Layer 2 Tunneling for EtherChannels, page 1-15

Default Layer 2 Protocol Tunneling Configuration

Table 1-1 shows the default Layer 2 protocol tunneling configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 protocol tunneling</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Shutdown threshold</td>
<td>None set.</td>
</tr>
<tr>
<td>Drop threshold</td>
<td>None set.</td>
</tr>
<tr>
<td>CoS value</td>
<td>If a CoS value is configured on the interface, that value is used to set the BPDU CoS value for Layer 2 protocol tunneling. If no CoS value is configured at the interface level, the default value for CoS marking of L2 protocol tunneling BPDUs is 5. This does not apply to data traffic.</td>
</tr>
</tbody>
</table>
Layer 2 Protocol Tunneling Configuration Guidelines

These are some configuration guidelines and operating characteristics of Layer 2 protocol tunneling:

- The switch supports tunneling of CDP, STP, including multiple STP (MSTP), and VTP. Protocol tunneling is disabled by default but can be enabled for the individual protocols on IEEE 802.1Q tunnel ports or access ports.
- The switch does not support Layer 2 protocol tunneling on ports with `switchport mode dynamic auto` or `dynamic desirable`.
- DTP is not compatible with layer 2 protocol tunneling.
- The edge switches on the outbound side of the service-provider network restore the proper Layer 2 protocol and MAC address information and forward the packets to all tunnel and access ports in the same metro VLAN.
- For interoperability with third-party vendor switches, the switch supports a Layer 2 protocol-tunnel bypass feature. Bypass mode transparently forwards control PDUs to vendor switches that have different ways of controlling protocol tunneling. When Layer 2 protocol tunneling is enabled on ingress ports on a switch, egress trunk ports forward the tunneled packets with a special encapsulation. If you also enable Layer 2 protocol tunneling on the egress trunk port, this behavior is bypassed, and the switch forwards control PDUs without any processing or modification.
- The switch supports PAgP, LACP, and UDLD tunneling for emulated point-to-point network topologies. Protocol tunneling is disabled by default but can be enabled for the individual protocols on IEEE 802.1Q tunnel ports or on access ports.
- If you enable PAgP or LACP tunneling, we recommend that you also enable UDLD on the interface for faster link-failure detection.
- Loopback detection is not supported on Layer 2 protocol tunneling of PAgP, LACP, or UDLD packets.
- EtherChannel port groups are compatible with tunnel ports when the IEEE 802.1Q configuration is consistent within an EtherChannel port group.
- If an encapsulated PDU (with the proprietary destination MAC address) is received from a tunnel port or an access port with Layer 2 tunneling enabled, the tunnel port is shut down to prevent loops. The port also shuts down when a configured shutdown threshold for the protocol is reached. You can manually re-enable the port (by entering a `shutdown` and a `no shutdown` command sequence). If errdisable recovery is enabled, the operation is retried after a specified time interval.
- Only decapsulated PDUs are forwarded to the customer network. The spanning-tree instance running on the service-provider network does not forward BPDUs to tunnel ports. CDP packets are not forwarded from tunnel ports.
- When protocol tunneling is enabled on an interface, you can set a per-protocol, per-port, shutdown threshold for the PDUs generated by the customer network. If the limit is exceeded, the port shuts down. You can also limit BPDU rate by using QoS ACLs and policy maps on a tunnel port.
- When protocol tunneling is enabled on an interface, you can set a per-protocol, per-port, drop threshold for the PDUs generated by the customer network. If the limit is exceeded, the port drops PDUs until the rate at which it receives them is below the drop threshold.
- Because tunneled PDUs (especially STP BPDUs) must be delivered to all remote sites so that the customer virtual network operates properly, you can give PDUs higher priority within the service-provider network than data packets received from the same tunnel port. By default, the PDUs use the same CoS value as data packets.
Configuring Layer 2 Protocol Tunneling

Beginning in privileged EXEC mode, follow these steps to configure a port for Layer 2 protocol tunneling:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Enter interface configuration mode, and enter the interface to be configured as a tunnel port. This should be the edge port in the service-provider network that connects to the customer switch. Valid interfaces can be physical interfaces and port-channel logical interfaces (port channels 1 to 48).</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 3** | switchport mode access
or
switchport mode dot1q-tunnel |
| Configure the interface as an access port or an IEEE 802.1Q tunnel port. |
| **Step 4** | l2protocol-tunnel [cdp | stp | vtp] |
| Enable protocol tunneling for the desired protocol. If no keyword is entered, tunneling is enabled for all three Layer 2 protocols. |
| **Step 5** | l2protocol-tunnel shutdown-threshold [cdp | stp | vtp] value |
| (Optional) Configure the threshold for packets-per-second accepted for encapsulation. The interface is disabled if the configured threshold is exceeded. If no protocol option is specified, the threshold applies to each of the tunneled Layer 2 protocol types. The range is 1 to 4096. The default is to have no threshold configured.
Note If you also set a drop threshold on this interface, the shutdown-threshold value must be greater than or equal to the drop-threshold value. |
| **Step 6** | l2protocol-tunnel drop-threshold [cdp | stp | vtp] value |
| (Optional) Configure the threshold for packets-per-second accepted for encapsulation. The interface drops packets if the configured threshold is exceeded. If no protocol option is specified, the threshold applies to each of the tunneled Layer 2 protocol types. The range is 1 to 4096. The default is to have no threshold configured.
If you also set a shutdown threshold on this interface, the drop-threshold value must be less than or equal to the shutdown-threshold value. |
| **Step 7** | exit |
| Return to global configuration mode. |
| **Step 8** | errdisable recovery cause l2ptguard |
| (Optional) Configure the recovery mechanism from a Layer 2 maximum-rate error so that the interface is re-enabled and can try again. Errdisable recovery is disabled by default; when enabled, the default time interval is 300 seconds. |
| **Step 9** | l2protocol-tunnel cos value |
| (Optional) Configure the CoS value for all tunneled Layer 2 PDUs. The range is 0 to 7; the default is the default CoS value for the interface. If none is configured, the default is 5. |
| **Step 10** | end |
| Return to privileged EXEC mode. |
| **Step 11** | show l2protocol |
| Display the Layer 2 tunnel ports on the switch, including the protocols configured, the thresholds, and the counters. |
| **Step 12** | copy running-config startup-config |
| (Optional) Save your entries in the configuration file. |
Chapter 1 Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling

Configuring Layer 2 Protocol Tunneling

Use the no l2protocol-tunnel [cdp | stp | vtp] interface configuration command to disable protocol tunneling for one of the Layer 2 protocols or for all three. Use the no l2protocol-tunnel shutdown-threshold [cdp | stp | vtp] and the no l2protocol-tunnel drop-threshold [cdp | stp | vtp] commands to return the shutdown and drop thresholds to the default settings.

This example shows how to configure Layer 2 protocol tunneling for CDP, STP, and VTP and to verify the configuration.

Switch(config)# interface gigabitethernet1/0/11
Switch(config-if)# l2protocol-tunnel cdp
Switch(config-if)# l2protocol-tunnel stp
Switch(config-if)# l2protocol-tunnel vtp
Switch(config-if)# l2protocol-tunnel shutdown-threshold 1500
Switch(config-if)# l2protocol-tunnel drop-threshold 1000
Switch(config-if)# exit
Switch(config)# l2protocol-tunnel cos 7
Switch(config)# end

Switch# show l2protocol
COS for Encapsulated Packets: 7

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Shutdown Threshold</th>
<th>Drop Threshold</th>
<th>Encapsulation Counter</th>
<th>Decapsulation Counter</th>
<th>Drop Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/11</td>
<td>cdp</td>
<td>1500</td>
<td>1000</td>
<td>2288</td>
<td>2282</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>stp</td>
<td>1500</td>
<td>1000</td>
<td>116</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>vtp</td>
<td>1500</td>
<td>1000</td>
<td>3</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>pagp</td>
<td>-----</td>
<td>-----</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>lacp</td>
<td>-----</td>
<td>-----</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>udld</td>
<td>-----</td>
<td>-----</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Configuring Layer 2 Tunneling for EtherChannels

To configure Layer 2 point-to-point tunneling to facilitate the automatic creation of EtherChannels, you need to configure both the SP edge switch and the customer switch.

Configuring the SP Edge Switch

Beginning in privileged EXEC mode, follow these steps to configure a SP edge switch for Layer 2 protocol tunneling for EtherChannels:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and enter the interface to be configured as a tunnel port. This should be the edge port in the SP network that connects to the customer switch. Valid interfaces are physical interfaces.</td>
</tr>
<tr>
<td>Step 3 switchport mode dot1q-tunnel</td>
<td>Configure the interface as an IEEE 802.1Q tunnel port.</td>
</tr>
<tr>
<td>Step 4 l2protocol-tunnel point-to-point [pagp</td>
<td>(Optional) Enable point-to-point protocol tunneling for the desired protocol. If no keyword is entered, tunneling is enabled for all three protocols.</td>
</tr>
</tbody>
</table>

Caution: To avoid a network failure, make sure that the network is a point-to-point topology before you enable tunneling for PAgP, LACP, or UDLD packets.
Chapter 1 Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling

Configuring Layer 2 Protocol Tunneling

Use the `no l2protocol-tunnel [point-to-point [pagp | lACP | udld]]` interface configuration command to disable point-to-point protocol tunneling for one of the Layer 2 protocols or for all three. Use the `no l2protocol-tunnel shutdown-threshold [point-to-point [pagp | lACP | udld]]` and the `no l2protocol-tunnel drop-threshold [[point-to-point [pagp | lACP | udld]]` commands to return the shutdown and drop thresholds to the default settings.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>l2protocol-tunnel shutdown-threshold [point-to-point [pagp</td>
<td>lACP</td>
</tr>
<tr>
<td>6</td>
<td>l2protocol-tunnel drop-threshold [point-to-point [pagp</td>
<td>lACP</td>
</tr>
<tr>
<td>7</td>
<td>no cdp enable</td>
<td>Disable CDP on the interface.</td>
</tr>
<tr>
<td>8</td>
<td>spanning-tree bpdufilter enable</td>
<td>Enable BPDU filtering on the interface.</td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>10</td>
<td>errdisable recovery cause l2ptguard</td>
<td>(Optional) Configure the recovery mechanism from a Layer 2 maximum-rate error so that the interface is re-enabled and can try again. Errdisable recovery is disabled by default; when enabled, the default time interval is 300 seconds.</td>
</tr>
<tr>
<td>11</td>
<td>l2protocol-tunnel cos value</td>
<td>(Optional) Configure the CoS value for all tunneled Layer 2 PDUs. The range is 0 to 7; the default is the default CoS value for the interface. If none is configured, the default is 5.</td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>13</td>
<td>show l2protocol</td>
<td>Display the Layer 2 tunnel ports on the switch, including the protocols configured, the thresholds, and the counters.</td>
</tr>
<tr>
<td>14</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling

Configuring Layer 2 Protocol Tunneling

Configuring the Customer Switch

After configuring the SP edge switch, begin in privileged EXEC mode and follow these steps to configure a customer switch for Layer 2 protocol tunneling for EtherChannels:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport trunk encapsulation dot1q</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td>Step 5</td>
<td>udld enable</td>
</tr>
<tr>
<td>Step 6</td>
<td>channel-group channel-group-number mode desirable</td>
</tr>
<tr>
<td>Step 7</td>
<td>exit</td>
</tr>
<tr>
<td>Step 8</td>
<td>interface port-channel port-channel number</td>
</tr>
<tr>
<td>Step 9</td>
<td>shutdown</td>
</tr>
<tr>
<td>Step 10</td>
<td>no shutdown</td>
</tr>
<tr>
<td>Step 11</td>
<td>end</td>
</tr>
<tr>
<td>Step 12</td>
<td>show l2protocol</td>
</tr>
<tr>
<td>Step 13</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no switchport mode trunk, the no udld enable, and the no channel group channel-group-number mode desirable interface configuration commands to return the interface to the default settings.

For EtherChannels, you need to configure both the SP edge switches and the customer switches for Layer 2 protocol tunneling. (See Figure 1-6 on page 1-10.)

This example shows how to configure the SP edge switch 1 and edge switch 2. VLANs 17, 18, 19, and 20 are the access VLANs, Fast Ethernet interfaces 1 and 2 are point-to-point tunnel ports with PAgP and UDLD enabled, the drop threshold is 1000, and Fast Ethernet interface 3 is a trunk port.

SP edge switch 1 configuration:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport access vlan 17
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# l2protocol-tunnel point-to-point pAgp
Switch(config-if)# l2protocol-tunnel point-to-point udld
Switch(config-if)# l2protocol-tunnel drop-threshold point-to-point pAgp 1000
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport access vlan 18
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# l2protocol-tunnel point-to-point pAgp
Switch(config-if)# l2protocol-tunnel point-to-point udld
```
Chapter 1 Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling

Configuring Layer 2 Protocol Tunneling

Switch(config-if)# l2protocol-tunnel drop-threshold point-to-point pagp 1000
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport trunk encapsulation isl
Switch(config-if)# switchport mode trunk

SP edge switch 2 configuration:

Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport access vlan 19
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# l2protocol-tunnel point-to-point pagp
Switch(config-if)# l2protocol-tunnel point-to-point udld
Switch(config-if)# l2protocol-tunnel drop-threshold point-to-point pagp 1000
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport access vlan 20
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# l2protocol-tunnel point-to-point pagp
Switch(config-if)# l2protocol-tunnel point-to-point udld
Switch(config-if)# l2protocol-tunnel drop-threshold point-to-point pagp 1000
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport trunk encapsulation isl
Switch(config-if)# switchport mode trunk

This example shows how to configure the customer switch at Site 1. Fast Ethernet interfaces 1, 2, 3, and 4 are set for IEEE 802.1Q trunking, UDLD is enabled, EtherChannel group 1 is enabled, and the port channel is shut down and then enabled to activate the EtherChannel configuration.

Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# udld enable
Switch(config-if)# channel-group 1 mode desirable
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# udld enable
Switch(config-if)# channel-group 1 mode desirable
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# udld enable
Switch(config-if)# channel-group 1 mode desirable
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# udld enable
Switch(config-if)# channel-group 1 mode desirable
Switch(config-if)# exit
Switch(config)# interface port-channel 1
Switch(config-if)# shutdown
Switch(config-if)# no shutdown
Switch(config-if)# exit
Monitoring and Maintaining Tunneling Status

Table 1-2 shows the privileged EXEC commands for monitoring and maintaining IEEE 802.1Q and Layer 2 protocol tunneling.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear l2protocol-tunnel counters</td>
<td>Clear the protocol counters on Layer 2 protocol tunneling ports.</td>
</tr>
<tr>
<td>show dot1q-tunnel</td>
<td>Display IEEE 802.1Q tunnel ports on the switch.</td>
</tr>
<tr>
<td>show dot1q-tunnel interface</td>
<td>Verify if a specific interface is a tunnel port.</td>
</tr>
<tr>
<td>show l2protocol-tunnel interface</td>
<td>Display information about Layer 2 protocol tunneling ports.</td>
</tr>
<tr>
<td>show errdisable recovery</td>
<td>Verify if the recovery timer from a Layer 2 protocol-tunnel error disable state is enabled.</td>
</tr>
<tr>
<td>show l2protocol-tunnel interface</td>
<td>Display information about a specific Layer 2 protocol tunneling port.</td>
</tr>
<tr>
<td>show l2protocol-tunnel summary</td>
<td>Display only Layer 2 protocol summary information.</td>
</tr>
<tr>
<td>show vlan dot1q tag native</td>
<td>Display the status of native VLAN tagging on the switch.</td>
</tr>
</tbody>
</table>

For detailed information about these displays, see the command reference for this release.
CHAPTER 1

Configuring STP

This chapter describes how to configure the Spanning Tree Protocol (STP) on port-based VLANs on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. The switch can use either the per-VLAN spanning-tree plus (PVST+) protocol based on the IEEE 802.1D standard and Cisco proprietary extensions, or the rapid per-VLAN spanning-tree plus (rapid-PVST+) protocol based on the IEEE 802.1w standard. A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same bridge ID. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

For information about the Multiple Spanning Tree Protocol (MSTP) and how to map multiple VLANs to the same spanning-tree instance, see Chapter 1, “Configuring MSTP.” For information about other spanning-tree features such as Port Fast, UplinkFast, root guard, and so forth, see Chapter 1, “Configuring Optional Spanning-Tree Features.”

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

- Understanding Spanning-Tree Features, page 1-1
- Configuring Spanning-Tree Features, page 1-13
- Displaying the Spanning-Tree Status, page 1-25

Understanding Spanning-Tree Features

These sections contain this conceptual information:

- STP Overview, page 1-2
- Spanning-Tree Topology and BPDUs, page 1-3
- Bridge ID, Switch Priority, and Extended System ID, page 1-5
- Spanning-Tree Interface States, page 1-5
- How a Switch or Port Becomes the Root Switch or Root Port, page 1-8
- Spanning Tree and Redundant Connectivity, page 1-9
- Spanning-Tree Address Management, page 1-9
Understanding Spanning-Tree Features

• Accelerated Aging to Retain Connectivity, page 1-9
• Spanning-Tree Modes and Protocols, page 1-10
• Supported Spanning-Tree Instances, page 1-10
• Spanning-Tree Interoperability and Backward Compatibility, page 1-11
• STP and IEEE 802.1Q Trunks, page 1-12
• VLAN-Bridge Spanning Tree, page 1-12
• Spanning Tree and Switch Stacks, page 1-12

For configuration information, see the “Configuring Spanning-Tree Features” section on page 1-13.

For information about optional spanning-tree features, see Chapter 1, “Configuring Optional Spanning-Tree Features.”

STP Overview

STP is a Layer 2 link management protocol that provides path redundancy while preventing loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two stations. Multiple active paths among end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages. Switches might also learn end-station MAC addresses on multiple Layer 2 interfaces. These conditions result in an unstable network. Spanning-tree operation is transparent to end stations, which cannot detect whether they are connected to a single LAN segment or a switched LAN of multiple segments.

The STP uses a spanning-tree algorithm to select one switch of a redundantly connected network as the root of the spanning tree. The algorithm calculates the best loop-free path through a switched Layer 2 network by assigning a role to each port based on the role of the port in the active topology:

• Root—A forwarding port elected for the spanning-tree topology
• Designated—A forwarding port elected for every switched LAN segment
• Alternate—A blocked port providing an alternate path to the root bridge in the spanning tree
• Backup—A blocked port in a loopback configuration

The switch that has all of its ports as the designated role or as the backup role is the root switch. The switch that has at least one of its ports in the designated role is called the designated switch.

Spanning tree forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the spanning-tree algorithm recalculates the spanning-tree topology and activates the standby path. Switches send and receive spanning-tree frames, called bridge protocol data units (BPDUs), at regular intervals. The switches do not forward these frames but use them to construct a loop-free path. BPDUs contain information about the sending switch and its ports, including switch and MAC addresses, switch priority, port priority, and path cost. Spanning tree uses this information to elect the root switch and root port for the switched network and the root port and designated port for each switched segment.

When two ports on a switch are part of a loop, the spanning-tree port priority and path cost settings control which port is put in the forwarding state and which is put in the blocking state. The spanning-tree port priority value represents the location of a port in the network topology and how well it is located to pass traffic. The path cost value represents the media speed.
By default, the switch sends keepalive messages (to detect local loopback conditions) only on interfaces that do not have small form-factor pluggable (SFP) modules. You can change the default for an interface by entering the \texttt{[no]} keepalive interface configuration command with no keywords.

Spanning-Tree Topology and BPDUs

The stable, active spanning-tree topology of a switched network is controlled by these elements:

- The unique bridge ID (switch priority and MAC address) associated with each VLAN on each switch. In a switch stack, all switches use the same bridge ID for a given spanning-tree instance.
- The spanning-tree path cost to the root switch.
- The port identifier (port priority and MAC address) associated with each Layer 2 interface.

When the switches in a network are powered up, each functions as the root switch. Each switch sends a configuration BPDU through all of its ports. The BPDUs communicate and compute the spanning-tree topology. Each configuration BPDU contains this information:

- The unique bridge ID of the switch that the sending switch identifies as the root switch
- The spanning-tree path cost to the root
- The bridge ID of the sending switch
- Message age
- The identifier of the sending interface
- Values for the hello, forward delay, and max-age protocol timers

When a switch receives a configuration BPDU that contains \textit{superior} information (lower bridge ID, lower path cost, and so forth), it stores the information for that port. If this BPDU is received on the root port of the switch, the switch also forwards it with an updated message to all attached LANs for which it is the designated switch.

If a switch receives a configuration BPDU that contains \textit{inferior} information to that currently stored for that port, it discards the BPDU. If the switch is a designated switch for the LAN from which the inferior BPDU was received, it sends that LAN a BPDU containing the up-to-date information stored for that port. In this way, inferior information is discarded, and superior information is propagated on the network.

A BPDU exchange results in these actions:

- One switch in the network is elected as the root switch (the logical center of the spanning-tree topology in a switched network). In a switch stack, one stack member is elected as the stack root switch. The stack root switch contains the outgoing root port (Switch 1), as shown in Figure 1-1 on page 1-4.

For each VLAN, the switch with the highest switch priority (the lowest numerical priority value) is elected as the root switch. If all switches are configured with the default priority (32768), the switch with the lowest MAC address in the VLAN becomes the root switch. The switch priority value occupies the most significant bits of the bridge ID, as shown in Table 1-1 on page 1-5.

- A root port is selected for each switch (except the root switch). This port provides the best path (lowest cost) when the switch forwards packets to the root switch.

When selecting the root port on a switch stack, spanning tree follows this sequence:

- Selects the lowest root bridge ID
- Selects the lowest path cost to the root switch
- Selects the lowest designated bridge ID
- Selects the lowest designated path cost
- Selects the lowest port ID

Only one outgoing port on the stack root switch is selected as the root port. The remaining switches in the stack become its designated switches (Switch 2 and Switch 3) as shown in Figure 1-1 on page 1-4.

- The shortest distance to the root switch is calculated for each switch based on the path cost.
- A designated switch for each LAN segment is selected. The designated switch incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.

Figure 1-1 Spanning-Tree Port States in a Switch Stack

All paths that are not needed to reach the root switch from anywhere in the switched network are placed in the spanning-tree blocking mode.
Bridge ID, Switch Priority, and Extended System ID

The IEEE 802.1D standard requires that each switch has a unique bridge identifier (bridge ID), which controls the selection of the root switch. Because each VLAN is considered as a different logical bridge with PVST+ and rapid PVST+, the same switch must have a different bridge IDs for each configured VLAN. Each VLAN on the switch has a unique 8-byte bridge ID. The 2 most-significant bytes are used for the switch priority, and the remaining 6 bytes are derived from the switch MAC address.

The switch supports the IEEE 802.1t spanning-tree extensions, and some of the bits previously used for the switch priority are now used as the VLAN identifier. The result is that fewer MAC addresses are reserved for the switch, and a larger range of VLAN IDs can be supported, all while maintaining the uniqueness of the bridge ID. As shown in Table 1-1, the 2 bytes previously used for the switch priority are reallocated into a 4-bit priority value and a 12-bit extended system ID value equal to the VLAN ID.

Spanning tree uses the extended system ID, the switch priority, and the allocated spanning-tree MAC address to make the bridge ID unique for each VLAN. Because the switch stack appears as a single switch to the rest of the network, all switches in the stack use the same bridge ID for a given spanning tree. If the stack master fails, the stack members recalculate their bridge IDs of all running spanning trees based on the new MAC address of the new stack master.

Support for the extended system ID affects how you manually configure the root switch, the secondary root switch, and the switch priority of a VLAN. For example, when you change the switch priority value, you change the probability that the switch will be elected as the root switch. Configuring a higher value decreases the probability; a lower value increases the probability. For more information, see the “Configuring the Root Switch” section on page 1-17, the “Configuring a Secondary Root Switch” section on page 1-18, and the “Configuring the Switch Priority of a VLAN” section on page 1-22.

Spanning-Tree Interface States

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When an interface transitions directly from nonparticipation in the spanning-tree topology to the forwarding state, it can create temporary data loops. Interfaces must wait for new topology information to propagate through the switched LAN before starting to forward frames. They must allow the frame lifetime to expire for forwarded frames that have used the old topology.

Each Layer 2 interface on a switch using spanning tree exists in one of these states:

- Blocking—The interface does not participate in frame forwarding.
- Listening—The first transitional state after the blocking state when the spanning tree decides that the interface should participate in frame forwarding.
- Learning—The interface prepares to participate in frame forwarding.
- Forwarding—The interface forwards frames.
- Disabled—The interface is not participating in spanning tree because of a shutdown port, no link on the port, or no spanning-tree instance running on the port.

Table 1-1 Switch Priority Value and Extended System ID

<table>
<thead>
<tr>
<th>Switch Priority Value</th>
<th>Extended System ID (Set Equal to the VLAN ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 16</td>
<td>Bit 15</td>
</tr>
<tr>
<td>32768</td>
<td>16384</td>
</tr>
</tbody>
</table>
An interface moves through these states:
- From initialization to blocking
- From blocking to listening or to disabled
- From listening to learning or to disabled
- From learning to forwarding or to disabled
- From forwarding to disabled

Figure 1-2 illustrates how an interface moves through the states.

Figure 1-2 Spanning-Tree Interface States

When you power up the switch, spanning tree is enabled by default, and every interface in the switch, VLAN, or network goes through the blocking state and the transitory states of listening and learning. Spanning tree stabilizes each interface at the forwarding or blocking state.

When the spanning-tree algorithm places a Layer 2 interface in the forwarding state, this process occurs:

1. The interface is in the listening state while spanning tree waits for protocol information to move the interface to the blocking state.
2. While spanning tree waits the forward-delay timer to expire, it moves the interface to the learning state and resets the forward-delay timer.
3. In the learning state, the interface continues to block frame forwarding as the switch learns end-station location information for the forwarding database.
4. When the forward-delay timer expires, spanning tree moves the interface to the forwarding state, where both learning and frame forwarding are enabled.

Blocking State

A Layer 2 interface in the blocking state does not participate in frame forwarding. After initialization, a BPDU is sent to each switch interface. A switch initially functions as the root until it exchanges BPDUs with other switches. This exchange establishes which switch in the network is the root or root switch. If
there is only one switch in the network, no exchange occurs, the forward-delay timer expires, and the interface moves to the listening state. An interface always enters the blocking state after switch initialization.

An interface in the blocking state performs these functions:
- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDUs

Listening State

The listening state is the first state a Layer 2 interface enters after the blocking state. The interface enters this state when the spanning tree decides that the interface should participate in frame forwarding.

An interface in the listening state performs these functions:
- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDUs

Learning State

A Layer 2 interface in the learning state prepares to participate in frame forwarding. The interface enters the learning state from the listening state.

An interface in the learning state performs these functions:
- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Learns addresses
- Receives BPDUs

Forwarding State

A Layer 2 interface in the forwarding state forwards frames. The interface enters the forwarding state from the learning state.

An interface in the forwarding state performs these functions:
- Receives and forwards frames received on the interface
- Forwards frames switched from another interface
- Learns addresses
- Receives BPDUs
Disabled State

A Layer 2 interface in the disabled state does not participate in frame forwarding or in the spanning tree. An interface in the disabled state is nonoperational.

A disabled interface performs these functions:
- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Does not receive BPDUs

How a Switch or Port Becomes the Root Switch or Root Port

If all switches in a network are enabled with default spanning-tree settings, the switch with the lowest MAC address becomes the root switch. In Figure 1-3, Switch A is elected as the root switch because the switch priority of all the switches is set to the default (32768) and Switch A has the lowest MAC address. However, because of traffic patterns, number of forwarding interfaces, or link types, Switch A might not be the ideal root switch. By increasing the priority (lowering the numerical value) of the ideal switch so that it becomes the root switch, you force a spanning-tree recalculation to form a new topology with the ideal switch as the root.

![Figure 1-3 Spanning-Tree Topology](image)

When the spanning-tree topology is calculated based on default parameters, the path between source and destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links to an interface that has a higher number than the root port can cause a root-port change. The goal is to make the fastest link the root port.

For example, assume that one port on Switch B is a Gigabit Ethernet link and that another port on Switch B (a 10/100 link) is the root port. Network traffic might be more efficient over the Gigabit Ethernet link. By changing the spanning-tree port priority on the Gigabit Ethernet port to a higher priority (lower numerical value) than the root port, the Gigabit Ethernet port becomes the new root port.
Spanning Tree and Redundant Connectivity

You can create a redundant backbone with spanning tree by connecting two switch interfaces to another device or to two different devices, as shown in Figure 1-4. Spanning tree automatically disables one interface but enables it if the other one fails. If one link is high-speed and the other is low-speed, the low-speed link is always disabled. If the speeds are the same, the port priority and port ID are added together, and spanning tree disables the link with the highest value.

Figure 1-4 Spanning Tree and Redundant Connectivity

![Diagram of spanning tree and redundant connectivity]

You can also create redundant links between switches by using EtherChannel groups. For more information, see Chapter 1, “Configuring EtherChannels and Link-State Tracking.”

Spanning-Tree Address Management

IEEE 802.1D specifies 17 multicast addresses, ranging from 0x00180C2000000 to 0x0180C2000010, to be used by different bridge protocols. These addresses are static addresses that cannot be removed. Regardless of the spanning-tree state, each switch in the stack receives but does not forward packets destined for addresses between 0x0180C2000000 and 0x0180C2000010.

If spanning tree is enabled, the CPU on the switch or on each switch in the stack receives packets destined for 0x0180C2000000 and 0x0180C2000010. If spanning tree is disabled, the switch or each switch in the stack forwards those packets as unknown multicast addresses.

Accelerated Aging to Retain Connectivity

The default for aging dynamic addresses is 5 minutes, the default setting of the `mac address-table aging-time` global configuration command. However, a spanning-tree reconfiguration can cause many station locations to change. Because these stations could be unreachable for 5 minutes or more during a reconfiguration, the address-aging time is accelerated so that station addresses can be dropped from the address table and then relearned. The accelerated aging is the same as the forward-delay parameter value (`spanning-tree vlan vlan-id forward-time seconds` global configuration command) when the spanning tree reconfigures.
Because each VLAN is a separate spanning-tree instance, the switch accelerates aging on a per-VLAN basis. A spanning-tree reconfiguration on one VLAN can cause the dynamic addresses learned on that VLAN to be subject to accelerated aging. Dynamic addresses on other VLANs can be unaffected and remain subject to the aging interval entered for the switch.

Spanning-Tree Modes and Protocols

The switch supports these spanning-tree modes and protocols:

- **PVST+**—This spanning-tree mode is based on the IEEE 802.1D standard and Cisco proprietary extensions. It is the default spanning-tree mode used on all Ethernet port-based VLANs. The PVST+ runs on each VLAN on the switch up to the maximum supported, ensuring that each has a loop-free path through the network.

 The PVST+ provides Layer 2 load-balancing for the VLAN on which it runs. You can create different logical topologies by using the VLANs on your network to ensure that all of your links are used but that no one link is oversubscribed. Each instance of PVST+ on a VLAN has a single root switch. This root switch propagates the spanning-tree information associated with that VLAN to all other switches in the network. Because each switch has the same information about the network, this process ensures that the network topology is maintained.

- **Rapid PVST+**—This spanning-tree mode is the same as PVST+ except that it uses a rapid convergence based on the IEEE 802.1w standard. To provide rapid convergence, the rapid PVST+ immediately deletes dynamically learned MAC address entries on a per-port basis upon receiving a topology change. By contrast, PVST+ uses a short aging time for dynamically learned MAC address entries.

 The rapid PVST+ uses the same configuration as PVST+ (except where noted), and the switch needs only minimal extra configuration. The benefit of rapid PVST+ is that you can migrate a large PVST+ install base to rapid PVST+ without having to learn the complexities of the MSTP configuration and without having to reprovision your network. In rapid-PVST+ mode, each VLAN runs its own spanning-tree instance up to the maximum supported.

- **MSTP**—This spanning-tree mode is based on the IEEE 802.1s standard. You can map multiple VLANs to the same spanning-tree instance, which reduces the number of spanning-tree instances required to support a large number of VLANs. The MSTP runs on top of the RSTP (based on IEEE 802.1w), which provides for rapid convergence of the spanning tree by eliminating the forward delay and by quickly transitioning root ports and designated ports to the forwarding state.

 In a switch stack, the cross-stack rapid transition (CSRT) feature performs the same function as RSTP. You cannot run MSTP without RSTP or CSRT.

 The most common initial deployment of MSTP is in the backbone and distribution layers of a Layer 2 switched network. For more information, see Chapter 1, “Configuring MSTP.”

For information about the number of supported spanning-tree instances, see the next section.

Supported Spanning-Tree Instances

In PVST+ or rapid-PVST+ mode, the switch or switch stack supports up to 128 spanning-tree instances.

In MSTP mode, the switch or switch stack supports up to 65 MST instances. The number of VLANs that can be mapped to a particular MST instance is unlimited.

For information about how spanning tree interoperates with the VLAN Trunking Protocol (VTP), see the “Spanning-Tree Configuration Guidelines” section on page 1-14.
Spanning-Tree Interoperability and Backward Compatibility

Table 1-2 lists the interoperability and compatibility among the supported spanning-tree modes in a network.

<table>
<thead>
<tr>
<th></th>
<th>PVST+</th>
<th>MSTP</th>
<th>Rapid PVST+</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVST+</td>
<td>Yes</td>
<td>Yes (with restrictions)</td>
<td>Yes (reverts to PVST+)</td>
</tr>
<tr>
<td>MSTP</td>
<td>Yes (with restrictions)</td>
<td>Yes</td>
<td>Yes (reverts to PVST+)</td>
</tr>
<tr>
<td>Rapid PVST+</td>
<td>Yes (reverts to PVST+)</td>
<td>Yes (reverts to PVST+)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

In a mixed MSTP and PVST+ network, the common spanning-tree (CST) root must be inside the MST backbone, and a PVST+ switch cannot connect to multiple MST regions.

When a network contains switches running rapid PVST+ and switches running PVST+, we recommend that the rapid-PVST+ switches and PVST+ switches be configured for different spanning-tree instances. In the rapid-PVST+ spanning-tree instances, the root switch must be a rapid-PVST+ switch. In the PVST+ instances, the root switch must be a PVST+ switch. The PVST+ switches should be at the edge of the network.

All stack members run the same version of spanning tree (all PVST+, all rapid PVST+, or all MSTP).
STP and IEEE 802.1Q Trunks

The IEEE 802.1Q standard for VLAN trunks imposes some limitations on the spanning-tree strategy for a network. The standard requires only one spanning-tree instance for all VLANs allowed on the trunks. However, in a network of Cisco switches connected through IEEE 802.1Q trunks, the switches maintain one spanning-tree instance for each VLAN allowed on the trunks.

When you connect a Cisco switch to a non-Cisco device through an IEEE 802.1Q trunk, the Cisco switch uses PVST+ to provide spanning-tree interoperability. If rapid PVST+ is enabled, the switch uses it instead of PVST+. The switch combines the spanning-tree instance of the IEEE 802.1Q VLAN of the trunk with the spanning-tree instance of the non-Cisco IEEE 802.1Q switch.

However, all PVST+ or rapid-PVST+ information is maintained by Cisco switches separated by a cloud of non-Cisco IEEE 802.1Q switches. The non-Cisco IEEE 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

PVST+ is automatically enabled on IEEE 802.1Q trunks, and no user configuration is required. The external spanning-tree behavior on access ports and Inter-Switch Link (ISL) trunk ports is not affected by PVST+.

For more information on IEEE 802.1Q trunks, see Chapter 1, “Configuring VLANs.”

VLAN-Bridge Spanning Tree

Cisco VLAN-bridge spanning tree is used with the fallback bridging feature (bridge groups), which forwards non-IP protocols such as DECnet between two or more VLAN bridge domains or routed ports. The VLAN-bridge spanning tree allows the bridge groups to form a spanning tree on top of the individual VLAN spanning trees to prevent loops from forming if there are multiple connections among VLANs. It also prevents the individual spanning trees from the VLANs being bridged from collapsing into a single spanning tree.

To support VLAN-bridge spanning tree, some of the spanning-tree timers are increased. To use the fallback bridging feature, you must have the IP services feature set enabled on your switch. For more information, see Chapter 1, “Configuring Fallback Bridging.”

Spanning Tree and Switch Stacks

These statements are true when the switch stack is operating in PVST+ or rapid-PVST+ mode:

- A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same bridge ID for a given spanning tree. The bridge ID is derived from the MAC address of the stack master.
- When a new switch joins the stack, it sets its bridge ID to the stack-master bridge ID. If the newly added switch has the lowest ID and if the root path cost is the same among all stack members, the newly added switch becomes the stack root.
- When a stack member leaves the stack, spanning-tree reconvergence occurs within the stack (and possibly outside the stack). The remaining stack member with the lowest stack port ID becomes the stack root.
- If the stack master fails or leaves the stack, the stack members elect a new stack master, and all stack members change their bridge IDs of the spanning trees to the new master bridge ID.
- If the switch stack is the spanning-tree root and the stack master fails or leaves the stack, the stack members elect a new stack master, and a spanning-tree reconvergence occurs.
• If a neighboring switch external to the switch stack fails or is powered down, normal spanning-tree processing occurs. Spanning-tree reconvergence might occur as a result of losing a switch in the active topology.

• If a new switch external to the switch stack is added to the network, normal spanning-tree processing occurs. Spanning-tree reconvergence might occur as a result of adding a switch in the network.

For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”

Configuring Spanning-Tree Features

These sections contain this configuration information:

- Default Spanning-Tree Configuration, page 1-13
- Spanning-Tree Configuration Guidelines, page 1-14
- Changing the Spanning-Tree Mode, page 1-15 (required)
- Disabling Spanning Tree, page 1-16 (optional)
- Configuring the Root Switch, page 1-17 (optional)
- Configuring a Secondary Root Switch, page 1-18 (optional)
- Configuring Port Priority, page 1-19 (optional)
- Configuring Path Cost, page 1-21 (optional)
- Configuring the Switch Priority of a VLAN, page 1-22 (optional)
- Configuring Spanning-Tree Timers, page 1-23 (optional)

Default Spanning-Tree Configuration

Table 1-3 shows the default spanning-tree configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable state</td>
<td>Enabled on VLAN 1. For more information, see the “Supported Spanning-Tree Instances” section on page 1-10.</td>
</tr>
<tr>
<td>Spanning-tree mode</td>
<td>PVST+. (Rapid PVST+ and MSTP are disabled.)</td>
</tr>
<tr>
<td>Switch priority</td>
<td>32768.</td>
</tr>
<tr>
<td>Spanning-tree port priority (configurable on a per-interface basis)</td>
<td>128.</td>
</tr>
<tr>
<td>Spanning-tree port cost (configurable on a per-interface basis)</td>
<td>1000 Mb/s: 4. 100 Mb/s: 19. 10 Mb/s: 100.</td>
</tr>
<tr>
<td>Spanning-tree VLAN port priority (configurable on a per-VLAN basis)</td>
<td>128.</td>
</tr>
</tbody>
</table>
Each stack member runs its own spanning tree, and the entire stack appears as a single switch to the rest of the network.

If more VLANs are defined in the VTP than there are spanning-tree instances, you can enable PVST+ or rapid PVST+ on only 128 VLANs on the switch or each switch stack. The remaining VLANs operate with spanning tree disabled. However, you can map multiple VLANs to the same spanning-tree instances by using MSTP. For more information, see Chapter 1, “Configuring MSTP.”

If 128 instances of spanning tree are already in use, you can disable spanning tree on one of the VLANs and then enable it on the VLAN where you want it to run. Use the `no spanning-tree vlan vlan-id` global configuration command to disable spanning tree on a specific VLAN, and use the `spanning-tree vlan vlan-id` global configuration command to enable spanning tree on the desired VLAN.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning-tree VLAN port cost (configurable on a per-VLAN basis)</td>
<td>1000 Mb/s: 4. 100 Mb/s: 19. 10 Mb/s: 100.</td>
</tr>
<tr>
<td>Spanning-tree timers</td>
<td>Hello time: 2 seconds. Forward-delay time: 15 seconds. Maximum-aging time: 20 seconds. Transmit hold count: 6 BPDUs</td>
</tr>
</tbody>
</table>

Switches that are not running spanning tree still forward BPDUs that they receive so that the other switches on the VLAN that have a running spanning-tree instance can break loops. Therefore, spanning tree must be running on enough switches to break all the loops in the network; for example, at least one switch on each loop in the VLAN must be running spanning tree. It is not absolutely necessary to run spanning tree on all switches in the VLAN. However, if you are running spanning tree only on a minimal set of switches, an incautious change to the network that introduces another loop into the VLAN can result in a broadcast storm.

If you have already used all available spanning-tree instances on your switch, adding another VLAN anywhere in the VTP domain creates a VLAN that is not running spanning tree on that switch. If you have the default allowed list on the trunk ports of that switch, the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that will not be broken, particularly if there are several adjacent switches that have all run out of spanning-tree instances. You can prevent this possibility by setting up allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances. Setting up allowed lists is not necessary in many cases and can make it more labor-intensive to add another VLAN to the network.
Spanning-tree commands control the configuration of VLAN spanning-tree instances. You create a spanning-tree instance when you assign an interface to a VLAN. The spanning-tree instance is removed when the last interface is moved to another VLAN. You can configure switch and port parameters before a spanning-tree instance is created; these parameters are applied when the spanning-tree instance is created.

The switch supports PVST+, rapid PVST+, and MSTP, but only one version can be active at any time. (For example, all VLANs run PVST+, all VLANs run rapid PVST+, or all VLANs run MSTP.) In Catalyst 3750-E-only and mixed switch stacks, all stack members run the same version of spanning tree. For information about the different spanning-tree modes and how they interoperate, see the “Spanning-Tree Interoperability and Backward Compatibility” section on page 1-11.

For configuration guidelines about UplinkFast, BackboneFast, and cross-stack UplinkFast, see the “Optional Spanning-Tree Configuration Guidelines” section on page 1-12.

Caution
Loop guard works only on point-to-point links. We recommend that each end of the link has a directly connected device that is running STP.

Changing the Spanning-Tree Mode.

The switch supports three spanning-tree modes: PVST+, rapid PVST+, or MSTP. By default, the switch runs the PVST+ protocol.

Beginning in privileged EXEC mode, follow these steps to change the spanning-tree mode. If you want to enable a mode that is different from the default mode, this procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>spanning-tree mode ({ pvst</td>
<td>mst</td>
</tr>
<tr>
<td></td>
<td>• Select pvst to enable PVST+ (the default setting).</td>
</tr>
<tr>
<td></td>
<td>• Select mst to enable MSTP (and RSTP). For more configuration steps, see Chapter 1, “Configuring MSTP.”</td>
</tr>
<tr>
<td></td>
<td>• Select rapid-pvst to enable rapid PVST+.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>(Recommended for rapid-PVST+ mode only) Specify an interface to configure, and enter interface configuration mode. Valid interfaces include physical ports, VLANs, and port channels. The VLAN ID range is 1 to 4094. The port-channel range is 1 to 48.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>spanning-tree link-type point-to-point</td>
<td>(Recommended for rapid-PVST+ mode only) Specify that the link type for this port is point-to-point.</td>
</tr>
<tr>
<td></td>
<td>If you connect this port (local port) to a remote port through a point-to-point link and the local port becomes a designated port, the switch negotiates with the remote port and rapidly changes the local port to the forwarding state.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
To return to the default setting, use the `no spanning-tree mode` global configuration command. To return the port to its default setting, use the `no spanning-tree link-type` interface configuration command.

Disabling Spanning Tree

Spanning tree is enabled by default on VLAN 1 and on all newly created VLANs up to the spanning-tree limit specified in the “Supported Spanning-Tree Instances” section on page 1-10. Disable spanning tree only if you are sure there are no loops in the network topology.

Caution

When spanning tree is disabled and loops are present in the topology, excessive traffic and indefinite packet duplication can drastically reduce network performance.

Beginning in privileged EXEC mode, follow these steps to disable spanning-tree on a per-VLAN basis. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>no spanning-tree vlan vlan-id</code></td>
<td>For <code>vlan-id</code>, the range is 1 to 4094.</td>
</tr>
<tr>
<td>Step 3 <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 <code>show spanning-tree vlan vlan-id</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable spanning-tree, use the `spanning-tree vlan vlan-id` global configuration command.
Configuring the Root Switch

The switch maintains a separate spanning-tree instance for each active VLAN configured on it. A bridge ID, consisting of the switch priority and the switch MAC address, is associated with each instance. For each VLAN, the switch with the lowest bridge ID becomes the root switch for that VLAN.

To configure a switch to become the root for the specified VLAN, use the `spanning-tree vlan vlan-id root` global configuration command to modify the switch priority from the default value (32768) to a significantly lower value. When you enter this command, the software checks the switch priority of the root switches for each VLAN. Because of the extended system ID support, the switch sets its own priority for the specified VLAN to 24576 if this value will cause this switch to become the root for the specified VLAN.

If any root switch for the specified VLAN has a switch priority lower than 24576, the switch sets its own priority for the specified VLAN to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 1-1 on page 1-5.)

Note
The `spanning-tree vlan vlan-id root` global configuration command fails if the value necessary to be the root switch is less than 1.

Note
If your network consists of switches that both do and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.

Note
The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.

Use the `diameter` keyword to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the `hello` keyword to override the automatically calculated hello time.

Note
After configuring the switch as the root switch, we recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time through the `spanning-tree vlan vlan-id hello-time`, `spanning-tree vlan vlan-id forward-time`, and the `spanning-tree vlan vlan-id max-age` global configuration commands.
Beginning in privileged EXEC mode, follow these steps to configure a switch to become the root for the specified VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id root primary [diameter net-diameter [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree detail</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no spanning-tree vlan vlan-id root** global configuration command.

Configuring a Secondary Root Switch

When you configure a switch as the secondary root, the switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified VLAN if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values that you used when you configured the primary root switch with the **spanning-tree vlan vlan-id root primary** global configuration command.
Beginning in privileged EXEC mode, follow these steps to configure a switch to become the secondary root for the specified VLAN. This procedure is optional.

Configuring Port Priority

If a loop occurs, spanning tree uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Note

If your switch is a member of a switch stack, you must use the `spanning-tree [vlan vlan-id] cost cost` interface configuration command instead of the `spanning-tree [vlan vlan-id] port-priority priority` interface configuration command to select an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. For more information, see the “Configuring Path Cost” section on page 1-21.
Beginning in privileged EXEC mode, follow these steps to configure the port priority of an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree port-priority priority</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree vlan vlan-id port-priority priority</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show spanning-tree interface interface-id</td>
</tr>
<tr>
<td>or</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Note

The `show spanning-tree interface interface-id` privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the `show running-config interface` privileged EXEC command to confirm the configuration.

To return to the default setting, use the `no spanning-tree [vlan vlan-id] port-priority` interface configuration command. For information on how to configure load sharing on trunk ports by using spanning-tree port priorities, see the “Configuring Trunk Ports for Load Sharing” section on page 1-22.
Configuring Path Cost

The spanning-tree path cost default value is derived from the media speed of an interface. If a loop occurs, spanning tree uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Beginning in privileged EXEC mode, follow these steps to configure the cost of an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify an interface to configure, and enter interface configuration mode. Valid interfaces include physical ports and port-channel logical interfaces (port-channel port-channel-number).</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree cost cost</td>
</tr>
<tr>
<td></td>
<td>Configure the cost for an interface.</td>
</tr>
<tr>
<td></td>
<td>If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.</td>
</tr>
<tr>
<td></td>
<td>For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree vlan vlan-id cost cost</td>
</tr>
<tr>
<td></td>
<td>Configure the cost for a VLAN.</td>
</tr>
<tr>
<td></td>
<td>If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.</td>
</tr>
<tr>
<td></td>
<td>• For vlan-id, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show spanning-tree interface interface-id</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note

The `show spanning-tree interface interface-id` privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the `show running-config` privileged EXEC command to confirm the configuration.
To return to the default setting, use the `no spanning-tree [vlan vlan-id] cost` interface configuration command. For information on how to configure load sharing on trunk ports by using spanning-tree path costs, see the “Configuring Trunk Ports for Load Sharing” section on page 1-22.

Configuring the Switch Priority of a VLAN

You can configure the switch priority and make it more likely that a standalone switch or a switch in the stack will be chosen as the root switch.

Note

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree vlan vlan-id root primary` and the `spanning-tree vlan vlan-id root secondary` global configuration commands to modify the switch priority.

Beginning in privileged EXEC mode, follow these steps to configure the switch priority of a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree vlan <code>vlan-id</code> <code>priority</code> <code>priority</code></td>
<td>Configure the switch priority of a VLAN.</td>
</tr>
<tr>
<td></td>
<td>• For <code>vlan-id</code>, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For <code>priority</code>, the range is 0 to 61440 in increments of 4096; the default is 32768. The lower the number, the more likely the switch will be chosen as the root switch.</td>
</tr>
<tr>
<td></td>
<td>Valid priority values are 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree vlan <code>vlan-id</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no spanning-tree vlan vlan-id priority` global configuration command.
Configuring Spanning-Tree Timers

Table 1-4 describes the timers that affect the entire spanning-tree performance.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello timer</td>
<td>Controls how often the switch broadcasts hello messages to other switches.</td>
</tr>
<tr>
<td>Forward-delay timer</td>
<td>Controls how long each of the listening and learning states last before the interface begins forwarding.</td>
</tr>
<tr>
<td>Maximum-age timer</td>
<td>Controls the amount of time the switch stores protocol information received on an interface.</td>
</tr>
<tr>
<td>Transmit hold count</td>
<td>Controls the number of BPDUs that can be sent before pausing for 1 second.</td>
</tr>
</tbody>
</table>

The sections that follow provide the configuration steps.

Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root switch by changing the hello time.

Exercise care when using this command. For most situations, we recommend that you use the spanning-tree vlan vlan-id root primary and the spanning-tree vlan vlan-id root secondary global configuration commands to modify the hello time.

Beginning in privileged EXEC mode, follow these steps to configure the hello time of a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree vlan vlan-id hello-time seconds</td>
<td>Configure the hello time of a VLAN. The hello time is the interval between the generation of configuration messages by the root switch. These messages mean that the switch is alive.</td>
</tr>
<tr>
<td></td>
<td>• For vlan-id, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For seconds, the range is 1 to 10; the default is 2.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree vlan vlan-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no spanning-tree vlan vlan-id hello-time global configuration command.
Configuring the Forwarding-Delay Time for a VLAN

Beginning in privileged EXEC mode, follow these steps to configure the forwarding-delay time for a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id forward-time seconds</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no spanning-tree vlan vlan-id forward-time global configuration command.

Configuring the Maximum-Aging Time for a VLAN

Beginning in privileged EXEC mode, follow these steps to configure the maximum-aging time for a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id max-age seconds</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no spanning-tree vlan vlan-id max-age global configuration command.
Configuring the Transmit Hold-Count

You can configure the BPDU burst size by changing the transmit hold count value.

Note
Changing this parameter to a higher value can have a significant impact on CPU utilization, especially in Rapid-PVST mode. Lowering this value can slow down convergence in certain scenarios. We recommend that you maintain the default setting.

Beginning in privileged EXEC mode, follow these steps to configure the transmit hold-count. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree transmit hold-count value</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree detail</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no spanning-tree transmit hold-count value** global configuration command.

Displaying the Spanning-Tree Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 1-5:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree active</td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td>show spanning-tree detail</td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td>show spanning-tree interface interface-id</td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td>show spanning-tree summary [totals]</td>
<td>Displays a summary of interface states or displays the total lines of the STP state section.</td>
</tr>
</tbody>
</table>

Note
In a switch stack, the spanning-tree process reports both physical stack ports in a stack member as one logical port.

You can clear spanning-tree counters by using the **clear spanning-tree [interface interface-id]** privileged EXEC command.

For information about other keywords for the **show spanning-tree** privileged EXEC command, see the command reference for this release.
Configuring MSTP

This chapter describes how to configure the Cisco implementation of the IEEE 802.1s Multiple STP (MSTP) on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch.

The multiple spanning-tree (MST) implementation is based on the IEEE 802.1s standard.

The MSTP enables multiple VLANs to be mapped to the same spanning-tree instance, reducing the number of spanning-tree instances needed to support a large number of VLANs. The MSTP provides for multiple forwarding paths for data traffic and enables load-balancing. It improves the fault tolerance of the network because a failure in one instance (forwarding path) does not affect other instances (forwarding paths). The most common initial deployment of MSTP is in the backbone and distribution layers of a Layer 2 switched network. This deployment provides the highly available network required in a service-provider environment.

When the switch is in the MST mode, the Rapid Spanning Tree Protocol (RSTP), which is based on IEEE 802.1w, is automatically enabled. The RSTP provides rapid convergence of the spanning tree through explicit handshaking that eliminates the IEEE 802.1D forwarding delay and quickly transitions root ports and designated ports to the forwarding state.

Both MSTP and RSTP improve the spanning-tree operation and maintain backward compatibility with equipment that is based on the (original) IEEE 802.1D spanning tree, with existing Cisco-proprietary Multiple Instance STP (MISTP), and with existing Cisco per-VLAN spanning-tree plus (PVST+) and rapid per-VLAN spanning-tree plus (rapid PVST+). For information about PVST+ and rapid PVST+, see Chapter 1, “Configuring STP.” For information about other spanning-tree features such as Port Fast, UplinkFast, root guard, and so forth, see Chapter 1, “Configuring Optional Spanning-Tree Features.”

A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same switch ID. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

- Understanding MSTP, page 1-2
- Understanding RSTP, page 1-9
- Configuring MSTP Features, page 1-14
- Displaying the MST Configuration and Status, page 1-27
Understanding MSTP

MSTP, which uses RSTP for rapid convergence, enables VLANs to be grouped into a spanning-tree instance, with each instance having a spanning-tree topology independent of other spanning-tree instances. This architecture provides multiple forwarding paths for data traffic, enables load-balancing, and reduces the number of spanning-tree instances required to support a large number of VLANs.

These sections describe how the MSTP works:
- Multiple Spanning-Tree Regions, page 1-2
- IST, CIST, and CST, page 1-2
- Hop Count, page 1-5
- Boundary Ports, page 1-6
- IEEE 802.1s Implementation, page 1-6
- MSTP and Switch Stacks, page 1-8
- Interoperability with IEEE 802.1D STP, page 1-8

For configuration information, see the “Configuring MSTP Features” section on page 1-14.

Multiple Spanning-Tree Regions

For switches to participate in multiple spanning-tree (MST) instances, you must consistently configure the switches with the same MST configuration information. A collection of interconnected switches that have the same MST configuration comprises an MST region as shown in Figure 1-1 on page 1-4.

The MST configuration controls to which MST region each switch belongs. The configuration includes the name of the region, the revision number, and the MST VLAN-to-instance assignment map. You configure the switch for a region by using the `spanning-tree mst configuration` global configuration command, after which the switch enters the MST configuration mode. From this mode, you can map VLANs to an MST instance by using the `instance` MST configuration command, specify the region name by using the `name` MST configuration command, and set the revision number by using the `revision` MST configuration command.

A region can have one or multiple members with the same MST configuration. Each member must be capable of processing RSTP bridge protocol data units (BPDUs). There is no limit to the number of MST regions in a network, but each region can support up to 65 spanning-tree instances. Instances can be identified by any number in the range from 0 to 4094. You can assign a VLAN to only one spanning-tree instance at a time.

IST, CIST, and CST

Unlike PVST+ and rapid PVST+ in which all the spanning-tree instances are independent, the MSTP establishes and maintains two types of spanning trees:
- An internal spanning tree (IST), which is the spanning tree that runs in an MST region.

Within each MST region, the MSTP maintains multiple spanning-tree instances. Instance 0 is a special instance for a region, known as the internal spanning tree (IST). All other MST instances are numbered from 1 to 4094.
The IST is the only spanning-tree instance that sends and receives BPDUs. All of the other spanning-tree instance information is contained in M-records, which are encapsulated within MSTP BPDUs. Because the MSTP BPDU carries information for all instances, the number of BPDUs that need to be processed to support multiple spanning-tree instances is significantly reduced.

All MST instances within the same region share the same protocol timers, but each MST instance has its own topology parameters, such as root switch ID, root path cost, and so forth. By default, all VLANs are assigned to the IST.

An MST instance is local to the region; for example, MST instance 1 in region A is independent of MST instance 1 in region B, even if regions A and B are interconnected.

- A common and internal spanning tree (CIST), which is a collection of the ISTs in each MST region, and the common spanning tree (CST) that interconnects the MST regions and single spanning trees.

The spanning tree computed in a region appears as a subtree in the CST that encompasses the entire switched domain. The CIST is formed by the spanning-tree algorithm running among switches that support the IEEE 802.1w, IEEE 802.1s, and IEEE 802.1D standards. The CIST inside an MST region is the same as the CST outside a region.

For more information, see the “Operations Within an MST Region” section on page 1-3 and the “Operations Between MST Regions” section on page 1-3.

Note
The implementation of the IEEE 802.1s standard, changes some of the terminology associated with MST implementations. For a summary of these changes, see Table 1-1 on page 1-5.

Operations Within an MST Region

The IST connects all the MSTP switches in a region. When the IST converges, the root of the IST becomes the CIST regional root (called the *IST master* before the implementation of the IEEE 802.1s standard) as shown in Figure 1-1 on page 1-4. It is the switch within the region with the lowest switch ID and path cost to the CIST root. The CIST regional root is also the CIST root if there is only one region in the network. If the CIST root is outside the region, one of the MSTP switches at the boundary of the region is selected as the CIST regional root.

When an MSTP switch initializes, it sends BPDUs claiming itself as the root of the CIST and the CIST regional root, with both of the path costs to the CIST root and to the CIST regional root set to zero. The switch also initializes all of its MST instances and claims to be the root for all of them. If the switch receives superior MST root information (lower switch ID, lower path cost, and so forth) than currently stored for the port, it relinquishes its claim as the CIST regional root.

During initialization, a region might have many subregions, each with its own CIST regional root. As switches receive superior IST information, they leave their old subregions and join the new subregion that contains the true CIST regional root. Thus all subregions shrink, except for the one that contains the true CIST regional root.

For correct operation, all switches in the MST region must agree on the same CIST regional root. Therefore, any two switches in the region only synchronize their port roles for an MST instance if they converge to a common CIST regional root.

Operations Between MST Regions

If there are multiple regions or legacy IEEE 802.1D switches within the network, MSTP establishes and maintains the CST, which includes all MST regions and all legacy STP switches in the network. The MST instances combine with the IST at the boundary of the region to become the CST.
The IST connects all the MSTP switches in the region and appears as a subtree in the CIST that encompasses the entire switched domain. The root of the subtree is the CIST regional root. The MST region appears as a virtual switch to adjacent STP switches and MST regions.

Figure 1-1 shows a network with three MST regions and a legacy IEEE 802.1D switch (D). The CIST regional root for region 1 (A) is also the CIST root. The CIST regional root for region 2 (B) and the CIST regional root for region 3 (C) are the roots for their respective subtrees within the CIST. The RSTP runs in all regions.

Only the CST instance sends and receives BPDUs, and MST instances add their spanning-tree information into the BPDUs to interact with neighboring switches and compute the final spanning-tree topology. Because of this, the spanning-tree parameters related to BPDU transmission (for example, hello time, forward time, max-age, and max-hops) are configured only on the CST instance but affect all MST instances. Parameters related to the spanning-tree topology (for example, switch priority, port VLAN cost, and port VLAN priority) can be configured on both the CST instance and the MST instance.

MSTP switches use Version 3 RSTP BPDUs or IEEE 802.1D STP BPDUs to communicate with legacy IEEE 802.1D switches. MSTP switches use MSTP BPDUs to communicate with MSTP switches.
IEEE 802.1s Terminology

Some MST naming conventions used in Cisco’s prestandard implementation have been changed to identify some internal or regional parameters. These parameters are significant only within an MST region, as opposed to external parameters that are relevant to the whole network. Because the CIST is the only spanning-tree instance that spans the whole network, only the CIST parameters require the external rather than the internal or regional qualifiers.

- The CIST root is the root switch for the unique instance that spans the whole network, the CIST.
- The CIST external root path cost is the cost to the CIST root. This cost is left unchanged within an MST region. Remember that an MST region looks like a single switch for the CIST. The CIST external root path cost is the root path cost calculated between these virtual switches and switches that do not belong to any region.
- The CIST regional root was called the IST master in the prestandard implementation. If the CIST root is in the region, the CIST regional root is the CIST root. Otherwise, the CIST regional root is the closest switch to the CIST root in the region. The CIST regional root acts as a root switch for the IST.
- The CIST internal root path cost is the cost to the CIST regional root in a region. This cost is only relevant to the IST, instance 0.

Table 1-1 compares the IEEE standard and the Cisco prestandard terminology.

<table>
<thead>
<tr>
<th>IEEE Standard</th>
<th>Cisco Prestandard</th>
<th>Cisco Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIST regional root</td>
<td>IST master</td>
<td>CIST regional root</td>
</tr>
<tr>
<td>CIST internal root path cost</td>
<td>IST master path cost</td>
<td>CIST internal path cost</td>
</tr>
<tr>
<td>CIST external root path cost</td>
<td>Root path cost</td>
<td>Root path cost</td>
</tr>
<tr>
<td>MSTI regional root</td>
<td>Instance root</td>
<td>Instance root</td>
</tr>
<tr>
<td>MSTI internal root path cost</td>
<td>Root path cost</td>
<td>Root path cost</td>
</tr>
</tbody>
</table>

Hop Count

The IST and MST instances do not use the message-age and maximum-age information in the configuration BPDU to compute the spanning-tree topology. Instead, they use the path cost to the root and a hop-count mechanism similar to the IP time-to-live (TTL) mechanism.

By using the spanning-tree mst max-hops global configuration command, you can configure the maximum hops inside the region and apply it to the IST and all MST instances in that region. The hop count achieves the same result as the message-age information (triggers a reconfiguration). The root switch of the instance always sends a BPDU (or M-record) with a cost of 0 and the hop count set to the maximum value. When a switch receives this BPDU, it decrements the received remaining hop count by one and propagates this value as the remaining hop count in the BPDU it generates. When the count reaches zero, the switch discards the BPDU and ages the information held for the port.

The message-age and maximum-age information in the RSTP portion of the BPDU remain the same throughout the region, and the same values are propagated by the region designated ports at the boundary.
Boundary Ports

In the Cisco prestandard implementation, a boundary port connects an MST region to a single spanning-tree region running RSTP, to a single spanning-tree region running PVST+ or rapid PVST+, or to another MST region with a different MST configuration. A boundary port also connects to a LAN, the designated switch of which is either a single spanning-tree switch or a switch with a different MST configuration.

There is no definition of a boundary port in the IEEE 802.1s standard. The IEEE 802.1Q-2002 standard identifies two kinds of messages that a port can receive: internal (coming from the same region) and external. When a message is external, it is received only by the CIST. If the CIST role is root or alternate, or if the external BPDU is a topology change, it could have an impact on the MST instances. When a message is internal, the CIST part is received by the CIST, and each MST instance receives its respective M-record. The Cisco prestandard implementation treats a port that receives an external message as a boundary port. This means a port cannot receive a mix of internal and external messages.

An MST region includes both switches and LANs. A segment belongs to the region of its designated port. Therefore, a port in a different region than the designated port for a segment is a boundary port. This definition allows two ports internal to a region to share a segment with a port belonging to a different region, creating the possibility of receiving both internal and external messages on a port.

The primary change from the Cisco prestandard implementation is that a designated port is not defined as boundary, unless it is running in an STP-compatible mode.

Note

If there is a legacy STP switch on the segment, messages are always considered external.

The other change from the prestandard implementation is that the CIST regional root switch ID field is now inserted where an RSTP or legacy IEEE 802.1Q switch has the sender switch ID. The whole region performs like a single virtual switch by sending a consistent sender switch ID to neighboring switches. In this example, switch C would receive a BPDU with the same consistent sender switch ID of root, whether or not A or B is designated for the segment.

IEEE 802.1s Implementation

The Cisco implementation of the IEEE MST standard includes features required to meet the standard, as well as some of the desirable prestandard functionality that is not yet incorporated into the published standard.

Port Role Naming Change

The boundary role is no longer in the final MST standard, but this boundary concept is maintained in Cisco’s implementation. However, an MST instance port at a boundary of the region might not follow the state of the corresponding CIST port. Two cases exist now:

- The boundary port is the root port of the CIST regional root—When the CIST instance port is proposed and is in sync, it can send back an agreement and move to the forwarding state only after all the corresponding MSTI ports are in sync (and thus forwarding). The MSTI ports now have a special master role.
• The boundary port is not the root port of the CIST regional root—The MSTI ports follow the state and role of the CIST port. The standard provides less information, and it might be difficult to understand why an MSTI port can be alternately blocking when it receives no BPDUs (MRecords). In this case, although the boundary role no longer exists, the `show` commands identify a port as boundary in the `type` column of the output.

Interoperation Between Legacy and Standard Switches

Because automatic detection of prestandard switches can fail, you can use an interface configuration command to identify prestandard ports. A region cannot be formed between a standard and a prestandard switch, but they can interoperate by using the CIST. Only the capability of load-balancing over different instances is lost in that particular case. The CLI displays different flags depending on the port configuration when a port receives prestandard BPDUs. A syslog message also appears the first time a switch receives a prestandard BPDU on a port that has not been configured for prestandard BPDU transmission.

Figure 1-2 illustrates this scenario. Assume that A is a standard switch and B a prestandard switch, both configured to be in the same region. A is the root switch for the CIST, and thus B has a root port (BX) on segment X and an alternate port (BY) on segment Y. If segment Y flaps, and the port on BY becomes the alternate before sending out a single prestandard BPDU, AY cannot detect that a prestandard switch is connected to Y and continues to send standard BPDUs. The port BY is thus fixed in a boundary, and no load-balancing is possible between A and B. The same problem exists on segment X, but B might transmit topology changes.

Figure 1-2 Standard and Prestandard Switch Interoperation

![Diagram of switch interaction](image)

Note We recommend that you minimize the interaction between standard and prestandard MST implementations.

Detecting Unidirectional Link Failure

This feature is not yet present in the IEEE MST standard, but it is included in this Cisco IOS release. The software checks the consistency of the port role and state in the received BPDUs to detect unidirectional link failures that could cause bridging loops.

When a designated port detects a conflict, it keeps its role, but reverts to discarding state because disrupting connectivity in case of inconsistency is preferable to opening a bridging loop.
Figure 1-3 illustrates a unidirectional link failure that typically creates a bridging loop. Switch A is the root switch, and its BPDUs are lost on the link leading to switch B. RSTP and MST BPDUs include the role and state of the sending port. With this information, switch A can detect that switch B does not react to the superior BPDUs it sends and that switch B is the designated, not root switch. As a result, switch A blocks (or keeps blocking) its port, thus preventing the bridging loop.

Figure 1-3 Detecting Unidirectional Link Failure

MSTP and Switch Stacks

A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same switch ID for a given spanning tree. The switch ID is derived from the MAC address of the stack master.

If a switch that does not support MSTP is added to a switch stack that does support MSTP or the reverse, the switch is put into a version mismatch state. If possible, the switch is automatically upgraded or downgraded to the same version of software that is running on the switch stack.

When a new switch joins the stack, it sets its switch ID to the stack master switch ID. If the newly added switch has the lowest ID and if the root path cost is the same among all stack members, the newly added switch becomes the stack root. A topology change occurs if the newly added switch contains a better root port for the switch stack or a better designated port for the LAN connected to the stack. The newly added switch causes a topology change in the network if another switch connected to the newly added switch changes its root port or designated ports.

When a stack member leaves the stack, spanning-tree reconvergence occurs within the stack (and possibly outside the stack). The remaining stack member with the lowest stack port ID becomes the stack root.

If the stack master fails or leaves the stack, the stack members elect a new stack master, and all stack members change their switch IDs of the spanning trees to the new master switch ID.

For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”

Interoperability with IEEE 802.1D STP

A switch running MSTP supports a built-in protocol migration mechanism that enables it to interoperate with legacy IEEE 802.1D switches. If this switch receives a legacy IEEE 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only IEEE 802.1D BPDUs on that port. An MSTP switch also can detect that a port is at the boundary of a region when it receives a legacy BPDU, an MSTP BPDU (Version 3) associated with a different region, or an RSTP BPDU (Version 2).

However, the switch does not automatically revert to the MSTP mode if it no longer receives IEEE 802.1D BPDUs because it cannot detect whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. A switch might also continue to assign a boundary role
to a port when the switch to which this switch is connected has joined the region. To restart the protocol migration process (force the renegotiation with neighboring switches), use the `clear spanning-tree detected-protocols` privileged EXEC command.

If all the legacy switches on the link are RSTP switches, they can process MSTP BPDUs as if they are RSTP BPDUs. Therefore, MSTP switches send either a Version 0 configuration and TCN BPDUs or Version 3 MSTP BPDUs on a boundary port. A boundary port connects to a LAN, the designated switch of which is either a single spanning-tree switch or a switch with a different MST configuration.

Understanding RSTP

The RSTP takes advantage of point-to-point wiring and provides rapid convergence of the spanning tree. Reconfiguration of the spanning tree can occur in less than 1 second (in contrast to 50 seconds with the default settings in the IEEE 802.1D spanning tree).

These sections describe how the RSTP works:

- **Port Roles and the Active Topology, page 1-9**
- **Rapid Convergence, page 1-10**
- **Synchronization of Port Roles, page 1-11**
- **Bridge Protocol Data Unit Format and Processing, page 1-12**

For configuration information, see the “Configuring MSTP Features” section on page 1-14.

Port Roles and the Active Topology

The RSTP provides rapid convergence of the spanning tree by assigning port roles and by learning the active topology. The RSTP builds upon the IEEE 802.1D STP to select the switch with the highest switch priority (lowest numerical priority value) as the root switch as described in the “Spanning-Tree Topology and BPDUs” section on page 1-3. Then the RSTP assigns one of these port roles to individual ports:

- **Root port**—Provides the best path (lowest cost) when the switch forwards packets to the root switch.
- **Designated port**—Connects to the designated switch, which incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.
- **Alternate port**—Offers an alternate path toward the root switch to that provided by the current root port.
- **Backup port**—Acts as a backup for the path provided by a designated port toward the leaves of the spanning tree. A backup port can exist only when two ports are connected in a loopback by a point-to-point link or when a switch has two or more connections to a shared LAN segment.
- **Disabled port**—Has no role within the operation of the spanning tree.

A port with the root or a designated port role is included in the active topology. A port with the alternate or backup port role is excluded from the active topology.
In a stable topology with consistent port roles throughout the network, the RSTP ensures that every root port and designated port immediately transition to the forwarding state while all alternate and backup ports are always in the discarding state (equivalent to blocking in IEEE 802.1D). The port state controls the operation of the forwarding and learning processes. Table 1-2 provides a comparison of IEEE 802.1D and RSTP port states.

Table 1-2 Port State Comparison

<table>
<thead>
<tr>
<th>Operational Status</th>
<th>STP Port State (IEEE 802.1D)</th>
<th>RSTP Port State</th>
<th>Is Port Included in the Active Topology?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Blocking</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Listening</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Learning</td>
<td>Learning</td>
<td>Yes</td>
</tr>
<tr>
<td>Enabled</td>
<td>Forwarding</td>
<td>Forwarding</td>
<td>Yes</td>
</tr>
<tr>
<td>Disabled</td>
<td>Disabled</td>
<td>Discarding</td>
<td>No</td>
</tr>
</tbody>
</table>

To be consistent with Cisco STP implementations, this guide defines the port state as blocking instead of discarding. Designated ports start in the listening state.

Rapid Convergence

The RSTP provides for rapid recovery of connectivity following the failure of a switch, a switch port, or a LAN. It provides rapid convergence for edge ports, new root ports, and ports connected through point-to-point links as follows:

- **Edge ports**—If you configure a port as an edge port on an RSTP switch by using the spanning-tree portfast interface configuration command, the edge port immediately transitions to the forwarding state. An edge port is the same as a Port Fast-enabled port, and you should enable it only on ports that connect to a single end station.

- **Root ports**—If the RSTP selects a new root port, it blocks the old root port and immediately transitions the new root port to the forwarding state.

- **Point-to-point links**—If you connect a port to another port through a point-to-point link and the local port becomes a designated port, it negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology.

As shown in Figure 1-4, Switch A is connected to Switch B through a point-to-point link, and all of the ports are in the blocking state. Assume that the priority of Switch A is a smaller numerical value than the priority of Switch B. Switch A sends a proposal message (a configuration BPDU with the proposal flag set) to Switch B, proposing itself as the designated switch.

After receiving the proposal message, Switch B selects as its new root port the port from which the proposal message was received, forces all nonedge ports to the blocking state, and sends an agreement message (a BPDU with the agreement flag set) through its new root port.

After receiving Switch B’s agreement message, Switch A also immediately transitions its designated port to the forwarding state. No loops in the network are formed because Switch B blocked all of its nonedge ports and because there is a point-to-point link between Switches A and B.
When Switch C is connected to Switch B, a similar set of handshaking messages are exchanged. Switch C selects the port connected to Switch B as its root port, and both ends immediately transition to the forwarding state. With each iteration of this handshaking process, one more switch joins the active topology. As the network converges, this proposal-agreement handshaking progresses from the root toward the leaves of the spanning tree.

In a switch stack, the cross-stack rapid transition (CSRT) feature ensures that a stack member receives acknowledgments from all stack members during the proposal-agreement handshaking before moving the port to the forwarding state. CSRT is automatically enabled when the switch is in MST mode.

The switch learns the link type from the port duplex mode: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. You can override the default setting that is controlled by the duplex setting by using the `spanning-tree link-type` interface configuration command.

Figure 1-4 Proposal and Agreement Handshaking for Rapid Convergence

![Proposal and Agreement Handshaking for Rapid Convergence](image)

Synchronization of Port Roles

When the switch receives a proposal message on one of its ports and that port is selected as the new root port, the RSTP forces all other ports to synchronize with the new root information.

The switch is synchronized with superior root information received on the root port if all other ports are synchronized. An individual port on the switch is synchronized if

- That port is in the blocking state.
- It is an edge port (a port configured to be at the edge of the network).

If a designated port is in the forwarding state and is not configured as an edge port, it transitions to the blocking state when the RSTP forces it to synchronize with new root information. In general, when the RSTP forces a port to synchronize with root information and the port does not satisfy any of the above conditions, its port state is set to blocking.
After ensuring that all of the ports are synchronized, the switch sends an agreement message to the designated switch corresponding to its root port. When the switches connected by a point-to-point link are in agreement about their port roles, the RSTP immediately transitions the port states to forwarding. The sequence of events is shown in Figure 1-5.

Figure 1-5 Sequence of Events During Rapid Convergence

![Diagram showing sequence of events during rapid convergence]

Bridge Protocol Data Unit Format and Processing

The RSTP BPDU format is the same as the IEEE 802.1D BPDU format except that the protocol version is set to 2. A new 1-byte Version 1 Length field is set to zero, which means that no version 1 protocol information is present. Table 1-3 shows the RSTP flag fields.

Table 1-3 RSTP BPDU Flags

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Topology change (TC)</td>
</tr>
<tr>
<td>1</td>
<td>Proposal</td>
</tr>
<tr>
<td>2–3:</td>
<td>Port role:</td>
</tr>
<tr>
<td></td>
<td>00</td>
</tr>
<tr>
<td></td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Learning</td>
</tr>
<tr>
<td>5</td>
<td>Forwarding</td>
</tr>
<tr>
<td>6</td>
<td>Agreement</td>
</tr>
<tr>
<td>7</td>
<td>Topology change acknowledgement (TCA)</td>
</tr>
</tbody>
</table>
The sending switch sets the proposal flag in the RSTP BPDU to propose itself as the designated switch on that LAN. The port role in the proposal message is always set to the designated port.

The sending switch sets the agreement flag in the RSTP BPDU to accept the previous proposal. The port role in the agreement message is always set to the root port.

The RSTP does not have a separate topology change notification (TCN) BPDU. It uses the topology change (TC) flag to show the topology changes. However, for interoperability with IEEE 802.1D switches, the RSTP switch processes and generates TCN BPDUs.

The learning and forwarding flags are set according to the state of the sending port.

Processing Superior BPDU Information

If a port receives superior root information (lower switch ID, lower path cost, and so forth) than currently stored for the port, the RSTP triggers a reconfiguration. If the port is proposed and is selected as the new root port, RSTP forces all the other ports to synchronize.

If the BPDU received is an RSTP BPDU with the proposal flag set, the switch sends an agreement message after all of the other ports are synchronized. If the BPDU is an IEEE 802.1D BPDU, the switch does not set the proposal flag and starts the forward-delay timer for the port. The new root port requires twice the forward-delay time to transition to the forwarding state.

If the superior information received on the port causes the port to become a backup or alternate port, RSTP sets the port to the blocking state but does not send the agreement message. The designated port continues sending BPDUs with the proposal flag set until the forward-delay timer expires, at which time the port transitions to the forwarding state.

Processing Inferior BPDU Information

If a designated port receives an inferior BPDU (higher switch ID, higher path cost, and so forth than currently stored for the port) with a designated port role, it immediately replies with its own information.

Topology Changes

This section describes the differences between the RSTP and the IEEE 802.1D in handling spanning-tree topology changes.

- **Detection**—Unlike IEEE 802.1D in which *any* transition between the blocking and the forwarding state causes a topology change, *only* transitions from the blocking to the forwarding state cause a topology change with RSTP (only an increase in connectivity is considered a topology change). State changes on an edge port do not cause a topology change. When an RSTP switch detects a topology change, it deletes the learned information on all of its nonedge ports except on those from which it received the TC notification.

- **Notification**—Unlike IEEE 802.1D, which uses TCN BPDUs, the RSTP does not use them. However, for IEEE 802.1D interoperability, an RSTP switch processes and generates TCN BPDUs.

- **Acknowledgement**—When an RSTP switch receives a TCN message on a designated port from an IEEE 802.1D switch, it replies with an IEEE 802.1D configuration BPDU with the TCA bit set. However, if the TC-while timer (the same as the topology-change timer in IEEE 802.1D) is active on a root port connected to an IEEE 802.1D switch and a configuration BPDU with the TCA bit set is received, the TC-while timer is reset.

This behavior is only required to support IEEE 802.1D switches. The RSTP BPDUs never have the TCA bit set.
Configuring MSTP Features

These sections contain this configuration information:

- Default MSTP Configuration, page 1-14
- MSTP Configuration Guidelines, page 1-15
- Specifying the MST Region Configuration and Enabling MSTP, page 1-16 (required)
- Configuring the Root Switch, page 1-18 (optional)
- Configuring a Secondary Root Switch, page 1-19 (optional)
- Configuring Port Priority, page 1-20 (optional)
- Configuring Path Cost, page 1-21 (optional)
- Configuring the Switch Priority, page 1-22 (optional)
- Configuring the Hello Time, page 1-23 (optional)
- Configuring the Forwarding-Delay Time, page 1-24 (optional)
- Configuring the Maximum-Aging Time, page 1-24 (optional)
- Configuring the Maximum-Hop Count, page 1-25 (optional)
- Specifying the Link Type to Ensure Rapid Transitions, page 1-25 (optional)
- Designating the Neighbor Type, page 1-26 (optional)
- Restarting the Protocol Migration Process, page 1-26 (optional)

Default MSTP Configuration

Table 1-4 shows the default MSTP configuration.

Table 1-4 Default MSTP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning-tree mode</td>
<td>PVST+ (Rapid PVST+ and MSTP are disabled).</td>
</tr>
<tr>
<td>Switch priority (configurable on a per-CIST port basis)</td>
<td>32768.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring MSTP

Configuring MSTP Features

For information about the supported number of spanning-tree instances, see the “Supported Spanning-Tree Instances” section on page 1-10.

MSTP Configuration Guidelines

These are the configuration guidelines for MSTP:

- When you enable MST by using the `spanning-tree mode mst` global configuration command, RSTP is automatically enabled.
- For two or more Catalyst 3560-E Catalyst 3560-X switches to be in the same MST region, they must have the same VLAN-to-instance map, the same configuration revision number, and the same name.
- For two or more stacked Catalyst 3750-E Catalyst 3750-X switches to be in the same MST region, they must have the same VLAN-to-instance map, the same configuration revision number, and the same name.
- The Catalyst 3560-E Catalyst 3560-X switch supports up to 65 MST instances. The number of VLANs that can be mapped to a particular MST instance is unlimited.
- The Catalyst 3750-E Catalyst 3750-X switch stack supports up to 65 MST instances. The number of VLANs that can be mapped to a particular MST instance is unlimited.
- PVST+, rapid PVST+, and MSTP are supported, but only one version can be active at any time. (For example, all VLANs run PVST+, all VLANs run rapid PVST+, or all VLANs run MSTP.) For more information, see the “Spanning-Tree Interoperability and Backward Compatibility” section on page 1-11. For information on the recommended trunk port configuration, see the “Interaction with Other Features” section on page 1-18.
- All stack members run the same version of spanning tree (all PVST+, rapid PVST+, or MSTP). For more information, see the “Spanning-Tree Interoperability and Backward Compatibility” section on page 1-11.
- VTP propagation of the MST configuration is not supported. However, you can manually configure the MST configuration (region name, revision number, and VLAN-to-instance mapping) on each switch within the MST region by using the command-line interface (CLI) or through the SNMP support.
- For load-balancing across redundant paths in the network to work, all VLAN-to-instance mapping assignments must match; otherwise, all traffic flows on a single link. You can achieve load-balancing across a switch stack by manually configuring the path cost.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning-tree port priority</td>
<td>128.</td>
</tr>
<tr>
<td>Spanning-tree port cost</td>
<td>1000 Mb/s: 4.</td>
</tr>
<tr>
<td></td>
<td>100 Mb/s: 19.</td>
</tr>
<tr>
<td></td>
<td>10 Mb/s: 100.</td>
</tr>
<tr>
<td>Hello time</td>
<td>2 seconds.</td>
</tr>
<tr>
<td>Forward-delay time</td>
<td>15 seconds.</td>
</tr>
<tr>
<td>Maximum-aging time</td>
<td>20 seconds.</td>
</tr>
<tr>
<td>Maximum hop count</td>
<td>20 hops.</td>
</tr>
</tbody>
</table>

For information about the supported number of spanning-tree instances, see the “Supported Spanning-Tree Instances” section on page 1-10.
• All MST boundary ports must be forwarding for load-balancing between a PVST+ and an MST cloud or between a rapid-PVST+ and an MST cloud. For this to occur, the IST master of the MST cloud should also be the root of the CST. If the MST cloud consists of multiple MST regions, one of the MST regions must contain the CST root, and all of the other MST regions must have a better path to the root contained within the MST cloud than a path through the PVST+ or rapid-PVST+ cloud. You might have to manually configure the switches in the clouds.

• Partitioning the network into a large number of regions is not recommended. However, if this situation is unavoidable, we recommend that you partition the switched LAN into smaller LANs interconnected by routers or non-Layer 2 devices.

• For configuration guidelines about UplinkFast, BackboneFast, and cross-stack UplinkFast, see the “Optional Spanning-Tree Configuration Guidelines” section on page 1-12.

• When the switch is in MST mode, it uses the long path-cost calculation method (32 bits) to compute the path cost values. With the long path-cost calculation method, these path cost values are supported:

<table>
<thead>
<tr>
<th>Speed</th>
<th>Path Cost Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mb/s</td>
<td>2,000,000</td>
</tr>
<tr>
<td>100 Mb/s</td>
<td>200,000</td>
</tr>
<tr>
<td>1 Gb/s</td>
<td>20,000</td>
</tr>
<tr>
<td>10 Gb/s</td>
<td>2,000</td>
</tr>
<tr>
<td>100 Gb/s</td>
<td>200</td>
</tr>
</tbody>
</table>

Specifying the MST Region Configuration and Enabling MSTP

For two or more switches to be in the same MST region, they must have the same VLAN-to-instance mapping, the same configuration revision number, and the same name.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing RSTP BPDUs. There is no limit to the number of MST regions in a network, but each region can only support up to 65 spanning-tree instances. You can assign a VLAN to only one spanning-tree instance at a time.

Beginning in privileged EXEC mode, follow these steps to specify the MST region configuration and enable MSTP. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree mst configuration</td>
<td>Enter MST configuration mode.</td>
</tr>
</tbody>
</table>
Configuring MSTP Features

To return to the default MST region configuration, use the `no spanning-tree mst configuration` global configuration command. To return to the default VLAN-to-instance map, use the `no instance instance-id [vlan vlan-range]` MST configuration command. To return to the default name, use the `no name MST configuration command`. To return to the default revision number, use the `no revision MST configuration command`. To re-enable PVST+, use the `no spanning-tree mode` or the `spanning-tree mode pvst` global configuration command.

This example shows how to enter MST configuration mode, map VLANs 10 to 20 to MST instance 1, name the region `region1`, set the configuration revision to 1, display the pending configuration, apply the changes, and return to global configuration mode:

```
Switch(config)# spanning-tree mst configuration
Switch(config-mst)# instance 1 vlan 10-20
Switch(config-mst)# name region1
Switch(config-mst)# revision 1
Switch(config-mst)# show pending
Pending MST configuration
Name [region1]
Revision 1
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 instance instance-id vlan vlan-range</td>
<td>Map VLANs to an MST instance.</td>
</tr>
<tr>
<td></td>
<td>• For instance-id, the range is 0 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For vlan vlan-range, the range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>When you map VLANs to an MST instance, the mapping is incremental, and the VLANs specified in the command are added to or removed from the VLANs that were previously mapped.</td>
</tr>
<tr>
<td></td>
<td>To specify a VLAN range, use a hyphen; for example, instance 1 vlan 1-63 maps VLANs 1 through 63 to MST instance 1.</td>
</tr>
<tr>
<td></td>
<td>To specify a VLAN series, use a comma; for example, instance 1 vlan 10, 20, 30 maps VLANs 10, 20, and 30 to MST instance 1.</td>
</tr>
<tr>
<td>Step 4 name name</td>
<td>Specify the configuration name. The name string has a maximum length of 32 characters and is case sensitive.</td>
</tr>
<tr>
<td>Step 5 revision version</td>
<td>Specify the configuration revision number. The range is 0 to 65535.</td>
</tr>
<tr>
<td>Step 6 show pending</td>
<td>Verify your configuration by displaying the pending configuration.</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Apply all changes, and return to global configuration mode.</td>
</tr>
<tr>
<td>Step 8 spanning-tree mode mst</td>
<td>Enable MSTP. RSTP is also enabled.</td>
</tr>
<tr>
<td></td>
<td>Caution Changing spanning-tree modes can disrupt traffic because all spanning-tree instances are stopped for the previous mode and restarted in the new mode.</td>
</tr>
<tr>
<td></td>
<td>You cannot run both MSTP and PVST+ or both MSTP and rapid PVST+ at the same time.</td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 11 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring the Root Switch

The switch maintains a spanning-tree instance for the group of VLANs mapped to it. A switch ID, consisting of the switch priority and the switch MAC address, is associated with each instance. For a group of VLANs, the switch with the lowest switch ID becomes the root switch.

To configure a switch to become the root, use the `spanning-tree mst instance-id root` global configuration command to modify the switch priority from the default value (32768) to a significantly lower value so that the switch becomes the root switch for the specified spanning-tree instance. When you enter this command, the switch checks the switch priorities of the root switches. Because of the extended system ID support, the switch sets its own priority for the specified instance to 24576 if this value will cause this switch to become the root for the specified spanning-tree instance.

If any root switch for the specified instance has a switch priority lower than 24576, the switch sets its own priority to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 1-1 on page 1-5.)

If your network consists of switches that both do and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.

The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.

Use the `diameter` keyword, which is available only for MST instance 0, to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the `hello` keyword to override the automatically calculated hello time.

After configuring the switch as the root switch, we recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time through the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and the `spanning-tree mst max-age` global configuration commands.
Beginning in privileged EXEC mode, follow these steps to configure a switch as the root switch. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst instance-id root primary [diameter net-diameter [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree mst instance-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree mst instance-id root global configuration command.

Configuring a Secondary Root Switch

When you configure a switch with the extended system ID support as the secondary root, the switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified instance if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values that you used when you configured the primary root switch with the spanning-tree mst instance-id root primary global configuration command.
Beginning in privileged EXEC mode, follow these steps to configure a switch as the secondary root switch. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst instance-id root secondary [diameter net-diameter] [hello-time seconds]</td>
</tr>
<tr>
<td></td>
<td>- For instance-id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For diameter net-diameter, specify the maximum number of switches between any two end stations. The range is 2 to 7. This keyword is available only for MST instance 0.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For hello-time seconds, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td></td>
<td>Use the same network diameter and hello-time values that you used when configuring the primary root switch. See the “Configuring the Root Switch” section on page 1-18.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree mst instance-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the **no spanning-tree mst instance-id root** global configuration command.

Configuring Port Priority

If a loop occurs, the MSTP uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, the MSTP puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Note

If your Catalyst 3750-E Catalyst 3750-X switch is a member of a switch stack, you must use the **spanning-tree mst [instance-id] cost cost** interface configuration command instead of the **spanning-tree mst [instance-id] port-priority priority** interface configuration command to select a port to put in the forwarding state. Assign lower cost values to ports that you want selected first and higher cost values to ports that you want selected last. For more information, see the “Configuring Path Cost” section on page 1-21.
Beginning in privileged EXEC mode, follow these steps to configure the MSTP port priority of an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree mst instance-id port-priority priority</td>
</tr>
<tr>
<td></td>
<td>- For instance-id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td></td>
<td>- For priority, the range is 0 to 240 in increments of 16. The default is 128. The lower the number, the higher the priority. The priority values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show spanning-tree mst interface interface-id</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Note

The `show spanning-tree mst interface interface-id` privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the `show running-config interface` privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the `no spanning-tree mst instance-id port-priority` interface configuration command.

Configuring Path Cost

The MSTP path cost default value is derived from the media speed of an interface. If a loop occurs, the MSTP uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, the MSTP puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.
Beginning in privileged EXEC mode, follow these steps to configure the MSTP cost of an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree mst instance-id cost cost</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show spanning-tree mst interface interface-id</td>
</tr>
<tr>
<td></td>
<td>show spanning-tree mst instance-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Note
The show spanning-tree mst interface interface-id privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the show running-config privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the no spanning-tree mst instance-id cost interface configuration command.

Configuring the Switch Priority

You can configure the switch priority and make it more likely that a standalone switch or a switch in the stack will be chosen as the root switch.

Note
Exercise care when using this command. For most situations, we recommend that you use the spanning-tree mst instance-id root primary and the spanning-tree mst instance-id root secondary global configuration commands to modify the switch priority.
Beginning in privileged EXEC mode, follow these steps to configure the switch priority. This procedure is optional.

Configuring MSTP Features

Step 1
```
configure terminal
```
Enter global configuration mode.

Step 2
```
spanning-tree mst instance-id priority priority
```
Configure the switch priority.
- For `instance-id`, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.
- For `priority`, the range is 0 to 61440 in increments of 4096; the default is 32768. The lower the number, the more likely the switch will be chosen as the root switch. Priority values are 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.

Step 3
```
end
```
Return to privileged EXEC mode.

Step 4
```
show spanning-tree mst instance-id
```
Verify your entries.

Step 5
```
copy running-config startup-config
```
(Optional) Save your entries in the configuration file.

To return the switch to its default setting, use the `no spanning-tree mst instance-id priority` global configuration command.

Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root switch by changing the hello time.

Beginning in privileged EXEC mode, follow these steps to configure the hello time for all MST instances. This procedure is optional.

Step 1
```
configure terminal
```
Enter global configuration mode.

Step 2
```
spanning-tree mst hello-time seconds
```
Configure the hello time for all MST instances. The hello time is the interval between the generation of configuration messages by the root switch. These messages mean that the switch is alive.

For `seconds`, the range is 1 to 10; the default is 2.

Step 3
```
end
```
Return to privileged EXEC mode.

Step 4
```
show spanning-tree mst
```
Verify your entries.

Step 5
```
copy running-config startup-config
```
(Optional) Save your entries in the configuration file.

To return the switch to its default setting, use the `no spanning-tree mst hello-time` global configuration command.
Chapter 1 Configuring MSTP

Configuring the Forwarding-Delay Time

Beginning in privileged EXEC mode, follow these steps to configure the forwarding-delay time for all MST instances. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree mst forward-time seconds</td>
<td>Configure the forward time for all MST instances. The forward delay is the number of seconds a port waits before changing from its spanning-tree learning and listening states to the forwarding state. For seconds, the range is 4 to 30; the default is 15.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree mst</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree mst forward-time global configuration command.

Configuring the Maximum-Aging Time

Beginning in privileged EXEC mode, follow these steps to configure the maximum-aging time for all MST instances. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree mst max-age seconds</td>
<td>Configure the maximum-aging time for all MST instances. The maximum-aging time is the number of seconds a switch waits without receiving spanning-tree configuration messages before attempting a reconfiguration. For seconds, the range is 6 to 40; the default is 20.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree mst</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree mst max-age global configuration command.
Configuring the Maximum-Hop Count

Beginning in privileged EXEC mode, follow these steps to configure the maximum-hop count for all MST instances. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst max-hops hop-count</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree mst</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree mst max-hops global configuration command.

Specifying the Link Type to Ensure Rapid Transitions

If you connect a port to another port through a point-to-point link and the local port becomes a designated port, the RSTP negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology as described in the “Rapid Convergence” section on page 1-10.

By default, the link type is controlled from the duplex mode of the interface: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. If you have a half-duplex link physically connected point-to-point to a single port on a remote switch running MSTP, you can override the default setting of the link type and enable rapid transitions to the forwarding state.

Beginning in privileged EXEC mode, follow these steps to override the default link-type setting. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree link-type point-to-point</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show spanning-tree mst interface interface-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the port to its default setting, use the no spanning-tree link-type interface configuration command.
Designating the Neighbor Type

A topology could contain both prestandard and IEEE 802.1s standard compliant devices. By default, ports can automatically detect prestandard devices, but they can still receive both standard and prestandard BPDUs. When there is a mismatch between a device and its neighbor, only the CIST runs on the interface.

You can choose to set a port to send only prestandard BPDUs. The prestandard flag appears in all the show commands, even if the port is in STP compatibility mode.

Beginning in privileged EXEC mode, follow these steps to override the default link-type setting. This procedure is optional.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree mst pre-standard</td>
<td>Specify that the port can send only prestandard BPDUs.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show spanning-tree mst interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the port to its default setting, use the `no spanning-tree mst pre-standard` interface configuration command.

Restarting the Protocol Migration Process

A switch running MSTP supports a built-in protocol migration mechanism that enables it to interoperate with legacy IEEE 802.1D switches. If this switch receives a legacy IEEE 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only IEEE 802.1D BPDUs on that port. An MSTP switch also can detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (Version 3) associated with a different region, or an RST BPDU (Version 2).

However, the switch does not automatically revert to the MSTP mode if it no longer receives IEEE 802.1D BPDUs because it cannot detect whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. A switch also might continue to assign a boundary role to a port when the switch to which it is connected has joined the region.

To restart the protocol migration process (force the renegotiation with neighboring switches) on the switch, use the `clear spanning-tree detected-protocols` privileged EXEC command.

To restart the protocol migration process on a specific interface, use the `clear spanning-tree detected-protocols interface interface-id` privileged EXEC command.
Displaying the MST Configuration and Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 1-5:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree mst configuration</td>
<td>Displays the MST region configuration.</td>
</tr>
<tr>
<td>show spanning-tree mst configuration digest</td>
<td>Displays the MD5 digest included in the current MSTCI.</td>
</tr>
<tr>
<td>show spanning-tree mst instance-id</td>
<td>Displays MST information for the specified instance.</td>
</tr>
<tr>
<td>show spanning-tree mst interface interface-id</td>
<td>Displays MST information for the specified interface.</td>
</tr>
</tbody>
</table>

For information about other keywords for the `show spanning-tree` privileged EXEC command, see the command reference for this release.
Configuring Optional Spanning-Tree Features

This chapter describes how to configure optional spanning-tree features on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. You can configure all of these features when your switch is running the per-VLAN spanning-tree plus (PVST+). You can configure only the noted features when your switch or switch stack is running the Multiple Spanning Tree Protocol (MSTP) or the rapid per-VLAN spanning-tree plus (rapid-PVST+) protocol. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

For information on configuring the PVST+ and rapid PVST+, see Chapter 1, “Configuring STP.” For information about the Multiple Spanning Tree Protocol (MSTP) and how to map multiple VLANs to the same spanning-tree instance, see Chapter 1, “Configuring MSTP.”

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

- Understanding Optional Spanning-Tree Features, page 1-1
- Configuring Optional Spanning-Tree Features, page 1-11
- Displaying the Spanning-Tree Status, page 1-19

Understanding Optional Spanning-Tree Features

These sections contain this conceptual information:

- Understanding Port Fast, page 1-2
- Understanding BPDU Guard, page 1-2
- Understanding BPDU Filtering, page 1-3
- Understanding UplinkFast, page 1-3
- Understanding Cross-Stack UplinkFast, page 1-5
- Understanding BackboneFast, page 1-7
- Understanding EtherChannel Guard, page 1-10
- Understanding Root Guard, page 1-10
- Understanding Loop Guard, page 1-11
Understanding Port Fast

Port Fast immediately brings an interface configured as an access or trunk port to the forwarding state from a blocking state, bypassing the listening and learning states. You can use Port Fast on interfaces connected to a single workstation or server, as shown in Figure 1-1, to allow those devices to immediately connect to the network, rather than waiting for the spanning tree to converge.

Interfaces connected to a single workstation or server should not receive bridge protocol data units (BPDUs). An interface with Port Fast enabled goes through the normal cycle of spanning-tree status changes when the switch is restarted.

Note
Because the purpose of Port Fast is to minimize the time interfaces must wait for spanning-tree to converge, it is effective only when used on interfaces connected to end stations. If you enable Port Fast on an interface connecting to another switch, you risk creating a spanning-tree loop.

You can enable this feature by using the `spanning-tree portfast` interface configuration or the `spanning-tree portfast default` global configuration command.

Understanding BPDU Guard

The BPDU guard feature can be globally enabled on the switch or can be enabled per port, but the feature operates with some differences.

At the global level, you enable BPDU guard on Port Fast-enabled ports by using the `spanning-tree portfast bpduguard default` global configuration command. Spanning tree shuts down ports that are in a Port Fast-operational state if any BPDU is received on them. In a valid configuration, Port Fast-enabled ports do not receive BPDUs. Receiving a BPDU on a Port Fast-enabled port means an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state. When this happens, the switch shuts down the entire port on which the violation occurred.

To prevent the port from shutting down, you can use the `errdisable detect cause bpduguard shutdown vlan` global configuration command to shut down just the offending VLAN on the port where the violation occurred.
At the interface level, you enable BPDU guard on any port by using the `spanning-tree bpduguard enable` interface configuration command without also enabling the Port Fast feature. When the port receives a BPDU, it is put in the error-disabled state.

The BPDU guard feature provides a secure response to invalid configurations because you must manually put the interface back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

Understanding BPDU Filtering

The BPDU filtering feature can be globally enabled on the switch or can be enabled per interface, but the feature operates with some differences.

At the global level, you can enable BPDU filtering on Port Fast-enabled interfaces by using the `spanning-tree portfast bpdufilter default` global configuration command. This command prevents interfaces that are in a Port Fast-operational state from sending or receiving BPDDUs. The interfaces still send a few BPDDUs at link-up before the switch begins to filter outbound BPDDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these interfaces do not receive BPDDUs. If a BPDU is received on a Port Fast-enabled interface, the interface loses its Port Fast-operational status, and BPDU filtering is disabled.

At the interface level, you can enable BPDU filtering on any interface by using the `spanning-tree bpdufilter enable` interface configuration command without also enabling the Port Fast feature. This command prevents the interface from sending or receiving BPDDUs.

<table>
<thead>
<tr>
<th>Caution</th>
<th>Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.</th>
</tr>
</thead>
</table>

You can enable the BPDU filtering feature for the entire switch or for an interface.

Understanding UplinkFast

Switches in hierarchical networks can be grouped into backbone switches, distribution switches, and access switches. Figure 1-2 shows a complex network where distribution switches and access switches each have at least one redundant link that spanning tree blocks to prevent loops.
If a switch loses connectivity, it begins using the alternate paths as soon as the spanning tree selects a new root port. By enabling UplinkFast with the `spanning-tree uplinkfast` global configuration command, you can accelerate the choice of a new root port when a link or switch fails or when the spanning tree reconfigures itself. The root port transitions to the forwarding state immediately without going through the listening and learning states, as it would with the normal spanning-tree procedures.

When the spanning tree reconfigures the new root port, other interfaces flood the network with multicast packets, one for each address that was learned on the interface. You can limit these bursts of multicast traffic by reducing the `max-update-rate` parameter (the default for this parameter is 150 packets per second). However, if you enter zero, station-learning frames are not generated, so the spanning-tree topology converges more slowly after a loss of connectivity.

Note

UplinkFast is most useful in wiring-closet switches at the access or edge of the network. It is not appropriate for backbone devices. This feature might not be useful for other types of applications.

UplinkFast provides fast convergence after a direct link failure and achieves load-balancing between redundant Layer 2 links using uplink groups. An uplink group is a set of Layer 2 interfaces (per VLAN), only one of which is forwarding at any given time. Specifically, an uplink group consists of the root port (which is forwarding) and a set of blocked ports, except for self-looping ports. The uplink group provides an alternate path in case the currently forwarding link fails.

Figure 1-3 shows an example topology with no link failures. Switch A, the root switch, is connected directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that is connected directly to Switch B is in a blocking state.
If Switch C detects a link failure on the currently active link L2 on the root port (a direct link failure), UplinkFast unblocks the blocked interface on Switch C and transitions it to the forwarding state without going through the listening and learning states, as shown in Figure 1-4. This change takes approximately 1 to 5 seconds.

Understanding Cross-Stack UplinkFast

For Catalyst 3750-E Catalyst 3750-X switches, the UplinkFast feature is the cross-stack UplinkFast feature. Cross-stack UplinkFast (CSUF) provides a fast spanning-tree transition (fast convergence in less than 1 second under normal network conditions) across a switch stack. During the fast transition, an alternate redundant link on the switch stack is placed in the forwarding state without causing temporary spanning-tree loops or loss of connectivity to the backbone. With this feature, you can have a redundant and resilient network in some configurations. CSUF is automatically enabled when you enable the UplinkFast feature by using the `spanning-tree uplinkfast` global configuration command.

CSUF might not provide a fast transition all the time; in these cases, the normal spanning-tree transition occurs, completing in 30 to 40 seconds. For more information, see the “Events that Cause Fast Convergence” section on page 1-7.
How CSUF Works

CSUF ensures that one link in the stack is elected as the path to the root. As shown in Figure 1-5, the stack-root port on Switch 1 provides the path to the root of the spanning tree. The alternate stack-root ports on Switches 2 and 3 can provide an alternate path to the spanning-tree root if the current stack-root switch fails or if its link to the spanning-tree root fails.

Link 1, the root link, is in the spanning-tree forwarding state. Links 2 and 3 are alternate redundant links that are in the spanning-tree blocking state. If Switch 1 fails, if its stack-root port fails, or if Link 1 fails, CSUF selects either the alternate stack-root port on Switch 2 or Switch 3 and puts it into the forwarding state in less than 1 second.

When certain link loss or spanning-tree events occur (described in “Events that Cause Fast Convergence” section on page 1-7), the Fast Uplink Transition Protocol uses the neighbor list to send fast-transition requests to stack members.

The switch sending the fast-transition request needs to do a fast transition to the forwarding state of a port that it has chosen as the root port, and it must obtain an acknowledgement from each stack switch before performing the fast transition.
Each switch in the stack decides if the sending switch is a better choice than itself to be the stack root of this spanning-tree instance by comparing the root, cost, and bridge ID. If the sending switch is the best choice as the stack root, each switch in the stack returns an acknowledgement; otherwise, it sends a fast-transition request. The sending switch then has not received acknowledgements from all stack switches.

When acknowledgements are received from all stack switches, the Fast Uplink Transition Protocol on the sending switch immediately transitions its alternate stack-root port to the forwarding state. If acknowledgements from all stack switches are not obtained by the sending switch, the normal spanning-tree transitions (blocking, listening, learning, and forwarding) take place, and the spanning-tree topology converges at its normal rate (2 * forward-delay time + max-age time).

The Fast Uplink Transition Protocol is implemented on a per-VLAN basis and affects only one spanning-tree instance at a time.

Events that Cause Fast Convergence

Depending on the network event or failure, the CSUF fast convergence might or might not occur.

Fast convergence (less than 1 second under normal network conditions) occurs under these circumstances:

- The stack-root port link fails.
 If two switches in the stack have alternate paths to the root, only one of the switches performs the fast transition.
- The failed link, which connects the stack root to the spanning-tree root, recovers.
- A network reconfiguration causes a new stack-root switch to be selected.
- A network reconfiguration causes a new port on the current stack-root switch to be chosen as the stack-root port.

Note

The fast transition might not occur if multiple events occur simultaneously. For example, if a stack member is powered off, and at the same time, the link connecting the stack root to the spanning-tree root comes back up, the normal spanning-tree convergence occurs.

Normal spanning-tree convergence (30 to 40 seconds) occurs under these conditions:

- The stack-root switch is powered off, or the software failed.
- The stack-root switch, which was powered off or failed, is powered on.
- A new switch, which might become the stack root, is added to the stack.

Understanding BackboneFast

BackboneFast detects indirect failures in the core of the backbone. BackboneFast is a complementary technology to the UplinkFast feature, which responds to failures on links directly connected to access switches. BackboneFast optimizes the maximum-age timer, which controls the amount of time the switch stores protocol information received on an interface. When a switch receives an inferior BPDU from the designated port of another switch, the BPDU is a signal that the other switch might have lost its path to the root, and BackboneFast tries to find an alternate path to the root.
 BackboneFast, which is enabled by using the `spanning-tree backbonefast` global configuration command, starts when a root port or blocked interface on a switch receives inferior BPDUs from its designated switch. An inferior BPDU identifies a switch that declares itself as both the root bridge and the designated switch. When a switch receives an inferior BPDU, it means that a link to which the switch is not directly connected (an indirect link) has failed (that is, the designated switch has lost its connection to the root switch). Under spanning-tree rules, the switch ignores inferior BPDUs for the configured maximum aging time specified by the `spanning-tree vlan vlan-id max-age` global configuration command.

The switch tries to find if it has an alternate path to the root switch. If the inferior BPDU arrives on a blocked interface, the root port and other blocked interfaces on the switch become alternate paths to the root switch. (Self-looped ports are not considered alternate paths to the root switch.) If the inferior BPDU arrives on the root port, all blocked interfaces become alternate paths to the root switch. If the inferior BPDU arrives on the root port and there are no blocked interfaces, the switch assumes that it has lost connectivity to the root switch, causes the maximum aging time on the root port to expire, and becomes the root switch according to normal spanning-tree rules.

If the switch has alternate paths to the root switch, it uses these alternate paths to send a root link query (RLQ) request. The Catalyst 3750-E Catalyst 3750-X switch sends the RLQ request on all alternate paths to learn if any stack member has an alternate root to the root switch and waits for an RLQ reply from other switches in the network and in the stack. The Catalyst 3560-E Catalyst 3560-X switch sends the RLQ request on all alternate paths and waits for an RLQ reply from other switches in the network.

When a stack member receives an RLQ reply from a nonstack member on a blocked interface and the reply is destined for another nonstacked switch, it forwards the reply packet, regardless of the spanning-tree interface state.

When a stack member receives an RLQ reply from a nonstack member and the response is destined for the stack, the stack member forwards the reply so that all the other stack members receive it.

If the switch discovers that it still has an alternate path to the root, it expires the maximum aging time on the interface that received the inferior BPDU. If all the alternate paths to the root switch indicate that the switch has lost connectivity to the root switch, the switch expires the maximum aging time on the interface that received the RLQ reply. If one or more alternate paths can still connect to the root switch, the switch makes all interfaces on which it received an inferior BPDU its designated ports and moves them from the blocking state (if they were in the blocking state), through the listening and learning states, and into the forwarding state.

Figure 1-6 shows an example topology with no link failures. Switch A, the root switch, connects directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that connects directly to Switch B is in the blocking state.
If link L1 fails as shown in Figure 1-7, Switch C cannot detect this failure because it is not connected directly to link L1. However, because Switch B is directly connected to the root switch over L1, it detects the failure, elects itself the root, and begins sending BPDUs to Switch C, identifying itself as the root. When Switch C receives the inferior BPDUs from Switch B, Switch C assumes that an indirect failure has occurred. At that point, BackboneFast allows the blocked interface on Switch C to move immediately to the listening state without waiting for the maximum aging time for the interface to expire. BackboneFast then transitions the Layer 2 interface on Switch C to the forwarding state, providing a path from Switch B to Switch A. The root-switch election takes approximately 30 seconds, twice the Forward Delay time if the default Forward Delay time of 15 seconds is set. Figure 1-7 shows how BackboneFast reconfigures the topology to account for the failure of link L1.

Figure 1-7 BackboneFast Example After Indirect Link Failure

If a new switch is introduced into a shared-medium topology as shown in Figure 1-8, BackboneFast is not activated because the inferior BPDUs did not come from the recognized designated switch (Switch B). The new switch begins sending inferior BPDUs that indicate it is the root switch. However, the other switches ignore these inferior BPDUs, and the new switch learns that Switch B is the designated switch to Switch A, the root switch.

Figure 1-8 Adding a Switch in a Shared-Medium Topology
Understanding EtherChannel Guard

You can use EtherChannel guard to detect an EtherChannel misconfiguration between the switch and a connected device. A misconfiguration can occur if the switch interfaces are configured in an EtherChannel, but the interfaces on the other device are not. A misconfiguration can also occur if the channel parameters are not the same at both ends of the EtherChannel. For EtherChannel configuration guidelines, see the “EtherChannel Configuration Guidelines” section on page 1-12.

If the switch detects a misconfiguration on the other device, EtherChannel guard places the switch interfaces in the error-disabled state, and displays an error message.

You can enable this feature by using the `spanning-tree etherchannel guard misconfig` global configuration command.

Understanding Root Guard

The Layer 2 network of a service provider (SP) can include many connections to switches that are not owned by the SP. In such a topology, the spanning tree can reconfigure itself and select a customer switch as the root switch, as shown in Figure 1-9. You can avoid this situation by enabling root guard on SP switch interfaces that connect to switches in your customer’s network. If spanning-tree calculations cause an interface in the customer network to be selected as the root port, root guard then places the interface in the root-inconsistent (blocked) state to prevent the customer’s switch from becoming the root switch or being in the path to the root.

If a switch outside the SP network becomes the root switch, the interface is blocked (root-inconsistent state), and spanning tree selects a new root switch. The customer’s switch does not become the root switch and is not in the path to the root.

If the switch is operating in multiple spanning-tree (MST) mode, root guard forces the interface to be a designated port. If a boundary port is blocked in an internal spanning-tree (IST) instance because of root guard, the interface also is blocked in all MST instances. A boundary port is an interface that connects to a LAN, the designated switch of which is either an IEEE 802.1D switch or a switch with a different MST region configuration.

Root guard enabled on an interface applies to all the VLANs to which the interface belongs. VLANs can be grouped and mapped to an MST instance.

You can enable this feature by using the `spanning-tree guard root` interface configuration command.

⚠️ Caution

Misuse of the root-guard feature can cause a loss of connectivity.
Understanding Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is enabled on the entire switched network. Loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send BPDUs on root or alternate ports.

You can enable this feature by using the `spanning-tree loopguard default` global configuration command.

When the switch is operating in PVST+ or rapid-PVST+ mode, loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send BPDUs on root or alternate ports.

When the switch is operating in MST mode, BPDUs are not sent on nonboundary ports only if the interface is blocked by loop guard in all MST instances. On a boundary port, loop guard blocks the interface in all MST instances.

Configuring Optional Spanning-Tree Features

These sections contain this configuration information:

- Default Optional Spanning-Tree Configuration, page 1-12
- Optional Spanning-Tree Configuration Guidelines, page 1-12
- Enabling Port Fast, page 1-12 (optional)
- Enabling BPDU Guard, page 1-13 (optional)
- Enabling BPDU Filtering, page 1-14 (optional)
- Enabling Cross-Stack UplinkFast, page 1-16 (optional)
Configuring Optional Spanning-Tree Features

- Enabling BackboneFast, page 1-16 (optional)
- Enabling EtherChannel Guard, page 1-17 (optional)
- Enabling Root Guard, page 1-18 (optional)
- Enabling Loop Guard, page 1-18 (optional)

Default Optional Spanning-Tree Configuration

Table 1-1 shows the default optional spanning-tree configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Fast, BPDU filtering, BPDU guard</td>
<td>Globally disabled (unless they are individually configured per interface).</td>
</tr>
<tr>
<td>UplinkFast</td>
<td>Globally disabled. (On Catalyst 3750-E switches, the UplinkFast feature is the CSUF feature.)</td>
</tr>
<tr>
<td>BackboneFast</td>
<td>Globally disabled.</td>
</tr>
<tr>
<td>EtherChannel guard</td>
<td>Globally enabled.</td>
</tr>
<tr>
<td>Root guard</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>Loop guard</td>
<td>Disabled on all interfaces.</td>
</tr>
</tbody>
</table>

Optional Spanning-Tree Configuration Guidelines

You can configure PortFast, BPDU guard, BPDU filtering, EtherChannel guard, root guard, or loop guard if your switch is running PVST+, rapid PVST+, or MSTP.

On a Catalyst 3750-E Catalyst 3750-X switch, you can configure the UplinkFast, the BackboneFast, or the cross-stack UplinkFast feature for rapid PVST+ or for the MSTP, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.

On a Catalyst 3560-E Catalyst 3750-X switch, you can configure the UplinkFast or the BackboneFast feature for rapid PVST+ or for the MSTP, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.

Enabling Port Fast

An interface with the Port Fast feature enabled is moved directly to the spanning-tree forwarding state without waiting for the standard forward-time delay.

Caution

Use Port Fast only when connecting a single end station to an access or trunk port. Enabling this feature on an interface connected to a switch or hub could prevent spanning tree from detecting and disabling loops in your network, which could cause broadcast storms and address-learning problems.

If you enable the voice VLAN feature, the Port Fast feature is automatically enabled. When you disable voice VLAN, the Port Fast feature is not automatically disabled. For more information, see Chapter 1, “Configuring Voice VLAN.”
You can enable this feature if your switch is running PVST+, rapid PVST+, or MSTP.
Beginning in privileged EXEC mode, follow these steps to enable Port Fast. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 spanning-tree portfast [trunk]</td>
<td>Enable Port Fast on an access port connected to a single workstation or server. By specifying the trunk keyword, you can enable Port Fast on a trunk port.</td>
</tr>
<tr>
<td>Note</td>
<td>To enable Port Fast on trunk ports, you must use the spanning-tree portfast trunk interface configuration command. The spanning-tree portfast command will not work on trunk ports.</td>
</tr>
<tr>
<td>Caution</td>
<td>Make sure that there are no loops in the network between the trunk port and the workstation or server before you enable Port Fast on a trunk port.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show spanning-tree interface interface-id portfast</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

You can use the spanning-tree portfast default global configuration command to globally enable the Port Fast feature on all nontrunking ports.

To disable the Port Fast feature, use the spanning-tree portfast disable interface configuration command.

Enabling BPDU Guard

When you globally enable BPDU guard on ports that are Port Fast-enabled (the ports are in a Port Fast-operational state), spanning tree continues to run on the ports. They remain up unless they receive a BPDU.

In a valid configuration, Port Fast-enabled ports do not receive BPDUs. Receiving a BPDU on a Port Fast-enabled port means an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state. When this happens, the switch shuts down the entire port on which the violation occurred.

To prevent the port from shutting down, you can use the errdisable detect cause bpduguard shutdown vlan global configuration command to shut down just the offending VLAN on the port where the violation occurred.
The BPDU guard feature provides a secure response to invalid configurations because you must manually put the port back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

Caution
Configure Port Fast only on ports that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

You also can use the `spanning-tree bpduguard enable` interface configuration command to enable BPDU guard on any port without also enabling the Port Fast feature. When the port receives a BPDU, it is put it in the error-disabled state.

You can enable the BPDU guard feature if your switch is running PVST+, rapid PVST+, or MSTP.

Beginning in privileged EXEC mode, follow these steps to globally enable the BPDU guard feature. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree portfast bpduguard default</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree portfast</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable BPDU guard, use the `no spanning-tree portfast bpduguard default` global configuration command.

You can override the setting of the `no spanning-tree portfast bpduguard default` global configuration command by using the `spanning-tree bpduguard enable` interface configuration command.

Enabling BPDU Filtering

When you globally enable BPDU filtering on Port Fast-enabled interfaces, it prevents interfaces that are in a Port Fast-operational state from sending or receiving BPDUs. The interfaces still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these interfaces do not receive BPDUs. If a BPDU is received on a Port Fast-enabled interface, the interface loses its Port Fast-operational status, and BPDU filtering is disabled.

Caution
Configure Port Fast only on interfaces that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.
You can also use the `spanning-tree bpdufilter enable` interface configuration command to enable BPDU filtering on any interface without also enabling the Port Fast feature. This command prevents the interface from sending or receiving BPDUs.

Caution Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

You can enable the BPDU filtering feature if your switch is running PVST+, rapid PVST+, or MSTP. Beginning in privileged EXEC mode, follow these steps to globally enable the BPDU filtering feature. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree portfast bpdufilter default</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree portfast</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable BPDU filtering, use the `no spanning-tree portfast bpdufilter default` global configuration command.

You can override the setting of the `no spanning-tree portfast bpdufilter default` global configuration command by using the `spanning-tree bpdufilter enable` interface configuration command.

Enabling UplinkFast for Use with Redundant Links

UplinkFast cannot be enabled on VLANs that have been configured with a switch priority. To enable UplinkFast on a VLAN with switch priority configured, first restore the switch priority on the VLAN to the default value by using the `no spanning-tree vlan vlan-id priority` global configuration command.

Note When you enable UplinkFast, it affects all VLANs on the switch or switch stack. You cannot configure UplinkFast on an individual VLAN.

You can configure the UplinkFast or the CSUF feature for rapid PVST+ or for the MSTP, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.
Beginning in privileged EXEC mode, follow these steps to enable UplinkFast and CSUF. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree uplinkfast [max-update-rate</td>
<td>Enable UplinkFast.</td>
</tr>
<tr>
<td>pkts-per-second]</td>
<td>(Optional) For (pkts\text{-per-second}), the range is 0 to 32000 (</td>
</tr>
<tr>
<td></td>
<td>packets per second; the default is 150.</td>
</tr>
<tr>
<td></td>
<td>If you set the rate to 0, station-learning frames are not generated, and</td>
</tr>
<tr>
<td></td>
<td>the spanning-tree topology converges more slowly after a loss of</td>
</tr>
<tr>
<td></td>
<td>connectivity.</td>
</tr>
<tr>
<td></td>
<td>When you enter this command, CSUF also is enabled on all nonstack port</td>
</tr>
<tr>
<td></td>
<td>interfaces.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree summary</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When UplinkFast is enabled, the switch priority of all VLANs is set to 49152. If you change the path cost to a value less than 3000 and you enable UplinkFast or UplinkFast is already enabled, the path cost of all interfaces and VLAN trunks is increased by 3000 (if you change the path cost to 3000 or above, the path cost is not altered). The changes to the switch priority and the path cost reduce the chance that a switch will become the root switch.

When UplinkFast is disabled, the switch priorities of all VLANs and path costs of all interfaces are set to default values if you did not modify them from their defaults.

To return the update packet rate to the default setting, use the `no spanning-tree uplinkfast max-update-rate` global configuration command. To disable UplinkFast, use the `no spanning-tree uplinkfast` command.

Enabling Cross-Stack UplinkFast

When you enable or disable the UplinkFast feature by using the `spanning-tree uplinkfast` global configuration command, CSUF is automatically globally enabled or disabled on nonstack port interfaces.

For more information, see the “Enabling UplinkFast for Use with Redundant Links” section on page 1-15.

To disable UplinkFast on the switch and all its VLANs, use the `no spanning-tree uplinkfast` global configuration command.

Enabling BackboneFast

You can enable BackboneFast to detect indirect link failures and to start the spanning-tree reconfiguration sooner.
If you use BackboneFast, you must enable it on all switches in the network. BackboneFast is not supported on Token Ring VLANs. This feature is supported for use with third-party switches.

You can configure the BackboneFast feature for rapid PVST+ or for the MSTP, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.

Beginning in privileged EXEC mode, follow these steps to enable BackboneFast. This procedure is optional.

Enabling EtherChannel Guard

You can enable EtherChannel guard to detect an EtherChannel misconfiguration if your switch is running PVST+, rapid PVST+, or MSTP.

Beginning in privileged EXEC mode, follow these steps to enable EtherChannel guard. This procedure is optional.

Enabling EtherChannel Guard

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree backbonefast</td>
<td>Enable BackboneFast.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree summary</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the BackboneFast feature, use the `no spanning-tree backbonefast` global configuration command.

To disable the EtherChannel guard feature, use the `no spanning-tree etherchannel guard misconfig` global configuration command.

You can use the `show interfaces status err-disabled` privileged EXEC command to show which switch ports are disabled because of an EtherChannel misconfiguration. On the remote device, you can enter the `show etherchannel summary` privileged EXEC command to verify the EtherChannel configuration.

After the configuration is corrected, enter the `shutdown` and `no shutdown` interface configuration commands on the port-channel interfaces that were misconfigured.
Enabling Root Guard

Root guard enabled on an interface applies to all the VLANs to which the interface belongs. Do not enable the root guard on interfaces to be used by the UplinkFast feature. With UplinkFast, the backup interfaces (in the blocked state) replace the root port in the case of a failure. However, if root guard is also enabled, all the backup interfaces used by the UplinkFast feature are placed in the root-inconsistent state (blocked) and are prevented from reaching the forwarding state.

Note

You cannot enable both root guard and loop guard at the same time.

You can enable this feature if your switch is running PVST+, rapid PVST+, or MSTP.

Beginning in privileged EXEC mode, follow these steps to enable root guard on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3: spanning-tree guard root</td>
<td>Enable root guard on the interface.</td>
</tr>
<tr>
<td></td>
<td>By default, root guard is disabled on all interfaces.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable root guard, use the no spanning-tree guard interface configuration command.

Enabling Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is configured on the entire switched network. Loop guard operates only on interfaces that are considered point-to-point by the spanning tree.

Note

You cannot enable both loop guard and root guard at the same time.

You can enable this feature if your switch is running PVST+, rapid PVST+, or MSTP.

Beginning in privileged EXEC mode, follow these steps to enable loop guard. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: show spanning-tree active</td>
<td>Verify which interfaces are alternate or root ports.</td>
</tr>
<tr>
<td>or show spanning-tree mst</td>
<td></td>
</tr>
<tr>
<td>Step 2: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
To globally disable loop guard, use the `no spanning-tree loopguard default` global configuration command. You can override the setting of the `no spanning-tree loopguard default` global configuration command by using the `spanning-tree guard loop` interface configuration command.

Displaying the Spanning-Tree Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 1-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree active</code></td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td><code>show spanning-tree detail</code></td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td><code>show spanning-tree interface interface-id</code></td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td><code>show spanning-tree mst interface interface-id</code></td>
<td>Displays MST information for the specified interface.</td>
</tr>
<tr>
<td><code>show spanning-tree summary [totals]</code></td>
<td>Displays a summary of interface states or displays the total lines of the spanning-tree state section.</td>
</tr>
</tbody>
</table>

You can clear spanning-tree counters by using the `clear spanning-tree [interface interface-id]` privileged EXEC command.

For information about other keywords for the `show spanning-tree` privileged EXEC command, see the command reference for this release.
Configuring Bidirectional Forwarding Detection

This document describes how to enable the Bidirectional Forwarding Detection (BFD) protocol, which is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols.

BFD provides a consistent failure detection method for network administrators in addition to fast forwarding path failure detection. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning are simplified, and reconvergence time is more consistent and predictable.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the “Technical Assistance” section on page 1-26.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

- Prerequisites for Bidirectional Forwarding Detection, page 1-2
- Restrictions for Bidirectional Forwarding Detection, page 1-2
- Information About Bidirectional Forwarding Detection, page 1-2
- How to Configure Bidirectional Forwarding Detection, page 1-7
- Configuration Examples for Bidirectional Forwarding Detection, page 1-16
- Additional References, page 1-25
Prerequisites for Bidirectional Forwarding Detection

Prerequisites for BFD include:

- The switch’s feature set is IP Base or higher. The IP Base feature set supports only EIGRP stub routing without BFD. The IP Services feature set supports EIGRP with BFD.
- IP routing must be enabled on all participating switches.
- One of the IP routing protocols supported by BFD must be configured on the switches before BFD is deployed. You should implement fast convergence for the routing protocol that you plan to use. See the IP routing documentation for your version of Cisco IOS software for information on configuring fast convergence. See the “Restrictions for Bidirectional Forwarding Detection” section on page 1-2 for more information on BFD routing protocol support in Cisco IOS software.

Restrictions for Bidirectional Forwarding Detection

Restrictions for BFD include:

- BFD works only for directly connected neighbors. BFD neighbors must be no more than one IP hop away. Multihop configurations are not supported.
- The switch supports up to 100 BFD sessions with a minimum hello interval of 100 ms and a multiplier of 3. The multiplier specifies the minimum number of consecutive packets that can be missed before a session is declared down.
- To enable echo mode the peer system must be configured with the `no ip redirects` command.

Information About Bidirectional Forwarding Detection

- BFD Operation, page 1-2
- Benefits of Using BFD for Failure Detection, page 1-6

BFD Operation

BFD provides a low-overhead, short-duration method of detecting failures in the forwarding path between two adjacent switches, including the interfaces, data links, and forwarding planes.

BFD is a detection protocol that you enable at the interface and routing protocol levels. Cisco supports the BFD asynchronous mode, which depends on the sending of BFD control packets between two systems to activate and maintain BFD neighbor sessions between switches. Therefore, to create a BFD session, you must configure BFD on both systems (or BFD peers). Once BFD has been enabled on the interfaces and at the router level for the appropriate routing protocols, a BFD session is created, BFD timers are negotiated, and the BFD peers will begin to send BFD control packets to each other at the negotiated interval.

Cisco supports BFD echo mode. Echo packets are sent by the forwarding engine and are forwarded back along the same path to perform detection. The BFD session at the other end does not participate in the actual forwarding of the echo packets. See Configuring BFD Echo Mode, page 1-14 for more information.

This section includes the following subsections:
Neighbor Relationships

BFD provides fast BFD peer failure detection times independently of all media types, encapsulations, topologies, and routing protocols BGP, EIGRP, OSPF, and static routes. By sending rapid failure detection notices to the routing protocols in the local switch to initiate the routing table recalculation process, BFD contributes to greatly reduced overall network convergence time. Figure 1-1 shows a simple network with two switches running OSPF and BFD. When OSPF discovers a neighbor (1) it sends a request to the local BFD process to initiate a BFD neighbor session with the OSPF neighbor routers (2). The BFD neighbor session with the OSPF neighbor router is established (3).

Figure 1-1 Establishing a BFD Neighbor Relationship

Figure 1-2 shows what happens when a failure occurs in the network (1). The BFD neighbor session with the OSPF neighbor router is torn down (2). BFD notifies the local OSPF process that the BFD neighbor is no longer reachable (3). The local OSPF process tears down the OSPF neighbor relationship (4). If an alternative path is available, the routers will immediately start converging on it.
A routing protocol needs to register with BFD for every neighbor it acquires. Once a neighbor is registered, BFD initiates a session with the neighbor if a session does not already exist.

OSPF registers with BFD when:
- A neighbor finite state machine (FSM) transitions to full state.
- Both OSPF BFD and BFD are enabled.

On broadcast interfaces, OSPF establishes a BFD session only with the designated router (DR) and backup designated router (BDR), but not between any two switches (routers) in DROTHER state.

BFD Detection of Failures

Once a BFD session has been established and timer negations are complete, BFD peers send BFD control packets that act in the same manner as an IGP hello protocol to detect liveness, except at a more accelerated rate. The following information should be noted:
- BFD is a forwarding path failure detection protocol. BFD detects a failure, but the routing protocol must take action to bypass a failed peer.
- Typically, BFD can be used at any protocol layer. However, the Cisco implementation of BFD supports only Layer 3 clients, in particular, the BGP, EIGRP, and OSPF routing protocols, and static routing.
- Cisco devices will use one BFD session for multiple client protocols in the Cisco implementation of BFD. For example, if a network is running OSPF and EIGRP across the same link to the same peer, only one BFD session will be established, and BFD will share session information with both routing protocols. However, IPv4 and IPv6 clients cannot share a BFD session.

BFD Version Interoperability

The switch supports BFD Version 1 as well as BFD Version 0. All BFD sessions come up as Version 1 by default and will be interoperable with Version 0. The system automatically performs BFD version detection, and BFD sessions between neighbors will run in the highest common BFD version between neighbors. For example, if one BFD neighbor is running BFD Version 0 and the other BFD neighbor is running Version 1, the session will run BFD Version 0. The output from the `show bfd neighbors` command will verify which BFD version a BFD neighbor is running.

See the “Example: Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default” section on page 1-17 for an example of BFD version detection.
BFD Session Limits

The minimum number of BFD sessions that can be created varies with the “hello” interval. With “hello” intervals of 100ms, 100 sessions are permitted. More sessions are permitted at larger hello intervals. For a VLAN interface, the minimum “hello” interval is 600ms.

BFD Support for Nonbroadcast Media Interfaces

Starting with Cisco IOS Release 15.2(1)E, the BFD feature is supported on VLAN interfaces on the switch.

The bfd interval command must be configured on an interface to initiate BFD monitoring.

BFD Support for Nonstop Forwarding with Stateful Switchover

Typically, when a networking device restarts, all routing peers of that device detect that the device went down and then came back up. This transition results in a routing flap, which could spread across multiple routing domains. Routing flaps caused by routing restarts create routing instabilities, which are detrimental to the overall network performance. Nonstop forwarding (NSF) helps to suppress routing flaps in devices that are enabled with stateful switchover (SSO), thereby reducing network instability.

NSF allows for the forwarding of data packets to continue along known routes while the routing protocol information is being restored after a switchover. With NSF, peer networking devices do not experience routing flaps. Data traffic is forwarded while the standby RP assumes control from the failed active RP during a switchover. The ability of line cards and forwarding processors to remain up through a switchover and to remain current with the Forwarding Information Base (FIB) on the active RP is key to NSF operation.

In devices that support dual RPs, SSO establishes one of the RPs as the active processor; the other RP is designated as the standby processor, and then synchronizes information between them. A switchover from the active to the standby processor occurs when the active RP fails, when it is removed from the networking device, or when it is manually taken down for maintenance.

BFD Support for Stateful Switchover

The BFD protocol provides short-duration detection of failures in the path between adjacent forwarding engines. In network deployments that use dual RP switches (to provide redundancy), the switches have a graceful restart mechanism that protects the forwarding state during a switchover between the active RP and the standby RP.

Stateful BFD on the Standby RP

To ensure a successful switchover to the standby RP, the BFD protocol uses checkpoint messages to send session information from the active RP Cisco IOS instance to the standby RP Cisco IOS instance. The session information includes local and remote discriminators, adjacent router timer information, BFD setup information, and session-specific information such as the type of session and the session version. In addition, the BFD protocol sends session creation and deletion checkpoint messages to create or delete a session on the standby RP.

The BFD sessions on the standby RP do not receive or send packets and do not process expired timers. These sessions wait for a switchover to occur and then send packets for any active sessions so that sessions do not time out on adjacent switches.
When the BFD protocol on the standby RP is notified of a switchover it changes its state to active, registers itself with Cisco Express Forwarding so that it can receive packets, and then sends packets for any elements that have expired.

BFD also uses checkpoint messages to ensure that sessions created by clients on the active RP are maintained during a switchover. When a switchover occurs, BFD starts an SSO reclaim timer. Clients must reclaim their sessions within the duration specified by the reclaim timer or else the session is deleted.

Timer values are different based on the number of BFD sessions and the platform.

Table 1-1 describes the timer value on the switch.

<table>
<thead>
<tr>
<th>Maximum Number of BFD Sessions</th>
<th>BFD Session Type</th>
<th>Minimum Timer Value (ms)</th>
<th>Clients</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Async/echo</td>
<td>100 multiplier 3</td>
<td>All</td>
<td>A multiple of 5 is recommended for SSO switches.</td>
</tr>
</tbody>
</table>

BFD Support for Static Routing

Unlike dynamic routing protocols, such as OSPF and BGP, static routing has no method of peer discovery. Therefore, when BFD is configured, the reachability of the gateway is completely dependent on the state of the BFD session to the specified neighbor. Unless the BFD session is up, the gateway for the static route is considered unreachable, and therefore the affected routes will not be installed in the appropriate Routing Information Base (RIB).

For a BFD session to establish successfully, BFD must be configured on the interface on the peer and there must be a BFD client registered on the peer for the address of the BFD neighbor. When an interface is used by dynamic routing protocols, the latter requirement is usually met by configuring the routing protocol instances on each neighbor for BFD. When an interface is used exclusively for static routing, this requirement must be met by configuring static routes on the peers.

BFD is supported on IPv4 and IPv6 static routes.

Note

If a BFD configuration is removed from the remote peer while the BFD session is in the up state, the updated state of the BFD session is not signaled to the static route. This will cause the static route to remain in the RIB. The only workaround is to remove the static route BFD neighbor configuration so that the static route no longer tracks BFD session state.

Benefits of Using BFD for Failure Detection

When you deploy any feature, it is important to consider all the alternatives and be aware of any trade-offs.

The closest alternative to BFD in conventional EIGRP, BGP, and OSPF deployments is the use of modified failure detection mechanisms for EIGRP, BGP, and OSPF routing protocols.

If you set EIGRP hello and hold timers to their absolute minimums, the failure detection rate for EIGRP falls to within a one- to two-second range.
If you use fast hellos for either BGP or OSPF, this Interior Gateway Protocol (IGP) protocol reduces its failure detection mechanism to a minimum of one second.

Advantages to implementing BFD over reduced timer mechanisms for routing protocols include the following:

- Although reducing the EIGRP, BGP, and OSPF timers can result in minimum detection timer of one to two seconds, BFD can provide failure detection in less than one second.
- Because BFD is not tied to any particular routing protocol, it can be used as a generic and consistent failure detection mechanism for EIGRP, BGP, and OSPF.
- Because some parts of BFD can be distributed to the data plane, it can be less CPU-intensive than the reduced EIGRP, BGP, and OSPF timers, which exist wholly at the control plane.

How to Configure Bidirectional Forwarding Detection

You start a BFD process by configuring BFD on the interface. When the BFD process is started, no entries are created in the adjacency database; in other words, no BFD control packets are sent or received. BFD echo mode, which is supported in BFD Version 1, starting with Cisco IOS Release 15.2(1)E, is enabled by default.

BFD echo packets are sent and received, in addition to BFD control packets. The adjacency creation takes places once you have configured BFD support for the applicable routing protocols. This section contains the following procedures:

- Configuring BFD Session Parameters on the Interface, page 1-7 (required)
- Configuring BFD Support for Dynamic Routing Protocols, page 1-8 (required)
- Configuring BFD Support for Static Routing, page 1-12 (optional)
- Configuring BFD Echo Mode, page 1-14 (optional)
- Monitoring and Troubleshooting BFD, page 1-16 (optional)

Configuring BFD Session Parameters on the Interface

The steps in this procedure show how to configure BFD on the interface by setting the baseline BFD session parameters on an interface. Repeat the steps in this procedure for each interface over which you want to run BFD sessions to BFD neighbors.

To configure BFD session parameters, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Switch> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet 6/1</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure Bidirectional Forwarding Detection

Configuring BFD Support for Dynamic Routing Protocols

You can enable BFD support for dynamic routing protocols at the router level to enable BFD support globally for all interfaces or you can configure BFD on a per-interface basis at the interface level.

This section describes the following procedures:

- Configuring BFD Support for BGP, page 1-8 (optional)
- Configuring BFD Support for EIGRP, page 1-9 (optional)
- Configuring BFD Support for OSPF, page 1-10 (optional)

Configuring BFD Support for BGP

This section describes the procedure for configuring BFD support for BGP so that BGP is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD.

Prerequisites

BGP must be running on all participating switches.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 1-7 for more information.

To configure BFD support for BGP, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 router bgp as-tag</td>
<td>Specifies a BGP process and enters router configuration mode.</td>
</tr>
<tr>
<td>Step 4 neighbor ip-address fall-over bfd</td>
<td>Enables BFD support for failover.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits router configuration mode and returns the switch to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring BFD Support for EIGRP

This section describes the procedure for configuring BFD support for EIGRP so that EIGRP is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD. There are two methods for enabling BFD support for EIGRP:

- You can enable BFD for all of the interfaces for which EIGRP is routing by using the `bfd all-interfaces` command in router configuration mode.
- You can enable BFD for a subset of the interfaces for which EIGRP is routing by using the `bfd interface type number` command in router configuration mode.

Prerequisites

EIGRP must be running on all participating switches.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 1-7 for more information.

To configure BFD support for EIGRP, perform this task:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Switch> <code>enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Switch eigrp as-number</code></td>
<td>Configures the EIGRP routing process and enters router configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# <code>router eigrp 123</code></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Bidirectional Forwarding Detection

How to Configure Bidirectional Forwarding Detection

What to Do Next

See the “Monitoring and Troubleshooting BFD” section on page 1-16 for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections:
- Configuring BFD Support for OSPF, page 1-10

Configuring BFD Support for OSPF

This section describes the procedures for configuring BFD support for OSPF so that OSPF is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD. You can either configure BFD support for OSPF globally on all interfaces or configure it selectively on one or more interfaces.

There are two methods for enabling BFD support for OSPF:
- You can enable BFD on all the interfaces for which OSPF is routing by using the `bfd all-interfaces` command in router configuration mode. You can disable BFD support on individual interfaces using the `ip ospf bfd [disable]` command in interface configuration mode.
- You can enable BFD on a subset of the interfaces for which OSPF is routing by using the `ip ospf bfd` command in interface configuration mode.

See the following sections for tasks for configuring BFD support for OSPF:
- Configuring BFD Support for OSPF for All Interfaces, page 1-10 (optional)
- Configuring BFD Support for OSPF for One or More Interfaces, page 1-11 (optional)

Configuring BFD Support for OSPF for All Interfaces

To configure BFD for all OSPF interfaces, perform the steps in this section.
If you do not want to configure BFD on all OSPF interfaces and would rather configure BFD support specifically for one or more interfaces, see the “Configuring BFD Support for OSPF for One or More Interfaces” section on page 1-11.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Enables BFD globally on all interfaces associated with the EIGRP routing process. or Enables BFD on a per-interface basis for one or more interfaces associated with the EIGRP routing process.</td>
</tr>
<tr>
<td>bfd all-interfaces or bfd interface type number</td>
<td>Enables BFD globally on all interfaces associated with the EIGRP routing process. or Enables BFD on a per-interface basis for one or more interfaces associated with the EIGRP routing process.</td>
</tr>
<tr>
<td>Switch(config-router)# bfd all-interfaces or Switch(config-router)# bfd interface gigabitethernet 6/1</td>
<td>Enables BFD globally on all interfaces associated with the EIGRP routing process. or Enables BFD on a per-interface basis for one or more interfaces associated with the EIGRP routing process.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Exits router configuration mode and returns the switch to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td>Exits router configuration mode and returns the switch to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Verifies that the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td>show bfd neighbors [details]</td>
<td>(Optional) Verifies that the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) Displays the interfaces for which BFD support for EIGRP has been enabled.</td>
</tr>
<tr>
<td>show ip eigrp interfaces [type number] [as-number] [detail]</td>
<td>(Optional) Displays the interfaces for which BFD support for EIGRP has been enabled.</td>
</tr>
<tr>
<td>Switch# show ip eigrp interfaces detail</td>
<td>(Optional) Displays the interfaces for which BFD support for EIGRP has been enabled.</td>
</tr>
</tbody>
</table>
Prerequisites

OSPF must be running on all participating switches.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 1-7 for more information.

To configure BFD support for OSPF for all interfaces:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 Switch ospf process-id</td>
<td>Specifies an OSPF process and enters router configuration mode.</td>
</tr>
<tr>
<td>Switch(config)# router ospf 4</td>
<td></td>
</tr>
<tr>
<td>Step 4 bfd all-interfaces</td>
<td>Enables BFD globally on all interfaces associated with the OSPF routing process.</td>
</tr>
<tr>
<td>Switch(config-router)# bfd all-interfaces</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits interface configuration mode and returns the switch to privileged EXEC mode.</td>
</tr>
<tr>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 show bfd neighbors [details]</td>
<td>(Optional) Displays information that can help verify if the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td>Switch# show bfd neighbors detail</td>
<td></td>
</tr>
<tr>
<td>Step 7 show ip ospf</td>
<td>(Optional) Displays information that can help verify if BFD for OSPF has been enabled.</td>
</tr>
<tr>
<td>Switch# show ip ospf</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

See the “Monitoring and Troubleshooting BFD” section on page 1-16 for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections:

- Configuring BFD Support for BGP, page 1-8
- Configuring BFD Support for EIGRP, page 1-9

Configuring BFD Support for OSPF for One or More Interfaces

To configure BFD on one or more OSPF interfaces, perform the steps in this section.

Prerequisites

OSPF must be running on all participating switches.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 1-7 for more information.
To configure BFD supporter for OSPF for one or more interfaces, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Switch> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number</td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet 6/1</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip ospf bfd [disable]</td>
</tr>
<tr>
<td>Switch(config-if)# ip ospf bfd</td>
<td>Enables or disables BFD on a per-interface basis for one or more interfaces associated with the OSPF routing process.</td>
</tr>
<tr>
<td></td>
<td>Note You should use the disable keyword only if you enabled BFD on all of the interfaces that OSPF is associated with using the bfd all-interfaces command in switch configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Switch(config-if)# end</td>
<td>Exits interface configuration mode and returns the switch to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show bfd neighbors [details]</td>
</tr>
<tr>
<td>Switch# show bfd neighbors details</td>
<td>(Optional) Displays information that can help verify if the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip ospf</td>
</tr>
<tr>
<td>Switch# show ip ospf</td>
<td>(Optional) Displays information that can help verify if BFD support for OSPF has been enabled.</td>
</tr>
</tbody>
</table>

What to Do Next

See the “Monitoring and Troubleshooting BFD” section on page 1-16 for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections:

- Configuring BFD Support for BGP, page 1-8
- Configuring BFD Support for EIGRP, page 1-9

Configuring BFD Support for Static Routing

Perform this task to configure BFD support for static routing. Repeat the steps in this procedure on each BFD neighbor. For more information, see the “Example: Configuring BFD Support for Static Routing” section on page 1-25.
To configure BFD support for static routing, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **enable**
Switch> enable | Enables privileged EXEC mode.
* Enter your password if prompted. |
| **Step 2** | **configure terminal**
Switch# configure terminal | Enters global configuration mode. |
| **Step 3** | **interface type number**
Switch(config)# interface gigabitethernet6/1 | Configures an interface and enters interface configuration mode. |
| **Step 4** | **no switchport**
Switch(config-if)# no switchport | Changes the interface to Layer 3. |
| **Step 5** | **ip address ip-address mask**
Switch(config-if)# ip address 10.201.201.1 255.255.255.0 | Configures an IP address for the interface. |
| **Step 6** | **bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier**
Switch(config-if)# bfd interval 500 min_rx 500 multiplier 5 | Enables BFD on the interface. |
| **Step 7** | **exit**
Switch(config-if)# exit | Exits interface configuration mode and returns to global configuration mode. |
| **Step 8** | **ip route static bfd [vrf vrf-name] prefix mask [ip-address | interface-type interface-number {ip-address}] [dhcp] [distance] [name next-hop-name] [permanent | track number] [tag tag]**
Switch(config)# ip route static bfd Gi6/1 10.1.1.1 group group1 passive | Specifies a static route BFD neighbor.
* The **interface-type**, **interface-number**, and **ip-address** arguments are required because BFD support exists only for directly connected neighbors. |
| **Step 9** | **exit**
Switch(config)# exit | Exits global configuration mode and returns to privileged EXEC mode. |
| **Step 10** | **show ip static route**
Switch# show ip static route | (Optional) Displays static route database information. |
| **Step 11** | Example: Switch(config)# ip route 10.0.0.0 255.0.0.0 Gi6/1 10.201.201.2 |

Example: Switch(config)# exit

Example: Switch# show ip static route
How to Configure Bidirectional Forwarding Detection

Configuring BFD Echo Mode

BFD echo mode is enabled by default, but you can disable it such that it can run independently in each direction.

BFD echo mode works with asynchronous BFD. Echo packets are sent by the forwarding engine and forwarded back along the same path in order to perform detection—the BFD session at the other end does not participate in the actual forwarding of the echo packets. The echo function and the forwarding engine are responsible for the detection process; therefore, the number of BFD control packets that are sent out between two BFD neighbors is reduced. In addition, because the forwarding engine is testing the forwarding path on the remote (neighbor) system without involving the remote system, there is an opportunity to improve the interpacket delay variance, thereby achieving quicker failure detection times than when using BFD Version 0 with BFD control packets for the BFD session.

Echo mode is described as without asymmetry when it is running on both sides (both BFD neighbors are running echo mode).

Prerequisites

BFD must be running on all participating switches.

Before using BFD echo mode, you must disable the sending of Internet Control Message Protocol (ICMP) redirect messages by entering the `no ip redirects` command, to avoid high CPU utilization.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 1-7 for more information.

Restrictions

BFD echo mode which is supported in BFD Version 1.

This section contains the following configuration tasks for BFD echo mode:

- Configuring the BFD Slow Timer, page 1-15
- Disabling BFD Echo Mode Without Asymmetry, page 1-15

Note

BFD echo mode does not work in conjunction with Unicast Reverse Path Forwarding (uRPF) configuration. If BFD echo mode and uRPF configurations are enabled, then the sessions will flap.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 12 show ip static route bfd</td>
<td>(Optional) Displays information about the static BFD configuration from the configured BFD groups and nongroup entries.</td>
</tr>
<tr>
<td>Example: Switch# show ip static route bfd</td>
<td></td>
</tr>
<tr>
<td>Step 13 exit</td>
<td>Exits privileged EXEC mode and returns to user EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch# exit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the BFD Slow Timer

The steps in this procedure show how to change the value of the BFD slow timer. Repeat the steps in this procedure for each BFD switch.

To configure the BFD slow timer, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Switch> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 bfd slow-timer milliseconds</td>
<td>Configures the BFD slow timer.</td>
</tr>
<tr>
<td>Switch(config)# bfd slow-timer 12000</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode and returns the switch to privileged EXEC mode.</td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Disabling BFD Echo Mode Without Asymmetry

The steps in this procedure show how to disable BFD echo mode without asymmetry — no echo packets are sent by the switch, and the switch does not forward BFD echo packets that are received from neighboring switches.

Repeat the steps in this procedure for each BFD switch.

To disable BFD echo mode without asymmetry, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface GigabitEthernet 6/1</td>
<td></td>
</tr>
</tbody>
</table>
This section describes how to retrieve BFD information for maintenance and troubleshooting. The commands in these tasks can be entered as needed, in any order.

For more information about BFD session initiation and failure, refer to the “BFD Operation” section on page 1-2.

To monitor and troubleshoot BFD, perform the following steps:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Switch> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 show bfd neighbors [details]</td>
<td>(Optional) Displays the BFD adjacency database.</td>
</tr>
<tr>
<td>Switch# show bfd neighbors details</td>
<td>• The details keyword shows all BFD protocol parameters and timers per neighbor.</td>
</tr>
<tr>
<td>Step 3 debug bfd [packet</td>
<td>event]</td>
</tr>
<tr>
<td>Switch# debug bfd packet</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Bidirectional Forwarding Detection

This section provides the following configuration examples:

- Example: Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default, page 1-17
- Example: Configuring BFD in an OSPF Network, page 1-21
- Example: Configuring BFD Support for Static Routing, page 1-25
Example: Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default

The following example shows how to configure BFD in an EIGRP network with echo mode enabled by default.

In this example, the EIGRP network contains SwitchA, SwitchB, and SwitchC. Gigabit Ethernet interface 6/1 on SwitchA is connected to the same network as Gigabit Ethernet interface 6/1 on SwitchB. Gigabit Ethernet interface 6/1 on SwitchB is connected to the same network as Gigabit Ethernet interface 6/1 on SwitchC.

SwitchA and SwitchB are running BFD Version 1, which supports echo mode, and SwitchC is running BFD Version 0, which does not support echo mode. We would say that the BFD sessions between SwitchC and its BFD neighbors are running echo mode with asymmetry. This is because echo mode will run on the forwarding path for RouteA and SwitchB, and their echo packets will return along the same path for BFD sessions and failure detections, while their BFD neighbor SwitchC runs BFD Version 0 and uses BFD controls packets for BFD sessions and failure detections.

Figure 1-3 shows a large EIGRP network with several switches, three of which are BFD neighbors that are running EIGRP as their routing protocol.

Figure 1-3 EIGRP Network with Three BFD Neighbors Running V1 or V0

The example, starting in global configuration mode, shows the configuration of BFD.

Configuration for SwitchA

interface GigabitEthernet6/2
 no switch
 ip address 10.4.9.14 255.255.255.0
!
interface GigabitEthernet6/1
 no switchport
 ip address 172.16.1.1 255.255.255.0
 bfd interval 100 min_rx 50 multiplier 3
 no shutdown
!
routing eigrp 11
 network 172.16.0.0
 bfd all-interfaces
 auto-summary
!
ip default-gateway 10.4.9.1
ip default-network 0.0.0.0
ip route 0.0.0.0 0.0.0.0 10.4.9.1
ip route 172.16.1.129 255.255.255.255 10.4.9.1
!

Configuration for SwitchB

!
interface GigabitEthernet6/2
 no switchport
 ip address 10.4.9.34 255.255.255.0
!
interface GigabitEthernet6/1
 no switchport
 ip address 172.16.1.2 255.255.255.0
 bfd interval 100 min_rx 50 multiplier 3
 !
router eigrp 11
 network 172.16.0.0
 bfd all-interaces
 auto-summary
!
ip default-gateway 10.4.9.1
ip default-network 0.0.0.0
ip route 0.0.0.0 0.0.0.0 10.4.9.1
ip route 172.16.1.129 255.255.255.255 10.4.9.1
!

Configuration for SwitchC

!
!
interface GigabitEthernet6/2
 no switchport
 no shutdown
 ip address 10.4.9.34 255.255.255.0
!
interface GigabitEthernet6/1
 no switchport
 ip address 172.16.1.3 255.255.255.0
 bfd interval 100 min_rx 50 multiplier 3
 no shutdown
!
router eigrp 11
 network 172.16.0.0
 bfd all-interaces
 auto-summary
!
ip default-gateway 10.4.9.1
ip default-network 0.0.0.0
ip route 0.0.0.0 0.0.0.0 10.4.9.1
ip route 172.16.1.129 255.255.255.255 10.4.9.1
!
!
end
The output from the `show bfd neighbors details` command from SwitchA verifies that BFD sessions have been created among all three switches and that EIGRP is registered for BFD support. The first group of output shows that SwitchC with the IP address 172.16.1.3 runs BFD Version 0 and therefore does not use the echo mode. The second group of output shows that SwitchB with the IP address 172.16.1.2 runs BFD Version 1, and the 50 millisecond BFD interval parameter had been adopted.

The relevant command output is shown in bold.

SwitchA

SwitchA# show bfd neighbors details

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>Holdown(mult)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>172.16.1.3</td>
<td>5/3</td>
<td>1(RH)</td>
<td>150 (3)</td>
<td>Up</td>
<td>Gi6/1</td>
</tr>
</tbody>
</table>

`Session state is UP and not using echo function.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holdown (hits): 150(0), Hello (hits): 50(1364284)
Rx Count: 1351813, Rx Interval (ms) min/max/avg: 28/64/49 last: 4 ms ago
Tx Count: 1364289, Tx Interval (ms) min/max/avg: 40/68/49 last: 32 ms ago
Registered protocols: EIGRP
Uptime: 18:42:45

Last packet: Version: 0 - Diagnostic: 0
 I Hear You bit: 1 - Demand bit: 0
 Poll bit: 0 - Final bit: 0
 Multiplier: 3 - Length: 24
 My Discr.: 3 - Your Discr.: 5
 Min tx interval: 50000 - Min rx interval: 50000
 Min Echo interval: 0

SwitchB

SwitchB# show bfd neighbors details

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>Holdown(mult)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.2</td>
<td>172.16.1.1</td>
<td>1/6</td>
<td>Up</td>
<td>0 (3)</td>
<td>Up</td>
<td>Gi6/1</td>
</tr>
</tbody>
</table>

`Session state is UP and using echo function with 50 ms interval.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3000(0), Hello (hits): 1000(317)
Rx Count: 305, Rx Interval (ms) min/max/avg: 1/1016/887 last: 448 ms ago
Tx Count: 319, Tx Interval (ms) min/max/avg: 1/1008/880 last: 532 ms ago
Registered protocols: EIGRP
Uptime: 00:04:30

Last packet: Version: 1 - Diagnostic: 0
 State bit: Up - Demand bit: 0
 Poll bit: 0 - Final bit: 0
 Multiplier: 3 - Length: 24
 My Discr.: 1 - Your Discr.: 6
 Min tx interval: 1000000 - Min rx interval: 1000000
 Min Echo interval: 50000

The output from the `show bfd neighbors details` command on SwitchB verifies that BFD sessions have been created and that EIGRP is registered for BFD support. As previously noted, SwitchA runs BFD Version 1, therefore echo mode is running, and SwitchC runs BFD Version 0, so echo mode does not run. The relevant command output is shown in bold.

SwitchB

SwitchB# show bfd neighbors details

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>Holdown(mult)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.2</td>
<td>172.16.1.1</td>
<td>1/6</td>
<td>Up</td>
<td>0 (3)</td>
<td>Up</td>
<td>Gi6/1</td>
</tr>
</tbody>
</table>

`Session state is UP and using echo function with 50 ms interval.
Local Diag: 0, Demand mode: 0, Poll bit: 0

MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3000(0), Hello (hits): 1000(337)
Rx Count: 341, Rx Interval (ms) min/max/avg: 1/1008/882 last: 364 ms ago
Tx Count: 339, Tx Interval (ms) min/max/avg: 1/1016/886 last: 632 ms ago
Registered protocols: EIGRP
Uptime: 00:05:00
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 6 - Your Discr.: 1
Min tx interval: 1000000 - Min rx interval: 1000000
Min Echo interval: 50000

OurAddr NeighAddr LD/RD RH/RS Holdown(mult) State Int
172.16.1.2 172.16.1.3 3/6 1(RH) 118 (3) Up Gi6/1

Session state is UP and not using echo function.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holdown (hits): 150(0), Hello (hits): 50(5735)
Rx Count: 5731, Rx Interval (ms) min/max/avg: 32/72/49 last: 32 ms ago
Tx Count: 5740, Tx Interval (ms) min/max/avg: 40/64/50 last: 44 ms ago
Registered protocols: EIGRP
Uptime: 00:04:45
Last packet: Version: 0 - Diagnostic: 0
I Hear You bit: 1 - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 6 - Your Discr.: 3
Min tx interval: 50000 - Min rx interval: 50000
Min Echo interval: 0

Figure 1-4 shows that Gigabit Ethernet interface 6/1 on SwitchB has failed. When Gigabit Ethernet interface 6/1 on SwitchB is shut down, the BFD values of the corresponding BFD sessions on SwitchA and SwitchB are reduced.

Figure 1-4 Gigabit Ethernet Interface 6/1 Failure

When Gigabit Ethernet interface 6/1 on SwitchB fails, BFD will no longer detect SwitchB as a BFD neighbor for SwitchA or for SwitchC. In this example, Gigabit Ethernet interface 6/1 has been administratively shut down on SwitchB.
The following output from the `show bfd neighbors` command on SwitchA now shows only one BFD neighbor for SwitchA in the EIGRP network. The relevant command output is shown in bold.

```
SwitchA# show bfd neighbors
```

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>Holdown(mult)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>172.16.1.3</td>
<td>5/3</td>
<td>1(RH)</td>
<td>134 (3)</td>
<td>Up</td>
<td>Gi6/1</td>
</tr>
</tbody>
</table>

The following output from the `show bfd neighbors` command on SwitchC also now shows only one BFD neighbor for SwitchC in the EIGRP network. The relevant command output is shown in bold.

```
SwitchC# show bfd neighbors
```

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH</th>
<th>Holdown(mult)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.3</td>
<td>172.16.1.1</td>
<td>3/5</td>
<td>1</td>
<td>114 (3)</td>
<td>Up</td>
<td>Gi6/1</td>
</tr>
</tbody>
</table>

Example: Configuring BFD in an OSPF Network

The following example shows how to configure BFD in an OSPF network.

In this example, the “simple” OSPF network consists of SwitchA and SwitchB. Gigabit Ethernet interface 6/1 on SwitchA is connected to the same network as Gigabit Ethernet interface 6/1 in SwitchB. The example, starting in global configuration mode, shows the configuration of BFD. For both SwitchA and SwitchB, BFD is configured globally for all interfaces associated with the OSPF process.

Configuration for SwitchA

```
! interface GigabitEthernet 6/1
  no switchport
  ip address 172.16.10.1 255.255.255.0
  bfd interval 50 min_rx 50 multiplier 3
! interface GigabitEthernet 6/2
  no switchport
  ip address 172.17.0.1 255.255.255.0
! router ospf 123
  log-adjacency-changes detail
  network 172.16.0.0 0.0.0.255 area 0
  network 172.17.0.0 0.0.0.255 area 0
  bfd all-interfaces
```

Configuration for SwitchB

```
! interface GigabitEthernet 6/1
  no switchport
  ip address 172.16.10.2 255.255.255.0
  bfd interval 50 min_rx 50 multiplier 3
! interface GigabitEthernet 6/2
  no switchport
  ip address 172.18.0.1 255.255.255.0
! router ospf 123
  log-adjacency-changes detail
  network 172.16.0.0 0.0.0.255 area 0
  network 172.18.0.0 0.0.0.255 area 0
  bfd all-interfaces
```
The output from the `show bfd neighbors details` command verifies that a BFD session has been created and that OSPF is registered for BFD support. The relevant command output is shown in bold.

SwitchA

```
SwitchA# show bfd neighbors details

OurAddr       NeighAddr     LD/RD RH Holdown(mult) State     Int
172.16.10.1   172.16.10.2    1/2  1   532 (3)      Up        Gi6/1
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 200000, MinRxInt: 200000, Multiplier: 5
Received MinRxInt: 1000, Received Multiplier: 3
Holdown (hits): 600(22), Hello (hits): 200(8453)
Rx Count: 49824, Rx Interval (ms) min/max/avg: 208/440/332 last: 68 ms ago
Tx Count: 84488, Tx Interval (ms) min/max/avg: 152/248/196 last: 192 ms ago
Registered protocols: OSPF
Uptime: 02:18:49
Last packet: Version: 0 - Diagnostic: 0
I Hear You bit: 1 - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 2 - Your Discr.: 1
Min tx interval: 50000 - Min rx interval: 1000
Min Echo interval: 0
```

The output from the `show bfd neighbors details` command on SwitchB verifies that a BFD session has been created:

SwitchB

```
SwitchB# attach 6
Switch> show bfd neighbors details

Cleanup timer hits: 0

OurAddr       NeighAddr     LD/RD RH Holdown(mult) State     Int
172.16.10.2   172.16.10.1    8/1  1   1000 (5)      Up        Gi6/1
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 1000, Multiplier: 3
Received MinRxInt: 200000, Received Multiplier: 5
Holdown (hits): 1000(0), Hello (hits): 200(5995)
Rx Count: 10126, Rx Interval (ms) min/max/avg: 152/248/196 last: 0 ms ago
Tx Count: 5998, Tx Interval (ms) min/max/avg: 204/440/332 last: 12 ms ago
Last packet: Version: 0 - Diagnostic: 0
I Hear You bit: 1 - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 5 - Length: 24
My Discr.: 1 - Your Discr.: 8
Min tx interval: 200000 - Min rx interval: 200000
Min Echo interval: 0
Uptime: 00:33:13
SSO Cleanup Timer called: 0
SSO Cleanup Action Taken: 0
Pseudo pre-emptive process count: 239103 min/max/avg: 8/16/8 last: 0 ms ago
IPC Tx Failure Count: 0
IPC Rx Failure Count: 0
Total Adjs Found: 1
```
The output of the `show ip ospf` command verifies that BFD has been enabled for OSPF. The relevant command output is shown in bold.

SwitchA

```
SwitchA# show ip ospf
Routing Process "ospf 123" with ID 172.16.10.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of opaque AS LSA 0. Checksum Sum 0x000000
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
BFD is enabled
Area BACKBONE(0)
  Number of interfaces in this area is 2 (1 loopback)
  Area has no authentication
  SPF algorithm last executed 00:00:08.828 ago
  SPF algorithm executed 9 times
  Area ranges are
  Number of LSA 3. Checksum Sum 0x028417
  Number of opaque link LSA 0. Checksum Sum 0x000000
  Number of DCbitless LSA 0
  Number of indication LSA 0
  Number of DoNotAge LSA 0
  Flood list length 0
```

SwitchB

```
SwitchB# show ip ospf
Routing Process "ospf 123" with ID 172.18.0.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Supports area transit capability
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x0
Number of opaque AS LSA 0. Checksum Sum 0x0
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
```
Number of areas transit capable is 0

External flood list length 0

BFD is enabled

Area BACKBONE(0)
- Number of interfaces in this area is 2 (1 loopback)
- Area has no authentication
- SPF algorithm last executed 02:07:30.932 ago
- SPF algorithm executed 7 times
- Area ranges are
 - Number of LSA 3. Checksum Sum 0x28417
 - Number of opaque link LSA 0. Checksum Sum 0x0
 - Number of DBbitless LSA 0
 - Number of indication LSA 0
 - Number of DoNotAge LSA 0
- Flood list length 0

The output of the `show ip ospf interface` command verifies that BFD has been enabled for OSPF on the interfaces connecting SwitchA and SwitchB. The relevant command output is shown in bold.

SwitchA

SwitchA# **show ip ospf interface gigabitethernet 6/1**

```
show ip ospf interface gigabitethernet 6/1
Gigabitethernet 6/1 is up, line protocol is up
    Internet Address 172.16.10.1/24, Area 0
    Process ID 123, Router ID 172.16.10.1, Network Type BROADCAST, Cost: 1
    Transmit Delay is 1 sec, State BDR, Priority 1, **BFD enabled**
    Designated Router (ID) 172.18.0.1, Interface address 172.16.10.2
    Backup Designated router (ID) 172.16.10.1, Interface address 172.16.10.1
    Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:03
    Supports Link-local Signaling (LLS)
    Index 1/1, flood queue length 0
    Next 0x0(0)/0x0(0)
    Last flood scan length is 1, maximum is 1
    Last flood scan time is 0 msec, maximum is 0 msec
    Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 172.18.0.1  (Designated Router)
    Suppress hello for 0 neighbor(s)
```

SwitchB

SwitchB# **show ip ospf interface gigabitethernet 6/1**

```
Gigabitethernet 6/1 is up, line protocol is up
    Internet Address 172.18.0.1/24, Area 0
    Process ID 123, Router ID 172.18.0.1, Network Type BROADCAST, Cost: 1
    Transmit Delay is 1 sec, State DR, Priority 1, **BFD enabled**
    Designated Router (ID) 172.18.0.1, Interface address 172.18.0.1
    No backup designated router on this network
    Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:01
    Supports Link-local Signaling (LLS)
    Index 1/1, flood queue length 0
    Next 0x0(0)/0x0(0)
    Last flood scan length is 0, maximum is 0
    Last flood scan time is 0 msec, maximum is 0 msec
    Neighbor Count is 0, Adjacent neighbor count is 0
    Suppress hello for 0 neighbor(s)
```
Example: Configuring BFD Support for Static Routing

In the following example, the network consists of SwitchA and SwitchB. Gigabit Ethernet interface 6/1 on SwitchA is connected to the same network as gigabit ethernet interface 6/1 on SwitchB. For the BFD session to come up, SwitchB must be configured.

SwitchA

```text
configure terminal
no switchport
interface Gigabit Ethernet 6/1
ip address 10.201.201.1 255.255.255.0
bfd interval 500 min_rx 500 multiplier 5
ip route static bfd Gigabit Ethernet 6/1 10.201.201.2
ip route 10.0.0.0 255.0.0.0 Gigabit Ethernet 6/1 10.201.201.2
```

SwitchB

```text
configure terminal
no switchport
interface Gigabit Ethernet 6/1
ip address 10.201.201.2 255.255.255.0
bfd interval 500 min_rx 500 multiplier 5
ip route static bfd Gigabit Ethernet 6/1 10.201.201.1
ip route 10.1.1.1 255.255.255.255 Gigabit Ethernet 6/1 10.201.201.1
```

Note
The static route on SwitchB exists solely to enable the BFD session between 10.201.201.1 and 10.201.201.2. If there is no useful static route to configure, select a prefix that will not affect packet forwarding, for example, the address of a locally configured loopback interface.

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Configuring and monitoring BGP</td>
<td>Cisco BGP Overview” module of the Cisco IOS IP Routing Protocols Configuration Guide</td>
</tr>
<tr>
<td>Configuring and monitoring EIGRP</td>
<td>“Configuring EIGRP” module of the Cisco IOS IP Routing Protocols Configuration Guide</td>
</tr>
<tr>
<td>Configuring and monitoring OSPF</td>
<td>“Configuring OSPF” module of the Cisco IOS IP Routing Protocols Configuration Guide</td>
</tr>
<tr>
<td>BFD commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
<tr>
<td>BGP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
</tbody>
</table>
Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIGRP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
<tr>
<td>OSPF commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IETF Draft</td>
<td>BFD for IPv4 and IPv6 (Single Hop), February 2009</td>
</tr>
<tr>
<td>IETF Draft</td>
<td>Bidirectional Forwarding Detection, February 2009</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Configuring Resilient Ethernet Protocol

Resilient Ethernet Protocol (REP) is a Cisco proprietary protocol that provides an alternative to Spanning Tree Protocol (STP) to control network loops, handle link failures, and improve convergence time. REP controls a group of ports connected in a segment, ensures that the segment does not create any bridging loops, and responds to link failures within the segment. REP provides a basis for constructing more complex networks and supports VLAN load balancing.

- Understanding REP, page 1-1
- Configuring REP, page 1-6
- Monitoring REP, page 1-14

Note
REP is supported on Catalyst 3750-X and 3560-X switches running the IP Base license and the IP Services license. REP is not supported on the LAN Base license.

Understanding REP

One REP segment is a chain of ports connected to each other and configured with a segment ID. Each segment consists of standard (non-edge) segment ports and two user-configured edge ports. A switch can have no more than two ports that belong to the same segment, and each segment port can have only one external neighbor. A segment can go through a shared medium, but on any link only two ports can belong to the same segment. REP is supported only on Layer 2 trunk interfaces.

Figure 1-1 shows an example of a segment consisting of six ports spread across four switches. Ports E1 and E2 are configured as edge ports. When all ports are operational (as in the segment on the left), a single port is blocked, shown by the diagonal line. When there is a failure in the network, as shown in the diagram on the right, the blocked port returns to the forwarding state to minimize network disruption.
Figure 1-1 REP Open Segments

The segment shown in Figure 1-1 is an open segment; there is no connectivity between the two edge ports. The REP segment cannot cause a bridging loop and it is safe to connect the segment edges to any network. All hosts connected to switches inside the segment have two possible connections to the rest of the network through the edge ports, but only one connection is accessible at any time. If a failure causes a host to be unable to access its usual gateway, REP unblocks all ports to ensure that connectivity is available through the other gateway.

The segment shown in Figure 1-2, with both edge ports located on the same switch, is a ring segment. In this configuration, there is connectivity between the edge ports through the segment. With this configuration, you can create a redundant connection between any two switches in the segment.

Figure 1-2 REP Ring Segment

REP segments have these characteristics:

- If all ports in the segment are operational, one port (referred to as the alternate port) is in the blocked state for each VLAN. If VLAN load balancing is configured, two ports in the segment control the blocked state of VLANs.
- If one or more ports in a segment is not operational, causing a link failure, all ports forward traffic on all VLANs to ensure connectivity.
- In case of a link failure, the alternate ports are unblocked as quickly as possible. When the failed link comes back up, a logically blocked port per VLAN is selected with minimal disruption to the network.
You can construct almost any type of network based on REP segments. REP also supports VLAN load-balancing, controlled by the primary edge port but occurring at any port in the segment.

In access ring topologies, the neighboring switch might not support REP, as shown in Figure 1-3. In this case, you can configure the non-REP facing ports (E1 and E2) as edge no-neighbor ports. These ports inherit all properties of edge ports, and you can configure them the same as any edge port, including configuring them to send STP or REP topology change notices to the aggregation switch. In this case, the STP topology change notice (TCN) that is sent is a multiple spanning-tree (MST) STP message.

Figure 1-3 Edge No-Neighbor Ports

REP has these limitations:

- You must configure each segment port; an incorrect configuration can cause forwarding loops in the networks.
- REP can manage only a single failed port within the segment; multiple port failures within the REP segment cause loss of network connectivity.
- You should configure REP only in networks with redundancy. Configuring REP in a network without redundancy causes loss of connectivity.

Link Integrity

REP does not use an end-to-end polling function between edge ports to verify link integrity. It implements local link failure detection. The REP Link Status Layer (LSL) detects its REP-aware neighbor and establishes connectivity within the segment. All VLANs are blocked on an interface until it detects the neighbor. After the neighbor is identified, REP determines which neighbor port should become the alternate port and which ports should forward traffic.

Each port in a segment has a unique port ID. The port ID format is similar to that used by the spanning tree algorithm: a port number (unique on the bridge), associated to a MAC address (unique in the network). When a segment port is coming up, its LSL starts sending packets that include the segment ID and the port ID. The port is declared as operational after it performs a three-way handshake with a neighbor in the same segment.
A segment port does not become operational if:

- No neighbor has the same segment ID.
- More than one neighbor has the same segment ID.
- The neighbor does not acknowledge the local port as a peer.

Each port creates an adjacency with its immediate neighbor. Once the neighbor adjacencies are created, the ports negotiate to determine one blocked port for the segment, the alternate port. All other ports become unblocked. By default, REP packets are sent to a BPDU class MAC address. The packets can also be sent to the Cisco multicast address, which is used only to send blocked port advertisement (BPA) messages when there is a failure in the segment. The packets are dropped by devices not running REP.

Fast Convergence

Because REP runs on a physical link basis and not a per-VLAN basis, only one hello message is required for all VLANs, reducing the load on the protocol. We recommend that you create VLANs consistently on all switches in a given segment and configure the same allowed VLANs on the REP trunk ports. To avoid the delay introduced by relaying messages in software, REP also allows some packets to be flooded to a regular multicast address. These messages operate at the hardware flood layer (HFL) and are flooded to the whole network, not just the REP segment. Switches that do not belong to the segment treat them as data traffic. You can control flooding of these messages by configuring a dedicated administrative VLAN for the whole domain.

The estimated convergence recovery time on fiber interfaces is between 50 ms and 200 ms for the local segment with 200 VLANs configured. Convergence for VLAN load balancing is 300 ms or less.

VLAN Load Balancing

One edge port in the REP segment acts as the primary edge port; the other as the secondary edge port. It is the primary edge port that always participates in VLAN load balancing in the segment. REP VLAN balancing is achieved by blocking some VLANs at a configured alternate port and all other VLANs at the primary edge port. When you configure VLAN load balancing, you can specify the alternate port in one of three ways:

- **By entering the port ID of the interface.** To identify the port ID of a port in the segment, enter the `show interface rep detail` interface configuration command for the port.

- **By entering the neighbor offset number of a port in the segment,** which identifies the downstream neighbor port of an edge port. The neighbor offset number range is –256 to +256; a value of 0 is invalid. The primary edge port has an offset number of 1; positive numbers above 1 identify downstream neighbors of the primary edge port. Negative numbers indicate the secondary edge port (offset number -1) and its downstream neighbors.

 Note: You configure offset numbers on the primary edge port by identifying a port’s downstream position from the primary (or secondary) edge port. You would never enter an offset value of 1 because that is the offset number of the primary edge port itself.

 Figure 1-4 shows neighbor offset numbers for a segment where E1 is the primary edge port and E2 is the secondary edge port. The red numbers inside the ring are numbers offset from the primary edge port; the black numbers outside of the ring show the offset numbers from the secondary edge port. Note that you can identify all ports (except the primary edge port) by either a positive offset...
number (downstream position from the primary edge port) or a negative offset number (downstream position from the secondary edge port). If E2 became the primary edge port, its offset number would then be 1 and E1 would be -1.

- By entering the **preferred** keyword to select the port that you previously configured as the preferred alternate port with the `rep segment segment-id preferred` interface configuration command.

![Figure 1-4 Neighbor Offset Numbers in a Segment](image)

When the REP segment is complete, all VLANs are blocked. When you configure VLAN load balancing, you must also configure triggers in one of two ways:

- Manually trigger VLAN load balancing at any time by entering the `rep preempt segment segment-id privileged EXEC` command on the switch that has the primary edge port.
- Configure a preempt delay time by entering the `rep preempt delay seconds interface configuration` command. After a link failure and recovery, VLAN load balancing begins after the configured preemption time period elapses. Note that the delay timer restarts if another port fails before the time has elapsed.

When VLAN load balancing is configured, it does not start working until triggered by either manual intervention or a link failure and recovery.

When VLAN load balancing is triggered, the primary edge port sends out a message to alert all interfaces in the segment about the preemption. When the secondary port receives the message, it is reflected into the network to notify the alternate port to block the set of VLANs specified in the message and to notify the primary edge port to block the remaining VLANs.

You can also configure a particular port in the segment to block all VLANs. Only the primary edge port initiates VLAN load balancing, which is not possible if the segment is not terminated by an edge port on each end. The primary edge port determines the local VLAN load balancing configuration.

Reconfigure the primary edge port to reconfigure load balancing. When you change the load balancing configuration, the primary edge port again waits for the `rep preempt segment` command or for the configured preempt delay period after a port failure and recovery before executing the new configuration. If you change an edge port to a regular segment port, the existing VLAN load balancing status does not change. Configuring a new edge port might cause a new topology configuration.
Spanning Tree Interaction

REP does not interact with STP or with the Flex Link feature, but can coexist with both. A port that belongs to a segment is removed from spanning tree control and STP BPDUs are not accepted or sent from segment ports. Therefore, STP cannot run on a segment.

To migrate from an STP ring configuration to REP segment configuration, begin by configuring a single port in the ring as part of the segment and continue by configuring contiguous ports to minimize the number of segments. Each segment always contains a blocked port, so multiple segments means multiple blocked ports and a potential loss of connectivity. When the segment has been configured in both directions up to the location of the edge ports, you then configure the edge ports.

REP Ports

Ports in REP segments are Failed, Open, or Alternate.

- A port configured as a regular segment port starts as a failed port.
- After the neighbor adjacencies are determined, the port transitions to alternate port state, blocking all VLANs on the interface. Blocked port negotiations occur and when the segment settles, one blocked port remains in the alternate role and all other ports become open ports.
- When a failure occurs in a link, all ports move to the failed state. When the alternate port receives the failure notification, it changes to the open state, forwarding all VLANs.

A regular segment port converted to an edge port, or an edge port converted to a regular segment port, does not always result in a topology change. If you convert an edge port into a regular segment port, VLAN load balancing is not implemented unless it has been configured. For VLAN load balancing, you must configure two edge ports in the segment.

A segment port that is reconfigured as a spanning tree port restarts according the spanning tree configuration. By default, this is a designated blocking port. If PortFast is configured or if STP is disabled, the port goes into the forwarding state.

Configuring REP

A segment is a collection of ports connected one to the other in a chain and configured with a segment ID. To configure REP segments, you configure the REP administrative VLAN (or use the default VLAN 1) and then add the ports to the segment using interface configuration mode. You should configure two edge ports in the segment, with one of them the primary edge port and the other by default the secondary edge port. A segment has only one primary edge port. If you configure two ports in a segment as the primary edge port, for example, ports on different switches, the REP selects one of them to serve as the segment primary edge port. You can also optionally configure where to send segment topology change notices (STCNs) and VLAN load balancing.

- Default REP Configuration, page 1-7
- REP Configuration Guidelines, page 1-7
- Configuring the REP Administrative VLAN, page 1-8
- Configuring REP Interfaces, page 1-9
- Configuring SNMP Traps for REP, page 1-13
Default REP Configuration

REP is disabled on all interfaces. When enabled, the interface is a regular segment port unless it is configured as an edge port.

When REP is enabled, the sending of segment topology change notices (STCNs) is disabled, all VLANs are blocked, and the administrative VLAN is VLAN 1.

When VLAN load balancing is enabled, the default is manual preemption with the delay timer disabled. If VLAN load balancing is not configured, the default after manual preemption is to block all VLANs at the primary edge port.

REP Configuration Guidelines

Follow these guidelines when configuring REP:

- We recommend that you begin by configuring one port and then configure the contiguous ports to minimize the number of segments and the number of blocked ports.
- If more than two ports in a segment fail when no external neighbors are configured, one port changes to a forwarding state for the data path to help maintain connectivity during reconfiguration. In the `show rep interface` privileged EXEC command output, the Port Role for this port shows as Fail Logical Open; the Port Role for the other failed port shows as Fail No Ext Neighbor. When the external neighbors for the failed ports are configured, the ports go through the alternate port state transitions and eventually go to an open state or remain as the alternate port, based on the alternate port election operation.
- REP ports must be Layer 2 trunk ports.
- Be careful when configuring REP through a Telnet connection. Because REP blocks all VLANs until another REP interface sends a message to unblock it, you might lose connectivity to the switch if you enable REP in a Telnet session that accesses the switch through the same interface.
- You cannot run REP and STP or REP and Flex Links on the same segment or interface.
- If you connect an STP network to the REP segment, be sure that the connection is at the segment edge. An STP connection that is not at the edge could cause a bridging loop because STP does not run on REP segments. All STP BPDUs are dropped at REP interfaces.
- You must configure all trunk ports in the segment with the same set of allowed VLANs, or a misconfiguration occurs.
- REP ports follow these rules:
 - There is no limit to the number of REP ports on a switch; however, only two ports on a switch can belong to the same REP segment.
 - If only one port on a switch is configured in a segment, the port should be an edge port.
 - If two ports on a switch belong to the same segment, they must be both edge ports, both regular segment ports, or one regular port and one edge no-neighbor port. An edge port and regular segment port on a switch cannot belong to the same segment.
 - If two ports on a switch belong to the same segment and one is configured as an edge port and one as a regular segment port (a misconfiguration), the edge port is treated as a regular segment port.
- REP interfaces come up in a blocked state and remain in a blocked state until notified that it is safe to unblock. You need to be aware of this to avoid sudden connection losses.
• REP sends all LSL PDUs in untagged frames on the native VLAN. The BPA message sent to the Cisco multicast address is sent on the administration VLAN, which is VLAN 1 by default.

• You can configure how long a REP interface remains up without receiving a hello from a neighbor. You can use the `rep lsl-age-timer value` interface configuration command to set the time from 120 ms to 10000 ms. The LSL hello timer is then set to the age-timer value divided by 3. In normal operation, three LSL hellos are sent before the age timer on the peer switch expires and checks for hello messages.
 - EtherChannel port channel interfaces do not support LSL age-timer values less than 1000 ms. If you try to configure a value less than 1000 ms on a port channel, you receive an error message and the command is rejected.

• When configuring the REP LSL age timer, make sure that both ends of the link have the same time value configured. Configuring different values on ports at each end of the link results in a REP link flap.

• REP ports cannot be configured as one of these port types:
 - SPAN destination port
 - Tunnel port
 - Access port

• REP is supported on EtherChannels, but not on an individual port that belongs to an EtherChannel.

• There is a maximum of 64 REP segments per switch.

Configuring the REP Administrative VLAN

To avoid the delay introduced by relaying messages in software for link-failure or VLAN-blocking notification during load balancing, REP floods packets at the hardware flood layer (HFL) to a regular multicast address. These messages are flooded to the whole network, not just the REP segment. You can control flooding of these messages by configuring an administrative VLAN for the whole domain.

Follow these guidelines when configuring the REP administrative VLAN:

• If you do not configure an administrative VLAN, the default is VLAN 1.

• There can be only one administrative VLAN on a switch and on a segment. However, this is not enforced by software.

• The administrative VLAN cannot be the RSPAN VLAN.

To configure the REP administrative VLAN, follow these steps, beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>rep admin vlan vlan-id</code></td>
<td>Specifies the administrative VLAN. The range is 2 to 4094. The default</td>
</tr>
<tr>
<td></td>
<td>is VLAN 1. To set the admin VLAN to 1, enter the <code>no rep admin vlan</code></td>
</tr>
<tr>
<td></td>
<td>global configuration command.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>show interface [interface-id] rep detail</code></td>
<td>Verifies the configuration on one of the REP interfaces.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup config</code></td>
<td>(Optional) Saves your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to configure the administrative VLAN as VLAN 100 and verify the configuration by entering the `show interface rep detail` command on one of the REP interfaces:

```
Switch# configure terminal
Switch (conf)# rep admin vlan 100
Switch (conf-if)# end
Switch# show interface gigabitethernet1/1 rep detail
GigabitEthernet1/1 REP enabled
Segment-id: 2 (Edge)
PortID: 00010019E7144680
Preferred flag: No
Operational Link Status: TWO_WAY
Current Key: 0002001121A2D5800E4D
Port Role: Open
Blocked Vlan: <empty>
Admin-vlan: 100
Preempt Delay Timer: disabled
LSL Ageout Timer: 5000 ms
Configured Load-balancing Block Port: none
Configured Load-balancing Block VLAN: none
STCN Propagate to: none
LSL PDU rx: 3322, tx: 1722
HFL PDU rx: 32, tx: 5
BPA TLV rx: 16849, tx: 508
BPA (STCN, LSL) TLV rx: 0, tx: 0
BPA (STCN, HFL) TLV rx: 0, tx: 0
EPA-ELECTION TLV rx: 118, tx: 118
EPA-COMMAND TLV rx: 0, tx: 0
EPA-INFO TLV rx: 4214, tx: 4190
```

Configuring REP Interfaces

For REP operation, you need to enable it on each segment interface and identify the segment ID. This step is required and must be done before other REP configuration. You must also configure a primary and secondary edge port on each segment. All other steps are optional.

To enable and configure REP on an interface, follow these steps, beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specifies the interface, and enter interface configuration mode. The interface can be a physical Layer 2 interface or a port channel (logical interface). The port-channel range is 1 to 48.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>switchport mode trunk</code></td>
<td>Configures the interface as a Layer 2 trunk port.</td>
</tr>
</tbody>
</table>
Step 4

Command

```
rep segment segment-id [edge [no-neighbor] [primary]] [preferred]
```

Purpose

Enables REP on the interface, and identifies a segment number. The segment ID range is from 1 to 1024. These optional keywords are available:

Note You must configure two edge ports, including one primary edge port for each segment.

- (Optional) `edge` — configures the port as an edge port. Entering `edge` without the `primary` keyword configures the port as the secondary edge port. Each segment has only two edge ports.
- (Optional) `primary` — configures the port as the primary edge port—the port on which you can configure VLAN load balancing.
- (Optional) `no-neighbor` — configures a port with no external REP neighbors as an edge port. The port inherits all properties of edge ports, and you can configure them the same as any edge port.
- (Optional) `preferred` — indicates that the port is the preferred alternate port or the preferred port for VLAN load balancing.

Note Configuring a port as preferred does not guarantee that it becomes the alternate port; it only gives it a slight advantage among equal contenders. The alternate port is usually a previously failed port.

Step 5

Command

```
rep stcn {interface interface-id | segment id-list | stp}
```

(Optional) Configures the edge port to send segment topology change notices (STCNs).

- `interface interface-id`—designates a physical interface or port channel to receive STCNs.
- `segment id-list`—identifies one or more segments to receive STCNs. The range is 1 to 1024.
- `stp`—sends STCNs to STP networks.
Configuring REP

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 rep block port {id port-id</td>
<td>neighbor_offset</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>- id port-id — identifies the alternate port by port ID. The port ID is automatically generated for each port in the segment. You can view interface port IDs by entering the show interface interface-id rep [detail] privileged EXEC command.</td>
<td></td>
</tr>
<tr>
<td>- neighbor_offset — number to identify the alternate port as a downstream neighbor from an edge port. The range is from –256 to 256, with negative numbers indicating the downstream neighbor from the secondary edge port. A value of 0 is invalid. Enter -1 to identify the secondary edge port as the alternate port. See Figure 1-4 on page 1-5 for an example of neighbor offset numbering.</td>
<td></td>
</tr>
<tr>
<td>- preferred — selects the regular segment port previously identified as the preferred alternate port for VLAN load balancing.</td>
<td></td>
</tr>
<tr>
<td>- vlan vlan-list — blocks one VLAN or a range of VLANs.</td>
<td></td>
</tr>
<tr>
<td>- vlan all—blocks all VLANs.</td>
<td></td>
</tr>
<tr>
<td>Note Because you enter this command at the primary edge port (offset number 1), you would never enter an offset value of 1 to identify an alternate port.</td>
<td></td>
</tr>
<tr>
<td>Step 7 rep preempt delay seconds</td>
<td>(Optional) You must enter this command and configure a preempt time delay if you want VLAN load balancing to automatically trigger after a link failure and recovery. The time delay range is 15 to 300 seconds. The default is manual preemption with no time delay.</td>
</tr>
<tr>
<td>Step 8 rep isl-age-timer value</td>
<td>(Optional) Configures a time (in milliseconds) for which the REP interface remains up without receiving a hello from a neighbor. The range is from 120 to 10000 ms in 40-ms increments. The default is 5000 ms (5 seconds).</td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10 show interface [interface-id] rep [detail]</td>
<td>Displays the REP interface configuration.</td>
</tr>
<tr>
<td>Step 11 copy running-config startup config</td>
<td>(Optional) Saves your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>
Enter the `no` form of each command to return to the default configuration. Enter the `show rep topology` privileged EXEC command to see which port in the segment is the primary edge port.

This example shows how to configure an interface as the primary edge port for segment 1, to send STCNs to segments 2 through 5, and to configure the alternate port as the port with port ID `0009001818D68700` to block all VLANs after a preemption delay of 60 seconds after a segment port failure and recovery. The interface is configured to remain up for 6000 milliseconds without receiving a hello from a neighbor.

```
Switch# configure terminal
Switch (conf)# interface gigabitethernet1/1
Switch (conf-if)# rep segment 1 edge primary
Switch (conf-if)# rep stcn segment 2-5
Switch (conf-if)# rep block port 0009001818D68700 vlan all
Switch (conf-if)# rep preempt delay 60
Switch (conf-if)# rep lsl-age-timer 6000
Switch (conf-if)# end
```

This example shows how to configure the same configuration when the interface has no external REP neighbor:

```
Switch# configure terminal
Switch (conf)# interface gigabitethernet1/1
Switch (conf-if)# rep segment 1 edge no-neighbor primary
Switch (conf-if)# rep stcn segment 2-5
Switch (conf-if)# rep block port 0009001818D68700 vlan all
Switch (conf-if)# rep preempt delay 60
Switch (conf-if)# rep lsl-age-timer 6000
```

This example shows how to configure the VLAN blocking configuration shown in Figure 1-5. The alternate port is the neighbor with neighbor offset number 4. After manual preemption, VLANs 100 to 200 are blocked at this port, and all other VLANs are blocked at the primary edge port E1 (Gigabit Ethernet port 1/1).

```
Switch# configure terminal
Switch (conf)# interface gigabitethernet1/1
Switch (conf-if)# rep segment 1 edge primary
Switch (conf-if)# rep block port 4 vlan 100-200
Switch (conf-if)# end
```

Figure 1-5 Example of VLAN Blocking

Primary edge port E1 blocks all VLANs except VLANs 100-200.
Chapter 1 Configuring Resilient Ethernet Protocol

Configuring REP

Setting Manual Preemption for VLAN Load Balancing

If you do not enter the `rep preempt delay seconds` interface configuration command on the primary edge port to configure a preemption time delay, the default is to manually trigger VLAN load balancing on the segment. Be sure that all other segment configuration has been completed before manually preemption VLAN load balancing. When you enter the `rep preempt segment segment-id` command, a confirmation message appears before the command is executed because preemption can cause network disruption.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 `rep preempt segment segment-id` | Manually triggers VLAN load balancing on the segment.
You will need to confirm the command before it is executed. |
| Step 2 `show rep topology` | Displays REP topology information. |

Configuring SNMP Traps for REP

You can configure the switch to send REP-specific traps to notify the SNMP server of link operational status changes and port role changes. To configure REP traps, follow these steps, beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>snmp mib rep trap-rate value</code></td>
<td>Enables the switch to send REP traps, and set the number of traps sent per second. The range is from 0 to 1000. The default is 0 (no limit imposed; a trap is sent at every occurrence).</td>
</tr>
<tr>
<td>Step 3 <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 <code>show running-config</code></td>
<td>Displays the REP trap configuration.</td>
</tr>
<tr>
<td>Step 5 <code>copy running-config startup config</code></td>
<td>(Optional) Saves your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

To remove the trap, enter the `no snmp mib rep trap-rate` global configuration command.

This example configures the switch to send REP traps at a rate of 10 per second:

```
Switch(config)# snmp mib rep trap-rate 10
```
Monitoring REP

Table 1-1 REP Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interface [interface-id] rep [detail]</code></td>
<td>Displays REP configuration and status for an interface or for all interfaces.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) detail—displays interface-specific REP information.</td>
</tr>
<tr>
<td><code>show rep topology [segment segment_id] [archive] [detail]</code></td>
<td>Displays REP topology information for a segment or for all segments, including the primary and secondary edge ports in the segment.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) archive—displays the last stable topology.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) detail—displays detailed archived information.</td>
</tr>
</tbody>
</table>

Note
An archive topology is not retained when the switch reloads.
Understanding Flex Links and the MAC Address-Table Move Update

This chapter describes how to configure Flex Links, a pair of interfaces on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch that provide a mutual backup. It also describes how to configure the MAC address-table move update feature, also referred to as the Flex Links bidirectional fast convergence feature. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

The chapter consists of these sections:
- Understanding Flex Links and the MAC Address-Table Move Update, page 1-1
- Configuring Flex Links and MAC Address-Table Move Update, page 1-7
- Monitoring Flex Links and the MAC Address-Table Move Update, page 1-14

Flex Links

Flex Links are a pair of a Layer 2 interfaces (switch ports or port channels) where one interface is configured to act as a backup to the other. The feature provides an alternative solution to the Spanning Tree Protocol (STP). Users can disable STP and still retain basic link redundancy. Flex Links are
typically configured in service provider or enterprise networks where customers do not want to run STP on the switch. If the switch is running STP, Flex Links is not necessary because STP already provides link-level redundancy or backup.

You configure Flex Links on one Layer 2 interface (the active link) by assigning another Layer 2 interface as the Flex Link or backup link. On Catalyst 3750-E Catalyst 3750-X switches, the Flex Link can be on the same switch or on another switch in the stack. When one of the links is up and forwarding traffic, the other link is in standby mode, ready to begin forwarding traffic if the other link shuts down. At any given time, only one of the interfaces is in the linkup state and forwarding traffic. If the primary link shuts down, the standby link starts forwarding traffic. When the active link comes back up, it goes into standby mode and does not forward traffic. STP is disabled on Flex Link interfaces.

In Figure 1-1, ports 1 and 2 on switch A are connected to uplink switches B and C. Because they are configured as Flex Links, only one of the interfaces is forwarding traffic; the other is in standby mode. If port 1 is the active link, it begins forwarding traffic between port 1 and switch B; the link between port 2 (the backup link) and switch C is not forwarding traffic. If port 1 goes down, port 2 comes up and starts forwarding traffic to switch C. When port 1 comes back up, it goes into standby mode and does not forward traffic; port 2 continues forwarding traffic.

You can also choose to configure a preemption mechanism, specifying the preferred port for forwarding traffic. For example, in the example in Figure 1-1, you can configure the Flex Links pair with preemption mode. In the scenario shown, when port 1 comes back up and has more bandwidth than port 2, port 1 begins forwarding traffic after 60 seconds. Port 2 becomes the standby port. You do this by entering the interface configuration `switchport backup interface preemption mode bandwidth` and `switchport backup interface preemption delay` commands.

Figure 1-1 Flex Links Configuration Example

If a primary (forwarding) link goes down, a trap notifies the network management stations. If the standby link goes down, a trap notifies the users.

Flex Links are supported only on Layer 2 ports and port channels, not on VLANs or on Layer 3 ports.

VLAN Flex Link Load Balancing and Support

VLAN Flex Link load-balancing allows users to configure a Flex Link pair so that both ports simultaneously forward the traffic for some mutually exclusive VLANs. For example, if Flex Link ports are configured for 1-100 VLANs, the traffic of the first 50 VLANs can be forwarded on one port and the rest on the other port. If one of the ports fail, the other active port forwards all the traffic. When the failed port comes back up, it resumes forwarding traffic in the preferred VLANs. This way, apart from providing the redundancy, this Flex Link pair can be used for load balancing. Also, Flex Link VLAN load-balancing does not impose any restrictions on uplink switches.
Flex Link Multicast Fast Convergence

Flex Link Multicast Fast Convergence reduces the multicast traffic convergence time after a Flex Link failure. This is implemented by a combination of these solutions:

- Learning the Other Flex Link Port as the mrouter Port, page 1-3
- Generating IGMP Reports, page 1-3
- Leaking IGMP Reports, page 1-4

Learning the Other Flex Link Port as the mrouter Port

In a typical multicast network, there is a querier for each VLAN. A switch deployed at the edge of a network has one of its Flex Link ports receiving queries. Flex Link ports are also always forwarding at any given time.

A port that receives queries is added as an mrouter port on the switch. An mrouter port is part of all the multicast groups learned by the switch. After a changeover, queries are received by the other Flex Link port. The other Flex Link port is then learned as the mrouter port. After changeover, multicast traffic then flows through the other Flex Link port. To achieve faster convergence of traffic, both Flex Link ports are learned as mrouter ports whenever either Flex Link port is learned as the mrouter port. Both Flex Link ports are always part of multicast groups.

Though both Flex Link ports are part of the groups in normal operation mode, all traffic on the backup port is blocked. So the normal multicast data flow is not affected by the addition of the backup port as an mrouter port. When the changeover happens, the backup port is unblocked, allowing the traffic to flow. In this case, the upstream multicast data flows as soon as the backup port is unblocked.

Generating IGMP Reports

When the backup link comes up after the changeover, the upstream new distribution switch does not start forwarding multicast data, because the port on the upstream router, which is connected to the blocked Flex Link port, is not part of any multicast group. The reports for the multicast groups were not forwarded by the downstream switch because the backup link is blocked. The data does not flow on this port, until it learns the multicast groups, which occurs only after it receives reports.

The reports are sent by hosts when a general query is received, and a general query is sent within 60 seconds in normal scenarios. When the backup link starts forwarding, to achieve faster convergence of multicast data, the downstream switch immediately sends proxy reports for all the learned groups on this port without waiting for a general query.
Leaking IGMP Reports

To achieve multicast traffic convergence with minimal loss, a redundant data path must be set up before the Flex Link active link goes down. This can be achieved by leaking only IGMP report packets on the Flex Link backup link. These leaked IGMP report messages are processed by upstream distribution routers, so multicast data traffic gets forwarded to the backup interface. Because all incoming traffic on the backup interface is dropped at the ingress of the access switch, no duplicate multicast traffic is received by the host. When the Flex Link active link fails, the access switch starts accepting traffic from the backup link immediately. The only disadvantage of this scheme is that it consumes bandwidth on the link between the distribution switches and on the backup link between the distribution and access switches. This feature is disabled by default and can be configured by using the `switchport backup interface interface-id multicast fast-convergence` command.

When this feature has been enabled at changeover, the switch does not generate the proxy reports on the backup port, which became the forwarding port.

Configuration Examples

These are configuration examples for learning the other Flex Link port as the mrouter port when Flex Link is configured on GigabitEthernet1/0/11 and GigabitEthernet1/0/12, and output for the `show interfaces switchport backup` command:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface GigabitEthernet1/0/11
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# switchport backup interface Gi1/0/12
Switch(config-if)# exit
Switch(config)# interface GigabitEthernet1/0/12
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# end
Switch# show interfaces switchport backup detail
Switch Backup Interface Pairs:
Active Interface Backup Interface State
GigabitEthernet1/0/11 GigabitEthernet1/0/12 Active Up/Backup Standby
Preemption Mode : off
Multicast Fast Convergence : Off
Bandwidth : 100000 Kbit (Gi1/0/11), 100000 Kbit (Gi1/0/12)
Mac Address Move Update Vlan : auto

This output shows a querier for VLANs 1 and 401, with their queries reaching the switch through GigabitEthernet1/0/11:
```
Switch# show ip igmp snooping querier
<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>IGMP Version</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1.1.1</td>
<td>v2</td>
<td>Gi1/0/11</td>
</tr>
<tr>
<td>401</td>
<td>41.41.41.1</td>
<td>v2</td>
<td>Gi1/0/11</td>
</tr>
</tbody>
</table>
```

Here is output for the `show ip igmp snooping mrouter` command for VLANs 1 and 401:

```
Switch# show ip igmp snooping mrouter
Vlan ports
---- ------
1 Gi1/0/11(dynamic), Gi1/0/12(dynamic)
401 Gi1/0/11(dynamic), Gi1/0/12(dynamic)
```
Similarly, both Flex Link ports are part of learned groups. In this example, GigabitEthernet2/0/11 is a receiver/host in VLAN 1, which is interested in two multicast groups:

```
Switch# show ip igmp snooping groups
Vlan Group Type Version Port List
1 228.1.5.1 igmp v2 Gi1/0/11, Gi1/0/12, Gi2/0/11
1 228.1.5.2 igmp v2 Gi1/0/11, Gi1/0/12, Gi2/0/11
```

When a host responds to the general query, the switch forwards this report on all the mrouter ports. In this example, when a host sends a report for the group 228.1.5.1, it is forwarded only on GigabitEthernet1/0/11, because the backup port GigabitEthernet1/0/12 is blocked. When the active link, GigabitEthernet1/0/11, goes down, the backup port, GigabitEthernet1/0/12, begins forwarding.

As soon as this port starts forwarding, the switch sends proxy reports for the groups 228.1.5.1 and 228.1.5.2 on behalf of the host. The upstream router learns the groups and starts forwarding multicast data. This is the default behavior of Flex Link. This behavior changes when the user configures fast convergence using the `switchport backup interface gigabitEthernet 1/0/12 multicast fast-convergence` command. This example shows turning on this feature:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitEthernet 1/0/11
Switch(config-if)# switchport backup interface gigabitEthernet 1/0/12 multicast fast-convergence
Switch(config-if)# exit
Switch# show interfaces switchport backup detail
Switch Backup Interface Pairs:
Active Interface Backup Interface State

GigabitEthernet1/0/11 GigabitEthernet1/0/12 Active Up/Backup Standby
Preemption Mode : off
Multicast Fast Convergence : On
Bandwidth : 100000 Kbit (Gi1/0/11), 100000 Kbit (Gi1/0/12)
Mac Address Move Update Vlan : auto
```

This output shows a querier for VLAN 1 and 401 with their queries reaching the switch through GigabitEthernet1/0/11:

```
Switch# show ip igmp snooping querier
Vlan IP Address IGMP Version Port
1 1.1.1.1 v2 Gi1/0/11
401 41.41.41.1 v2 Gi1/0/11
```

This is output for the `show ip igmp snooping mrouter` command for VLAN 1 and 401:

```
Switch# show ip igmp snooping mrouter
Vlan ports
----- -----
1 Gi1/0/11(dynamic), Gi1/0/12(dynamic)
401 Gi1/0/11(dynamic), Gi1/0/12(dynamic)
```

Similarly, both the Flex Link ports are a part of the learned groups. In this example, GigabitEthernet2/0/11 is a receiver/host in VLAN 1, which is interested in two multicast groups:

```
Switch# show ip igmp snooping groups
Vlan Group Type Version Port List
1 228.1.5.1 igmp v2 Gi1/0/11, Gi1/0/12, Gi2/0/11
1 228.1.5.2 igmp v2 Gi1/0/11, Gi1/0/12, Gi2/0/11
```
Whenever a host responds to the general query, the switch forwards this report on all the mrouter ports. When you turn on this feature through the command-line port, and when a report is forwarded by the switch on GigabitEthernet1/0/11, it is also leaked to the backup port GigabitEthernet1/0/12. The upstream router learns the groups and starts forwarding multicast data, which is dropped at the ingress because GigabitEthernet1/0/12 is blocked. When the active link, GigabitEthernet1/0/11, goes down, the backup port, GigabitEthernet1/0/12, begins forwarding. You do not need to send any proxy reports as the multicast data is already being forwarded by the upstream router. By leaking reports to the backup port, a redundant multicast path has been set up, and the time taken for the multicast traffic convergence is very minimal.

MAC Address-Table Move Update

The MAC address-table move update feature allows the switch to provide rapid bidirectional convergence when a primary (forwarding) link goes down and the standby link begins forwarding traffic.

In Figure 1-3, switch A is an access switch, and ports 1 and 2 on switch A are connected to uplink switches B and D through a Flex Link pair. Port 1 is forwarding traffic, and port 2 is in the backup state. Traffic from the PC to the server is forwarded from port 1 to port 3. The MAC address of the PC has been learned on port 3 of switch C. Traffic from the server to the PC is forwarded from port 3 to port 1.

If the MAC address-table move update feature is not configured and port 1 goes down, port 2 starts forwarding traffic. However, for a short time, switch C keeps forwarding traffic from the server to the PC through port 3, and the PC does not get the traffic because port 1 is down. If switch C removes the MAC address of the PC on port 3 and relearns it on port 4, traffic can then be forwarded from the server to the PC through port 2.

If the MAC address-table move update feature is configured and enabled on the switches in Figure 1-3 and port 1 goes down, port 2 starts forwarding traffic from the PC to the server. The switch sends a MAC address-table move update packet from port 2. Switch C gets this packet on port 4 and immediately learns the MAC address of the PC on port 4, which reduces the reconvergence time.

You can configure the access switch, switch A, to send MAC address-table move update messages. You can also configure the uplink switches B, C, and D to get and process the MAC address-table move update messages. When switch C gets a MAC address-table move update message from switch A, switch C learns the MAC address of the PC on port 4. Switch C updates the MAC address table, including the forwarding table entry for the PC.

Switch A does not need to wait for the MAC address-table update. The switch detects a failure on port 1 and immediately starts forwarding server traffic from port 2, the new forwarding port. This change occurs in 100 milliseconds (ms). The PC is directly connected to switch A, and the connection status does not change. Switch A does not need to update the PC entry in the MAC address table.
Configuring Flex Links and MAC Address-Table Move Update

These sections contain this information:

- Configuration Guidelines, page 1-7
- Default Configuration, page 1-8
- Configuring Flex Links, page 1-8
- Configuring VLAN Load Balancing on Flex Links, page 1-10
- Configuring the MAC Address-Table Move Update Feature, page 1-12

Configuration Guidelines

- You can configure up to 16 backup links.
- You can configure only one Flex Link backup link for any active link, and it must be a different interface from the active interface.
Chapter 1  Configuring Flex Links and the MAC Address-Table Move Update Feature

- An interface can belong to only one Flex Link pair. An interface can be a backup link for only one active link. An active link cannot belong to another Flex Link pair.
- Neither of the links can be a port that belongs to an EtherChannel. However, you can configure two port channels (EtherChannel logical interfaces) as Flex Links, and you can configure a port channel and a physical interface as Flex Links, with either the port channel or the physical interface as the active link.
- A backup link does not have to be the same type (Gigabit Ethernet or port channel) as the active link. However, you should configure both Flex Links with similar characteristics so that there are no loops or changes in behavior if the standby link begins to forward traffic.
- STP is disabled on Flex Link ports. A Flex Link port does not participate in STP, even if the VLANs present on the port are configured for STP. When STP is not enabled, be sure that there are no loops in the configured topology.

Follow these guidelines to configure VLAN load balancing on the Flex Links feature:
- For Flex Link VLAN load balancing, you must choose the preferred VLANs on the backup interface.
- You cannot configure a preemption mechanism and VLAN load balancing for the same Flex Links pair.

Follow these guidelines to configure MAC address-table move update feature:
- You can enable and configure this feature on the access switch to send the MAC address-table move updates.
- You can enable and configure this feature on the uplink switches to get the MAC address-table move updates.

Default Configuration

The Flex Links are not configured, and there are no backup interfaces defined.
The preemption mode is off.
The preemption delay is 35 seconds.
The MAC address-table move update feature is not configured on the switch.

Configuring Flex Links

Beginning in privileged EXEC mode, follow these steps to configure a pair of Flex Links:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specify the interface, and enter interface configuration mode. The interface can be a physical Layer 2 interface or a port channel (logical interface). The port-channel range is 1 to 48.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switchport backup interface interface-id</td>
<td>Configure a physical Layer 2 interface (or port channel) as part of a Flex Link pair with the interface. When one link is forwarding traffic, the other interface is in standby mode.</td>
</tr>
</tbody>
</table>
To disable a Flex Link backup interface, use the no switchport backup interface interface-id interface configuration command.

This example shows how to configure an interface with a backup interface and to verify the configuration:

```
Switch# configure terminal
Switch(conf)# interface gigabitethernet1/0/1
Switch(conf-if)# switchport backup interface gigabitethernet1/0/2
Switch(conf-if)# end
```

```
Switch# show interface switchport backup
Switch Backup Interface Pairs:
Active Interface Backup Interface State
--
GigabitEthernet1/0/1 GigabitEthernet1/0/2 Active Up/Backup Standby
```

Beginning in privileged EXEC mode, follow these steps to configure a preemption scheme for a pair of Flex Links:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1  | configure terminal
|         | Enter global configuration mode. |
| Step 2  | interface interface-id
|         | Specify the interface, and enter interface configuration mode. The interface can be a physical Layer 2 interface or a port channel (logical interface). The port-channel range is 1 to 48. |
| Step 3  | switchport backup interface interface-id
|         | Configure a physical Layer 2 interface (or port channel) as part of a Flex Links pair with the interface. When one link is forwarding traffic, the other interface is in standby mode. |
| Step 4  | switchport backup interface interface-id preemption mode [forced | bandwidth | off]
|         | Configure a preemption mechanism and delay for a Flex Link interface pair. You can configure the preemption as:
|         | • Forced—the active interface always preempts the backup. |
|         | • Bandwidth—the interface with the higher bandwidth always acts as the active interface. |
|         | • Off—no preemption happens from active to backup. |
| Step 5  | switchport backup interface interface-id preemption delay delay-time
|         | Configure the time delay until a port preempts another port. |
|         | Note Setting a delay time only works with forced and bandwidth modes. |
| Step 6  | end
|         | Return to privileged EXEC mode. |
Configuring Flex Links and MAC Address-Table Move Update

Chapter 1 Configuring Flex Links and the MAC Address-Table Move Update Feature

To remove a preemption scheme, use the `no switchport backup interface interface-id preemption mode` interface configuration command. To reset the delay time to the default, use the `no switchport backup interface interface-id preemption delay` interface configuration command.

This example shows how to configure the preemption mode as `forced` for a backup interface pair and to verify the configuration:

```
Switch# configure terminal
Switch(conf)# interface gigabitethernet1/0/1
Switch(conf-if)# switchport backup interface gigabitethernet1/0/2 preemption mode forced
Switch(conf-if)# switchport backup interface gigabitethernet1/0/2 preemption delay 50
Switch(conf-if)# end
```

```
Switch# show interface switchport backup detail
Active Interface Backup Interface State

GigabitEthernet1/0/211 GigabitEthernet1/0/2 Active Up/Backup Standby
Interface Pair : Gi1/0/1, Gi1/0/2
Preemption Mode : forced
Preemption Delay : 50 seconds
Bandwidth : 100000 Kbit (Gi1/0/1), 100000 Kbit (Gi1/0/2)
Mac Address Move Update Vlan : auto
```

Configuring VLAN Load Balancing on Flex Links

Beginning in privileged EXEC mode, follow these steps to configure VLAN load balancing on Flex Links:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switchport backup interface interface-id prefer vlan vlan-range</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show interfaces [interface-id] switchport backup</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup config</code></td>
</tr>
</tbody>
</table>

To disable the VLAN load balancing feature, use the `no switchport backup interface interface-id prefer vlan vlan-range` interface configuration command.
In the following example, VLANs 1 to 50, 60, and 100 to 120 are configured on the switch:

```
Switch(config)#interface gigabitethernet 2/0/6
Switch(config-if)#switchport backup interface gigabitethernet 2/0/8 prefer vlan 60,100-120
```

When both interfaces are up, Gi2/0/8 forwards traffic for VLANs 60 and 100 to 120 and Gi2/0/6 forwards traffic for VLANs 1 to 50.

```
Switch# show interfaces switchport backup
Switch Backup Interface Pairs:
Active Interface Backup Interface State
--
GigabitEthernet2/0/6 GigabitEthernet2/0/8 Active Up/Backup Standby
Vlans Preferred on Active Interface: 1-50
Vlans Preferred on Backup Interface: 60, 100-120
```

When a Flex Link interface goes down (LINK_DOWN), VLANs preferred on this interface are moved to the peer interface of the Flex Link pair. In this example, if interface Gi2/0/6 goes down, Gi2/0/8 carries all VLANs of the Flex Link pair.

```
Switch# show interfaces switchport backup
Switch Backup Interface Pairs:
Active Interface Backup Interface State
--
GigabitEthernet2/0/6 GigabitEthernet2/0/8 Active Down/Backup Up
Vlans Preferred on Active Interface: 1-50
Vlans Preferred on Backup Interface: 60, 100-120
```

When a Flex Link interface comes up, VLANs preferred on this interface are blocked on the peer interface and moved to the forwarding state on the interface that has just come up. In this example, if interface Gi2/0/6 comes up, VLANs preferred on this interface are blocked on the peer interface Gi2/0/8 and forwarded on Gi2/0/6.

```
Switch# show interfaces switchport backup
Switch Backup Interface Pairs:
Active Interface Backup Interface State
--
GigabitEthernet2/0/6 GigabitEthernet2/0/8 Active Up/Backup Standby
Vlans Preferred on Active Interface: 1-50
Vlans Preferred on Backup Interface: 60, 100-120
```

```
Switch# show interfaces switchport backup detail
Switch Backup Interface Pairs:
Active Interface Backup Interface State
--
FastEthernet1/0/3 FastEthernet1/0/4 Active Down/Backup Up
Vlans Preferred on Active Interface: 1-2,5-4094
Vlans Preferred on Backup Interface: 3-4
Preemption Mode : off
Bandwidth : 10000 Kbit (Fa1/0/3), 100000 Kbit (Fa1/0/4)
Mac Address Move Update Vlan : auto
```
Configuring the MAC Address-Table Move Update Feature

This section contains this information:

- Configuring a switch to send MAC address-table move updates
- Configuring a switch to get MAC address-table move updates

Beginning in privileged EXEC mode, follow these steps to configure an access switch to send MAC address-table move updates:

```
Step 1
configure terminal
Enter global configuration mode.

Step 2
interface interface-id
Specify the interface, and enter interface configuration mode. The interface can be a physical Layer 2 interface or a port channel (logical interface). The port-channel range is 1 to 48.

Step 3
switchport backup interface interface-id
Configure a physical Layer 2 interface (or port channel), as part of a Flex Link pair with the interface. The MAC address-table move update VLAN is the lowest VLAN ID on the interface.

or

switchport backup interface interface-id mmu primary vlan vlan-id
Configure a physical Layer 2 interface (or port channel) and specify the VLAN ID on the interface, which is used for sending the MAC address-table move update.

When one link is forwarding traffic, the other interface is in standby mode.

Step 4
end
Return to global configuration mode.

Step 5
mac address-table move update transmit
Enable the access switch to send MAC address-table move updates to other switches in the network if the primary link goes down and the switch starts forwarding traffic through the standby link.

Step 6
end
Return to privileged EXEC mode.

Step 7
show mac address-table move update
Verify the configuration.

Step 8
copy running-config startup config
(Optional) Save your entries in the switch startup configuration file.
```

To disable the MAC address-table move update feature, use the `no mac address-table move update transmit` interface configuration command. To display the MAC address-table move update information, use the `show mac address-table move update` privileged EXEC command.

This example shows how to configure an access switch to send MAC address-table move update messages:

```
Switch# configure terminal
Switch(conf)# interface gigabitethernet1/0/1
Switch(conf-if)# switchport backup interface gigabitethernet0/2 mmu primary vlan 2
Switch(conf-if)# exit
Switch(conf)# mac address-table move update transmit
Switch(conf)# end
```
This example shows how to verify the configuration:

```
Switch# show mac-address-table move update
Switch-ID : 010b.4630.1780
Dst mac-address : 0180.c200.0010
Vlans/Macs supported : 1023/8320
Default/Current settings: Rcv Off/On, Xmt Off/On
Max packets per min : Rcv 40, Xmt 60
Rcv packet count : 5
Rcv conforming packet count : 5
Rcv invalid packet count : 0
Rcv packet count this min : 0
Rcv threshold exceed count : 0
Rcv last sequence# this min : 0
Rcv last interface : Po2
Rcv last src-mac-address : 000b.462d.c502
Rcv last switch-ID : 0403.fd6a.8700
Xmt packet count : 0
Xmt packet count this min : 0
Xmt threshold exceed count : 0
Xmt pak buf unavail cnt : 0
Xmt last interface : None
```

Beginning in privileged EXEC mode, follow these steps to configure a switch to get and process MAC address-table move update messages:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mac address-table move update receive</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mac address-table move update</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup config</td>
</tr>
</tbody>
</table>

To disable the MAC address-table move update feature, use the `no mac address-table move update receive` configuration command. To display the MAC address-table move update information, use the `show mac address-table move update` privileged EXEC command.

This example shows how to configure a switch to get and process MAC address-table move update messages:

```
Switch# configure terminal
Switch(config)# mac address-table move update receive
Switch(config)# end
```
Monitoring Flex Links and the MAC Address-Table Move Update

Table 1-1 shows the privileged EXEC commands for monitoring the Flex Links configuration and the MAC address-table move update information.

Table 1-1  Flex Links and MAC Address-Table Move Update Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interface [interface-id] switchport backup</td>
<td>Displays the Flex Link backup interface configured for an interface or all the configured Flex Links and the state of each active and backup interface (up or standby mode).</td>
</tr>
<tr>
<td>show mac address-table move update</td>
<td>Displays the MAC address-table move update information on the switch.</td>
</tr>
</tbody>
</table>
Configuring DHCP Features and IP Source Guard

This chapter describes how to configure DHCP snooping and option-82 data insertion, and the DHCP server port-based address allocation features on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. It also describes how to configure the IP source guard feature. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release, and see the “DHCP Commands” section in the Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.4.

- Understanding DHCP Features, page 1-1
- Configuring DHCP Features, page 1-8
- Displaying DHCP Snooping Information, page 1-16
- Understanding IP Source Guard, page 1-16
- Configuring IP Source Guard, page 1-18
- Displaying IP Source Guard Information, page 1-26
- Understanding DHCP Server Port-Based Address Allocation, page 1-26
- Configuring DHCP Server Port-Based Address Allocation, page 1-27
- Displaying DHCP Server Port-Based Address Allocation, page 1-29

Understanding DHCP Features

DHCP is widely used in LAN environments to dynamically assign host IP addresses from a centralized server, which significantly reduces the overhead of administration of IP addresses. DHCP also helps conserve the limited IP address space because IP addresses no longer need to be permanently assigned to hosts; only those hosts that are connected to the network consume IP addresses.

These sections contain this information:
- DHCP Server, page 1-2
- DHCP Relay Agent, page 1-2
- DHCP Snooping, page 1-2
- Option-82 Data Insertion, page 1-3
DHCP Server

The DHCP server assigns IP addresses from specified address pools on a switch or router to DHCP clients and manages them. If the DHCP server cannot give the DHCP client the requested configuration parameters from its database, it forwards the request to one or more secondary DHCP servers defined by the network administrator.

DHCP Relay Agent

A DHCP relay agent is a Layer 3 device that forwards DHCP packets between clients and servers. Relay agents forward requests and replies between clients and servers when they are not on the same physical subnet. Relay agent forwarding is different from the normal Layer 2 forwarding, in which IP datagrams are switched transparently between networks. Relay agents receive DHCP messages and generate new DHCP messages to send on output interfaces.

DHCP Snooping

DHCP snooping is a DHCP security feature that provides network security by filtering untrusted DHCP messages and by building and maintaining a DHCP snooping binding database, also referred to as a DHCP snooping binding table. For more information about this database, see the “Displaying DHCP Snooping Information” section on page 1-16.

DHCP snooping acts like a firewall between untrusted hosts and DHCP servers. You use DHCP snooping to differentiate between untrusted interfaces connected to the end user and trusted interfaces connected to the DHCP server or another switch.

Note

For DHCP snooping to function properly, all DHCP servers must be connected to the switch through trusted interfaces.

An untrusted DHCP message is a message that is received from outside the network or firewall. When you use DHCP snooping in a service-provider environment, an untrusted message is sent from a device that is not in the service-provider network, such as a customer’s switch. Messages from unknown devices are untrusted because they can be sources of traffic attacks.

The DHCP snooping binding database has the MAC address, the IP address, the lease time, the binding type, the VLAN number, and the interface information that corresponds to the local untrusted interfaces of a switch. It does not have information regarding hosts interconnected with a trusted interface.

In a service-provider network, a trusted interface is connected to a port on a device in the same network. An untrusted interface is connected to an untrusted interface in the network or to an interface on a device that is not in the network.
When a switch receives a packet on an untrusted interface and the interface belongs to a VLAN in which DHCP snooping is enabled, the switch compares the source MAC address and the DHCP client hardware address. If the addresses match (the default), the switch forwards the packet. If the addresses do not match, the switch drops the packet.

The switch drops a DHCP packet when one of these situations occurs:

- A packet from a DHCP server, such as a DHCPOFFER, DHCPACK, DHCPNAK, or DHCPLEASEQUERY packet, is received from outside the network or firewall.
- A packet is received on an untrusted interface, and the source MAC address and the DHCP client hardware address do not match.
- The switch receives a DHCPRELEASE or DHCPDECLINE broadcast message that has a MAC address in the DHCP snooping binding database, but the interface information in the binding database does not match the interface on which the message was received.
- A DHCP relay agent forwards a DHCP packet that includes a relay-agent IP address that is not 0.0.0.0, or the relay agent forwards a packet that includes option-82 information to an untrusted port.

If the switch is an aggregation switch supporting DHCP snooping and is connected to an edge switch that is inserting DHCP option-82 information, the switch drops packets with option-82 information when packets are received on an untrusted interface. If DHCP snooping is enabled and packets are received on a trusted port, the aggregation switch does not learn the DHCP snooping bindings for connected devices and cannot build a complete DHCP snooping binding database.

When an aggregation switch can be connected to an edge switch through an untrusted interface and you enter the `ip dhcp snooping information option allow-untrusted` global configuration command, the aggregation switch accepts packets with option-82 information from the edge switch. The aggregation switch learns the bindings for hosts connected through an untrusted switch interface. The DHCP security features, such as dynamic ARP inspection or IP source guard, can still be enabled on the aggregation switch while the switch receives packets with option-82 information on untrusted input interfaces to which hosts are connected. The port on the edge switch that connects to the aggregation switch must be configured as a trusted interface.

**Option-82 Data Insertion**

In residential, metropolitan Ethernet-access environments, DHCP can centrally manage the IP address assignments for a large number of subscribers. When the DHCP option-82 feature is enabled on the switch, a subscriber device is identified by the switch port through which it connects to the network (in addition to its MAC address). Multiple hosts on the subscriber LAN can be connected to the same port on the access switch and are uniquely identified.

Note

The DHCP option-82 feature is supported only when DHCP snooping is globally enabled and on the VLANs to which subscriber devices using this feature are assigned.

*Figure 1-1* is an example of a metropolitan Ethernet network in which a centralized DHCP server assigns IP addresses to subscribers connected to the switch at the access layer. Because the DHCP clients and their associated DHCP server do not reside on the same IP network or subnet, a DHCP relay agent (the Catalyst switch) is configured with a helper address to enable broadcast forwarding and to transfer DHCP messages between the clients and the server.
When you enable the DHCP snooping information option 82 on the switch, this sequence of events occurs:

- The host (DHCP client) generates a DHCP request and broadcasts it on the network.
- When the switch receives the DHCP request, it adds the option-82 information in the packet. By default, the remote-ID suboption is the switch MAC address, and the circuit-ID suboption is the port identifier, `vlan-mod-port`, from which the packet is received. You can configure the remote ID and circuit ID. For information on configuring these suboptions, see the “Enabling DHCP Snooping and Option 82” section on page 1-12.
- If the IP address of the relay agent is configured, the switch adds this IP address in the DHCP packet.
- The switch forwards the DHCP request that includes the option-82 field to the DHCP server.
- The DHCP server receives the packet. If the server is option-82-capable, it can use the remote ID, the circuit ID, or both to assign IP addresses and implement policies, such as restricting the number of IP addresses that can be assigned to a single remote ID or circuit ID. Then the DHCP server echoes the option-82 field in the DHCP reply.
- The DHCP server unicasts the reply to the switch if the request was relayed to the server by the switch. The switch verifies that it originally inserted the option-82 data by inspecting the remote ID and possibly the circuit ID fields. The switch removes the option-82 field and forwards the packet to the switch port that connects to the DHCP client that sent the DHCP request.

In the default suboption configuration, when the described sequence of events occurs, the values in these fields in Figure 1-2 do not change:

- Circuit-ID suboption fields
  - Suboption type
  - Length of the suboption type
  - Circuit-ID type
  - Length of the circuit-ID type
- Remote-ID suboption fields
  - Suboption type
  - Length of the suboption type
  - Remote-ID type
  - Length of the remote-ID type
In the port field of the circuit ID suboption, the port numbers start at 3. For example, on a Catalyst 3750-E switch with 24 10/100/1000 ports and four small form-factor pluggable (SFP) module slots, port 3 is the Gigabit Ethernet 1/0/1 port, port 4 is the Gigabit Ethernet 1/0/2 port, and so forth. Port 27 is the SFP module slot Gigabit Ethernet1/0/25, and so forth.

Figure 1-2 shows the packet formats for the remote-ID suboption and the circuit-ID suboption when the default suboption configuration is used. For the circuit-ID suboption, the module number corresponds to the switch number in the stack. The switch uses the packet formats when you globally enable DHCP snooping and enter the `ip dhcp snooping information option` global configuration command.

Figure 1-2 Suboption Packet Formats

**Circuit ID Suboption Frame Format**

<table>
<thead>
<tr>
<th>Suboption type</th>
<th>Circuit ID type</th>
<th>Length</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

VLAN  Module  Port

1 byte 1 byte 1 byte 2 bytes 1 byte 1 byte

**Remote ID Suboption Frame Format**

<table>
<thead>
<tr>
<th>Suboption type</th>
<th>Remote ID type</th>
<th>Length</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

MAC address

6 bytes

Figure 1-3 shows the packet formats for user-configured remote-ID and circuit-ID suboptions. The switch uses these packet formats when DHCP snooping is globally enabled and when the `ip dhcp snooping information option format remote-id` global configuration command and the `ip dhcp snooping vlan information option format-type circuit-id string` interface configuration command are entered.

The values for these fields in the packets change from the default values when you configure the remote-ID and circuit-ID suboptions:

- Circuit-ID suboption fields
  - The circuit-ID type is 1.
  - The length values are variable, depending on the length of the string that you configure.

- Remote-ID suboption fields
  - The remote-ID type is 1.
  - The length values are variable, depending on the length of the string that you configure.
Understanding DHCP Features

Cisco IOS DHCP Server Database

During the DHCP-based autoconfiguration process, the designated DHCP server uses the Cisco IOS DHCP server database. It has IP addresses, address bindings, and configuration parameters, such as the boot file.

An address binding is a mapping between an IP address and a MAC address of a host in the Cisco IOS DHCP server database. You can manually assign the client IP address, or the DHCP server can allocate an IP address from a DHCP address pool. For more information about manual and automatic address bindings, see the “Configuring DHCP” chapter of the Cisco IOS IP Configuration Guide, Release 12.4.

DHCP Snooping Binding Database

When DHCP snooping is enabled, the switch uses the DHCP snooping binding database to store information about untrusted interfaces. The database can have up to 64,000 bindings.

Each database entry (binding) has an IP address, an associated MAC address, the lease time (in hexadecimal format), the interface to which the binding applies, and the VLAN to which the interface belongs. The database agent stores the bindings in a file at a configured location. At the end of each entry is a checksum that accounts for all the bytes from the start of the file through all the bytes associated with the entry. Each entry is 72 bytes, followed by a space and then the checksum value.

To keep the bindings when the switch reloads, you must use the DHCP snooping database agent. If the agent is disabled, dynamic ARP inspection or IP source guard is enabled, and the DHCP snooping binding database has dynamic bindings, the switch loses its connectivity. If the agent is disabled and only DHCP snooping is enabled, the switch does not lose its connectivity, but DHCP snooping might not prevent DHCP spoofing attacks.
When reloading, the switch reads the binding file to build the DHCP snooping binding database. The switch updates the file when the database changes.

When a switch learns of new bindings or when it loses bindings, the switch immediately updates the entries in the database. The switch also updates the entries in the binding file. The frequency at which the file is updated is based on a configurable delay, and the updates are batched. If the file is not updated in a specified time (set by the write-delay and abort-timeout values), the update stops.

This is the format of the file with bindings:

```
<initial-checksum>
TYPE DHCP-SNOOPING
VERSION 1
BEGIN
<entry-1> <checksum-1>
<entry-2> <checksum-1-2>
...
<entry-n> <checksum-1-2-...-n>
END
```

Each entry in the file is tagged with a checksum value that the switch uses to verify the entries when it reads the file. The `initial-checksum` entry on the first line distinguishes entries associated with the latest file update from entries associated with a previous file update.

This is an example of a binding file:

```
2bb4c2a1
TYPE DHCP-SNOOPING
VERSION 1
BEGIN
192.1.168.1 3 0003.47d8.c91f 2BB6488E Gi1/0/4 21ae5fbb
192.1.168.3 3 0003.44d6.c52f 2BB648EB Gi1/0/4 1bdb223f
192.1.168.2 3 0003.47d9.c8f1 2BB648AB Gi1/0/4 584a38f0
END
```

When the switch starts and the calculated checksum value equals the stored checksum value, the switch reads entries from the binding file and adds the bindings to its DHCP snooping binding database. The switch ignores an entry when one of these situations occurs:

- The switch reads the entry and the calculated checksum value does not equal the stored checksum value. The entry and the ones following it are ignored.
- An entry has an expired lease time (the switch might not remove a binding entry when the lease time expires).
- The interface in the entry no longer exists on the system.
- The interface is a routed interface or a DHCP snooping-trusted interface.

**DHCP Snooping and Switch Stacks**

DHCP snooping is managed on the stack master. When a new switch joins the stack, the switch receives the DHCP snooping configuration from the stack master. When a member leaves the stack, all DHCP snooping address bindings associated with the switch age out.

All snooping statistics are generated on the stack master. If a new stack master is elected, the statistics counters reset.
When a stack merge occurs, all DHCP snooping bindings in the stack master are lost if it is no longer the stack master. With a stack partition, the existing stack master is unchanged, and the bindings belonging to the partitioned switches age out. The new master of the partitioned stack begins processing the new incoming DHCP packets. For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”

### Configuring DHCP Features

- Default DHCP Configuration, page 1-8
- DHCP Snooping Configuration Guidelines, page 1-9
- Configuring the DHCP Server, page 1-10
- DHCP Server and Switch Stacks, page 1-10
- Configuring the DHCP Relay Agent, page 1-11
- Specifying the Packet Forwarding Address, page 1-11
- Enabling DHCP Snooping and Option 82, page 1-12
- Enabling DHCP Snooping on Private VLANs, page 1-14
- Enabling the Cisco IOS DHCP Server Database, page 1-14
- Enabling the DHCP Snooping Binding Database Agent, page 1-15

### Default DHCP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP server</td>
<td>Enabled in Cisco IOS software, requires configuration¹</td>
</tr>
<tr>
<td>DHCP relay agent</td>
<td>Enabled²</td>
</tr>
<tr>
<td>DHCP packet forwarding address</td>
<td>None configured</td>
</tr>
<tr>
<td>Checking the relay agent information</td>
<td>Enabled (invalid messages are dropped)²</td>
</tr>
<tr>
<td>DHCP relay agent forwarding policy</td>
<td>Replace the existing relay agent information²</td>
</tr>
<tr>
<td>DHCP snooping enabled globally</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping information option</td>
<td>Enabled</td>
</tr>
<tr>
<td>DHCP snooping option to accept packets on untrusted input interfaces³</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping limit rate</td>
<td>None configured</td>
</tr>
<tr>
<td>DHCP snooping trust</td>
<td>Untrusted</td>
</tr>
<tr>
<td>DHCP snooping VLAN</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping MAC address verification</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Chapter 1  Configuring DHCP Features and IP Source Guard

Configuring DHCP Features

Table 1-1  Default DHCP Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS DHCP server binding database</td>
<td>Enabled in Cisco IOS software, requires configuration.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong>  The switch gets network addresses and configuration parameters only from a device configured as a DHCP server.</td>
</tr>
<tr>
<td>DHCP snooping binding database agent</td>
<td>Enabled in Cisco IOS software, requires configuration. This feature is operational only when a destination is configured.</td>
</tr>
</tbody>
</table>

1. The switch responds to DHCP requests only if it is configured as a DHCP server.
2. The switch relays DHCP packets only if the IP address of the DHCP server is configured on the SVI of the DHCP client.
3. Use this feature when the switch is an aggregation switch that receives packets with option-82 information from an edge switch.

DHCP Snooping Configuration Guidelines

- You must globally enable DHCP snooping on the switch.
- DHCP snooping is not active until DHCP snooping is enabled on a VLAN.
- Before globally enabling DHCP snooping on the switch, make sure that the devices acting as the DHCP server and the DHCP relay agent are configured and enabled.
- Before configuring the DHCP snooping information option on your switch, be sure to configure the device that is acting as the DHCP server. For example, you must specify the IP addresses that the DHCP server can assign or exclude, or you must configure DHCP options for these devices.
- When configuring a large number of circuit IDs on a switch, consider the impact of lengthy character strings on the NVRAM or the flash memory. If the circuit-ID configurations, combined with other data, exceed the capacity of the NVRAM or the flash memory, an error message appears.
- Before configuring the DHCP relay agent on your switch, make sure to configure the device that is acting as the DHCP server. For example, you must specify the IP addresses that the DHCP server can assign or exclude, configure DHCP options for devices, or set up the DHCP database agent.
- If the DHCP relay agent is enabled but DHCP snooping is disabled, the DHCP option-82 data insertion feature is not supported.
- If a switch port is connected to a DHCP server, configure a port as trusted by entering the `ip dhcp snooping trust` interface configuration command.
- If a switch port is connected to a DHCP client, configure a port as untrusted by entering the `no ip dhcp snooping trust` interface configuration command.
- Follow these guidelines when configuring the DHCP snooping binding database:
  - Because both NVRAM and the flash memory have limited storage capacity, we recommend that you store the binding file on a TFTP server.
  - For network-based URLs (such as TFTP and FTP), you must create an empty file at the configured URL before the switch can write bindings to the binding file at that URL. See the documentation for your TFTP server to determine whether you must first create an empty file on the server; some TFTP servers cannot be configured this way.
To ensure that the lease time in the database is accurate, we recommend that you enable and configure NTP. For more information, see the “Understanding Network Time Protocol” section on page 1-2.

If NTP is configured, the switch writes binding changes to the binding file only when the switch system clock is synchronized with NTP.

- Do not enter the `ip dhcp snooping information option allow-untrusted` command on an aggregation switch to which an untrusted device is connected. If you enter this command, an untrusted device might spoof the option-82 information.

- Starting with Cisco IOS Release 12.2(37)SE, you can display DHCP snooping statistics by entering the `show ip dhcp snooping statistics` user EXEC command, and you can clear the snooping statistics counters by entering the `clear ip dhcp snooping statistics` privileged EXEC command.

- When you configure DHCP snooping smart logging, the contents of packets dropped by DHCP are sent to a NetFlow collector. If you configure this feature, make sure that smart logging is globally enabled. For more information about smart logging, see the “Configuring Smart Logging” section on page 1-14.

---

**Note**

Do not enable Dynamic Host Configuration Protocol (DHCP) snooping on RSPAN VLANs. If DHCP snooping is enabled on RSPAN VLANs, DHCP packets might not reach the RSPAN destination port.

### Configuring the DHCP Server

The switch can act as a DHCP server. By default, the Cisco IOS DHCP server and relay agent features are enabled on your switch but are not configured. These features are not operational.

For procedures to configure the switch as a DHCP server, see the “Configuring DHCP” section of the “IP addressing and Services” section of the *Cisco IOS IP Configuration Guide, Release 12.4*.

### DHCP Server and Switch Stacks

The DHCP binding database is managed on the stack master. When a new stack master is assigned, the new master downloads the saved binding database from the TFTP server. If the stack master fails, all unsaved bindings are lost. The IP addresses associated with the lost bindings are released. You should configure an automatic backup by using the `ip dhcp database url [timeout seconds | write-delay seconds]` global configuration command.

When a stack merge occurs, the stack master that becomes a stack member loses all of the DHCP lease bindings. With a stack partition, the new master in the partition acts as a new DHCP server without any of the existing DHCP lease bindings.

For more information about the switch stack, see Chapter 1, “Managing Switch Stacks.”
Chapter 1      Configuring DHCP Features and IP Source Guard

Configuring the DHCP Relay Agent

Beginning in privileged EXEC mode, follow these steps to enable the DHCP relay agent on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>service dhcp</td>
<td>Enable the DHCP server and relay agent on your switch. By default, this feature is enabled.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the DHCP server and relay agent, use the no service dhcp global configuration command.

See the “Configuring DHCP” section of the “IP Addressing and Services” section of the Cisco IOS IP Configuration Guide, Release 12.4 for these procedures:

- Checking (validating) the relay agent information
- Configuring the relay agent forwarding policy

Specifying the Packet Forwarding Address

If the DHCP server and the DHCP clients are on different networks or subnets, you must configure the switch with the ip helper-address address interface configuration command. The general rule is to configure the command on the Layer 3 interface closest to the client. The address used in the ip helper-address command can be a specific DHCP server IP address, or it can be the network address if other DHCP servers are on the destination network segment. Using the network address enables any DHCP server to respond to requests.

Beginning in privileged EXEC mode, follow these steps to specify the packet forwarding address:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface vlan vlan-id</td>
<td>Create a switch virtual interface by entering a VLAN ID, and enter interface configuration mode.</td>
</tr>
<tr>
<td>ip address ip-address subnet-mask</td>
<td>Configure the interface with an IP address and an IP subnet.</td>
</tr>
<tr>
<td>ip helper-address address</td>
<td>Specify the DHCP packet forwarding address. The helper address can be a specific DHCP server address, or it can be the network address if other DHCP servers are on the destination network segment. Using the network address enables other servers to respond to DHCP requests. If you have multiple servers, you can configure one helper address for each server.</td>
</tr>
<tr>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>
To remove the DHCP packet forwarding address, use the `no ip helper-address address` interface configuration command.

### Enabling DHCP Snooping and Option 82

Beginning in privileged EXEC mode, follow these steps to enable DHCP snooping on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ip dhcp snooping Enable DHCP snooping globally.</td>
</tr>
</tbody>
</table>
| **Step 3** | ip dhcp snooping vlan vlan-range [smartlog] Enable DHCP snooping on a VLAN or range of VLANs. The range is 1 to 4094.  
  - You can enter a single VLAN ID identified by VLAN ID number, a series of VLAN IDs separated by commas, a range of VLAN IDs separated by hyphens, or a range of VLAN IDs separated by entering the starting and ending VLAN IDs separated by a space.  
  - (Optional) Enter smartlog to configure the switch to send the contents of dropped packets to a NetFlow collector. |
<p>| <strong>Step 4</strong> | ip dhcp snooping information option Enable the switch to insert and remove DHCP relay information (option-82 field) in forwarded DHCP request messages to the DHCP server. This is the default setting. |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 5    | **ip dhcp snooping information option format remote-id [string ASCII-string | (Optional) Configure the remote-ID suboption. You can configure the remote ID as:  
- String of up to 63 ASCII characters (no spaces)  
- Configured hostname for the switch  

**Note**  
If the hostname is longer than 63 characters, it is truncated to 63 characters in the remote-ID configuration.  
The default remote ID is the switch MAC address. |
| 6    | **ip dhcp snooping information option allow-untrusted** | (Optional) If the switch is an aggregation switch connected to an edge switch, enable the switch to accept incoming DHCP snooping packets with option-82 information from the edge switch. The default setting is disabled.  

**Note**  
Enter this command only on aggregation switches that are connected to trusted devices. |
| 7    | **interface interface-id** | Specify the interface to be configured, and enter interface configuration mode. |
| 8    | **ip dhcp snooping vlan vlan-information option format-type circuit-id [override] string ASCII-string** | (Optional) Configure the circuit-ID suboption for the specified interface. Specify the VLAN and port identifier, using a VLAN ID in the range of 1 to 4094. The default circuit ID is the port identifier, in the format `vlan-mod-port`.  
You can configure the circuit ID to be a string of 3 to 63 ASCII characters (no spaces).  
(Optional) Use the `override` keyword when you do not want the circuit-ID suboption inserted in TLV format to define subscriber information. |
| 9    | **ip dhcp snooping trust** | (Optional) Configure the interface as trusted or untrusted. Use the `no` keyword to configure an interface to receive messages from an untrusted client. The default setting is untrusted. |
| 10   | **ip dhcp snooping limit rate rate** | (Optional) Configure the number of DHCP packets per second that an interface can receive. The range is 1 to 2048. By default, no rate limit is configured.  

**Note**  
We recommend an untrusted rate limit of not more than 100 packets per second. If you configure rate limiting for trusted interfaces, you might need to increase the rate limit if the port is a trunk port assigned to more than one VLAN with DHCP snooping. |
11	**exit**	Return to global configuration mode.
12	**ip dhcp snooping verify mac-address**	(Optional) Configure the switch to verify that the source MAC address in a DHCP packet received on untrusted ports matches the client hardware address in the packet. The default is to verify that the source MAC address matches the client hardware address in the packet.
13	**end**	Return to privileged EXEC mode.
Configuring DHCP Features

Chapter 1 Configuring DHCP Features and IP Source Guard

To disable DHCP snooping, use the `no ip dhcp snooping` global configuration command. To disable DHCP snooping on a VLAN or range of VLANs, use the `no ip dhcp snooping vlan vlan-range` global configuration command. To disable the insertion and removal of the option-82 field, use the `no ip dhcp snooping information option` global configuration command. To configure an aggregation switch to drop incoming DHCP snooping packets with option-82 information from an edge switch, use the `no ip dhcp snooping information option allow-untrusted` global configuration command.

This example shows how to enable DHCP snooping globally and on VLAN 10 and to configure a rate limit of 100 packets per second on a port:

```
Switch(config)# ip dhcp snooping
Switch(config)# ip dhcp snooping vlan 10
Switch(config)# ip dhcp snooping information option
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip dhcp snooping limit rate 100
```

### Enabling DHCP Snooping on Private VLANs

You can enable DHCP snooping on private VLANs. If DHCP snooping is enabled, the configuration is propagated to both a primary VLAN and its associated secondary VLANs. If DHCP snooping is enabled on the primary VLAN, it is also configured on the secondary VLANs.

If DHCP snooping is already configured on the primary VLAN and you configure DHCP snooping with different settings on a secondary VLAN, the configuration for the secondary VLAN does not take effect. You must configure DHCP snooping on the primary VLAN. If DHCP snooping is not configured on the primary VLAN, this message appears when you are configuring DHCP snooping on the secondary VLAN, such as VLAN 200:

```
2w5d:%DHCP_SNOOPING-4-DHCP_SNOOPING_PVLAN_WARNING:DHCP Snooping configuration may not take effect on secondary vlan 200. DHCP Snooping configuration on secondary vlan is derived from its primary vlan.
```

The `show ip dhcp snooping` privileged EXEC command output shows all VLANs, including primary and secondary private VLANs, on which DHCP snooping is enabled.

### Enabling the Cisco IOS DHCP Server Database

For procedures to enable and configure the Cisco IOS DHCP server database, see the “DHCP Configuration Task List” section in the “Configuring DHCP” chapter of the *Cisco IOS IP Configuration Guide, Release 12.4.*
Enabling the DHCP Snooping Binding Database Agent

Beginning in privileged EXEC mode, follow these steps to enable and configure the DHCP snooping binding database agent on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> ip dhcp snooping database {flash[number]:}filename</td>
<td>Specify the URL for the database agent or the binding file by using one of these forms:</td>
</tr>
<tr>
<td></td>
<td>- flash[number]:filename</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use the number parameter to specify the stack member number of the stack master. The range for number is 1 to 9.</td>
</tr>
<tr>
<td></td>
<td>- ftp://user:password@host/filename</td>
</tr>
<tr>
<td></td>
<td>- http://[username:password@][{hostname</td>
</tr>
<tr>
<td></td>
<td>- rcp://user@host/filename</td>
</tr>
<tr>
<td></td>
<td>- tftp://host/filename</td>
</tr>
<tr>
<td><strong>Step 3</strong> ip dhcp snooping database timeout seconds</td>
<td>Specify (in seconds) how long to wait for the database transfer process to finish before stopping the process.</td>
</tr>
<tr>
<td></td>
<td>The default is 300 seconds. The range is 0 to 86400. Use 0 to define an infinite duration, which means to continue trying the transfer indefinitely.</td>
</tr>
<tr>
<td><strong>Step 4</strong> ip dhcp snooping database write-delay seconds</td>
<td>Specify the duration for which the transfer should be delayed after the binding database changes. The range is from 15 to 86400 seconds. The default is 300 seconds (5 minutes).</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong> ip dhcp snooping binding mac-address vlan vlan-id ip-address interface interface-id expiry seconds</td>
<td>(Optional) Add binding entries to the DHCP snooping binding database.</td>
</tr>
<tr>
<td></td>
<td>The vlan-id range is from 1 to 4904. The seconds range is from 1 to 4294967295.</td>
</tr>
<tr>
<td></td>
<td>Enter this command for each entry that you add.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Use this command when you are testing or debugging the switch.</td>
</tr>
<tr>
<td><strong>Step 7</strong> show ip dhcp snooping database [detail]</td>
<td>Display the status and statistics of the DHCP snooping binding database agent.</td>
</tr>
<tr>
<td><strong>Step 8</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To stop using the database agent and binding files, use the **no ip dhcp snooping database** global configuration command. To reset the timeout or delay values, use the **ip dhcp snooping database timeout seconds** or the **ip dhcp snooping database write-delay seconds** global configuration command.

To clear the statistics of the DHCP snooping binding database agent, use the **clear ip dhcp snooping database statistics** privileged EXEC command. To renew the database, use the **renew ip dhcp snooping database** privileged EXEC command.

To delete binding entries from the DHCP snooping binding database, use the **no ip dhcp snooping binding mac-address vlan vlan-id ip-address interface interface-id** privileged EXEC command. Enter this command for each entry that you want to delete.
Displaying DHCP Snooping Information

Table 1-2 Commands for Displaying DHCP Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip dhcp snooping</td>
<td>Displays the DHCP snooping configuration for a switch</td>
</tr>
<tr>
<td>show ip dhcp snooping binding</td>
<td>Displays only the dynamically configured bindings in the DHCP snooping binding database, also referred to as a binding table.</td>
</tr>
<tr>
<td>show ip dhcp snooping database</td>
<td>Displays the DHCP snooping binding database status and statistics.</td>
</tr>
<tr>
<td>show ip dhcp snooping statistics</td>
<td>Displays the DHCP snooping statistics in summary or detail form.</td>
</tr>
<tr>
<td>show ip source binding</td>
<td>Display the dynamically and statically configured bindings.</td>
</tr>
</tbody>
</table>

Note If DHCP snooping is enabled and an interface changes to the down state, the switch does not delete the statically configured bindings.

Understanding IP Source Guard

IPSG is a security feature that restricts IP traffic on nonrouted, Layer 2 interfaces by filtering traffic based on the DHCP snooping binding database and on manually configured IP source bindings. You can use IP source guard to prevent traffic attacks if a host tries to use the IP address of its neighbor.

You can enable IP source guard when DHCP snooping is enabled on an untrusted interface. After IPSG is enabled on an interface, the switch blocks all IP traffic received on the interface except for DHCP packets allowed by DHCP snooping. A port access control list (ACL) is applied to the interface. The port ACL allows only IP traffic with a source IP address in the IP source binding table and denies all other traffic.

Note The port ACL takes precedence over any router ACLs or VLAN maps that affect the same interface.

The IP source binding table has bindings that are learned by DHCP snooping or are manually configured (static IP source bindings). An entry in this table has an IP address, its associated MAC address, and its associated VLAN number. The switch uses the IP source binding table only when IP source guard is enabled.

IPSG is supported only on Layer 2 ports, including access and trunk ports. You can configure IPSG with source IP address filtering or with source IP and MAC address filtering.

These sections contain this information:
- Source IP Address Filtering, page 1-17
- Source IP and MAC Address Filtering, page 1-17
- IP Source Guard for Static Hosts, page 1-17
Source IP Address Filtering

When IPSG is enabled with this option, IP traffic is filtered based on the source IP address. The switch forwards IP traffic when the source IP address matches an entry in the DHCP snooping binding database or a binding in the IP source binding table.

When a DHCP snooping binding or static IP source binding is added, changed, or deleted on an interface, the switch modifies the port ACL by using the IP source binding changes and re-applies the port ACL to the interface.

If you enable IPSG on an interface on which IP source bindings (dynamically learned by DHCP snooping or manually configured) are not configured, the switch creates and applies a port ACL that denies all IP traffic on the interface. If you disable IP source guard, the switch removes the port ACL from the interface.

Source IP and MAC Address Filtering

IP traffic is filtered based on the source IP and MAC addresses. The switch forwards traffic only when the source IP and MAC addresses match an entry in the IP source binding table.

When address filtering is enabled, the switch filters IP and non-IP traffic. If the source MAC address of an IP or non-IP packet matches a valid IP source binding, the switch forwards the packet. The switch drops all other types of packets except DHCP packets.

The switch uses port security to filter source MAC addresses. The interface can shut down when a port-security violation occurs.

IP Source Guard for Static Hosts

Note

Do not use IPSG (IP source guard) for static hosts on uplink ports or trunk ports.

IPSG for static hosts extends the IPSG capability to non-DHCP and static environments. The previous IPSG used the entries created by DHCP snooping to validate the hosts connected to a switch. Any traffic received from a host without a valid DHCP binding entry is dropped. This security feature restricts IP traffic on nonrouted Layer 2 interfaces. It filters traffic based on the DHCP snooping binding database and on manually configured IP source bindings. The previous version of IPSG required a DHCP environment for IPSG to work.

IPSG for static hosts allows IPSG to work without DHCP. IPSG for static hosts relies on IP device tracking-table entries to install port ACLs. The switch creates static entries based on ARP requests or other IP packets to maintain the list of valid hosts for a given port. You can also specify the number of hosts allowed to send traffic to a given port. This is equivalent to port security at Layer 3.

IPSG for static hosts also supports dynamic hosts. If a dynamic host receives a DHCP-assigned IP address that is available in the IP DHCP snooping table, the same entry is learned by the IP device tracking table. In a stacked environment, when the master failover occurs, the IP source guard entries for static hosts attached to member ports are retained. When you enter the `show ip device tracking all` EXEC command, the IP device tracking table displays the entries as ACTIVE.
Some IP hosts with multiple network interfaces can inject some invalid packets into a network interface. The invalid packets contain the IP or MAC address for another network interface of the host as the source address. The invalid packets can cause IPSG for static hosts to connect to the host, to learn the invalid IP or MAC address bindings, and to reject the valid bindings. Consult the vendor of the corresponding operating system and the network interface to prevent the host from injecting invalid packets.

IPSG for static hosts initially learns IP or MAC bindings dynamically through an ACL-based snooping mechanism. IP or MAC bindings are learned from static hosts by ARP and IP packets. They are stored in the device tracking database. When the number of IP addresses that have been dynamically learned or statically configured on a given port reaches a maximum, the hardware drops any packet with a new IP address. To resolve hosts that have moved or gone away for any reason, IPSG for static hosts leverages IP device tracking to age out dynamically learned IP address bindings. This feature can be used with DHCP snooping. Multiple bindings are established on a port that is connected to both DHCP and static hosts. For example, bindings are stored in both the device tracking database as well as in the DHCP snooping binding database.

Configuring IP Source Guard

- Default IP Source Guard Configuration, page 1-18
- IP Source Guard Configuration Guidelines, page 1-18
- Enabling IP Source Guard, page 1-19
- Configuring IP Source Guard for Static Hosts, page 1-20

Default IP Source Guard Configuration

By default, IP source guard is disabled.

IP Source Guard Configuration Guidelines

- You can configure static IP bindings only on nonrouted ports. If you enter the `ip source binding mac-address vlan vlan-id ip-address interface interface-id` global configuration command on a routed interface, this error message appears:
  
  Static IP source binding can only be configured on switch port.

- When IP source guard with source IP filtering is enabled on an interface, DHCP snooping must be enabled on the access VLAN for that interface.

- If you are enabling IP source guard on a trunk interface with multiple VLANs and DHCP snooping is enabled on all the VLANs, the source IP address filter is applied on all the VLANs.

  Note: If IP source guard is enabled and you enable or disable DHCP snooping on a VLAN on the trunk interface, the switch might not properly filter traffic.
If you enable IP source guard with source IP and MAC address filtering, DHCP snooping and port security must be enabled on the interface. You must also enter the `ip dhcp snooping information option` global configuration command and ensure that the DHCP server supports option 82. When IP source guard is enabled with MAC address filtering, the DHCP host MAC address is not learned until the host is granted a lease. When forwarding packets from the server to the host, DHCP snooping uses option-82 data to identify the host port.

When configuring IP source guard on interfaces on which a private VLAN is configured, port security is not supported.

You can enable this feature when 802.1x port-based authentication is enabled.

If the number of ternary content addressable memory (TCAM) entries exceeds the maximum, the CPU usage increases.

When you configure IP source guard smart logging, packets with a source address other than the specified address or an address learned by DHCP are denied, and the packet contents are sent to a NetFlow collector. If you configure this feature, make sure that smart logging is globally enabled. For more information about smart logging, see the “Configuring Smart Logging” section on page 1-14.

In a switch stack, if IP source guard is configured on a stack member interface and you remove the configuration of that switch by entering the `no switch stack-member-number provision` global configuration command, the interface static bindings are removed from the binding table, but they are not removed from the running configuration. If you again provision the switch by entering the `switch stack-member-number provision` command, the binding is restored.

To remove the binding from the running configuration, you must disable IP source guard before entering the `no switch provision` command. The configuration is also removed if the switch reloads while the interface is removed from the binding table. For more information about provisioned switches, see the Chapter 1, “Managing Switch Stacks.”

### Enabling IP Source Guard

Beginning in privileged EXEC mode, follow these steps to enable and configure IP source guard on an interface.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code></td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip verify source [smartlog]</code></td>
<td>Enable IP source guard with source IP address filtering.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Enter <code>smartlog</code> to configure the switch to send the contents of dropped packets to a NetFlow collector.</td>
</tr>
</tbody>
</table>
Chapter 1  Configuring DHCP Features and IP Source Guard

Configuring IP Source Guard

### To disable IP source guard with source IP address filtering

Use the `no ip verify source port-security` interface configuration command.

When you enable both IP source guard and port security by using the `ip verify source port-security` interface configuration command, there are two caveats:

- The DHCP server must support option 82, or the client is not assigned an IP address.
- The MAC address in the DHCP packet is not learned as a secure address. The MAC address of the DHCP client is learned as a secure address only when the switch receives non-DHCP data traffic.

### Adding Static IP Source Bindings

1. **Step 4**
   - `exit`
   - Return to global configuration mode.

2. **Step 5**
   - `ip source binding mac-address vlan vlan-id ip-address interface interface-id`
   - Add a static IP source binding.
   - Enter this command for each static binding.

3. **Step 6**
   - `end`
   - Return to privileged EXEC mode.

4. **Step 7**
   - `show ip verify source [interface interface-id]`
   - Verify the IP source guard configuration.

5. **Step 8**
   - `show ip source binding [ip-address] [mac-address] [dhcp-snooping | static] [interface interface-id] [vlan vlan-id]`
   - Display the IP source bindings on the switch, on a specific VLAN, or on a specific interface.

6. **Step 9**
   - `copy running-config startup-config`
   - (Optional) Save your entries in the configuration file.

### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>or <code>ip verify source port-security</code></td>
<td>Enable IP source guard with source IP and MAC address filtering.</td>
</tr>
<tr>
<td></td>
<td>When you enable both IP source guard and port security by using the <code>ip verify source port-security</code> interface configuration command, there are two caveats:</td>
</tr>
<tr>
<td></td>
<td>- The DHCP server must support option 82, or the client is not assigned an IP address.</td>
</tr>
<tr>
<td></td>
<td>- The MAC address in the DHCP packet is not learned as a secure address. The MAC address of the DHCP client is learned as a secure address only when the switch receives non-DHCP data traffic.</td>
</tr>
</tbody>
</table>

### To disable IP source guard with source IP address filtering

Use the `no ip verify source port-security` interface configuration command.

### To delete a static IP source binding entry

Use the `no ip source binding` global configuration command.

### This example shows how to enable IP source guard with source IP and MAC filtering on VLANs 10 and 11:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip verify source port-security
Switch(config-if)# exit
Switch(config)# ip source binding 0100.0022.0010 vlan 10 10.0.0.2 interface gigabitethernet1/0/1
Switch(config)# ip source binding 0100.0230.0002 vlan 11 10.0.0.4 interface gigabitethernet1/0/1
Switch(config)# end
```

### Configuring IP Source Guard for Static Hosts

- Configuring IP Source Guard for Static Hosts on a Layer 2 Access Port, page 1-21
- Configuring IP Source Guard for Static Hosts on a Private VLAN Host Port, page 1-24
### Configuring IP Source Guard for Static Hosts on a Layer 2 Access Port

**Note**

You must configure the `ip device tracking maximum limit-number` interface configuration command globally for IPSG for static hosts to work. If you only configure this command on a port without enabling IP device tracking globally or by setting an IP device tracking maximum on that interface, IPSG with static hosts rejects all the IP traffic from that interface. This requirement also applies to IPSG with static hosts on a private VLAN host port.

Beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>ip device tracking</code> Turn on the IP host table, and globally enable IP device tracking.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>interface interface-id</code> Enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>switchport mode access</code> Configure a port as access.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>switchport access vlan vlan-id</code> Configure the VLAN for this port.</td>
</tr>
</tbody>
</table>
| **Step 6** | `ip verify source tracking port-security` Enable IPSG for static hosts with MAC address filtering. **Note** When you enable both IP source guard and port security by using the `ip verify source port-security` interface configuration command:  
- The DHCP server must support option 82, or the client is not assigned an IP address.  
- The MAC address in the DHCP packet is not learned as a secure address. The MAC address of the DHCP client is learned as a secure address only when the switch receives non-DHCP data traffic.  |
| **Step 7** | `ip device tracking maximum number` Establish a maximum limit for the number of static IPs that the IP device tracking table allows on the port. The range is 1 to 10. The maximum number is 10. **Note** You must configure the `ip device tracking maximum limit-number` interface configuration command. |
| **Step 8** | `switchport port-security` (Optional) Activate port security for this port. |
| **Step 9** | `switchport port-security maximum value` (Optional) Establish a maximum of MAC addresses for this port. |
| **Step 10** | `end` Return to privileged EXEC mode. |
Chapter 1 Configuring DHCP Features and IP Source Guard

### Configuring IP Source Guard

This example shows how to stop IPSG with static hosts on an interface.

Switch(config-if)# no ip verify source
Switch(config-if)# no ip device tracking max

This example shows how to enable IPSG with static hosts on a port.

Switch(config)# ip device tracking
Switch(config)# ip device tracking max 10
Switch(config-if)# ip verify source tracking port-security

This example shows how to enable IPSG for static hosts with IP filters on a Layer 2 access port and to verify the valid IP bindings on the interface Gi1/0/3:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip device tracking
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 10
Switch(config-if)# ip device tracking maximum 5
Switch(config-if)# ip verify source tracking
Switch(config-if)# end

Switch# show ip verify source
Interface Filter-type Filter-mode IP-address Mac-address Vlan
--------- ----------- ----------- --------------- ----------------- ----
Gi1/0/3 ip trk active 40.1.1.24                           10
Gi1/0/3 ip trk active 40.1.1.20                           10
Gi1/0/3 ip trk active 40.1.1.21                           10

This example shows how to enable IPSG for static hosts with IP-MAC filters on a Layer 2 access port, to verify the valid IP-MAC bindings on the interface Gi1/0/3, and to verify that the number of bindings on this interface has reached the maximum:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip device tracking
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 1
Switch(config-if)# ip device tracking maximum 5
Switch(config-if)# switchport port-security
Switch(config-if)# ip verify source tracking port-security
Switch(config-if)# end

### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip verify source interface interface-id</td>
<td>Verify the configuration and display IPSG permit ACLs for static hosts.</td>
</tr>
<tr>
<td>show ip device track all [active</td>
<td>inactive] count</td>
</tr>
<tr>
<td>all active—display only the active IP or MAC binding entries</td>
<td></td>
</tr>
<tr>
<td>all inactive—display only the inactive IP or MAC binding entries</td>
<td></td>
</tr>
<tr>
<td>all—display the active and inactive IP or MAC binding entries</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring IP Source Guard

**Switch# show ip verify source**

<table>
<thead>
<tr>
<th>Interface</th>
<th>Filter-type</th>
<th>Filter-mode</th>
<th>IP-address</th>
<th>Mac-address</th>
<th>Vlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/3</td>
<td>ip-mac trk</td>
<td>active</td>
<td>40.1.1.24</td>
<td>00:00:00:03:04</td>
<td>1</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip-mac trk</td>
<td>active</td>
<td>40.1.1.20</td>
<td>00:00:00:03:05</td>
<td>1</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip-mac trk</td>
<td>active</td>
<td>40.1.1.21</td>
<td>00:00:00:03:06</td>
<td>1</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip-mac trk</td>
<td>active</td>
<td>40.1.1.22</td>
<td>00:00:00:03:07</td>
<td>1</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip-mac trk</td>
<td>active</td>
<td>40.1.1.23</td>
<td>00:00:00:03:08</td>
<td>1</td>
</tr>
</tbody>
</table>

This example displays all IP or MAC binding entries for all interfaces. The CLI displays all active as well as inactive entries. When a host is learned on an interface, the new entry is marked as active. When the same host is disconnected from that interface and connected to a different interface, a new IP or MAC binding entry displays as active as soon as the host is detected. The old entry for this host on the previous interface is marked as INACTIVE.

**Switch# show ip device tracking all**

IP Device Tracking = Enabled
IP Device Tracking Probe Count = 3
IP Device Tracking Probe Interval = 30

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Vlan</th>
<th>Interface</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.1.1.8</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.9</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.10</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.1</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet1/0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.1</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.2</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet1/0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.2</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.3</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet1/0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.3</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.4</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.5</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet1/0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.5</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.6</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.7</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
</tbody>
</table>

This example displays all active IP or MAC binding entries for all interfaces:

**Switch# show ip device tracking all active**

IP Device Tracking = Enabled
IP Device Tracking Probe Count = 3
IP Device Tracking Probe Interval = 30

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Vlan</th>
<th>Interface</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.1.1.1</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet1/0/1</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.2</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet1/0/1</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.3</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet1/0/1</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.4</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet1/0/1</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.5</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet1/0/1</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>
This example displays all inactive IP or MAC binding entries for all interfaces. The host was first learned on GigabitEthernet 1/0/1 and then moved to GigabitEthernet 0/2. The IP or MAC binding entries learned on GigabitEthernet 1/0/1 are marked as inactive.

```
Switch# show ip device tracking all inactive
IP Device Tracking = Enabled
IP Device Tracking Probe Count = 3
IP Device Tracking Probe Interval = 30
```

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Vlan</th>
<th>Interface</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.1.1.8</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.9</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.10</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.11</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.12</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.13</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.14</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.15</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.16</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.17</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
</tbody>
</table>

This example displays the count of all IP device tracking host entries for all interfaces:

```
Switch# show ip device tracking all count
Total IP Device Tracking Host entries: 5
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Maximum Limit</th>
<th>Number of Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring IP Source Guard for Static Hosts on a Private VLAN Host Port

#### Note
You must globally configure the `ip device tracking maximum limit-number` interface configuration command globally for IPSG for static hosts to work. If you only configure this command on a port without enabling IP device tracking globally or setting an IP device tracking maximum on that interface, IPSG with static hosts will reject all the IP traffic from that interface. This requirement also applies to IPSG with static hosts on a Layer 2 access port.

IP Source Guard is supported on private VLAN host ports only.

Beginning in privileged EXEC mode, follow these steps to configure IPSG for static hosts with IP filters on a Layer 2 access port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vlan vlan-id1</td>
<td>Enter VLAN configuration mode.</td>
</tr>
<tr>
<td>Step 3 private-vlan primary</td>
<td>Establish a primary VLAN on a private VLAN port.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exit VLAN configuration mode.</td>
</tr>
<tr>
<td>Step 5 vlan vlan-id2</td>
<td>Enter configuration VLAN mode for another VLAN.</td>
</tr>
<tr>
<td>Step 6 private-vlan isolated</td>
<td>Establish an isolated VLAN on a private VLAN port.</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exit VLAN configuration mode.</td>
</tr>
</tbody>
</table>
### Configuring IP Source Guard

This example shows how to enable IPSG for static hosts with IP filters on a private VLAN host port:

```
Switch(config)# vlan 200
Switch(config-vlan)# private-vlan primary
Switch(config-vlan)# exit
Switch(config)# vlan 201
Switch(config-vlan)# private-vlan isolated
Switch(config-vlan)# exit
Switch(config)# vlan 200
Switch(config-vlan)# private-vlan association 201
Switch(config-vlan)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport mode private-vlan host
Switch(config-if)# switchport private-vlan host-association 200 201
Switch(config-if)# ip device tracking maximum 8
Switch(config-if)# ip verify source tracking

Switch# show ip device tracking all
```

### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>vlan vlan-id1 Enter configuration VLAN mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>private-vlan association 201 Associate the VLAN on an isolated private VLAN port.</td>
</tr>
<tr>
<td>Step 10</td>
<td>exit Exit VLAN configuration mode.</td>
</tr>
<tr>
<td>Step 11</td>
<td>interface fastEthernet interface-id Enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td>switchport mode private-vlan host (Optional) Establish a port as a private VLAN host.</td>
</tr>
<tr>
<td>Step 13</td>
<td>switchport private-vlan host-association vlan-id1 vlan-id2 (Optional) Associate this port with the corresponding private VLAN.</td>
</tr>
</tbody>
</table>
| Step 14 | ip device tracking maximum number Establish a maximum for the number of static IPs that the IP device tracking table allows on the port.
| | The maximum is 10. |
| Step 15 | ip verify source tracking [port-security] Activate IPSG for static hosts with MAC address filtering on this port. |
| Step 16 | end Exit configuration interface mode. |
| Step 17 | show ip device tracking all Verify the configuration. |
| Step 18 | show ip verify source interface interface-id Verify the IP source guard configuration. Display IPSG permit ACLs for static hosts. |

---

### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>vlan vlan-id1 Enter configuration VLAN mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>private-vlan association 201 Associate the VLAN on an isolated private VLAN port.</td>
</tr>
<tr>
<td>Step 10</td>
<td>exit Exit VLAN configuration mode.</td>
</tr>
<tr>
<td>Step 11</td>
<td>interface fastEthernet interface-id Enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td>switchport mode private-vlan host (Optional) Establish a port as a private VLAN host.</td>
</tr>
<tr>
<td>Step 13</td>
<td>switchport private-vlan host-association vlan-id1 vlan-id2 (Optional) Associate this port with the corresponding private VLAN.</td>
</tr>
</tbody>
</table>
| Step 14 | ip device tracking maximum number Establish a maximum for the number of static IPs that the IP device tracking table allows on the port.
| | The maximum is 10. |
| Step 15 | ip verify source tracking [port-security] Activate IPSG for static hosts with MAC address filtering on this port. |
| Step 16 | end Exit configuration interface mode. |
| Step 17 | show ip device tracking all Verify the configuration. |
| Step 18 | show ip verify source interface interface-id Verify the IP source guard configuration. Display IPSG permit ACLs for static hosts. |
The output shows the five valid IP-MAC bindings that have been learned on the interface Fa0/3. For the private VLAN cases, the bindings are associated with primary VLAN ID. So, in this example, the primary VLAN ID, 200, is shown in the table.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Filter-type</th>
<th>Filter-mode</th>
<th>IP-address</th>
<th>Mac-address</th>
<th>Vlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.23</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.24</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.20</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.21</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.22</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.23</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.24</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.20</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.21</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.22</td>
<td></td>
<td>201</td>
</tr>
</tbody>
</table>

The output shows that the five valid IP-MAC bindings are on both the primary and secondary VLAN.

## Displaying IP Source Guard Information

### Table 1-3 Commands for Displaying IP Source Guard Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip source binding</td>
<td>Display the IP source bindings on a switch.</td>
</tr>
<tr>
<td>show ip verify source</td>
<td>Display the IP source guard configuration on the switch.</td>
</tr>
</tbody>
</table>

## Understanding DHCP Server Port-Based Address Allocation

DHCP server port-based address allocation is a feature that enables DHCP to maintain the same IP address on an Ethernet switch port regardless of the attached device client identifier or client hardware address.

When Ethernet switches are deployed in the network, they offer connectivity to the directly connected devices. In some environments, such as on a factory floor, if a device fails, the replacement device must be working immediately in the existing network. With the current DHCP implementation, there is no guarantee that DHCP would offer the same IP address to the replacement device. Control, monitoring, and other software expect a stable IP address associated with each device. If a device is replaced, the address assignment should remain stable even though the DHCP client has changed.

When configured, the DHCP server port-based address allocation feature ensures that the same IP address is always offered to the same connected port even as the client identifier or client hardware address changes in the DHCP messages received on that port. The DHCP protocol recognizes DHCP clients by the client identifier option in the DHCP packet. Clients that do not include the client identifier option are identified by the client hardware address. When you configure this feature, the port name of the interface overrides the client identifier or hardware address and the actual point of connection, the switch port, becomes the client identifier.

In all cases, by connecting the Ethernet cable to the same port, the same IP address is allocated through DHCP to the attached device.

The DHCP server port-based address allocation feature is only supported on a Cisco IOS DHCP server and not a third-party server.
Configuring DHCP Server Port-Based Address Allocation

- Default Port-Based Address Allocation Configuration, page 1-27
- Port-Based Address Allocation Configuration Guidelines, page 1-27
- Enabling DHCP Server Port-Based Address Allocation, page 1-27

Default Port-Based Address Allocation Configuration

By default, DHCP server port-based address allocation is disabled.

Port-Based Address Allocation Configuration Guidelines

- Only one IP address can be assigned per port.
- Reserved addresses (preassigned) cannot be cleared by using the `clear ip dhcp binding` global configuration command.
- Preassigned addresses are automatically excluded from normal dynamic IP address assignment. Preassigned addresses cannot be used in host pools, but there can be multiple preassigned addresses per DHCP address pool.
- To restrict assignments from the DHCP pool to preconfigured reservations (unreserved addresses are not offered to the client and other clients are not served by the pool), you can enter the `reserved-only` DHCP pool configuration command.

Enabling DHCP Server Port-Based Address Allocation

Beginning in privileged EXEC mode, follow these steps to globally enable port-based address allocation and to automatically generate a subscriber identifier on an interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ip dhcp use subscriber-id client-id</code> Configure the DHCP server to globally use the subscriber identifier as the client identifier on all incoming DHCP messages.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip dhcp subscriber-id interface-name</code> Automatically generate a subscriber identifier based on the short name of the interface. A subscriber identifier configured on a specific interface takes precedence over this command.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>interface interface-id</code> Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>ip dhcp server use subscriber-id client-id</code> Configure the DHCP server to use the subscriber identifier as the client identifier on all incoming DHCP messages on the interface.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring DHCP Features and IP Source Guard

Configuring DHCP Server Port-Based Address Allocation

After enabling DHCP port-based address allocation on the switch, use the `ip dhcp pool` global configuration command to preassign IP addresses and to associate them to clients. To restrict assignments from the DHCP pool to preconfigured reservations, you can enter the `reserved-only` DHCP pool configuration command. Unreserved addresses that are part of the network or on pool ranges are not offered to the client, and other clients are not served by the pool. By entering this command, users can configure a group of switches with DHCP pools that share a common IP subnet and that ignore requests from clients of other switches.

Beginning in privileged EXEC mode follow these steps to preassign an IP address and to associate it to a client identified by the interface name.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td><code>show running config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable DHCP port-based address allocation, use the `no ip dhcp pool` global configuration command. To disable the automatic generation of a subscriber identifier, use the `no ip dhcp subscriber-id interface-name` global configuration command. To disable the subscriber identifier on an interface, use the `no ip dhcp server use subscriber-id client-id` interface configuration command.

To remove an IP address reservation from a DHCP pool, use the `no address ip-address client-id string` DHCP pool configuration command. To change the address pool to nonrestricted, enter the `no reserved-only` DHCP pool configuration command.

In this example, a subscriber identifier is automatically generated, and the DHCP server ignores any client identifier fields in the DHCP messages and uses the subscriber identifier instead. The subscriber identifier is based on the short name of the interface and the client preassigned IP address 10.1.1.7.

```
switch# show running config
Building configuration...
Current configuration : 4899 bytes
```
Displaying DHCP Server Port-Based Address Allocation

Table 1-4 Commands for Displaying DHCP Port-Based Address Allocation Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interface id</td>
<td>Display the status and configuration of a specific interface.</td>
</tr>
<tr>
<td>show ip dhcp pool</td>
<td>Display the DHCP address pools.</td>
</tr>
<tr>
<td>show ip dhcp binding</td>
<td>Display address bindings on the Cisco IOS DHCP server.</td>
</tr>
</tbody>
</table>
Configuring Dynamic ARP Inspection

This chapter describes how to configure dynamic Address Resolution Protocol inspection (dynamic ARP inspection) on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. This feature helps prevent malicious attacks on the switch by not relaying invalid ARP requests and responses to other ports in the same VLAN. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

- Understanding Dynamic ARP Inspection, page 1-1
- Configuring Dynamic ARP Inspection, page 1-5
- Displaying Dynamic ARP Inspection Information, page 1-14

Understanding Dynamic ARP Inspection

ARP provides IP communication within a Layer 2 broadcast domain by mapping an IP address to a MAC address. For example, Host B wants to send information to Host A but does not have the MAC address of Host A in its ARP cache. Host B generates a broadcast message for all hosts within the broadcast domain to obtain the MAC address associated with the IP address of Host A. All hosts within the broadcast domain receive the ARP request, and Host A responds with its MAC address. However, because ARP allows a gratuitous reply from a host even if an ARP request was not received, an ARP spoofing attack and the poisoning of ARP caches can occur. After the attack, all traffic from the device under attack flows through the attacker’s computer and then to the router, switch, or host.

A malicious user can attack hosts, switches, and routers connected to your Layer 2 network by poisoning the ARP caches of systems connected to the subnet and by intercepting traffic intended for other hosts on the subnet. Figure 1-1 shows an example of ARP cache poisoning.
Hosts A, B, and C are connected to the switch on interfaces A, B and C, all of which are on the same subnet. Their IP and MAC addresses are shown in parentheses; for example, Host A uses IP address IA and MAC address MA. When Host A needs to communicate to Host B at the IP layer, it broadcasts an ARP request for the MAC address associated with IP address IB. When the switch and Host B receive the ARP request, they populate their ARP caches with an ARP binding for a host with the IP address IA and a MAC address MA; for example, IP address IA is bound to MAC address MA. When Host B responds, the switch and Host A populate their ARP caches with a binding for a host with the IP address IB and the MAC address MB.

Host C can poison the ARP caches of the switch, Host A, and Host B by broadcasting forged ARP responses with bindings for a host with an IP address of IA (or IB) and a MAC address of MC. Hosts with poisoned ARP caches use the MAC address MC as the destination MAC address for traffic intended for IA or IB. This means that Host C intercepts that traffic. Because Host C knows the true MAC addresses associated with IA and IB, it can forward the intercepted traffic to those hosts by using the correct MAC address as the destination. Host C has inserted itself into the traffic stream from Host A to Host B, the classic man-in-the-middle attack.

Dynamic ARP inspection is a security feature that validates ARP packets in a network. It intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings. This capability protects the network from certain man-in-the-middle attacks.

Dynamic ARP inspection ensures that only valid ARP requests and responses are relayed. The switch performs these activities:

- Intercepts all ARP requests and responses on untrusted ports
- Verifies that each of these intercepted packets has a valid IP-to-MAC address binding before updating the local ARP cache or before forwarding the packet to the appropriate destination
- Drops invalid ARP packets

Dynamic ARP inspection determines the validity of an ARP packet based on valid IP-to-MAC address bindings stored in a trusted database, the DHCP snooping binding database. This database is built by DHCP snooping if DHCP snooping is enabled on the VLANs and on the switch. If the ARP packet is received on a trusted interface, the switch forwards the packet without any checks. On untrusted interfaces, the switch forwards the packet only if it is valid.

You enable dynamic ARP inspection on a per-VLAN basis by using the `ip arp inspection vlan vlan-range` global configuration command. For configuration information, see the “Configuring Dynamic ARP Inspection in DHCP Environments” section on page 1-7.

In non-DHCP environments, dynamic ARP inspection can validate ARP packets against user-configured ARP access control lists (ACLs) for hosts with statically configured IP addresses. You define an ARP ACL by using the `arp access-list acl-name` global configuration command. For configuration information, see the “Configuring ARP ACLs for Non-DHCP Environments” section on page 1-9. The switch logs dropped packets. For more information about the log buffer, see the “Logging of Dropped Packets” section on page 1-5.
You can configure dynamic ARP inspection to drop ARP packets when the IP addresses in the packets are invalid or when the MAC addresses in the body of the ARP packets do not match the addresses specified in the Ethernet header. Use the `ip arp inspection validate { [src-mac] [dst-mac] [ip] }` global configuration command. For more information, see the “Performing Validation Checks” section on page 1-12.

### Interface Trust States and Network Security

Dynamic ARP inspection associates a trust state with each interface on the switch. Packets arriving on trusted interfaces bypass all dynamic ARP inspection validation checks, and those arriving on untrusted interfaces undergo the dynamic ARP inspection validation process.

In a typical network configuration, you configure all switch ports connected to host ports as untrusted and configure all switch ports connected to switches as trusted. With this configuration, all ARP packets entering the network from a given switch bypass the security check. No other validation is needed at any other place in the VLAN or in the network. You configure the trust setting by using the `ip arp inspection trust` interface configuration command.

**Caution**

Use the trust state configuration carefully. Configuring interfaces as untrusted when they should be trusted can result in a loss of connectivity.

In Figure 1-2, assume that both Switch A and Switch B are running dynamic ARP inspection on the VLAN that includes Host 1 and Host 2. If Host 1 and Host 2 acquire their IP addresses from the DHCP server connected to Switch A, only Switch A binds the IP-to-MAC address of Host 1. Therefore, if the interface between Switch A and Switch B is untrusted, the ARP packets from Host 1 are dropped by Switch B. Connectivity between Host 1 and Host 2 is lost.

**Figure 1-2 ARP Packet Validation on a VLAN Enabled for Dynamic ARP Inspection**

Configuring interfaces to be trusted when they are actually untrusted leaves a security hole in the network. If Switch A is not running dynamic ARP inspection, Host 1 can easily poison the ARP cache of Switch B (and Host 2, if the link between the switches is configured as trusted). This condition can occur even though Switch B is running dynamic ARP inspection.
Dynamic ARP inspection ensures that hosts (on untrusted interfaces) connected to a switch running dynamic ARP inspection do not poison the ARP caches of other hosts in the network. However, dynamic ARP inspection does not prevent hosts in other portions of the network from poisoning the caches of the hosts that are connected to a switch running dynamic ARP inspection.

In cases in which some switches in a VLAN run dynamic ARP inspection and other switches do not, configure the interfaces connecting such switches as untrusted. However, to validate the bindings of packets from nondynamic ARP inspection switches, configure the switch running dynamic ARP inspection with ARP ACLs. When you cannot determine such bindings, at Layer 3, isolate switches running dynamic ARP inspection from switches not running dynamic ARP inspection switches. For configuration information, see the “Configuring ARP ACLs for Non-DHCP Environments” section on page 1-9.

**Note**
Depending on the setup of the DHCP server and the network, it might not be possible to validate a given ARP packet on all switches in the VLAN.

### Rate Limiting of ARP Packets

The switch CPU performs dynamic ARP inspection validation checks; therefore, the number of incoming ARP packets is rate-limited to prevent a denial-of-service attack. By default, the rate for untrusted interfaces is 15 packets per second (pps). Trusted interfaces are not rate-limited. You can change this setting by using the `ip arp inspection limit` interface configuration command.

When the rate of incoming ARP packets exceeds the configured limit, the switch places the port in the error-disabled state. The port remains in that state until you intervene. You can use the `errdisable recovery` global configuration command to enable error disable recovery so that ports automatically emerge from this state after a specified timeout period.

**Note**
The rate limit for an EtherChannel is applied separately to each switch in a stack. For example, if a limit of 20 pps is configured on the EtherChannel, each switch with ports in the EtherChannel can carry up to 20 pps. If any switch exceeds the limit, the entire EtherChannel is placed into the error-disabled state.

For configuration information, see the “Limiting the Rate of Incoming ARP Packets” section on page 1-10.

### Relative Priority of ARP ACLs and DHCP Snooping Entries

Dynamic ARP inspection uses the DHCP snooping binding database for the list of valid IP-to-MAC address bindings.

ARP ACLs take precedence over entries in the DHCP snooping binding database. The switch uses ACLs only if you configure them by using the `ip arp inspection filter vlan` global configuration command. The switch first compares ARP packets to user-configured ARP ACLs. If the ARP ACL denies the ARP packet, the switch also denies the packet even if a valid binding exists in the database populated by DHCP snooping.
Logging of Dropped Packets

When the switch drops a packet, it places an entry in the log buffer and then generates system messages on a rate-controlled basis. After the message is generated, the switch clears the entry from the log buffer. Each log entry contains flow information, such as the receiving VLAN, the port number, the source and destination IP addresses, and the source and destination MAC addresses.

You use the `ip arp inspection log-buffer` global configuration command to configure the number of entries in the buffer and the number of entries needed in the specified interval to generate system messages. You specify the type of packets that are logged by using the `ip arp inspection vlan logging` global configuration command. For configuration information, see the “Configuring the Log Buffer” section on page 1-13.

Configuring Dynamic ARP Inspection

- Default Dynamic ARP Inspection Configuration, page 1-5
- Dynamic ARP Inspection Configuration Guidelines, page 1-6
- Configuring Dynamic ARP Inspection in DHCP Environments, page 1-7 (required in DHCP environments)
- Configuring ARP ACLs for Non-DHCP Environments, page 1-9 (required in non-DHCP environments)
- Limiting the Rate of Incoming ARP Packets, page 1-10 (optional)
- Performing Validation Checks, page 1-12 (optional)
- Configuring the Log Buffer, page 1-13 (optional)

Default Dynamic ARP Inspection Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic ARP inspection</td>
<td>Disabled on all VLANs.</td>
</tr>
<tr>
<td>Interface trust state</td>
<td>All interfaces are untrusted.</td>
</tr>
<tr>
<td>Rate limit of incoming ARP packets</td>
<td>The rate is 15 pps on untrusted interfaces, assuming that the network is a switched network with a host connecting to as many as 15 new hosts per second. The rate is unlimited on all trusted interfaces. The burst interval is 1 second.</td>
</tr>
<tr>
<td>ARP ACLs for non-DHCP environments</td>
<td>No ARP ACLs are defined.</td>
</tr>
<tr>
<td>Validation checks</td>
<td>No checks are performed.</td>
</tr>
</tbody>
</table>
Table 1-1  Default Dynamic ARP Inspection Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log buffer</td>
<td>When dynamic ARP inspection is enabled, all denied or dropped ARP packets are logged.</td>
</tr>
<tr>
<td></td>
<td>The number of entries in the log is 32.</td>
</tr>
<tr>
<td></td>
<td>The number of system messages is limited to 5 per second.</td>
</tr>
<tr>
<td></td>
<td>The logging-rate interval is 1 second.</td>
</tr>
<tr>
<td>Per-VLAN logging</td>
<td>All denied or dropped ARP packets are logged.</td>
</tr>
</tbody>
</table>

**Dynamic ARP Inspection Configuration Guidelines**

- Dynamic ARP inspection is an ingress security feature; it does not perform any egress checking.
- Dynamic ARP inspection is not effective for hosts connected to switches that do not support dynamic ARP inspection or that do not have this feature enabled. Because man-in-the-middle attacks are limited to a single Layer 2 broadcast domain, separate the domain with dynamic ARP inspection checks from the one with no checking. This action secures the ARP caches of hosts in the domain enabled for dynamic ARP inspection.
- Dynamic ARP inspection depends on the entries in the DHCP snooping binding database to verify IP-to-MAC address bindings in incoming ARP requests and ARP responses. Make sure to enable DHCP snooping to permit ARP packets that have dynamically assigned IP addresses. For configuration information, see Chapter 1, “Configuring DHCP Features and IP Source Guard.”
  
  When DHCP snooping is disabled or in non-DHCP environments, use ARP ACLs to permit or to deny packets.
- Dynamic ARP inspection is supported on access ports, trunk ports, EtherChannel ports, and private VLAN ports.

**Note**

Do not enable Dynamic ARP inspection on RSPAN VLANs. If Dynamic ARP inspection is enabled on RSPAN VLANs, Dynamic ARP inspection packets might not reach the RSPAN destination port.

- A physical port can join an EtherChannel port channel only when the trust state of the physical port and the channel port match. Otherwise, the physical port remains suspended in the port channel. A port channel inherits its trust state from the first physical port that joins the channel. Consequently, the trust state of the first physical port need not match the trust state of the channel.
  
  Conversely, when you change the trust state on the port channel, the switch configures a new trust state on all the physical ports that comprise the channel.
- The rate limit is calculated separately on each switch in a switch stack. For a cross-stack EtherChannel, this means that the actual rate limit might be higher than the configured value. For example, if you set the rate limit to 30 pps on an EtherChannel that has one port on switch 1 and one port on switch 2, each port can receive packets at 29 pps without causing the EtherChannel to become error-disabled.
- The operating rate for the port channel is cumulative across all the physical ports within the channel. For example, if you configure the port channel with an ARP rate-limit of 400 pps, all the interfaces combined on the channel receive an aggregate 400 pps. The rate of incoming ARP packets on
EtherChannel ports is equal to the sum of the incoming rate of packets from all the channel members. Configure the rate limit for EtherChannel ports only after examining the rate of incoming ARP packets on the channel-port members.

The rate of incoming packets on a physical port is checked against the port-channel configuration rather than the physical-ports configuration. The rate-limit configuration on a port channel is independent of the configuration on its physical ports.

If the EtherChannel receives more ARP packets than the configured rate, the channel (including all physical ports) is placed in the error-disabled state.

- Make sure to limit the rate of ARP packets on incoming trunk ports. Configure trunk ports with higher rates to reflect their aggregation and to handle packets across multiple dynamic ARP inspection-enabled VLANs. You also can use the `ip arp inspection limit none` interface configuration command to make the rate unlimited. A high rate-limit on one VLAN can cause a denial-of-service attack to other VLANs when the software places the port in the error-disabled state.

- When you enable dynamic ARP inspection on the switch, policers that were configured to police ARP traffic are no longer effective. The result is that all ARP traffic is sent to the CPU.

- When you configure dynamic ARP inspection smart logging, the contents of all packets in the log buffer (by default, all dropped packets) are sent to a NetFlow collector. If you configure this feature, make sure that smart logging is globally enabled. For more information about smart logging, see the “Configuring Smart Logging” section on page 1-14.

### Configuring Dynamic ARP Inspection in DHCP Environments

This procedure shows how to configure dynamic ARP inspection when two switches support this feature. Host 1 is connected to Switch A, and Host 2 is connected to Switch B as shown in Figure 1-2 on page 1-3. Both switches are running dynamic ARP inspection on VLAN 1 where the hosts are located. A DHCP server is connected to Switch A. Both hosts acquire their IP addresses from the same DHCP server. Therefore, Switch A has the bindings for Host 1 and Host 2, and Switch B has the binding for Host 2.

**Note**

Dynamic ARP inspection depends on the entries in the DHCP snooping binding database to verify IP-to-MAC address bindings in incoming ARP requests and ARP responses. Make sure to enable DHCP snooping to permit ARP packets that have dynamically assigned IP addresses. For configuration information, see Chapter 1, “Configuring DHCP Features and IP Source Guard.”

For information on how to configure dynamic ARP inspection when only one switch supports the feature, see the “Configuring ARP ACLs for Non-DHCP Environments” section on page 1-9.

Beginning in privileged EXEC mode, follow these steps to configure dynamic ARP inspection. You must perform this procedure on both switches. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cdp neighbors</td>
<td>Verify the connection between the switches.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
### Configuring Dynamic ARP Inspection

**Step 3**  
Command: ip arp inspection vlan *vlan-range*  
Purpose: Enable dynamic ARP inspection on a per-VLAN basis. By default, dynamic ARP inspection is disabled on all VLANs. For *vlan-range*, specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094. Specify the same VLAN ID for both switches.

**Step 4**  
Command: ip arp inspection smartlog  
Purpose: (Optional) Specify that whatever packets are currently being logged are also smart-logged. By default, all dropped packets are logged.

**Step 5**  
Command: interface *interface-id*  
Purpose: Specify the interface connected to the other switch, and enter interface configuration mode.

**Step 6**  
Command: ip arp inspection trust  
Purpose: Configure the connection between the switches as trusted. By default, all interfaces are untrusted. The switch does not check ARP packets that it receives from the other switch on the trusted interface. It simply forwards the packets. For untrusted interfaces, the switch intercepts all ARP requests and responses. It verifies that the intercepted packets have valid IP-to-MAC address bindings before updating the local cache and before forwarding the packet to the appropriate destination. The switch drops invalid packets and logs them in the log buffer according to the logging configuration specified with the `ip arp inspection vlan logging` global configuration command. For more information, see the “Configuring the Log Buffer” section on page 1-13.

**Step 7**  
Command: end  
Purpose: Return to privileged EXEC mode.

**Step 8**  
Command: show ip arp inspection interfaces  
Purpose: Verify the dynamic ARP inspection configuration.

**Step 9**  
Command: show ip arp inspection vlan *vlan-range*  
Purpose: Verify the dynamic ARP inspection configuration.

**Step 10**  
Command: show ip dhcp snooping binding  
Purpose: Verify the DHCP bindings.

**Step 11**  
Command: show ip arp inspection statistics vlan *vlan-range*  
Purpose: Check the dynamic ARP inspection statistics.

Command: copy running-config startup-config  
Purpose: (Optional) Save your entries in the configuration file.

To disable dynamic ARP inspection, use the `no ip arp inspection vlan *vlan-range*` global configuration command. To return the interfaces to an untrusted state, use the `no ip arp inspection trust` interface configuration command.

This example shows how to configure dynamic ARP inspection on Switch A in VLAN 1. You would perform a similar procedure on Switch B:

```
Switch(config)# ip arp inspection vlan 1
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip arp inspection trust
```
Configuring ARP ACLs for Non-DHCP Environments

This procedure shows how to configure dynamic ARP inspection when Switch B shown in Figure 1-2 on page 1-3 does not support dynamic ARP inspection or DHCP snooping.

If you configure port 1 on Switch A as trusted, a security hole is created because both Switch A and Host 1 could be attacked by either Switch B or Host 2. To prevent this possibility, you must configure port 1 on Switch A as untrusted. To permit ARP packets from Host 2, you must set up an ARP ACL and apply it to VLAN 1. If the IP address of Host 2 is not static (it is impossible to apply the ACL configuration on Switch A) you must separate Switch A from Switch B at Layer 3 and use a router to route packets between them.

Beginning in privileged EXEC mode, follow these steps to configure an ARP ACL on Switch A. This procedure is required in non-DHCP environments.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>arp access-list acl-name</td>
<td>Define an ARP ACL, and enter ARP access-list configuration mode. By default, no ARP access lists are defined.</td>
</tr>
</tbody>
</table>

*Note*  At the end of the ARP access list, there is an implicit `deny ip any mac any` command.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>permit ip host sender-ip mac host sender-mac [log]</td>
<td>Permit ARP packets from the specified host (Host 2).</td>
</tr>
</tbody>
</table>

- For `sender-ip`, enter the IP address of Host 2.
- For `sender-mac`, enter the MAC address of Host 2.
- (Optional) Specify `log` to log a packet in the log buffer when it matches the access control entry (ACE). Matches are logged if you also configure the `matchlog` keyword in the `ip arp inspection vlan logging` global configuration command. For more information, see the “Configuring the Log Buffer” section on page 1-13.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip arp inspection filter arp-acl-name vlan vlan-range [static]</td>
<td>Apply the ARP ACL to the VLAN. By default, no defined ARP ACLs are applied to any VLAN.</td>
</tr>
</tbody>
</table>

- For `arp-acl-name`, specify the name of the ACL created in Step 2.
- For `vlan-range`, specify the VLAN that the switches and hosts are in. You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.
- (Optional) Specify `static` to treat implicit denies in the ARP ACL as explicit denies and to drop packets that do not match any previous clauses in the ACL. DHCP bindings are not used.

If you do not specify this keyword, it means that there is no explicit deny in the ACL that denies the packet, and DHCP bindings determine whether a packet is permitted or denied if the packet does not match any clauses in the ACL.

ARP packets containing only IP-to-MAC address bindings are compared against the ACL. Packets are permitted only if the access list permits them.
### Configuring Dynamic ARP Inspection

**To remove the ARP ACL, use the `no arp access-list` global configuration command. To remove the ARP ACL attached to a VLAN, use the `no ip arp inspection filter arp-acl-name vlan vlan-range` global configuration command.**

This example shows how to configure an ARP ACL called `host2` on Switch A, to permit ARP packets from Host 2 (IP address 1.1.1.1 and MAC address 0001.0001.0001), to apply the ACL to VLAN 1, and to configure port 1 on Switch A as untrusted:

```bash
Switch(config)# arp access-list host2
Switch(config-arp-acl)# permit ip host 1.1.1.1 mac host 1.1.1
Switch(config-arp-acl)# exit
Switch(config)# ip arp inspection filter host2 vlan 1
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no ip arp inspection trust
```

### Limiting the Rate of Incoming ARP Packets

The switch CPU performs dynamic ARP inspection validation checks; therefore, the number of incoming ARP packets is rate-limited to prevent a denial-of-service attack.

When the rate of incoming ARP packets exceeds the configured limit, the switch places the port in the error-disabled state. The port remains in that state until you enable error-disabled recovery so that ports automatically emerge from this state after a specified timeout period.
Chapter 1  Configuring Dynamic ARP Inspection

Configuring Dynamic ARP Inspection

Note

Unless you configure a rate limit on an interface, changing the trust state of the interface also changes its rate limit to the default value for that trust state. After you configure the rate limit, the interface retains the rate limit even when its trust state is changed. If you enter the **no ip arp inspection limit** interface configuration command, the interface reverts to its default rate limit.

For configuration guidelines for rate limiting trunk ports and EtherChannel ports, see the “Dynamic ARP Inspection Configuration Guidelines” section on page 1-6.

Beginning in privileged EXEC mode, follow these steps to limit the rate of incoming ARP packets. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
</tbody>
</table>
| **Step 3** | ip arp inspection limit { rate pps [burst interval seconds] | none} | Limit the rate of incoming ARP requests and responses on the interface. The default rate is 15 pps on untrusted interfaces and unlimited on trusted interfaces. The burst interval is 1 second. The keywords have these meanings:  
- For **rate pps**, specify an upper limit for the number of incoming packets processed per second. The range is 0 to 2048 pps.  
- (Optional) For **burst interval seconds**, specify the consecutive interval in seconds, over which the interface is monitored for a high rate of ARP packets. The range is 1 to 15.  
- For **rate none**, specify no upper limit for the rate of incoming ARP packets that can be processed. |
| **Step 4** | exit | Return to global configuration mode. |
| **Step 5** | errdisable detect cause arp-inspection and errdisable recovery cause arp-inspection and errdisable recovery interval interval | (Optional) Enable error recovery from the dynamic ARP inspection error-disabled state, and configure the dynamic ARP inspection recover mechanism variables  
By default, recovery is disabled, and the recovery interval is 300 seconds.  
For **interval interval**, specify the time in seconds to recover from the error-disabled state. The range is 30 to 86400. |
| **Step 6** | exit | Return to privileged EXEC mode. |
| **Step 7** | show ip arp inspection interfaces show errdisable recovery | Verify your settings. |
| **Step 8** | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default rate-limit configuration, use the **no ip arp inspection limit** interface configuration command. To disable error recovery for dynamic ARP inspection, use the **no errdisable recovery cause arp-inspection** global configuration command.
Performing Validation Checks

Dynamic ARP inspection intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings. You can configure the switch to perform additional checks on the destination MAC address, the sender and target IP addresses, and the source MAC address.

Beginning in privileged EXEC mode, follow these steps to perform specific checks on incoming ARP packets. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip arp inspection validate ([\text{src-mac}] [\text{dst-mac}] [\text{ip}])</td>
<td>Perform a specific check on incoming ARP packets. By default, no checks are performed.</td>
</tr>
</tbody>
</table>

The keywords have these meanings:

- For **src-mac**, check the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.

- For **dst-mac**, check the destination MAC address in the Ethernet header against the target MAC address in ARP body. This check is performed for ARP responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.

- For **ip**, check the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses. Sender IP addresses are checked in all ARP requests and responses, and target IP addresses are checked only in ARP responses.

You must specify at least one of the keywords. Each command overrides the configuration of the previous command; that is, if a command enables **src** and **dst mac** validations, and a second command enables IP validation only, the **src** and **dst mac** validations are disabled as a result of the second command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show ip arp inspection vlan (\text{vlan-range})</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable checking, use the **no ip arp inspection validate **[**src-mac**] [**dst-mac**] [**ip**] global configuration command. To display statistics for forwarded, dropped, and MAC and IP validation failure packets, use the **show ip arp inspection statistics** privileged EXEC command.
Configuring the Log Buffer

When the switch drops a packet, it places an entry in the log buffer and then generates system messages on a rate-controlled basis. After the message is generated, the switch clears the entry from the log buffer. Each log entry contains flow information, such as the receiving VLAN, the port number, the source and destination IP addresses, and the source and destination MAC addresses.

A log-buffer entry can represent more than one packet. For example, if an interface receives many packets on the same VLAN with the same ARP parameters, the switch combines the packets as one entry in the log buffer and generates a single system message for the entry.

If the log buffer overflows, it means that a log event does not fit into the log buffer, and the display for the `show ip arp inspection log` privileged EXEC command is affected. A `--` in the display appears in place of all data except the packet count and the time. No other statistics are provided for the entry. If you see this entry in the display, increase the number of entries in the log buffer or increase the logging rate.

The log buffer configuration applies to each stack member in a switch stack. Each stack member has the specified `logs number` entries and generates system messages at the configured rate. For example, if the interval (rate) is one entry per second, up to five system messages are generated per second in a five-member switch stack.

Beginning in privileged EXEC mode, follow these steps to configure the log buffer. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip arp inspection log-buffer { entries number</td>
</tr>
<tr>
<td></td>
<td>Configure the dynamic ARP inspection logging buffer.</td>
</tr>
<tr>
<td></td>
<td>By default, when dynamic ARP inspection is enabled, denied or dropped ARP packets are logged. The number of log entries is 32. The number of system messages is limited to 5 per second. The logging-rate interval is 1 second.</td>
</tr>
<tr>
<td></td>
<td>The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>• For <code>entries number</code>, specify the number of entries to be logged in the buffer. The range is 0 to 1024.</td>
</tr>
<tr>
<td></td>
<td>• For <code>logs number interval seconds</code>, specify the number of entries to generate system messages in the specified interval.</td>
</tr>
<tr>
<td></td>
<td>For <code>logs number</code>, the range is 0 to 1024. A 0 value means that the entry is placed in the log buffer, but a system message is not generated.</td>
</tr>
<tr>
<td></td>
<td>For <code>interval seconds</code>, the range is 0 to 86400 seconds (1 day). A 0 value means that a system message is immediately generated (and the log buffer is always empty).</td>
</tr>
<tr>
<td></td>
<td>An interval setting of 0 overrides a log setting of 0.</td>
</tr>
<tr>
<td></td>
<td>The <code>logs</code> and <code>interval</code> settings interact. If the <code>logs number X</code> is greater than <code>interval seconds Y</code>, X divided by Y (X/Y) system messages are sent every second. Otherwise, one system message is sent every Y divided by X (Y/X) seconds.</td>
</tr>
</tbody>
</table>
**Displaying Dynamic ARP Inspection Information**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| ip arp inspection vlan vlan-range logging {acl-match [matchlog | none] | dhcp-bindings [all | none | permit]} | Control the type of packets that are logged per VLAN. By default, all denied or all dropped packets are logged. The term logged means the entry is placed in the log buffer and a system message is generated. The keywords have these meanings:  
  - For vlan-range, specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.  
  - For acl-match matchlog, log packets based on the ACE logging configuration. If you specify the matchlog keyword in this command and the log keyword in the permit or deny ARP access-list configuration command, ARP packets permitted or denied by the ACL are logged.  
  - For acl-match none, do not log packets that match ACLs.  
  - For dhcp-bindings all, log all packets that match DHCP bindings.  
  - For dhcp-bindings none, do not log packets that match DHCP bindings.  
  - For dhcp-bindings permit, log DHCP-binding permitted packets. |

To return to the default log buffer settings, use the `no ip arp inspection log-buffer {entries | logs}` global configuration command. To return to the default VLAN log settings, use the `no ip arp inspection vlan vlan-range logging {acl-match | dhcp-bindings}` global configuration command. To clear the log buffer, use the `clear ip arp inspection log` privileged EXEC command.

### Table 1-2 Commands for Displaying Dynamic ARP Inspection Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show arp access-list [acl-name]</td>
<td>Displays detailed information about ARP ACLs.</td>
</tr>
<tr>
<td>show ip arp inspection interfaces [interface-id]</td>
<td>Displays the trust state and the rate limit of ARP packets for the specified interface or all interfaces.</td>
</tr>
<tr>
<td>show ip arp inspection vlan vlan-range</td>
<td>Displays the configuration and the operating state of dynamic ARP inspection for the specified VLAN. If no VLANs are specified or if a range is specified, displays information only for VLANs with dynamic ARP inspection enabled (active).</td>
</tr>
</tbody>
</table>
For the `show ip arp inspection statistics` command, the switch increments the number of forwarded packets for each ARP request and response packet on a trusted dynamic ARP inspection port. The switch increments the number of ACL or DHCP permitted and denied packets for each packet that is denied by source MAC, destination MAC, or IP validation checks, and the switch increments the appropriate failure count.

**Table 1-3  Commands for Clearing or Displaying Dynamic ARP Inspection Statistics**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip arp inspection statistics</td>
<td>Clears dynamic ARP inspection statistics.</td>
</tr>
<tr>
<td>show ip arp inspection statistics [vlan vlan-range]</td>
<td>Displays statistics for forwarded, dropped, MAC validation failure, IP validation failure, ACL permitted and denied, and DHCP permitted and denied packets for the specified VLAN. If no VLANs are specified or if a range is specified, displays information only for VLANs with dynamic ARP inspection enabled (active).</td>
</tr>
</tbody>
</table>

**Table 1-4  Commands for Clearing or Displaying Dynamic ARP Inspection Logging Information**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip arp inspection log</td>
<td>Clears the dynamic ARP inspection log buffer.</td>
</tr>
<tr>
<td>show ip arp inspection log</td>
<td>Displays the configuration and contents of the dynamic ARP inspection log buffer.</td>
</tr>
</tbody>
</table>

For more information about these commands, see the command reference for this release.
Configuring IGMP Snooping and MVR

This chapter describes how to configure Internet Group Management Protocol (IGMP) snooping on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch, including an application of local IGMP snooping, Multicast VLAN Registration (MVR). It also includes procedures for controlling multicast group membership by using IGMP filtering and procedures for configuring the IGMP throttling action. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note
For IPv6 traffic, Multicast Listener Discovery (MLD) snooping performs the same function as IGMP snooping for IPv4 traffic. For information about MLD snooping, see Chapter 1, “Configuring IPv6 MLD Snooping.”

Note
For complete syntax and usage information for the commands used in this chapter, see the switch command reference for this release and the “IP Multicast Routing Commands” section in the Cisco IOS IP Command Reference, Volume 3 of 3: Multicast, Release 12.4.

This chapter consists of these sections:

- Understanding IGMP Snooping, page 1-2
- Configuring IGMP Snooping, page 1-7
- Displaying IGMP Snooping Information, page 1-16
- Understanding Multicast VLAN Registration, page 1-17
- Configuring MVR, page 1-20
- Displaying MVR Information, page 1-23
- Configuring IGMP Filtering and Throttling, page 1-24
- Displaying IGMP Filtering and Throttling Configuration, page 1-29

Note
You can either manage IP multicast group addresses through features such as IGMP snooping and MVR, or you can use static IP addresses.
Understanding IGMP Snooping

Layer 2 switches can use IGMP snooping to constrain the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. As the name implies, IGMP snooping requires the LAN switch to snoop on the IGMP transmissions between the host and the router and to keep track of multicast groups and member ports. When the switch receives an IGMP report from a host for a particular multicast group, the switch adds the host port number to the forwarding table entry; when it receives an IGMP Leave Group message from a host, it removes the host port from the table entry. It also periodically deletes entries if it does not receive IGMP membership reports from the multicast clients.

Note
For more information on IP multicast and IGMP, see RFC 1112 and RFC 2236.

The multicast router (which could be a Catalyst 3750-E Catalyst 3750-X switch with the IP services feature set on the stack master) sends out periodic general queries to all VLANs. All hosts interested in this multicast traffic send join requests and are added to the forwarding table entry. The switch creates one entry per VLAN in the IGMP snooping IP multicast forwarding table for each group from which it receives an IGMP join request.

The switch supports IP multicast group-based bridging, rather than MAC-addressed based groups. With multicast MAC address-based groups, if an IP address being configured translates (aliases) to a previously configured MAC address or to any reserved multicast MAC addresses (in the range 224.0.0.xxx), the command fails. Because the switch uses IP multicast groups, there are no address aliasing issues.

The IP multicast groups learned through IGMP snooping are dynamic. However, you can statically configure multicast groups by using the `ip igmp snooping vlan vlan-id static ip_address interface interface-id` global configuration command. If you specify group membership for a multicast group address statically, your setting supersedes any automatic manipulation by IGMP snooping. Multicast group membership lists can consist of both user-defined and IGMP snooping-learned settings.

You can configure an IGMP snooping querier to support IGMP snooping in subnets without multicast interfaces because the multicast traffic does not need to be routed. For more information about the IGMP snooping querier, see the “Configuring the IGMP Snooping Querier” section on page 1-14.

If a port spanning-tree, a port group, or a VLAN ID change occurs, the IGMP snooping-learned multicast groups from this port on the VLAN are deleted.

These sections describe IGMP snooping characteristics:

- IGMP Versions, page 1-3
- Joining a Multicast Group, page 1-3
- Leaving a Multicast Group, page 1-5
- Immediate Leave, page 1-6
- IGMP Configurable-Leave Timer, page 1-6
- IGMP Report Suppression, page 1-6
- IGMP Snooping and Switch Stacks, page 1-7
IGMP Versions

The switch supports IGMP Version 1, IGMP Version 2, and IGMP Version 3. These versions are interoperable on the switch. For example, if IGMP snooping is enabled on an IGMPv2 switch and the switch receives an IGMPv3 report from a host, the switch can forward the IGMPv3 report to the multicast router.

Note: The switch supports IGMPv3 snooping based only on the destination multicast MAC address. It does not support snooping based on the source MAC address or on proxy reports.

An IGMPv3 switch supports Basic IGMPv3 Snooping Support (BISS), which includes support for the snooping features on IGMPv1 and IGMPv2 switches and for IGMPv3 membership report messages. BISS constrains the flooding of multicast traffic when your network includes IGMPv3 hosts. It constrains traffic to approximately the same set of ports as the IGMP snooping feature on IGMPv2 or IGMPv1 hosts.

Note: IGMPv3 join and leave messages are not supported on switches running IGMP filtering or MVR.

An IGMPv3 switch can receive messages from and forward messages to a device running the Source Specific Multicast (SSM) feature.

Joining a Multicast Group

When a host connected to the switch wants to join an IP multicast group and it is an IGMP Version 2 client, it sends an unsolicited IGMP join message, specifying the IP multicast group to join. Alternatively, when the switch receives a general query from the router, it forwards the query to all ports in the VLAN. IGMP Version 1 or Version 2 hosts wanting to join the multicast group respond by sending a join message to the switch. The switch CPU creates a multicast forwarding-table entry for the group if it is not already present. The CPU also adds the interface where the join message was received to the forwarding-table entry. The host associated with that interface receives multicast traffic for that multicast group. See Figure 1-1.
Understanding IGMP Snooping

Router A sends a general query to the switch, which forwards the query to ports 2 through 5, which are all members of the same VLAN. Host 1 wants to join multicast group 224.1.2.3 and multicasts an IGMP membership report (IGMP join message) to the group. The switch CPU uses the information in the IGMP report to set up a forwarding-table entry, as shown in Table 1-1, that includes the port numbers connected to Host 1 and the router.

Table 1-1  IGMP Snooping Forwarding Table

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.1.2.3</td>
<td>IGMP</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

The switch hardware can distinguish IGMP information packets from other packets for the multicast group. The information in the table tells the switching engine to send frames addressed to the 224.1.2.3 multicast IP address that are not IGMP packets to the router and to the host that has joined the group.
If another host (for example, Host 4) sends an unsolicited IGMP join message for the same group (Figure 1-2), the CPU receives that message and adds the port number of Host 4 to the forwarding table as shown in Table 1-2. Note that because the forwarding table directs IGMP messages only to the CPU, the message is not flooded to other ports on the switch. Any known multicast traffic is forwarded to the group and not to the CPU.

**Figure 1-2 Second Host Joining a Multicast Group**

![Diagram showing second host joining a multicast group](image)

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.1.2.3</td>
<td>IGMP</td>
<td>1, 2, 5</td>
</tr>
</tbody>
</table>

**Leaving a Multicast Group**

The router sends periodic multicast general queries, and the switch forwards these queries through all ports in the VLAN. Interested hosts respond to the queries. If at least one host in the VLAN wishes to receive multicast traffic, the router continues forwarding the multicast traffic to the VLAN. The switch forwards multicast group traffic only to those hosts listed in the forwarding table for that IP multicast group maintained by IGMP snooping.

When hosts want to leave a multicast group, they can silently leave, or they can send a leave message. When the switch receives a leave message from a host, it sends a group-specific query to learn if any other devices connected to that interface are interested in traffic for the specific multicast group. The switch then updates the forwarding table for that MAC group so that only those hosts interested in receiving multicast traffic for the group are listed in the forwarding table. If the router receives no reports from a VLAN, it removes the group for the VLAN from its IGMP cache.
Immediate Leave

Immediate Leave is only supported on IGMP Version 2 hosts.

The switch uses IGMP snooping Immediate Leave to remove from the forwarding table an interface that sends a leave message without the switch sending group-specific queries to the interface. The VLAN interface is pruned from the multicast tree for the multicast group specified in the original leave message. Immediate Leave ensures optimal bandwidth management for all hosts on a switched network, even when multiple multicast groups are simultaneously in use.

**Note**

You should only use the Immediate Leave feature on VLANs where a single host is connected to each port. If Immediate Leave is enabled in VLANs where more than one host is connected to a port, some hosts might inadvertently be dropped.

For configuration steps, see the “Enabling IGMP Immediate Leave” section on page 1-11.

IGMP Configurable-Leave Timer

You can configure the time that the switch waits after sending a group-specific query to determine if hosts are still interested in a specific multicast group. The IGMP leave response time can be configured from 100 to 5000 milliseconds. The timer can be set either globally or on a per-VLAN basis. The VLAN configuration of the leave time overrides the global configuration.

For configuration steps, see the “Configuring the IGMP Leave Timer” section on page 1-11.

IGMP Report Suppression

**Note**

IGMP report suppression is supported only when the multicast query has IGMPv1 and IGMPv2 reports. This feature is not supported when the query includes IGMPv3 reports.

The switch uses IGMP report suppression to forward only one IGMP report per multicast router query to multicast devices. When IGMP router suppression is enabled (the default), the switch sends the first IGMP report from all hosts for a group to all the multicast routers. The switch does not send the remaining IGMP reports for the group to the multicast routers. This feature prevents duplicate reports from being sent to the multicast devices.

If the multicast router query includes requests only for IGMPv1 and IGMPv2 reports, the switch forwards only the first IGMPv1 or IGMPv2 report from all hosts for a group to all the multicast routers.

If the multicast router query also includes requests for IGMPv3 reports, the switch forwards all IGMPv1, IGMPv2, and IGMPv3 reports for a group to the multicast devices.

If you disable IGMP report suppression, all IGMP reports are forwarded to the multicast routers. For configuration steps, see the “Disabling IGMP Report Suppression” section on page 1-15.
IGMP Snooping and Switch Stacks

IGMP snooping functions across the switch stack; that is, IGMP control information from one switch is distributed to all switches in the stack. (See Chapter 1, “Managing Switch Stacks,” for more information about switch stacks.) Regardless of the stack member through which IGMP multicast data enters the stack, the data reaches the hosts that have registered for that group.

If a switch in the stack fails or is removed from the stack, only the members of the multicast group that are on that switch will not receive the multicast data. All other members of a multicast group on other switches in the stack continue to receive multicast data streams. However, multicast groups that are common for both Layer 2 and Layer 3 (IP multicast routing) might take longer to converge if the stack master is removed.

Configuring IGMP Snooping

IGMP snooping allows switches to examine IGMP packets and make forwarding decisions based on the content. These sections contain this configuration information:

- Default IGMP Snooping Configuration, page 1-7
- Enabling or Disabling IGMP Snooping, page 1-8
- Setting the Snooping Method, page 1-8
- Configuring a Multicast Router Port, page 1-9
- Configuring a Host Staticaly to Join a Group, page 1-10
- Enabling IGMP Immediate Leave, page 1-11
- Configuring the IGMP Leave Timer, page 1-11
- Configuring TCN-Related Commands, page 1-12
- Configuring the IGMP Snooping Querier, page 1-14
- Disabling IGMP Report Suppression, page 1-15

Default IGMP Snooping Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP snooping</td>
<td>Enabled globally and per VLAN</td>
</tr>
<tr>
<td>Multicast routers</td>
<td>None configured</td>
</tr>
<tr>
<td>Multicast router learning (snooping) method</td>
<td>PIM-DVMRP</td>
</tr>
<tr>
<td>IGMP snooping Immediate Leave</td>
<td>Disabled</td>
</tr>
<tr>
<td>Static groups</td>
<td>None configured</td>
</tr>
<tr>
<td>TCN (^1) flood query count</td>
<td>2</td>
</tr>
<tr>
<td>TCN query solicitation</td>
<td>Disabled</td>
</tr>
<tr>
<td>IGMP snooping querier</td>
<td>Disabled</td>
</tr>
<tr>
<td>IGMP report suppression</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

1. TCN = Topology Change Notification
Enabling or Disabling IGMP Snooping

By default, IGMP snooping is globally enabled on the switch. When globally enabled or disabled, it is also enabled or disabled in all existing VLAN interfaces. IGMP snooping is by default enabled on all VLANs, but can be enabled and disabled on a per-VLAN basis.

Global IGMP snooping overrides the VLAN IGMP snooping. If global snooping is disabled, you cannot enable VLAN snooping. If global snooping is enabled, you can enable or disable VLAN snooping.

Beginning in privileged EXEC mode, follow these steps to globally enable IGMP snooping on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To globally disable IGMP snooping on all VLAN interfaces, use the `no ip igmp snooping` global configuration command.

Beginning in privileged EXEC mode, follow these steps to enable IGMP snooping on a VLAN interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping vlan vlan-id</td>
</tr>
<tr>
<td>Note</td>
<td>IGMP snooping must be globally enabled before you can enable VLAN snooping.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable IGMP snooping on a VLAN interface, use the `no ip igmp snooping vlan vlan-id` global configuration command for the specified VLAN number.

Setting the Snooping Method

Multicast-capable router ports are added to the forwarding table for every Layer 2 multicast entry. The switch learns of such ports through one of these methods:

- Snooping on IGMP queries, Protocol-Independent Multicast (PIM) packets, and Distance Vector Multicast Routing Protocol (DVMRP) packets
- Listening to Cisco Group Management Protocol (CGMP) packets from other routers
- Statically connecting to a multicast router port with the `ip igmp snooping mrouter` global configuration command
You can configure the switch either to snoop on IGMP queries and PIM/DVMRP packets or to listen to CGMP self-join or proxy-join packets. By default, the switch snoops on PIM/DVMRP packets on all VLANs. To learn of multicast router ports through only CGMP packets, use the `ip igmp snooping vlan vlan-id mrouter learn cgmp` global configuration command. When this command is entered, the router listens to only CGMP self-join and CGMP proxy-join packets and to no other CGMP packets. To learn of multicast router ports through only PIM-DVMRP packets, use the `ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp` global configuration command.

**Note**
If you want to use CGMP as the learning method and no multicast routers in the VLAN are CGMP proxy-enabled, you must enter the `ip cgmp router-only` command to dynamically access the router. For more information, see Chapter 1, “Configuring IP Multicast Routing.”

Beginning in privileged EXEC mode, follow these steps to alter the method in which a VLAN interface dynamically accesses a multicast router:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 `ip igmp snooping vlan vlan-id mrouter learn {cgmp | pim-dvmrp}` | Enable IGMP snooping on a VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094. Specify the multicast router learning method:  
  - `cgmp`—Listen for CGMP packets. This method is useful for reducing control traffic.  
  - `pim-dvmrp`—Snoop on IGMP queries and PIM-DVMRP packets. This is the default. |
| Step 3 `end`                     | Return to privileged EXEC mode.                                          |
| Step 4 `show ip igmp snooping`   | Verify the configuration.                                               |
| Step 5 `copy running-config startup-config` | (Optional) Save your entries in the configuration file.                |

To return to the default learning method, use the `no ip igmp snooping vlan vlan-id mrouter learn cgmp` global configuration command.

This example shows how to configure IGMP snooping to use CGMP packets as the learning method:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 1 mrouter learn cgmp
Switch(config)# end
```

### Configuring a Multicast Router Port

To add a multicast router port (add a static connection to a multicast router), use the `ip igmp snooping vlan mrouter` global configuration command on the switch.

**Note** Static connections to multicast routers are supported only on switch ports.
Beginning in privileged EXEC mode, follow these steps to enable a static connection to a multicast router:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2  | ip igmp snooping vlan \textit{vlan-id} mrouter interface \textit{interface-id} | Specify the multicast router VLAN ID and the interface to the multicast router:  
- The VLAN ID range is 1 to 1001 and 1006 to 4094.  
- The interface can be a physical interface or a port channel.  
The port-channel range is 1 to 48. |
| Step 3  | end | Return to privileged EXEC mode. |
| Step 4  | show ip igmp snooping mrouter [vlan \textit{vlan-id}] | Verify that IGMP snooping is enabled on the VLAN interface. |
| Step 5  | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To remove a multicast router port from the VLAN, use the \texttt{no ip igmp snooping vlan \textit{vlan-id} mrouter interface \textit{interface-id}} global configuration command.

This example shows how to enable a static connection to a multicast router:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 200 mrouter interface gigabitethernet1/0/2
Switch(config)# end
```

## Configuring a Host Statically to Join a Group

Hosts or Layer 2 ports normally join multicast groups dynamically, but you can also statically configure a host on an interface.

Beginning in privileged EXEC mode, follow these steps to add a Layer 2 port as a member of a multicast group:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2  | ip igmp snooping vlan \textit{vlan-id} static \textit{ip-address} interface \textit{interface-id} | Statically configure a Layer 2 port as a member of a multicast group:  
- \textit{vlan-id} is the multicast group VLAN ID. The range is 1 to 1001 and 1006 to 4094.  
- \textit{ip-address} is the group IP address.  
- \textit{interface-id} is the member port. It can be a physical interface or a port channel (1 to 48). |
| Step 3  | end | Return to privileged EXEC mode. |
| Step 4  | show ip igmp snooping groups | Verify the member port and the IP address. |
| Step 5  | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To remove the Layer 2 port from the multicast group, use the \texttt{no ip igmp snooping vlan \textit{vlan-id} static mac-address interface \textit{interface-id}} global configuration command.
This example shows how to statically configure a host on a port:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 105 static 224.2.4.12 interface gigabitethernet1/0/1
Switch(config)# end
```

### Enabling IGMP Immediate Leave

When you enable IGMP Immediate Leave, the switch immediately removes a port when it detects an IGMP Version 2 leave message on that port. You should only use the Immediate-Leave feature when there is a single receiver present on every port in the VLAN.

**Note**

Immediate Leave is supported only on IGMP Version 2 hosts.

Beginning in privileged EXEC mode, follow these steps to enable IGMP Immediate Leave:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping vlan vlan-id immediate-leave</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip igmp snooping vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable IGMP Immediate Leave on a VLAN, use the `no ip igmp snooping vlan vlan-id immediate-leave` global configuration command.

This example shows how to enable IGMP Immediate Leave on VLAN 130:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 130 immediate-leave
Switch(config)# end
```

### Configuring the IGMP Leave Timer

Follows these guidelines when configuring the IGMP leave timer:

- You can configure the leave time globally or on a per-VLAN basis.
- Configuring the leave time on a VLAN overrides the global setting.
- The default leave time is 1000 milliseconds.
- The IGMP configurable leave time is only supported on hosts running IGMP Version 2.
- The actual leave latency in the network is usually the configured leave time. However, the leave time might vary around the configured time, depending on real-time CPU load conditions, network delays and the amount of traffic sent through the interface.
Beginning in privileged EXEC mode, follow these steps to enable the IGMP configurable-leave timer:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip igmp snooping last-member-query-interval time</td>
<td>Configure the IGMP leave timer globally. The range is 100 to 32768 milliseconds. The default is 1000 seconds.</td>
</tr>
<tr>
<td>ip igmp snooping vlan vlan-id last-member-query-interval time</td>
<td>(Optional) Configure the IGMP leave time on the VLAN interface. The range is 100 to 32768 milliseconds. Note: Configuring the leave time on a VLAN overrides the globally configured timer.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show ip igmp snooping</td>
<td>(Optional) Display the configured IGMP leave time.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To globally reset the IGMP leave timer to the default setting, use the no ip igmp snooping last-member-query-interval global configuration command.

To remove the configured IGMP leave-time setting from the specified VLAN, use the no ip igmp snooping vlan vlan-id last-member-query-interval global configuration command.

**Configuring TCN-Related Commands**

- Controlling the Multicast Flooding Time After a TCN Event, page 1-12
- Recovering from Flood Mode, page 1-13
- Disabling Multicast Flooding During a TCN Event, page 1-13

**Controlling the Multicast Flooding Time After a TCN Event**

You can control the time that multicast traffic is flooded after a TCN event by using the ip igmp snooping tcn flood query count global configuration command. This command configures the number of general queries for which multicast data traffic is flooded after a TCN event. Some examples of TCN events are when the client changed its location and the receiver is on same port that was blocked but is now forwarding, and when a port went down without sending a leave message.

If you set the TCN flood query count to 1 by using the ip igmp snooping tcn flood query count command, the flooding stops after receiving 1 general query. If you set the count to 7, the flooding until 7 general queries are received. Groups are relearned based on the general queries received during the TCN event.

Beginning in privileged EXEC mode, follow these steps to configure the TCN flood query count:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip igmp snooping tcn flood query count count</td>
<td>Specify the number of IGMP general queries for which the multicast traffic is flooded. The range is 1 to 10. By default, the flooding query count is 2.</td>
</tr>
</tbody>
</table>
Chapter 1  Configuring IGMP Snooping and MVR

Configuring IGMP Snooping

To return to the default flooding query count, use the `no ip igmp snooping tcn flood query count` global configuration command.

Recovering from Flood Mode

When a topology change occurs, the spanning-tree root sends a special IGMP leave message (also known as global leave) with the group multicast address 0.0.0.0. However, when you enable the `ip igmp snooping tcn query solicit` global configuration command, the switch sends the global leave message whether or not it is the spanning-tree root. When the router receives this special leave, it immediately sends general queries, which expedite the process of recovering from the flood mode during the TCN event. Leaves are always sent if the switch is the spanning-tree root regardless of this configuration command. By default, query solicitation is disabled.

Beginning in privileged EXEC mode, follow these steps to enable the switch to send the global leave message whether or not it is the spanning-tree root:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip igmp snooping tcn query solicit</td>
<td>Send an IGMP leave message (global leave) to speed the process of recovering from the flood mode caused during a TCN event. By default, query solicitation is disabled.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show ip igmp snooping</td>
<td>Verify the TCN settings.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default query solicitation, use the `no ip igmp snooping tcn query solicit` global configuration command.

Disabling Multicast Flooding During a TCN Event

When the switch receives a TCN, multicast traffic is flooded to all the ports until 2 general queries are received. If the switch has many ports with attached hosts that are subscribed to different multicast groups, this flooding might exceed the capacity of the link and cause packet loss. You can use the `ip igmp snooping tcn flood` interface configuration command to control this behavior.

Beginning in privileged EXEC mode, follow these steps to disable multicast flooding on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>

To return to the default query solicitation, use the `no ip igmp snooping tcn query solicit` global configuration command.
Configuring IGMP Snooping and MVR

Chapter 1  Configuring IGMP Snooping

Configuring IGMP Snooping

To re-enable multicast flooding on an interface, use the `ip igmp snooping tcn flood` interface configuration command.

Configuring the IGMP Snooping Querier

Follow these guidelines when configuring the IGMP snooping querier:

- Configure the VLAN in global configuration mode.
- Configure an IP address on the VLAN interface. When enabled, the IGMP snooping querier uses the IP address as the query source address.
- If there is no IP address configured on the VLAN interface, the IGMP snooping querier tries to use the configured global IP address for the IGMP querier. If there is no global IP address specified, the IGMP querier tries to use the VLAN switch virtual interface (SVI) IP address (if one exists). If there is no SVI IP address, the switch uses the first available IP address configured on the switch. The first IP address available appears in the output of the `show ip interface` privileged EXEC command. The IGMP snooping querier does not generate an IGMP general query if it cannot find an available IP address on the switch.
- The IGMP snooping querier supports IGMP Versions 1 and 2.
- When administratively enabled, the IGMP snooping querier moves to the nonquerier state if it detects the presence of a multicast router in the network.
- When it is administratively enabled, the IGMP snooping querier moves to the operationally disabled state under these conditions:
  - IGMP snooping is disabled in the VLAN.
  - PIM is enabled on the SVI of the corresponding VLAN.

Beginning in privileged EXEC mode, follow these steps to enable the IGMP snooping querier feature in a VLAN:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping querier</td>
<td>Enable the IGMP snooping querier.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp snooping querier address <code>ip_address</code></td>
<td>(Optional) Specify an IP address for the IGMP snooping querier. If you do not specify an IP address, the querier tries to use the global IP address configured for the IGMP querier.</td>
</tr>
</tbody>
</table>

Note: The IGMP snooping querier does not generate an IGMP general query if it cannot find an IP address on the switch.
Chapter 1 Configuring IGMP Snooping and MVR

Configuring IGMP Snooping

This example shows how to set the IGMP snooping querier source address to 10.0.0.64:

Switch# configure terminal
Switch(config)# ip igmp snooping querier 10.0.0.64
Switch(config)# end

This example shows how to set the IGMP snooping querier maximum response time to 25 seconds:

Switch# configure terminal
Switch(config)# ip igmp snooping querier query-interval 25
Switch(config)# end

This example shows how to set the IGMP snooping querier timeout to 60 seconds:

Switch# configure terminal
Switch(config)# ip igmp snooping querier timeout expiry 60
Switch(config)# end

This example shows how to set the IGMP snooping querier feature to Version 2:

Switch# configure terminal
Switch(config)# no ip igmp snooping querier version 2
Switch(config)# end

Disabling IGMP Report Suppression

Note IGMP report suppression is supported only when the multicast query has IGMPv1 and IGMPv2 reports. This feature is not supported when the query includes IGMPv3 reports.

IGMP report suppression is enabled by default. When it is enabled, the switch forwards only one IGMP report per multicast router query. When report suppression is disabled, all IGMP reports are forwarded to the multicast routers.
Beginning in privileged EXEC mode, follow these steps to disable IGMP report suppression:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>no ip igmp snooping report-suppression</td>
<td>Disable IGMP report suppression.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show ip igmp snooping</td>
<td>Verify that IGMP report suppression is disabled.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable IGMP report suppression, use the `ip igmp snooping report-suppression` global configuration command.

**Displaying IGMP Snooping Information**

You can display IGMP snooping information for dynamically learned and statically configured router ports and VLAN interfaces. You can also display MAC address multicast entries for a VLAN configured for IGMP snooping.

**Table 1-4 Commands for Displaying IGMP Snooping Information**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp snooping [vlan vlan-id]</td>
<td>Display the snooping configuration information for all VLANs on the switch or for a specified VLAN. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
</tbody>
</table>
| show ip igmp snooping groups [count |dynamic [count] | user [count]] | Display multicast table information for the switch or about a specific parameter:  
  • `count`—Display the total number of entries for the specified command options instead of the actual entries.  
  • `dynamic`—Display entries learned through IGMP snooping.  
  • `user`—Display only the user-configured multicast entries. |
| show ip igmp snooping groups vlan vlan-id [ip_address | count | dynamic |[count] | user | [count]] | Display multicast table information for a multicast VLAN or about a specific parameter for the VLAN:  
  • `vlan-id`—The VLAN ID range is 1 to 1001 and 1006 to 4094.  
  • `count`—Display the total number of entries for the specified command options instead of the actual entries.  
  • `dynamic`—Display entries learned through IGMP snooping.  
  • `ip_address`—Display characteristics of the multicast group with the specified group IP address.  
  • `user`—Display only the user-configured multicast entries. |
Chapter 1  Configuring IGMP Snooping and MVR

Understanding Multicast VLAN Registration

Multicast VLAN Registration (MVR) is designed for applications using wide-scale deployment of multicast traffic across an Ethernet ring-based service-provider network (for example, the broadcast of multiple television channels over a service-provider network). MVR allows a subscriber on a port to subscribe and unsubscribe to a multicast stream on the network-wide multicast VLAN. It allows the single multicast VLAN to be shared in the network while subscribers remain in separate VLANs. MVR provides the ability to continuously send multicast streams in the multicast VLAN, but to isolate the streams from the subscriber VLANs for bandwidth and security reasons.

MVR assumes that subscriber ports subscribe and unsubscribe (join and leave) these multicast streams by sending out IGMP join and leave messages. These messages can originate from an IGMP Version-2-compatible host with an Ethernet connection. Although MVR operates on the underlying mechanism of IGMP snooping, the two features operate independently of each other. One can be enabled or disabled without affecting the behavior of the other feature. However, if IGMP snooping and MVR are both enabled, MVR reacts only to join and leave messages from multicast groups configured under MVR. Join and leave messages from all other multicast groups are managed by IGMP snooping.

The switch CPU identifies the MVR IP multicast streams and their associated IP multicast group in the switch forwarding table, intercepts the IGMP messages, and modifies the forwarding table to include or remove the subscriber as a receiver of the multicast stream, even though the receivers might be in a different VLAN from the source. This forwarding behavior selectively allows traffic to cross between different VLANs.

Table 1-4  Commands for Displaying IGMP Snooping Information (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp snooping mrouter [vlan vlan-id]</td>
<td>Display information on dynamically learned and manually configured multicast router interfaces.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>When you enable IGMP snooping, the switch automatically learns the interface to which a multicast router is connected. These are dynamically learned interfaces.</td>
</tr>
<tr>
<td>(Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN.</td>
<td></td>
</tr>
<tr>
<td>show ip igmp snooping querier [vlan vlan-id]</td>
<td>Display information about the IP address and receiving port for the most-recently received IGMP query messages in the VLAN.</td>
</tr>
<tr>
<td>(Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN.</td>
<td></td>
</tr>
<tr>
<td>show ip igmp snooping querier [vlan vlan-id] detail</td>
<td>Display information about the IP address and receiving port of the most-recently received IGMP query message in the VLAN and the configuration and operational state of the IGMP snooping querier in the VLAN.</td>
</tr>
</tbody>
</table>

For more information about the keywords and options in these commands, see the command reference for this release.
You can set the switch for compatible or dynamic mode of MVR operation:

- In compatible mode, multicast data received by MVR hosts is forwarded to all MVR data ports, regardless of MVR host membership on those ports. The multicast data is forwarded only to those receiver ports that MVR hosts have joined, either by IGMP reports or by MVR static configuration. IGMP reports received from MVR hosts are never forwarded from MVR data ports that were configured in the switch.

- In dynamic mode, multicast data received by MVR hosts on the switch is forwarded from only those MVR data and client ports that the MVR hosts have joined, either by IGMP reports or by MVR static configuration. Any IGMP reports received from MVR hosts are also forwarded from all the MVR data ports in the host. This eliminates using unnecessary bandwidth on MVR data port links, which occurs when the switch runs in compatible mode.

Only Layer 2 ports take part in MVR. You must configure ports as MVR receiver ports. Only one MVR multicast VLAN per switch or switch stack is supported.

Receiver ports and source ports can be on different switches in a switch stack. Multicast data sent on the multicast VLAN is forwarded to all MVR receiver ports across the stack. When a new switch is added to a stack, by default it has no receiver ports.

If a switch fails or is removed from the stack, only those receiver ports belonging to that switch will not receive the multicast data. All other receiver ports on other switches continue to receive the multicast data.

Using MVR in a Multicast Television Application

In a multicast television application, a PC or a television with a set-top box can receive the multicast stream. Multiple set-top boxes or PCs can be connected to one subscriber port, which is a switch port configured as an MVR receiver port. Figure 1-3 is an example configuration. DHCP assigns an IP address to the set-top box or the PC. When a subscriber selects a channel, the set-top box or PC sends an IGMP report to Switch A to join the appropriate multicast. If the IGMP report matches one of the configured IP multicast group addresses, the switch CPU modifies the hardware address table to include this receiver port and VLAN as a forwarding destination of the specified multicast stream when it is received from the multicast VLAN. Uplink ports that send and receive multicast data to and from the multicast VLAN are called MVR source ports.
When a subscriber changes channels or turns off the television, the set-top box sends an IGMP leave message for the multicast stream. The switch CPU sends a MAC-based general query through the receiver port VLAN. If there is another set-top box in the VLAN still subscribing to this group, that set-top box must respond within the maximum response time specified in the query. If the CPU does not receive a response, it eliminates the receiver port as a forwarding destination for this group.

Without Immediate Leave, when the switch receives an IGMP leave message from a subscriber on a receiver port, it sends out an IGMP query on that port and waits for IGMP group membership reports. If no reports are received in a configured time period, the receiver port is removed from multicast group membership. With Immediate Leave, an IGMP query is not sent from the receiver port on which the IGMP leave was received. As soon as the leave message is received, the receiver port is removed from multicast group membership, which speeds up leave latency. Enable the Immediate-Leave feature only on receiver ports to which a single receiver device is connected.

MVR eliminates the need to duplicate television-channel multicast traffic for subscribers in each VLAN. Multicast traffic for all channels is only sent around the VLAN trunk once—only on the multicast VLAN. The IGMP leave and join messages are in the VLAN to which the subscriber port is assigned. These messages dynamically register for streams of multicast traffic in the multicast VLAN on the

Figure 1-3  Multicast VLAN Registration Example

When a subscriber changes channels or turns off the television, the set-top box sends an IGMP leave message for the multicast stream. The switch CPU sends a MAC-based general query through the receiver port VLAN. If there is another set-top box in the VLAN still subscribing to this group, that set-top box must respond within the maximum response time specified in the query. If the CPU does not receive a response, it eliminates the receiver port as a forwarding destination for this group.

Without Immediate Leave, when the switch receives an IGMP leave message from a subscriber on a receiver port, it sends out an IGMP query on that port and waits for IGMP group membership reports. If no reports are received in a configured time period, the receiver port is removed from multicast group membership. With Immediate Leave, an IGMP query is not sent from the receiver port on which the IGMP leave was received. As soon as the leave message is received, the receiver port is removed from multicast group membership, which speeds up leave latency. Enable the Immediate-Leave feature only on receiver ports to which a single receiver device is connected.

MVR eliminates the need to duplicate television-channel multicast traffic for subscribers in each VLAN. Multicast traffic for all channels is only sent around the VLAN trunk once—only on the multicast VLAN. The IGMP leave and join messages are in the VLAN to which the subscriber port is assigned. These messages dynamically register for streams of multicast traffic in the multicast VLAN on the
Layer 3 device. The access layer switch, Switch A, modifies the forwarding behavior to allow the traffic to be forwarded from the multicast VLAN to the subscriber port in a different VLAN, selectively allowing traffic to cross between two VLANs.

IGMP reports are sent to the same IP multicast group address as the multicast data. The Switch A CPU must capture all IGMP join and leave messages from receiver ports and forward them to the multicast VLAN of the source (uplink) port, based on the MVR mode.

**Configuring MVR**

- Default MVR Configuration, page 1-20
- MVR Configuration Guidelines and Limitations, page 1-20
- Configuring MVR Global Parameters, page 1-21
- Configuring MVR Interfaces, page 1-22

**Default MVR Configuration**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR</td>
<td>Disabled globally and per interface</td>
</tr>
<tr>
<td>Multicast addresses</td>
<td>None configured</td>
</tr>
<tr>
<td>Query response time</td>
<td>0.5 second</td>
</tr>
<tr>
<td>Multicast VLAN</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Mode</td>
<td>Compatible</td>
</tr>
<tr>
<td>Interface (per port) default</td>
<td>Neither a receiver nor a source port</td>
</tr>
<tr>
<td>Immediate Leave</td>
<td>Disabled on all ports</td>
</tr>
</tbody>
</table>

**MVR Configuration Guidelines and Limitations**

- Receiver ports can only be access ports; they cannot be trunk ports. Receiver ports on a switch can be in different VLANs, but should not belong to the multicast VLAN.
- The maximum number of multicast entries (MVR group addresses) that can be configured on a switch (that is, the maximum number of television channels that can be received) is 256.
- Because MVR on the switch uses IP multicast addresses instead of MAC multicast addresses, aliased IP multicast addresses are allowed on the switch. However, if the switch is interoperating with Catalyst 3550 or Catalyst 3500 XL switches, you should not configure IP addresses that alias between themselves or with the reserved IP multicast addresses (in the range 224.0.0.xxx).
- Do not configure MVR on private VLAN ports.
- MVR is not supported when multicast routing is enabled on a switch. If you enable multicast routing and a multicast routing protocol while MVR is enabled, MVR is disabled, and you receive a warning message. If you try to enable MVR while multicast routing and a multicast routing protocol are enabled, the operation to enable MVR is cancelled, and you receive an error message.
- MVR can coexist with IGMP snooping on a switch.
- MVR data received on an MVR receiver port is not forwarded to MVR source ports.
- MVR does not support IGMPv3 messages.

## Configuring MVR Global Parameters

You do not need to set the optional MVR parameters if you choose to use the default settings. If you do want to change the default parameters (except for the MVR VLAN), you must first enable MVR.

### Note

For complete syntax and usage information for the commands used in this section, see the command reference for this release.

Beginning in privileged EXEC mode, follow these steps to configure MVR parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> mvr</td>
<td>Enable MVR on the switch.</td>
</tr>
<tr>
<td><strong>Step 3</strong> mvr group ip-address [count]</td>
<td>Configure an IP multicast address on the switch or use the count parameter to configure a contiguous series of MVR group addresses (the range for count is 1 to 256; the default is 1). Any multicast data sent to this address is sent to all source ports on the switch and all receiver ports that have elected to receive data on that multicast address. Each multicast address would correspond to one television channel.</td>
</tr>
<tr>
<td><strong>Step 4</strong> mvr querytime value</td>
<td>(Optional) Define the maximum time to wait for IGMP report memberships on a receiver port before removing the port from multicast group membership. The value is in units of tenths of a second. The range is 1 to 100, and the default is 5 tenths or one-half second.</td>
</tr>
<tr>
<td><strong>Step 5</strong> mvr vlan vlan-id</td>
<td>(Optional) Specify the VLAN in which multicast data is received; all source ports must belong to this VLAN. The VLAN range is 1 to 1001 and 1006 to 4094. The default is VLAN 1.</td>
</tr>
<tr>
<td><strong>Step 6</strong> mvr mode {dynamic</td>
<td>compatible}</td>
</tr>
<tr>
<td>dynamic</td>
<td>Allows dynamic MVR membership on source ports.</td>
</tr>
<tr>
<td>compatible</td>
<td>Is compatible with Catalyst 3500 XL and Catalyst 2900 XL switches and does not support IGMP dynamic joins on source ports.</td>
</tr>
<tr>
<td>The default is compatible mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 8</strong> show mvr or show mvr members</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td><strong>Step 9</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default settings, use the **no mvr [mode | group ip-address | querytime | vlan]** global configuration commands.
This example shows how to enable MVR, configure the group address, set the query time to 1 second (10 tenths), specify the MVR multicast VLAN as VLAN 22, and set the MVR mode as dynamic:

```plaintext
Switch(config)# mvr
Switch(config)# mvr group 228.1.23.4
Switch(config)# mvr querytime 10
Switch(config)# mvr vlan 22
Switch(config)# mvr mode dynamic
Switch(config)# end
```

You can use the `show mvr members` privileged EXEC command to verify the MVR multicast group addresses on the switch.

## Configuring MVR Interfaces

Beginning in privileged EXEC mode, follow these steps to configure Layer 2 MVR interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mvr</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>mvr type (source</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>mvr vlan vlan-id group [ip-address]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>mvr immediate</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
</tbody>
</table>
To return the interface to its default settings, use the `no mvr [type | immediate | vlan vlan-id | group]` interface configuration commands.

This example shows how to configure a port as a receiver port, statically configure the port to receive multicast traffic sent to the multicast group address, configure Immediate Leave on the port, and verify the results.

```
Switch(config)# mvr
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# mvr type receiver
Switch(config-if)# mvr vlan 22 group 228.1.23.4
Switch(config-if)# mvr immediate
Switch(config)# end
```

```
Switch# show mvr interface
Port Type Status Immediate Leave
----- ---- ------- ---------------
Gi1/0/2 RECEIVER ACTIVE/DOWN ENABLED
```

### Displaying MVR Information

You can display MVR information for the switch or for a specified interface.

#### Table 1-6 Commands for Displaying MVR Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mvr</code></td>
<td>Displays MVR status and values for the switch—whether MVR is enabled or disabled, the multicast VLAN, the maximum (256) and current (0 through 256) number of multicast groups, the query response time, and the MVR mode.</td>
</tr>
</tbody>
</table>
| `show mvr interface [interface-id] [members [vlan vlan-id]]` | Displays all MVR interfaces and their MVR configurations. When a specific interface is entered, displays this information:  
  - Type—Receiver or Source  
  - Status—One of these:  
    - Active means the port is part of a VLAN.  
    - Up/Down means that the port is forwarding or nonforwarding.  
    - Inactive means that the port is not part of any VLAN.  
  - Immediate Leave—Enabled or Disabled  
  If the `members` keyword is entered, displays all multicast group members on this port or, if a VLAN identification is entered, all multicast group members on the VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094. |
| `show mvr members [ip-address]` | Displays all receiver and source ports that are members of any IP multicast group or the specified IP multicast group IP address. |
Configuring IGMP Filtering and Throttling

In some environments, for example, metropolitan or multiple-dwelling unit (MDU) installations, you might want to control the set of multicast groups to which a user on a switch port can belong. You can control the distribution of multicast services, such as IP/TV, based on some type of subscription or service plan. You might also want to limit the number of multicast groups to which a user on a switch port can belong.

With the IGMP filtering feature, you can filter multicast joins on a per-port basis by configuring IP multicast profiles and associating them with individual switch ports. An IGMP profile can contain one or more multicast groups and specifies whether access to the group is permitted or denied. If an IGMP profile denying access to a multicast group is applied to a switch port, the IGMP join report requesting the stream of IP multicast traffic is dropped, and the port is not allowed to receive IP multicast traffic from that group. If the filtering action permits access to the multicast group, the IGMP report from the port is forwarded for normal processing. You can also set the maximum number of IGMP groups that a Layer 2 interface can join.

IGMP filtering controls only group-specific query and membership reports, including join and leave reports. It does not control general IGMP queries. IGMP filtering has no relationship with the function that directs the forwarding of IP multicast traffic. The filtering feature operates in the same manner whether CGMP or MVR is used to forward the multicast traffic.

IGMP filtering is applicable only to the dynamic learning of IP multicast group addresses, not static configuration.

With the IGMP throttling feature, you can set the maximum number of IGMP groups that a Layer 2 interface can join. If the maximum number of IGMP groups is set, the IGMP snooping forwarding table contains the maximum number of entries, and the interface receives an IGMP join report, you can configure an interface to drop the IGMP report or to replace the randomly selected multicast entry with the received IGMP report.

Note

IGMPv3 join and leave messages are not supported on switches running IGMP filtering.

- Default IGMP Filtering and Throttling Configuration, page 1-24
- Configuring IGMP Profiles, page 1-25 (optional)
- Applying IGMP Profiles, page 1-26 (optional)
- Setting the Maximum Number of IGMP Groups, page 1-27 (optional)
- Configuring the IGMP Throttling Action, page 1-27 (optional)

Default IGMP Filtering and Throttling Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP filters</td>
<td>None applied</td>
</tr>
<tr>
<td>IGMP maximum number of IGMP groups</td>
<td>No maximum set</td>
</tr>
<tr>
<td>IGMP profiles</td>
<td>None defined</td>
</tr>
<tr>
<td>IGMP profile action</td>
<td>Deny the range addresses</td>
</tr>
</tbody>
</table>
When the maximum number of groups is in forwarding table, the default IGMP throttling action is to deny the IGMP report. For configuration guidelines, see the “Configuring the IGMP Throttling Action” section on page 1-27.

**Configuring IGMP Profiles**

To configure an IGMP profile, use the `ip igmp profile` global configuration command with a profile number to create an IGMP profile and to enter IGMP profile configuration mode. From this mode, you can specify the parameters of the IGMP profile to be used for filtering IGMP join requests from a port. When you are in IGMP profile configuration mode, you can create the profile by using these commands:

- **deny**: Specifies that matching addresses are denied; this is the default.
- **exit**: Exits from igmp-profile configuration mode.
- **no**: Negates a command or returns to its defaults.
- **permit**: Specifies that matching addresses are permitted.
- **range**: Specifies a range of IP addresses for the profile. You can enter a single IP address or a range with a start and an end address.

The default is for the switch to have no IGMP profiles configured. When a profile is configured, if neither the `permit` nor `deny` keyword is included, the default is to deny access to the range of IP addresses.

Beginning in privileged EXEC mode, follow these steps to create an IGMP profile:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>ip igmp profile profile number</strong> Assign a number to the profile you are configuring, and enter IGMP profile configuration mode. The profile number range is 1 to 4294967295.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>**permit</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>range ip multicast address</strong> Enter the IP multicast address or range of IP multicast addresses to which access is being controlled. If entering a range, enter the low IP multicast address, a space, and the high IP multicast address. You can use the <code>range</code> command multiple times to enter multiple addresses or ranges of addresses.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>end</strong> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>show ip igmp profile profile number</strong> Verify the profile configuration.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>copy running-config startup-config</strong> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete a profile, use the `no ip igmp profile profile number` global configuration command.

To delete an IP multicast address or range of IP multicast addresses, use the `no range ip multicast address` IGMP profile configuration command.
This example shows how to create IGMP profile 4 allowing access to the single IP multicast address and how to verify the configuration. If the action was to deny (the default), it would not appear in the show ip igmp profile output display.

```
Switch(config)# ip igmp profile 4
Switch(config-igmp-profile)# permit
Switch(config-igmp-profile)# range 229.9.9.0
Switch(config-igmp-profile)# end
Switch# show ip igmp profile 4
IGMP Profile 4
 permit
 range 229.9.9.0 229.9.9.0
```

### Applying IGMP Profiles

To control access as defined in an IGMP profile, use the `ip igmp filter` interface configuration command to apply the profile to the appropriate interfaces. You can apply IGMP profiles only to Layer 2 access ports; you cannot apply IGMP profiles to routed ports or SVIs. You cannot apply profiles to ports that belong to an EtherChannel port group. You can apply a profile to multiple interfaces, but each interface can have only one profile applied to it.

Beginning in privileged EXEC mode, follow these steps to apply an IGMP profile to a switch port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong>&lt;br&gt;interface interface-id</td>
<td>Specify the physical interface, and enter interface configuration mode. The interface must be a Layer 2 port that does not belong to an EtherChannel port group.</td>
</tr>
<tr>
<td><strong>Step 3</strong>&lt;br&gt;ip igmp filter profile number</td>
<td>Apply the specified IGMP profile to the interface. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td><strong>Step 4</strong>&lt;br&gt;end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong>&lt;br&gt;show running-config interface interface-id</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td><strong>Step 6</strong>&lt;br&gt;copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a profile from an interface, use the `no ip igmp filter profile number` interface configuration command.

This example shows how to apply IGMP profile 4 to a port:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip igmp filter 4
Switch(config-if)# end
```
Chapter 1 Configuring IGMP Snooping and MVR

Configuring IGMP Filtering and Throttling

Setting the Maximum Number of IGMP Groups

You can set the maximum number of IGMP groups that a Layer 2 interface can join by using the `ip igmp max-groups` interface configuration command. Use the `no` form of this command to set the maximum back to the default, which is no limit.

This restriction can be applied to Layer 2 ports only; you cannot set a maximum number of IGMP groups on routed ports or SVIs. You also can use this command on a logical EtherChannel interface but cannot use it on ports that belong to an EtherChannel port group.

Beginning in privileged EXEC mode, follow these steps to set the maximum number of IGMP groups in the forwarding table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>ip igmp max-groups number</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show running-config interface interface-id</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the maximum group limitation and return to the default of no maximum, use the `no ip igmp max-groups` interface configuration command.

This example shows how to limit to 25 the number of IGMP groups that a port can join.

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip igmp max-groups 25
Switch(config-if)# end
```

Configuring the IGMP Throttling Action

After you set the maximum number of IGMP groups that a Layer 2 interface can join, you can configure an interface to replace the existing group with the new group for which the IGMP report was received by using the `ip igmp max-groups action replace` interface configuration command. Use the `no` form of this command to return to the default, which is to drop the IGMP join report.

Follow these guidelines when configuring the IGMP throttling action:

- This restriction can be applied only to Layer 2 ports. You can use this command on a logical EtherChannel interface but cannot use it on ports that belong to an EtherChannel port group.
- When the maximum group limitation is set to the default (no maximum), entering the `ip igmp max-groups action {deny | replace}` command has no effect.
If you configure the throttling action and set the maximum group limitation after an interface has added multicast entries to the forwarding table, the forwarding-table entries are either aged out or removed, depending on the throttling action.

- If you configure the throttling action as `deny`, the entries that were previously in the forwarding table are not removed but are aged out. After these entries are aged out and the maximum number of entries is in the forwarding table, the switch drops the next IGMP report received on the interface.

- If you configure the throttling action as `replace`, the entries that were previously in the forwarding table are removed. When the maximum number of entries is in the forwarding table, the switch replaces a randomly selected entry with the received IGMP report.

To prevent the switch from removing the forwarding-table entries, you can configure the IGMP throttling action before an interface adds entries to the forwarding table.

Beginning in privileged EXEC mode, follow these steps to configure the throttling action when the maximum number of entries is in the forwarding table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Specify the physical interface to be configured, and enter interface configuration mode. The interface can be a Layer 2 port that does not belong to an EtherChannel group or an EtherChannel interface. The interface cannot be a trunk port.</td>
</tr>
<tr>
<td>Step 3</td>
<td>`ip igmp max-groups action {deny</td>
</tr>
<tr>
<td></td>
<td>• <code>deny</code>—Drop the report.</td>
</tr>
<tr>
<td></td>
<td>• <code>replace</code>—Replace the existing group with the new group for which the IGMP report was received.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show running-config interface interface-id</code> Verify the configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default action of dropping the report, use the `no ip igmp max-groups action` interface configuration command.
Displaying IGMP Filtering and Throttling Configuration

You can display IGMP profile characteristics, and you can display the IGMP profile and maximum group configuration for all interfaces on the switch or for a specified interface. You can also display the IGMP throttling configuration for all interfaces on the switch or for a specified interface.

Table 1-8 Commands for Displaying IGMP Filtering and Throttling Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp profile [profile number]</td>
<td>Displays the specified IGMP profile or all the IGMP profiles defined on the switch.</td>
</tr>
<tr>
<td>show running-config [interface interface-id]</td>
<td>Displays the configuration of the specified interface or the configuration of all interfaces on the switch, including (if configured) the maximum number of IGMP groups to which an interface can belong and the IGMP profile applied to the interface.</td>
</tr>
</tbody>
</table>
Configuring IPv6 MLD Snooping

You can use Multicast Listener Discovery (MLD) snooping to enable efficient distribution of IP Version 6 (IPv6) multicast data to clients and routers in a switched network on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

To use IPv6, you must configure the dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch. You select the template by entering the `sdm prefer dual-ipv4-and-ipv6 {default | routing | vlan}` global configuration command.

**Note**
On switches running the LAN base feature set, the routing template is not supported.

For related information, see these chapters:
- For more information about SDM templates, see Chapter 1, “Configuring SDM Templates.”
- For information about IPv6 on the switch, see Chapter 1, “Configuring IPv6 Unicast Routing.”

**Note**
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release or the Cisco IOS documentation referenced in the procedures.

This chapter includes these sections:
- “Understanding MLD Snooping” section on page 1-1
- “Configuring IPv6 MLD Snooping” section on page 1-5
- “Displaying MLD Snooping Information” section on page 1-12

**Understanding MLD Snooping**

In IP Version 4 (IPv4), Layer 2 switches can use Internet Group Management Protocol (IGMP) snooping to limit the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. In IPv6, MLD snooping performs a similar function. With MLD snooping, IPv6 multicast data is selectively forwarded to a list of ports that want to receive the data, instead of being flooded to all ports in a VLAN. This list is constructed by snooping IPv6 multicast control packets.
Understanding MLD Snooping

MLD is a protocol used by IPv6 multicast routers to discover the presence of multicast listeners (nodes wishing to receive IPv6 multicast packets) on the links that are directly attached to the routers and to discover which multicast packets are of interest to neighboring nodes. MLD is derived from IGMP; MLD Version 1 (MLDv1) is equivalent to IGMPv2, and MLD Version 2 (MLDv2) is equivalent to IGMPv3. MLD is a subprotocol of Internet Control Message Protocol Version 6 (ICMPv6), and MLD messages are a subset of ICMPv6 messages, identified in IPv6 packets by a preceding Next Header value of 58.

The switch supports two versions of MLD snooping:

- MLDv1 snooping detects MLDv1 control packets and sets up traffic bridging based on IPv6 destination multicast addresses.
- MLDv2 basic snooping (MBSS) uses MLDv2 control packets to set up traffic forwarding based on IPv6 destination multicast addresses.

The switch can snoop on both MLDv1 and MLDv2 protocol packets and bridge IPv6 multicast data based on destination IPv6 multicast addresses.

**Note**

The switch does not support MLDv2 enhanced snooping (MESS), which sets up IPv6 source and destination multicast address-based forwarding.

MLD snooping can be enabled or disabled globally or per VLAN. When MLD snooping is enabled, a per-VLAN IPv6 multicast MAC address table is constructed in software and a per-VLAN IPv6 multicast address table is constructed in software and hardware. The switch then performs IPv6 multicast-address based bridging in hardware.

According to IPv6 multicast standards, the switch derives the MAC multicast address by performing a logical-OR of the four low-order octets of the switch MAC address with the MAC address of 33:33:00:00:00:00. For example, the IPv6 MAC address of FF02:DEAD:BEEF:1:3 maps to the Ethernet MAC address of 33:33:00:01:00:03.

A multicast packet is unmatched when the destination IPv6 address does not match the destination MAC address. The switch forwards the unmatched packet in hardware based the MAC address table. If the destination MAC address is not in the MAC address table, the switch floods the packet to all ports in the same VLAN as the receiving port.

These sections describe some parameters of IPv6 MLD snooping:

- MLD Messages, page 1-3
- MLD Queries, page 1-3
- Multicast Client Aging Robustness, page 1-3
- Multicast Router Discovery, page 1-4
- MLD Reports, page 1-4
- MLD Done Messages and Immediate-Leave, page 1-4
- Topology Change Notification Processing, page 1-5
- MLD Snooping in Switch Stacks, page 1-5
MLD Messages

MLDv1 supports three types of messages:
- Listener Queries are the equivalent of IGMPv2 queries and are either General Queries or Multicast-Address-Specific Queries (MASQs).
- Multicast Listener Reports are the equivalent of IGMPv2 reports
- Multicast Listener Done messages are the equivalent of IGMPv2 leave messages.

MLDv2 supports MLDv2 queries and reports, as well as MLDv1 Report and Done messages.

Message timers and state transitions resulting from messages being sent or received are the same as those of IGMPv2 messages. MLD messages that do not have valid link-local IPv6 source addresses are ignored by MLD routers and switches.

MLD Queries

The switch sends out MLD queries, constructs an IPv6 multicast address database, and generates MLD group-specific and MLD group-and-source-specific queries in response to MLD Done messages. The switch also supports report suppression, report proxying, Immediate-Leave functionality, and static IPv6 multicast MAC-address configuration.

When MLD snooping is disabled, all MLD queries are flooded in the ingress VLAN.
When MLD snooping is enabled, received MLD queries are flooded in the ingress VLAN, and a copy of the query is sent to the CPU for processing. From the received query, MLD snooping builds the IPv6 multicast address database. It detects multicast router ports, maintains timers, sets report response time, learns the querier IP source address for the VLAN, learns the querier port in the VLAN, and maintains multicast-address aging.

Note
When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the Catalyst 3750-E or 3560-E switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

When a group exists in the MLD snooping database, the switch responds to a group-specific query by sending an MLDv1 report. When the group is unknown, the group-specific query is flooded to the ingress VLAN.

When a host wants to leave a multicast group, it can send out an MLD Done message (equivalent to IGMP Leave message). When the switch receives an MLDv1 Done message, if Immediate-Leave is not enabled, the switch sends an MASQ to the port from which the message was received to determine if other devices connected to the port should remain in the multicast group.

Multicast Client Aging Robustness

You can configure port membership removal from addresses based on the number of queries. A port is removed from membership to an address only when there are no reports to the address on the port for the configured number of queries. The default number is 2.
Understanding MLD Snooping

Multicast Router Discovery

Like IGMP snooping, MLD snooping performs multicast router discovery, with these characteristics:

- Ports configured by a user never age out.
- Dynamic port learning results from MLDv1 snooping queries and IPv6 PIMv2 packets.
- If there are multiple routers on the same Layer 2 interface, MLD snooping tracks a single multicast router on the port (the router that most recently sent a router control packet).
- Dynamic multicast router port aging is based on a default timer of 5 minutes; the multicast router is deleted from the router port list if no control packet is received on the port for 5 minutes.
- IPv6 multicast router discovery only takes place when MLD snooping is enabled on the switch.
- Received IPv6 multicast router control packets are always flooded to the ingress VLAN, whether or not MLD snooping is enabled on the switch.
- After the discovery of the first IPv6 multicast router port, unknown IPv6 multicast data is forwarded only to the discovered router ports (before that time, all IPv6 multicast data is flooded to the ingress VLAN).

MLD Reports

The processing of MLDv1 join messages is essentially the same as with IGMPv2. When no IPv6 multicast routers are detected in a VLAN, reports are not processed or forwarded from the switch. When IPv6 multicast routers are detected and an MLDv1 report is received, an IPv6 multicast group address and an IPv6 multicast MAC address are entered in the VLAN MLD database. Then all IPv6 multicast traffic to the group within the VLAN is forwarded using this address. When MLD snooping is disabled, reports are flooded in the ingress VLAN.

When MLD snooping is enabled, MLD report suppression, called listener message suppression, is automatically enabled. With report suppression, the switch forwards the first MLDv1 report received by a group to IPv6 multicast routers; subsequent reports for the group are not sent to the routers. When MLD snooping is disabled, report suppression is disabled, and all MLDv1 reports are flooded to the ingress VLAN.

The switch also supports MLDv1 proxy reporting. When an MLDv1 MASQ is received, the switch responds with MLDv1 reports for the address on which the query arrived if the group exists in the switch on another port and if the port on which the query arrived is not the last member port for the address.

MLD Done Messages and Immediate-Leave

When the Immediate-Leave feature is enabled and a host sends an MLDv1 Done message (equivalent to an IGMP leave message), the port on which the Done message was received is immediately deleted from the group. You enable Immediate-Leave on VLANs and (as with IGMP snooping), you should only use the feature on VLANs where a single host is connected to the port. If the port was the last member of a group, the group is also deleted, and the leave information is forwarded to the detected IPv6 multicast routers.

When Immediate Leave is not enabled in a VLAN (which would be the case when there are multiple clients for a group on the same port) and a Done message is received on a port, an MASQ is generated on that port. The user can control when a port membership is removed for an existing address in terms of the number of MASQs. A port is removed from membership to an address when there are no MLDv1 reports to the address on the port for the configured number of queries.
Chapter 1      Configuring IPv6 MLD Snooping

The number of MASQs generated is configured by using the `ipv6 mld snooping last-listener-query count` global configuration command. The default number is 2.

The MASQ is sent to the IPv6 multicast address for which the Done message was sent. If there are no reports sent to the IPv6 multicast address specified in the MASQ during the switch maximum response time, the port on which the MASQ was sent is deleted from the IPv6 multicast address database. The maximum response time is the time configured by using the `ipv6 mld snooping last-listener-query-interval` global configuration command. If the deleted port is the last member of the multicast address, the multicast address is also deleted, and the switch sends the address leave information to all detected multicast routers.

Topology Change Notification Processing

When topology change notification (TCN) solicitation is enabled by using the `ipv6 mld snooping tcn query solicit` global configuration command, MLDv1 snooping sets the VLAN to flood all IPv6 multicast traffic with a configured number of MLDv1 queries before it begins sending multicast data only to selected ports. You set this value by using the `ipv6 mld snooping tcn flood query count` global configuration command. The default is to send two queries. The switch also generates MLDv1 global Done messages with valid link-local IPv6 source addresses when the switch becomes the STP root in the VLAN or when it is configured by the user. This is same as done in IGMP snooping.

MLD Snooping in Switch Stacks

The MLD IPv6 group and MAC address databases are maintained on all switches in the stack, regardless of which switch learns of an IPv6 multicast group. Report suppression and proxy reporting are done stack-wide. During the maximum response time, only one received report for a group is forwarded to the multicast routers, regardless of which switch the report arrives on.

The election of a new stack master does not affect the learning or bridging of IPv6 multicast data; bridging of IPv6 multicast data does not stop during a stack master re-election. When a new switch is added to the stack, it synchronizes the learned IPv6 multicast information from the stack master. Until the synchronization is complete, data ingressing on the newly added switch is treated as unknown multicast data.

Configuring IPv6 MLD Snooping

- Default MLD Snooping Configuration, page 1-6
- MLD Snooping Configuration Guidelines, page 1-6
- Enabling or Disabling MLD Snooping, page 1-7
- Configuring a Static Multicast Group, page 1-8
- Configuring a Multicast Router Port, page 1-8
- Enabling MLD Immediate Leave, page 1-9
- Configuring MLD Snooping Queries, page 1-10
- Disabling MLD Listener Message Suppression, page 1-11
Default MLD Snooping Configuration

Table 1-1  Default MLD Snooping Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD snooping (Global)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>MLD snooping (per VLAN)</td>
<td>Enabled. MLD snooping must be globally enabled for VLAN MLD snooping to take place.</td>
</tr>
<tr>
<td>IPv6 Multicast addresses</td>
<td>None configured.</td>
</tr>
<tr>
<td>IPv6 Multicast router ports</td>
<td>None configured.</td>
</tr>
<tr>
<td>MLD snooping Immediate Leave</td>
<td>Disabled.</td>
</tr>
<tr>
<td>MLD snooping robustness variable</td>
<td>Global: 2; Per VLAN: 0.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global count.</td>
</tr>
<tr>
<td>Last listener query count</td>
<td>Global: 2; Per VLAN: 0.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global count.</td>
</tr>
<tr>
<td>Last listener query interval</td>
<td>Global: 1000 (1 second); VLAN: 0.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global interval.</td>
</tr>
<tr>
<td>TCN query solicit</td>
<td>Disabled.</td>
</tr>
<tr>
<td>TCN query count</td>
<td>2.</td>
</tr>
<tr>
<td>MLD listener suppression</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

MLD Snooping Configuration Guidelines

When configuring MLD snooping, consider these guidelines:

- You can configure MLD snooping characteristics at any time, but you must globally enable MLD snooping by using the `ipv6 mld snooping` global configuration command for the configuration to take effect.
- When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the Catalyst 3750-E or Catalyst 3560-E Catalyst 3750-X or 3560-X switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.
- MLD snooping and IGMP snooping act independently of each other. You can enable both features at the same time on the switch.
- The maximum number of multicast entries allowed on the switch or switch stack is determined by the configured SDM template.
- The maximum number of address entries allowed for the switch or switch stack is 1000.
Enabling or Disabling MLD Snooping

By default, IPv6 MLD snooping is globally disabled on the switch and enabled on all VLANs. When MLD snooping is globally disabled, it is also disabled on all VLANs. When you globally enable MLD snooping, the VLAN configuration overrides the global configuration. That is, MLD snooping is enabled only on VLAN interfaces in the default state (enabled).

You can enable and disable MLD snooping on a per-VLAN basis or for a range of VLANs, but if you globally disable MLD snooping, it is disabled in all VLANs. If global snooping is enabled, you can enable or disable VLAN snooping.

Beginning in privileged EXEC mode, follow these steps to globally enable MLD snooping on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: ipv6 mld snooping</td>
<td>Globally enable MLD snooping on the switch.</td>
</tr>
<tr>
<td>Step 3: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To globally disable MLD snooping on the switch, use the `no ipv6 mld snooping` global configuration command.

Beginning in privileged EXEC mode, follow these steps to enable MLD snooping on a VLAN.

**Note** When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: ipv6 mld snooping</td>
<td>Globally enable MLD snooping on the switch.</td>
</tr>
<tr>
<td>Step 3: ipv6 mld snooping vlan vlan-id</td>
<td>Enable MLD snooping on the VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> MLD snooping must be globally enabled for VLAN snooping to be enabled.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable MLD snooping on a VLAN interface, use the `no ipv6 mld snooping vlan vlan-id` global configuration command for the specified VLAN number.
### Configuring a Static Multicast Group

Hosts or Layer 2 ports normally join multicast groups dynamically, but you can also statically configure an IPv6 multicast address and member ports for a VLAN.

Beginning in privileged EXEC mode, follow these steps to add a Layer 2 port as a member of a multicast group:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2 ipv6 mld snooping vlan vlan-id static ipv6_multicast_address interface interface-id</td>
<td>Statically configure a multicast group with a Layer 2 port as a member of a multicast group:</td>
</tr>
<tr>
<td></td>
<td>• vlan-id is the multicast group VLAN ID. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• ipv6_multicast_address is the 128-bit group IPv6 address. The address must be in the form specified in RFC 2373.</td>
</tr>
<tr>
<td></td>
<td>• interface-id is the member port. It can be a physical interface or a port channel (1 to 48).</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show ipv6 mld snooping address user or show ipv6 mld snooping address vlan vlan-id user</td>
<td>Verify the static member port and the IPv6 address.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a Layer 2 port from the multicast group, use the **no ipv6 mld snooping vlan vlan-id static mac-address interface interface-id** global configuration command. If all member ports are removed from a group, the group is deleted.

This example shows how to statically configure an IPv6 multicast group:

```shell
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 2 static FF12::3 interface gigabitethernet1/0/1
Switch(config)# end
```

### Configuring a Multicast Router Port

Although MLD snooping learns about router ports through MLD queries and PIMv6 queries, you can also use the command-line interface (CLI) to add a multicast router port to a VLAN. To add a multicast router port (add a static connection to a multicast router), use the **ipv6 mld snooping vlan mrouter** global configuration command on the switch.

**Note**

Static connections to multicast routers are supported only on switch ports.
Beginning in privileged EXEC mode, follow these steps to add a multicast router port to a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | ipv6 mld snooping vlan vlan-id mrouter interface interface-id | Specify the multicast router VLAN ID, and specify the interface to the multicast router.  
- The VLAN ID range is 1 to 1001 and 1006 to 4094.  
- The interface can be a physical interface or a port channel.  
  The port-channel range is 1 to 48. |
| **Step 3** | end | Return to privileged EXEC mode. |
| **Step 4** | show ipv6 mld snooping mrouter [vlan vlan-id] | Verify that IPv6 MLD snooping is enabled on the VLAN interface. |
| **Step 5** | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To remove a multicast router port from the VLAN, use the `no ipv6 mld snooping vlan vlan-id mrouter interface interface-id` global configuration command.

This example shows how to add a multicast router port to VLAN 200:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 200 mrouter interface gigabitethernet1/0/2
Switch(config)# exit
```

### Enabling MLD Immediate Leave

When you enable MLDv1 Immediate Leave, the switch immediately removes a port from a multicast group when it detects an MLD Done message on that port. You should only use the Immediate-Leave feature when there is a single receiver present on every port in the VLAN. When there are multiple clients for a multicast group on the same port, you should not enable Immediate-Leave in a VLAN.

Beginning in privileged EXEC mode, follow these steps to enable MLDv1 Immediate Leave:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ipv6 mld snooping vlan vlan-id immediate-leave</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>show ipv6 mld snooping vlan vlan-id</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable MLD Immediate Leave on a VLAN, use the `no ipv6 mld snooping vlan vlan-id immediate-leave` global configuration command.

This example shows how to enable MLD Immediate Leave on VLAN 130:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 130 immediate-leave
Switch(config)# exit
```
Configuring MLD Snooping Queries

When Immediate Leave is not enabled and a port receives an MLD Done message, the switch generates MASQs on the port and sends them to the IPv6 multicast address for which the Done message was sent. You can optionally configure the number of MASQs that are sent and the length of time the switch waits for a response before deleting the port from the multicast group.

Beginning in privileged EXEC mode, follow these steps to configure MLD snooping query characteristics for the switch or for a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ipv6 mld snooping robustness-variable value (Optional) Set the number of queries that are sent before switch will deletes a listener (port) that does not respond to a general query. The range is 1 to 3; the default is 2.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>ipv6 mld snooping vlan vlan-id robustness-variable value (Optional) Set the robustness variable on a VLAN basis, which determines the number of general queries that MLD snooping sends before aging out a multicast address when there is no MLD report response. The range is 1 to 3; the default is 0. When set to 0, the number used is the global robustness variable value.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ipv6 mld snooping last-listener-query-count count (Optional) Set the number of MASQs that the switch sends before aging out an MLD client. The range is 1 to 7; the default is 2. The queries are sent 1 second apart.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>ipv6 mld snooping vlan vlan-id last-listener-query-count count (Optional) Set the last-listener query count on a VLAN basis. This value overrides the value configured globally. The range is 1 to 7; the default is 0. When set to 0, the global count value is used. Queries are sent 1 second apart.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>ipv6 mld snooping last-listener-query-interval interval (Optional) Set the maximum response time that the switch waits after sending out a MASQ before deleting a port from the multicast group. The range is 100 to 32,768 thousands of a second. The default is 1000 (1 second).</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>ipv6 mld snooping vlan vlan-id last-listener-query-interval interval (Optional) Set the last-listener query interval on a VLAN basis. This value overrides the value configured globally. The range is 0 to 32,768 thousands of a second. The default is 0. When set to 0, the global last-listener query interval is used.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>ipv6 mld snooping tcn query solicit (Optional) Enable topology change notification (TCN) solicitation, which means that VLANs flood all IPv6 multicast traffic for the configured number of queries before sending multicast data to only those ports requesting to receive it. The default is for TCN to be disabled.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>ipv6 mld snooping tcn flood query count (Optional) When TCN is enabled, specify the number of TCN queries to be sent. The range is from 1 to 10; the default is 2.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>show ipv6 mld snooping querier [vlan vlan-id] (Optional) Verify that the MLD snooping querier information for the switch or for the VLAN.</td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to set the MLD snooping global robustness variable to 3:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping robustness-variable 3
Switch(config)# exit
```

This example shows how to set the MLD snooping last-listener query count for a VLAN to 3:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 200 last-listener-query-count 3
Switch(config)# exit
```

This example shows how to set the MLD snooping last-listener query interval (maximum response time) to 2000 (2 seconds):

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping last-listener-query-interval 2000
Switch(config)# exit
```

### Disabling MLD Listener Message Suppression

MLD snooping listener message suppression is enabled by default. When it is enabled, the switch forwards only one MLD report per multicast router query. When message suppression is disabled, multiple MLD reports could be forwarded to the multicast routers.

Beginning in privileged EXEC mode, follow these steps to disable MLD listener message suppression:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no ipv6 mld snooping</td>
<td>Disable MLD message suppression.</td>
</tr>
<tr>
<td>listener-message-suppression</td>
<td></td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show ipv6 mld snooping</td>
<td>Verify that IPv6 MLD snooping report suppression is</td>
</tr>
<tr>
<td>configuration</td>
<td>disabled.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable MLD message suppression, use the `ipv6 mld snooping listener-message-suppression` global configuration command.
# Displaying MLD Snooping Information

You can display MLD snooping information for dynamically learned and statically configured router ports and VLAN interfaces. You can also display MAC address multicast entries for a VLAN configured for MLD snooping.

## Table 1-2  Commands for Displaying MLD Snooping Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 mld snooping [vlan vlan-id]</code></td>
<td>Display the MLD snooping configuration information for all VLANs on the switch or for a specified VLAN. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>show ipv6 mld snooping mrouter [vlan vlan-id]</code></td>
<td>Display information on dynamically learned and manually configured multicast router interfaces. When you enable MLD snooping, the switch automatically learns the interface to which a multicast router is connected. These are dynamically learned interfaces. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>show ipv6 mld snooping querier [vlan vlan-id]</code></td>
<td>Display information about the IPv6 address and incoming port for the most-recently received MLD query messages in the VLAN. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
</tbody>
</table>
| `show ipv6 mld snooping address [vlan vlan-id] [count | dynamic | user]` | Display all IPv6 multicast address information or specific IPv6 multicast address information for the switch or a VLAN.  
• Enter `count` to show the group count on the switch or in a VLAN.  
• Enter `dynamic` to display MLD snooping learned group information for the switch or for a VLAN.  
• Enter `user` to display MLD snooping user-configured group information for the switch or for a VLAN. |
| `show ipv6 mld snooping address vlan vlan-id [ipv6-multicast-address]` | Display MLD snooping for the specified VLAN and IPv6 multicast address. |
Configuring CDP

This chapter describes how to configure Cisco Discovery Protocol (CDP) on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the “System Management Commands” section in the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4.

- Understanding CDP, page 1-1
- Configuring CDP, page 1-2
- Monitoring and Maintaining CDP, page 1-5

Understanding CDP

CDP is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches) and allows network management applications to discover Cisco devices that are neighbors of already known devices. With CDP, network management applications can learn the device type and the Simple Network Management Protocol (SNMP) agent address of neighboring devices running lower-layer, transparent protocols. This feature enables applications to send SNMP queries to neighboring devices.

CDP runs on all media that support Subnetwork Access Protocol (SNAP). Because CDP runs over the data-link layer only, two systems that support different network-layer protocols can learn about each other.

Each CDP-configured device sends periodic messages to a multicast address, advertising at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or holdtime information, which is the length of time a receiving device holds CDP information before discarding it. Each device also listens to the messages sent by other devices to learn about neighboring devices.

On the switch, CDP enables Network Assistant to display a graphical view of the network. The switch uses CDP to find cluster candidates and maintain information about cluster members and other devices up to three cluster-enabled devices away from the command switch by default.
For a switch and connected endpoint devices running Cisco Medianet

- CDP identifies connected endpoints that communicate directly with the switch.
- To prevent duplicate reports of neighboring devices, only one wired switch reports the location information.
- The wired switch and the endpoints both send and receive location information.

For information:

The switch supports CDP Version 2.

**CDP and Switch Stacks**

A switch stack appears as a single switch in the network. Therefore, CDP discovers the switch stack, not the individual stack members. The switch stack sends CDP messages to neighboring network devices when there are changes to the switch stack membership, such as stack members being added or removed.

**Configuring CDP**

- Default CDP Configuration, page 1-2
- Configuring the CDP Characteristics, page 1-2
- Disabling and Enabling CDP, page 1-3
- Disabling and Enabling CDP on an Interface, page 1-4

**Default CDP Configuration**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP global state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP interface state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP timer (packet update frequency)</td>
<td>60 seconds</td>
</tr>
<tr>
<td>CDP holdtime (before discarding)</td>
<td>180 seconds</td>
</tr>
<tr>
<td>CDP Version-2 advertisements</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

**Configuring the CDP Characteristics**

You can configure the frequency of CDP updates, the amount of time to hold the information before discarding it, and whether or not to send Version-2 advertisements.
Beginning in privileged EXEC mode, follow these steps to configure the CDP timer, holdtime, and advertisement type.

**Note**
Steps 2 through 4 are all optional and can be performed in any order.

### Command Purpose

<table>
<thead>
<tr>
<th>Step 1</th>
<th>configure terminal</th>
<th>Enter global configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>cdp timer seconds</td>
<td>(Optional) Set the transmission frequency of CDP updates in seconds. The range is 5 to 254; the default is 60 seconds.</td>
</tr>
<tr>
<td>Step 3</td>
<td>cdp holdtime seconds</td>
<td>(Optional) Specify the amount of time a receiving device should hold the information sent by your device before discarding it. The range is 10 to 255 seconds; the default is 180 seconds.</td>
</tr>
<tr>
<td>Step 4</td>
<td>cdp advertise-v2</td>
<td>(Optional) Configure CDP to send Version-2 advertisements. This is the default state.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show cdp</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the **no** form of the CDP commands to return to the default settings.

This example shows how to configure CDP characteristics.

```
Switch# configure terminal
Switch(config)# cdp timer 50
Switch(config)# cdp holdtime 120
Switch(config)# cdp advertise-v2
Switch(config)# end
```

For additional CDP **show** commands, see the “Monitoring and Maintaining CDP” section on page 1-5.

### Disabling and Enabling CDP

CDP is enabled by default.

**Note**
Switch clusters and other Cisco devices (such as Cisco IP Phones) regularly exchange CDP messages. Disabling CDP can interrupt cluster discovery and device connectivity. For more information, see Chapter 1, “Clustering Switches” and see Getting Started with Cisco Network Assistant, available on Cisco.com.
Beginning in privileged EXEC mode, follow these steps to disable the CDP device discovery capability:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>no cdp run</td>
<td>Disable CDP.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to enable CDP when it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>cdp run</td>
<td>Enable CDP after disabling it.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Disabling and Enabling CDP on an Interface

CDP is enabled by default on all supported interfaces to send and to receive CDP information.

Note

CDP bypass is not supported and may cause a port go into err-disabled state.

Beginning in privileged EXEC mode, follow these steps to disable CDP on a port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the interface on which you are disabling CDP, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>no cdp enable</td>
<td>Disable CDP on the interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to enable CDP on a port when it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specify the interface on which you are enabling CDP, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> cdp enable</td>
<td>Enable CDP on the interface after disabling it.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to enable CDP on a port when it has been disabled.

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# cdp enable
Switch(config-if)# end
```

### Monitoring and Maintaining CDP

**Table 1-2 Commands for Displaying CDP Information**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear cdp counters</td>
<td>Reset the traffic counters to zero.</td>
</tr>
<tr>
<td>clear cdp table</td>
<td>Delete the CDP table of information about neighbors.</td>
</tr>
<tr>
<td>show cdp</td>
<td>Display global information, such as frequency of transmissions and the holdtime for packets being sent.</td>
</tr>
<tr>
<td>show cdp entry entry-name [protocol</td>
<td>version] Display information about a specific neighbor.</td>
</tr>
<tr>
<td>show cdp interface [interface-id]</td>
<td>Display information about interfaces where CDP is enabled.</td>
</tr>
<tr>
<td>show cdp neighbors [interface-id] [detail]</td>
<td>Display information about neighbors, including device type, interface type and number, holdtime settings, capabilities, platform, and port ID.</td>
</tr>
<tr>
<td>show cdp traffic</td>
<td>Display CDP counters, including the number of packets sent and received and checksum errors.</td>
</tr>
</tbody>
</table>
Configuring Port-Based Traffic Control

This chapter describes how to configure the port-based traffic control features on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

- Configuring Storm Control, page 1-1
- Configuring Protected Ports, page 1-6
- Configuring Port Blocking, page 1-7
- Configuring Port Security, page 1-8
- Configuring Protocol Storm Protection, page 1-19
- Displaying Port-Based Traffic Control Settings, page 1-21

Configuring Storm Control

- Understanding Storm Control, page 1-1
- Default Storm Control Configuration, page 1-3
- Configuring Storm Control and Threshold Levels, page 1-3
- Default Protected Port Configuration, page 1-6

Understanding Storm Control

Storm control prevents traffic on a LAN from being disrupted by a broadcast, multicast, or unicast storm on one of the physical interfaces. A LAN storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. Errors in the protocol-stack implementation, mistakes in network configurations, or users issuing a denial-of-service attack can cause a storm.
Storm control (or traffic suppression) monitors packets passing from an interface to the switching bus and determines if the packet is unicast, multicast, or broadcast. The switch counts the number of packets of a specified type received within the 1-second time interval and compares the measurement with a predefined suppression-level threshold.

Storm control uses one of these methods to measure traffic activity:

- Bandwidth as a percentage of the total available bandwidth of the port that can be used by the broadcast, multicast, or unicast traffic
- Traffic rate in packets per second at which broadcast, multicast, or unicast packets are received
- Traffic rate in bits per second at which broadcast, multicast, or unicast packets are received
- Traffic rate in packets per second and for small frames. This feature is enabled globally. The threshold for small frames is configured for each interface. (Cisco IOS Release 12.2(44)SE or later)

With each method, the port blocks traffic when the rising threshold is reached. The port remains blocked until the traffic rate drops below the falling threshold (if one is specified) and then resumes normal forwarding. If the falling suppression level is not specified, the switch blocks all traffic until the traffic rate drops below the rising suppression level. In general, the higher the level, the less effective the protection against broadcast storms.

When the storm control threshold for multicast traffic is reached, all multicast traffic except control traffic, such as bridge protocol data unit (BDPU) and Cisco Discovery Protocol (CDP) frames, are blocked. However, the switch does not differentiate between routing updates, such as OSPF, and regular multicast data traffic, so both types of traffic are blocked.

The graph in Figure 1-1 shows broadcast traffic patterns on an interface over a given period of time. The example can also be applied to multicast and unicast traffic. In this example, the broadcast traffic being forwarded exceeded the configured threshold between time intervals T1 and T2 and between T4 and T5. When the amount of specified traffic exceeds the threshold, all traffic of that kind is dropped for the next time period. Therefore, broadcast traffic is blocked during the intervals following T2 and T5. At the next time interval (for example, T3), if broadcast traffic does not exceed the threshold, it is again forwarded.

The combination of the storm-control suppression level and the 1-second time interval controls the way the storm control algorithm works. A higher threshold allows more packets to pass through. A threshold value of 100 percent means that no limit is placed on the traffic. A value of 0.0 means that all broadcast, multicast, or unicast traffic on that port is blocked.
Chapter 1  Configuring Port-Based Traffic Control

Configuring Storm Control

Note
Because packets do not arrive at uniform intervals, the 1-second time interval during which traffic activity is measured can affect the behavior of storm control.

You use the `storm-control` interface configuration commands to set the threshold value for each traffic type.

Default Storm Control Configuration

By default, unicast, broadcast, and multicast storm control are disabled on the switch interfaces; that is, the suppression level is 100 percent.

Configuring Storm Control and Threshold Levels

You configure storm control on a port and enter the threshold level that you want to be used for a particular type of traffic.

However, because of hardware limitations and the way in which packets of different sizes are counted, threshold percentages are approximations. Depending on the sizes of the packets making up the incoming traffic, the actual enforced threshold might differ from the configured level by several percentage points.

Note
Storm control is supported on physical interfaces. You can also configure storm control on an EtherChannel. When storm control is configured on an EtherChannel, the storm control settings propagate to the EtherChannel physical interfaces.

Beginning in privileged EXEC mode, follow these steps to storm control and threshold levels:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>interface interface-id</code></td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
### Step 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>storm-control { broadcast</td>
<td>multicast</td>
</tr>
</tbody>
</table>

The keywords have these meanings:

- For *level*, specify the rising threshold level for broadcast, multicast, or unicast traffic as a percentage (up to two decimal places) of the bandwidth. The port blocks traffic when the rising threshold is reached. The range is 0.00 to 100.00.
- (Optional) For *level-low*, specify the falling threshold level as a percentage (up to two decimal places) of the bandwidth. This value must be less than or equal to the rising suppression value. The port forwards traffic when traffic drops below this level. If you do not configure a falling suppression level, it is set to the rising suppression level. The range is 0.00 to 100.00.

If you set the threshold to the maximum value (100 percent), no limit is placed on the traffic. If you set the threshold to 0.0, all broadcast, multicast, and unicast traffic on that port is blocked.

- For *bps bps*, specify the rising threshold level for broadcast, multicast, or unicast traffic in bits per second (up to one decimal place). The port blocks traffic when the rising threshold is reached. The range is 0.0 to 10000000000.0.
- (Optional) For *bps-low*, specify the falling threshold level in bits per second (up to one decimal place). It can be less than or equal to the rising threshold level. The port forwards traffic when traffic drops below this level. The range is 0.0 to 10000000000.0.

- For *pps pps*, specify the rising threshold level for broadcast, multicast, or unicast traffic in packets per second (up to one decimal place). The port blocks traffic when the rising threshold is reached. The range is 0.0 to 10000000000.0.
- (Optional) For *pps-low*, specify the falling threshold level in packets per second (up to one decimal place). It can be less than or equal to the rising threshold level. The port forwards traffic when traffic drops below this level. The range is **0.0 to 10000000000.0**.

For BPS and PPS settings, you can use metric suffixes such as k, m, and g for large number thresholds.

### Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>storm-control action { shutdown</td>
<td>trap }</td>
</tr>
</tbody>
</table>

- Select the *shutdown* keyword to error-disable the port during a storm.
- Select the *trap* keyword to generate an SNMP trap when a storm is detected.

### Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
### Configuring Storm Control

To disable storm control, use the `no storm-control {broadcast | multicast | unicast} level` interface configuration command.

This example shows how to enable unicast storm control on a port with an 87-percent rising suppression level and a 65-percent falling suppression level:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# storm-control unicast level 87 65
```

This example shows how to enable broadcast address storm control on a port to a level of 20 percent. When the broadcast traffic exceeds the configured level of 20 percent of the total available bandwidth of the port within the traffic-storm-control interval, the switch drops all broadcast traffic until the end of the traffic-storm-control interval:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# storm-control broadcast level 20
```

### Configuring Small-Frame Arrival Rate

Incoming VLAN-tagged packets smaller than 67 bytes are considered small frames. They are forwarded by the switch, but they do not cause the switch storm-control counters to increment. In Cisco IOS Release 12.2(44)SE and later, you can configure a port to be error disabled if small frames arrive at a specified rate (threshold).

You globally enable the small-frame rate-arrival feature on the switch and then configure the small-frame threshold for packets on each interface. Packets smaller than the minimum size and arriving at a specified rate (the threshold) are dropped since the port is error disabled.

If the `errdisable recovery cause small-frame` global configuration command is entered, the port is re-enabled after a specified time. (You specify the recovery time by using `errdisable recovery` global configuration command.)

Beginning in privileged EXEC mode, follow these steps to configure the threshold level for each interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>errdisable detect cause small-frame</code></td>
<td>Enable the small-frame rate-arrival feature on the switch.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>errdisable recovery interval interval</code></td>
<td>(Optional) Specify the time to recover from the specified error-disabled state.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>errdisable recovery cause small-frame</code></td>
<td>(Optional) Configure the recovery time for error-disabled ports to be automatically re-enabled after they are error disabled by the arrival of small frames</td>
</tr>
</tbody>
</table>
Chapter 1  Configuring Port-Based Traffic Control

This example shows how to enable the small-frame arrival-rate feature, configure the port recovery time, and configure the threshold for error disabling a port:

```
Switch# configure terminal
Switch# errdisable detect cause small-frame
Switch# errdisable recovery cause small-frame
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# small-frame violation rate 10000
Switch(config-if)# end
```

Configuring Protected Ports

Some applications require that no traffic be forwarded at Layer 2 between ports on the same switch so that one neighbor does not see the traffic generated by another neighbor. In such an environment, the use of protected ports ensures that there is no exchange of unicast, broadcast, or multicast traffic between these ports on the switch.

Protected ports have these features:

- A protected port does not forward any traffic (unicast, multicast, or broadcast) to any other port that is also a protected port. Data traffic cannot be forwarded between protected ports at Layer 2; only control traffic, such as PIM packets, is forwarded because these packets are processed by the CPU and forwarded in software. All data traffic passing between protected ports must be forwarded through a Layer 3 device.
- Forwarding behavior between a protected port and a nonprotected port proceeds as usual.

Because a switch stack represents a single logical switch, Layer 2 traffic is not forwarded between any protected ports in the switch stack, whether they are on the same or different switches in the stack.

- Default Protected Port Configuration, page 1-6
- Protected Port Configuration Guidelines, page 1-7
- Configuring a Protected Port, page 1-7

Default Protected Port Configuration

The default is to have no protected ports defined.
**Protected Port Configuration Guidelines**

You can configure protected ports on a physical interface (for example, Gigabit Ethernet port 1) or an EtherChannel group (for example, port-channel 5). When you enable protected ports for a port channel, it is enabled for all ports in the port-channel group.

Do not configure a private-VLAN port as a protected port. Do not configure a protected port as a private-VLAN port. A private-VLAN isolated port does not forward traffic to other isolated ports or community ports. For more information about private VLANs, see Chapter 1, “Configuring Private VLANs.”

**Configuring a Protected Port**

Beginning in privileged EXEC mode, follow these steps to define a port as a protected port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport protected</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable protected port, use the `no switchport protected` interface configuration command.

This example shows how to configure a port as a protected port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport protected
Switch(config-if)# end
```

**Configuring Port Blocking**

By default, the switch floods packets with unknown destination MAC addresses out of all ports. If unknown unicast and multicast traffic is forwarded to a protected port, there could be security issues. To prevent unknown unicast or multicast traffic from being forwarded from one port to another, you can block a port (protected or nonprotected) from flooding unknown unicast or multicast packets to other ports.

---

**Note**

With multicast traffic, the port blocking feature blocks only pure Layer 2 packets. Multicast packets that contain IPv4 or IPv6 information in the header are not blocked.

- Default Port Blocking Configuration, page 1-8
- Blocking Flooded Traffic on an Interface, page 1-8
Default Port Blocking Configuration

The default is to not block flooding of unknown multicast and unicast traffic out of a port, but to flood these packets to all ports.

Blocking Flooded Traffic on an Interface

The interface can be a physical interface or an EtherChannel group. When you block multicast or unicast traffic for a port channel, it is blocked on all ports in the port-channel group.

Beginning in privileged EXEC mode, follow these steps to disable the flooding of unicast and Layer 2 multicast packets out of an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switchport block multicast</td>
<td>Block unknown multicast forwarding out of the port.</td>
</tr>
<tr>
<td>Step 4 switchport block unicast</td>
<td>Block unknown unicast forwarding out of the port.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show interfaces interface-id switchport</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the interface to the default condition where no traffic is blocked and normal forwarding occurs on the port, use the no switchport block {multicast | unicast} interface configuration commands.

This example shows how to block unicast and Layer 2 multicast flooding on a port:

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport block multicast
Switch(config-if)# switchport block unicast
Switch(config-if)# end

Configuring Port Security

You can use the port security feature to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port. When you assign secure MAC addresses to a secure port, the port does not forward packets with source addresses outside the group of defined addresses. If you limit the number of secure MAC addresses to one and assign a single secure MAC address, the workstation attached to that port is assured the full bandwidth of the port.
If a port is configured as a secure port and the maximum number of secure MAC addresses is reached, when the MAC address of a station attempting to access the port is different from any of the identified secure MAC addresses, a security violation occurs. Also, if a station with a secure MAC address configured or learned on one secure port attempts to access another secure port, a violation is flagged.

- **Understanding Port Security**, page 1-9
- **Default Port Security Configuration**, page 1-11
- **Port Security Configuration Guidelines**, page 1-11
- **Enabling and Configuring Port Security**, page 1-13
- **Enabling and Configuring Port Security Aging**, page 1-17
- **Port Security and Switch Stacks**, page 1-18
- **Port Security and Private VLANs**, page 1-18

### Understanding Port Security

- **Secure MAC Addresses**, page 1-9
- **Security Violations**, page 1-10

#### Secure MAC Addresses

You configure the maximum number of secure addresses allowed on a port by using the `switchport port-security maximum` value interface configuration command.

**Note**

If you try to set the maximum value to a number less than the number of secure addresses already configured on an interface, the command is rejected.

The switch supports these types of secure MAC addresses:

- **Static secure MAC addresses**—These are manually configured by using the `switchport port-security mac-address` mac-address interface configuration command, stored in the address table, and added to the switch running configuration.

- **Dynamic secure MAC addresses**—These are dynamically configured, stored only in the address table, and removed when the switch restarts.

- **Sticky secure MAC addresses**—These can be dynamically learned or manually configured, stored in the address table, and added to the running configuration. If these addresses are saved in the configuration file, when the switch restarts, the interface does not need to dynamically reconfigure them.

You can configure an interface to convert the dynamic MAC addresses to sticky secure MAC addresses and to add them to the running configuration by enabling `sticky learning`. To enable sticky learning, enter the `switchport port-security mac-address sticky` interface configuration command. When you enter this command, the interface converts all the dynamic secure MAC addresses, including those that were dynamically learned before sticky learning was enabled, to sticky secure MAC addresses. All sticky secure MAC addresses are added to the running configuration.

The sticky secure MAC addresses do not automatically become part of the configuration file, which is the startup configuration used each time the switch restarts. If you save the sticky secure MAC addresses in the configuration file, when the switch restarts, the interface does not need to relearn these addresses. If you do not save the sticky secure addresses, they are lost.
If sticky learning is disabled, the sticky secure MAC addresses are converted to dynamic secure addresses and are removed from the running configuration.

The maximum number of secure MAC addresses that you can configure on a switch or switch stack is set by the maximum number of available MAC addresses allowed in the system. This number is determined by the active Switch Database Management (SDM) template. See Chapter 1, “Configuring SDM Templates.” This number is the total of available MAC addresses, including those used for other Layer 2 functions and any other secure MAC addresses configured on interfaces.

### Security Violations

It is a security violation when one of these situations occurs:

- The maximum number of secure MAC addresses have been added to the address table, and a station whose MAC address is not in the address table attempts to access the interface.
- An address learned or configured on one secure interface is seen on another secure interface in the same VLAN.

You can configure the interface for one of three violation modes, based on the action to be taken if a violation occurs:

- **protect**—when the number of secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. You are not notified that a security violation has occurred.
  
  **Note** We do not recommend configuring the protect violation mode on a trunk port. The protect mode disables learning when any VLAN reaches its maximum limit, even if the port has not reached its maximum limit.

- **restrict**—when the number of secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. In this mode, you are notified that a security violation has occurred. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.

- **shutdown**—a port security violation causes the interface to become error-disabled and to shut down immediately, and the port LED turns off. When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shutdown` interface configuration commands. This is the default mode.

- **shutdown vlan**—Use to set the security violation mode per-VLAN. In this mode, the VLAN is error disabled instead of the entire port when a violation occurs.

Table 1-1 shows the violation mode and the actions taken when you configure an interface for port security.
Port security can only be configured on static access ports or trunk ports. A secure port cannot be a dynamic access port.

A secure port cannot be a destination port for Switched Port Analyzer (SPAN).

Note: Voice VLAN is only supported on access ports and not on trunk ports, even though the configuration is allowed.

A secure port cannot be a private-VLAN port.

When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to two. When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN.

### Table 1-1  Security Violation Mode Actions

<table>
<thead>
<tr>
<th>Violation Mode</th>
<th>Traffic is forwarded¹</th>
<th>Sends SNMP trap</th>
<th>Sends syslog message</th>
<th>Displays error message²</th>
<th>Violation counter increments</th>
<th>Shuts down port</th>
</tr>
</thead>
<tbody>
<tr>
<td>protect</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>restrict</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>shutdown</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>shutdown vlan</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No³</td>
</tr>
</tbody>
</table>

1. Packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses.
2. The switch returns an error message if you manually configure an address that would cause a security violation.
3. Shuts down only the VLAN on which the violation occurred.

### Table 1-2  Default Port Security Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port security</td>
<td>Disabled on a port.</td>
</tr>
<tr>
<td>Sticky address learning</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Maximum number of secure MAC addresses per port</td>
<td>1.</td>
</tr>
<tr>
<td>Violation mode</td>
<td>Shutdown. The port shuts down when the maximum number of secure MAC addresses is exceeded.</td>
</tr>
<tr>
<td>Port security aging</td>
<td>Disabled. Aging time is 0. Static aging is disabled. Type is absolute.</td>
</tr>
</tbody>
</table>

### Default Port Security Configuration

### Port Security Configuration Guidelines

- Port security can only be configured on static access ports or trunk ports. A secure port cannot be a dynamic access port.
- A secure port cannot be a destination port for Switched Port Analyzer (SPAN).
VLAN, but is not learned on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the phone.

- When a trunk port configured with port security and assigned to an access VLAN for data traffic and to a voice VLAN for voice traffic, entering the `switchport voice` and `switchport priority extend` interface configuration commands has no effect.

  When a connected device uses the same MAC address to request an IP address for the access VLAN and then an IP address for the voice VLAN, only the access VLAN is assigned an IP address.

- When you enter a maximum secure address value for an interface, and the new value is greater than the previous value, the new value overwrites the previously configured value. If the new value is less than the previous value and the number of configured secure addresses on the interface exceeds the new value, the command is rejected.

- The switch does not support port security aging of sticky secure MAC addresses.

Table 1-3 summarizes port security compatibility with other port-based features.

<table>
<thead>
<tr>
<th>Type of Port or Feature on Port</th>
<th>Compatible with Port Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTP(^1) port(^2)</td>
<td>No</td>
</tr>
<tr>
<td>Trunk port</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic-access port(^3)</td>
<td>No</td>
</tr>
<tr>
<td>Routed port</td>
<td>No</td>
</tr>
<tr>
<td>SPAN source port</td>
<td>Yes</td>
</tr>
<tr>
<td>SPAN destination port</td>
<td>No</td>
</tr>
<tr>
<td>EtherChannel</td>
<td>Yes</td>
</tr>
<tr>
<td>Tunneling port</td>
<td>No</td>
</tr>
<tr>
<td>Protected port</td>
<td>Yes</td>
</tr>
<tr>
<td>IEEE 802.1x port</td>
<td>Yes</td>
</tr>
<tr>
<td>Voice VLAN port(^4)</td>
<td>Yes</td>
</tr>
<tr>
<td>Private VLAN port</td>
<td>No</td>
</tr>
<tr>
<td>IP source guard</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic Address Resolution Protocol (ARP) inspection</td>
<td>Yes</td>
</tr>
<tr>
<td>Flex Links</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. DTP = Dynamic Trunking Protocol
2. A port configured with the `switchport mode dynamic` interface configuration command.
3. A VLAN Query Protocol (VQP) port configured with the `switchport access vlan dynamic` interface configuration command.
4. You must set the maximum allowed secure addresses on the port to two plus the maximum number of secure addresses allowed on the access VLAN.
## Enabling and Configuring Port Security

Beginning in privileged EXEC mode, follow these steps to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switchport mode { access</td>
<td>trunk }</td>
</tr>
<tr>
<td>Step 4 switchport voice vlan vlan-id</td>
<td>Enable voice VLAN on a port. vlan-id—Specify the VLAN to be used for voice traffic.</td>
</tr>
<tr>
<td>Step 5 switchport port-security</td>
<td>Enable port security on the interface.</td>
</tr>
<tr>
<td>Step 6 switchport port-security [maximum value [vlan {vlan-list</td>
<td>{access</td>
</tr>
</tbody>
</table>

Enter one of these options after you enter the vlan keyword:

- **vlan-list**—On a trunk port, you can set a per-VLAN maximum value on a range of VLANs separated by a hyphen or a series of VLANs separated by commas. For nonspecified VLANs, the per-VLAN maximum value is used.
- **access**—On an access port, specify the VLAN as an access VLAN.
- **voice**—On an access port, specify the VLAN as a voice VLAN.

**Note** The voice keyword is available only if a voice VLAN is configured on a port and if that port is not the access VLAN. If an interface is configured for voice VLAN, configure a maximum of two secure MAC addresses.
### Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport port-security violation</td>
<td>(Optional) Set the violation mode, the action to be taken when a security violation is detected, as one of these:</td>
</tr>
<tr>
<td>{ protect</td>
<td>restrict</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> We do not recommend configuring the protect mode on a trunk port. The protect mode disables learning when any VLAN reaches its maximum limit, even if the port has not reached its maximum limit.</td>
</tr>
<tr>
<td></td>
<td><strong>restrict</strong>—When the number of secure MAC addresses reaches the limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses or increase the number of maximum allowable addresses. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.</td>
</tr>
<tr>
<td></td>
<td><strong>shutdown</strong>—The interface is error-disabled when a violation occurs, and the port LED turns off. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.</td>
</tr>
<tr>
<td></td>
<td><strong>shutdown vlan</strong>—Use to set the security violation mode per VLAN. In this mode, the VLAN is error disabled instead of the entire port when a violation occurs.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> When a secure port is in the error-disabled state, you can bring it out of this state by entering the errdisable recovery cause psecure-violation global configuration command. You can manually re-enable it by entering the shutdown and no shutdown interface configuration commands or by using the clear errdisable interface vlan privileged EXEC command.</td>
</tr>
</tbody>
</table>
### Step 8

**Command**  
```
switchport port-security [mac-address mac-address [vlan vlan-id | {access | voice}]]
```

**Purpose**  
(Optional) Enter a secure MAC address for the interface. You can use this command to enter the maximum number of secure MAC addresses. If you configure fewer secure MAC addresses than the maximum, the remaining MAC addresses are dynamically learned.

**Note**  
If you enable sticky learning after you enter this command, the secure addresses that were dynamically learned are converted to sticky secure MAC addresses and are added to the running configuration.

(Optional) **vlan**—set a per-VLAN maximum value.

Enter one of these options after you enter the **vlan** keyword:

- **vlan-id**—On a trunk port, you can specify the VLAN ID and the MAC address. If you do not specify a VLAN ID, the native VLAN is used.
- **access**—On an access port, specify the VLAN as an access VLAN.
- **voice**—On an access port, specify the VLAN as a voice VLAN.

**Note**  
The **voice** keyword is available only if a voice VLAN is configured on a port and if that port is not the access VLAN. If an interface is configured for voice VLAN, configure a maximum of two secure MAC addresses.

### Step 9

**Command**  
```
switchport port-security mac-address sticky
```

**Purpose**  
(Optional) Enable sticky learning on the interface.

### Step 10

**Command**  
```
switchport port-security mac-address sticky [mac-address | vlan vlan-id | {access | voice}]
```

**Purpose**  
(Optional) Enter a sticky secure MAC address, repeating the command as many times as necessary. If you configure fewer secure MAC addresses than the maximum, the remaining MAC addresses are dynamically learned, are converted to sticky secure MAC addresses, and are added to the running configuration.

**Note**  
If you do not enable sticky learning before this command is entered, an error message appears, and you cannot enter a sticky secure MAC address.

(Optional) **vlan**—set a per-VLAN maximum value.

Enter one of these options after you enter the **vlan** keyword:

- **vlan-id**—On a trunk port, you can specify the VLAN ID and the MAC address. If you do not specify a VLAN ID, the native VLAN is used.
- **access**—On an access port, specify the VLAN as an access VLAN.
- **voice**—On an access port, specify the VLAN as a voice VLAN.

**Note**  
The **voice** keyword is available only if a voice VLAN is configured on a port and if that port is not the access VLAN.

### Step 11

**Command**  
```
end
```

**Purpose**  
Return to privileged EXEC mode.

### Step 12

**Command**  
```
show port-security
```

**Purpose**  
Verify your entries.

### Step 13

**Command**  
```
copy running-config startup-config
```

**Purpose**  
(Optional) Save your entries in the configuration file.
To return the interface to the default condition as not a secure port, use the `no switchport port-security` interface configuration command. If you enter this command when sticky learning is enabled, the sticky secure addresses remain part of the running configuration but are removed from the address table. All addresses are now dynamically learned.

To return the interface to the default number of secure MAC addresses, use the `no switchport port-security maximum value` interface configuration command. To return the violation mode to the default condition (shutdown mode), use the `no switchport port-security violation {protocol | restrict}` interface configuration command.

To disable sticky learning on an interface, use the `no switchport port-security mac-address sticky` interface configuration command. The interface converts the sticky secure MAC addresses to dynamic secure addresses. However, if you have previously saved the configuration with the sticky MAC addresses, you should save the configuration again after entering the `no switchport port-security mac-address sticky` command, or the sticky addresses will be restored if the switch reboots.

Use the `clear port-security {all | configured | dynamic | sticky}` privileged EXEC command to delete from the MAC address table all secure addresses or all secure addresses of a specific type (configured, dynamic, or sticky) on the switch or on an interface.

To delete a specific secure MAC address from the address table, use the `no switchport port-security mac-address mac-address` interface configuration command. To delete all dynamic secure addresses on an interface from the address table, enter the `no switchport port-security` interface configuration command followed by the `switchport port-security` command (to re-enable port security on the interface). If you use the `no switchport port-security mac-address sticky` interface configuration command to convert sticky secure MAC addresses to dynamic secure MAC addresses before entering the `no switchport port-security` command, all secure addresses on the interface except those that were manually configured are deleted.

You must specifically delete configured secure MAC addresses from the address table by using the `no switchport port-security mac-address mac-address` interface configuration command.

This example shows how to enable port security on a port and to set the maximum number of secure addresses to 50. The violation mode is the default, no static secure MAC addresses are configured, and sticky learning is enabled.

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 50
Switch(config-if)# switchport port-security mac-address sticky
```

This example shows how to configure a static secure MAC address on VLAN 3 on a port:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport mode trunk
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security mac-address 0000.02000.0004 vlan 3
```

This example shows how to enable sticky port security on a port, to manually configure MAC addresses for data VLAN and voice VLAN, and to set the total maximum number of secure addresses to 20 (10 for data VLAN and 10 for voice VLAN).

```
Switch(config)# interface tengigabitethernet1/0/1
Switch(config-if)# switchport access vlan 21
Switch(config-if)# switchport mode access
Switch(config-if)# switchport voice vlan 22
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 20
Switch(config-if)# switchport port-security violation restrict
Switch(config-if)# switchport port-security mac-address sticky
Switch(config-if)# switchport port-security mac-address sticky 0000.0000.0002
```
Switch(config-if)# switchport port-security mac-address 0000.0000.0003
Switch(config-if)# switchport port-security mac-address sticky 0000.0000.0001 vlan voice
Switch(config-if)# switchport port-security mac-address 0000.0000.0004 vlan voice
Switch(config-if)# switchport port-security maximum 10 vlan access
Switch(config-if)# switchport port-security maximum 10 vlan voice

Enabling and Configuring Port Security Aging

You can use port security aging to set the aging time for all secure addresses on a port. Two types of aging are supported per port:

- **Absolute**—The secure addresses on the port are deleted after the specified aging time.
- **Inactivity**—The secure addresses on the port are deleted only if the secure addresses are inactive for the specified aging time.

Use this feature to remove and add devices on a secure port without manually deleting the existing secure MAC addresses and to still limit the number of secure addresses on a port. You can enable or disable the aging of secure addresses on a per-port basis.

Beginning in privileged EXEC mode, follow these steps to configure port security aging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport port-security aging {static</td>
</tr>
<tr>
<td></td>
<td>Enable or disable static aging for the secure port, or set the aging time or type.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> The switch does not support port security aging of sticky secure addresses.</td>
</tr>
<tr>
<td></td>
<td>Enter <strong>static</strong> to enable aging for statically configured secure addresses on this port.</td>
</tr>
<tr>
<td></td>
<td>For <strong>time</strong>, specify the aging time for this port. The valid range is from 0 to 1440 minutes.</td>
</tr>
<tr>
<td></td>
<td>For <strong>type</strong>, select one of these keywords:</td>
</tr>
<tr>
<td></td>
<td>- <strong>absolute</strong>—Sets the aging type as absolute aging. All the secure addresses on this port age out exactly after the time (minutes) specified lapses and are removed from the secure address list.</td>
</tr>
<tr>
<td></td>
<td>- <strong>inactivity</strong>—Sets the aging type as inactivity aging. The secure addresses on this port age out only if there is no data traffic from the secure source addresses for the specified time period.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show port-security [interface interface-id] [address]</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable port security aging for all secure addresses on a port, use the `no switchport port-security aging time` interface configuration command. To disable aging for only statically configured secure addresses, use the `no switchport port-security aging static` interface configuration command.

This example shows how to set the aging time as 2 hours for the secure addresses on a port:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport port-security aging time 120
```

This example shows how to set the aging time as 2 minutes for the inactivity aging type with aging enabled for the configured secure addresses on the interface:

```
Switch(config-if)# switchport port-security aging time 2
Switch(config-if)# switchport port-security aging type inactivity
Switch(config-if)# switchport port-security aging static
```

You can verify the previous commands by entering the `show port-security interface interface-id` privileged EXEC command.

### Port Security and Switch Stacks

When a switch joins a stack, the new switch will get the configured secure addresses. All dynamic secure addresses are downloaded by the new stack member from the other stack members.

When a switch (either the stack master or a stack member) leaves the stack, the remaining stack members are notified, and the secure MAC addresses configured or learned by that switch are deleted from the secure MAC address table. For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”

### Port Security and Private VLANs

Port security allows an administrator to limit the number of MAC addresses learned on a port or to define which MAC addresses can be learned on a port.

Beginning in privileged EXEC mode, follow these steps to configure port security on a PVLAN host and promiscuous ports:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface interface-id</code></td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>`switchport mode private-vlan {host</td>
<td>promiscuous}`</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>switchport port-security</code></td>
<td>Enable port security on the interface.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>show port-security [interface interface-id]</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to configure port security on a PVLAN host and promiscuous ports:

Switch(config)# interface gigabitethernet 1/0/8
Switch(config-if)# switchport private-vlan mapping 2061 2201-2206,3101
Switch(config-if)# switchport mode private-vlan promiscuous
Switch(config-if)# switchport port-security maximum 288
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security violation restrict

**Note**

Ports that have both port security and private VLANs configured can be labeled secure PVLAN ports. When a secure address is learned on a secure PVLAN port, the same secure address cannot be learned on another secure PVLAN port belonging to the same primary VLAN. However, an address learned on unsecure PVLAN port can be learned on a secure PVLAN port belonging to same primary VLAN.

Secure addresses that are learned on host port get automatically replicated on associated primary VLANs, and similarly, secure addresses learned on promiscuous ports automatically get replicated on all associated secondary VLANs. Static addresses (using mac-address-table static command) cannot be user configured on a secure port.

---

### Configuring Protocol Storm Protection

- Understanding Protocol Storm Protection, page 1-19
- Default Protocol Storm Protection Configuration, page 1-20
- Enabling Protocol Storm Protection, page 1-20

### Understanding Protocol Storm Protection

When a switch is flooded with Address Resolution Protocol (ARP) or control packets, high CPU utilization can cause the CPU to overload. These issues can occur:

- Routing protocol can flap because the protocol control packets are not received, and neighboring adjacencies are dropped.
- Spanning Tree Protocol (STP) reconverges because the STP bridge protocol data unit (BPDU) cannot be sent or received.
- CLI is slow or unresponsive.

Using protocol storm protection, you can control the rate at which control packets are sent to the switch by specifying the upper threshold for the packet flow rate. The supported protocols are ARP, ARP snooping, Dynamic Host Configuration Protocol (DHCP) v4, DHCP snooping, Internet Group Management Protocol (IGMP), and IGMP snooping.

When the packet rate exceeds the defined threshold, the switch drops all traffic arriving on the specified virtual port for 30 seconds. The packet rate is measured again, and protocol storm protection is again applied if necessary.

For further protection, you can manually error disable the virtual port, blocking all incoming traffic on the virtual port. You can manually enable the virtual port or set a time interval for automatic re-enabling of the virtual port.
Excess packets are dropped on no more than two virtual ports. Virtual port error disabling is not supported for EtherChannel and Flexlink interfaces.

### Default Protocol Storm Protection Configuration

Protocol storm protection is disabled by default. When it is enabled, auto-recovery of the virtual port is disabled by default.

### Enabling Protocol Storm Protection

Beginning in privileged EXEC mode, follow these steps to configure protocol storm protection.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`psp {arp</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>errdisable detect cause psp</code> (Optional) Enable error-disable detection for protocol storm protection. If this feature is enabled, the virtual port is error disabled. If this feature is disabled, the port drops excess packets without error disabling the port.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>errdisable recovery interval time</code> (Optional) Configure an auto-recovery time (in seconds) for error-disabled virtual ports. When a virtual port is error-disabled, the switch auto-recovers after this time. The range is from 30 to 86400 seconds.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>`show psp config {arp</td>
</tr>
</tbody>
</table>

This example shows how to configure protocol storm protection to drop incoming DHCP traffic on DHCP when it exceeds 35 packets per second.

```
Switch# configure terminal
Switch(config)# psp dhcp pps 35
```

To disable protocol storm protection for a specific protocol, use the `no psp {arp | dhcp | igmp}` privileged EXEC command.

To disable error-disable detection for protocol storm protection, use the `no errdisable detect cause psp` global configuration command.

To manually re-enable an error-disabled virtual port, use the `errdisable recovery cause psp` global configuration command.

To disable auto-recovery of error-disabled ports, use the `no errdisable recovery cause psp` global configuration command.
When protocol storm protection is configured, a counter records the number of dropped packets. To see this counter, use the `show psp statistics [arp | igmp | dhcp]` privileged EXEC command. To clear the counter for a protocol, use the `clear psp counter [arp | igmp | dhcp]` command.

**Displaying Port-Based Traffic Control Settings**

The `show interfaces interface-id switchport` privileged EXEC command displays (among other characteristics) the interface traffic suppression and control configuration. The `show storm-control` and `show port-security` privileged EXEC commands display those storm control and port security settings.

To display traffic control information, use one or more of the privileged EXEC commands in Table 1-4.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [interface-id] switchport</code></td>
<td>Displays the administrative and operational status of all switching (nonrouting) ports or the specified port, including port blocking and port protection settings.</td>
</tr>
<tr>
<td>`show storm-control [interface-id] [broadcast</td>
<td>multicast</td>
</tr>
<tr>
<td><code>show port-security [interface interface-id]</code></td>
<td>Displays port security settings for the switch or for the specified interface, including the maximum allowed number of secure MAC addresses for each interface, the number of secure MAC addresses on the interface, the number of security violations that have occurred, and the violation mode.</td>
</tr>
<tr>
<td><code>show port-security [interface interface-id] address</code></td>
<td>Displays all secure MAC addresses configured on all switch interfaces or on a specified interface with aging information for each address.</td>
</tr>
<tr>
<td><code>show port-security interface interface-id vlan</code></td>
<td>Displays the number of secure MAC addresses configured per VLAN on the specified interface.</td>
</tr>
</tbody>
</table>
Configuring LLDP, LLDP-MED, and Wired Location Service

This chapter describes how to configure the Link Layer Discovery Protocol (LLDP), LLDP Media Endpoint Discovery (LLDP-MED) and wired location service on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the “System Management Commands” section in the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4.

- Understanding LLDP, LLDP-MED, and Wired Location Service, page 1-1
- Configuring LLDP, LLDP-MED, and Wired Location Service, page 1-5
- Monitoring and Maintaining LLDP, LLDP-MED, and Wired Location Service, page 1-11

Understanding LLDP, LLDP-MED, and Wired Location Service

- LLDP, page 1-1
- LLDP-MED, page 1-2
- Wired Location Service, page 1-3

LLDP

The Cisco Discovery Protocol (CDP) is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches). CDP allows network management applications to automatically discover and learn about other Cisco devices connected to the network.

To support non-Cisco devices and to allow for interoperability between other devices, the switch supports the IEEE 802.1AB Link Layer Discovery Protocol (LLDP). LLDP is a neighbor discovery protocol that is used for network devices to advertise information about themselves to other devices on the network. This protocol runs over the data-link layer, which allows two systems running different network layer protocols to learn about each other.
LLDP supports a set of attributes that it uses to discover neighbor devices. These attributes contain type, length, and value descriptions and are referred to as TLVs. LLDP supported devices can use TLVs to receive and send information to their neighbors. This protocol can advertise details such as configuration information, device capabilities, and device identity.

The switch supports these basic management TLVs. These are mandatory LLDP TLVs.

- Port description TLV
- System name TLV
- System description TLV
- System capabilities TLV
- Management address TLV

These organizationally specific LLDP TLVs are also advertised to support LLDP-MED.

- Port VLAN ID TLV (IEEE 802.1 organizationally specific TLVs)
- MAC/PHY configuration/status TLV (IEEE 802.3 organizationally specific TLVs)

Note

A switch stack appears as a single switch in the network. Therefore, LLDP discovers the switch stack, not the individual stack members.

When you configure LLDP or CDP location information on a per-port basis, remote devices can send Cisco Medianet location information to the switch. For information, go to http://www.cisco.com/en/US/docs/ios/netmgmt/configuration/guide/nm_cdp_discover.html.

**LLDP-MED**

LLDP for Media Endpoint Devices (LLDP-MED) is an extension to LLDP that operates between endpoint devices such as IP phones and network devices such as switches. It specifically provides support for voice over IP (VoIP) applications and provides additional TLVs for capabilities discovery, network policy, Power over Ethernet, inventory management and location information. By default, all LLDP-MED TLVs are enabled.

LLDP-MED supports these TLVs:

- LLDP-MED capabilities TLV
  Allows LLDP-MED endpoints to determine the capabilities that the connected device supports and has enabled.

- Network policy TLV
  Allows both network connectivity devices and endpoints to advertise VLAN configurations and associated Layer 2 and Layer 3 attributes for the specific application on that port. For example, the switch can notify a phone of the VLAN number that it should use. The phone can connect to any switch, obtain its VLAN number, and then start communicating with the call control.

  By defining a network-policy profile TLV, you can create a profile for voice and voice-signalling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode. These profile attributes are then maintained centrally on the switch and propagated to the phone.
• **Power management TLV**

  Enables advanced power management between LLDP-MED endpoint and network connectivity devices. Allows switches and phones to convey power information, such as how the device is powered, power priority, and how much power the device needs.

  LLDP-MED also supports an extended power TLV to advertise fine-grained power requirements, end-point power priority, and end-point and network connectivity-device power status.

  Starting with Cisco IOS Release 12.2(52)SE, when LLDP is enabled and power is applied to a port, the power TLV determines the actual power requirement of the endpoint device so that the system power budget can be adjusted accordingly. The switch processes the requests and either grants or denies power based on the current power budget. If the request is granted, the switch updates the power budget. If the request is denied, the switch turns off power to the port, generates a syslog message, and updates the power budget. If LLDP-MED is disabled or if the endpoint does not support the LLDP-MED power TLV, the initial allocation value is used throughout the duration of the connection.

  You can change power settings by entering the `power inline {auto [max max-wattage] | never | static [max max-wattage]} interface configuration command. By default the PoE interface is in auto mode; If no value is specified, the maximum is allowed (15.4 W30 W).

• **Inventory management TLV**

  Allows an endpoint to send detailed inventory information about itself to the switch, including information hardware revision, firmware version, software version, serial number, manufacturer name, model name, and asset ID TLV.

• **Location TLV**

  Provides location information from the switch to the endpoint device. The location TLV can send this information:

  – Civic location information

    Provides the civic address information and postal information. Examples of civic location information are street address, road name, and postal community name information.

  – ELIN location information

    Provides the location information of a caller. The location is determined by the Emergency location identifier number (ELIN), which is a phone number that routes an emergency call to the local public safety answering point (PSAP) and which the PSAP can use to call back the emergency caller.

**Wired Location Service**

The switch uses the location service feature to send location and attachment tracking information for its connected devices to a Cisco Mobility Services Engine (MSE). The tracked device can be a wireless endpoint, a wired endpoint, or a wired switch or controller. The switch notifies the MSE of device link up and link down events through the Network Mobility Services Protocol (NMSP) location and attachment notifications.

The MSE starts the NMSP connection to the switch, which opens a server port. When the MSE connects to the switch there are a set of message exchanges to establish version compatibility and service exchange information followed by location information synchronization. After connection, the switch periodically sends location and attachment notifications to the MSE. Any link up or link down events detected during an interval are aggregated and sent at the end of the interval.
When the switch determines the presence or absence of a device on a link-up or link-down event, it obtains the client-specific information such as the MAC address, IP address, and username. If the client is LLDP-MED- or CDP-capable, the switch obtains the serial number and UDI through the LLDP-MED location TLV or CDP.

Depending on the device capabilities, the switch obtains this client information at link up:

- Slot and port specified in port connection
- MAC address specified in the client MAC address
- IP address specified in port connection
- 802.1X username if applicable
- Device category is specified as a wired station
- State is specified as new
- Serial number, UDI
- Model number
- Time in seconds since the switch detected the association

Depending on the device capabilities, the switch obtains this client information at link down:

- Slot and port that was disconnected
- MAC address
- IP address
- 802.1X username if applicable
- Device category is specified as a wired station
- State is specified as delete
- Serial number, UDI
- Time in seconds since the switch detected the disassociation

When the switch shuts down, it sends an attachment notification with the state delete and the IP address before closing the NMSP connection to the MSE. The MSE interprets this notification as disassociation for all the wired clients associated with the switch.

If you change a location address on the switch, the switch sends an NMSP location notification message that identifies the affected ports and the changed address information.
Configuring LLDP, LLDP-MED, and Wired Location Service

- Default LLDP Configuration, page 1-5
- Configuration Guidelines, page 1-5
- Enabling LLDP, page 1-6
- Configuring LLDP Characteristics, page 1-6
- Configuring LLDP-MED TLVs, page 1-7
- Configuring Network-Policy TLV, page 1-8
- Configuring Location TLV and Wired Location Service, page 1-10

Default LLDP Configuration

Table 1-1  Default LLDP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP global state</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP holdtime (before discarding)</td>
<td>120 seconds</td>
</tr>
<tr>
<td>LLDP timer (packet update frequency)</td>
<td>30 seconds</td>
</tr>
<tr>
<td>LLDP reinitialization delay</td>
<td>2 seconds</td>
</tr>
<tr>
<td>LLDP tlv-select</td>
<td>Disabled to send and receive all TLVs</td>
</tr>
<tr>
<td>LLDP interface state</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP receive</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP transmit</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP med-tlv-select</td>
<td>Disabled to send all LLDP-MED TLVs. When LLDP is globally enabled, LLDP-MED-TLV is also enabled.</td>
</tr>
</tbody>
</table>

Configuration Guidelines

- If the interface is configured as a tunnel port, LLDP is automatically disabled.
- If you first configure a network-policy profile on an interface, you cannot apply the `switchport voice vlan` command on the interface. If the `switchport voice vlan vlan-id` is already configured on an interface, you can apply a network-policy profile on the interface. This way the interface has the voice or voice-signaling VLAN network-policy profile applied on the interface.
- You cannot configure static secure MAC addresses on an interface that has a network-policy profile.
- You cannot configure a network-policy profile on a private-VLAN port.
- For wired location to function, you must first enter the `ip device tracking` global configuration command.
Enabling LLDP

Beginning in privileged EXEC mode, follow these steps to enable LLDP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>lldp run</td>
<td>Enable LLDP globally on the switch.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the interface on which you are enabling LLDP, and enter interface configuration mode.</td>
</tr>
<tr>
<td>lldp transmit</td>
<td>Enable the interface to send LLDP packets.</td>
</tr>
<tr>
<td>lldp receive</td>
<td>Enable the interface to receive LLDP packets.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show lldp</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable LLDP, use the no lldp run global configuration command. To disable LLDP on an interface, use the no lldp transmit and the no lldp receive interface configuration commands.

This example shows how to globally enable LLDP.

Switch# configure terminal
Switch(config)# lldp run
Switch(config)# end

This example shows how to enable LLDP on an interface.

Switch# configure terminal
Switch(config)# interface interface_id
Switch(config-if)# lldp transmit
Switch(config-if)# lldp receive
Switch(config-if)# end

Configuring LLDP Characteristics

You can configure the frequency of LLDP updates, the amount of time to hold the information before discarding it, and the initialization delay time. You can also select the LLDP and LLDP-MED TLVs to send and receive.

Beginning in privileged EXEC mode, follow these steps to configure the LLDP characteristics.

**Note**

Steps 2 through 5 are optional and can be performed in any order.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>lldp holdtime seconds</td>
<td>(Optional) Specify the amount of time a receiving device should hold the information from your device before discarding it.</td>
</tr>
</tbody>
</table>

The range is 0 to 65535 seconds; the default is 120 seconds.
Use the no form of each of the LLDP commands to return to the default setting.

This example shows how to configure LLDP characteristics.

Switch# configure terminal
Switch(config)# lldp holdtime 120
Switch(config)# lldp reinit 2
Switch(config)# lldp timer 30
Switch(config)# end

Configuring LLDP-MED TLVs

By default, the switch only sends LLDP packets until it receives LLDP-MED packets from the end device. It then sends LLDP packets with MED TLVs, as well. When the LLDP-MED entry has been aged out, it again only sends LLDP packets.

By using the lldp interface configuration command, you can configure the interface not to send the TLVs listed in Table 1-2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>lldp reinit delay</td>
<td>(Optional) Specify the delay time in seconds for LLDP to initialize on an interface. The range is 2 to 5 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td>lldp timer rate</td>
<td>(Optional) Set the sending frequency of LLDP updates in seconds. The range is 5 to 65534 seconds; the default is 30 seconds.</td>
</tr>
<tr>
<td>lldp tlv-select</td>
<td>(Optional) Specify the LLDP TLVs to send or receive.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the interface on which you are enabling LLDP, and enter interface configuration mode.</td>
</tr>
<tr>
<td>lldp med-tlv-select</td>
<td>(Optional) Specify the LLDP-MED TLVs to send or receive.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show lldp</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no form of each of the LLDP commands to return to the default setting.

This example shows how to configure LLDP characteristics.

Switch# configure terminal
Switch(config)# lldp holdtime 120
Switch(config)# lldp reinit 2
Switch(config)# lldp timer 30
Switch(config)# end

Configuring LLDP-MED TLVs

By default, the switch only sends LLDP packets until it receives LLDP-MED packets from the end device. It then sends LLDP packets with MED TLVs, as well. When the LLDP-MED entry has been aged out, it again only sends LLDP packets.

By using the lldp interface configuration command, you can configure the interface not to send the TLVs listed in Table 1-2.

<table>
<thead>
<tr>
<th>LLDP-MED TLV</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>network-policy</td>
<td>LLDP-MED network policy TLV</td>
</tr>
<tr>
<td>power-management</td>
<td>LLDP-MED power management TLV</td>
</tr>
<tr>
<td>location</td>
<td>LLDP-MED location TLV</td>
</tr>
<tr>
<td>inventory-management</td>
<td>LLDP-MED inventory management TLV</td>
</tr>
</tbody>
</table>

Use the no form of each of the LLDP commands to return to the default setting.

This example shows how to configure LLDP characteristics.

Switch# configure terminal
Switch(config)# lldp holdtime 120
Switch(config)# lldp reinit 2
Switch(config)# lldp timer 30
Switch(config)# end
Beginning in privileged EXEC mode, follow these steps to enable a TLV on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the interface on which you are configuring an LLDP-MED TLV, and enter interface configuration mode.</td>
</tr>
<tr>
<td>lldp med-tlv-select tlv</td>
<td>Specify the TLV to enable.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to enable a TLV on an interface:

```
Switch# configure terminal
Switch(config)# interface interface_id
Switch(config-if)# lldp med-tlv-select inventory-management
Switch(config-if)# end
```

### Configuring Network-Policy TLV

Beginning in privileged EXEC mode, follow these steps to create a network-policy profile, configure the policy attributes, and apply it to an interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>network-policy profile profile number</td>
<td>Specify the network-policy profile number, and enter network-policy configuration mode. The range is 1 to 4294967295.</td>
</tr>
</tbody>
</table>
### Command

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{ voice</td>
<td>voice-signaling } vlan [vlan-id</td>
</tr>
<tr>
<td></td>
<td></td>
<td>voice—Specify the voice application type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>voice-signaling—Specify the voice-signaling application type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vlan—Specify the native VLAN for voice traffic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vlan-id—(Optional) Specify the VLAN for voice traffic. The range is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 to 4094.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cos cvalue—(Optional) Specify the Layer 2 priority class of service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CoS) for the configured VLAN. The range is 0 to 7; the default is 5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dscp dvalue—(Optional) Specify the differentiated services code point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(DSCP) value for the configured VLAN. The range is 0 to 63; the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>default is 46.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dot1p—(Optional) Configure the telephone to use IEEE 802.1p priority</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tagging and use VLAN 0 (the native VLAN).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>none—(Optional) Do not instruct the IP telephone about the voice VLAN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The telephone uses the configuration from the telephone key pad.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>untagged—(Optional) Configure the telephone to send untagged voice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>traffic. This is the default for the telephone.</td>
</tr>
<tr>
<td></td>
<td>{ voice</td>
<td>voice-signaling } vlan [vlan-id</td>
</tr>
<tr>
<td></td>
<td></td>
<td>voice—Specify the voice application type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>voice-signaling—Specify the voice-signaling application type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vlan—Specify the native VLAN for voice traffic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vlan-id—(Optional) Specify the VLAN for voice traffic. The range is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 to 4094.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cos cvalue—(Optional) Specify the Layer 2 priority class of service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CoS) for the configured VLAN. The range is 0 to 7; the default is 5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dscp dvalue—(Optional) Specify the differentiated services code point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(DSCP) value for the configured VLAN. The range is 0 to 63; the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>default is 46.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dot1p—(Optional) Configure the telephone to use IEEE 802.1p priority</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tagging and use VLAN 0 (the native VLAN).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>none—(Optional) Do not instruct the IP telephone about the voice VLAN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The telephone uses the configuration from the telephone key pad.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>untagged—(Optional) Configure the telephone to send untagged voice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>traffic. This is the default for the telephone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Config the policy attributes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>voice—Specify the voice application type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>voice-signaling—Specify the voice-signaling application type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vlan—Specify the native VLAN for voice traffic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vlan-id—(Optional) Specify the VLAN for voice traffic. The range is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 to 4094.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cos cvalue—(Optional) Specify the Layer 2 priority class of service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CoS) for the configured VLAN. The range is 0 to 7; the default is 5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dscp dvalue—(Optional) Specify the differentiated services code point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(DSCP) value for the configured VLAN. The range is 0 to 63; the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>default is 46.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dot1p—(Optional) Configure the telephone to use IEEE 802.1p priority</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tagging and use VLAN 0 (the native VLAN).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>none—(Optional) Do not instruct the IP telephone about the voice VLAN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The telephone uses the configuration from the telephone key pad.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>untagged—(Optional) Configure the telephone to send untagged voice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>traffic. This is the default for the telephone.</td>
</tr>
</tbody>
</table>

### Step 4

**Command**: exit  
**Purpose**: Return to global configuration mode.

### Step 5

**Command**: interface interface-id  
**Purpose**: Specify the interface on which you are configuring a network-policy profile, and enter interface configuration mode.

### Step 6

**Command**: network-policy profile number  
**Purpose**: Specify the network-policy profile number.

### Step 7

**Command**: lldp med-tlv-select network-policy  
**Purpose**: Specify the network-policy TLV.

### Step 8

**Command**: end  
**Purpose**: Return to privileged EXEC mode.

### Step 9

**Command**: show network-policy profile  
**Purpose**: Verify the configuration.

### Step 10

**Command**: copy running-config startup-config  
**Purpose**: (Optional) Save your entries in the configuration file.

Use the no form of each command to return to the default setting.

This example shows how to configure VLAN 100 for voice application with CoS and to enable the network-policy profile and network-policy TLV on an interface:

```
Switch# configure terminal
Switch(config)# network-policy profile 1
Switch(config-network-policy)# voice vlan 100 cos 4
Switch(config)# exit
Switch# configure terminal
Switch(config)# interface interface_id
Switch(config-if)# network-policy 1
Switch(config-if)# lldp med-tlv-select network-policy
```

This example shows how to configure the voice application type for the native VLAN with priority tagging:

```
Switch(config-network-policy)# voice vlan dot1p cos 4
Switch(config-network-policy)# voice vlan dot1p dscp 34
```
Configuring Location TLV and Wired Location Service

Beginning in privileged EXEC mode, follow these steps to configure location information for an endpoint and to apply it to an interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2: location {admin-tag string | civic-location identifier id | elin-location string identifier id} | Specify the location information for an endpoint.  
  - admin-tag—Specify an administrative tag or site information.  
  - civic-location—Specify civic location information.  
  - elin-location—Specify emergency location information (ELIN).  
  - identifier id—Specify the ID for the civic location.  
  - string—Specify the site or location information in alphanumeric format. |
| Step 3: exit            | Return to global configuration mode.                                    |
| Step 4: interface interface-id | Specify the interface on which you are configuring the location information, and enter interface configuration mode. |
| Step 5: location {additional-location-information word | civic-location-id id | elin-location-id id} | Enter location information for an interface:  
  - additional-location-information—Specify additional information for a location or place.  
  - civic-location-id—Specify global civic location information for an interface.  
  - elin-location-id—Specify emergency location information for an interface.  
  - id—Specify the ID for the civic location or the ELIN location. The ID range is 1 to 4095.  
  - word—Specify a word or phrase with additional location information. |
| Step 6: end              | Return to privileged EXEC mode.                                          |
| Step 7: show location admin-tag string  
  or show location civic-location identifier id  
  or show location elin-location identifier id | Verify the configuration.                                               |
| Step 8: copy running-config startup-config | (Optional) Save your entries in the configuration file.                   |

Use the no form of each command to return to the default setting.

This example shows how to configure civic location information on the switch:

```
Switch(config)# location civic-location identifier 1
Switch(config-civic)# number 3550
Switch(config-civic)# primary-road-name "Cisco Way"
Switch(config-civic)# city "San Jose"
Switch(config-civic)# state CA
Switch(config-civic)# building 19
Switch(config-civic)# room C6
```
Beginning in privileged EXEC mode, follow these steps to enable wired location service on the switch:

### Command	Purpose
**Step 1** | configure terminal
Enter global configuration mode.

**Step 2** | nmsp enable
Enable the NMSP features on the switch.

**Step 3** | nmsp notification interval {attachment | location} interval-seconds
Specify the NMSP notification interval.
- **attachment**—Specify the attachment notification interval.
- **location**—Specify the location notification interval.
- **interval-seconds**—Duration in seconds before the switch sends the MSE the location or attachment updates. The range is 1 to 30; the default is 30.

**Step 4** | end
Return to privileged EXEC mode.

**Step 5** | show network-policy profile
Verify the configuration.

**Step 6** | copy running-config startup-config
(Optional) Save your entries in the configuration file.

This example shows how to enable NMSP on a switch and to set the location notification time to 10 seconds:

```
Switch(config)# nmsp enable
Switch(config)# nmsp notification interval location 10
```

### Monitoring and Maintaining LLDP, LLDP-MED, and Wired Location Service

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear lldp counters</td>
<td>Reset the traffic counters to zero.</td>
</tr>
<tr>
<td>clear lldp table</td>
<td>Delete the LLDP neighbor information table.</td>
</tr>
<tr>
<td>clear nmsp statistics</td>
<td>Clear the NMSP statistic counters.</td>
</tr>
<tr>
<td>show lldp</td>
<td>Display global information, such as frequency of transmissions, the holdtime for packets being sent, and the delay time before LLDP initializes on an interface.</td>
</tr>
<tr>
<td>show lldp entry entry-name</td>
<td>Display information about a specific neighbor.</td>
</tr>
<tr>
<td>show lldp interface [interface-id]</td>
<td>Display information about interfaces with LLDP enabled. You can limit the display to a specific interface.</td>
</tr>
</tbody>
</table>
### Command Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show lldp neighbors [interface-id] [detail]</code></td>
<td>Display information about neighbors, including device type, interface type and number, holdtime settings, capabilities, and port ID. You can limit the display to neighbors of a specific interface or expand the display for more detailed information.</td>
</tr>
<tr>
<td><code>show lldp traffic</code></td>
<td>Display LLDP counters, including the number of packets sent and received, number of packets discarded, and number of unrecognized TLVs.</td>
</tr>
<tr>
<td><code>show location admin-tag string</code></td>
<td>Display the location information for the specified administrative tag or site.</td>
</tr>
<tr>
<td><code>show location civic-location identifier id</code></td>
<td>Display the location information for a specific global civic location.</td>
</tr>
<tr>
<td><code>show location elin-location identifier id</code></td>
<td>Display the location information for an emergency location.</td>
</tr>
<tr>
<td><code>show network-policy profile</code></td>
<td>Display the configured network-policy profiles.</td>
</tr>
<tr>
<td><code>show nmsp</code></td>
<td>Display the NMSP information.</td>
</tr>
</tbody>
</table>

**Heading:**

Chapter 1  Configuring LLDP, LLDP-MED, and Wired Location Service
Understanding UDLD

UDLD is a Layer 2 protocol that enables devices connected through fiber-optic or twisted-pair Ethernet cables to monitor the physical configuration of the cables and detect when a unidirectional link exists. All connected devices must support UDLD for the protocol to successfully identify and disable unidirectional links. When UDLD detects a unidirectional link, it disables the affected port and alerts you. Unidirectional links can cause a variety of problems, including spanning-tree topology loops.

- Modes of Operation, page 1-1
- Methods to Detect Unidirectional Links, page 1-2

Modes of Operation

UDLD supports two modes of operation: normal (the default) and aggressive. In normal mode, UDLD can detect unidirectional links due to misconnected ports on fiber-optic connections. In aggressive mode, UDLD can also detect unidirectional links due to one-way traffic on fiber-optic and twisted-pair links and to misconnected ports on fiber-optic links.

In normal and aggressive modes, UDLD works with the Layer 1 mechanisms to learn the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and
shutting down misconnected ports. When you enable both autonegotiation and UDLD, the Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.

A unidirectional link occurs whenever traffic sent by a local device is received by its neighbor but traffic from the neighbor is not received by the local device.

In normal mode, UDLD detects a unidirectional link when fiber strands in a fiber-optic port are misconnected and the Layer 1 mechanisms do not detect this misconnection. If the ports are connected correctly but the traffic is one way, UDLD does not detect the unidirectional link because the Layer 1 mechanism, which is supposed to detect this condition, does not do so. In this case, the logical link is considered undetermined, and UDLD does not disable the port.

When UDLD is in normal mode, if one of the fiber strands in a pair is disconnected, as long as autonegotiation is active, the link does not stay up because the Layer 1 mechanisms detects a physical problem with the link. In this case, UDLD does not take any action and the logical link is considered undetermined.

In aggressive mode, UDLD detects a unidirectional link by using the previous detection methods. UDLD in aggressive mode can also detect a unidirectional link on a point-to-point link on which no failure between the two devices is allowed. It can also detect a unidirectional link when one of these problems exists:

- On fiber-optic or twisted-pair links, one of the ports cannot send or receive traffic.
- On fiber-optic or twisted-pair links, one of the ports is down while the other is up.
- One of the fiber strands in the cable is disconnected.

In these cases, UDLD disables the affected port.

In a point-to-point link, UDLD hello packets can be considered as a heart beat whose presence guarantees the health of the link. Conversely, the loss of the heart beat means that the link must be shut down if it is not possible to re-establish a bidirectional link.

If both fiber strands in a cable are working normally from a Layer 1 perspective, UDLD in aggressive mode detects whether those fiber strands are connected correctly and whether traffic is flowing bidirectionally between the correct neighbors. This check cannot be performed by autonegotiation because autonegotiation operates at Layer 1.

**Methods to Detect Unidirectional Links**

UDLD operates by using two mechanisms:

- Neighbor database maintenance

  UDLD learns about other UDLD-capable neighbors by periodically sending a hello packet (also called an advertisement or probe) on every active port to keep each device informed about its neighbors.

  When the switch receives a hello message, it caches the information until the age time (hold time or time-to-live) expires. If the switch receives a new hello message before an older cache entry ages, the switch replaces the older entry with the new one.

  Whenever a port is disabled and UDLD is running, whenever UDLD is disabled on a port, or whenever the switch is reset, UDLD clears all existing cache entries for the ports affected by the configuration change. UDLD sends at least one message to inform the neighbors to flush the part of their caches affected by the status change. The message is intended to keep the caches synchronized.
• Event-driven detection and echoing

UDLD relies on echoing as its detection mechanism. Whenever a UDLD device learns about a new neighbor or receives a resynchronization request from an out-of-sync neighbor, it restarts the detection window on its side of the connection and sends echo messages in reply. Because this behavior is the same on all UDLD neighbors, the sender of the echoes expects to receive an echo in reply.

If the detection window ends and no valid reply message is received, the link might shut down, depending on the UDLD mode. When UDLD is in normal mode, the link might be considered undetermined and might not be shut down. When UDLD is in aggressive mode, the link is considered unidirectional, and the port is disabled.

If UDLD in normal mode is in the advertisement or in the detection phase and all the neighbor cache entries are aged out, UDLD restarts the link-up sequence to resynchronize with any potentially out-of-sync neighbors.

If you enable aggressive mode when all the neighbors of a port have aged out either in the advertisement or in the detection phase, UDLD restarts the link-up sequence to resynchronize with any potentially out-of-sync neighbor. UDLD shuts down the port if, after the fast train of messages, the link state is still undetermined.

Figure 1-1 shows an example of a unidirectional link condition.
Configuring UDLD

- Default UDLD Configuration, page 1-4
- Configuration Guidelines, page 1-4
- Enabling UDLD Globally, page 1-5
- Enabling UDLD on an Interface, page 1-6
- Resetting an Interface Disabled by UDLD, page 1-6

Default UDLD Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDLD global enable state</td>
<td>Globally disabled</td>
</tr>
<tr>
<td>UDLD per-port enable state for fiber-optic media</td>
<td>Disabled on all Ethernet fiber-optic ports</td>
</tr>
<tr>
<td>UDLD per-port enable state for twisted-pair (copper) media</td>
<td>Disabled on all Ethernet 10/100 and 1000BASE-TX ports</td>
</tr>
<tr>
<td>UDLD aggressive mode</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Configuration Guidelines

- UDLD is not supported on ATM ports.
- A UDLD-capable port cannot detect a unidirectional link if it is connected to a UDLD-incapable port of another switch.
- When configuring the mode (normal or aggressive), make sure that the same mode is configured on both sides of the link.

⚠️ **Caution**

Loop guard works only on point-to-point links. We recommend that each end of the link has a directly connected device that is running STP.
Enabling UDLD Globally

Beginning in privileged EXEC mode, follow these steps to enable UDLD in the aggressive or normal mode and to set the configurable message timer on all fiber-optic ports on the switch and all members in the switch stack:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 udld {aggressive</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>• aggressive—Enables UDLD in aggressive mode on all fiber-optic ports.</td>
</tr>
<tr>
<td></td>
<td>• enable—Enables UDLD in normal mode on all fiber-optic ports on the</td>
</tr>
<tr>
<td></td>
<td>switch. UDLD is disabled by default.</td>
</tr>
<tr>
<td></td>
<td>An individual interface configuration overrides the setting of the udld</td>
</tr>
<tr>
<td></td>
<td>enable global configuration command.</td>
</tr>
<tr>
<td></td>
<td>For more information about aggressive and normal modes, see the</td>
</tr>
<tr>
<td></td>
<td>“Modes of Operation” section on page 1-1.</td>
</tr>
<tr>
<td></td>
<td>• message time message-timer-interval—Configures the period of time</td>
</tr>
<tr>
<td></td>
<td>between UDLD probe messages on ports that are in the advertisement</td>
</tr>
<tr>
<td></td>
<td>phase and are detected to be bidirectional. The range is from 1 to</td>
</tr>
<tr>
<td></td>
<td>90 seconds; the default value is 15.</td>
</tr>
<tr>
<td>Note</td>
<td>The global UDLD setting is automatically applied to switches that</td>
</tr>
<tr>
<td></td>
<td>join the switch stack.</td>
</tr>
<tr>
<td>Note</td>
<td>This command affects fiber-optic ports only. Use the udld interface</td>
</tr>
<tr>
<td></td>
<td>configuration command to enable UDLD on other port types. For more</td>
</tr>
<tr>
<td></td>
<td>information, see the “Enabling UDLD on an Interface” section on page</td>
</tr>
<tr>
<td></td>
<td>1-6.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show udld</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable UDLD globally, use the no udld enable global configuration command to disable normal mode UDLD on all fiber-optic ports. Use the no udld aggressive global configuration command to disable aggressive mode UDLD on all fiber-optic ports.
### Enabling UDLD on an Interface

Beginning in privileged EXEC mode, follow these steps either to enable UDLD in the aggressive or normal mode or to disable UDLD on a port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the port to be enabled for UDLD, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 udld port [aggressive]</td>
<td>UDLD is disabled by default.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> When a switch joins a switch stack, it retains its interface-specific UDLD settings.</td>
</tr>
<tr>
<td></td>
<td>• udld port—Enables UDLD in normal mode on the specified port.</td>
</tr>
<tr>
<td></td>
<td>• udld port aggressive—Enables UDLD in aggressive mode on the specified port.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Use the no udld port interface configuration command to disable UDLD on a specified fiber-optic port.</td>
</tr>
<tr>
<td></td>
<td>For more information about aggressive and normal modes, see the “Modes of Operation” section on page 1-1.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show udld interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

### Resetting an Interface Disabled by UDLD

Beginning in privileged EXEC mode, follow these steps to reset all ports disabled by UDLD:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 udld reset</td>
<td>Reset all ports disabled by UDLD.</td>
</tr>
<tr>
<td>Step 2 show udld</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

You can also bring up the port by using these commands:

- The **shutdown** interface configuration command followed by the **no shutdown** interface configuration command restarts the disabled port.
- The **no udld** {aggressive | enable} global configuration command followed by the **udld** {aggressive | enable} global configuration command re-enables the disabled ports.
- The **no udld port** interface configuration command followed by the **udld port [aggressive]** interface configuration command re-enables the disabled fiber-optic port.
- The **errdisable recovery cause udld** global configuration command enables the timer to automatically recover from the UDLD error-disabled state, and the **errdisable recovery interval interval** global configuration command specifies the time to recover from the UDLD error-disabled state.
Displaying UDLD Status

To display the UDLD status for the specified port or for all ports, use the `show udld [interface-id]` privileged EXEC command.

For detailed information about the fields in the command output, see the command reference for this release.
This chapter describes how to configure Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

- Understanding SPAN and RSPAN, page 1-1
- Understanding Flow-Based SPAN, page 1-11
- Configuring SPAN and RSPAN, page 1-12
- Configuring FSPAN and FRSPAN, page 1-27
- Displaying SPAN, RSPAN, FSPAN, and FRSPAN Status, page 1-31

**Understanding SPAN and RSPAN**

You can analyze network traffic passing through ports or VLANs by using SPAN or RSPAN to send a copy of the traffic to another port on the switch or on another switch that has been connected to a network analyzer or other monitoring or security device. SPAN copies (or mirrors) traffic received or sent (or both) on source ports or source VLANs to a destination port for analysis. SPAN does not affect the switching of network traffic on the source ports or VLANs. You must dedicate the destination port for SPAN use. Except for traffic that is required for the SPAN or RSPAN session, destination ports do not receive or forward traffic.

Only traffic that enters or leaves source ports or traffic that enters or leaves source VLANs can be monitored by using SPAN; traffic routed to a source VLAN cannot be monitored. For example, if incoming traffic is being monitored, traffic that gets routed from another VLAN to the source VLAN cannot be monitored; however, traffic that is received on the source VLAN and routed to another VLAN can be monitored.

You can use the SPAN or RSPAN destination port to inject traffic from a network security device. For example, if you connect a Cisco Intrusion Detection System (IDS) sensor appliance to a destination port, the IDS device can send TCP reset packets to close down the TCP session of a suspected attacker.
These sections contain this conceptual information:

- Local SPAN, page 1-2
- Remote SPAN, page 1-3
- SPAN and RSPAN Concepts and Terminology, page 1-4
- SPAN and RSPAN Interaction with Other Features, page 1-10
- SPAN and RSPAN and Switch Stacks, page 1-11

Local SPAN

Local SPAN supports a SPAN session entirely within one switch; all source ports or source VLANs and destination ports are in the same switch or switch stack. Local SPAN copies traffic from one or more source ports in any VLAN or from one or more VLANs to a destination port for analysis. For example, in Figure 1-1, all traffic on port 5 (the source port) is mirrored to port 10 (the destination port). A network analyzer on port 10 receives all network traffic from port 5 without being physically attached to port 5.

Figure 1-1  Example of Local SPAN Configuration on a Single Switch
Figure 1-2 is an example of a local SPAN in a switch stack, where the source and destination ports reside on different stack members.

**Remote SPAN**

RSPAN supports source ports, source VLANs, and destination ports on different switches (or different switch stacks), enabling remote monitoring of multiple switches across your network. Figure 1-3 shows source ports on Switch A and Switch B. The traffic for each RSPAN session is carried over a user-specified RSPAN VLAN that is dedicated for that RSPAN session in all participating switches. The RSPAN traffic from the source ports or VLANs is copied into the RSPAN VLAN and forwarded over trunk ports carrying the RSPAN VLAN to a destination session monitoring the RSPAN VLAN. Each RSPAN source switch must have either ports or VLANs as RSPAN sources. The destination is always a physical port, as shown on Switch C in the figure.
**Understanding SPAN and RSPAN**

**Figure 1-3 Example of RSPAN Configuration**

- **SPAN Sessions, page 1-4**
- **Monitored Traffic, page 1-6**
- **Source Ports, page 1-7**
- **Source VLANs, page 1-7**
- **VLAN Filtering, page 1-8**
- **Destination Port, page 1-8**
- **RSPAN VLAN, page 1-9**

**SPAN and RSPAN Concepts and Terminology**

- **SPAN Sessions** (local or remote) allow you to monitor traffic on one or more ports, or one or more VLANs, and send the monitored traffic to one or more destination ports.

A local SPAN session is an association of a destination port with source ports or source VLANs, all on a single network device. Local SPAN does not have separate source and destination sessions. Local SPAN sessions gather a set of ingress and egress packets specified by the user and form them into a stream of SPAN data, which is directed to the destination port.
RSPAN consists of at least one RSPAN source session, an RSPAN VLAN, and at least one RSPAN destination session. You separately configure RSPAN source sessions and RSPAN destination sessions on different network devices. To configure an RSPAN source session on a device, you associate a set of source ports or source VLANs with an RSPAN VLAN. The output of this session is the stream of SPAN packets that are sent to the RSPAN VLAN. To configure an RSPAN destination session on another device, you associate the destination port with the RSPAN VLAN. The destination session collects all RSPAN VLAN traffic and sends it out the RSPAN destination port.

An RSPAN source session is very similar to a local SPAN session, except for where the packet stream is directed. In an RSPAN source session, SPAN packets are relabeled with the RSPAN VLAN ID and directed over normal trunk ports to the destination switch.

An RSPAN destination session takes all packets received on the RSPAN VLAN, strips off the VLAN tagging, and presents them on the destination port. Its purpose is to present a copy of all RSPAN VLAN packets (except Layer 2 control packets) to the user for analysis.

There can be more than one source session and more than one destination session active in the same RSPAN VLAN. There can also be intermediate switches separating the RSPAN source and destination sessions. These switches need not be capable of running RSPAN, but they must respond to the requirements of the RSPAN VLAN (see the “RSPAN VLAN” section on page 1-9).

Traffic monitoring in a SPAN session has these restrictions:

- Sources can be ports or VLANs, but you cannot mix source ports and source VLANs in the same session.
- The switch other than the Catalyst 3560E-12D switch supports up to two local SPAN or RSPAN source sessions.
  - You can run both a local SPAN and an RSPAN source session in the same switch or switch stack. The switch or switch stack supports a total of 64 source and RSPAN destination sessions.
  - You can configure two separate SPAN or RSPAN source sessions with separate or overlapping sets of SPAN source ports and VLANs. Both switched and routed ports can be configured as SPAN sources and destinations.
- The Catalyst 3560E-12D switch supports only one source session (either a local SPAN or RSPAN source session), which must be session 1. Both switched and routed ports can be configured as SPAN sources and destinations.
- You can have multiple destination ports in a SPAN session, but no more than 64 destination ports per switch stack.
- SPAN sessions do not interfere with the normal operation of the switch. However, an oversubscribed SPAN destination, for example, a 10-Mb/s port monitoring a 100-Mb/s port, can result in dropped or lost packets.
- When SPAN or RSPAN is enabled, each packet being monitored is sent twice, once as normal traffic and once as a monitored packet. Therefore monitoring a large number of ports or VLANs could potentially generate large amounts of network traffic.
- You can configure SPAN sessions on disabled ports; however, a SPAN session does not become active unless you enable the destination port and at least one source port or VLAN for that session.
- The switch does not support a combination of local SPAN and RSPAN in a single session.
  - An RSPAN source session cannot have a local destination port.
  - An RSPAN destination session cannot have a local source port.
  - An RSPAN destination session and an RSPAN source session that are using the same RSPAN VLAN cannot run on the same switch or switch stack.
Monitored Traffic

SPAN sessions can monitor these traffic types:

- **Receive (Rx) SPAN**—The goal of receive (or ingress) SPAN is to monitor as much as possible all the packets received by the source interface or VLAN before any modification or processing is performed by the switch. A copy of each packet received by the source is sent to the destination port for that SPAN session.

  Packets that are modified because of routing or quality of service (QoS)—for example, modified Differentiated Services Code Point (DSCP)—are copied before modification.

  Features that can cause a packet to be dropped during receive processing have no effect on ingress SPAN; the destination port receives a copy of the packet even if the actual incoming packet is dropped. These features include IP standard and extended input access control lists (ACLs), ingress QoS policing, VLAN ACLs, and egress QoS policing.

- **Transmit (Tx) SPAN**—The goal of transmit (or egress) SPAN is to monitor as much as possible all the packets sent by the source interface after all modification and processing is performed by the switch. A copy of each packet sent by the source is sent to the destination port for that SPAN session. The copy is provided after the packet is modified.

  Packets that are modified because of routing—for example, with modified time-to-live (TTL), MAC-address, or QoS values—are duplicated (with the modifications) at the destination port.

  Features that can cause a packet to be dropped during transmit processing also affect the duplicated copy for SPAN. These features include IP standard and extended output ACLs and egress QoS policing.

- **Both**—In a SPAN session, you can also monitor a port or VLAN for both received and sent packets. This is the default.

The default configuration for local SPAN session ports is to send all packets untagged. SPAN also does not normally monitor bridge protocol data unit (BPDU) packets and Layer 2 protocols, such as Cisco Discovery Protocol (CDP), VLAN Trunk Protocol (VTP), Dynamic Trunking Protocol (DTP), Spanning Tree Protocol (STP), and Port Aggregation Protocol (PAGP). However, when you enter the `encapsulation replicate` keywords when configuring a destination port, these changes occur:

- Packets are sent on the destination port with the same encapsulation—untagged, Inter-Switch Link (ISL), or IEEE 802.1Q—that they had on the source port.

- Packets of all types, including BPDU and Layer 2 protocol packets, are monitored.

Therefore, a local SPAN session with encapsulation replicate enabled can have a mixture of untagged, ISL, and IEEE 802.1Q tagged packets appear on the destination port.

Switch congestion can cause packets to be dropped at ingress source ports, egress source ports, or SPAN destination ports. In general, these characteristics are independent of one another. For example:

- A packet might be forwarded normally but dropped from monitoring due to an oversubscribed SPAN destination port.

- An ingress packet might be dropped from normal forwarding, but still appear on the SPAN destination port.

- An egress packet dropped because of switch congestion is also dropped from egress SPAN.

In some SPAN configurations, multiple copies of the same source packet are sent to the SPAN destination port. For example, a bidirectional (both Rx and Tx) SPAN session is configured for the Rx monitor on port A and Tx monitor on port B. If a packet enters the switch through port A and is switched to port B, both incoming and outgoing packets are sent to the destination port. Both packets are the same (unless a Layer-3 rewrite occurs, in which case the packets are different because of the packet modification).
Source Ports

A source port (also called a monitored port) is a switched or routed port that you monitor for network traffic analysis. In a local SPAN session or RSPAN source session, you can monitor source ports or VLANs for traffic in one or both directions. The switch supports any number of source ports (up to the maximum number of available ports on the switch) and any number of source VLANs (up to the maximum number of VLANs supported). However, the switch supports a maximum of two sessions (local or RSPAN) with source ports or VLANs, and the Catalyst 3560E-12D switch supports only one session (local or RSPAN) with source ports or VLANs. You cannot mix ports and VLANs in a single session.

A source port has these characteristics:

- It can be monitored in multiple SPAN sessions on a switch. The source port can only be monitored in one SPAN session on the Catalyst 3560E-12D switch.
- Each source port can be configured with a direction (ingress, egress, or both) to monitor.
- It can be any port type (for example, EtherChannel, Gigabit Ethernet, and so forth).
- For EtherChannel sources, you can monitor traffic for the entire EtherChannel or individually on a physical port as it participates in the port channel.
- It can be an access port, trunk port, routed port, or voice VLAN port.
- It cannot be a destination port.
- Source ports can be in the same or different VLANs.
- You can monitor multiple source ports in a single session.

Source VLANs

VLAN-based SPAN (VSPAN) is the monitoring of the network traffic in one or more VLANs. The SPAN or RSPAN source interface in VSPAN is a VLAN ID, and traffic is monitored on all the ports for that VLAN.

VSPAN has these characteristics:

- All active ports in the source VLAN are included as source ports and can be monitored in either or both directions.
- On a given port, only traffic on the monitored VLAN is sent to the destination port.
- If a destination port belongs to a source VLAN, it is excluded from the source list and is not monitored.
- If ports are added to or removed from the source VLANs, the traffic on the source VLAN received by those ports is added to or removed from the sources being monitored.
- You cannot use filter VLANs in the same session with VLAN sources.
- You can monitor only Ethernet VLANs.
VLAN Filtering

When you monitor a trunk port as a source port, by default, all VLANs active on the trunk are monitored. You can limit SPAN traffic monitoring on trunk source ports to specific VLANs by using VLAN filtering.

- VLAN filtering applies only to trunk ports or to voice VLAN ports.
- VLAN filtering applies only to port-based sessions and is not allowed in sessions with VLAN sources.
- When a VLAN filter list is specified, only those VLANs in the list are monitored on trunk ports or on voice VLAN access ports.
- SPAN traffic coming from other port types is not affected by VLAN filtering; that is, all VLANs are allowed on other ports.
- VLAN filtering affects only traffic forwarded to the destination SPAN port and does not affect the switching of normal traffic.

Destination Port

Each local SPAN session or RSPAN destination session must have a destination port (also called a monitoring port) that receives a copy of traffic from the source ports or VLANs and sends the SPAN packets to the user, usually a network analyzer.

A destination port has these characteristics:

- For a local SPAN session, the destination port must reside on the same switch or switch stack as the source port. For an RSPAN session, it is located on the switch containing the RSPAN destination session. There is no destination port on a switch or switch stack running only an RSPAN source session.
- When a port is configured as a SPAN destination port, the configuration overwrites the original port configuration. When the SPAN destination configuration is removed, the port reverts to its previous configuration. If a configuration change is made to the port while it is acting as a SPAN destination port, the change does not take effect until the SPAN destination configuration had been removed.

\[\text{Note}\]
Exception. When QoS is configured on the SPAN destination port, QoS takes effect immediately.

- If the port was in an EtherChannel group, it is removed from the group while it is a destination port.
  If it was a routed port, it is no longer a routed port.
- It can be any Ethernet physical port.
- It cannot be a secure port.
- It cannot be a source port.
- It cannot be an EtherChannel group or a VLAN.
- It can participate in only one SPAN session at a time (a destination port in one SPAN session cannot be a destination port for a second SPAN session).
- When it is active, incoming traffic is disabled. The port does not transmit any traffic except that required for the SPAN session. Incoming traffic is never learned or forwarded on a destination port.
- If ingress traffic forwarding is enabled for a network security device, the destination port forwards traffic at Layer 2.
- It does not participate in any of the Layer 2 protocols (STP, VTP, CDP, DTP, PagP).
A destination port that belongs to a source VLAN of any SPAN session is excluded from the source list and is not monitored.

The maximum number of destination ports in a switch or switch stack is 64.

Local SPAN and RSPAN destination ports behave differently regarding VLAN tagging and encapsulation:

- For local SPAN, if the `encapsulation replicate` keywords are specified for the destination port, these packets appear with the original encapsulation (untagged, ISL, or IEEE 802.1Q). If these keywords are not specified, packets appear in the untagged format. Therefore, the output of a local SPAN session with `encapsulation replicate` enabled can contain a mixture of untagged, ISL, or IEEE 802.1Q-tagged packets.

- For RSPAN, the original VLAN ID is lost because it is overwritten by the RSPAN VLAN identification. Therefore, all packets appear on the destination port as untagged.

### Destination-Port Group

**Note**

This section applies only to the Catalyst 3560E-12D switch.

The Catalyst 3560E-12D switch can only send SPAN and RSPAN traffic through destination ports belonging to the same destination-port group. When configuring an RSPAN destination session, you must specify the destination-port group (a, b, or c). For more information about the destination-port groups, see the “SPAN Configuration Guidelines” section on page 1-13.

In a local SPAN session with only one destination port, you do not need to specify the destination-port group. If you add a second destination port to the session, the port must be in the same destination-port group as the existing destination port.

### RSPAN VLAN

The RSPAN VLAN carries SPAN traffic between RSPAN source and destination sessions. It has these special characteristics:

- All traffic in the RSPAN VLAN is always flooded.
- No MAC address learning occurs on the RSPAN VLAN.
- RSPAN VLAN traffic only flows on trunk ports.
- RSPAN VLANs must be configured in VLAN configuration mode by using the `remote-span VLAN configuration mode` command.
- STP can run on RSPAN VLAN trunks but not on SPAN destination ports.
- An RSPAN VLAN cannot be a private-VLAN primary or secondary VLAN.

For VLANs 1 to 1005 that are visible to VLAN Trunking Protocol (VTP), the VLAN ID and its associated RSPAN characteristic are propagated by VTP. If you assign an RSPAN VLAN ID in the extended VLAN range (1006 to 4094), you must manually configure all intermediate switches.

It is normal to have multiple RSPAN VLANs in a network at the same time with each RSPAN VLAN defining a network-wide RSPAN session. That is, multiple RSPAN source sessions anywhere in the network can contribute packets to the RSPAN session. It is also possible to have multiple RSPAN destination sessions throughout the network, monitoring the same RSPAN VLAN and presenting traffic to the user. The RSPAN VLAN ID separates the sessions.
SPAN and RSPAN Interaction with Other Features

SPAN interacts with these features:

- **Routing**—SPAN does not monitor routed traffic. VSPAN only monitors traffic that enters or exits the switch, not traffic that is routed between VLANs. For example, if a VLAN is being Rx-monitored and the switch routes traffic from another VLAN to the monitored VLAN, that traffic is not monitored and not received on the SPAN destination port.

- **STP**—A destination port does not participate in STP while its SPAN or RSPAN session is active. The destination port can participate in STP after the SPAN or RSPAN session is disabled. On a source port, SPAN does not affect the STP status. STP can be active on trunk ports carrying an RSPAN VLAN.

- **CDP**—A SPAN destination port does not participate in CDP while the SPAN session is active. After the SPAN session is disabled, the port again participates in CDP.

- **VTP**—You can use VTP to prune an RSPAN VLAN between switches.

- **VLAN and trunking**—You can modify VLAN membership or trunk settings for source or destination ports at any time. However, changes in VLAN membership or trunk settings for a destination port do not take effect until you remove the SPAN destination configuration. Changes in VLAN membership or trunk settings for a source port immediately take effect, and the respective SPAN sessions automatically adjust accordingly.

- **EtherChannel**—You can configure an EtherChannel group as a source port but not as a SPAN destination port. When a group is configured as a SPAN source, the entire group is monitored. If a physical port is added to a monitored EtherChannel group, the new port is added to the SPAN source port list. If a port is removed from a monitored EtherChannel group, it is automatically removed from the source port list.

  A physical port that belongs to an EtherChannel group can be configured as a SPAN source port and still be a part of the EtherChannel. In this case, data from the physical port is monitored as it participates in the EtherChannel. However, if a physical port that belongs to an EtherChannel group is configured as a SPAN destination, it is removed from the group. After the port is removed from the SPAN session, it rejoins the EtherChannel group. Ports removed from an EtherChannel group remain members of the group, but they are in the inactive or suspended state.

  If a physical port that belongs to an EtherChannel group is a destination port and the EtherChannel group is a source, the port is removed from the EtherChannel group and from the list of monitored ports.

- **Multicast traffic** can be monitored. For egress and ingress port monitoring, only a single unedited packet is sent to the SPAN destination port. It does not reflect the number of times the multicast packet is sent.

- **A private-VLAN port cannot be a SPAN destination port.**

- **A secure port cannot be a SPAN destination port.**

For SPAN sessions, do not enable port security on ports with monitored egress when ingress forwarding is enabled on the destination port. For RSPAN source sessions, do not enable port security on any ports with monitored egress.
An IEEE 802.1x port can be a SPAN source port. You can enable IEEE 802.1x on a port that is a SPAN destination port; however, IEEE 802.1x is disabled until the port is removed as a SPAN destination.

For SPAN sessions, do not enable IEEE 802.1x on ports with monitored egress when ingress forwarding is enabled on the destination port. For RSPAN source sessions, do not enable IEEE 802.1x on any ports that are egress monitored.

**SPAN and RSPAN and Switch Stacks**

Because the stack of switches is treated as one logical switch, local SPAN source ports and destination ports can be in different switches in the stack. Therefore, the addition or deletion of switches in the stack can affect a local SPAN session, as well as an RSPAN source or destination session. An active session can become inactive when a switch is removed from the stack or an inactive session can become active when a switch is added to the stack.

For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”

**Understanding Flow-Based SPAN**

You can control the type of network traffic to be monitored in SPAN or RSPAN sessions by using flow-based SPAN (FSPAN) or flow-based RSPAN (FRSPAN), which apply access control lists (ACLs) to the monitored traffic on the source ports. The FSPAN ACLs can be configured to filter IPv4, IPv6, and non-IP monitored traffic.

You apply an ACL to a SPAN session through the interface. It is applied to all the traffic that is monitored on all interfaces in the SPAN session. The packets that are permitted by this ACL are copied to the SPAN destination port. No other packets are copied to the SPAN destination port.

The original traffic continues to be forwarded, and any port, VLAN, and router ACLs attached are applied. The FSPAN ACL does not have any effect on the forwarding decisions. Similarly, the port, VLAN, and router ACLs do not have any effect on the traffic monitoring. If a security input ACL denies a packet and it is not forwarded, the packet is still copied to the SPAN destination ports if the FSPAN ACL permits it. But if the security output ACL denies a packet and it is not sent, it is not copied to the SPAN destination ports. However, if the security output ACL permits the packet to go out, it is only copied to the SPAN destination ports if the FSPAN ACL permits it. This is also true for an RSPAN session.

You can attach three types of FSPAN ACLs to the SPAN session:

- IPv4 FSPAN ACL—filters only IPv4 packets.
- IPv6 FSPAN ACL—filters only IPv6 packets.
- MAC FSPAN ACL—filters only non-IP packets.

The security ACLs have higher priority than the FSPAN ACLs on a switch. If FSPAN ACLs are applied, and you later add more security ACLs that cannot fit in the hardware memory, the FSPAN ACLs that you applied are removed from memory to allow space for the security ACLs. A system message notifies you of this action, which is called unloading. When there is again space for the FSPAN ACLs to reside in memory, they are added to the hardware memory on the switch. A system message notifies you of this action, which is called reloading. The IPv4, IPv6 and MAC FSPAN ACLs can be unloaded or reloaded independently.
If a VLAN-based FSPAN session configured on a stack cannot fit in the hardware memory on one or more switches, it is treated as unloaded on those switches, and traffic meant for the FSPAN ACL and sourcing on that switch is not copied to the SPAN destination ports. The FSPAN ACL continues to be correctly applied, and traffic is copied to the SPAN destination ports on the switches where the FSPAN ACL fits in the hardware memory.

When an empty FSPAN ACL is attached, some hardware functions copy all traffic to the SPAN destination ports for that ACL. If sufficient hardware resources are not available, even an empty FSPAN ACL can be unloaded.

**Note**
FSPAN is only supported in the IP Base feature set or higher.

For information on configuring the switch for FSPAN and FRSPAN, see the “Configuring FSPAN and FRSPAN” section on page 1-27.

## Configuring SPAN and RSPAN

- Default SPAN and RSPAN Configuration, page 1-12
- Configuring Local SPAN, page 1-12
- Configuring RSPAN, page 1-19

### Default SPAN and RSPAN Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN state (SPAN and RSPAN)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Source port traffic to monitor</td>
<td>Both received and sent traffic (both).</td>
</tr>
<tr>
<td>Encapsulation type (destination port)</td>
<td>Native form (untagged packets).</td>
</tr>
<tr>
<td>Ingress forwarding (destination port)</td>
<td>Disabled</td>
</tr>
<tr>
<td>VLAN filtering</td>
<td>On a trunk interface used as a source port, all VLANs are monitored.</td>
</tr>
<tr>
<td>RSPAN VLANs</td>
<td>None configured.</td>
</tr>
</tbody>
</table>

### Configuring Local SPAN

- SPAN Configuration Guidelines, page 1-13
- Creating a Local SPAN Session, page 1-14
- Creating a Local SPAN Session and Configuring Incoming Traffic, page 1-16
- Specifying VLANs to Filter, page 1-18
SPAN Configuration Guidelines

- On each switch stack, you can configure a maximum of 2 source sessions and 64 RSPAN destination sessions. A source session is either a local SPAN session or an RSPAN source session.

- For SPAN sources, you can monitor traffic for a single port or VLAN or a series or range of ports or VLANs for each session. You cannot mix source ports and source VLANs within a single SPAN session.

- The destination port cannot be a source port; a source port cannot be a destination port.

- You cannot have two SPAN sessions using the same destination port.

- When you configure a switch port as a SPAN destination port, it is no longer a normal switch port; only monitored traffic passes through the SPAN destination port.

- Entering SPAN configuration commands does not remove previously configured SPAN parameters. You must enter the no monitor session {session_number | all | local | remote} global configuration command to delete configured SPAN parameters.

- For local SPAN, outgoing packets through the SPAN destination port carry the original encapsulation headers—untagged, ISL, or IEEE 802.1Q—if the encapsulation replicate keywords are specified. If the keywords are not specified, the packets are sent in native form.

- You can configure a disabled port to be a source or destination port, but the SPAN function does not start until the destination port and at least one source port or source VLAN are enabled.

- You can limit SPAN traffic to specific VLANs by using the filter vlan keyword. If a trunk port is being monitored, only traffic on the VLANs specified with this keyword is monitored. By default, all VLANs are monitored on a trunk port.

- You cannot mix source VLANs and filter VLANs within a single SPAN session.

- These guidelines apply to the Catalyst 3560E-12D switch:
  - You must specify the destination-port group for an RSPAN source session by entering the monitor session session_number destination remote vlan vlan-id destination-port group {a | b | c} global configuration command for these types of sessions:
  - The switch supports these destination-port groups, depending on the switch port configuration:
    - a—tengigabitethernet 0/1 to tengigabitethernet 0/4 or gigabitethernet 0/1 to gigabitethernet 0/8
    - b—tengigabitethernet 0/5 to tengigabitethernet 0/8 or gigabitethernet 0/9 to gigabitethernet 0/16
    - c—tengigabitethernet 0/9 to tengigabitethernet 0/12 or gigabitethernet 0/17 to gigabitethernet 0/24
### Configuring SPAN and RSPAN

#### Creating a Local SPAN Session

Beginning in privileged EXEC mode, follow these steps to create a SPAN session and specify the source (monitored) ports or VLANs and the destination (monitoring) ports:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** no monitor session | Remove any existing SPAN configuration for the session.  
   - For session_number, the range is 1 to 66.  
   - Specify all to remove all SPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions. |
| **Step 3** monitor session session_number source interface interface-id | Specify the SPAN session and the source port (monitored port).  
For session_number, the range is 1 to 66. When entering this command on the Catalyst 3560E-12D switch, you can only enter 1 for the session_number.  
For interface-id, specify the source port or source VLAN to monitor.  
   - For source interface-id, specify the source port to monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number). Valid port-channel numbers are 1 to 48.  
   - For vlan-id, specify the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).  
Note A single session can include multiple sources (ports or VLANs), defined in a series of commands, but you cannot combine source ports and source VLANs in one session.  
(Optional) [], 1-] Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.  
(Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the SPAN monitors both sent and received traffic.  
   - both—Monitor both received and sent traffic. This is the default.  
   - rx—Monitor received traffic.  
   - tx—Monitor sent traffic.  
Note You can use the monitor session session_number source command multiple times to configure multiple source ports. |
### Configuring SPAN and RSPAN

To delete a SPAN session, use the `no monitor session session_number` global configuration command. For `session_number`, specify the session number entered in step 3.

Note: For local SPAN, you must use the same session number for the source and destination interfaces.

To remove a source or destination port or VLAN from the SPAN session, use the `no monitor session session_number source destination interface-id | vlan vlan-id` global configuration command or the `no monitor session session_number destination interface-id` global configuration command. For destination interfaces, the encapsulation options are ignored with the `no` form of the command.

This example shows how to set up SPAN session 1 for monitoring source port traffic to a destination port. First, any existing SPAN configuration for session 1 is deleted, and then bidirectional traffic is mirrored from source Gigabit Ethernet port 1 to destination Gigabit Ethernet port 2, retaining the encapsulation method.

```
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# monitor session 1 destination interface gigabitethernet1/0/2
Switch(config)# encapsulation replicate
Switch(config)# end
```

This example shows how to remove port 1 as a SPAN source for SPAN session 1:

```
Switch(config)# no monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# end
```

This example shows how to disable received traffic monitoring on port 1, which was configured for bidirectional monitoring:

```
Switch(config)# no monitor session 1 source interface gigabitethernet1/0/1 rx
```

The monitoring of traffic received on port 1 is disabled, but traffic sent from this port continues to be monitored.
This example shows how to remove any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on all ports belonging to VLANs 1 through 3, and send it to destination Gigabit Ethernet port 2. The configuration is then modified to also monitor all traffic on all ports belonging to VLAN 10.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source vlan 1 - 3 rx
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2
Switch(config)# monitor session 2 source vlan 10
Switch(config)# end
```

### Creating a Local SPAN Session and Configuring Incoming Traffic

Beginning in privileged EXEC mode, follow these steps to create a SPAN session, to specify the source ports or VLANs and the destination ports, and to enable incoming traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance).

For details about the keywords not related to incoming traffic, see the “Creating a Local SPAN Session” section on page 1-14.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session session_number source {interface interface-id</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring SPAN and RSPAN

Configuring SPAN and RSPAN

To delete a SPAN session, use the no monitor session session_number global configuration command.

To remove a source or destination port or VLAN from the SPAN session, use the no monitor session session_number source {interface interface-id | vlan vlan-id} global configuration command or the no monitor session session_number destination interface interface-id global configuration command. For destination interfaces, the encapsulation and ingress options are ignored with the no form of the command.

Step 4

- **monitor session session_number destination {interface interface-id [, -] [encapsulation replicate] [ingress {dot1q vlan vlan-id | isl | untagged vlan vlan-id | vlan vlan-id}]}

  Specify the SPAN session, the destination port, the packet encapsulation, and the ingress VLAN and encapsulation.

  For session_number, specify the session number entered in Step 3. When entering this command on the Catalyst 3560E-12D switch, you can only enter 1 for the session_number.

  For interface-id, specify the destination port. The destination interface must be a physical port; it cannot be an EtherChannel, and it cannot be a VLAN.

  (Optional) [, -] Specify a series or range of interfaces. Enter a space before and after the comma or hyphen.

  (Optional) Enter encapsulation replicate to specify that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged).

  Enter ingress with keywords to enable forwarding of incoming traffic on the destination port and to specify the encapsulation type:

  - **dot1q vlan vlan-id**—Accept incoming packets with IEEE 802.1Q encapsulation with the specified VLAN as the default VLAN.
  - **isl**—Forward ingress packets with ISL encapsulation.
  - **untagged vlan vlan-id or vlan vlan-id**—Accept incoming packets with untagged encapsulation type with the specified VLAN as the default VLAN.

Step 5

- **end**

  Return to privileged EXEC mode.

Step 6

- **show monitor [session session_number]
  show running-config**

  Verify the configuration.

Step 7

- **copy running-config startup-config**

  (Optional) Save the configuration in the configuration file.

To remove a source or VLAN from the SPAN session, use the **no monitor session session_number source** global configuration command. When entering this command on the Catalyst 3560E-12D switch, you can only enter 1 for the session_number.

This example shows how to remove any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on Gigabit Ethernet source port 1, and send it to destination Gigabit Ethernet port 2 with the same egress encapsulation type as the source port, and to enable ingress forwarding with IEEE 802.1Q encapsulation and VLAN 6 as the default ingress VLAN.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source gigabitethernet1/0/1 rx
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2 encapsulation replicate ingress dot1q vlan 6
Switch(config)# end
```
Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to limit SPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td></td>
<td>Remove any existing SPAN configuration for the session.</td>
</tr>
<tr>
<td></td>
<td>For session_number, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td>Specify all to remove all SPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions.</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session session_number source interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the characteristics of the source port (monitored port) and SPAN session.</td>
</tr>
<tr>
<td></td>
<td>For session_number, the range is 1 to 66. When entering this command on the Catalyst 3560E-12D switch, you can only enter 1 for the session_number.</td>
</tr>
<tr>
<td></td>
<td>For interface-id, specify the source port to monitor. The interface specified must already be configured as a trunk port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor session session_number filter vlan vlan-id [, 1 -]</td>
</tr>
<tr>
<td></td>
<td>Limit the SPAN source traffic to specific VLANs.</td>
</tr>
<tr>
<td></td>
<td>For session_number, enter the session number specified in Step 3.</td>
</tr>
<tr>
<td></td>
<td>For vlan-id, the range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use a comma (,) to specify a series of VLANs, or use a hyphen (-) to specify a range of VLANs. Enter a space before and after the comma; enter a space before and after the hyphen.</td>
</tr>
<tr>
<td>Step 5</td>
<td>monitor session session_number destination {interface interface-id [, 1 -] [encapsulation replicate]}</td>
</tr>
<tr>
<td></td>
<td>Specify the SPAN session and the destination port (monitoring port).</td>
</tr>
<tr>
<td></td>
<td>For session_number, specify the session number entered in Step 3.</td>
</tr>
<tr>
<td></td>
<td>For interface-id, specify the destination port. The destination interface must be a physical port; it cannot be an EtherChannel, and it cannot be a VLAN.</td>
</tr>
<tr>
<td></td>
<td>(Optional) [, 1 -] Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enter encapsulation replicate to specify that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged).</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show monitor [session session_number] show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save the configuration in the configuration file.</td>
</tr>
</tbody>
</table>

To monitor all VLANs on the trunk port, use the no monitor session session_number filter global configuration command.
This example shows how to remove any existing configuration on SPAN session 2, configure SPAN session 2 to monitor traffic received on Gigabit Ethernet trunk port 2, and send traffic for only VLANs 1 through 5 and VLAN 9 to destination Gigabit Ethernet port 1.

```plaintext
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet1/0/2 rx
Switch(config)# monitor session 2 filter vlan 1 - 5 , 9
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/1
Switch(config)# end
```

### Configuring RSPAN

- **RSPAN Configuration Guidelines, page 1-19**
- **Configuring a VLAN as an RSPAN VLAN, page 1-20**
- **Creating an RSPAN Source Session, page 1-20**
- **Specifying VLANs to Filter, page 1-22**
- **Creating an RSPAN Destination Session, page 1-24**
- **Creating an RSPAN Destination Session and Configuring Incoming Traffic, page 1-25**

### RSPAN Configuration Guidelines

- All the items in the “SPAN Configuration Guidelines” section on page 1-13 apply to RSPAN.
- As RSPAN VLANs have special properties, you should reserve a few VLANs across your network for use as RSPAN VLANs; do not assign access ports to these VLANs.
- You can apply an output ACL to RSPAN traffic to selectively filter or monitor specific packets. Specify these ACLs on the RSPAN VLAN in the RSPAN source switches.
- For RSPAN configuration, you can distribute the source ports and the destination ports across multiple switches in your network.
- RSPAN does not support BPDU packet monitoring or other Layer 2 switch protocols.
- The RSPAN VLAN is configured only on trunk ports and not on access ports. To avoid unwanted traffic in RSPAN VLANs, make sure that the VLAN remote-span feature is supported in all the participating switches.
- Access ports (including voice VLAN ports) on the RSPAN VLAN are put in the inactive state.
- RSPAN VLANs are included as sources for port-based RSPAN sessions when source trunk ports have active RSPAN VLANs. RSPAN VLANs can also be sources in SPAN sessions. However, since the switch does not monitor spanned traffic, it does not support egress spanning of packets on any RSPAN VLAN identified as the destination of an RSPAN source session on the switch.
- You can configure any VLAN as an RSPAN VLAN as long as these conditions are met:
  - The same RSPAN VLAN is used for an RSPAN session in all the switches.
  - All participating switches support RSPAN.
- We recommend that you configure an RSPAN VLAN before you configure an RSPAN source or a destination session.
- If you enable VTP and VTP pruning, RSPAN traffic is pruned in the trunks to prevent the unwanted flooding of RSPAN traffic across the network for VLAN IDs that are lower than 1005.
Configuring a VLAN as an RSPAN VLAN

First create a new VLAN to be the RSPAN VLAN for the RSPAN session. You must create the RSPAN VLAN in all switches that will participate in RSPAN. If the RSPAN VLAN-ID is in the normal range (lower than 1005) and VTP is enabled in the network, you can create the RSPAN VLAN in one switch, and VTP propagates it to the other switches in the VTP domain. For extended-range VLANs (greater than 1005), you must configure RSPAN VLAN on both source and destination switches and any intermediate switches.

Use VTP pruning to get an efficient flow of RSPAN traffic, or manually delete the RSPAN VLAN from all trunks that do not need to carry the RSPAN traffic.

Beginning in privileged EXEC mode, follow these steps to create an RSPAN VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vlan vlan-id</td>
<td>Enter a VLAN ID to create a VLAN, or enter the VLAN ID of an existing VLAN, and enter VLAN configuration mode. The range is 2 to 1001 and 1006 to 4094. The RSPAN VLAN cannot be VLAN 1 (the default VLAN) or VLAN IDs 1002 through 1005 (reserved for Token Ring and FDDI VLANs).</td>
</tr>
<tr>
<td>Step 3 remote-span</td>
<td>Configure the VLAN as an RSPAN VLAN.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save the configuration in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the remote SPAN characteristic from a VLAN and convert it back to a normal VLAN, use the `no remote-span` VLAN configuration command.

This example shows how to create RSPAN VLAN 901.

```
Switch(config)# vlan 901
Switch(config-vlan)# remote span
Switch(config-vlan)# end
```

Creating an RSPAN Source Session

Beginning in privileged EXEC mode, follow these steps to start an RSPAN source session and to specify the monitored source and the destination RSPAN VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no monitor session</td>
<td>Remove any existing RSPAN configuration for the session. For session_number, the range is 1 to 66. Specify all to remove all RSPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions.</td>
</tr>
</tbody>
</table>
To delete a SPAN session, use the `no monitor session session_number` global configuration command.

To remove a source port or VLAN from the SPAN session, use the `no monitor session session_number source [interface interface-id | vlan vlan-id]` global configuration command. To remove the RSPAN VLAN from the session, use the `no monitor session session_number destination remote vlan vlan-id`.

---

### Table of Commands and Purposes

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
</table>
| 3    | `monitor session session_number source [interface interface-id | vlan vlan-id] [ , | -] [both | rx | tx]` | Specify the RSPAN session and the source port (monitored port). For `session_number`, the range is 1 to 66. When entering this command on the Catalyst 3560E-12D switch, you can only enter 1 for the `session_number`.

Enter a source port or source VLAN for the RSPAN session:

- For `interface-id`, specify the source port to monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (`port-channel port-channel-number`). Valid port-channel numbers are 1 to 48.
- For `vlan-id`, specify the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).

A single session can include multiple sources (ports or VLANs), defined in a series of commands, but you cannot combine source ports and source VLANs in one session.

(Optional) `[ , | -]` Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.

(Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic.

- `both`—Monitor both received and sent traffic.
- `rx`—Monitor received traffic.
- `tx`—Monitor sent traffic.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
</table>
| 4    | On a switch other than the Catalyst 3560E-12D switch: `monitor session session_number destination remote vlan vlan-id`
|      | On the Catalyst 3560E0-12D switch: `monitor session session_number destination remote vlan vlan-id destination-port group {a | b | c}` | Specify the RSPAN session, the destination RSPAN VLAN, and the destination-port group.

For `session_number`, enter the number defined in Step 3.

For `vlan-id`, specify the source RSPAN VLAN to monitor.

For the Catalyst 3560E-12D switch, enter `destination-port group {a | b | c}` to specify the ports that carry RSPAN traffic.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
</table>
| 5    | `end` | Return to privileged EXEC mode.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
</table>
| 6    | `show monitor [session session_number] show running-config` | Verify the configuration.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>
This example shows how to remove any existing RSPAN configuration for session 1, configure RSPAN session 1 to monitor multiple source interfaces, and configure the destination as RSPAN VLAN 901.

```
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1 tx
Switch(config)# monitor session 1 source interface gigabitethernet1/0/2 rx
Switch(config)# monitor session 1 source interface port-channel 2
Switch(config)# monitor session 1 destination remote vlan 901
Switch(config)# end
```

On the Catalyst 3560E-12D switch, this example shows how to remove any existing RSPAN configuration for session 1, configure RSPAN session 1 to monitor multiple source interfaces, and configure the destination as RSPAN VLAN 901.

```
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet0/1 tx
Switch(config)# monitor session 1 source interface gigabitethernet0/2 rx
Switch(config)# monitor session 1 source interface port-channel 2
Switch(config)# monitor session 1 destination remote vlan 901 destination-port group b
Switch(config)# end
```

### Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to configure the RSPAN source session to limit RSPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
configure terminal                         | Enter global configuration mode.                                         |
| **Step 2**
no monitor session {session_number | all | local | remote} | Remove any existing SPAN configuration for the session.
For session_number, the range is 1 to 66.
Specify all to remove all SPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions. |
| **Step 3**
monitor session session_number source interface interface-id | Specify the characteristics of the source port (monitored port) and SPAN session.
For session_number, the range is 1 to 66. When entering this command on the Catalyst 3560E-12D switch, you can only enter 1 for the session_number.
For interface-id, specify the source port to monitor. The interface specified must already be configured as a trunk port. |
| **Step 4**
monitor session session_number filter vlan vlan-id [, 1 -] | Limit the SPAN source traffic to specific VLANs.
For session_number, enter the session number specified in step 3.
For vlan-id, the range is 1 to 4094.
(Optional) Use a comma (,) to specify a series of VLANs or use a hyphen (-) to specify a range of VLANs. Enter a space before and after the comma; enter a space before and after the hyphen. |
To monitor all VLANs on the trunk port, use the `no monitor session session_number filter vlan` global configuration command.

This example shows how to remove any existing configuration on RSPAN session 2, configure RSPAN session 2 to monitor traffic received on trunk port 2, and send traffic for only VLANs 1 through 5 and 9 to destination RSPAN VLAN 902.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet1/0/2 rx
Switch(config)# monitor session 2 filter vlan 1 - 5, 9
Switch(config)# monitor session 2 destination remote vlan 902
Switch(config)# end
```

On the Catalyst 3560E-12D switch, this example shows how to remove any existing configuration on RSPAN session 2, configure RSPAN session 2 to monitor traffic received on trunk port 2, and send traffic for only VLANs 1 through 5 and 9 to destination RSPAN VLAN 902.

```
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet0/2 rx
Switch(config)# monitor session 1 filter vlan 1 - 5, 9
Switch(config)# monitor session 1 destination remote vlan 902 destination-port group a
Switch(config)# end
```
## Chapter 1  Configuring SPAN and RSPAN

### Creating an RSPAN Destination Session

You configure the RSPAN destination session on a different switch or switch stack; that is, not the switch or switch stack on which the source session was configured.

Beginning in privileged EXEC mode, follow these steps to define the RSPAN VLAN on that switch, to create an RSPAN destination session, and to specify the source RSPAN VLAN and the destination port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | vlan vlan-id | Enter the VLAN ID of the RSPAN VLAN created from the source switch, and enter VLAN configuration mode.  
   If both switches are participating in VTP and the RSPAN VLAN ID is from 2 to 1005, Steps 2 through 4 are not required because the RSPAN VLAN ID is propagated through the VTP network. |
| **Step 3** | remote-span | Identify the VLAN as the RSPAN VLAN. |
| **Step 4** | exit | Return to global configuration mode. |
| **Step 5** | no monitor session [session_number | all | local | remote] | Remove any existing RSPAN configuration for the session.  
   For session_number, the range is 1 to 66.  
   Specify all to remove all RSPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions. |
| **Step 6** | monitor session session_number source remote vlan vlan-id | Specify the RSPAN session and the source RSPAN VLAN.  
   For session_number, the range is 1 to 66. When entering this command on the Catalyst 3560E-12D switch, you can only enter 1 for the session_number.  
   For vlan-id, specify the source RSPAN VLAN to monitor. |
| **Step 7** | monitor session session_number destination interface interface-id | Specify the RSPAN session and the destination interface.  
   For session_number, enter the number defined in Step 6.  
   In an RSPAN destination session, you must use the same session number for the source RSPAN VLAN and the destination port.  
   For interface-id, specify the destination interface. The destination interface must be a physical interface.  
   Though visible in the command-line help string, encapsulation replicate is not supported for RSPAN. The original VLAN ID is overwritten by the RSPAN VLAN ID, and all packets appear on the destination port as untagged. |
| **Step 8** | end | Return to privileged EXEC mode. |
| **Step 9** | show monitor [session session_number] show running-config | Verify the configuration. |
| **Step 10** | copy running-config startup-config | (Optional) Save the configuration in the configuration file. |
To delete a SPAN session, use the `no monitor session session_number` global configuration command. To remove a destination port from the SPAN session, use the `no monitor session session_number destination interface interface-id` global configuration command. To remove the RSPAN VLAN from the session, use the `no monitor session session_number source remote vlan vlan-id`.

This example shows how to configure VLAN 901 as the source remote VLAN and port 1 as the destination interface:

```
Switch(config)# monitor session 1 source remote vlan 901
Switch(config)# monitor session 1 destination interface gigabitethernet2/0/1
Switch(config)# end
```

### Creating an RSPAN Destination Session and Configuring Incoming Traffic

Beginning in privileged EXEC mode, follow these steps to create an RSPAN destination session, to specify the source RSPAN VLAN and the destination port, and to enable incoming traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance).

For details about the keywords not related to incoming traffic, see the “Creating an RSPAN Destination Session” section on page 1-24. This procedure assumes that the RSPAN VLAN has already been configured.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>`no monitor session {session_number</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>monitor session session_number source remote vlan vlan-id</code> Specify the RSPAN session and the source RSPAN VLAN. For <code>session_number</code>, the range is 1 to 66. When entering this command on the Catalyst 3560E-12D switch, you can only enter 1 for the <code>session_number</code>. For <code>vlan-id</code>, specify the source RSPAN VLAN to monitor.</td>
</tr>
</tbody>
</table>
## Configuring SPAN and RSPAN

### Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4** | `monitor session session_number destination {interface interface-id [, | -] [ingress {dot1q vlan vlan-id | isl | untagged vlan vlan-id | vlan vlan-id}]}}` | Specify the SPAN session, the destination port, the packet encapsulation, and the incoming VLAN and encapsulation. For `session_number`, enter the number defined in Step 4. In an RSPAN destination session, you must use the same session number for the source RSPAN VLAN and the destination port. For `interface-id`, specify the destination interface. The destination interface must be a physical interface. Though visible in the command-line help string, `encapsulation replicate` is not supported for RSPAN. The original VLAN ID is overwritten by the RSPAN VLAN ID, and all packets appear on the destination port as untagged. (Optional) [,, -] Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen. Enter `ingress` with additional keywords to enable forwarding of incoming traffic on the destination port and to specify the encapsulation type:  
- `dot1q vlan vlan-id`—Forward incoming packets with IEEE 802.1Q encapsulation with the specified VLAN as the default VLAN.  
- `isl`—Forward ingress packets with ISL encapsulation.  
- `untagged vlan vlan-id or vlan vlan-id`—Forward incoming packets with untagged encapsulation type with the specified VLAN as the default VLAN. |
| **Step 5** | `end` | Return to privileged EXEC mode. |
| **Step 6** | `show monitor [session session_number]`  
`show running-config` | Verify the configuration. |
| **Step 7** | `copy running-config startup-config` | (Optional) Save the configuration in the configuration file. |

To delete an RSPAN session, use the `no monitor session session_number` global configuration command. To remove a destination port from the RSPAN session, use the `no monitor session session_number destination interface interface-id` global configuration command. The ingress options are ignored with the `no` form of the command. This example shows how to configure VLAN 901 as the source remote VLAN in RSPAN session 2, to configure Gigabit Ethernet source port 2 as the destination interface, and to enable forwarding of incoming traffic on the interface with VLAN 6 as the default receiving VLAN.

```
Switch(config)# monitor session 2 source remote vlan 901
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2 ingress vlan 6
Switch(config)# end
```
Configuring FSPAN and FRSPAN

- FSPAN and FRSPAN Configuration Guidelines, page 1-27
- Configuring an FSPAN Session, page 1-28
- Configuring an FRSPAN Session, page 1-29

FSPAN and FRSPAN Configuration Guidelines

- You can attach ACLs to only one SPAN or RSPAN session at a time.
- When no FSPAN ACLs are attached, FSPAN is disabled, and all traffic is copied to the SPAN destination ports.
- When at least one FSPAN ACL is attached, FSPAN is enabled.
  - When you attach an empty FSPAN ACL to a SPAN session, it does not filter packets, and all traffic is monitored.
  - When you attach at least one FSPAN ACL that is not empty to a SPAN session, and you have not attached one or more of the other FSPAN ACLs (for instance, you have attached an IPv4 ACL that is not empty, and have not attached IPv6 and MAC ACLs), FSPAN blocks the traffic that would have been filtered by the unattached ACLs. Therefore, this traffic is not monitored.
- Port-based FSPAN sessions can be configured on a stack that includes Catalyst 3750 or Catalyst 3750-E switches as long as the session only includes Catalyst 3750-X ports as source ports. If the session has any Catalyst 3750 or Catalyst 3750-E ports as source ports, the FSPAN ACL command is rejected. If the session has FSPAN ACL configured, any commands including Catalyst 3750 or Catalyst 3750-E ports as source ports are rejected. The Catalyst 3750 or Catalyst 3750-E ports can be added as destination ports in an FSPAN session.
- VLAN-based FSPAN sessions cannot be configured on a stack that includes Catalyst 3750 switches.
- FSPAN ACLs cannot be applied to per-port-per-VLAN sessions. You can configure per-port-per-VLAN sessions by first configuring a port-based session and then configuring specific VLANs to the session. For example:

  ```
 Switch (config)# monitor session session_number source interface interface-id
 Switch (config)# monitor session session_number filter vlan vlan-id
 Switch (config)# monitor session session_number filter ip access-group
 (access-list-number | name)
  ```

  **Note**: Both the `filter vlan` and `filter ip access-group` commands cannot be configured at the same time. Configuring one results in rejection of the other.

- EtherChannels are not supported in an FSPAN session.
- FSPAN ACLs with TCP flags or the `log` keyword are not supported.
- IPv6 FSPAN ACLs are supported only on IPv6-enabled SDM templates. If you configure an IPv6 FSPAN ACL when running an IPv6 enabled SDM template, but later configure a non-IPv6 SDM template and reboot the switch, you lose the IPv6 FSPAN ACL configuration.
## Configuring an FSPAN Session

Beginning in privileged EXEC mode, follow these steps to create a SPAN session, specify the source (monitored) ports or VLANs and the destination (monitoring) ports, and configure FSPAN for the session:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong>&lt;br&gt;no monitor session *(session_number</td>
<td>all</td>
</tr>
</tbody>
</table>
| **Step 3**<br>monitor session *session_number source* *(interface interface-id | vlan vlan-id)* [., |-] *(both | rx | tx)* | Specify the SPAN session and the source port (monitored port).<br>  - For *session_number*, the range is 1 to 66.<br>  - For *interface-id*, specify the source port or the source VLAN to monitor.<br>  - For source *interface-id*, specify the source port to monitor. Only physical interfaces are valid.<br>  - For *vlan-id*, specify the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).<br>**Note** A single session can include multiple sources (ports or VLANs) defined in a series of commands, but you cannot combine source ports and source VLANs in one session.<br>  - (Optional) [., |-] Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.<br>  - (Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the SPAN monitors both sent and received traffic.<br>  - **both**—Monitor both sent and received traffic. This is the default.<br>  - **rx**—Monitor received traffic.<br>  - **tx**—Monitor sent traffic.<br>**Note** You can use the `monitor session session_number source` command multiple times to configure multiple source ports.
Chapter 1 Configuring SPAN and RSPAN

Configuring FSPAN and FRSPAN

Configuring an FRSPAN Session

Beginning in privileged EXEC mode, follow these steps to start an RSPAN source session, specify the monitored source and the destination RSPAN VLAN, and configure FRSPAN for the session:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session {session_number</td>
</tr>
</tbody>
</table>
### Command Purpose

**Step 3**  
**monitor session session_number source**  
{interface interface-id | vlan vlan-id} [] [-]  
{both | rx | tx}  
Specify the RSPAN session and the source port (monitored port).  
For **session_number**, the range is 1 to 66.  
Enter a source port or source VLAN for the RSPAN session:  
- For **interface-id**, specify the source port to monitor. Only physical interfaces are valid.  
- For **vlan-id**, specify the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).  
A single session can include multiple sources (ports or VLANs), defined in a series of commands, but you cannot combine source ports and source VLANs in one session.  
- (Optional) [] [-] Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.  
- (Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic.  
  - **both**—Monitor both received and sent traffic.  
  - **rx**—Monitor received traffic.  
  - **tx**—Monitor sent traffic.

**Step 4**  
**monitor session session_number destination remote vlan vlan-id**  
Specify the RSPAN session and the destination RSPAN VLAN.  
For **session_number**, enter the number defined in Step 3.  
For **vlan-id**, specify the source RSPAN VLAN to monitor.

**Step 5**  
**vlan vlan-id**  
Enter the VLAN sub-mode. For **vlan-id**, specify the source RSPAN VLAN to monitor.

**Step 6**  
**remote-span**  
Indicate that the VLAN you specified in Step 5 is part of the RSPAN VLAN.

**Step 7**  
**exit**  
Return to global configuration mode.

**Step 8**  
**monitor session session_number filter**  
{ip | ipv6 | mac} access-group  
{access-list-number | name}  
Specify the RSPAN session, the types of packets to filter, and the ACLs to use in an FRSPAN session.  
For **session_number**, specify the session number entered in Step 3.  
For **access-list-number**, specify the ACL number that you want to use to filter traffic.  
For **name**, specify the ACL name that you want to use to filter traffic.

**Step 9**  
**end**  
Return to privileged EXEC mode.

**Step 10**  
**show monitor [session session_number]**  
**show running-config**  
Verify the configuration.

**Step 11**  
**copy running-config startup-config**  
(Optional) Save the configuration in the configuration file.
Displaying SPAN, RSPAN, FSPAN, and FRSPAN Status

To display the current SPAN, RSPAN, FSPAN, or FRSPAN configuration, use the `show monitor user` EXEC command. You can also use the `show running-config` privileged EXEC command to display configured sessions.
CHAPTER 1

Configuring RMON

This chapter describes how to configure Remote Network Monitoring (RMON) on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

RMON is a standard monitoring specification that defines a set of statistics and functions that can be exchanged between RMON-compliant console systems and network probes. RMON provides you with comprehensive network-fault diagnosis, planning, and performance-tuning information.

For complete syntax and usage information for the commands used in this chapter, see the “System Management Commands” section in the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4.

- Understanding RMON, page 1-1
- Configuring RMON, page 1-2
- Displaying RMON Status, page 1-6

Understanding RMON

RMON is an Internet Engineering Task Force (IETF) standard monitoring specification that allows various network agents and console systems to exchange network monitoring data. You can use the RMON feature with the Simple Network Management Protocol (SNMP) agent in the switch to monitor all the traffic flowing among switches on all connected LAN segments as shown in Figure 1-1.
The switch supports these RMON groups (defined in RFC 1757):

- Statistics (RMON group 1)—Collects Ethernet statistics (including Fast Ethernet and Gigabit Ethernet statistics, depending on the switch type and supported interfaces) on an interface.
- History (RMON group 2)—Collects a history group of statistics on Ethernet ports (including Fast Ethernet and Gigabit Ethernet statistics, depending on the switch type and supported interfaces) for a specified polling interval.
- Alarm (RMON group 3)—Monitors a specific management information base (MIB) object for a specified interval, triggers an alarm at a specified value (rising threshold), and resets the alarm at another value (falling threshold). Alarms can be used with events; the alarm triggers an event, which can generate a log entry or an SNMP trap.
- Event (RMON group 9)—Specifies the action to take when an event is triggered by an alarm. The action can be to generate a log entry or an SNMP trap.

Because switches supported by this software release use hardware counters for RMON data processing, the monitoring is more efficient, and little processing power is required.

> **Note**

64-bit counters are not supported for RMON alarms.

### Configuring RMON

- Default RMON Configuration, page 1-3
- Configuring RMON Alarms and Events, page 1-3 (required)
• Collecting Group History Statistics on an Interface, page 1-5 (optional)
• Collecting Group Ethernet Statistics on an Interface, page 1-5 (optional)

Default RMON Configuration

RMON is disabled by default; no alarms or events are configured.

Configuring RMON Alarms and Events

You can configure your switch for RMON by using the command-line interface (CLI) or an SNMP-compatible network management station. We recommend that you use a generic RMON console application on the network management station (NMS) to take advantage of the RMON network management capabilities. You must also configure SNMP on the switch to access RMON MIB objects. For more information, see Chapter 1, “Configuring SNMP.”

Note
64-bit counters are not supported for RMON alarms.

Beginning in privileged EXEC mode, follow these steps to enable RMON alarms and events. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>rmon alarm number variable interval [absolute</td>
</tr>
<tr>
<td></td>
<td>rising-threshold value [event-number]</td>
</tr>
<tr>
<td></td>
<td>falling-threshold value [event-number]</td>
</tr>
<tr>
<td></td>
<td>[owner string]</td>
</tr>
<tr>
<td></td>
<td>Set an alarm on a MIB object.</td>
</tr>
<tr>
<td></td>
<td>• For number, specify the alarm number. The range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>• For variable, specify the MIB object to monitor.</td>
</tr>
<tr>
<td></td>
<td>• For interval, specify the time in seconds the alarm monitors the MIB variable. The range is 1 to 4294967295 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Specify the absolute keyword to test each MIB variable directly. Specify the delta keyword to test the change between samples of a MIB variable.</td>
</tr>
<tr>
<td></td>
<td>• For value, specify a number at which the alarm is triggered and one for when the alarm is reset. The range for the rising threshold and falling threshold values is -2147483648 to 2147483647.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For event-number, specify the event number to trigger when the rising or falling threshold exceeds its limit.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For owner string, specify the owner of the alarm.</td>
</tr>
</tbody>
</table>
Configuring RMON

Chapter 1      Configuring RMON

To disable an alarm, use the `no rmon alarm number` global configuration command on each alarm you configured. You cannot disable at once all the alarms that you configured. To disable an event, use the `no rmon event number` global configuration command. To learn more about alarms and events and how they interact with each other, see RFC 1757.

You can set an alarm on any MIB object. The following example configures RMON alarm number 10 by using the `rmon alarm` command. The alarm monitors the MIB variable `ifEntry.20.1` once every 20 seconds until the alarm is disabled and checks the change in the variable’s rise or fall. If the `ifEntry.20.1` value shows a MIB counter increase of 15 or more, such as from 100000 to 100015, the alarm is triggered. The alarm in turn triggers event number 1, which is configured with the `rmon event` command. Possible events can include a log entry or an SNMP trap. If the `ifEntry.20.1` value changes by 0, the alarm is reset and can be triggered again.

```
Switch(config)# rmon alarm 10 ifEntry.20.1 20 delta rising-threshold 15 1 falling-threshold 0 owner jjohnson
```

The following example creates RMON event number 1 by using the `rmon event` command. The event is defined as `High ifOutErrors` and generates a log entry when the event is triggered by the alarm. The user `jjones` owns the row that is created in the event table by this command. This example also generates an SNMP trap when the event is triggered.

```
Switch(config)# rmon event 1 log trap eventtrap description "High ifOutErrors" owner jjones
```
Collecting Group History Statistics on an Interface

You must first configure RMON alarms and events to display collection information. Beginning in privileged EXEC mode, follow these steps to collect group history statistics on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Specify the interface on which to collect history, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>rmon collection history index [buckets bucket-number] [interval seconds] [owner ownername] Enable history collection for the specified number of buckets and time period.</td>
</tr>
<tr>
<td></td>
<td>• For index, identify the RMON group of statistics The range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For buckets bucket-number, specify the maximum number of buckets desired for the RMON collection history group of statistics. The range is 1 to 65535. The default is 50 buckets.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For interval seconds, specify the number of seconds in each polling cycle. The range is 1 to 3600. The default is 1800 seconds.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For owner ownername, enter the name of the owner of the RMON group of statistics.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show rmon history Display the contents of the switch history table.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable history collection, use the no rmon collection history index interface configuration command.

Collecting Group Ethernet Statistics on an Interface

Beginning in privileged EXEC mode, follow these steps to collect group Ethernet statistics on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Specify the interface on which to collect statistics, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
### Displaying RMON Status

#### Table 1-1  Commands for Displaying RMON Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show rmon</code></td>
<td>Displays general RMON statistics.</td>
</tr>
<tr>
<td><code>show rmon alarms</code></td>
<td>Displays the RMON alarm table.</td>
</tr>
<tr>
<td><code>show rmon events</code></td>
<td>Displays the RMON event table.</td>
</tr>
<tr>
<td><code>show rmon history</code></td>
<td>Displays the RMON history table.</td>
</tr>
<tr>
<td><code>show rmon statistics</code></td>
<td>Displays the RMON statistics table.</td>
</tr>
</tbody>
</table>

For information about the fields in these displays, see the “System Management Commands” section in the *Cisco IOS Configuration Fundamentals Command Reference, Release 12.4*. 

To disable the collection of group Ethernet statistics, use the `no rmon collection stats index` interface configuration command.

This example shows how to collect RMON statistics for the owner `root`:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# rmon collection stats 2 owner root
```
Configuring System Message Logging and Smart Logging

This chapter describes how to configure system message logging on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. The switch also supports Smart Logging to capture packet flows based on configured triggers.

Note
For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4 and the command reference for this release.

- Understanding System Message Logging, page 1-1
- Configuring System Message Logging, page 1-2
- Configuring Smart Logging, page 1-14
- Displaying the Logging Configuration, page 1-17

Caution
Logging messages to the console at a high rate can cause high CPU utilization and adversely affect how the switch operates.

Understanding System Message Logging

By default, a switch sends the output from system messages and debug privileged EXEC commands to a logging process. Stack members can trigger system messages. A stack member that generates a system message appends its hostname in the form of hostname-n, where n is a switch number from 1 to 9, and redirects the output to the logging process on the stack master. Though the stack master is a stack member, it does not append its hostname to system messages. The logging process controls the distribution of logging messages to various destinations, such as the logging buffer, terminal lines, or a UNIX syslog server, depending on your configuration. The process also sends messages to the console.

Note
The syslog format is compatible with 4.3 BSD UNIX.
When the logging process is disabled, messages are sent only to the console. The messages are sent as they are generated, so message and debug output are interspersed with prompts or output from other commands. On Catalyst 3750-E Catalyst 3750-X switches, messages appear on the active consoles after the process that generated them has finished. On Catalyst 3560-E Catalyst 3560-X switches, messages appear on the console after the process that generated them has finished.

You can set the severity level of the messages to control the type of messages displayed on the consoles and each of the destinations. You can time-stamp log messages or set the syslog source address to enhance real-time debugging and management. For information on possible messages, see the system message guide for this release.

You can access logged system messages by using the switch command-line interface (CLI) or by saving them to a properly configured syslog server. The switch software saves syslog messages in an internal buffer on a standalone switch, and in the case of a switch stack, on the stack master. If a standalone switch or the stack master fails, the log is lost unless you had saved it to flash memory.

You can remotely monitor system messages by viewing the logs on a syslog server or by accessing the switch through Telnet, through the console port, or through the Ethernet management port. In a switch stack, all stack member consoles provide the same console output.

### Configuring System Message Logging

- System Log Message Format, page 1-2
- Default System Message Logging Configuration, page 1-4
- Disabling Message Logging, page 1-4 (optional)
- Setting the Message Display Destination Device, page 1-5 (optional)
- Synchronizing Log Messages, page 1-6 (optional)
- Enabling and Disabling Time Stamps on Log Messages, page 1-8 (optional)
- Enabling and Disabling Sequence Numbers in Log Messages, page 1-8 (optional)
- Defining the Message Severity Level, page 1-9 (optional)
- Limiting Syslog Messages Sent to the History Table and to SNMP, page 1-10 (optional)
- Enabling the Configuration-Change Logger, page 1-11 (optional)
- Configuring UNIX Syslog Servers, page 1-12 (optional)

### System Log Message Format

System log messages can contain up to 80 characters and a percent sign (%), which follows the optional sequence number or time-stamp information, if configured. Messages appear in this format:

For Catalyst 3750-E Catalyst 3750-X switches, `seq no:timestamp: %facility-severity-MNEMONIC: description (hostname-n)`

For Catalyst 3560-E Catalyst 3560-X switches, `seq no:timestamp: %facility-severity-MNEMONIC: description`

The part of the message preceding the percent sign depends on the setting of the `service sequence-numbers`, `service timestamps log datetime`, `service timestamps log datetime [localtime] [msec] [show-timezone]`, or `service timestamps log uptime` global configuration command.
Table 1-1  System Log Message Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq no:</td>
<td>Stamps log messages with a sequence number only if the service sequence-numbers global configuration command is configured. For more information, see the “Enabling and Disabling Sequence Numbers in Log Messages” section on page 1-8.</td>
</tr>
<tr>
<td>timestamp formats:</td>
<td>Date and time of the message or event. This information appears only if the service timestamps log [datetime</td>
</tr>
<tr>
<td>mm/dd hh:mm:ss</td>
<td>Or hh:mm:ss (short uptime) or d h (long uptime)</td>
</tr>
<tr>
<td>facility</td>
<td>The facility to which the message refers (for example, SNMP, SYS, and so forth). For a list of supported facilities, see Table 1-4 on page 1-14.</td>
</tr>
<tr>
<td>severity</td>
<td>Single-digit code from 0 to 7 that is the severity of the message. For a description of the severity levels, see Table 1-3 on page 1-10.</td>
</tr>
<tr>
<td>MNEMONIC</td>
<td>Text string that uniquely describes the message.</td>
</tr>
<tr>
<td>description</td>
<td>Text string containing detailed information about the event being reported.</td>
</tr>
<tr>
<td>hostname-n</td>
<td>Hostname of a stack member and its switch number in the stack. Though the stack master is a stack member, it does not append its hostname to system messages.</td>
</tr>
</tbody>
</table>

This example shows a partial switch system message for a stack master and a stack member (hostname Switch-2):

```
00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/1, changed state to up
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet2/0/1, changed state to up (Switch-2)
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down (Switch-2)
%Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
18:47:02: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
*Mar 1 18:48:50.483 UTC: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)

00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up (Switch-2)
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet2/0/1, changed state to up (Switch-2)
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet2/0/2, changed state to up (Switch-2)
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down (Switch-2)
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet2/0/1, changed state to down 2 (Switch-2)
```
This example shows a partial switch system message on a Catalyst 3560-E Catalyst 3560-X switch:

```
00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet0/1, changed state to up
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet0/2, changed state to up
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to down
*Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
18:47:02: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
*Mar 1 18:48:50.483 UTC: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
```

### Default System Message Logging Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>System message logging to the console</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Console severity</td>
<td>Debugging (and numerically lower levels; see Table 1-3 on page 1-10).</td>
</tr>
<tr>
<td>Logging file configuration</td>
<td>No filename specified.</td>
</tr>
<tr>
<td>Logging buffer size</td>
<td>4096 bytes.</td>
</tr>
<tr>
<td>Logging history size</td>
<td>1 message.</td>
</tr>
<tr>
<td>Time stamps</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Synchronous logging</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Logging server</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Syslog server IP address</td>
<td>None configured.</td>
</tr>
<tr>
<td>Server facility</td>
<td>Local7 (see Table 1-4 on page 1-14).</td>
</tr>
<tr>
<td>Server severity</td>
<td>Informational (and numerically lower levels; see Table 1-3 on page 1-10).</td>
</tr>
</tbody>
</table>

### Disabling Message Logging

Message logging is enabled by default. It must be enabled to send messages to any destination other than the console. When enabled, log messages are sent to a logging process, which logs messages to designated locations asynchronously to the processes that generated the messages.

Beginning in privileged EXEC mode, follow these steps to disable message logging. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>no logging console</td>
<td>Disable message logging.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Disabling the logging process can slow down the switch because a process must wait until the messages are written to the console before continuing. When the logging process is disabled, messages appear on the console as soon as they are produced, often appearing in the middle of command output.

The `logging synchronous` global configuration command also affects the display of messages to the console. When this command is enabled, messages appear only after you press Return. For more information, see the “Synchronizing Log Messages” section on page 1-6.

To re-enable message logging after it has been disabled, use the `logging on` global configuration command.

### Setting the Message Display Destination Device

If message logging is enabled, you can send messages to specific locations in addition to the console. Beginning in privileged EXEC mode, use one or more of the following commands to specify the locations that receive messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> logging buffered [size]</td>
<td>Log messages to an internal buffer on the switch or on a standalone switch or, in the case of a switch stack, on the stack master. The range is 4096 to 2147483647 bytes. The default buffer size is 4096 bytes. If a standalone switch or the stack master fails, the log file is lost unless you previously saved it to flash memory. See Step 4. <strong>Note</strong> Do not make the buffer size too large because the switch could run out of memory for other tasks. Use the <code>show memory</code> privileged EXEC command to view the free processor memory on the switch. However, this value is the maximum available, and the buffer size should <em>not</em> be set to this amount.</td>
</tr>
<tr>
<td><strong>Step 3</strong> logging host</td>
<td>Log messages to a UNIX syslog server host. For <code>host</code>, specify the name or IP address of the host to be used as the syslog server. To build a list of syslog servers that receive logging messages, enter this command more than once. For complete syslog server configuration steps, see the “Configuring UNIX Syslog Servers” section on page 1-12.</td>
</tr>
</tbody>
</table>
Chapter 1      Configuring System Message Logging and Smart Logging

Configuring System Message Logging

The `logging buffered` global configuration command copies logging messages to an internal buffer. The buffer is circular, so newer messages overwrite older messages after the buffer is full. To display the messages that are logged in the buffer, use the `show logging` privileged EXEC command. The first message displayed is the oldest message in the buffer. To clear the contents of the buffer, use the `clear logging` privileged EXEC command.

Use the `logging event power-inline-status` interface configuration command to enable and to disable logging of Power over Ethernet (PoE) events on specific PoE-capable ports. Logging on these ports is enabled by default.

To disable logging to the console, use the `no logging console` global configuration command. To disable logging to a file, use the `no logging file [severity-level-number | type]` global configuration command.

Synchronizing Log Messages

You can synchronize unsolicited messages and `debug` privileged EXEC command output with solicited device output and prompts for a specific console port line or virtual terminal line. You can identify the types of messages to be output asynchronously based on the level of severity. You can also configure the maximum number of buffers for storing asynchronous messages for the terminal after which messages are dropped.

When synchronous logging of unsolicited messages and `debug` command output is enabled, unsolicited device output appears on the console or printed after solicited device output appears or is printed. Unsolicited messages and `debug` command output appears on the console after the prompt for user input is returned. Therefore, unsolicited messages and `debug` command output are not interspersed with solicited device output and prompts. After the unsolicited messages appear, the console again displays the user prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>**logging file flash:**filename [max-file-size [min-file-size]] [severity-level-number \ type]</td>
</tr>
<tr>
<td></td>
<td>• For <code>filename</code>, enter the log message filename.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>max-file-size</code>, specify the maximum logging file size. The range is 4096 to 2147483647. The default is 4096 bytes.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>min-file-size</code>, specify the minimum logging file size. The range is 1024 to 2147483647. The default is 2048 bytes.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>severity-level-number</code> <code>type</code>, specify either the logging severity level or the logging type. The severity range is 0 to 7. For a list of logging type keywords, see Table 1-3 on page 1-10. By default, the log file receives debugging messages and numerically lower levels.</td>
</tr>
<tr>
<td>Step 5</td>
<td><strong>end</strong></td>
</tr>
<tr>
<td>Step 6</td>
<td><strong>terminal monitor</strong></td>
</tr>
<tr>
<td></td>
<td>Terminal parameter-setting commands are set locally and do not remain in effect after the session has ended. You must perform this step for each session to see the debugging messages.</td>
</tr>
<tr>
<td>Step 7</td>
<td><strong>show running-config</strong></td>
</tr>
<tr>
<td>Step 8</td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
</tbody>
</table>

The `logging buffered` global configuration command copies logging messages to an internal buffer. The buffer is circular, so newer messages overwrite older messages after the buffer is full. To display the messages that are logged in the buffer, use the `show logging` privileged EXEC command. The first message displayed is the oldest message in the buffer. To clear the contents of the buffer, use the `clear logging` privileged EXEC command.

Use the `logging event power-inline-status` interface configuration command to enable and to disable logging of Power over Ethernet (PoE) events on specific PoE-capable ports. Logging on these ports is enabled by default.

To disable logging to the console, use the `no logging console` global configuration command. To disable logging to a file, use the `no logging file [severity-level-number | type]` global configuration command.
Beginning in privileged EXEC mode, follow these steps to configure synchronous logging. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>line [console</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable synchronization of unsolicited messages and debug output, use the no logging synchronous [level severity-level | all] [limit number-of-buffers] line configuration command.
Enabling and Disabling Time Stamps on Log Messages

By default, log messages are not time-stamped.

Beginning in privileged EXEC mode, follow these steps to enable time-stamping of log messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>service timestamps log uptime</td>
<td>Enable log time stamps. The first command enables time stamps on log messages, showing the time since the system was rebooted.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>service timestamps log datetime [msec] [localtime] [show-timezone]</td>
<td>Depending on the options selected, the time stamp can include the date, time in milliseconds relative to the local time-zone, and the time zone name.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable time stamps for both debug and log messages, use the no service timestamps global configuration command.

This example shows part of a logging display with the service timestamps log datetime global configuration command enabled:

```
*Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36) (Switch-2)
```

This example shows part of a logging display with the service timestamps log uptime global configuration command enabled:

```
00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up (Switch-2)
```

Enabling and Disabling Sequence Numbers in Log Messages

Because there is a chance that more than one log message can have the same time stamp, you can display messages with sequence numbers so that you can unambiguously see a single message. By default, sequence numbers in log messages are not displayed.

Beginning in privileged EXEC mode, follow these steps to enable sequence numbers in log messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>service sequence-numbers</td>
<td>Enable sequence numbers.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring System Message Logging and Smart Logging

Configuring System Message Logging

To disable sequence numbers, use the `no service sequence-numbers` global configuration command.

This example shows part of a logging display with sequence numbers enabled:

```
000019: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36) (Switch-2)
```

Defining the Message Severity Level

You can limit messages displayed to the selected device by specifying the severity level of the message, which are described in Table 1-3.

Beginning in privileged EXEC mode, follow these steps to define the message severity level. This procedure is optional.

```
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 logging console</td>
<td>Limit messages logged to the console. By default, the console receives</td>
</tr>
<tr>
<td>level</td>
<td>debugging messages and numerically lower levels (see Table 1-3 on page</td>
</tr>
<tr>
<td></td>
<td>1-10).</td>
</tr>
<tr>
<td>Step 3 logging monitor</td>
<td>Limit messages logged to the terminal lines. By default, the terminal</td>
</tr>
<tr>
<td>level</td>
<td>receives debugging messages and numerically lower levels (see Table 1-3</td>
</tr>
<tr>
<td></td>
<td>on page 1-10).</td>
</tr>
<tr>
<td>Step 4 logging trap</td>
<td>Limit messages logged to the syslog servers. By default, syslog servers</td>
</tr>
<tr>
<td>level</td>
<td>receive informational messages and numerically lower levels (see Table 1-3 on page 1-10). For complete syslog server configuration steps, see the “Configuring UNIX Syslog Servers” section on page 1-12.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>show logging</td>
<td></td>
</tr>
<tr>
<td>Step 7 copy running-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
```

Specifying a `level` causes messages at that level and numerically lower levels to appear at the destination.

To disable logging to the console, use the `no logging console` global configuration command. To disable logging to a terminal other than the console, use the `no logging monitor` global configuration command. To disable logging to syslog servers, use the `no logging trap` global configuration command.
Table 1-3 describes the *level* keywords. It also lists the corresponding UNIX syslog definitions from the most severe level to the least severe level.

### Table 1-3 Message Logging Level Keywords

<table>
<thead>
<tr>
<th>Level Keyword</th>
<th>Level</th>
<th>Description</th>
<th>Syslog Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>emergencies</td>
<td>0</td>
<td>System unstable</td>
<td>LOG_EMERG</td>
</tr>
<tr>
<td>alerts</td>
<td>1</td>
<td>Immediate action needed</td>
<td>LOG_ALERT</td>
</tr>
<tr>
<td>critical</td>
<td>2</td>
<td>Critical conditions</td>
<td>LOG_CRIT</td>
</tr>
<tr>
<td>errors</td>
<td>3</td>
<td>Error conditions</td>
<td>LOG_ERR</td>
</tr>
<tr>
<td>warnings</td>
<td>4</td>
<td>Warning conditions</td>
<td>LOG_WARNING</td>
</tr>
<tr>
<td>notifications</td>
<td>5</td>
<td>Normal but significant condition</td>
<td>LOG_NOTICE</td>
</tr>
<tr>
<td>informational</td>
<td>6</td>
<td>Informational messages only</td>
<td>LOG_INFO</td>
</tr>
<tr>
<td>debugging</td>
<td>7</td>
<td>Debugging messages</td>
<td>LOG_DEBUG</td>
</tr>
</tbody>
</table>

The software generates four other categories of messages:

- Error messages about software or hardware malfunctions, displayed at levels *warnings* through *emergencies*. These types of messages mean that the functionality of the switch is affected. For information on how to recover from these malfunctions, see the system message guide for this release.

- Output from the *debug* commands, displayed at the *debugging* level. Debug commands are typically used only by the Technical Assistance Center.

- Interface up or down transitions and system restart messages, displayed at the *notifications* level. This message is only for information; switch functionality is not affected.

- Reload requests and low-process stack messages, displayed at the *informational* level. This message is only for information; switch functionality is not affected.

### Limiting Syslog Messages Sent to the History Table and to SNMP

If you enabled syslog message traps to be sent to an SNMP network management station by using the `snmp-server enable trap` global configuration command, you can change the level of messages sent and stored in the switch history table. You also can change the number of messages that are stored in the history table.

Messages are stored in the history table because SNMP traps are not guaranteed to reach their destination. By default, one message of the level *warning* and numerically lower levels (see Table 1-3 on page 1-10) are stored in the history table even if syslog traps are not enabled.
Beginning in privileged EXEC mode, follow these steps to change the level and history table size defaults. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>logging history level¹</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>logging history size number</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

When the history table is full (it contains the maximum number of message entries specified with the logging history size global configuration command), the oldest message entry is deleted from the table to allow the new message entry to be stored.

To return the logging of syslog messages to the default level, use the no logging history global configuration command. To return the number of messages in the history table to the default value, use the no logging history size global configuration command.

### Enabling the Configuration-Change Logger

You can enable a configuration logger to keep track of configuration changes made with the command-line interface (CLI). When you enter the logging enable configuration-change logger configuration command, the log records the session, the user, and the command that was entered to change the configuration. You can configure the size of the configuration log from 1 to 1000 entries (the default is 100). You can clear the log at any time by entering the no logging enable command followed by the logging enable command to disable and re-enable logging.

Use the show archive log config [all | number [end-number] | user username [session number] number [end-number] | statistics] [provisioning] privileged EXEC command to display the complete configuration log or the log for specified parameters.

The default is that configuration logging is disabled.

For information about the commands, see the Cisco IOS Configuration Fundamentals and Network Management Command Reference, Release 12.3 T.
Beginning in privileged EXEC mode, follow these steps to enable configuration logging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 archive</td>
<td>Enter archive configuration mode.</td>
</tr>
<tr>
<td>Step 3 log config</td>
<td>Enter configuration-change logger configuration mode.</td>
</tr>
<tr>
<td>Step 4 logging enable</td>
<td>Enable configuration change logging.</td>
</tr>
<tr>
<td>Step 5 logging size entries</td>
<td>(Optional) Configure the number of entries retained in the configuration log. The range is from 1 to 1000. The default is 100. Note When the configuration log is full, the oldest log entry is removed each time a new entry is entered.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show archive log config</td>
<td>Verify your entries by viewing the configuration log.</td>
</tr>
</tbody>
</table>

This example shows how to enable the configuration-change logger and to set the number of entries in the log to 500.

Switch(config)# archive
Switch(config-archive)# log config
Switch(config-archive-log-cfg)# logging enable
Switch(config-archive-log-cfg)# logging size 500
Switch(config-archive-log-cfg)# end

This is an example of output for the configuration log:

Switch# show archive log config all

<table>
<thead>
<tr>
<th>idx</th>
<th>sess</th>
<th>user@line</th>
<th>Logged command</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>11</td>
<td>unknown user@vty3</td>
<td>no aaa authorization config-commands</td>
</tr>
<tr>
<td>39</td>
<td>12</td>
<td>unknown user@vty3</td>
<td>no aaa authorization network default group radius</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>unknown user@vty3</td>
<td>no aaa accounting dot1x default start-stop group radius</td>
</tr>
<tr>
<td>41</td>
<td>13</td>
<td>unknown user@vty3</td>
<td>no aaa accounting system default</td>
</tr>
<tr>
<td>42</td>
<td>14</td>
<td>temi@vty4</td>
<td>interface GigabitEthernet4/0/1</td>
</tr>
<tr>
<td>43</td>
<td>14</td>
<td>temi@vty4</td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td>44</td>
<td>14</td>
<td>temi@vty4</td>
<td>exit</td>
</tr>
<tr>
<td>45</td>
<td>16</td>
<td>temi@vty5</td>
<td>interface GigabitEthernet5/0/1</td>
</tr>
<tr>
<td>46</td>
<td>16</td>
<td>temi@vty5</td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td>47</td>
<td>16</td>
<td>temi@vty5</td>
<td>exit</td>
</tr>
</tbody>
</table>

**Configuring UNIX Syslog Servers**

The next sections describe how to configure the UNIX server syslog daemon and how to define the UNIX system logging facility.

**Logging Messages to a UNIX Syslog Daemon**

Before you can send system log messages to a UNIX syslog server, you must configure the syslog daemon on a UNIX server. This procedure is optional.
Log in as root, and perform these steps:

**Note**
Some recent versions of UNIX syslog daemons no longer accept by default syslog packets from the network. If this is the case with your system, use the UNIX `man syslogd` command to decide what options must be added to or removed from the syslog command line to enable logging of remote syslog messages.

**Step 1**
Add a line such as the following to the file `/etc/syslog.conf`:
```
local7.debug /usr/adm/logs/cisco.log
```

The `local7` keyword specifies the logging facility to be used; see Table 1-4 on page 1-14 for information on the facilities. The `debug` keyword specifies the syslog level; see Table 1-3 on page 1-10 for information on the severity levels. The syslog daemon sends messages at this level or at a more severe level to the file specified in the next field. The file must already exist, and the syslog daemon must have permission to write to it.

**Step 2**
Create the log file by entering these commands at the UNIX shell prompt:
```
$ touch /var/log/cisco.log
$ chmod 666 /var/log/cisco.log
```

**Step 3**
Make sure the syslog daemon reads the new changes:
```
$ kill -HUP `cat /etc/syslog.pid`
```

For more information, see the `man syslog.conf` and `man syslogd` commands on your UNIX system.

---

**Configuring the UNIX System Logging Facility**

When sending system log messages to an external device, you can cause the switch to identify its messages as originating from any of the UNIX syslog facilities.

Beginning in privileged EXEC mode, follow these steps to configure UNIX system facility message logging. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>logging host</code></td>
<td>Log messages to a UNIX syslog server host by entering its IP address. To build a list of syslog servers that receive logging messages, enter this command more than once.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>logging trap level</code></td>
<td>Limit messages logged to the syslog servers. Be default, syslog servers receive informational messages and lower. See Table 1-3 on page 1-10 for level keywords.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>logging facility facility-type</code></td>
<td>Configure the syslog facility. See Table 1-4 on page 1-14 for facility-type keywords. The default is <code>local7</code>.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1  Configuring System Message Logging and Smart Logging

Configuring Smart Logging

Smart logging provides a mechanism to capture and export packet flows based on predefined or user-configured triggers. Beginning with Cisco IOS Release 12.2(58)SE, the switch supports smart logging for these events:

- DHCP snooping violations
- Dynamic ARP inspection violations
- IP source guard denied traffic
- ACL permitted or denied traffic

To use smart logging, you must first configure a NetFlow exporter that you identify when you enable smart logging. For information on configuring Cisco Flexible NetFlow, see the Cisco IOS Flexible NetFlow Configuration Guide, Release 12.4T:


To remove a syslog server, use the no logging host global configuration command, and specify the syslog server IP address. To disable logging to syslog servers, enter the no logging trap global configuration command.

Table 1-4 lists the UNIX system facilities supported by the software. For more information about these facilities, consult the operator’s manual for your UNIX operating system.

Table 1-4  Logging Facility-Type Keywords

<table>
<thead>
<tr>
<th>Facility Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>Authorization system</td>
</tr>
<tr>
<td>cron</td>
<td>Cron facility</td>
</tr>
<tr>
<td>daemon</td>
<td>System daemon</td>
</tr>
<tr>
<td>kern</td>
<td>Kernel</td>
</tr>
<tr>
<td>local0-7</td>
<td>Locally defined messages</td>
</tr>
<tr>
<td>lpr</td>
<td>Line printer system</td>
</tr>
<tr>
<td>mail</td>
<td>Mail system</td>
</tr>
<tr>
<td>news</td>
<td>USENET news</td>
</tr>
<tr>
<td>sys9-14</td>
<td>System use</td>
</tr>
<tr>
<td>syslog</td>
<td>System log</td>
</tr>
<tr>
<td>user</td>
<td>User process</td>
</tr>
<tr>
<td>uucp</td>
<td>UNIX-to-UNIX copy system</td>
</tr>
</tbody>
</table>

Step 6  show running-config
Verify your entries.

Step 7  copy running-config startup-config
(Optional) Save your entries in the configuration file.
Smart logging processing creates a NetFlow packet for the configured event and sends the packet to the external NetFlow collector. Smart logging counters reflect the number of packets that are logged. This number is the same as the number of packets sent to the collector if no packets are dropped between the switch and the NetFlow collector.

You enable smart logging globally on the switch, and you can then configure specific events to be smart logged.

### Enabling Smart Logging

Beginning in privileged EXEC mode, follow these steps to globally enable smart logging:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>logging smartlog</td>
<td>Turn on the smart logging feature.</td>
</tr>
<tr>
<td>3</td>
<td>logging smartlog exporter exporter_name</td>
<td>Identify the smart log exporter. You must have already configured the exporter by using the flexible NetFlow CLI. If the exporter name does not exist, you receive an error message. By default, the switch sends data to the collector every 60 seconds.</td>
</tr>
<tr>
<td>4</td>
<td>logging packet capture size packet_size</td>
<td>(Optional) Configure the size of the packet to be sent to the exporter. The range is from 64 to 1024 bytes in 4-byte increments. The default size is 64 bytes. <strong>Note</strong>: Increasing the packet capture size reduces the number of flow records per packet.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show logging smartlog</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

### Enabling Smart Logging for DHCP Snooping Violations

DHCP snooping intercepts and inspects DHCP packets entering untrusted ports and either forwards or drops the packets. You can enable DHCP snooping smart logging to send the contents of dropped packets to the NetFlow collector. Beginning in privileged EXEC mode, follow these steps to enable DHCP snooping smart logging:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip dhcp snooping vlan vlan-range smartlog</td>
<td>Specify a VLAN ID or a range of VLANs on which to enable DHCP snooping smart logging.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show ip dhcp snooping</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Enabling Smart Logging for Dynamic ARP Inspection Violations

Dynamic ARP inspection intercepts ARP packets on untrusted ports and validates them before forwarding. The functionality is similar to DHCP snooping but for ARP packets. You can configure dynamic ARP inspection logging by using the `ip arp inspection log-buffer` global configuration command. By default, all dropped packets are logged. You can also configure the switch to apply smart logging to the same packets that are being logged, sending the packet contents packet to the NetFlow collector.

Beginning in privileged EXEC mode, follow these steps to enable dynamic ARP inspection smart logging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip arp inspection smartlog</td>
<td>Specify that whatever packets are currently being logged (the default is all dropped packets) are also smart-logged.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show ip arp inspection</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Enabling Smart Logging for IP Source Guard Violations

IP source guard is a security feature related to DHCP snooping. You can use IP source guard to filter traffic based on the IP source address or the MAC address. All IP packets with a source address other than the specified address or addresses learned through DHCP snooping are denied. You can enable IP source guard smart logging to send the contents of the denied packets to the NetFlow collector.

Beginning in privileged EXEC mode, follow these steps to enable IP source guard smart logging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify an interface and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip verify source smartlog</td>
<td>Enable IP source guard smart logging for all packets that are denied by IP source guard.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip verify source</td>
<td>Verify your entries. The output shows whether or not smart logging is enabled on the interface.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Enabling Smart Logging for Port ACL Deny or Permit Actions

The switch supports port ACLs, router ACLs, and VLAN ACLs.
- Port ACLs are IP or MAC ACLs applied to a Layer 2 port. Logging is not supported on port ACLs, but smart logging is supported on IP ACLs applied to Layer 2 ports.
- Router ACLs are ACLs applied to Layer 3 ports. Router ACLs support logging but not smart logging.
- VLAN ACLs or VLAN maps are ACLs applied to VLANs. You can configure logging on VLAN maps, but not smart logging.

When you configure any permit or deny ACL, you can configure logging or smart logging as part of the access list, to take place on all traffic that the ACL permits or denies. The type of port that you attach the ACL to determines the type of logging. If you attach an ACL with smart log configured to a router or a VLAN, the ACL is attached, but smart logging does not take affect. If you configure logging on an ACL attached to a Layer 2 port, the logging keyword is ignored.

You add the smart log configuration option when you create the permit and deny conditions for an ACL. This example enables smart logging on a numbered access list:

```
Switch(config)# access-list 199 permit ip any any smartlog
```

This example enables smart logging on a named access list:

```
Switch(config)# ip access-list extended test1
Switch(config-ext-nacl)# deny ip host 10.1.1.3 any smartlog
```

Displaying the Logging Configuration

To display the logging configuration and the contents of the log buffer, use the `show logging` privileged EXEC command. For information about the fields in this display, see the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4 on Cisco.com.

To display smart logging information, use the `show logging smartlog` command. For information about this command, see the command reference for this release.
This chapter describes how to configure the Simple Network Management Protocol (SNMP) on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the Cisco IOS Network Management Command Reference, Release 12.4.

- Understanding SNMP, page 1-1
- Configuring SNMP, page 1-7
- Displaying SNMP Status, page 1-21

### Understanding SNMP

SNMP is an application-layer protocol that provides a message format for communication between managers and agents. The SNMP system consists of an SNMP manager, an SNMP agent, and a MIB. The SNMP manager can be part of a network management system (NMS) such as CiscoWorks. The agent and MIB reside on the switch. To configure SNMP on the switch, you define the relationship between the manager and the agent.

The SNMP agent contains MIB variables whose values the SNMP manager can request or change. A manager can get a value from an agent or store a value into the agent. The agent gathers data from the MIB, the repository for information about device parameters and network data. The agent can also respond to a manager’s requests to get or set data.

An agent can send unsolicited traps to the manager. Traps are messages alerting the SNMP manager to a condition on the network. Traps can mean improper user authentication, restarts, link status (up or down), MAC address tracking, closing of a TCP connection, loss of connection to a neighbor, or other significant events.

On the Catalyst 3750-E 3750-X switch, the stack master handles the SNMP requests and traps for the whole switch stack. The stack master transparently manages any requests or traps that are related to all stack members. When a new stack master is elected, the new master continues to handle SNMP requests and traps as configured on the previous stack master, assuming that IP connectivity to the SNMP management stations is still in place after the new master has taken control.

For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”
These sections contain this conceptual information:

- **SNMP Versions, page 1-2**
- **SNMP Manager Functions, page 1-3**
- **SNMP Agent Functions, page 1-4**
- **SNMP Community Strings, page 1-4**
- **Using SNMP to Access MIB Variables, page 1-4**
- **SNMP Notifications, page 1-5**
- **SNMP ifIndex MIB Object Values, page 1-6**
- **SNMP Support for DOM MIB, page 1-6**

## SNMP Versions

This software release supports these SNMP versions:

- **SNMPv1**—The Simple Network Management Protocol, a Full Internet Standard, defined in RFC 1157.
- **SNMPv2C** replaces the Party-based Administrative and Security Framework of SNMPv2Classic with the community-string-based Administrative Framework of SNMPv2C while retaining the bulk retrieval and improved error handling of SNMPv2Classic. It has these features:
  - **SNMPv2**—Version 2 of the Simple Network Management Protocol, a Draft Internet Standard, defined in RFCs 1902 through 1907.
  - **SNMPv2C**—The community-string-based Administrative Framework for SNMPv2, an Experimental Internet Protocol defined in RFC 1901.
- **SNMPv3**—Version 3 of the SNMP is an interoperable standards-based protocol defined in RFCs 2273 to 2275. SNMPv3 provides secure access to devices by authenticating and encrypting packets over the network and includes these security features:
  - Message integrity—ensuring that a packet was not tampered with in transit
  - Authentication—determining that the message is from a valid source
  - Encryption—mixing the contents of a package to prevent it from being read by an unauthorized source.

**Note**

To select encryption, enter the `priv` keyword.

Both SNMPv1 and SNMPv2C use a community-based form of security. The community of managers able to access the agent’s MIB is defined by an IP address access control list and password.

SNMPv2C includes a bulk retrieval mechanism and more detailed error message reporting to management stations. The bulk retrieval mechanism retrieves tables and large quantities of information, minimizing the number of round-trips required. The SNMPv2C improved error-handling includes expanded error codes that distinguish different kinds of error conditions; these conditions are reported through a single error code in SNMPv1. Error return codes in SNMPv2C report the error type.
SNMPv3 provides for both security models and security levels. A security model is an authentication strategy set up for a user and the group within which the user resides. A security level is the permitted level of security within a security model. A combination of the security level and the security model determine which security mechanism is used when handling an SNMP packet. Available security models are SNMPv1, SNMPv2C, and SNMPv3.

Table 1-1 identifies the characteristics of the different combinations of security models and levels.

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMPv1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>SNMPv2C</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authNoPriv</td>
<td>Message Digest 5 (MD5) or Secure Hash Algorithm (SHA)</td>
<td>No</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms.</td>
</tr>
</tbody>
</table>
| SNMPv3  | authPriv    | MD5 or SHA              | Data Encryption Standard (DES) or Advanced Encryption Standard (AES) | Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Allows specifying the User-based Security Model (USM) with these encryption algorithms:  
  - DES 56-bit encryption in addition to authentication based on the CBC-DES (DES-56) standard.  
  - 3DES 168-bit encryption  
  - AES 128-bit, 192-bit, or 256-bit encryption |

You must configure the SNMP agent to use the SNMP version supported by the management station. Because an agent can communicate with multiple managers, you can configure the software to support communications using SNMPv1, SNMPv2C, or SNMPv3.

### SNMP Manager Functions

The SNMP manager uses information in the MIB to perform the operations described in Table 1-2.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get-request</td>
<td>Retrieves a value from a specific variable.</td>
</tr>
<tr>
<td>get-next-request</td>
<td>Retrieves a value from a variable within a table.¹</td>
</tr>
<tr>
<td>get-bulk-request</td>
<td>Retrieves large blocks of data, such as multiple rows in a table, that would otherwise require the transmission of many small blocks of data.²</td>
</tr>
<tr>
<td>get-response</td>
<td>Replies to a get-request, get-next-request, and set-request sent by an NMS.</td>
</tr>
</tbody>
</table>
Understanding SNMP

SNMP Agent Functions

The SNMP agent responds to SNMP manager requests as follows:

- Get a MIB variable—The SNMP agent begins this function in response to a request from the NMS. The agent retrieves the value of the requested MIB variable and responds to the NMS with that value.
- Set a MIB variable—The SNMP agent begins this function in response to a message from the NMS. The SNMP agent changes the value of the MIB variable to the value requested by the NMS.

The SNMP agent also sends unsolicited trap messages to notify an NMS that a significant event has occurred on the agent. Examples of trap conditions include, but are not limited to, when a port or module goes up or down, when spanning-tree topology changes occur, and when authentication failures occur.

SNMP Community Strings

SNMP community strings authenticate access to MIB objects and function as embedded passwords. In order for the NMS to access the switch, the community string definitions on the NMS must match at least one of the three community string definitions on the switch.

A community string can have one of these attributes:

- Read-only (RO)—Gives read access to authorized management stations to all objects in the MIB except the community strings, but does not allow write access
- Read-write (RW)—Gives read and write access to authorized management stations to all objects in the MIB, but does not allow access to the community strings
- When a cluster is created, the command switch manages the exchange of messages among member switches and the SNMP application. The Network Assistant software appends the member switch number (@esN, where N is the switch number) to the first configured RW and RO community strings on the command switch and propagates them to the member switches. For more information, see Chapter 1, “Clustering Switches” and see Getting Started with Cisco Network Assistant, available on Cisco.com.

Using SNMP to Access MIB Variables

An example of an NMS is the CiscoWorks network management software. CiscoWorks 2000 software uses the switch MIB variables to set device variables and to poll devices on the network for specific information. The results of a poll can be displayed as a graph and analyzed to troubleshoot internetworking problems, increase network performance, verify the configuration of devices, monitor traffic loads, and more.
As shown in Figure 1-1, the SNMP agent gathers data from the MIB. The agent can send traps, or notification of certain events, to the SNMP manager, which receives and processes the traps. Traps alert the SNMP manager to a condition on the network such as improper user authentication, restarts, link status (up or down), MAC address tracking, and so forth. The SNMP agent also responds to MIB-related queries sent by the SNMP manager in get-request, get-next-request, and set-request format.

Figure 1-1  SNMP Network

To locate and download MIBs for a specific Cisco product and release, use the Cisco MIB Locator:

SNMP Notifications

SNMP allows the switch to send notifications to SNMP managers when particular events occur. SNMP notifications can be sent as traps or inform requests. In command syntax, unless there is an option in the command to select either traps or informs, the keyword traps refers to either traps or informs, or both. Use the snmp-server host command to specify whether to send SNMP notifications as traps or informs.

Note

SNMPv1 does not support informs.

Traps are unreliable because the receiver does not send an acknowledgment when it receives a trap, and the sender cannot determine if the trap was received. When an SNMP manager receives an inform request, it acknowledges the message with an SNMP response protocol data unit (PDU). If the sender does not receive a response, the inform request can be sent again. Because they can be re-sent, informs are more likely than traps to reach their intended destination.

The characteristics that make informs more reliable than traps also consume more resources in the switch and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request is held in memory until a response is received or the request times out. Traps are sent only once, but an inform might be re-sent or retried several times. The retries increase traffic and contribute to a higher overhead on the network. Therefore, traps and informs require a trade-off between reliability and resources. If it is important that the SNMP manager receive every notification, use inform requests. If traffic on the network or memory in the switch is a concern and notification is not required, use traps.
SNMP \textit{ifIndex} MIB Object Values

In an NMS, the IF-MIB generates and assigns an interface index (\textit{ifIndex}) object value that is a unique number greater than zero to identify a physical or a logical interface. When the switch reboots or the switch software is upgraded, the switch uses this same value for the interface. For example, if the switch assigns a port 2 an \textit{ifIndex} value of 10003, this value is the same after the switch reboots.

The switch uses one of the values in Table 1-3 to assign an \textit{ifIndex} value to an interface:

\textbf{Table 1-3} \textit{ifIndex} Values

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>\textit{ifIndex} Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVI\textsuperscript{1}</td>
<td>1–4999</td>
</tr>
<tr>
<td>EtherChannel</td>
<td>5001–5048</td>
</tr>
<tr>
<td>Physical (such as Gigabit Ethernet or SFP\textsuperscript{2}-module interfaces) based on type and port numbers</td>
<td>10000–14500</td>
</tr>
<tr>
<td>Null</td>
<td>10501 (nonstackable switches)</td>
</tr>
<tr>
<td></td>
<td>14501 (stackable switches)</td>
</tr>
<tr>
<td>Loopback and Tunnel</td>
<td>24567 +</td>
</tr>
</tbody>
</table>

\textsuperscript{1} SVI = switch virtual interface
\textsuperscript{2} SFP = small form-factor pluggable

The switch might not use sequential values within a range.

SNMP Support for DOM MIB

The Digital Optical Monitoring (DOM) MIB for SFP optical transceivers allows you to monitor real-time operating parameters. Each DOM-capable optical transceiver has five sensors that are configured to monitor operational parameters such as temperature, voltage, laser bias current, and optical Tx and Rx power on a specific interface.

Each sensor has four thresholds: high alarm, high warning, low warning, and low alarm. The DOM MIB, with the support of an SNMP agent, reads the sensor data and evaluates each threshold for every 10 minutes and sends a trap only when the sensor value violates the default threshold value. The trap is sent every 10 minutes until the sensor value is within the acceptable range.

For each sensor, an entry exists in the \texttt{entPhysicalTable} (ENTITY-MIB). These entries are created when an SFP is inserted in the switch. For each sensor-operating parameter placed in the \texttt{entPhysicalTable}, one entry is created in the \texttt{entSensorValueTable} in the CISCO-ENTITY-SENSOR-MIB. The CISCO-ENTITY-SENSOR-MIB provides information on a set of managed objects representing physical entities in the \texttt{entPhysicalTable} with \texttt{entPhysicalClass} set to sensor.

The DOM MIB provides:

- Support for SFP optical interfaces
- Inline power measurement capability at installation
- Layer1 status information to support network monitoring
- Ability to enable dedicated Layer 1 fault analysis
The real-time DOM parameters can be monitored using the command line interface (CLI) or SNMP interface.

**Note**

This feature is only available when a DOM-capable transceiver is present and configured for monitoring. The frequency at which the sensor information is refreshed depends on default values configured in the transceiver SEEPROM.

Use the `show interfaces transceivers` privileged EXEC command to display the physical properties of a small form-factor pluggable (SFP) module interface. The calibration properties includes high and low numbers and any alarm and warning threshold information for Digital Optical Monitoring (DoM)-capable transceiver installed in the switch.

This example shows the interface operating status against the threshold values.

```
Switch# show interfaces gigabitethernet1/1/2 transceiver detail
ITU Channel not available (Wavelength not available),
Transceiver is externally calibrated.
mA: milliampere, dBm: decibels (milliwatts), N/A: not applicable.
++: high alarm, +: high warning, -: low warning, --: low alarm.
A2D readouts (if they differ), are reported in parentheses.
The threshold values are calibrated.

<table>
<thead>
<tr>
<th>High Alarm</th>
<th>High Warn</th>
<th>Low Warn</th>
<th>Low Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Temperature</td>
<td>Threshold</td>
<td>Threshold</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>41.5</td>
<td>110.0</td>
<td>103.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage</th>
<th>High Alarm</th>
<th>High Warn</th>
<th>Low Warn</th>
<th>Low Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Threshold</td>
<td>Threshold</td>
<td>Threshold</td>
<td>Threshold</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>3.20</td>
<td>4.00</td>
<td>3.70</td>
<td>3.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optical Transmit Power</th>
<th>Optical Receive Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>(dBm)</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>-2.0</td>
</tr>
<tr>
<td></td>
<td>-3.9</td>
</tr>
<tr>
<td></td>
<td>-40.0</td>
</tr>
<tr>
<td></td>
<td>-6.0</td>
</tr>
<tr>
<td></td>
<td>-8.2</td>
</tr>
<tr>
<td></td>
<td>-28.2</td>
</tr>
<tr>
<td></td>
<td>-37.0</td>
</tr>
</tbody>
</table>
```

**Configuring SNMP**

- Default SNMP Configuration, page 1-8
- SNMP Configuration Guidelines, page 1-8
- Disabling the SNMP Agent, page 1-9
- Configuring Community Strings, page 1-9
- Configuring SNMP Groups and Users, page 1-11
Default SNMP Configuration

Table 1-4  Default SNMP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP agent</td>
<td>Disabled(^1).</td>
</tr>
<tr>
<td>SNMP trap receiver</td>
<td>None configured.</td>
</tr>
<tr>
<td>SNMP traps</td>
<td>None enabled except the trap for TCP connections (tty).</td>
</tr>
<tr>
<td>SNMP version</td>
<td>If no version keyword is present, the default is Version 1.</td>
</tr>
<tr>
<td>SNMPv3 authentication</td>
<td>If no keyword is entered, the default is the noauth (noAuthNoPriv) security level.</td>
</tr>
<tr>
<td>SNMP notification type</td>
<td>If no type is specified, all notifications are sent.</td>
</tr>
</tbody>
</table>

\(^1\) This is the default when the switch starts and the startup configuration does not have any snmp-server global configuration commands.

SNMP Configuration Guidelines

If the switch starts and the switch startup configuration has at least one snmp-server global configuration command, the SNMP agent is enabled.

An SNMP group is a table that maps SNMP users to SNMP views. An SNMP user is a member of an SNMP group. An SNMP host is the recipient of an SNMP trap operation. An SNMP engine ID is a name for the local or remote SNMP engine.

When configuring SNMP, follow these guidelines:

- When configuring an SNMP group, do not specify a notify view. The snmp-server host global configuration command autogenerates a notify view for the user and then adds it to the group associated with that user. Modifying the group’s notify view affects all users associated with that group. See the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4 for information about when you should configure notify views.

- To configure a remote user, specify the IP address or port number for the remote SNMP agent of the device where the user resides.

- Before you configure remote users for a particular agent, configure the SNMP engine ID, using the snmp-server engineID global configuration with the remote option. The remote agent’s SNMP engine ID and user password are used to compute the authentication and privacy digests. If you do not configure the remote engine ID first, the configuration command fails.

- When configuring SNMP informs, you need to configure the SNMP engine ID for the remote agent in the SNMP database before you can send proxy requests or informs to it.

- If a local user is not associated with a remote host, the switch does not send informs for the auth (authNoPriv) and the priv (authPriv) authentication levels.
Changing the value of the SNMP engine ID has important side effects. A user’s password (entered on the command line) is converted to an MD5 or SHA security digest based on the password and the local engine ID. The command-line password is then destroyed, as required by RFC 2274. Because of this deletion, if the value of the engine ID changes, the security digests of SNMPv3 users become invalid, and you need to reconfigure SNMP users by using the `snmp-server user username` global configuration command. Similar restrictions require the reconfiguration of community strings when the engine ID changes.

### Disabling the SNMP Agent

Beginning in privileged EXEC mode, follow these steps to disable the SNMP agent:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>no snmp-server</code></td>
<td>Disable the SNMP agent operation.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The `no snmp-server` global configuration command disables all running versions (Version 1, Version 2C, and Version 3) on the device. No specific Cisco IOS command exists to enable SNMP. The first `snmp-server` global configuration command that you enter enables all versions of SNMP.

### Configuring Community Strings

You use the SNMP community string to define the relationship between the SNMP manager and the agent. The community string acts like a password to permit access to the agent on the switch. Optionally, you can specify one or more of these characteristics associated with the string:

- An access list of IP addresses of the SNMP managers that are permitted to use the community string to gain access to the agent
- A MIB view, which defines the subset of all MIB objects accessible to the given community
- Read and write or read-only permission for the MIB objects accessible to the community
Beginning in privileged EXEC mode, follow these steps to configure a community string on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>snmp-server community string [view view-name] [ro</td>
</tr>
<tr>
<td>Configure the community string.</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The @ symbol is used for delimiting the context information. Avoid using the @ symbol as part of the SNMP community string when configuring this command.</td>
</tr>
<tr>
<td>• For string, specify a string that acts like a password and permits access to the SNMP protocol. You can configure one or more community strings of any length.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) For view, specify the view record accessible to the community.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) Specify either read-only (ro) if you want authorized management stations to retrieve MIB objects, or specify read-write (rw) if you want authorized management stations to retrieve and modify MIB objects. By default, the community string permits read-only access to all objects.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) For access-list-number, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td>(Optional) If you specified an IP standard access list number in Step 2, then create the list, repeating the command as many times as necessary.</td>
<td></td>
</tr>
<tr>
<td>• For access-list-number, enter the access list number specified in Step 2.</td>
<td></td>
</tr>
<tr>
<td>• The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.</td>
<td></td>
</tr>
<tr>
<td>• For source, enter the IP address of the SNMP managers that are permitted to use the community string to gain access to the agent.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
<td></td>
</tr>
<tr>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td>Verify your entries.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>(Optional) Save your entries in the configuration file.</td>
<td></td>
</tr>
</tbody>
</table>

**Note** To disable access for an SNMP community, set the community string for that community to the null string (do not enter a value for the community string).
To remove a specific community string, use the `no snmp-server community string` global configuration command.

This example shows how to assign the string `comaccess` to SNMP, to allow read-only access, and to specify that IP access list 4 can use the community string to gain access to the switch SNMP agent:

```
Switch(config)# snmp-server community comaccess ro 4
```

### Configuring SNMP Groups and Users

You can specify an identification name (engine ID) for the local or remote SNMP server engine on the switch. You can configure an SNMP server group that maps SNMP users to SNMP views, and you can add new users to the SNMP group.

Beginning in privileged EXEC mode, follow these steps to configure SNMP on the switch:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>snmp-server engineID {local engineid-string</td>
<td>Configure a name for either the local or remote copy of SNMP.</td>
</tr>
<tr>
<td></td>
<td>remote ip-address [udp-port port-number] engineid-string}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>engineid-string</code> is a 24-character ID string with the name of the copy of SNMP. You need not specify the entire 24-character engine ID if it has trailing zeros. Specify only the portion of the engine ID up to the point where only zeros remain in the value. For example, to configure an engine ID of 123400000000000000000000, you can enter this: <code>snmp-server engineID local 1234</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If you select <code>remote</code>, specify the <code>ip-address</code> of the device that contains the remote copy of SNMP and the optional User Datagram Protocol (UDP) port on the remote device. The default is 162.</td>
</tr>
</tbody>
</table>
### Step 3

**Command**

```bash
snmp-server group groupname {v1 | v2c | v3
{auth | noauth | priv}) [read readview]
[write writeview] [notify notifyview] [access
access-list]
```

**Purpose**

Configure a new SNMP group on the remote device.

- For `groupname`, specify the name of the group.
- Specify a security model:
  - `v1` is the least secure of the possible security models.
  - `v2c` is the second least secure model. It allows transmission of informs and integers twice the normal width.
  - `v3`, the most secure, requires you to select an authentication level:
    - `auth`—Enables the Message Digest 5 (MD5) and the Secure Hash Algorithm (SHA) packet authentication.
    - `noauth`—Enables the noAuthNoPriv security level. This is the default if no keyword is specified.
    - `priv`—Enables Data Encryption Standard (DES) packet encryption (also called `privacy`).
- (Optional) Enter `read readview` with a string (not to exceed 64 characters) that is the name of the view in which you can only view the contents of the agent.
- (Optional) Enter `write writeview` with a string (not to exceed 64 characters) that is the name of the view in which you enter data and configure the contents of the agent.
- (Optional) Enter `notify notifyview` with a string (not to exceed 64 characters) that is the name of the view in which you specify a notify, inform, or trap.
- (Optional) Enter `access access-list` with a string (not to exceed 64 characters) that is the name of the access list.
### Step 4

```bash
snmp-server user username groupname
 { remote host [udp-port port]} { v1 [access access-list] | v2c [access access-list] | v3
 [encrypted] [access access-list] [auth {md5 | sha} auth-password]} [priv {des | 3des | aes
 {128 | 192 | 256}] priv-password]
```

Add a new user for an SNMP group.

- The **username** is the name of the user on the host that connects to the agent.
- The **groupname** is the name of the group to which the user is associated.
- Enter **remote** to specify a remote SNMP entity to which the user belongs and the hostname or IP address of that entity with the optional UDP port number. The default is 162.
- Enter the SNMP version number (**v1**, **v2c**, or **v3**). If you enter **v3**, you have these additional options:
  - **encrypted** specifies that the password appears in encrypted format. This keyword is available only when the **v3** keyword is specified.
  - **auth** is an authentication level setting session that can be either the HMAC-MD5-96 (**md5**) or the HMAC-SHA-96 (**sha**) authentication level and requires a password string **auth-password** (not to exceed 64 characters).
  - If you enter **v3** you can also configure a private (**priv**) encryption algorithm and password string **priv-password** (not to exceed 64 characters).
    - **priv** specifies the User-based Security Model (USM).
    - **des** specifies the use of the 56-bit DES algorithm.
    - **3des** specifies the use of the 168-bit DES algorithm.
    - **aes** specifies the use of the DES algorithm. You must select either 128-bit, 192-bit, or 256-bit encryption.
  - (Optional) Enter **access access-list** with a string (not to exceed 64 characters) that is the name of the access list.

### Step 5

```bash
end
```

Return to privileged EXEC mode.

### Step 6

```bash
show running-config
```

Verify your entries.

**Note** To display SNMPv3 information about **auth** | **noauth** | **priv** mode configuration, you must enter the **show snmp user** EXEC command.

### Step 7

```bash
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.
Configuring SNMP Notifications

A trap manager is a management station that receives and processes traps. Traps are system alerts that the switch generates when certain events occur. By default, no trap manager is defined, and no traps are sent. Switches running this Cisco IOS release can have an unlimited number of trap managers.

Note
Many commands use the word *traps* in the command syntax. Unless there is an option in the command to select either traps or informs, the keyword *traps* refers to traps, informs, or both. Use the `snmp-server host` global configuration command to specify whether to send SNMP notifications as traps or informs.

Table 1-5 describes the supported switch traps (notification types). You can enable any or all of these traps and configure a trap manager to receive them.

<table>
<thead>
<tr>
<th>Notification Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgp</td>
<td>Generates Border Gateway Protocol (BGP) state change traps. This option is only available when the IP services feature set is enabled.</td>
</tr>
<tr>
<td>bridge</td>
<td>Generates STP bridge MIB traps.</td>
</tr>
<tr>
<td>cluster</td>
<td>Generates a trap when the cluster configuration changes.</td>
</tr>
<tr>
<td>config</td>
<td>Generates a trap for SNMP configuration changes.</td>
</tr>
<tr>
<td>copy-config</td>
<td>Generates a trap for SNMP copy configuration changes.</td>
</tr>
<tr>
<td>cpu threshold</td>
<td>Allow CPU-related traps.</td>
</tr>
<tr>
<td>entity</td>
<td>Generates a trap for SNMP entity changes.</td>
</tr>
<tr>
<td>envmon</td>
<td>Generates environmental monitor traps. You can enable any or all of these environmental traps: fan, shutdown, status, supply, temperature.</td>
</tr>
<tr>
<td>flash</td>
<td>Generates SNMP FLASH notifications. In a switch stack, you can optionally enable notification for flash insertion or removal, which would cause a trap to be issued whenever a switch in the stack is removed or inserted (physical removal, power cycle, or reload).</td>
</tr>
<tr>
<td>fru-ctrl</td>
<td>Generates entity field-replaceable unit (FRU) control traps. In the switch stack, this trap refers to the insertion or removal of a switch in the stack.</td>
</tr>
<tr>
<td>hsrp</td>
<td>Generates a trap for Hot Standby Router Protocol (HSRP) changes.</td>
</tr>
<tr>
<td>ipmulticast</td>
<td>Generates a trap for IP multicast routing changes.</td>
</tr>
<tr>
<td>mac-notification</td>
<td>Generates a trap for MAC address notifications.</td>
</tr>
<tr>
<td>msdp</td>
<td>Generates a trap for Multicast Source Discovery Protocol (MSDP) changes.</td>
</tr>
<tr>
<td>ospf</td>
<td>Generates a trap for Open Shortest Path First (OSPF) changes. You can enable any or all of these traps: Cisco specific, errors, link-state advertisement, rate limit, retransmit, and state changes.</td>
</tr>
<tr>
<td>pim</td>
<td>Generates a trap for Protocol-Independent Multicast (PIM) changes. You can enable any or all of these traps: invalid PIM messages, neighbor changes, and rendezvous point (RP)-mapping changes.</td>
</tr>
</tbody>
</table>
Table 1-5   Switch Notification Types (continued)

<table>
<thead>
<tr>
<th>Notification Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-security</td>
<td>Generates SNMP port security traps. You can also set a maximum trap rate per second. The range is from 0 to 1000; the default is 0, which means that there is no rate limit.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> When you configure a trap by using the notification type <strong>port-security</strong>, configure the port security trap first, and then configure the port security trap rate:</td>
</tr>
<tr>
<td></td>
<td>- <strong>snmp-server enable traps port-security</strong></td>
</tr>
<tr>
<td></td>
<td>- <strong>snmp-server enable traps port-security trap-rate</strong> <em>rate</em></td>
</tr>
<tr>
<td>rtr</td>
<td>Generates a trap for the SNMP Response Time Reporter (RTR).</td>
</tr>
<tr>
<td>snmp</td>
<td>Generates a trap for SNMP-type notifications for authentication, cold start, warm start, link up or link down.</td>
</tr>
<tr>
<td>storm-control</td>
<td>Generates a trap for SNMP storm-control. You can also set a maximum trap rate per minute. The range is from 0 to 1000; the default is 0 (no limit is imposed; a trap is sent at every occurrence).</td>
</tr>
<tr>
<td>stpx</td>
<td>Generates SNMP STP Extended MIB traps.</td>
</tr>
<tr>
<td>syslog</td>
<td>Generates SNMP syslog traps.</td>
</tr>
<tr>
<td>tty</td>
<td>Generates a trap for TCP connections. This trap is enabled by default.</td>
</tr>
<tr>
<td>vlan-membership</td>
<td>Generates a trap for SNMP VLAN membership changes.</td>
</tr>
<tr>
<td>vlancreate</td>
<td>Generates SNMP VLAN created traps.</td>
</tr>
<tr>
<td>vlandelete</td>
<td>Generates SNMP VLAN deleted traps.</td>
</tr>
<tr>
<td>vtp</td>
<td>Generates a trap for VLAN Trunking Protocol (VTP) changes.</td>
</tr>
</tbody>
</table>

**Note** Though visible in the command-line help strings, the **fru-ctrl**, **insertion**, and **removal** keywords are not supported on the Catalyst 3560-ECatalyst 3560-X switch. To enable the sending of SNMP inform notifications, use the **snmp-server enable traps** global configuration command combined with the **snmp-server host host-addr informs** global configuration command.

You can use the **snmp-server host** global configuration command to a specific host to receive the notification types listed in Table 1-5.
Beginning in privileged EXEC mode, follow these steps to configure the switch to send traps or informs to a host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>snmp-server engineID remote ip-address engineid-string</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>snmp-server user username groupname {remote host [udp-port port]} {v1 [access access-list]</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>snmp-server group groupname {v1</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>snmp-server host host-addr [informs</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>snmp-server enable traps notification-types</td>
</tr>
</tbody>
</table>

**Command Purpose**

Enter global configuration mode.

Specify the engine ID for the remote host.

Configure an SNMP user to be associated with the remote host created in Step 2.

You cannot configure a remote user for an address without first configuring the engine ID for the remote host. Otherwise, you receive an error message, and the command is not executed.

Configure an SNMP group.

Specify the recipient of an SNMP trap operation.
- For *host-addr*, specify the name or Internet address of the host (the targeted recipient).
- (Optional) Enter *informs* to send SNMP informs to the host.
- (Optional) Enter *traps* (the default) to send SNMP traps to the host.
- (Optional) Specify the SNMP *version* (1, 2c, or 3). SNMPv1 does not support informs.
- (Optional) For Version 3, select authentication level *auth*, *noauth*, or *priv*.
  - For *community-string*, when *version 1* or *version 2c* is specified, enter the password-like community string sent with the notification operation. When *version 3* is specified, enter the SNMPv3 username.
  
  **Note** The @ symbol is used for delimiting the context information. Avoid using the @ symbol as part of the SNMP community string when configuring this command.

- (Optional) For *notification-type*, use the keywords listed in Table 1-5 on page 1-14. If no type is specified, all notifications are sent.

Enable the switch to send traps or informs and specify the type of notifications to be sent. For a list of notification types, see Table 1-5 on page 1-14, or enter `snmp-server enable traps ?`

To enable multiple types of traps, you must enter a separate `snmp-server enable traps` command for each trap type.

**Note** When you configure a trap by using the notification type *port-security*, configure the port security trap first, and then configure the port security trap rate:

- `snmp-server enable traps port-security`
- `snmp-server enable traps port-security trap-rate rate`
Chapter 1  Configuring SNMP

The `snmp-server host` command specifies which hosts receive the notifications. The `snmp-server enable trap` command globally enables the mechanism for the specified notification (for traps and informs). To enable a host to receive an inform, you must configure an `snmp-server host informs` command for the host and globally enable informs by using the `snmp-server enable traps` command.

To remove the specified host from receiving traps, use the `no snmp-server host host` global configuration command. The `no snmp-server host` command with no keywords disables traps, but not informs, to the host. To disable informs, use the `no snmp-server host informs` global configuration command. To disable a specific trap type, use the `no snmp-server enable traps notification-types` global configuration command.

### Command Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td><code>snmp-server trap-source</code></td>
<td>(Optional) Specify the source interface, which provides the IP address for the trap message. This command also sets the source IP address for informs.</td>
</tr>
<tr>
<td>8</td>
<td><code>snmp-server queue-length</code></td>
<td>(Optional) Establish the message queue length for each trap host. The range is 1 to 1000; the default is 10.</td>
</tr>
<tr>
<td>9</td>
<td><code>snmp-server trap-timeout</code></td>
<td>(Optional) Define how often to resend trap messages. The range is 1 to 1000; the default is 30 seconds.</td>
</tr>
<tr>
<td>10</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>11</td>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> To display SNMPv3 information about auth</td>
</tr>
<tr>
<td>12</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
**Setting the CPU Threshold Notification Types and Values**

Beginning in privileged EXEC mode, follow these steps to set the CPU threshold notification types and values:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>process cpu threshold type {total</td>
</tr>
<tr>
<td>Set the CPU threshold notification types and values:</td>
<td></td>
</tr>
<tr>
<td>- total—set the notification type to total CPU utilization.</td>
<td></td>
</tr>
<tr>
<td>- process—set the notification type to CPU process utilization.</td>
<td></td>
</tr>
<tr>
<td>- interrupt—set the notification type to CPU interrupt utilization.</td>
<td></td>
</tr>
<tr>
<td>- rising percentage—the percentage (1 to 100) of CPU resources that, when exceeded for the configured interval, sends a CPU threshold notification.</td>
<td></td>
</tr>
<tr>
<td>- interval seconds—the duration of the CPU threshold violation in seconds (5 to 86400) that, when met, sends a CPU threshold notification.</td>
<td></td>
</tr>
<tr>
<td>- falling fall-percentage—the percentage (1 to 100) of CPU resources that, when usage falls below this level for the configured interval, sends a CPU threshold notification.</td>
<td></td>
</tr>
<tr>
<td>This value must be equal to or less than the rising percentage value. If not specified, the falling fall-percentage value is the same as the rising percentage value.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Verify your entries.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>(Optional) Save your entries in the configuration file.</td>
<td></td>
</tr>
</tbody>
</table>

**Setting the Agent Contact and Location Information**

Beginning in privileged EXEC mode, follow these steps to set the system contact and location of the SNMP agent so that these descriptions can be accessed through the configuration file:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server contact text</td>
</tr>
<tr>
<td>Set the system contact string.</td>
<td></td>
</tr>
<tr>
<td>For example:</td>
<td></td>
</tr>
<tr>
<td>snmp-server contact Dial System Operator at beeper 21555.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>snmp-server location text</td>
</tr>
<tr>
<td>Set the system location string.</td>
<td></td>
</tr>
<tr>
<td>For example:</td>
<td></td>
</tr>
<tr>
<td>snmp-server location Building 3/Room 222</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>
Limiting TFTP Servers Used Through SNMP

Beginning in privileged EXEC mode, follow these steps to limit the TFTP servers used for saving and loading configuration files through SNMP to the servers specified in an access list:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 snmp-server tftp-server-list</td>
<td>Limit TFTP servers used for configuration file copies through SNMP to the servers in the access list. For access-list-number, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999.</td>
</tr>
<tr>
<td>Step 3 access-list access-list-number [deny</td>
<td>Create a standard access list, repeating the command as many times as necessary. For access-list-number, enter the access list number specified in Step 2. The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched. For source, enter the IP address of the TFTP servers that can access the switch. (Optional) For source-wildcard, enter the wildcard bits, in dotted decimal notation, to be applied to the source. Place ones in the bit positions that you want to ignore. Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

SNMP Examples

This example shows how to enable all versions of SNMP. The configuration permits any SNMP manager to access all objects with read-only permissions using the community string public. This configuration does not cause the switch to send any traps.

Switch(config)# snmp-server community public
This example shows how to permit any SNMP manager to access all objects with read-only permission using the community string `public`. The switch also sends VTP traps to the hosts 192.180.1.111 and 192.180.1.33 using SNMPv1 and to the host 192.180.1.27 using SNMPv2C. The community string `public` is sent with the traps.

```config
Switch(config)# snmp-server community public
Switch(config)# snmp-server enable traps vtp
Switch(config)# snmp-server host 192.180.1.27 version 2c public
Switch(config)# snmp-server host 192.180.1.111 version 1 public
Switch(config)# snmp-server host 192.180.1.33 public
```

This example shows how to allow read-only access for all objects to members of access list 4 that use the `comaccess` community string. No other SNMP managers have access to any objects. SNMP Authentication Failure traps are sent by SNMPv2C to the host `cisco.com` using the community string `public`.

```config
Switch(config)# snmp-server community comaccess ro 4
Switch(config)# snmp-server enable traps snmp authentication
Switch(config)# snmp-server host cisco.com version 2c public
```

This example shows how to send Entity MIB traps to the host `cisco.com`. The community string is restricted. The first line enables the switch to send Entity MIB traps in addition to any traps previously enabled. The second line specifies the destination of these traps and overwrites any previous `snmp-server host` commands for the host `cisco.com`.

```config
Switch(config)# snmp-server enable traps entity
Switch(config)# snmp-server host cisco.com restricted entity
```

This example shows how to enable the switch to send all traps to the host `myhost.cisco.com` using the community string `public`:

```config
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server host myhost.cisco.com public
```

This example shows how to associate a user with a remote host and to send auth (authNoPriv) authentication-level informs when the user enters global configuration mode:

```config
Switch(config)# snmp-server engineID remote 192.180.1.27 00000063000100a1c0b4011b
Switch(config)# snmp-server group authgroup v3 auth
Switch(config)# snmp-server user authuser authgroup remote 192.180.1.27 v3 auth md5 mypassword
Switch(config)# snmp-server user authuser authgroup v3 auth md5 mypassword
Switch(config)# snmp-server host 192.180.1.27 informs version 3 auth authuser config
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server inform retries 0
```
Displaying SNMP Status

To display SNMP input and output statistics, including the number of illegal community string entries, errors, and requested variables, use the `show snmp` privileged EXEC command. You also can use the other privileged EXEC commands in Table 1-6 to display SNMP information. For information about the fields in the displays, see the *Cisco IOS Configuration Fundamentals Command Reference*.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>show snmp</td>
<td>Displays SNMP statistics.</td>
</tr>
<tr>
<td>show snmp engineID [local</td>
<td>remote]</td>
</tr>
<tr>
<td>show snmp group</td>
<td>Displays information on each SNMP group on the network.</td>
</tr>
<tr>
<td>show snmp pending</td>
<td>Displays information on pending SNMP requests.</td>
</tr>
<tr>
<td>show snmp sessions</td>
<td>Displays information on the current SNMP sessions.</td>
</tr>
<tr>
<td>show snmp user</td>
<td>Displays information on each SNMP user name in the SNMP users table. Note You must use this command to display SNMPv3 configuration information for <code>auth</code></td>
</tr>
</tbody>
</table>

Table 1-6 Commands for Displaying SNMP Information
Configuring Embedded Event Manager

Embedded Event Manager (EEM) is a distributed and customized approach to event detection and recovery within a Cisco IOS device. EEM offers the ability to monitor events and take informational, corrective, or any other EEM action when the monitored events occur or when a threshold is reached. An EEM policy defines an event and the actions to be taken when that event occurs.

This chapter tells how to use EEM and how to configure it on a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Unless otherwise noted, the term switch refers to a standalone switch or a Catalyst 3750-E Catalyst 3750-X switch stack.

Beginning with Cisco IOS Release 12.2(55)SE, the EEM feature is supported on the IP base and IP services feature set. It is not supported on the LAN base feature set.

For complete syntax and usage information for the commands used in this chapter, see the switch command reference for this release and the Cisco IOS Network Management Command Reference. For the complete EEM document set, see these documents in the Cisco IOS Network Management Configuration Guide:

- Embedded Event Manager Overview
- Writing Embedded Event Manager Policies Using the Cisco IOS CLI
- Writing Embedded Event Manager Policies Using Tcl

This chapter consists of these sections:

- Understanding Embedded Event Manager, page 1-1
- Configuring Embedded Event Manager, page 1-6
- Displaying Embedded Event Manager Information, page 1-8

Understanding Embedded Event Manager

EEM monitors key system events and then acts on them through a set policy. This policy is a programmed script that you can use to customize a script to invoke an action based on a given set of events occurring. The script generates actions such as generating custom syslog or Simple Network Management Protocol (SNMP) traps, invoking CLI commands, forcing a failover, and so forth. The event management capabilities of EEM are useful because not all event management can be managed from the switch and
because some problems compromise communication between the switch and the external network management device. Network availability is improved if automatic recovery actions are performed without rebooting the switch.

Figure 1-1 shows the relationship between the EEM server, the core event publishers (event detectors), and the event subscribers (policies). The event publishers screen events and when there is a match on an event specification that is provided by the event subscriber. Event detectors notify the EEM server when an event occurs. The EEM policies then implement recovery based on the current state of the system and the actions specified in the policy for the given event.

See the *EEM Configuration for Cisco Integrated Services Router Platforms Guide* for examples of EEM deployment.

- Event Detectors, page 1-3
- Embedded Event Manager Actions, page 1-4
- Embedded Event Manager Policies, page 1-4
- Embedded Event Manager Environment Variables, page 1-5
- EEM 3.2, page 1-5
Event Detectors

EEM software programs known as event detectors determine when an EEM event occurs. Event detectors are separate systems that provide an interface between the agent being monitored, for example SNMP, and the EEM policies where an action can be implemented. Event detectors are generated only by the master switch. CLI and routing processes also run only from the master switch.

Note

The stack member switch does not generate events and does not support memory threshold notifications or IOSWdSysmon event detectors.

EEM allows these event detectors:

- Application-specific event detector—Allows any EEM policy to publish an event.
- IOS CLI event detector—Generates policies based on the commands entered through the CLI.
- Generic Online Diagnostics (GOLD) event detector—Publishes an event when a GOLD failure event is detected on a specified card and subcard.
- Counter event detector—Publishes an event when a named counter crosses a specified threshold.
- Interface counter event detector—Publishes an event when a generic Cisco IOS interface counter for a specified interface crosses a defined threshold. A threshold can be specified as an absolute value or an incremental value. For example, if the incremental value is set to 50 an event would be published when the interface counter increases by 50. This detector also publishes an event about an interface based on the rate of change for the entry and exit values.
- None event detector—Publishes an event when the event manager run CLI command executes an EEM policy. EEM schedules and runs policies on the basis on an event specification within the policy itself. An EEM policy must be manually identified and registered before the event manager run command executes.
- Online insertion and removal event detector—Publishes an event when a hardware insertion or removal (OIR) event occurs.
- Resource threshold event detector—Generates policies based on global platform values and thresholds. Includes resources such as CPU utilization and remaining buffer capacity. Applies only to the master switch.
- Remote procedure call (RPC) event detector—Invokes EEM policies from outside the switch over an encrypted connection using Secure Shell (SSH) and uses Simple Object Access Protocol (SOAP) data encoding for exchanging XML-based messages. It also runs EEM policies and then gets the output in a SOAP XML-formatted reply.
- SNMP event detector—Allows a standard SNMP MIB object to be monitored and an event to be generated when the object matches specified values or crosses specified thresholds.
  - The object matches specified values or crosses specified thresholds.
  - The SNMP delta value, the difference between the monitored Object Identifier (OID) value at the beginning the period and the actual OID value when the event is published, matches a specified value.
- SNMP notification event detector—Intercepts SNMP trap and inform messages received by the switch. The event is generated when an incoming message matches a specified value or crosses a defined threshold.
• Syslog event detector—Allows for screening syslog messages for a regular expression pattern match. The selected messages can be further qualified, requiring that a specific number of occurrences be logged within a specified time. A match on a specified event criteria triggers a configured policy action.

• Timer event detector—Publishes events for
  – An absolute-time-of-day timer publishes an event when a specified absolute date and time occurs.
  – A countdown timer publishes an event when a timer counts down to zero.
  – A watchdog timer publishes an event when a timer counts down to zero. The timer automatically resets itself to its initial value and starts to count down again.
  – A CRON timer publishes an event by using a UNIX standard CRON specification to define when the event is to be published. A CRON timer never publishes events more than once per minute.

• Watchdog event detector (IOSWD SysMon)—Publishes an event only on the master switch when
  Publishes an event when one of these events occurs:
  – CPU utilization for a Cisco IOS process crosses a threshold.
  – Memory utilization for a Cisco IOS process crosses a threshold.

Two events can be monitored at the same time, and the event publishing criteria requires that one or both events cross their specified thresholds.

### Embedded Event Manager Actions

These actions occur in response to an event:

• Modifying a named counter.
• Publishing an application-specific event.
• Generating an SNMP trap.
• Generating prioritized syslog messages.
• Reloading the Cisco IOS software.
• Reloading the switch stack.
• Reloading the master switch in the event of a master switchover. If this occurs, a new master switch is elected.

### Embedded Event Manager Policies

EEM can monitor events and provide information, or take corrective action when the monitored events occur or a threshold is reached. An EEM policy is an entity that defines an event and the actions to be taken when that event occurs.

There are two types of EEM policies: an applet or a script. An applet is a simple policy that is defined within the CLI configuration. It is a concise method for defining event screening criteria and the actions to be taken when that event occurs. Scripts are defined on the networking device by using an ASCII editor. The script, which can be a bytecode (.tbc) and text (.tcl) script, is then copied to the networking device and registered with EEM. You can also register multiple events in a .tcl file.
You use EEM to write and implement your own policies using the EEM policy tool command language (TCL) script. When you configure a TCL script on the master switch and the file is automatically sent to the member switches. The user-defined TCL scripts must be available in the member switches so that if the master switch changes, the TCL scripts policies continue to work.

Cisco enhancements to TCL in the form of keyword extensions facilitate the development of EEM policies. These keywords identify the detected event, the subsequent action, utility information, counter values, and system information.

For complete information on configuring EEM policies and scripts, see the Cisco IOS Network Management Configuration Guide, Release 12.4T.

### Embedded Event Manager Environment Variables

EEM uses environment variables in EEM policies. These variables are defined in a EEM policy tool command language (TCL) script by running a CLI command and the `event manager environment` command.

- **User-defined variables**
  - Defined by the user for a user-defined policy.
- **Cisco-defined variables**
  - Defined by Cisco for a specific sample policy.
- **Cisco built-in variables (available in EEM applets)**
  - Defined by Cisco and can be read-only or read-write. The read-only variables are set by the system before an applet starts to execute. The single read-write variable, `_exit_status`, allows you to set the exit status for policies triggered from synchronous events.

Cisco-defined environment variables and Cisco system-defined environment variables might apply to one specific event detector or to all event detectors. Environment variables that are user-defined or defined by Cisco in a sample policy are set by using the `event manager environment` global configuration command. You must defined the variables in the EEM policy before you register the policy.

For information about the environmental variables that EEM supports, see the Cisco IOS Network Management Configuration Guide, Release 12.4T.

### EEM 3.2

EEM 3.2 is supported in Cisco IOS Release 12.2(52)SE and later and introduces these event detectors:

- **Neighbor Discovery**—Neighbor Discovery event detector provides the ability to publish a policy to respond to automatic neighbor detection when:
  - a Cisco Discovery Protocol (CDP) cache entry is added, deleted, or updated.
  - a Link Layer Discovery Protocol (LLDP) cache entry is added, deleted or updated.
  - an interface link status changes.
  - an interface line status changes.
- **Identity**—Identity event detector generates an event when AAA authorization and authentication is successful, when failure occurs, or after normal user traffic on the port is allowed to flow.
• Mac-Address-Table—Mac-Address-Table event detector generates an event when a MAC address is learned in the MAC address table.

**Note**  
The Mac-Address-Table event detector is supported only on switch platforms and can be used only on Layer 2 interfaces where MAC addresses are learned. Layer 3 interfaces do not learn addresses, and routers do not usually support the MAC address-table infrastructure needed to notify EEM of a learned MAC address.

EEM 3.2 also introduces CLI commands to support the applets to work with the new event detectors.

For further details about EEM 3.2 features, see the Embedded Event Manager 3.2 document:  

## Configuring Embedded Event Manager

- Registering and Defining an Embedded Event Manager Applet, page 1-6
- Registering and Defining an Embedded Event Manager TCL Script, page 1-7

For complete information about configuring embedded event manager, see the **Cisco IOS Network Management Configuration Guide, Release 12.4T**.

**Note**  
To configure EEM, you must have the IP services feature set installed on the switch.

## Registering and Defining an Embedded Event Manager Applet

Beginning in privileged EXEC mode, perform this task to register an applet with EEM and to define the EEM applet using the **event applet** and **action applet** configuration commands.

**Note**  
Only one event applet command is allowed in an EEM applet. Multiple action applet commands are permitted. If you do not specify the **no event** and **no action** commands, the applet is removed when you exit configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>event manager applet applet-name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>event snmp oid oid-value get-type { exact</td>
</tr>
</tbody>
</table>
Chapter 1  Configuring Embedded Event Manager

Configuring Embedded Event Manager

This example shows the output for EEM when one of the fields specified by an SNMP object ID crosses a defined threshold:

```
Switch(config-applet)# event snmp oid 1.3.6.1.4.1.9.9.48.1.1.1.6.1 get-type exact entry-op lt entry-val 5120000 poll-interval 10
```

These examples show actions that are taken in response to an EEM event:

```
Switch(config-applet)# action 1.0 syslog priority critical msg "Memory exhausted; current available memory is $_snmp_oid_val bytes"
Switch (config-applet)# action 2.0 force-switchover
```

Registering and Defining an Embedded Event Manager TCL Script

Beginning in privileged EXEC mode, perform this task to register a TCL script with EEM and to define the TCL script and policy commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>action label syslog [priority priority-level] msg msg-text</strong></td>
</tr>
<tr>
<td></td>
<td>Specify the action when an EEM applet is triggered. Repeat this action to add other CLI commands to the applet.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) The priority keyword specifies the priority level of the syslog messages. If selected, you need to define the priority-level argument.</td>
</tr>
<tr>
<td></td>
<td>• For msg-text, the argument can be character text, an environment variable, or a combination of the two.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td></td>
<td>Exit applet configuration mode and return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

This example shows the output for EEM when one of the fields specified by an SNMP object ID crosses a defined threshold:

```
Switch(config-applet)# event snmp oid 1.3.6.1.4.1.9.9.48.1.1.1.6.1 get-type exact entry-op lt entry-val 5120000 poll-interval 10
```

These examples show actions that are taken in response to an EEM event:

```
Switch(config-applet)# action 1.0 syslog priority critical msg "Memory exhausted; current available memory is $_snmp_oid_val bytes"
Switch (config-applet)# action 2.0 force-switchover
```

Registering and Defining an Embedded Event Manager TCL Script

Beginning in privileged EXEC mode, perform this task to register a TCL script with EEM and to define the TCL script and policy commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>**show event manager environment [all</td>
</tr>
<tr>
<td></td>
<td>(Optional) The <strong>show event manager environment</strong> command displays the name and value of the EEM environment variables.</td>
</tr>
<tr>
<td></td>
<td>(Optional) The <strong>all</strong> keyword displays the EEM environment variables.</td>
</tr>
<tr>
<td></td>
<td>(Optional) The <strong>variable-name</strong> argument displays information about the specified environment variable.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>event manager environment variable-name string</strong></td>
</tr>
<tr>
<td></td>
<td>Configure the value of the specified EEM environment variable. Repeat this step for all the required environment variables.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>event manager policy policy-file-name [type system] [trap]</strong></td>
</tr>
<tr>
<td></td>
<td>Register the EEM policy to be run when the specified event defined within the policy occurs.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td></td>
<td>Exit global configuration mode and return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

This example shows the sample output for the **show event manager environment** command:

```
Switch# show event manager environment all
 No. Name Value
1 _cron_entry 0-59/2 0-23/1 * * 0-6
2 _show_cmd show ver
3 _syslog_pattern.*UPDOWN.*Ethernet1/0.*
```
This example shows a CRON timer environment variable, which is assigned by the software, to be set to every second minute, every hour of every day:

```
Switch(config)# event manager environment_cron_entry 0-59/2 0-23/1 * * 0-6
```

This example shows the sample EEM policy named `tm_cli_cmd.tcl` registered as a system policy. The system policies are part of the Cisco IOS image. User-defined TCL scripts must first be copied to flash memory.

```
Switch(config)# event manager policy tm_cli_cmd.tcl type system
```

### Displaying Embedded Event Manager Information

To display information about EEM, including EEM registered policies and EEM history data, see the *Cisco IOS Network Management Command Reference*. 

4  `_config_cmd1` interface Ethernet1/0
5  `_config_cmd2` no shut
Configuring Network Security with ACLs

This chapter describes how to configure network security on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch by using access control lists (ACLs), which in commands and tables are also referred to as access lists. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Information in this chapter about IP ACLs is specific to IP Version 4 (IPv4). For information about IPv6 ACLs, see Chapter 1, "Configuring IPv6 ACLs."

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release, see the “Configuring IP Services” section in the “IP Addressing and Services” chapter of the Cisco IOS IP Configuration Guide, Release 12.4, and the Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.4.

Catalyst 3750-X and 3560-X switches running the IP base or IP services feature set Catalyst 3750-E and 3560-E switches also support Cisco TrustSec Security Group Tag (SCT) Exchange Protocol (SXP). This feature supports security group access control lists (SGACLs), which define ACL policies for a group of devices instead of an IP address. The SXP control protocol allows tagging packets with SCTs without a hardware upgrade, and runs between access layer devices at the Cisco TrustSec domain edge and distribution layer devices within the Cisco TrustSec domain. Catalyst 3750-X and 3560-X switches operate as access layer switches in the Cisco TrustSec network.

For more information about Cisco TrustSec, see the “Cisco TrustSec Switch Configuration Guide” at this URL:

The sections on SXP define the capabilities supported on the Catalyst 3750-X and 3560-X switches:

- Understanding ACLs, page 1-2
- Configuring IPv4 ACLs, page 1-7
- Creating Named MAC Extended ACLs, page 1-29
- Configuring VLAN Maps, page 1-32

On switches running the LAN base feature set, router ACLs are supported only on switch virtual interfaces (SVIs). VLAN maps are not supported.
Understanding ACLs

Packet filtering can help limit network traffic and restrict network use by certain users or devices. ACLs filter traffic as it passes through a router or switch and permit or deny packets crossing specified interfaces or VLANs. An ACL is a sequential collection of permit and deny conditions that apply to packets. When a packet is received on an interface, the switch compares the fields in the packet against any applied ACLs to verify that the packet has the required permissions to be forwarded, based on the criteria specified in the access lists. One by one, it tests packets against the conditions in an access list. The first match decides whether the switch accepts or rejects the packets. Because the switch stops testing after the first match, the order of conditions in the list is critical. If no conditions match, the switch rejects the packet. If there are no restrictions, the switch forwards the packet; otherwise, the switch drops the packet. The switch can use ACLs on all packets it forwards, including packets bridged within a VLAN.

You configure access lists on a router or Layer 3 switch to provide basic security for your network. If you do not configure ACLs, all packets passing through the switch could be allowed onto all parts of the network. You can use ACLs to control which hosts can access different parts of a network or to decide which types of traffic are forwarded or blocked at router interfaces. For example, you can allow e-mail traffic to be forwarded but not Telnet traffic. ACLs can be configured to block inbound traffic, outbound traffic, or both.

An ACL contains an ordered list of access control entries (ACEs). Each ACE specifies permit or deny and a set of conditions the packet must satisfy in order to match the ACE. The meaning of permit or deny depends on the context in which the ACL is used.

The switch supports IP ACLs and Ethernet (MAC) ACLs:

- IP ACLs filter IPv4 traffic, including TCP, User Datagram Protocol (UDP), Internet Group Management Protocol (IGMP), and Internet Control Message Protocol (ICMP).
- Ethernet ACLs filter non-IP traffic.

This switch also supports quality of service (QoS) classification ACLs. For more information, see the “Classification Based on QoS ACLs” section on page 1-7.

These sections contain this conceptual information:

- Supported ACLs, page 1-2
- Handling Fragmented and Unfragmented Traffic, page 1-6
- ACLs and Switch Stacks, page 1-7

Supported ACLs

The switch supports three types of ACLs to filter traffic:

- Using VLAN Maps with Router ACLs, page 1-40
- Displaying IPv4 ACL Configuration, page 1-44
Port ACLs access-control traffic entering a Layer 2 interface. The switch does not support port ACLs in the outbound direction. You can apply only one IP access list and one MAC access list to a Layer 2 interface. For more information, see the “Port ACLs” section on page 1-4.

Router ACLs access-control routed traffic between VLANs and are applied to Layer 3 interfaces in a specific direction (inbound or outbound). For more information, see the “Router ACLs” section on page 1-5.

VLAN ACLs or VLAN maps access-control all packets (bridged and routed). You can use VLAN maps to filter traffic between devices in the same VLAN. VLAN maps are configured to provide access control based on Layer 3 addresses for IPv4. Unsupported protocols are access-controlled through MAC addresses using Ethernet ACEs. After a VLAN map is applied to a VLAN, all packets (routed or bridged) entering the VLAN are checked against the VLAN map. Packets can either enter the VLAN through a switch port or through a routed port after being routed. For more information, see the “VLAN Maps” section on page 1-5.

You can use input port ACLs, router ACLs, and VLAN maps on the same switch. However, a port ACL takes precedence over a router ACL or VLAN map.

When both an input port ACL and a VLAN map are applied, incoming packets received on ports with a port ACL applied are filtered by the port ACL. Other packets are filtered by the VLAN map.

When an input router ACL and input port ACL exist in an switch virtual interface (SVI), incoming packets received on ports to which a port ACL is applied are filtered by the port ACL. Incoming routed IP packets received on other ports are filtered by the router ACL. Other packets are not filtered.

When an output router ACL and input port ACL exist in an SVI, incoming packets received on the ports to which a port ACL is applied are filtered by the port ACL. Outgoing routed IP packets are filtered by the router ACL. Other packets are not filtered.

When a VLAN map, input router ACL, and input port ACL exist in an SVI, incoming packets received on the ports to which a port ACL is applied are only filtered by the VLAN map and the router ACL. Other packets are filtered only by the VLAN map.

When a VLAN map, output router ACL, and input port ACL exist in an SVI, incoming packets received on the ports to which a port ACL is applied are only filtered by the VLAN map and the router ACL. Other packets are filtered only by the VLAN map.

If IEEE 802.1Q tunneling is configured on an interface, any IEEE 802.1Q encapsulated IP packets received on the tunnel port can be filtered by MAC ACLs, but not by IP ACLs. This is because the switch does not recognize the protocol inside the IEEE 802.1Q header. This restriction applies to router ACLs, port ACLs, and VLAN maps. For more information about IEEE 802.1Q tunneling, see Chapter 1, “Configuring IEEE 802.1Q Tunneling” and Chapter 1, “Configuring Layer 2 Protocol Tunneling.”
Port ACLs

Port ACLs are ACLs that are applied to Layer 2 interfaces on a switch. Port ACLs are supported only on physical interfaces and not on EtherChannel interfaces and can be applied only on interfaces in the inbound direction. These access lists are supported:

- Standard IP access lists using source addresses
- Extended IP access lists using source and destination addresses and optional protocol type information
- MAC extended access lists using source and destination MAC addresses and optional protocol type information

The switch examines ACLs associated with all inbound features configured on a given interface and permits or denies packet forwarding based on how the packet matches the entries in the ACL. In this way, ACLs control access to a network or to part of a network. Figure 1-1 is an example of using port ACLs to control access to a network when all workstations are in the same VLAN. ACLs applied at the Layer 2 input would allow Host A to access the Human Resources network, but prevent Host B from accessing the same network. Port ACLs can only be applied to Layer 2 interfaces in the inbound direction.

Figure 1-1  Using ACLs to Control Traffic to a Network

When you apply a port ACL to a trunk port, the ACL filters traffic on all VLANs present on the trunk port. When you apply a port ACL to a port with voice VLAN, the ACL filters traffic on both data and voice VLANs.

With port ACLs, you can filter IP traffic by using IP access lists and non-IP traffic by using MAC addresses. You can filter both IP and non-IP traffic on the same Layer 2 interface by applying both an IP access list and a MAC access list to the interface.
Note

You cannot apply more than one IP access list and one MAC access list to a Layer 2 interface. If an IP access list or MAC access list is already configured on a Layer 2 interface and you apply a new IP access list or MAC access list to the interface, the new ACL replaces the previously configured one.

Router ACLs

Note

On switches running the LAN base feature set, router ACLs are supported only on SVIs.

You can apply router ACLs on switch virtual interfaces (SVIs), which are Layer 3 interfaces to VLANs; on physical Layer 3 interfaces; and on Layer 3 EtherChannel interfaces. You apply router ACLs on interfaces for specific directions (inbound or outbound). You can apply one router ACL in each direction on an interface.

One ACL can be used with multiple features for a given interface, and one feature can use multiple ACLs. When a single router ACL is used by multiple features, it is examined multiple times.

The switch supports these access lists for IPv4 traffic:

- Standard IP access lists use source addresses for matching operations.
- Extended IP access lists use source and destination addresses and optional protocol type information for matching operations.

As with port ACLs, the switch examines ACLs associated with features configured on a given interface. However, router ACLs are supported in both directions. As packets enter the switch on an interface, ACLs associated with all inbound features configured on that interface are examined. After packets are routed and before they are forwarded to the next hop, all ACLs associated with outbound features configured on the egress interface are examined.

ACLs permit or deny packet forwarding based on how the packet matches the entries in the ACL, and can be used to control access to a network or to part of a network. In Figure 1-1, ACLs applied at the router input allow Host A to access the Human Resources network, but prevent Host B from accessing the same network.

VLAN Maps

Note

VLAN maps are not supported on switches running the LAN base feature set.

Use VLAN ACLs or VLAN maps to access-control all traffic. You can apply VLAN maps to all packets that are routed into or out of a VLAN or are bridged within a VLAN in the switch or switch stack.

Use VLAN maps for security packet filtering. VLAN maps are not defined by direction (input or output).

You can configure VLAN maps to match Layer 3 addresses for IPv4 traffic.

All non-IP protocols are access-controlled through MAC addresses and Ethertype using MAC VLAN maps. (IP traffic is not access controlled by MAC VLAN maps.) You can enforce VLAN maps only on packets going through the switch; you cannot enforce VLAN maps on traffic between hosts on a hub or on another switch connected to this switch.
With VLAN maps, forwarding of packets is permitted or denied, based on the action specified in the map. Figure 1-2 shows how a VLAN map is applied to prevent a specific type of traffic from Host A in VLAN 10 from being forwarded. You can apply only one VLAN map to a VLAN.

![Figure 1-2 Using VLAN Maps to Control Traffic](image)

**Handling Fragmented and Unfragmented Traffic**

IP packets can be fragmented as they cross the network. When this happens, only the fragment containing the beginning of the packet contains the Layer 4 information, such as TCP or UDP port numbers, ICMP type and code, and so on. All other fragments are missing this information.

Some ACEs do not check Layer 4 information and therefore can be applied to all packet fragments. ACEs that do test Layer 4 information cannot be applied in the standard manner to most of the fragments in a fragmented IP packet. When the fragment contains no Layer 4 information and the ACE tests some Layer 4 information, the matching rules are modified:

- Permit ACEs that check the Layer 3 information in the fragment (including protocol type, such as TCP, UDP, and so on) are considered to match the fragment regardless of what the missing Layer 4 information might have been.
- Deny ACEs that check Layer 4 information never match a fragment unless the fragment contains Layer 4 information.

Consider access list 102, configured with these commands, applied to three fragmented packets:

```plaintext
Switch(config)# access-list 102 permit tcp any host 10.1.1.1 eq smtp
Switch(config)# access-list 102 deny tcp any host 10.1.1.2 eq telnet
Switch(config)# access-list 102 permit tcp any host 10.1.1.2
Switch(config)# access-list 102 deny tcp any any
```

In the first and second ACEs in the examples, the `eq` keyword after the destination address means to test for the TCP-destination-port well-known numbers equaling Simple Mail Transfer Protocol (SMTP) and Telnet, respectively.

- Packet A is a TCP packet from host 10.2.2.2, port 65000, going to host 10.1.1.1 on the SMTP port. If this packet is fragmented, the first fragment matches the first ACE (a permit) as if it were a complete packet because all Layer 4 information is present. The remaining fragments also match the first ACE, even though they do not contain the SMTP port information, because the first ACE only checks Layer 3 information when applied to fragments. The information in this example is that the packet is TCP and that the destination is 10.1.1.1.
• Packet B is from host 10.2.2.2, port 65001, going to host 10.1.1.2 on the Telnet port. If this packet is fragmented, the first fragment matches the second ACE (a deny) because all Layer 3 and Layer 4 information is present. The remaining fragments in the packet do not match the second ACE because they are missing Layer 4 information. Instead, they match the third ACE (a permit). Because the first fragment was denied, host 10.1.1.2 cannot reassemble a complete packet, so packet B is effectively denied. However, the later fragments that are permitted will consume bandwidth on the network and resources of host 10.1.1.2 as it tries to reassemble the packet.

• Fragmented packet C is from host 10.2.2.2, port 65001, going to host 10.1.1.3, port ftp. If this packet is fragmented, the first fragment matches the fourth ACE (a deny). All other fragments also match the fourth ACE because that ACE does not check any Layer 4 information and because Layer 3 information in all fragments shows that they are being sent to host 10.1.1.3, and the earlier permit ACEs were checking different hosts.

ACLs and Switch Stacks

ACL support is the same for a switch stack as for a standalone switch. ACL configuration information is propagated to all switches in the stack. All switches in the stack, including the stack master, process the information and program their hardware. (For more information about switch stacks, see Chapter 1, “Configuring the Switch Stack.”)

The stack master performs these ACL functions:

• It processes the ACL configuration and propagates the information to all stack members.
• It distributes the ACL information to any switch that joins the stack.
• If packets must be forwarded by software for any reason (for example, not enough hardware resources), the master switch forwards the packets only after applying ACLs on the packets.
• It programs its hardware with the ACL information it processes.

Stack members perform these ACL functions:

• They receive the ACL information from the master switch and program their hardware.
• They act as standby switches, ready to take over the role of the stack master if the existing master were to fail and they were to be elected as the new stack master.

When a stack master fails and a new stack master is elected, the newly elected master reparses the backed up running configuration. (See Chapter 1, “Configuring the Switch Stack.”) The ACL configuration that is part of the running configuration is also reparsed during this step. The new stack master distributes the ACL information to all switches in the stack.

Configuring IPv4 ACLs

Configuring IPv4 ACLs on the switch is the same as configuring IPv4 ACLs on other Cisco switches and routers. The process is briefly described here. For more detailed information on configuring ACLs, see the “Configuring IP Services” section in the “IP Addressing and Services” chapter of the Cisco IOS IP Configuration Guide, Release 12.4. For detailed information about the commands, see the Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.4.

The switch does not support these Cisco IOS router ACL-related features:

• Non-IP protocol ACLs (see Table 1-1 on page 1-9) or bridge-group ACLs
• IP accounting
Inbound and outbound rate limiting (except with QoS ACLs)
Reflexive ACLs or dynamic ACLs (except for some specialized dynamic ACLs used by the switch clustering feature)
ACL logging for port ACLs and VLAN maps

These are the steps to use IP ACLs on the switch:

**Step 1** Create an ACL by specifying an access list number or name and the access conditions.

**Step 2** Apply the ACL to interfaces or terminal lines. You can also apply standard and extended IP ACLs to VLAN maps.

These sections contain this configuration information:
- Creating Standard and Extended IPv4 ACLs, page 1-8
- Applying an IPv4 ACL to a Terminal Line, page 1-20
- Applying an IPv4 ACL to an Interface, page 1-21
- Hardware and Software Treatment of IP ACLs, page 1-23
- Troubleshooting ACLs, page 1-23
- IPv4 ACL Configuration Examples, page 1-24

**Creating Standard and Extended IPv4 ACLs**

This section describes IP ACLs. An ACL is a sequential collection of permit and deny conditions. One by one, the switch tests packets against the conditions in an access list. The first match determines whether the switch accepts or rejects the packet. Because the switch stops testing after the first match, the order of the conditions is critical. If no conditions match, the switch denies the packet.

The software supports these types of ACLs or access lists for IPv4:
- Standard IP access lists use source addresses for matching operations.
- Extended IP access lists use source and destination addresses for matching operations and optional protocol-type information for finer granularity of control.

These sections describe access lists and how to create them:
- Access List Numbers, page 1-9
- ACL Logging, page 1-9
- Smart Logging, page 1-10
- Creating a Numbered Standard ACL, page 1-10
- Creating a Numbered Extended ACL, page 1-11
- Resequencing ACEs in an ACL, page 1-16
- Creating Named Standard and Extended ACLs, page 1-16
- Using Time Ranges with ACLs, page 1-18
- Including Comments in ACLs, page 1-20
Access List Numbers

The number you use to denote your ACL shows the type of access list that you are creating. Table 1-1 lists the access-list number and corresponding access list type and shows whether or not they are supported in the switch. The switch supports IPv4 standard and extended access lists, numbers 1 to 199 and 1300 to 2699.

Table 1-1 Access List Numbers

<table>
<thead>
<tr>
<th>Access List Number</th>
<th>Type</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–99</td>
<td>IP standard access list</td>
<td>Yes</td>
</tr>
<tr>
<td>100–199</td>
<td>IP extended access list</td>
<td>Yes</td>
</tr>
<tr>
<td>200–299</td>
<td>Protocol type-code access list</td>
<td>No</td>
</tr>
<tr>
<td>300–399</td>
<td>DECnet access list</td>
<td>No</td>
</tr>
<tr>
<td>400–499</td>
<td>XNS standard access list</td>
<td>No</td>
</tr>
<tr>
<td>500–599</td>
<td>XNS extended access list</td>
<td>No</td>
</tr>
<tr>
<td>600–699</td>
<td>AppleTalk access list</td>
<td>No</td>
</tr>
<tr>
<td>700–799</td>
<td>48-bit MAC address access list</td>
<td>No</td>
</tr>
<tr>
<td>800–899</td>
<td>IPX standard access list</td>
<td>No</td>
</tr>
<tr>
<td>900–999</td>
<td>IPX extended access list</td>
<td>No</td>
</tr>
<tr>
<td>1000–1099</td>
<td>IPX SAP access list</td>
<td>No</td>
</tr>
<tr>
<td>1100–1199</td>
<td>Extended 48-bit MAC address access list</td>
<td>No</td>
</tr>
<tr>
<td>1200–1299</td>
<td>IPX summary address access list</td>
<td>No</td>
</tr>
<tr>
<td>1300–1999</td>
<td>IP standard access list (expanded range)</td>
<td>Yes</td>
</tr>
<tr>
<td>2000–2699</td>
<td>IP extended access list (expanded range)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note

In addition to numbered standard and extended ACLs, you can also create standard and extended named IP ACLs by using the supported numbers. That is, the name of a standard IP ACL can be 1 to 99; the name of an extended IP ACL can be 100 to 199. The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.

ACL Logging

The switch software can provide logging messages about packets permitted or denied by a standard IP access list. That is, any packet that matches the ACL causes an informational logging message about the packet to be sent to the console. The level of messages logged to the console is controlled by the logging console commands controlling the syslog messages.

Note

Because routing is done in hardware and logging is done in software, if a large number of packets match a permit or deny ACE containing a log keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.
The first packet that triggers the ACL causes a logging message right away, and subsequent packets are collected over 5-minute intervals before they appear or logged. The logging message includes the access list number, whether the packet was permitted or denied, the source IP address of the packet, and the number of packets from that source permitted or denied in the prior 5-minute interval.

**Smart Logging**

When smart logging is enabled on the switch and an ACL configured with smart logging is attached to a Layer 2 interface (port ACL), the contents of packets denied or permitted because of the ACL are also sent to a specified NetFlow collector. For more information about smart logging, see the “Configuring Smart Logging” section on page 1-14.

**Creating a Numbered Standard ACL**

Beginning in privileged EXEC mode, follow these steps to create a numbered standard ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
</tbody>
</table>
| access-list access-list-number [deny | permit] source [source-wildcard] [log | smartlog] | Define a standard IPv4 access list by using a source address and wildcard.  
| The access-list-number is a decimal number from 1 to 99 or 1300 to 1999. |
| Enter deny or permit to specify whether to deny or permit access if conditions are matched. |
| The source is the source address of the network or host from which the packet is being sent specified as: |
| • The 32-bit quantity in dotted-decimal format. |
| • The keyword any as an abbreviation for source and source-wildcard of 0.0.0.0 255.255.255.255. You do not need to enter a source-wildcard. |
| • The keyword host as an abbreviation for source and source-wildcard of source 0.0.0.0. |
| (Optional) The source-wildcard applies wildcard bits to the source. |
| (Optional) Enter log to cause an informational logging message about the packet that matches the entry to be sent to the console. |
| (Optional) Enter smartlog to send copies of denied or permitted packets to a NetFlow collector. |
| **Step 3**                                   |                                                                          |
| end                                          | Return to privileged EXEC mode.                                          |
| **Step 4**                                   |                                                                          |
| show access-lists [number \ name]            | Show the access list configuration.                                     |
| **Step 5**                                   |                                                                          |
| copy running-config startup-config           | (Optional) Save your entries in the configuration file.                  |

*Note* Logging is supported only on ACLs attached to Layer 3 interfaces. Smart logging is supported only on ACLs attached to Layer 2 interfaces.
Use the **no access-list access-list-number** global configuration command to delete the entire ACL. You cannot delete individual ACEs from numbered access lists.

**Note**
When creating an ACL, remember that, by default, the end of the ACL contains an implicit deny statement for all packets that it did not find a match for before reaching the end. With standard access lists, if you omit the mask from an associated IP host address ACL specification, 0.0.0.0 is assumed to be the mask.

This example shows how to create a standard ACL to deny access to IP host 171.69.198.102, permit access to any others, and display the results.

```
Switch (config)# access-list 2 deny host 171.69.198.102
Switch (config)# access-list 2 permit any
Switch(config)# end
Switch# show access-lists
Standard IP access list 2
 10 deny 171.69.198.102
 20 permit any
```

The switch always rewrites the order of standard access lists so that entries with **host** matches and entries with matches having a **don’t care** mask of 0.0.0.0 are moved to the top of the list, above any entries with non-zero **don’t care** masks. Therefore, in **show** command output and in the configuration file, the ACEs do not necessarily appear in the order in which they were entered.

After creating a numbered standard IPv4 ACL, you can apply it to terminal lines (see the “Applying an IPv4 ACL to a Terminal Line” section on page 1-20), to interfaces (see the “Applying an IPv4 ACL to an Interface” section on page 1-21), or to VLANs (see the “Configuring VLAN Maps” section on page 1-32).

**Creating a Numbered Extended ACL**

Although standard ACLs use only source addresses for matching, you can use extended ACL source and destination addresses for matching operations and optional protocol type information for finer granularity of control. When you are creating ACEs in numbered extended access lists, remember that after you create the ACL, any additions are placed at the end of the list. You cannot reorder the list or selectively add or remove ACEs from a numbered list.

Some protocols also have specific parameters and keywords that apply to that protocol.

These IP protocols are supported (protocol keywords are in parentheses in bold):

- Authentication Header Protocol (**ahp**),
- Enhanced Interior Gateway Routing Protocol (**eigrp**),
- Encapsulation Security Payload (**esp**),
- generic routing encapsulation (**gre**),
- Internet Control Message Protocol (**icmp**),
- Internet Group Management Protocol (**igmp**),
- any Interior Protocol (**ip**),
- IP in IP tunneling (**ipinip**),
- KA9Q NOS-compatible IP over IP tunneling (**nos**),
- Open Shortest Path First routing (**ospf**),
- Payload Compression Protocol (**pcp**),
- Protocol-Independent Multicast (**pim**),
- Transmission Control Protocol (**tcp**),
- User Datagram Protocol (**udp**).

For more details on the specific keywords for each protocol, see these command references:

- *Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.4*
- *Cisco IOS IP Command Reference, Volume 3 of 3: Multicast, Release 12.4*
Configuring IPv4 ACLs

Note

The switch does not support dynamic or reflexive access lists. It also does not support filtering based on the type of service (ToS) minimize-monetary-cost bit.

Supported parameters can be grouped into these categories: TCP, UDP, ICMP, IGMP, or other IP.
Beginning in privileged EXEC mode, follow these steps to create an extended ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>access-list access-list-number (deny</td>
<td>Define an extended IPv4 access list and the access conditions. The <code>access-list-number</code> is a decimal number from 100 to 199 or 2000 to 2699. Enter <code>deny</code> or <code>permit</code> to specify whether to deny or permit the packet if conditions are matched.</td>
</tr>
<tr>
<td>protocol source source-wildcard destination destination-wildcard [precedence precedence] [tos tos] [fragments] [log [log-input]</td>
<td>For <code>protocol</code>, enter the name or number of an IP protocol: ahp, eigrp, esp, gre, icmp, igmp, igrp, ip, ipinip, nos, ospf, pcp, pim, tcp, or udp, or an integer in the range 0 to 255 representing an IP protocol number. To match any Internet protocol (including ICMP, TCP, and UDP), use the keyword <code>ip</code>.</td>
</tr>
<tr>
<td>time-range time-range-name] [dscp dscp]</td>
<td>Note This step includes options for most IP protocols. For additional specific parameters for TCP, UDP, ICMP, and IGMP, see steps 2b through 2e. The <code>source</code> is the number of the network or host from which the packet is sent. The <code>source-wildcard</code> applies wildcard bits to the source. The <code>destination</code> is the network or host number to which the packet is sent. The <code>destination-wildcard</code> applies wildcard bits to the destination. Source, source-wildcard, destination, and destination-wildcard can be specified as:</td>
</tr>
<tr>
<td>Note</td>
<td>The other keywords are optional and have these meanings:</td>
</tr>
<tr>
<td>If you enter a <code>dscp</code> value, you cannot enter <code>tos</code> or <code>precedence</code>. You can enter both a <code>tos</code> and a <code>precedence</code> value with no <code>dscp</code>.</td>
<td></td>
</tr>
</tbody>
</table>

- `precedence`—Enter to match packets with a precedence level specified as a number from 0 to 7 or by name: routine (0), priority (1), immediate (2), flash (3), flash-override (4), critical (5), internet (6), network (7).
- `fragments`—Enter to check non-initial fragments.
- `tos`—Enter to match by type of service level, specified by a number from 0 to 15 or a name: normal (0), max-reliability (2), max-throughput (4), min-delay (8).
- `log`—Enter to create an informational logging message to be sent to the console about the packet that matches the entry or `log-input` to include the input interface in the log entry.
- `smartlog`—Enter when smart logging is globally enabled to have a copy of the denied or permitted packet sent to a NetFlow collector.
- `time-range`—For an explanation of this keyword, see the “Using Time Ranges with ACLs” section on page 1-18.
- `dscp`—Enter to match packets with the DSCP value specified by a number from 0 to 63, or use the question mark (?) to see a list of available values.
## Configuring IPv4 ACLs

### Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`access-list access-list-number [deny</td>
<td>permit] protocol any any [precedence precedence] [tos tos] [fragments] [log [log-input]</td>
</tr>
<tr>
<td></td>
<td>smartlog] [time-range time-range-name] [dscp dscp]`</td>
</tr>
<tr>
<td>or `access-list access-list-number [deny</td>
<td>permit] protocol host source host destination [precedence precedence] [tos tos] [fragments] [log [log-input]</td>
</tr>
<tr>
<td></td>
<td>smartlog] [time-range time-range-name] [dscp dscp]`</td>
</tr>
<tr>
<td>Step 2b `access-list access-list-number [deny</td>
<td>permit] tcp source source-wildcard [operator port] destination destination-wildcard [precedence precedence] [tos tos] [fragments] [log [log-input]</td>
</tr>
<tr>
<td></td>
<td>smartlog] [time-range time-range-name] [dscp dscp] [flag]`</td>
</tr>
<tr>
<td></td>
<td><code>enter tcp for Transmission Control Protocol. The parameters are the same as those described in Step 2a, with these exceptions:</code></td>
</tr>
<tr>
<td></td>
<td><code>(Optional) Enter an operator and port to compare source (if positioned after source source-wildcard) or destination (if positioned after destination destination-wildcard) port. Possible operators include eq (equal), gt (greater than), lt (less than), neq (not equal), and range (inclusive range). Operators require a port number (range requires two port numbers separated by a space). Enter the port number as a decimal number (from 0 to 65535) or the name of a TCP port. To see TCP port names, use the ? or see the “Addressing and Services” chapter of the </code>Cisco IOS IP Configuration Guide, Release 12.4<code>. Use only TCP port numbers or names when filtering TCP. The other optional keywords have these meanings: ```established```—Enter to match an established connection. This has the same function as matching on the </code>ack<code>or</code>rst` flag.</td>
</tr>
<tr>
<td></td>
<td><code>flag</code>—Enter one of these flags to match by the specified TCP header bits: <code>ack</code> (acknowledge), <code>fin</code> (finish), <code>psh</code> (push), <code>rst</code> (reset), <code>syn</code> (synchronize), or <code>urg</code> (urgent).`</td>
</tr>
<tr>
<td>Step 2c `access-list access-list-number [deny</td>
<td>permit] udp source source-wildcard [operator port] destination destination-wildcard [precedence precedence] [tos tos] [fragments] [log [log-input]</td>
</tr>
<tr>
<td></td>
<td>smartlog] [time-range time-range-name] [dscp dscp]`</td>
</tr>
</tbody>
</table>
### Command

| Step 2d | access-list access-list-number  
|         | {deny | permit} icmp source  
|         | source-wildcard destination  
	destination-wildcard [icmp-type	
	[icmp-type icmp-code]	
	[precedence precedence]	[tos tos] [fragments]
	[time-range time-range-name]	[dscp dscp]
	(Optional) Define an extended ICMP access list and the access conditions. Enter icmp for Internet Control Message Protocol.	
	The ICMP parameters are the same as those described for most IP protocols in Step 2a, with the addition of the ICMP message type and code parameters. These optional keywords have these meanings:	
	• icmp-type—Enter to filter by ICMP message type, a number from 0 to 255.	
	• icmp-code—Enter to filter ICMP packets that are filtered by the ICMP message code type, a number from 0 to 255.	
	• icmp-message—Enter to filter ICMP packets by the ICMP message type name or the ICMP message type and code name. To see a list of ICMP message type names and code names, use the ?, or see the “Configuring IP Services” section of the Cisco IOS IP Configuration Guide, Release 12.4.	
	Step 2e	access-list access-list-number
	{deny	permit} igmp source
	source-wildcard destination	
	destination-wildcard [igmp-type]	
	[precedence precedence]	[tos tos]
	(Optional) Define an extended IGMP access list and the access conditions. Enter igmp for Internet Group Management Protocol.	
	The IGMP parameters are the same as those described for most IP protocols in Step 2a, with this optional parameter. igmp-type—To match IGMP message type, enter a number from 0 to 15, or enter the message name (dvmrp, host-query, host-report, pim, or trace).	
	Step 3	end
	Return to privileged EXEC mode.	
	Step 4	show access-lists [number
	Verify the access list configuration.	
	Step 5	copy running-config startup-config
	(Optional) Save your entries in the configuration file.	

Use the no access-list access-list-number global configuration command to delete the entire access list. You cannot delete individual ACEs from numbered access lists.

This example shows how to create and display an extended access list to deny Telnet access from any host in network 171.69.198.0 to any host in network 172.20.52.0 and to permit any others. (The eq keyword after the destination address means to test for the TCP destination port number equaling Telnet.)

```
Switch(config)# access-list 102 deny tcp 171.69.198.0 0.0.0.255 172.20.52.0 0.0.0.255 eq telnet
Switch(config)# access-list 102 permit tcp any any
Switch(config)# end
Switch# show access-lists
Extended IP access list 102
 10 deny tcp 171.69.198.0 0.0.0.255 172.20.52.0 0.0.0.255 eq telnet
 20 permit tcp any any
```

After an ACL is created, any additions (possibly entered from the terminal) are placed at the end of the list. You cannot selectively add or remove access list entries from a numbered access list.

**Note** When you are creating an ACL, remember that, by default, the end of the access list contains an implicit deny statement for all packets if it did not find a match before reaching the end.
After creating a numbered extended ACL, you can apply it to terminal lines (see the “Applying an IPv4 ACL to a Terminal Line” section on page 1-20), to interfaces (see the “Applying an IPv4 ACL to an Interface” section on page 1-21), or to VLANs (see the “Configuring VLAN Maps” section on page 1-32).

Resequencing ACEs in an ACL

Sequence numbers for the entries in an access list are automatically generated when you create a new ACL. You can use the `ip access-list resequence` global configuration command to edit the sequence numbers in an ACL and change the order in which ACEs are applied. For example, if you add a new ACE to an ACL, it is placed at the bottom of the list. By changing the sequence number, you can move the ACE to a different position in the ACL.

Creating Named Standard and Extended ACLs

You can identify IPv4 ACLs with an alphanumeric string (a name) rather than a number. You can use named ACLs to configure more IPv4 access lists in a router than if you were to use numbered access lists. If you identify your access list with a name rather than a number, the mode and command syntax are slightly different. However, not all commands that use IP access lists accept a named access list.

Note

The name you give to a standard or extended ACL can also be a number in the supported range of access list numbers. That is, the name of a standard IP ACL can be 1 to 99; the name of an extended IP ACL can be 100 to 199. The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.

Consider these guidelines and limitations before configuring named ACLs:

- Not all commands that accept a numbered ACL accept a named ACL. ACLs for packet filters and route filters on interfaces can use a name. VLAN maps also accept a name.
- A standard ACL and an extended ACL cannot have the same name.
- Numbered ACLs are also available, as described in the “Creating Standard and Extended IPv4 ACLs” section on page 1-8.
- You can use standard and extended ACLs (named or numbered) in VLAN maps.
- With IPv4 QoS ACLs, if you enter the `class-map {match-all | match-any} class-map-name` global configuration command, you can enter these `match` commands:
  - `match access-group acl-name`
    
    Note
    
    The ACL must be an extended named ACL.
  - `match input-interface interface-id-list`
  - `match ip dscp dscp-list`
  - `match ip precedence ip-precedence-list`

You cannot enter the `match access-group acl-index` command.
Beginning in privileged EXEC mode, follow these steps to create a standard ACL using names:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> ip access-list standard <em>name</em></td>
<td>Define a standard IPv4 access list using a name, and enter access-list configuration mode. The name can be a number from 1 to 99.</td>
</tr>
<tr>
<td><strong>Step 3</strong> deny {source [source-wildcard]</td>
<td>host source</td>
</tr>
<tr>
<td></td>
<td>• host source—A source and source wildcard of source 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td>• any—A source and source wildcard of 0.0.0.0 255.255.255.255.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> show access-lists [number</td>
<td>name]</td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a named standard ACL, use the **no ip access-list standard *name*** global configuration command.

Beginning in privileged EXEC mode, follow these steps to create an extended ACL using names:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> ip access-list extended <em>name</em></td>
<td>Define an extended IPv4 access list using a name, and enter access-list configuration mode. The name can be a number from 100 to 199.</td>
</tr>
<tr>
<td><strong>Step 3</strong> {deny</td>
<td>permit} protocol {source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td>See the “Creating a Numbered Extended ACL” section on page 1-11 for definitions of protocols and other keywords.</td>
</tr>
<tr>
<td></td>
<td>• host source—A source and source wildcard of source 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td>• host destination—A destination and destination wildcard of destination 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td>• any—A source and source wildcard or destination and destination wildcard of 0.0.0.0 255.255.255.255.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> show access-lists [number</td>
<td>name]</td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a named extended ACL, use the **no ip access-list extended *name*** global configuration command.
When you are creating standard extended ACLs, remember that, by default, the end of the ACL contains an implicit deny statement for everything if it did not find a match before reaching the end. For standard ACLs, if you omit the mask from an associated IP host address access list specification, 0.0.0.0 is assumed to be the mask.

After you create an ACL, any additions are placed at the end of the list. You cannot selectively add ACL entries to a specific ACL. However, you can use no permit and no deny access-list configuration mode commands to remove entries from a named ACL. This example shows how you can delete individual ACEs from the named access list border-list:

```
Switch(config)# ip access-list extended border-list
Switch(config-ext-nacl)# no permit ip host 10.1.1.3 any
```

Being able to selectively remove lines from a named ACL is one reason you might use named ACLs instead of numbered ACLs.

After creating a named ACL, you can apply it to interfaces (see the “Applying an IPv4 ACL to an Interface” section on page 1-21) or to VLANs (see the “Configuring VLAN Maps” section on page 1-32).

### Using Time Ranges with ACLs

You can selectively apply extended ACLs based on the time of day and the week by using the `time-range` global configuration command. First, define a time-range name and set the times and the dates or the days of the week in the time range. Then enter the time-range name when applying an ACL to set restrictions to the access list. You can use the time range to define when the permit or deny statements in the ACL are in effect, for example, during a specified time period or on specified days of the week. The `time-range` keyword and argument are referenced in the named and numbered extended ACL task tables in the previous sections, the “Creating Standard and Extended IPv4 ACLs” section on page 1-8, and the “Creating Named Standard and Extended ACLs” section on page 1-16.

These are some benefits of using time ranges:

- You have more control over permitting or denying a user access to resources, such as an application (identified by an IP address/mask pair and a port number).
- You can control logging messages. ACL entries can be set to log traffic only at certain times of the day. Therefore, you can simply deny access without needing to analyze many logs generated during peak hours.

Time-based access lists trigger CPU activity because the new configuration of the access list must be merged with other features and the combined configuration loaded into the hardware memory. For this reason, you should be careful not to have several access lists configured to take affect in close succession (within a small number of minutes of each other.)

**Note**

The time range relies on the switch system clock; therefore, you need a reliable clock source. We recommend that you use Network Time Protocol (NTP) to synchronize the switch clock. For more information, see the “Managing the System Time and Date” section on page 1-1.
Beginning in privileged EXEC mode, follow these steps to configure a time-range parameter for an ACL:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>time-range time-range-name</td>
<td>Assign a meaningful name (for example, workhours) to the time range to be created, and enter time-range configuration mode. The name cannot contain a space or quotation mark and must begin with a letter.</td>
</tr>
<tr>
<td>3</td>
<td>absolute [start time date] [end time date]</td>
<td>Specify when the function it will be applied to is operational.</td>
</tr>
<tr>
<td></td>
<td>or periodic day-of-the-week hh:mm to [day-of-the-week] hh:mm</td>
<td>• You can use only one absolute statement in the time range. If you configure more than one absolute statement, only the one configured last is executed.</td>
</tr>
<tr>
<td></td>
<td>or periodic {weekdays</td>
<td>weekend</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show time-range</td>
<td>Verify the time-range configuration.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Repeat the steps if you have multiple items that you want in effect at different times.

To remove a configured time-range limitation, use the no time-range time-range-name global configuration command.

This example shows how to configure time ranges for workhours and to configure January 1, 2006, as a company holiday and to verify your configuration.

Switch(config)# time-range workhours
Switch(config-time-range)# periodic weekdays 8:00 to 12:00
Switch(config-time-range)# periodic weekdays 13:00 to 17:00
Switch(config-time-range)# exit
Switch(config)# time-range new_year_day_2006
Switch(config-time-range)# absolute start 00:00 1 Jan 2006 end 23:59 1 Jan 2006
Switch(config-time-range)# end
Switch# show time-range
time-range entry: new_year_day_2003 (inactive)
  absolute start 00:00 01 January 2006 end 23:59 01 January 2006
time-range entry: workhours (inactive)
  periodic weekdays 8:00 to 12:00
time-range entry: workhours (inactive)
  periodic weekdays 13:00 to 17:00

To apply a time range, enter the time-range name in an extended ACL that can implement time ranges. This example shows how to create and verify extended access list 188 that denies TCP traffic from any source to any destination during the defined holiday times and permits all TCP traffic during work hours.

Switch(config)# access-list 188 deny tcp any any time-range new_year_day_2006
Switch(config)# access-list 188 permit tcp any any time-range workhours
Switch(config)# end
Switch# show access-lists
Extended IP access list 188
  10 deny tcp any any time-range new_year_day_2006 (inactive)
  20 permit tcp any any time-range workhours (inactive)
This example uses named ACLs to permit and deny the same traffic.

```
Switch(config)# ip access-list extended deny_access
Switch(config-ext-nacl)# deny tcp any any time-range new_year_day_2006
Switch(config-ext-nacl)# exit
Switch(config)# ip access-list extended may_access
Switch(config-ext-nacl)# permit tcp any any time-range workhours
Switch(config-ext-nacl)# end
Switch# show ip access-lists
Extended IP access list lpip_default
 10 permit ip any any
Extended IP access list deny_access
 10 deny tcp any any time-range new_year_day_2006 (inactive)
Extended IP access list may_access
 10 permit tcp any any time-range workhours (inactive)
```

### Including Comments in ACLs

You can use the `remark` keyword to include comments (remarks) about entries in any IP standard or extended ACL. The remarks make the ACL easier for you to understand and scan. Each remark line is limited to 100 characters.

The remark can go before or after a permit or deny statement. You should be consistent about where you put the remark so that it is clear which remark describes which permit or deny statement. For example, it would be confusing to have some remarks before the associated permit or deny statements and some remarks after the associated statements.

To include a comment for IP numbered standard or extended ACLs, use the `access-list access-list number remark remark` global configuration command. To remove the remark, use the `no` form of this command.

In this example, the workstation that belongs to Jones is allowed access, and the workstation that belongs to Smith is not allowed access:

```
Switch(config)# access-list 1 remark Permit only Jones workstation through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith through
Switch(config)# access-list 1 deny 171.69.3.13
```

For an entry in a named IP ACL, use the `remark` access-list configuration command. To remove the remark, use the `no` form of this command.

In this example, the Jones subnet is not allowed to use outbound Telnet:

```
Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp host 171.69.2.88 any eq telnet
```

### Applying an IPv4 ACL to a Terminal Line

You can use numbered ACLs to control access to one or more terminal lines. You cannot apply named ACLs to lines. You must set identical restrictions on all the virtual terminal lines because a user can attempt to connect to any of them.

For procedures for applying ACLs to interfaces, see the “Applying an IPv4 ACL to an Interface” section on page 1-21. For applying ACLs to VLANs, see the “Configuring VLAN Maps” section on page 1-32.
Beginning in privileged EXEC mode, follow these steps to restrict incoming and outgoing connections between a virtual terminal line and the addresses in an ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong>&lt;br&gt;line [console</td>
<td>vty] line-number</td>
</tr>
<tr>
<td></td>
<td>• console—Specify the console terminal line. The console port is DCE.</td>
</tr>
<tr>
<td></td>
<td>• vty—Specify a virtual terminal for remote console access.</td>
</tr>
<tr>
<td></td>
<td>The line-number is the first line number in a contiguous group that you want to configure when the line type is specified. The range is from 0 to 16.</td>
</tr>
<tr>
<td><strong>Step 3</strong>&lt;br&gt;access-class access-list-number {in</td>
<td>out}</td>
</tr>
<tr>
<td><strong>Step 4</strong>&lt;br&gt;end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong>&lt;br&gt;show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td><strong>Step 6</strong>&lt;br&gt;copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove an ACL from a terminal line, use the **no access-class access-list-number {in | out}** line configuration command.

### Applying an IPv4 ACL to an Interface

This section describes how to apply IPv4 ACLs to network interfaces. Note these guidelines:

- Apply an ACL only to inbound Layer 2 interfaces. Apply an ACL to *either* outbound or inbound Layer 3 interfaces.

**Note** On switches running the LAN base feature set, router (Layer 3) ACLs are supported only on SVIs and not on physical interfaces or Layer 3 EtherChannels.

- When controlling access to an interface, you can use a named or numbered ACL.
- If you apply an ACL to a Layer 2 interface that is a member of a VLAN, the Layer 2 (port) ACL takes precedence over an input Layer 3 ACL applied to the VLAN interface or a VLAN map applied to the VLAN. Incoming packets received on the Layer 2 port are always filtered by the port ACL.
- If you apply an ACL to a Layer 3 interface and routing is not enabled on the switch, the ACL only filters packets that are intended for the CPU, such as SNMP, Telnet, or web traffic. You do not have to enable routing to apply ACLs to Layer 2 interfaces.
- When private VLANs are configured, you can apply router ACLs only on the primary-VLAN SVIs. The ACL is applied to both primary and secondary VLAN Layer 3 traffic.
- When you configure an egress ACL to permit traffic with a particular DSCP value, you must use the original DSCP value instead of a rewritten value.
By default, the router sends Internet Control Message Protocol (ICMP) unreachable messages when a packet is denied by an access group. These access-group denied packets are not dropped in hardware but are bridged to the switch CPU so that it can generate the ICMP-unreachable message. Port ACLs are an exception. They do not generate ICMP unreachable messages.

ICMP unreachable messages can be disabled on router ACLs with the `no ip unreachables` interface command.

Beginning in privileged EXEC mode, follow these steps to control access to an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Identify a specific interface for configuration, and enter interface configuration mode. The interface can be a Layer 2 interface (port ACL), or a Layer 3 interface (router ACL).</td>
</tr>
<tr>
<td>`ip access-group {access-list-number</td>
<td>name} {in</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the specified access group, use the `no ip access-group {access-list-number | name} {in | out}` interface configuration command.

This example shows how to apply access list 2 to a port to filter packets entering the port:

```
Switch(config)# interface gigabitethernet1/0/1
Router(config-if)# ip access-group 2 in
```

When you apply the `ip access-group` interface configuration command to a Layer 3 interface (an SVI, a Layer 3 EtherChannel, or a routed port), the interface must have been configured with an IP address. Layer 3 access groups filter packets that are routed or are received by Layer 3 processes on the CPU. They do not affect packets bridged within a VLAN.

For inbound ACLs, after receiving a packet, the switch checks the packet against the ACL. If the ACL permits the packet, the switch continues to process the packet. If the ACL rejects the packet, the switch discards the packet.

For outbound ACLs, after receiving and routing a packet to a controlled interface, the switch checks the packet against the ACL. If the ACL permits the packet, the switch sends the packet. If the ACL rejects the packet, the switch discards the packet.

By default, the input interface sends ICMP Unreachable messages whenever a packet is discarded, regardless of whether the packet was discarded because of an ACL on the input interface or because of an ACL on the output interface. ICMP Unreachables are normally limited to no more than one every one-half second per input interface, but this can be changed by using the `ip icmp rate-limit unreachable` global configuration command.
When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied to the interface and permits all packets. Remember this behavior if you use undefined ACLs for network security.

**Hardware and Software Treatment of IP ACLs**

ACL processing is primarily accomplished in hardware, but requires forwarding of some traffic flows to the CPU for software processing. If the hardware reaches its capacity to store ACL configurations, packets are sent to the CPU for forwarding. The forwarding rate for software-forwarded traffic is substantially less than for hardware-forwarded traffic.

**Note**

If an ACL configuration cannot be implemented in hardware due to an out-of-resource condition on a switch or stack member, then only the traffic in that VLAN arriving on that switch is affected (forwarded in software). Software forwarding of packets might adversely impact the performance of the switch or switch stack, depending on the number of CPU cycles that this consumes.

For router ACLs, other factors can cause packets to be sent to the CPU:

- Using the `log` keyword
- Generating ICMP unreachable messages

When traffic flows are both logged and forwarded, forwarding is done by hardware, but logging must be done by software. Because of the difference in packet handling capacity between hardware and software, if the sum of all flows being logged (both permitted flows and denied flows) is of great enough bandwidth, not all of the packets that are forwarded can be logged.

If router ACL configuration cannot be applied in hardware, packets arriving in a VLAN that must be routed are routed in software, but are bridged in hardware. If ACLs cause large numbers of packets to be sent to the CPU, the switch performance can be negatively affected.

When you enter the `show ip access-lists` privileged EXEC command, the match count displayed does not account for packets that are access controlled in hardware. Use the `show access-lists hardware counters` privileged EXEC command to obtain some basic hardware ACL statistics for switched and routed packets.

Router ACLs function as follows:

- The hardware controls permit and deny actions of standard and extended ACLs (input and output) for security access control.
- If `log` has not been specified, the flows that match a `deny` statement in a security ACL are dropped by the hardware if `ip unreachables` is disabled. The flows matching a `permit` statement are switched in hardware.
- Adding the `log` keyword to an ACE in a router ACL causes a copy of the packet to be sent to the CPU for logging only. If the ACE is a `permit` statement, the packet is still switched and routed in hardware.

**Troubleshooting ACLs**

If this ACL manager message appears and `[chars]` is the access-list name,

`ACLMGR-2-NOVMR: Cannot generate hardware representation of access list [chars]`
The switch has insufficient resources to create a hardware representation of the ACL. The resources include hardware memory and label space but not CPU memory. A lack of available logical operation units or specialized hardware resources causes this problem. Logical operation units are needed for a TCP flag match or a test other than \texttt{eq}, \texttt{ne}, \texttt{gt}, \texttt{lt}, or \texttt{range} on TCP, UDP, or SCTP port numbers.

Use one of these workarounds:

- Modify the ACL configuration to use fewer resources.
- Rename the ACL with a name or number that alphanumerically precedes the ACL names or numbers.

To determine the specialized hardware resources, enter the \texttt{show platform layer4 acl map} privileged EXEC command. If the switch does not have available resources, the output shows that index 0 to index 15 are not available.

For more information about configuring ACLs with insufficient resources, see CSCsq63926 in the Bug Toolkit.

For example, if you apply this ACL to an interface:

```plaintext
permit tcp source source-wildcard destination destination-wildcard range 5 60
permit tcp source source-wildcard destination destination-wildcard range 15 160
permit tcp source source-wildcard destination destination-wildcard range 115 1660
permit tcp source source-wildcard destination destination-wildcard
```

And if this message appears:

```
ACLMGR-2-NOVMR: Cannot generate hardware representation of access list [chars]
```

The flag-related operators are not available. To avoid this issue,

- Move the fourth ACE before the first ACE by using \texttt{ip access-list resequence} global configuration command:

```plaintext
permit tcp source source-wildcard destination destination-wildcard
permit tcp source source-wildcard destination destination-wildcard range 5 60
permit tcp source source-wildcard destination destination-wildcard range 15 160
permit tcp source source-wildcard destination destination-wildcard range 115 1660
```

or

- Rename the ACL with a name or number that alphanumerically precedes the other ACLs (for example, rename ACL 79 to ACL 1).

You can now apply the first ACE in the ACL to the interface. The switch allocates the ACE to available mapping bits in the Opselect index and then allocates flag-related operators to use the same bits in the hardware memory.

**IPv4 ACL Configuration Examples**

This section provides examples of configuring and applying IPv4 ACLs. For detailed information about compiling ACLs, see the \textit{Cisco IOS Security Configuration Guide, Release 12.4} and to the Configuring IP Services” section in the “IP Addressing and Services” chapter of the \textit{Cisco IOS IP Configuration Guide, Release 12.4}.

- ACLs in a Small Networked Office, page 1-25
- Numbered ACLs, page 1-26
- Extended ACLs, page 1-26
- Named ACLs, page 1-27
ACLs in a Small Networked Office

Figure 1-3 shows a small networked office environment with routed Port 2 connected to Server A, containing benefits and other information that all employees can access, and routed Port 1 connected to Server B, containing confidential payroll data. All users can access Server A, but Server B has restricted access.

Use router ACLs to do this in one of two ways:
- Create a standard ACL, and filter traffic coming to the server from Port 1.
- Create an extended ACL, and filter traffic coming from the server into Port 1.

Figure 1-3 Using Router ACLs to Control Traffic

This example uses a standard ACL to filter traffic coming into Server B from a port, permitting traffic only from Accounting’s source addresses 172.20.128.64 to 172.20.128.95. The ACL is applied to traffic coming out of routed Port 1 from the specified source address.

```
Switch(config)# access-list 6 permit 172.20.128.64 0.0.0.31
Switch(config)# end
Switch# show access-lists
Standard IP access list 6
 10 permit 172.20.128.64, wildcard bits 0.0.0.31
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 6 out
```
This example uses an extended ACL to filter traffic coming from Server B into a port, permitting traffic from any source address (in this case Server B) to only the Accounting destination addresses 172.20.128.64 to 172.20.128.95. The ACL is applied to traffic going into routed Port 1, permitting it to go only to the specified destination addresses. Note that with extended ACLs, you must enter the protocol (IP) before the source and destination information.

Switch(config)# access-list 106 permit ip any 172.20.128.64 0.0.0.31
Switch(config)# end
Switch# show access-lists
Extended IP access list 106
   10 permit ip any 172.20.128.64 0.0.0.31
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 106 in

Numbered ACLs

In this example, network 36.0.0.0 is a Class A network whose second octet specifies a subnet; that is, its subnet mask is 255.255.0.0. The third and fourth octets of a network 36.0.0.0 address specify a particular host. Using access list 2, the switch accepts one address on subnet 48 and reject all others on that subnet. The last line of the list shows that the switch accepts addresses on all other network 36.0.0.0 subnets. The ACL is applied to packets entering a port.

Switch(config)# access-list 2 permit 36.48.0.3
Switch(config)# access-list 2 deny 36.48.0.0 0.0.255.255
Switch(config)# access-list 2 permit 36.0.0.0 0.255.255.255
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group 2 in

Extended ACLs

In this example, the first line permits any incoming TCP connections with destination ports greater than 1023. The second line permits incoming TCP connections to the Simple Mail Transfer Protocol (SMTP) port of host 128.88.1.2. The third line permits incoming ICMP messages for error feedback.

Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 gt 1023
Switch(config)# access-list 102 permit tcp any host 128.88.1.2 eq 25
Switch(config)# access-list 102 permit icmp any any
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group 102 in

In this example, suppose that you have a network connected to the Internet, and you want any host on the network to be able to form TCP connections to any host on the Internet. However, you do not want IP hosts to be able to form TCP connections to hosts on your network, except to the mail (SMTP) port of a dedicated mail host.

SMTP uses TCP port 25 on one end of the connection and a random port number on the other end. The same port numbers are used throughout the life of the connection. Mail packets coming in from the Internet have a destination port of 25. Outbound packets have the port numbers reversed. Because the secure system of the network always accepts mail connections on port 25, the incoming and outgoing services are separately controlled. The ACL must be configured as an input ACL on the outbound interface and an output ACL on the inbound interface.

Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 eq 23
Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 eq 25
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group 102 in
In this example, the network is a Class B network with the address 128.88.0.0, and the mail host address is 128.88.1.2. The established keyword is used only for the TCP to show an established connection. A match occurs if the TCP datagram has the ACK or RST bits set, which show that the packet belongs to an existing connection. Gigabit Ethernet interface 1 on stack member 1 is the interface that connects the router to the Internet.

Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 established
Switch(config)# access-list 102 permit tcp any host 128.88.1.2 eq 25
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 102 in

Named ACLs

This example creates a standard ACL named internet_filter and an extended ACL named marketing_group. The internet_filter ACL allows all traffic from the source address 1.2.3.4.

Switch(config)# ip access-list standard Internet_filter
Switch(config-ext-nacl)# permit 1.2.3.4
Switch(config-ext-nacl)# exit

The marketing_group ACL allows any TCP Telnet traffic to the destination address and wildcard 171.69.0.0 0.0.255.255 and denies any other TCP traffic. It permits ICMP traffic, denies UDP traffic from any source to the destination address range 171.69.0.0 through 179.69.255.255 with a destination port less than 1024, denies any other IP traffic, and provides a log of the result.

Switch(config)# ip access-list extended marketing_group
Switch(config-ext-nacl)# permit tcp any 171.69.0.0 0.0.255.255 eq telnet
Switch(config-ext-nacl)# deny tcp any any
Switch(config-ext-nacl)# permit icmp any any
Switch(config-ext-nacl)# deny udp any 171.69.0.0 0.0.255.255 lt 1024
Switch(config-ext-nacl)# deny ip any any log
Switch(config-ext-nacl)# exit

The Internet_filter ACL is applied to outgoing traffic and the marketing_group ACL is applied to incoming traffic on a Layer 3 port.

Switch(config)# interface gigabitethernet3/0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 2.0.5.1 255.255.255.0
Switch(config-if)# ip access-group Internet_filter out
Switch(config-if)# ip access-group marketing_group in

Time Range Applied to an IP ACL

This example denies HTTP traffic on IP on Monday through Friday between the hours of 8:00 a.m. and 6:00 p.m (18:00). The example allows UDP traffic only on Saturday and Sunday from noon to 8:00 p.m. (20:00).

Switch(config)# time-range no-http
Switch(config)# periodic weekdays 8:00 to 18:00
!
Switch(config)# time-range udp-yes
Switch(config)# periodic weekend 12:00 to 20:00
!
Switch(config)# ip access-list extended strict
Switch(config-ext-nacl)# deny tcp any any eq www time-range no-http
Switch(config-ext-nacl)# permit udp any any time-range udp-yes
!
Configuring IPv4 ACLs

Switch(config-ext-nacl)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group strict in

Commented IP ACL Entries

In this example of a numbered ACL, the workstation that belongs to Jones is allowed access, and the workstation that belongs to Smith is not allowed access:

Switch(config)# access-list 1 remark Permit only Jones workstation through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith workstation through
Switch(config)# access-list 1 deny 171.69.3.13

In this example of a numbered ACL, the Winter and Smith workstations are not allowed to browse the web:

Switch(config)# access-list 100 remark Do not allow Winter to browse the web
Switch(config)# access-list 100 deny host 171.69.3.85 any eq www
Switch(config)# access-list 100 remark Do not allow Smith to browse the web
Switch(config)# access-list 100 deny host 171.69.3.13 any eq www

In this example of a named ACL, the Jones subnet is not allowed access:

Switch(config)# ip access-list standard prevention
Switch(config-std-nacl)# remark Do not allow Jones subnet through
Switch(config-std-nacl)# deny 171.69.0.0 0.0.255.255

In this example of a named ACL, the Jones subnet is not allowed to use outbound Telnet:

Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp 171.69.0.0 0.0.255.255 any eq telnet

ACL Logging

Two variations of logging are supported on router ACLs. The log keyword sends an informational logging message to the console about the packet that matches the entry; the log-input keyword includes the input interface in the log entry.

In this example, standard named access list stan1 denies traffic from 10.1.1.0 0.0.0.255, allows traffic from all other sources, and includes the log keyword.

Switch(config)# ip access-list standard stan1
Switch(config-std-nacl)# deny 10.1.1.0 0.0.0.255 log
Switch(config-std-nacl)# permit any log
Switch(config-std-nacl)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group stan1 in
Switch(config-if)# end
Switch# show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
  Console logging: level debugging, 37 messages logged
  Monitor logging: level debugging, 0 messages logged
  Buffer logging: level debugging, 37 messages logged
  File logging: disabled
  Trap logging: level debugging, 39 message lines logged

  Log Buffer (4096 bytes):

  00:00:48: NTP: authentication delay calculation problems
Creating Named MAC Extended ACLs

You can filter non-IPv4 traffic on a VLAN or on a Layer 2 interface by using MAC addresses and named MAC extended ACLs. The procedure is similar to that of configuring other extended named ACLs.

**Note**

You cannot apply named MAC extended ACLs to Layer 3 interfaces.

For more information about the supported non-IP protocols in the `mac access-list extended` command, see the command reference for this release.

**Note**

Though visible in the command-line help strings, `appletalk` is not supported as a matching condition for the `deny` and `permit` MAC access-list configuration mode commands.
Beginning in privileged EXEC mode, follow these steps to create a named MAC extended ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mac access-list extended name</td>
</tr>
</tbody>
</table>
| Step 3  | {deny | permit} {any | host source MAC address | source MAC address mask} {any | host destination MAC address | destination MAC address mask} {type mask | lsap lsap mask | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat |lavc-sca | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp | 0-65535} | [cos cos] | In extended MAC access-list configuration mode, specify to permit or deny any source MAC address, a source MAC address with a mask, or a specific host source MAC address and any destination MAC address, destination MAC address with a mask, or a specific destination MAC address.  
(Optional) You can also enter these options:  
- type mask—An arbitrary EtherType number of a packet with Ethernet II or SNAP encapsulation in decimal, hexadecimal, or octal with optional mask of don’t care bits applied to the EtherType before testing for a match.  
- lsap lsap mask—An LSAP number of a packet with IEEE 802.2 encapsulation in decimal, hexadecimal, or octal with optional mask of don’t care bits.  
- cos cos—An IEEE 802.1Q cost of service number from 0 to 7 used to set priority. |
| Step 4  | end | Return to privileged EXEC mode. | |
| Step 5  | show access-lists [number | name] | Show the access list configuration. |
| Step 6  | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

Use the no mac access-list extended name global configuration command to delete the entire ACL. You can also delete individual ACEs from named MAC extended ACLs.

This example shows how to create and display an access list named mac1, denying only EtherType DECnet Phase IV traffic, but permitting all other types of traffic.

```
Switch(config)# mac access-list extended mac1
Switch(config-ext-macl)# deny any any decnet-iv
Switch(config-ext-macl)# permit any
Switch(config-ext-macl)# end
Switch # show access-lists
Extended MAC access list mac1
 10 deny any any decnet-iv
 20 permit any any
```
Applying a MAC ACL to a Layer 2 Interface

After you create a MAC ACL, you can apply it to a Layer 2 interface to filter non-IP traffic coming in that interface. When you apply the MAC ACL, consider these guidelines:

- If you apply an ACL to a Layer 2 interface that is a member of a VLAN, the Layer 2 (port) ACL takes precedence over an input Layer 3 ACL applied to the VLAN interface or a VLAN map applied to the VLAN. Incoming packets received on the Layer 2 port are always filtered by the port ACL.
- You can apply no more than one IP access list and one MAC access list to the same Layer 2 interface. The IP access list filters only IP packets, and the MAC access list filters non-IP packets.
- A Layer 2 interface can have only one MAC access list. If you apply a MAC access list to a Layer 2 interface that has a MAC ACL configured, the new ACL replaces the previously configured one.

Beginning in privileged EXEC mode, follow these steps to apply a MAC access list to control access to a Layer 2 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>mac access-group {name} {in}</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mac access-group [interface interface-id]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the specified access group, use the `no mac access-group {name}` interface configuration command.

This example shows how to apply MAC access list `mac1` to a port to filter packets entering the port:

```
Switch(config)# interface gigabitethernet1/0/2
Router(config-if)# mac access-group mac1 in
```

**Note**

The `mac access-group` interface configuration command is only valid when applied to a physical Layer 2 interface. You cannot use the command on EtherChannel port channels.

After receiving a packet, the switch checks it against the inbound ACL. If the ACL permits it, the switch continues to process the packet. If the ACL rejects the packet, the switch discards it. When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied and permits all packets. Remember this behavior if you use undefined ACLs for network security.
Configuring VLAN Maps

Note

VLAN maps are not supported on switches running the LAN base feature set.

This section describes how to configure VLAN maps, which is the only way to control filtering within a VLAN. VLAN maps have no direction. To filter traffic in a specific direction by using a VLAN map, you need to include an ACL with specific source or destination addresses. If there is a match clause for that type of packet (IP or MAC) in the VLAN map, the default action is to drop the packet if the packet does not match any of the entries within the map. If there is no match clause for that type of packet, the default is to forward the packet.

For complete syntax and usage information for the commands used in this section, see the command reference for this release.

To create a VLAN map and apply it to one or more VLANs, perform these steps:

Step 1 Create the standard or extended IPv4 ACLs or named MAC extended ACLs that you want to apply to the VLAN. See the “Creating Standard and Extended IPv4 ACLs” section on page 1-8 and the “Creating a VLAN Map” section on page 1-34.

Step 2 Enter the `vlan access-map` global configuration command to create a VLAN ACL map entry.

Step 3 In access-map configuration mode, optionally enter an `action`—`forward` (the default) or `drop`—and enter the `match` command to specify an IP packet or a non-IP packet (with only a known MAC address) and to match the packet against one or more ACLs (standard or extended).

Note

If the VLAN map is configured with a match clause for a type of packet (IP or MAC) and the map action is drop, all packets that match the type are dropped. If the VLAN map has no match clause, and the configured action is drop, all IP and Layer 2 packets are dropped.

Step 4 Use the `vlan filter` global configuration command to apply a VLAN map to one or more VLANs.

These sections contain this configuration information:

- VLAN Map Configuration Guidelines, page 1-33
- Creating a VLAN Map, page 1-34
- Applying a VLAN Map to a VLAN, page 1-36
- Using VLAN Maps in Your Network, page 1-36
- Configuring VACL Logging, page 1-39
VLAN Map Configuration Guidelines

- If there is no ACL configured to deny traffic on an interface and no VLAN map is configured, all traffic is permitted.

- Each VLAN map consists of a series of entries. The order of entries in an VLAN map is important. A packet that comes into the switch is tested against the first entry in the VLAN map. If it matches, the action specified for that part of the VLAN map is taken. If there is no match, the packet is tested against the next entry in the map.

- If the VLAN map has at least one match clause for the type of packet (IP or MAC) and the packet does not match any of these match clauses, the default is to drop the packet. If there is no match clause for that type of packet in the VLAN map, the default is to forward the packet.

- The system might take longer to boot up if you have configured a very large number of ACLs.

- Logging is not supported for VLAN maps.

- When a switch has an IP access list or MAC access list applied to a Layer 2 interface, and you apply a VLAN map to a VLAN that the port belongs to, the port ACL takes precedence over the VLAN map.

- If VLAN map configuration cannot be applied in hardware, all packets in that VLAN must be bridged and routed by software.

- You can configure VLAN maps on primary and secondary VLANs. However, we recommend that you configure the same VLAN maps on private-VLAN primary and secondary VLANs.

- When a frame is Layer-2 forwarded within a private VLAN, the same VLAN map is applied at the ingress side and at the egress side. When a frame is routed from inside a private VLAN to an external port, the private-VLAN map is applied at the ingress side.
  - For frames going upstream from a host port to a promiscuous port, the VLAN map configured on the secondary VLAN is applied.
  - For frames going downstream from a promiscuous port to a host port, the VLAN map configured on the primary VLAN is applied.

To filter out specific IP traffic for a private VLAN, you should apply the VLAN map to both the primary and secondary VLANs. For more information about private VLANs, see Chapter 1, “Configuring Private VLANs.”

For configuration examples, see the “Using VLAN Maps in Your Network” section on page 1-36.

For information about using both router ACLs and VLAN maps, see the “VLAN Maps and Router ACL Configuration Guidelines” section on page 1-40.
Creating a VLAN Map

Each VLAN map consists of an ordered series of entries. Beginning in privileged EXEC mode, follow these steps to create, add to, or delete a VLAN map entry:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> vlan access-map name [number]</td>
<td>Create a VLAN map, and give it a name and (optionally) a number. The number is the sequence number of the entry within the map. When you create VLAN maps with the same name, numbers are assigned sequentially in increments of 10. When modifying or deleting maps, you can enter the number of the map entry that you want to modify or delete.</td>
</tr>
<tr>
<td><strong>Step 3</strong> action {drop</td>
<td>forward}</td>
</tr>
<tr>
<td><strong>Step 4</strong> match {ip</td>
<td>mac} address {name</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong> show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td><strong>Step 7</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no vlan access-map name` global configuration command to delete a map. Use the `no vlan access-map name number` global configuration command to delete a single sequence entry from within the map.

Use the `no action` access-map configuration command to enforce the default action, which is to forward. VLAN maps do not use the specific permit or deny keywords. To deny a packet by using VLAN maps, create an ACL that would match the packet, and set the action to drop. A permit in the ACL counts as a match. A deny in the ACL means no match.

Examples of ACLs and VLAN Maps

These examples show how to create ACLs and VLAN maps that for specific purposes.

Example 1

This example shows how to create an ACL and a VLAN map to deny a packet. In the first map, any packets that match the `ipl` ACL (TCP packets) would be dropped. You first create the `ipl`ACL to permit any TCP packet and no other packets. Because there is a match clause for IP packets in the VLAN map, the default action is to drop any IP packet that does not match any of the match clauses.

```
Switch(config)# ip access-list extended ipl
Switch(config-ext-nacl)# permit tcp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map_1 10
Switch(config-access-map)# match ip address ipl
Switch(config-access-map)# action drop
```
This example shows how to create a VLAN map to permit a packet. ACL \textit{ip2} permits UDP packets and any packets that match the \textit{ip2} ACL are forwarded. In this map, any IP packets that did not match any of the previous ACLs (that is, packets that are not TCP packets or UDP packets) would get dropped.

```
Switch(config)# ip access-list extended ip2
Switch(config-ext-nacl)# permit udp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map_1 20
Switch(config-access-map)# match ip address ip2
Switch(config-access-map)# action forward
```

**Example 2**

In this example, the VLAN map has a default action of drop for IP packets and a default action of forward for MAC packets. Used with standard ACL 101 and extended named access lists \textit{igmp-match} and \textit{tcp-match}, the map will have the following results:

- Forward all UDP packets
- Drop all IGMP packets
- Forward all TCP packets
- Drop all other IP packets
- Forward all non-IP packets

```
Switch(config)# access-list 101 permit udp any any
Switch(config)# ip access-list extended igmp-match
Switch(config-ext-nacl)# permit igmp any any
Switch(config)# ip access-list extended tcp-match
Switch(config-ext-nacl)# permit tcp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map drop-ip-default 10
Switch(config-access-map)# match ip address 101
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-ip-default 20
Switch(config-access-map)# match ip address igmp-match
Switch(config-access-map)# action drop
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-ip-default 30
Switch(config-access-map)# match ip address tcp-match
Switch(config-access-map)# action forward
```

**Example 3**

In this example, the VLAN map has a default action of drop for MAC packets and a default action of forward for IP packets. Used with MAC extended access lists \textit{good-hosts} and \textit{good-protocols}, the map will have the following results:

- Forward MAC packets from hosts 0000.0c00.0111 and 0000.0c00.0211
- Forward MAC packets with decnet-iv or vines-ip protocols
- Drop all other non-IP packets
- Forward all IP packets

```
Switch(config)# mac access-list extended good-hosts
Switch(config-ext-macl)# permit host 000.0c00.0111 any
Switch(config-ext-macl)# permit host 000.0c00.0211 any
Switch(config-ext-nacl)# exit
Switch(config)# mac access-list extended good-protocols
Switch(config-ext-nacl)# permit any any decnet-ip
```
Example 4

In this example, the VLAN map has a default action of drop for all packets (IP and non-IP). Used with access lists \texttt{tcp-match} and \texttt{good-hosts} from Examples 2 and 3, the map will have the following results:

- Forward all TCP packets
- Forward MAC packets from hosts 0000.0c00.0111 and 0000.0c00.0211
- Drop all other IP packets
- Drop all other MAC packets

Applying a VLAN Map to a VLAN

Beginning in privileged EXEC mode, follow these steps to apply a VLAN map to one or more VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>vlan filter mapname vlan-list list Apply the VLAN map to one or more VLAN IDs. The list can be a single VLAN ID (22), a consecutive list (10-22), or a string of VLAN IDs (12, 22, 30). Spaces around the comma and hyphen are optional.</td>
</tr>
<tr>
<td>Step 3</td>
<td>show running-config Display the access list configuration.</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the VLAN map, use the \texttt{no vlan filter mapname vlan-list list} global configuration command.

This example shows how to apply VLAN map 1 to VLANs 20 through 22:

\begin{verbatim}
Switch(config)# vlan filter map 1 vlan-list 20-22
\end{verbatim}

Using VLAN Maps in Your Network

- Wiring Closet Configuration, page 1-37
- Denying Access to a Server on Another a VLAN, page 1-38
Wiring Closet Configuration

In a wiring closet configuration, routing might not be enabled on the switch. In this configuration, the switch can still support a VLAN map and a QoS classification ACL. In Figure 1-4, assume that Host X and Host Y are in different VLANs and are connected to wiring closet switches A and C. Traffic from Host X to Host Y is eventually being routed by Switch B, a Layer 3 switch with routing enabled. Traffic from Host X to Host Y can be access-controlled at the traffic entry point, Switch A.

Figure 1-4 Wiring Closet Configuration

If you do not want HTTP traffic switched from Host X to Host Y, you can configure a VLAN map on Switch A to drop all HTTP traffic from Host X (IP address 10.1.1.32) to Host Y (IP address 10.1.1.34) at Switch A and not bridge it to Switch B.

First, define the IP access list http that permits (matches) any TCP traffic on the HTTP port.

Switch(config)# ip access-list extended http
Switch(config-ext-nacl)# permit tcp host 10.1.1.32 host 10.1.1.34 eq www
Switch(config-ext-nacl)# exit

Next, create VLAN access map map2 so that traffic that matches the http access list is dropped and all other IP traffic is forwarded.

Switch(config)# vlan access-map map2 10
Switch(config-access-map)# match ip address http
Switch(config-access-map)# action drop
Switch(config-access-map)# exit
Switch(config)# ip access-list extended match_all
Switch(config-ext-nacl)# permit ip any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map2 20
Switch(config-access-map)# match ip address match_all
Switch(config-access-map)# action forward
Switch(config-access-map)# exit

Then, apply VLAN access map map2 to VLAN 1.

Switch(config)# vlan filter map2 vlan 1
Denying Access to a Server on Another a VLAN

You can restrict access to a server on another VLAN. For example, server 10.1.1.100 in VLAN 10 needs to have access denied to these hosts (see Figure 1-5):

- Hosts in subnet 10.1.2.0/8 in VLAN 20 should not have access.
- Hosts 10.1.1.4 and 10.1.1.8 in VLAN 10 should not have access.

This example shows how to deny access to a server on another VLAN by creating the VLAN map SERVER1 that denies access to hosts in subnet 10.1.2.0/8, host 10.1.1.4, and host 10.1.1.8 and permits other IP traffic. The final step is to apply the map SERVER1 to VLAN 10.

**Figure 1-5  Deny Access to a Server on Another VLAN**

This example shows how to deny access to a server on another VLAN by creating the VLAN map SERVER1 that denies access to hosts in subnet 10.1.2.0/8, host 10.1.1.4, and host 10.1.1.8 and permits other IP traffic. The final step is to apply the map SERVER1 to VLAN 10.

**Step 1** Define the IP ACL that will match the correct packets.

```
Switch(config)# ip access-list extended SERVER1_ACL
Switch(config-ext-nacl)# permit ip 10.1.2.0 0.0.0.255 host 10.1.1.100
Switch(config-ext-nacl)# permit ip host 10.1.1.4 host 10.1.1.100
Switch(config-ext-nacl)# permit ip host 10.1.1.8 host 10.1.1.100
Switch(config-ext-nacl)# exit
```

**Step 2** Define a VLAN map using this ACL that will drop IP packets that match SERVER1_ACL and forward IP packets that do not match the ACL.

```
Switch(config)# vlan access-map SERVER1_MAP
Switch(config-access-map)# match ip address SERVER1_ACL
Switch(config-access-map)# action drop
Switch(config)# vlan access-map SERVER1_MAP 20
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
```

**Step 3** Apply the VLAN map to VLAN 10.

```
Switch(config)# vlan filter SERVER1_MAP vlan-list 10.
```
Configuring VACL Logging

When you configure VACL logging, syslog messages are generated for denied IP packets under these circumstances:

- When the first matching packet is received.
- For any matching packets received within the last 5 minutes.
- If the threshold is reached before the 5-minute interval.

Log messages are generated on a per-flow basis. A flow is defined as packets with the same IP addresses and Layer 4 (UDP or TCP) port numbers. If a flow does not receive any packets in the 5-minute interval, that flow is removed from the cache. When a syslog message is generated, the timer and packet counter are reset.

VACL logging restrictions:

- Only denied IP packets are logged.
- Packets that require logging on the outbound port ACLs are not logged if they are denied by a VACL.

Beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter the global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vlan access-map name [number]</td>
<td>Create a VLAN map. Give it a name and optionally a number. The number is the sequence number of the entry within the map. The sequence number range is from 0 to 65535. When you create VLAN maps with the same name, numbers are assigned sequentially in increments of 10. When modifying or deleting maps, you can enter the number of the map entry that you want to modify or delete. Specifying the map name and optionally a number enters the access-map configuration mode.</td>
</tr>
<tr>
<td>Step 3 action drop log</td>
<td>Set the VLAN access map to drop and log IP packets.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exit the VLAN access map configuration mode and return to the global configuration mode.</td>
</tr>
<tr>
<td>Step 5 vlan access-log {maxflow max_number</td>
<td>threshold pkt_count}</td>
</tr>
<tr>
<td></td>
<td>- maxflow max_number—Set the log table size. The content of the log table can be deleted by setting the maxflow to 0. When the log table is full, the software drops logged packets from new flows. The range is from 0 to 2048. The default is 500.</td>
</tr>
<tr>
<td></td>
<td>- threshold pkt_count—Set the logging threshold. A logging message is generated if the threshold for a flow is reached before the 5-minute interval. The threshold range is from 0 to 2147483647. The default threshold is 0, which means that a syslog message is generated every 5 minutes.</td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show vlan access-map</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Use the `no vlan access-map` command with a sequence number to delete a map sequence. Use the `no` version of the command without a sequence number to delete the map.

This example shows how to configure a VLAN access map to drop and log IP packets. Here IP traffic matching the permit entries in `net_10` is dropped and logged.

```plaintext
DomainMember(config)# vlan access-map ganymede 10
DomainMember(config-access-map)# match ip address net_10
DomainMember(config-access-map)# action drop log
DomainMember(config-access-map)# exit
```

This example shows how to configure global VACL logging parameters:

```plaintext
DomainMember(config)# vlan access-log maxflow 800
DomainMember(config)# vlan access-log threshold 4000
```

For complete syntax and usage information of the commands used in this section, see the *Cisco IOS LAN Switching Command Reference*:


### Using VLAN Maps with Router ACLs

**Note**

Router ACLs and VLAN maps are not supported on switches running the LAN base feature set.

To access control both bridged and routed traffic, you can use VLAN maps only or a combination of router ACLs and VLAN maps. You can define router ACLs on both input and output routed VLAN interfaces, and you can define a VLAN map to access control the bridged traffic.

If a packet flow matches a VLAN-map deny clause in the ACL, regardless of the router ACL configuration, the packet flow is denied.

**Note**

When you use router ACLs with VLAN maps, packets that require logging on the router ACLs are not logged if they are denied by a VLAN map.

If the VLAN map has a match clause for the type of packet (IP or MAC) and the packet does not match the type, the default is to drop the packet. If there is no match clause in the VLAN map, and no action specified, the packet is forwarded if it does not match any VLAN map entry.

- VLAN Maps and Router ACL Configuration Guidelines, page 1-40
- Examples of Router ACLs and VLAN Maps Applied to VLANs, page 1-41

### VLAN Maps and Router ACL Configuration Guidelines

These guidelines are for configurations where you need to have an router ACL and a VLAN map on the same VLAN. These guidelines do not apply to configurations where you are mapping router ACLs and VLAN maps on different VLANs.

The switch hardware provides one lookup for security ACLs for each direction (input and output); therefore, you must merge a router ACL and a VLAN map when they are configured on the same VLAN. Merging the router ACL with the VLAN map might significantly increase the number of ACEs.
If you must configure a router ACL and a VLAN map on the same VLAN, use these guidelines for both router ACL and VLAN map configuration:

- You can configure only one VLAN map and one router ACL in each direction (input/output) on a VLAN interface.
- Whenever possible, try to write the ACL with all entries having a single action except for the final, default action of the other type. That is, write the ACL using one of these two forms:

  ```
 permit...
 permit...
 permit...
 deny ip any any

 or

 deny...
 deny...
 deny...
 permit ip any any
  ```

- To define multiple actions in an ACL (permit, deny), group each action type together to reduce the number of entries.
- Avoid including Layer 4 information in an ACL; adding this information complicates the merging process. The best merge results are obtained if the ACLs are filtered based on IP addresses (source and destination) and not on the full flow (source IP address, destination IP address, protocol, and protocol ports). It is also helpful to use don’t care bits in the IP address, whenever possible.

If you need to specify the full-flow mode and the ACL contains both IP ACEs and TCP/UDP/ICMP ACEs with Layer 4 information, put the Layer 4 ACEs at the end of the list. This gives priority to the filtering of traffic based on IP addresses.

**Examples of Router ACLs and VLAN Maps Applied to VLANs**

This section gives examples of applying router ACLs and VLAN maps to a VLAN for switched, bridged, routed, and multicast packets. Although the following illustrations show packets being forwarded to their destination, each time the packet’s path crosses a line indicating a VLAN map or an ACL, it is also possible that the packet might be dropped, rather than forwarded.

- ACLs and Switched Packets, page 1-41
- ACLs and Bridged Packets, page 1-42
- ACLs and Routed Packets, page 1-43
- ACLs and Multicast Packets, page 1-43

**ACLs and Switched Packets**

Figure 1-6 shows how an ACL is applied on packets that are switched within a VLAN. Packets switched within the VLAN without being routed or forwarded by fallback bridging are only subject to the VLAN map of the input VLAN.
**Figure 1-6 Applying ACLs on Switched Packets**

- Host A (VLAN 10)
- VLAN 10 map
- Input router ACL
- Output router ACL
- VLAN 20 map
- Routing function or fallback bridge
- Packet

**ACLs and Bridged Packets**

Figure 1-7 shows how an ACL is applied on fallback-bridged packets. For bridged packets, only Layer 2 ACLs are applied to the input VLAN. Only non-IP, non-ARP packets can be fallback-bridged.

**Figure 1-7 Applying ACLs on Bridged Packets**

- Host A (VLAN 10)
- VLAN 10 map
- VLAN 20 map
- Fallback bridge
- Packet

- Host B (VLAN 20)
ACLs and Routed Packets

Figure 1-8 shows how ACLs are applied on routed packets. The ACLs are applied in this order:
1. VLAN map for input VLAN
2. Input router ACL
3. Output router ACL
4. VLAN map for output VLAN

ACLs and Multicast Packets

Figure 1-9 shows how ACLs are applied on packets that are replicated for IP multicasting. A multicast packet being routed has two different kinds of filters applied: one for destinations that are other ports in the input VLAN and another for each of the destinations that are in other VLANs to which the packet has been routed. The packet might be routed to more than one output VLAN, in which case a different router output ACL and VLAN map would apply for each destination VLAN.

The final result is that the packet might be permitted in some of the output VLANs and not in others. A copy of the packet is forwarded to those destinations where it is permitted. However, if the input VLAN map (VLAN 10 map in Figure 1-9) drops the packet, no destination receives a copy of the packet.
Displaying IPv4 ACL Configuration

You can display the ACLs that are configured on the switch, and you can display the ACLs that have been applied to interfaces and VLANs.

When you use the `ip access-group` interface configuration command to apply ACLs to a Layer 2 or 3 interface, you can display the access groups on the interface. You can also display the MAC ACLs applied to a Layer 2 interface. You can use the privileged EXEC commands as described in Table 1-2 to display this information.

### Table 1-2 Commands for Displaying Access Lists and Access Groups

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show access-lists [number \</td>
<td>Display the contents of one or all current IP and MAC address access lists</td>
</tr>
<tr>
<td>\ name]`</td>
<td>or a specific access list (numbered or named).</td>
</tr>
<tr>
<td>`show ip access-lists [number \</td>
<td>Display the contents of all current IP access lists or a specific IP access list</td>
</tr>
<tr>
<td>\ name]`</td>
<td>(numbered or named).</td>
</tr>
<tr>
<td><code>show ip interface interface-id</code></td>
<td>Display detailed configuration and status of an interface. If IP is enabled</td>
</tr>
<tr>
<td></td>
<td>on the interface and ACLs have been applied by using the <code>ip access-group</code></td>
</tr>
<tr>
<td></td>
<td>interface configuration command, the access groups are included in the display.</td>
</tr>
<tr>
<td><code>show running-config [interface interface-id]</code></td>
<td>Displays the contents of the configuration file for the switch or the specified interface, including all configured MAC and IP access lists and which access groups are applied to an interface.</td>
</tr>
<tr>
<td><code>show mac access-group [interface interface-id]</code></td>
<td>Displays MAC access lists applied to all Layer 2 interfaces or the specified Layer 2 interface.</td>
</tr>
</tbody>
</table>
You can also display information about VLAN access maps or VLAN filters. Use the privileged EXEC commands in Table 1-3 to display VLAN map information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vlan access-map [mapname]</td>
<td>Show information about all VLAN access maps or the specified access map.</td>
</tr>
<tr>
<td>show vlan filter [access-map name</td>
<td>vlan vlan-id]</td>
</tr>
</tbody>
</table>
Configuring QoS

This chapter describes how to configure quality of service (QoS) by using automatic QoS (auto-QoS) commands or by using standard QoS commands on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. With QoS, you can provide preferential treatment to certain types of traffic at the expense of others. Without QoS, the switch offers best-effort service to each packet, regardless of the packet contents or size. It sends the packets without any assurance of reliability, delay bounds, or throughput. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

The switch supports QoS for both IPv4 and IPv6 traffic. Starting Cisco IOS Release 15.2(1)E, IPv6 QoS is supported on switches running the LAN base license with lanbase-routing template.

You can configure QoS on physical ports and on switch virtual interfaces (SVIs). Other than to apply policy maps, you configure the QoS settings, such as classification, queueing, and scheduling, the same way on physical ports and SVIs. When configuring QoS on a physical port, you apply a nonhierarchical policy map. When configuring QoS on an SVI, you apply a nonhierarchical or a hierarchical policy map.

Nonhierarchical policy maps are referred to as nonhierarchical single-level policy maps, and hierarchical policy maps are referred to as hierarchical dual-level policy maps in switch documentation for the Catalyst 3750 Metro switch, Cisco ME 3400E Series Ethernet Access Switch, and Cisco ME 3400 Series Ethernet Access Switch

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

- Understanding QoS, page 1-2
- Configuring Auto-QoS, page 1-23
- Displaying Auto-QoS Information, page 1-36
- Configuring Standard QoS, page 1-36
- Displaying Standard QoS Information, page 1-92

The switch supports some of the modular QoS CLI (MQC) commands. For more information about the MQC commands, see the “Modular Quality of Service Command-Line Interface” chapter of the Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.4.
Understanding QoS

Typically, networks operate on a best-effort delivery basis, which means that all traffic has equal priority and an equal chance of being delivered in a timely manner. When congestion occurs, all traffic has an equal chance of being dropped.

When you configure the QoS feature, you can select specific network traffic, prioritize it according to its relative importance, and use congestion-management and congestion-avoidance techniques to provide preferential treatment. Implementing QoS in your network makes network performance more predictable and bandwidth utilization more effective.

The QoS implementation is based on the Differentiated Services (Diff-Serv) architecture, an emerging standard from the Internet Engineering Task Force (IETF). This architecture specifies that each packet is classified upon entry into the network.

The classification is carried in the IP packet header, using 6 bits from the deprecated IP type of service (ToS) field to carry the classification (class) information. Classification can also be carried in the Layer 2 frame. These special bits in the Layer 2 frame or a Layer 3 packet are described here and shown in Figure 1-1:

- Prioritization bits in Layer 2 frames:
  - Layer 2 Inter-Switch Link (ISL) frame headers have a 1-byte User field that carries an IEEE 802.1p class of service (CoS) value in the three least-significant bits. On ports configured as Layer 2 ISL trunks, all traffic is in ISL frames.
  - Layer 2 802.1Q frame headers have a 2-byte Tag Control Information field that carries the CoS value in the three most-significant bits, which are called the User Priority bits. On ports configured as Layer 2 802.1Q trunks, all traffic is in 802.1Q frames except for traffic in the native VLAN.
  - Other frame types cannot carry Layer 2 CoS values.

  Layer 2 CoS values range from 0 for low priority to 7 for high priority.

- Prioritization bits in Layer 3 packets:
  - Layer 3 IP packets can carry either an IP precedence value or a Differentiated Services Code Point (DSCP) value. QoS supports the use of either value because DSCP values are backward-compatible with IP precedence values.

  IP precedence values range from 0 to 7.

  DSCP values range from 0 to 63.

---

Note

You can use the dual IPv4 and IPv6 SDM templates and enable IPv6 QoS globally on the switch or switch stack. You must reload the switch after configuring the dual IPv4 and IPv6 templates. For more information, see Chapter 1, “Configuring SDM Templates.”
All switches and routers that access the Internet rely on the class information to provide the same forwarding treatment to packets with the same class information and different treatment to packets with different class information. The class information in the packet can be assigned by end hosts or by switches or routers along the way, based on a configured policy, detailed examination of the packet, or both. Detailed examination of the packet is expected to happen closer to the edge of the network so that the core switches and routers are not overloaded with this task.

Switches and routers along the path can use the class information to limit the amount of resources allocated per traffic class. The behavior of an individual device when handling traffic in the DiffServ architecture is called per-hop behavior. If all devices along a path provide a consistent per-hop behavior, you can construct an end-to-end QoS solution.

Implementing QoS in your network can be a simple or complex task and depends on the QoS features offered by your internetworking devices, the traffic types and patterns in your network, and the granularity of control that you need over incoming and outgoing traffic.
Basic QoS Model

To implement QoS, the switch must distinguish packets or flows from one another (classify), assign a label to indicate the given quality of service as the packets move through the switch, make the packets comply with the configured resource usage limits (police and mark), and provide different treatment (queue and schedule) in all situations where resource contention exists. The switch also needs to ensure that traffic sent from it meets a specific traffic profile (shape).

Figure 1-2 shows the basic QoS model. Actions at the ingress port include classifying traffic, policing, marking, queueing, and scheduling:

- Classifying a distinct path for a packet by associating it with a QoS label. The switch maps the CoS or DSCP in the packet to a QoS label to distinguish one kind of traffic from another. The QoS label that is generated identifies all future QoS actions to be performed on this packet. For more information, see the “Classification” section on page 1-5.

- Policing determines whether a packet is in or out of profile by comparing the rate of the incoming traffic to the configured policer. The policer limits the bandwidth consumed by a flow of traffic. The result is passed to the marker. For more information, see the “Policing and Marking” section on page 1-9.

- Marking evaluates the policer and configuration information for the action to be taken when a packet is out of profile and determines what to do with the packet (pass through a packet without modification, mark down the QoS label in the packet, or drop the packet). For more information, see the “Policing and Marking” section on page 1-9.

- Queueing evaluates the QoS label and the corresponding DSCP or CoS value to select into which of the two ingress queues to place a packet. Queueing is enhanced with the weighted tail-drop (WTD) algorithm, a congestion-avoidance mechanism. If the threshold is exceeded, the packet is dropped. For more information, see the “Queueing and Scheduling Overview” section on page 1-14.

- Scheduling services the queues based on their configured shaped round robin (SRR) weights. One of the ingress queues is the priority queue, and SRR services it for its configured share before servicing the other queue. For more information, see the “SRR Shaping and Sharing” section on page 1-15.

Actions at the egress port include queueing and scheduling:

- Queueing evaluates the QoS packet label and the corresponding DSCP or CoS value before selecting which of the four egress queues to use. Because congestion can occur when multiple ingress ports simultaneously send data to an egress port, WTD differentiates traffic classes and subjects the packets to different thresholds based on the QoS label. If the threshold is exceeded, the packet is dropped. For more information, see the “Queueing and Scheduling Overview” section on page 1-14.

- Scheduling services the four egress queues based on their configured SRR shared or shaped weights. One of the queues (queue 1) can be the expedited queue, which is serviced until empty before the other queues are serviced.
Classification

Classification is the process of distinguishing one kind of traffic from another by examining the fields in the packet. Classification is enabled only if QoS is globally enabled on the switch. By default, QoS is globally disabled, so no classification occurs.

During classification, the switch performs a lookup and assigns a QoS label to the packet. The QoS label identifies all QoS actions to be performed on the packet and from which queue the packet is sent.

The QoS label is based on the DSCP or the CoS value in the packet and decides the queueing and scheduling actions to perform on the packet. The label is mapped according to the trust setting and the packet type as shown in Figure 1-3 on page 1-7.

You specify which fields in the frame or packet that you want to use to classify incoming traffic. For non-IP traffic, you have these classification options as shown in Figure 1-3:

- Trust the CoS value in the incoming frame (configure the port to trust CoS). Then use the configurable CoS-to-DSCP map to generate a DSCP value for the packet. Layer 2 ISL frame headers carry the CoS value in the 3 least-significant bits of the 1-byte User field. Layer 2 802.1Q frame headers carry the CoS value in the 3 most-significant bits of the Tag Control Information field. CoS values range from 0 for low priority to 7 for high priority.

- Trust the DSCP or trust IP precedence value in the incoming frame. These configurations are meaningless for non-IP traffic. If you configure a port with either of these options and non-IP traffic is received, the switch assigns a CoS value and generates an internal DSCP value from the CoS-to-DSCP map. The switch uses the internal DSCP value to generate a CoS value representing the priority of the traffic.

- Perform the classification based on a configured Layer 2 MAC access control list (ACL), which can examine the MAC source address, the MAC destination address, and other fields. If no ACL is configured, the packet is assigned 0 as the DSCP and CoS values, which means best-effort traffic. Otherwise, the policy-map action specifies a DSCP or CoS value to assign to the incoming frame.
For IP traffic, you have these classification options as shown in Figure 1-3:

- Trust the DSCP value in the incoming packet (configure the port to trust DSCP), and assign the same DSCP value to the packet. The IETF defines the 6 most-significant bits of the 1-byte ToS field as the DSCP. The priority represented by a particular DSCP value is configurable. DSCP values range from 0 to 63.

  You can also classify IP traffic based on IPv6 DSCP.

- For ports that are on the boundary between two QoS administrative domains, you can modify the DSCP to another value by using the configurable DSCP-to-DSCP-mutation map.

- Trust the IP precedence value in the incoming packet (configure the port to trust IP precedence), and generate a DSCP value for the packet by using the configurable IP-precedence-to-DSCP map. The IP Version 4 specification defines the 3 most-significant bits of the 1-byte ToS field as the IP precedence. IP precedence values range from 0 for low priority to 7 for high priority.

  You can also classify IP traffic based on IPv6 precedence.

- Trust the CoS value (if present) in the incoming packet, and generate a DSCP value for the packet by using the CoS-to-DSCP map. If the CoS value is not present, use the default port CoS value.

- Override the configured CoS of incoming packets, and apply the default port CoS value to them. For IPv6 packets, the DSCP value is rewritten by using the CoS-to-DSCP map and by using the default CoS of the port. You can do this for both IPv4 and IPv6 traffic.

  After classification, the packet is sent to the policing, marking, and the ingress queueing and scheduling stages.
Classification Based on QoS ACLs

You can use IP standard, IP extended, or Layer 2 MAC ACLs to define a group of packets with the same characteristics (*class*). You can also classify IP traffic based on IPv6 ACLs.
In the QoS context, the permit and deny actions in the access control entries (ACEs) have different meanings than with security ACLs:

- If a match with a permit action is encountered (first-match principle), the specified QoS-related action is taken.
- If a match with a deny action is encountered, the ACL being processed is skipped, and the next ACL is processed.
- If no match with a permit action is encountered and all the ACEs have been examined, no QoS processing occurs on the packet, and the switch offers best-effort service to the packet.
- If multiple ACLs are configured on a port, the lookup stops after the packet matches the first ACL with a permit action, and QoS processing begins.

**Note**

When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.

After a traffic class has been defined with the ACL, you can attach a policy to it. A policy might contain multiple classes with actions specified for each one of them. A policy might include commands to classify the class as a particular aggregate (for example, assign a DSCP) or rate-limit the class. This policy is then attached to a particular port on which it becomes effective.

You implement IP ACLs to classify IP traffic by using the `access-list` global configuration command; you implement Layer 2 MAC ACLs to classify non-IP traffic by using the `mac access-list extended` global configuration command. For configuration information, see the “Configuring a QoS Policy” section on page 1-50.

**Classification Based on Class Maps and Policy Maps**

A class map is a mechanism that you use to name a specific traffic flow (or class) and isolate it from all other traffic. The class map defines the criteria used to match against a specific traffic flow to further classify it. The criteria can include matching the access group defined by the ACL or matching a specific list of DSCP or IP precedence values. If you have more than one type of traffic that you want to classify, you can create another class map and use a different name. After a packet is matched against the class-map criteria, you further classify it through the use of a policy map.

A policy map specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values in the traffic class; setting a specific DSCP or IP precedence value in the traffic class; or specifying the traffic bandwidth limitations and the action to take when the traffic is out of profile. Before a policy map can be effective, you must attach it to a port.

You create a class map by using the `class-map` global configuration command or the `class` policy-map configuration command. You should use the `class-map` command when the map is shared among many ports. When you enter the `class-map` command, the switch enters the class-map configuration mode. In this mode, you define the match criterion for the traffic by using the `match` class-map configuration command.

You can configure a default class by using the `class class-default` policy-map configuration command. Unclassified traffic (traffic that does not meet the match criteria specified in the traffic classes) is treated as default traffic.

You create and name a policy map by using the `policy-map` global configuration command. When you enter this command, the switch enters the policy-map configuration mode. In this mode, you specify the actions to take on a specific traffic class by using the `class`, `trust`, or `set` policy-map configuration and policy-map class configuration commands.
The policy map can contain the **police** and **police aggregate** policy-map class configuration commands, which define the policer, the bandwidth limitations of the traffic, and the action to take if the limits are exceeded.

To enable the policy map, you attach it to a port by using the **service-policy** interface configuration command.

You can apply a nonhierarchical policy map to a physical port or an SVI. However, a hierarchical policy map can only be applied to an SVI. A hierarchical policy map contains two levels. The first level, the VLAN level, specifies the actions to be taken against a traffic flow on the SVI. The second level, the interface level, specifies the actions to be taken against the traffic on the physical ports that belong to the SVI. The interface-level actions are specified in the interface-level policy map.

For more information, see the “Policing and Marking” section on page 1-9. For configuration information, see the “Configuring a QoS Policy” section on page 1-50.

---

## Policing and Marking

After a packet is classified and has a DSCP-based or CoS-based QoS label assigned to it, the policing and marking process can begin as shown in Figure 1-4.

Policing involves creating a policer that specifies the bandwidth limits for the traffic. Packets that exceed the limits are *out of profile or nonconforming*. Each policer decides on a packet-by-packet basis whether the packet is in or out of profile and specifies the actions on the packet. These actions, carried out by the marker, include passing through the packet without modification, dropping the packet, or modifying (marking down) the assigned DSCP of the packet and allowing the packet to pass through. The configurable policed-DSCP map provides the packet with a new DSCP-based QoS label. For information on the policed-DSCP map, see the “Mapping Tables” section on page 1-13. Marked-down packets use the same queues as the original QoS label to prevent packets in a flow from getting out of order.

**Note**

All traffic, regardless of whether it is bridged or routed, is subjected to a policer, if one is configured. As a result, bridged packets might be dropped or might have their DSCP or CoS fields modified when they are policed and marked.

You can configure policing (either individual or aggregate policers) on a physical port or an SVI. For more information about configuring policing on physical ports, see the “Policing on Physical Ports” section on page 1-10. When configuring policy maps on an SVI, you can create a hierarchical policy map and can define an individual policer only in the secondary interface-level policy map. For more information, see the “Policing on SVIs” section on page 1-11.

After you configure the policy map and policing actions, attach the policy to an ingress port or SVI by using the **service-policy** interface configuration command. For configuration information, see the “Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps” section on page 1-59, the “Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps” section on page 1-64, and the “Classifying, Policing, and Marking Traffic by Using Aggregate Policers” section on page 1-72.
Policing on Physical Ports

In policy maps on physical ports, you can create these types of policers:

- **Individual**—QoS applies the bandwidth limits specified in the policer separately to each matched traffic class. You configure this type of policer within a policy map by using the `police` policy-map class configuration command.

- **Aggregate**—QoS applies the bandwidth limits specified in an aggregate policer cumulatively to all matched traffic flows. You configure this type of policer by specifying the aggregate policer name within a policy map by using the `police aggregate` policy-map class configuration command. You specify the bandwidth limits of the policer by using the `mls qos aggregate-policer` global configuration command. In this way, the aggregate policer is shared by multiple classes of traffic within a policy map.

**Note** You can configure only individual policers on an SVI.

Policing uses a token-bucket algorithm. As each frame is received by the switch, a token is added to the bucket. The bucket has a hole in it and leaks at a rate that you specify as the average traffic rate in bits per second. Each time a token is added to the bucket, the switch verifies that there is enough room in the bucket. If there is not enough room, the packet is marked as nonconforming, and the specified policer action is taken (dropped or marked down).

How quickly the bucket fills is a function of the bucket depth (burst-byte), the rate at which the tokens are removed (rate-bps), and the duration of the burst above the average rate. The size of the bucket imposes an upper limit on the burst length and limits the number of frames that can be transmitted back-to-back. If the burst is short, the bucket does not overflow, and no action is taken against the traffic flow. However, if a burst is long and at a higher rate, the bucket overflows, and the policing actions are taken against the frames in that burst.

You configure the bucket depth (the maximum burst that is tolerated before the bucket overflows) by using the `burst-byte` option of the `police` policy-map class configuration command or the `mls qos aggregate-policer` global configuration command. You configure how fast (the average rate) that the tokens are removed from the bucket by using the `rate-bps` option of the `police` policy-map class configuration command or the `mls qos aggregate-policer` global configuration command.

Figure 1-4 shows the policing and marking process when these types of policy maps are configured:

- A nonhierarchical policy map on a physical port.
- The interface level of a hierarchical policy map attached to an SVI. The physical ports are specified in this secondary policy map.
Policing on SVIs

**Note** Before configuring a hierarchical policy map with individual policers on an SVI, you must enable VLAN-based QoS on the physical ports that belong to the SVI. Though a policy map is attached to the SVI, the individual policers only affect traffic on the physical ports specified in the secondary interface level of the hierarchical policy map.

A hierarchical policy map has two levels. The first level, the VLAN level, specifies the actions to be taken against a traffic flow on an SVI. The second level, the interface level, specifies the actions to be taken against the traffic on the physical ports that belong to the SVI and are specified in the interface-level policy map.
When configuring policing on an SVI, you can create and configure a hierarchical policy map with these two levels:

- **VLAN level**—Create this primary level by configuring class maps and classes that specify the port trust state or set a new DSCP or IP precedence value in the packet. The VLAN-level policy map applies only to the VLAN in an SVI and does not support policers.

- **Interface level**—Create this secondary level by configuring class maps and classes that specify the individual policers on physical ports the belong to the SVI. The interface-level policy map only supports individual policers and does not support aggregate policers. You can configure different interface-level policy maps for each class defined in the VLAN-level policy map.

See the “Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps” section on page 1-64 for an example of a hierarchical policy map.

Figure 1-5 shows the policing and marking process when hierarchical policy maps on an SVI.

*Figure 1-5  Policing and Marking Flowchart on SVIs*
Mapping Tables

During QoS processing, the switch represents the priority of all traffic (including non-IP traffic) with a QoS label based on the DSCP or CoS value from the classification stage:

- During classification, QoS uses configurable mapping tables to derive a corresponding DSCP or CoS value from a received CoS, DSCP, or IP precedence value. These maps include the CoS-to-DSCP map and the IP-precedence-to-DSCP map. You configure these maps by using the `mls qos map cos-dscp` and the `mls qos map ip-prec-dscp` global configuration commands.

  On an ingress port configured in the DSCP-trusted state, if the DSCP values are different between the QoS domains, you can apply the configurable DSCP-to-DSCP-mutation map to the port that is on the boundary between the two QoS domains. You configure this map by using the `mls qos map dscp-mutation` global configuration command.

- During policing, QoS can assign another DSCP value to an IP or a non-IP packet (if the packet is out of profile and the policer specifies a marked-down value). This configurable map is called the policed-DSCP map. You configure this map by using the `mls qos map policed-dscp` global configuration command.

- Before the traffic reaches the scheduling stage, QoS stores the packet in an ingress and an egress queue according to the QoS label. The QoS label is based on the DSCP or the CoS value in the packet and selects the queue through the DSCP input and output queue threshold maps or through the CoS input and output queue threshold maps. In addition to an ingress or an egress queue, the QOS label also identifies the WTD threshold value. You configure these maps by using the `mls qos srr-queue {input | output} dscp-map` and the `mls qos srr-queue {input | output} cos-map` global configuration commands.

The CoS-to-DSCP, DSCP-to-CoS, and the IP-precedence-to-DSCP maps have default values that might or might not be appropriate for your network.

The default DSCP-to-DSCP-mutation map and the default policed-DSCP map are null maps; they map an incoming DSCP value to the same DSCP value. The DSCP-to-DSCP-mutation map is the only map you apply to a specific port. All other maps apply to the entire switch.

For configuration information, see the “Configuring DSCP Maps” section on page 1-74.

For information about the DSCP and CoS input queue threshold maps, see the “Queueing and Scheduling on Ingress Queues” section on page 1-16. For information about the DSCP and CoS output queue threshold maps, see the “Queueing and Scheduling on Egress Queues” section on page 1-19.
Queueing and Scheduling Overview

The switch has queues at specific points to help prevent congestion as shown in Figure 1-6 and Figure 1-7.

Because the total inbound bandwidth of all ports can exceed the bandwidth of the stack or internal ring, ingress queues are located after the packet is classified, policed, and marked and before packets are forwarded into the switch fabric. Because multiple ingress ports can simultaneously send packets to an egress port and cause congestion, outbound queues are located after the stack or internal ring.
Weighted Tail Drop

Both the ingress and egress queues use an enhanced version of the tail-drop congestion-avoidance mechanism called weighted tail drop (WTD). WTD is implemented on queues to manage the queue lengths and to provide drop precedences for different traffic classifications.

As a frame is enqueued to a particular queue, WTD uses the frame’s assigned QoS label to subject it to different thresholds. If the threshold is exceeded for that QoS label (the space available in the destination queue is less than the size of the frame), the switch drops the frame.

Each queue has three threshold values. The QOS label is determined which of the three threshold values is subjected to the frame. Of the three thresholds, two are configurable (explicit) and one is not (implicit).

Figure 1-8 shows an example of WTD operating on a queue whose size is 1000 frames. Three drop percentages are configured: 40 percent (400 frames), 60 percent (600 frames), and 100 percent (1000 frames). These percentages mean that up to 400 frames can be queued at the 40-percent threshold, up to 600 frames at the 60-percent threshold, and up to 1000 frames at the 100-percent threshold.

In this example, CoS values 6 and 7 have a greater importance than the other CoS values, and they are assigned to the 100-percent drop threshold (queue-full state). CoS values 4 and 5 are assigned to the 60-percent threshold, and CoS values 0 to 3 are assigned to the 40-percent threshold.

Suppose the queue is already filled with 600 frames, and a new frame arrives. It contains CoS values 4 and 5 and is subjected to the 60-percent threshold. If this frame is added to the queue, the threshold will be exceeded, so the switch drops it.

Figure 1-8 WTD and Queue Operation

For more information, see the “Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds” section on page 1-81, the “Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set” section on page 1-85, and the “Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID” section on page 1-87.

SRR Shaping and Sharing

Both the ingress and egress queues are serviced by SRR, which controls the rate at which packets are sent. On the ingress queues, SRR sends packets to the stack or internal ring. On the egress queues, SRR sends packets to the egress port.

You can configure SRR on egress queues for sharing or for shaping. However, for ingress queues, sharing is the default mode, and it is the only mode supported.

In shaped mode, the egress queues are guaranteed a percentage of the bandwidth, and they are rate-limited to that amount. Shaped traffic does not use more than the allocated bandwidth even if the link is idle. Shaping provides a more even flow of traffic over time and reduces the peaks and valleys of bursty traffic. With shaping, the absolute value of each weight is used to compute the bandwidth available for the queues.
In shared mode, the queues share the bandwidth among them according to the configured weights. The bandwidth is guaranteed at this level but not limited to it. For example, if a queue is empty and no longer requires a share of the link, the remaining queues can expand into the unused bandwidth and share it among them. With sharing, the ratio of the weights controls the frequency of dequeuing; the absolute values are meaningless. Shaping and sharing is configured per interface. Each interface can be uniquely configured.

For more information, see the “Allocating Bandwidth Between the Ingress Queues” section on page 1-82, the “Configuring SRR Shaped Weights on Egress Queues” section on page 1-89, and the “Configuring SRR Shared Weights on Egress Queues” section on page 1-90.

Queueing and Scheduling on Ingress Queues

Figure 1-9 and Figure 1-10 show the queueing and scheduling flowcharts for ingress ports.

**Figure 1-9 Queueing and Scheduling Flowchart for Ingress Ports on Catalyst 3750-E 3750-X Switches**

1. Start
2. Read QoS label (DSCP or CoS value).
3. Determine ingress queue number, buffer allocation, and WTD thresholds.
4. Are thresholds being exceeded?
   - Yes: Drop packet.
   - No: Queue the packet. Service the queue according to the SRR weights.
5. Send packet to the stack ring.
**Understanding QoS**

SRR services the priority queue for its configured share before servicing the other queue.

The switch supports two configurable ingress queues, which are serviced by SRR in shared mode only. Table 1-1 describes the queues.

<table>
<thead>
<tr>
<th>Queue Type¹</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>User traffic that is considered to be normal priority. You can configure three different thresholds to differentiate among the flows. You can use the <code>mls qos srr-queue input threshold</code>, the <code>mls qos srr-queue input dscp-map</code>, and the <code>mls qos srr-queue input cos-map</code> global configuration commands.</td>
</tr>
<tr>
<td>Expedite</td>
<td>High-priority user traffic such as differentiated services (DF) expedited forwarding or voice traffic. You can configure the bandwidth required for this traffic as a percentage of the total traffic or total stack traffic on Catalyst 3750-E 3750-X switches by using the <code>mls qos srr-queue input priority-queue</code> global configuration command. The expedite queue has guaranteed bandwidth.</td>
</tr>
</tbody>
</table>

¹ The switch uses two nonconfigurable queues for traffic that is essential for proper network and stack operation.

---

**Table 1-1** Ingress Queue Types

---

**Figure 1-10** Queueing and Scheduling Flowchart for Ingress Ports on Catalyst 3560-E 3560-X Switches

- Start
- Read QoS label (DSCP or CoS value).
- Determine ingress queue number, buffer allocation, and WTD thresholds.
- Are thresholds being exceeded?
  - Yes
  - Drop packet.
  - No
- Queue the packet. Service the queue according to the SRR weights.
- Send packet to the internal ring.
You assign each packet that flows through the switch to a queue and to a threshold. Specifically, you map DSCP or CoS values to an ingress queue and map DSCP or CoS values to a threshold ID. You use the `mls qos srr-queue input dscp-map queue queue-id {dscp1...dscp8 | threshold threshold-id dscp1...dscp8}` or the `mls qos srr-queue input cos-map queue queue-id {cos1...cos8 | threshold threshold-id cos1...cos8}` global configuration command. You can display the DSCP input queue threshold map and the CoS input queue threshold map by using the `show mls qos maps` privileged EXEC command.

**WTD Thresholds**

The queues use WTD to support distinct drop percentages for different traffic classes. Each queue has three drop thresholds: two configurable (explicit) WTD thresholds and one nonconfigurable (implicit) threshold preset to the queue-full state. You assign the two explicit WTD threshold percentages for threshold ID 1 and ID 2 to the ingress queues by using the `mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2` global configuration command. Each threshold value is a percentage of the total number of allocated buffers for the queue. The drop threshold for threshold ID 3 is preset to the queue-full state, and you cannot modify it. For more information about how WTD works, see the “Weighted Tail Drop” section on page 1-15.

**Buffer and Bandwidth Allocation**

You define the ratio (allocate the amount of space) with which to divide the ingress buffers between the two queues by using the `mls qos srr-queue input buffers percentage1 percentage2` global configuration command. The buffer allocation together with the bandwidth allocation control how much data can be buffered and sent before packets are dropped. You allocate bandwidth as a percentage by using the `mls qos srr-queue input bandwidth weight1 weight2` global configuration command. The ratio of the weights is the ratio of the frequency in which the SRR scheduler sends packets from each queue.

**Priority Queueing**

You can configure one ingress queue as the priority queue by using the `mls qos srr-queue input priority-queue queue-id bandwidth weight` global configuration command. The priority queue should be used for traffic (such as voice) that requires guaranteed delivery because this queue is guaranteed part of the bandwidth regardless of the load on the stack or internal ring.

SRR services the priority queue for its configured weight as specified by the `bandwidth` keyword in the `mls qos srr-queue input priority-queue queue-id bandwidth weight` global configuration command. Then, SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the `mls qos srr-queue input bandwidth weight1 weight2` global configuration command.

You can combine the commands described in this section to prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues, by allocating a large queue size or by servicing the queue more frequently, and by adjusting queue thresholds so that packets with lower priorities are dropped. For configuration information, see the “Configuring Ingress Queue Characteristics” section on page 1-80.
Queueing and Scheduling on Egress Queues

Figure 1-11 and Figure 1-12 show the queueing and scheduling flowcharts for egress ports.

Note
If the expedite queue is enabled, SRR services it until it is empty before servicing the other three queues.

Figure 1-11  Queueing and Scheduling Flowchart for Egress Ports on Catalyst 3750-E 3750-X Switches

Diagram:

- Start
  - Receive packet from the stack ring.
    - Read QoS label (DSCP or CoS value).
      - Determine egress queue number and threshold based on the label.
        - Are thresholds being exceeded?
          - Yes
            - Drop packet.
          - No
            - Queue the packet. Service the queue according to the SRR weights.
              - Rewrite DSCP and/or CoS value as appropriate.
                - Send the packet out the port.
                  - Done
Each port supports four egress queues, one of which (queue 1) can be the egress expedite queue. These queues are assigned to a queue-set. All traffic exiting the switch flows through one of these four queues and is subjected to a threshold based on the QoS label assigned to the packet.

Figure 1-13 shows the egress queue buffer. The buffer space is divided between the common pool and the reserved pool. The switch uses a buffer allocation scheme to reserve a minimum amount of buffers for each egress queue, to prevent any queue or port from consuming all the buffers and depriving other queues, and to control whether to grant buffer space to a requesting queue. The switch detects whether the target queue has not consumed more buffers than its reserved amount (under-limit), whether it has consumed all of its maximum buffers (over limit), and whether the common pool is empty (no free
buffers) or not empty (free buffers). If the queue is not over-limit, the switch can allocate buffer space from the reserved pool or from the common pool (if it is not empty). If there are no free buffers in the common pool or if the queue is over-limit, the switch drops the frame.

**Figure 1-13  Egress Queue Buffer Allocation**

<table>
<thead>
<tr>
<th>Port 1 queue 1</th>
<th>Port 1 queue 2</th>
<th>Port 1 queue 3</th>
<th>Port 1 queue 4</th>
<th>Port 2 queue 1</th>
<th>Port 2 queue 2</th>
</tr>
</thead>
</table>

**Buffer and Memory Allocation**

You guarantee the availability of buffers, set drop thresholds, and configure the maximum memory allocation for a queue-set by using the `mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold` global configuration command. Each threshold value is a percentage of the queue’s allocated memory, which you specify by using the `mls qos queue-set output qset-id buffers allocation1 ... allocation4` global configuration command. The sum of all the allocated buffers represents the reserved pool, and the remaining buffers are part of the common pool.

Through buffer allocation, you can ensure that high-priority traffic is buffered. For example, if the buffer space is 400, you can allocate 70 percent of it to queue 1 and 10 percent to queues 2 through 4. Queue 1 then has 280 buffers allocated to it, and queues 2 through 4 each have 40 buffers allocated to them.

You can guarantee that the allocated buffers are reserved for a specific queue in a queue-set. For example, if there are 100 buffers for a queue, you can reserve 50 percent (50 buffers). The switch returns the remaining 50 buffers to the common pool. You also can enable a queue in the full condition to obtain more buffers than are reserved for it by setting a maximum threshold. The switch can allocate the needed buffers from the common pool if the common pool is not empty.

**WTD Thresholds**

You can assign each packet that flows through the switch to a queue and to a threshold. Specifically, you map DSCP or CoS values to an egress queue and map DSCP or CoS values to a threshold ID. You use the `mls qos srr-queue output dscp-map queue queue-id {dscp1...dscp8 | threshold threshold-id dscp1...dscp8}` or the `mls qos srr-queue output cos-map queue queue-id {cos1...cos8 | threshold threshold-id cos1...cos8}` global configuration command. You can display the DSCP output queue threshold map and the CoS output queue threshold map by using the `show mls qos maps` privileged EXEC command.
Understanding QoS

The queues use WTD to support distinct drop percentages for different traffic classes. Each queue has three drop thresholds: two configurable (explicit) WTD thresholds and one nonconfigurable (implicit) threshold preset to the queue-full state. You assign the two WTD threshold percentages for threshold ID 1 and ID 2. The drop threshold for threshold ID 3 is preset to the queue-full state, and you cannot modify it. You map a port to queue-set by using the `queue-set qset-id` interface configuration command. Modify the queue-set configuration to change the WTD threshold percentages. For more information about how WTD works, see the “Weighted Tail Drop” section on page 1-15.

Shaped or Shared Mode

SRR services each queue-set in shared or shaped mode. You map a port to a queue-set by using the `queue-set qset-id` interface configuration command. You assign shared or shaped weights to the port by using the `srr-queue bandwidth share weight1 weight2 weight3 weight4` or the `srr-queue bandwidth shape weight1 weight2 weight3 weight4` interface configuration command. For an explanation of the differences between shaping and sharing, see the “SRR Shaping and Sharing” section on page 1-15.

The buffer allocation together with the SRR weight ratios control how much data can be buffered and sent before packets are dropped. The weight ratio is the ratio of the frequency in which the SRR scheduler sends packets from each queue.

All four queues participate in the SRR unless the expedite queue is enabled, in which case the first bandwidth weight is ignored and is not used in the ratio calculation. The expedite queue is a priority queue, and it is serviced until empty before the other queues are serviced. You enable the expedite queue by using the `priority-queue out` interface configuration command.

You can combine the commands described in this section to prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues, by allocating a large queue size or by servicing the queue more frequently, and by adjusting queue thresholds so that packets with lower priorities are dropped. For configuration information, see the “Configuring Egress Queue Characteristics” section on page 1-84.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Packet Modification

A packet is classified, policed, and queued to provide QoS. Packet modifications can occur during this process:

- For IP and non-IP packets, classification involves assigning a QoS label to a packet based on the DSCP or CoS of the received packet. However, the packet is not modified at this stage; only an indication of the assigned DSCP or CoS value is carried along. The reason for this is that QoS classification and forwarding lookups occur in parallel, and it is possible that the packet is forwarded with its original DSCP to the CPU where it is again processed through software.

- During policing, IP and non-IP packets can have another DSCP assigned to them (if they are out of profile and the policer specifies a markdown DSCP). Once again, the DSCP in the packet is not modified, but an indication of the marked-down value is carried along. For IP packets, the packet modification occurs at a later stage; for non-IP packets the DSCP is converted to CoS and used for queueing and scheduling decisions.
Depending on the QoS label assigned to a frame and the mutation chosen, the DSCP and CoS values of the frame are rewritten. If you do not configure the mutation map and if you configure the port to trust the DSCP of the incoming frame, the DSCP value in the frame is not changed, but the CoS is rewritten according to the DSCP-to-CoS map. If you configure the port to trust the CoS of the incoming frame and it is an IP packet, the CoS value in the frame is not changed, but the DSCP might be changed according to the CoS-to-DSCP map.

The input mutation causes the DSCP to be rewritten depending on the new value of DSCP chosen. The set action in a policy map also causes the DSCP to be rewritten.

Configuring Auto-QoS

You can use the auto-QoS feature to simplify the deployment of QoS features. Auto-QoS determines the network design and enables QoS configurations so that the switch can prioritize different traffic flows. It uses the ingress and egress queues instead of using the default (disabled) QoS behavior. The switch offers best-effort service to each packet, regardless of the packet contents or size, and sends it from a single queue.

When you enable auto-QoS, it automatically classifies traffic based on the traffic type and ingress packet label. The switch uses the classification results to choose the appropriate egress queue.

Auto-QoS supports IPv4 and IPv6 traffic when you configure the dual IPv4 and IPv6 SDM template with the `sdm prefer dual ipv4-and-ipv6` global configuration command.

You can use auto-QoS commands to identify ports connected to these Cisco devices:

- Cisco IP Phones
- Devices running the Cisco SoftPhone application
- Cisco TelePresence
- Cisco IP Camera
- Cisco digital media player

You also use the commands to identify ports that receive trusted traffic through an uplink. Auto-QoS then performs these functions:

- Detects the presence or absence of auto-QoS devices through conditional trusted interfaces.
- Configures QoS classification
- Configures egress queues

These sections contain this configuration information:

- Generated Auto-QoS Configuration, page 1-24
- Effects of Auto-QoS on the Configuration, page 1-33
- Auto-QoS Configuration Guidelines, page 1-33
- Enabling Auto-QoS, page 1-34
- Troubleshooting Auto-QoS Commands, page 1-35
Generated Auto-QoS Configuration

By default, auto-QoS is disabled on all ports. Packets are not modified—the CoS, DSCP and IP precedence values in the packet are not changed.

When you enable the auto-QoS feature on the first port of the interface:

- Ingress packet label is used to categorize traffic, to assign packet labels, and to configure the ingress and egress queues.
- QoS is globally enabled (mls qos global configuration command), and other global configuration commands are automatically generated. (See Table 1-5.)
- Switch enables the trusted boundary feature and uses the Cisco Discovery Protocol (CDP) to detect the presence of a supported device.
- Policing is used to determine whether a packet is in or out of profile and specifies the action on the packet.

VOIP Device Specifics

- When you enter the **auto qos voip cisco-phone** command on a port at the network edge connected to a Cisco IP Phone, the switch enables the trusted boundary feature. If the packet does not have a DSCP value of 24, 26, or 46 or is out of profile, the switch changes the DSCP value to 0. When there is no Cisco IP Phone, the ingress classification is set to not trust the QoS label in the packet. The policing is applied to the traffic matching the policy-map classification before the switch enables the trust boundary feature.

- When you enter the **auto qos voip cisco-softphone** interface configuration command on a port at the network edge that is connected to a device running the Cisco SoftPhone, the switch uses policing to determine whether a packet is in or out of profile and to specify the action on the packet. If the packet does not have a DSCP value of 24, 26, or 46 or is out of profile, the switch changes the DSCP value to 0.

- When you enter the **auto qos voip trust** interface configuration command on a port connected to the network interior, the switch trusts the CoS value for nonrouted ports or the DSCP value for routed ports in ingress packets (the assumption is that traffic has already been classified by other edge devices).

The switch configures ingress and egress queues on the port according to the settings in Table 1-3 and Table 1-4.

<table>
<thead>
<tr>
<th>Table 1-2 Traffic Types, Packet Labels, and Queues</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>VoIP Data Traffic</strong></td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>VoIP Data Traffic</td>
</tr>
<tr>
<td>VoIP Control Traffic</td>
</tr>
<tr>
<td>VoIP Control Traffic</td>
</tr>
<tr>
<td>VoIP Control Traffic</td>
</tr>
</tbody>
</table>

1. VoIP = voice over IP

The switch configures ingress and egress queues on the port according to the settings in Table 1-3 and Table 1-4.
Table 1-3  Auto-QoS Configuration for the Ingress Queues

<table>
<thead>
<tr>
<th>Ingress Queue</th>
<th>Queue Number</th>
<th>CoS-to-Queue Map</th>
<th>Queue Weight (Bandwidth)</th>
<th>Queue (Buffer) Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRR shared</td>
<td>1</td>
<td>0, 1, 2, 3, 6, 7</td>
<td>70 percent</td>
<td>90 percent</td>
</tr>
<tr>
<td>Priority</td>
<td>2</td>
<td>4, 5</td>
<td>30 percent</td>
<td>10 percent</td>
</tr>
</tbody>
</table>

Table 1-4 shows the generated auto-QoS configuration for the egress queues.

Table 1-4  Auto-QoS Configuration for the Egress Queues

<table>
<thead>
<tr>
<th>Egress Queue</th>
<th>Queue Number</th>
<th>CoS-to-Queue Map</th>
<th>Queue Weight (Bandwidth)</th>
<th>Queue (Buffer) Size for Gigabit-Capable Ports</th>
<th>Queue (Buffer) Size for 10/100 Ethernet Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>1</td>
<td>4, 5</td>
<td>up to 100 percent</td>
<td>25 percent</td>
<td>15 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>2</td>
<td>2, 3, 6, 7</td>
<td>10 percent</td>
<td>25 percent</td>
<td>25 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>3</td>
<td>0</td>
<td>60 percent</td>
<td>25 percent</td>
<td>40 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>4</td>
<td>1</td>
<td>20 percent</td>
<td>25 percent</td>
<td>20 percent</td>
</tr>
</tbody>
</table>

For information about the trusted boundary feature, see the “Configuring a Trusted Boundary to Ensure Port Security” section on page 39-42.

- When you enable auto-QoS by using the auto qos voip cisco-phone, the auto qos voip cisco-softphone, or the auto qos voip trust interface configuration command, the switch automatically generates a QoS configuration based on the traffic type and ingress packet label and applies the commands listed in Table 1-5 to the port.

Enhanced Auto-QoS for Video, Trust, and Classification

In Cisco IOS Release 12.2(55)SE, auto-QoS is enhanced to support video. Automatic configurations are generated that classify and trust traffic from Cisco TelePresence systems and Cisco IP cameras.

When you configure the auto qos { video | classify | trust } enhanced commands on a switch port, this behavior occurs:

- Auto qos voip generated commands that you configured on the interface before Cisco IOS Release 12.2(55)SE migrate to the enhanced commands.

- Global values change with the migration of enhanced commands. For a complete list of the generated commands that are applied to the running configuration see Table 1-5.

Auto-QoS Configuration Migration

Auto-QoS configuration migration from legacy auto-QoS to enhanced auto-QoS occurs when:

- A switch is booted with a 12.2(55)SE image and QoS is not enabled.

Any video or voice trust configuration on the interface automatically generates enhanced auto-QoS commands.
• A switch is enabled with QoS, these guidelines take effect:
  – If you configure the interface for conditional trust on a voice device, only the legacy auto-QoS VoIP configuration is generated.
  – If you configure the interface for conditional trust on a video device, the enhanced auto-QoS configuration is generated.
  – If you configure the interface with classification or conditional trust based on the new interface auto-QoS commands, enhanced auto-QoS configuration is generated.
• Auto-QoS migration happens after a new device is connected when the `auto qos srnd4` global configuration command is enabled.

---

**Note**

If an interface previously configured with legacy auto-QoS migrates to enhanced auto-QoS, voice commands and configuration are updated to match the new global QoS commands.

Auto-QoS configuration migration from enhanced auto-QoS to legacy auto-QoS can occur only when you disable all existing auto-QoS configurations from the interface.

### Global Auto-QoS Configuration

**Table 1-5 Generated Auto-QoS Configuration**

| Description | Automatically Generated Command (voip) | Enhanced Automatically Generated Command (Video|Trust|Classify) |
|-------------|--------------------------------------|-------------------|
| The switch automatically enables standard QoS and configures the CoS-to-DSCP map (maps CoS values in incoming packets to a DSCP value). | Switch(config)# mls qos 0 8 16 26 32 46 48 56 | Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56 |
| The switch automatically maps CoS values to an ingress queue and to a threshold ID. | Switch(config)# mls qos srr-queue input cos-map queue 1 threshold 2 1 Switch(config)# mls qos srr-queue input cos-map queue 1 threshold 3 0 Switch(config)# mls qos srr-queue input cos-map queue 2 threshold 1 2 Switch(config)# mls qos srr-queue input cos-map queue 2 threshold 2 4 7 Switch(config)# mls qos srr-queue input cos-map queue 2 threshold 3 3 5 | Switch(config)# no mls qos srr-queue input cos-map queue 1 threshold 2 1 Switch(config)# no mls qos srr-queue input cos-map queue 1 threshold 3 0 Switch(config)# no mls qos srr-queue input cos-map queue 2 threshold 1 2 Switch(config)# no mls qos srr-queue input cos-map queue 2 threshold 2 4 7 Switch(config)# no mls qos srr-queue input cos-map queue 2 threshold 3 3 5 |

Catalyst 3750-X and 3560-X Switch Software Configuration Guide
Table 1-5  Generated Auto-QoS Configuration (continued)

| Description                                                                 | Automatically Generated Command (voip)                                           | Enhanced Automatically Generated Command (Video|Trust|Classify)                                      |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| The switch automatically maps CoS values to an egress queue and to a threshold ID. | Switch(config)# no mls qos srr-queue output cos-map                               | Switch(config)# no mls qos srr-queue output cos-map                                        |
|                                                                             | Switch(config)# mls qos srr-queue output cos-map queue 1 threshold 3 5           | Switch(config)# mls qos srr-queue output cos-map queue 1 threshold 3 4 5                   |
|                                                                             | Switch(config)# mls qos srr-queue output cos-map queue 2 threshold 3 3 6 7       | Switch(config)# mls qos srr-queue output cos-map queue 2 threshold 3 6 7                   |
|                                                                             | Switch(config)# mls qos srr-queue output cos-map queue 3 threshold 3 2           | Switch(config)# mls qos srr-queue output cos-map queue 3 threshold 3 6 7                   |
|                                                                             | Switch(config)# mls qos srr-queue output cos-map queue 4 threshold 2 1           | Switch(config)# mls qos srr-queue output cos-map queue 3 threshold 2 3 3 0                 |
|                                                                             | Switch(config)# mls qos srr-queue output cos-map queue 4 threshold 3 0           |                                                                                         |
| The switch automatically maps DSCP values to an ingress queue and to a threshold ID. | Switch(config)# no mls qos srr-queue input dscp-map                              | Switch(config)# no mls qos srr-queue input dscp-map                                         |
|                                                                             | Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 9 10 11 12 13 14 15 | Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 24                    |
|                                                                             | Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 3 0 1 2 3 4 5 6 7 | Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 3 48 49 50 51 52 53 54 55 56 |
|                                                                             | Switch(config)# mls qos srr-queue input dscp-map queue 2 threshold 3 2 3 33 34 35 36 37 38 39 48 | Switch(config)# mls qos srr-queue input dscp-map queue 2 threshold 3 49 50 51 52 53 54 55 56 |
|                                                                             | Switch(config)# mls qos srr-queue input dscp-map queue 2 threshold 2 3 57 58 59 60 61 62 63 |                                                                                         |
|                                                                             | Switch(config)# no mls qos srr-queue input dscp-map                              |                                                                                         |
|                                                                             | Switch(config)# mls qos srr-queue input dscp-map queue 2 threshold 3 24 25 26 27 28 29 30 31 |                                                                                         |
|                                                                             | Switch(config)# mls qos srr-queue input dscp-map queue 2 threshold 3 3 40 41 42 43 44 45 46 47 |                                                                                         |
The switch automatically maps DSCP values to an egress queue and to a threshold ID.

| Description | Automatically Generated Command {voip} | Enhanced Automatically Generated Command{Video|Trust|Classify} |
|-------------|---------------------------------------|-----------------------------------|
|             | Switch(config)# no mls qos srr-queue  | Switch(config)# no mls qos srr-queue |
|             | output dscp-map                        | output dscp-map                     |
|             | Switch(config)# mls qos srr-queue      | Switch(config)# mls qos srr-queue   |
|             | output dscp-map queue 1 threshold 3    | output dscp-map queue 1 threshold 3 |
|             | 40 41 42 43 44 45 46 47               | 32 40 41 42 43 44 45 46 47         |
|             | Switch(config)# mls qos srr-queue      | Switch(config)# mls qos srr-queue   |
|             | output dscp-map queue 2 threshold 3    | output dscp-map queue 2 threshold 3 |
|             | 24 25 26 27 28 29 30 31               | 24 28 29 30 31 34 35 36 37 38 39   |
|             | Switch(config)# mls qos srr-queue      | Switch(config)# mls qos srr-queue   |
|             | output dscp-map queue 2 threshold 3    | output dscp-map queue 2 threshold 3 |
|             | 48 49 50 51 52 53 54 55               | 16 18 19 20 21 22 23               |
|             | Switch(config)# mls qos srr-queue      | Switch(config)# mls qos srr-queue   |
|             | output dscp-map queue 2 threshold 3    | output dscp-map queue 2 threshold 3 |
|             | 56 57 58 59 60 61 62 63               | 48 50 51 52 53 54 55 56            |
|             | Switch(config)# mls qos srr-queue      | Switch(config)# mls qos srr-queue   |
|             | output dscp-map queue 3 threshold 3    | output dscp-map queue 3 threshold 3 |
|             | 16 17 18 19 20 21 22 23               | 32 33 34 35 36 37 38 39             |
|             | Switch(config)# mls qos srr-queue      | Switch(config)# mls qos srr-queue   |
|             | output dscp-map queue 3 threshold 3    | output dscp-map queue 3 threshold 3 |
|             | 32 33 34 35 36 37 38 39               | 48 50 51 52 53 54 55 56            |
|             | Switch(config)# mls qos srr-queue      | Switch(config)# mls qos srr-queue   |
|             | output dscp-map queue 4 threshold 1    | output dscp-map queue 4 threshold 1 |
|             | 8                                      | 9 11 13 15                            |
|             | Switch(config)# mls qos srr-queue      | Switch(config)# mls qos srr-queue   |
|             | output dscp-map queue 4 threshold 2    | output dscp-map queue 4 threshold 2 |
|             | 9                                      | 1 2 3 4 5 6 7                         |
|             | Switch(config)# mls qos srr-queue      | Switch(config)# mls qos srr-queue   |
|             | output dscp-map queue 4 threshold 3    | output dscp-map queue 4 threshold 3 |
|             | 0                                      | 1 2 3 4 5 6 7                         |

Table 1-5 Generated Auto-QoS Configuration (continued)
### Chapter 1: Configuring QoS

#### Configuring Auto-QoS

**Auto-QoS Generated Configuration For VoIP Devices**

If you entered the `auto qos voip cisco-phone` command, the switch automatically enables the trusted boundary feature, which uses the CDP to detect the presence or absence of a Cisco IP Phone.

```
Switch(config-if)# mls qos trust device cisco-phone
```

If you entered the `auto qos voip cisco-softphone` command, the switch automatically creates class maps and policy maps.

```
Switch(config)# mls qos map policed-dscp 24 26 46 to 0
Switch(config)# class-map match-all AutoQoS-VoIP-RTP-Trust
Switch(config-cmap)# match ip dscp ef
Switch(config-cmap)# class-map match-all AutoQoS-VoIP-Control-Trust
Switch(config-cmap)# match ip dscp cs3 af31
Switch(config)# policy-map AutoQoS-Police-SoftPhone
Switch(config-pmap)# class AutoQoS-VoIP-RTP-Trust
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 320000 8000 exceed-action policed-dscp-transmit
```

| Description | Automatically Generated Command (voip) | Enhanced Automatically Generated Command(Video|Trust|Classify) |
|-------------|---------------------------------------|-----------------------------------------------|
| The switch automatically sets up the ingress queues, with queue 2 as the priority queue and queue 1 in shared mode. The switch also configures the bandwidth and buffer size for the ingress queues. | Switch(config)# no mls qos srr-queue input priority-queue 1 Switch(config)# no mls qos srr-queue input priority-queue 2 Switch(config)# mls qos srr-queue input bandwidth 90 10 Switch(config)# mls qos srr-queue input threshold 1 8 16 Switch(config)# mls qos srr-queue input threshold 2 34 66 Switch(config)# mls qos srr-queue input buffers 67 33 | Switch(config)# no mls qos srr-queue input priority-queue 1 Switch(config)# no mls qos srr-queue input priority-queue 2 Switch(config)# mls qos srr-queue input bandwidth 70 30 Switch(config)# mls qos srr-queue input threshold 1 80 90 |
| The switch automatically configures the egress queue buffer sizes. It configures the bandwidth and the SRR mode (shaped or shared) on the egress queues mapped to the port. | Switch(config)# mls qos queue-set output 1 threshold 1 138 138 92 138 Switch(config)# mls qos queue-set output 2 threshold 2 138 138 92 400 Switch(config)# mls qos queue-set output 2 threshold 2 118 118 100 235 Switch(config)# mls qos queue-set output 2 threshold 3 41 68 100 272 Switch(config)# mls qos queue-set output 2 threshold 4 42 72 100 242 Switch(config)# mls qos queue-set output 1 buffers 10 10 26 54 Switch(config)# mls qos queue-set output 2 buffers 16 6 17 61 Switch(config-if)# priority-queue out Switch(config-if)# srr-queue bandwidth share 10 10 60 20 | Switch(config)# mls qos queue-set output 1 threshold 2 100 100 50 200 Switch(config)# mls qos queue-set output 1 threshold 2 125 125 100 400 Switch(config)# mls qos queue-set output 1 threshold 3 100 100 100 400 Switch(config)# mls qos queue-set output 1 threshold 4 60 150 50 200 |

---

**Table 1-5 Generated Auto-QoS Configuration (continued)**

---

If you entered the `auto qos voip cisco-phone` command, the switch automatically enables the trusted boundary feature, which uses the CDP to detect the presence or absence of a Cisco IP Phone.

Switch(config-if)# mls qos trust device cisco-phone

If you entered the `auto qos voip cisco-softphone` command, the switch automatically creates class maps and policy maps.

Switch(config)# mls qos map policed-dscp 24 26 46 to 0
Switch(config)# class-map match-all AutoQoS-VoIP-RTP-Trust
Switch(config-cmap)# match ip dscp ef
Switch(config-cmap)# class-map match-all AutoQoS-VoIP-Control-Trust
Switch(config-cmap)# match ip dscp cs3 af31
Switch(config)# policy-map AutoQoS-Police-SoftPhone
Switch(config-pmap)# class AutoQoS-VoIP-RTP-Trust
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 320000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AutoQoS-VoIP-Control-Trust
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit

After creating the class maps and policy maps, the switch automatically applies the policy map called AutoQoS-Police-SoftPhone to an ingress interface on which auto-QoS with the Cisco SoftPhone feature is enabled.

Switch(config-if)# service-policy input AutoQoS-Police-SoftPhone

If you entered the auto qos voip cisco-phone command, the switch automatically creates class maps and policy maps.

Switch(config-if)# mls qos trust device cisco-phone

If you entered the auto qos voip cisco-softphone command, the switch automatically creates class maps and policy maps.

Switch(config)# mls qos map policed-dscp 24 26 46 to 0
Switch(config)# class-map match-all AutoQoS-VoIP-RTP-Trust
Switch(config-cmap)# match ip dscp ef
Switch(config)# class-map match-all AutoQoS-VoIP-Control-Trust
Switch(config-cmap)# match ip dscp cs3 af31
Switch(config)# policy-map AutoQoS-Police-CiscoPhone
Switch(config-pmap-c)# class AutoQoS-VoIP-RTP-Trust
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 320000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AutoQoS-VoIP-Control-Trust
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit

After creating the class maps and policy maps, the switch automatically applies the policy map called AutoQoS-Police-SoftPhone to an ingress interface on which auto-QoS with the Cisco SoftPhone feature is enabled.

Switch(config-if)# service-policy input AutoQoS-Police-SoftPhone

Auto-QoS Generated Configuration For Enhanced Video, Trust, and Classify Devices

If you entered these enhanced auto-QoS commands, the switch configures the CoS-to-DSCP map (maps CoS values in incoming packets to a DSCP value).

- auto qos video cts
- auto qos video ip-camera
- auto qos video media-player
- auto qos trust
- auto qos trust cos
- auto qos trust dscp

Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56

Note: No class maps and policy maps are configured.
If you entered the **auto qos video media-player** command, the switch uses the CDP to detect the presence or absence of a Cisco digital media player.

```
Switch(config-if)# mls qos trust device media-player
```

If you entered the **auto qos classify** command, the switch automatically creates class maps and policy maps.

```
Switch(config)# mls qos map policed-dscp 0 10 18 24 26 46 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOSMULTIENHANCED_CONF_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACLMULTIENHANCEDCONF
Switch(config)# class-map match-all AUTOQOSDEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACLDEFAULT
Switch(config)# class-map match-all AUTOQOSTRANSACTIONAL_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACLTRANSACTIONALDATA
Switch(config)# class-map match-all AUTOQOS_SIGNALING_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACL-SIGNALING
Switch(config)# class-map match-all AUTOQOS_BULK_DATA_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACL-BULKDATA
Switch(config)# class-map match-all AUTOQOS_SCAVANGER_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACL-SCAVANGER
Switch(config)# policy-map AUTOQOS-SCAVANGER-CLASSIFY-POLICY
Switch(config-pmap)# class AUTOQOSMULTIENHANCED_CONF_CLASS
Switch(config-pmap-c)# set dscp af41
Switch(config-pmap-c)# class AUTOQOS_BULK_DATA_CLASS
Switch(config-pmap-c)# set dscp af11
Switch(config-pmap-c)# class AUTOQOS_TRANSACTIONAL_CLASS
Switch(config-pmap-c)# set dscp fs1
Switch(config-pmap-c)# class AUTOQOS_SCAVANGER_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
;
Switch(config-if)# service-policy input AUTOQOS-SCAVANGER-CLASSIFY-POLICY
```

If you entered the **auto qos classify police** command, the switch automatically creates class maps and policy maps.

```
Switch(config)# mls qos map policed-dscp 0 10 18 24 26 46 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOSMULTIENHANCED_CONF_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACLMULTIENHANCEDCONF
Switch(config)# class-map match-all AUTOQOSDEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACLDEFAULT
Switch(config)# class-map match-all AUTOQOSTRANSACTIONAL_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACLTRANSACTIONALDATA
Switch(config)# class-map match-all AUTOQOS_SIGNALING_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACL-SIGNALING
Switch(config)# class-map match-all AUTOQOS_BULK_DATA_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACL-BULKDATA
Switch(config)# class-map match-all AUTOQOS_SCAVANGER_CLASS
Switch(config-cmap)# match access-group name AUTOQOSACL-SCAVANGER
Switch(config)# policy-map AUTOQOS-SCAVANGER-CLASSIFY-POLICY
Switch(config-pmap)# class AUTOQOSMULTIENHANCED_CONF_CLASS
Switch(config-pmap-c)# set dscp af41
Switch(config-pmap-c)# police 5000000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_BULK_DATA_CLASS
Switch(config-pmap-c)# set dscp af11
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_TRANSACTIONAL_CLASS
Switch(config-pmap-c)# set dscp af21
```
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# set dscp cs1
Switch(config-pmap-c)# police 10000000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
;
Switch(config-if)# service-policy input AUTOQOS-SRND4-CLASSIFY-POLICY-POLICY

This is the enhanced configuration for the auto qos voip cisco-phone command:

Switch(config)# mls qos map policed-dscp 0 10 18 24 26 46 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOS_VOIP_DATA_CLASS
Switch(config-cmap)# match ip dscp ef
Switch(config)# class-map match-all AUTOQOS_DEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-DEFAULT
Switch(config)# class-map match-all AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-cmap)# match ip dscp cs3
Switch(config)# policy-map AUTOQOS-SRND4-CISCOPHONE-POLICY
Switch(config-pmap)# class AUTOQOS_VOIP_DATA_CLASS
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# policy 128000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# policy 32000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
Switch(config-pmap-c)# policy 10000000 8000 exceed-action policed-dscp-transmit
;
Switch(config-if)# service-policy input AUTOQOS-SRND4-CISCOPHONE-POLICY

This is the enhanced configuration for the auto qos voip cisco-softphone command:

Switch(config)# mls qos map policed-dscp 0 10 18 24 26 46 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-cmap)# match ip dscp ef
Switch(config)# class-map match-all AUTOQOS_DEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-MULTIENHANCED-CONF
Switch(config)# class-map match-all AUTOQOS_VOIP_DATA_CLASS
Switch(config-cmap)# match ip dscp cs3
Switch(config)# class-map match-all AUTOQOS_TRANSACTION_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-TRANSACTIONAL-DATA
Switch(config)# class-map match-all AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-cmap)# match ip dscp cs3
Switch(config)# class-map match-all AUTOQOS_SIGNALING_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-SIGNALING
Switch(config)# class-map match-all AUTOQOS_BULK_DATA_CLASS
Switch(config)# class-map match-all AUTOQOS_SCLAVANGER_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-SCLAVANGER
Switch(config)# policy-map AUTOQOS-SRND4-SOFTPHONE-POLICY
Switch(config-pmap)# class AUTOQOS_VOIP_DATA_CLASS
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# policy 128000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap)# class AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-pmap-c)# set dscp af41
Switch(config-pmap-c)# police 5000000 8000 exceed-action drop
Switch(config-pmap)# class AUTOQOS_BULK_DATA_CLASS
Switch(config-pmap-c)# set dscp af11
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap)# class AUTOQOS_TRANSACTION_CLASS
Switch(config-pmap-c)# set dscp af21
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap)# class AUTOQOS_SCAVANGER_CLASS
Switch(config-pmap-c)# set dscp cs1
Switch(config-pmap-c)# police 32000 8000 exceed-action drop
Switch(config-pmap)# class AUTOQOS_SIGNALING_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
;
Switch(config-if)# service-policy input AUTOQOS-SRND4-SOFTPHONE-POLICY

Effects of Auto-QoS on the Configuration

When auto-QoS is enabled, the auto qos interface configuration commands and the generated global configuration are added to the running configuration.

The switch applies the auto-QoS-generated commands as if the commands were entered from the CLI. An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the switch without saving the current configuration to memory. If the generated commands are not applied, the previous running configuration is restored.

Auto-QoS Configuration Guidelines

Before configuring auto-QoS, you should be aware of this information:

- After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes AutoQoS in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use this new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map to the interface.

- To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. If necessary, you can fine-tune the QoS configuration, but we recommend that you do so only after the auto-QoS configuration is completed. For more information, see the “Effects of Auto-QoS on the Configuration” section on page 8.

- You can enable auto-QoS on static, dynamic-access, voice VLAN access, and trunk ports.

- By default, the CDP is enabled on all ports. For auto-QoS to function properly, do not disable CDP.
Auto-QoS VoIP Considerations

- Auto-QoS configures the switch for VoIP with Cisco IP Phones on nonrouted and routed ports. Auto-QoS also configures the switch for VoIP with devices running the Cisco SoftPhone application.

  Note When a device running Cisco SoftPhone is connected to a nonrouted or routed port, the switch supports only one Cisco SoftPhone application per port.

- When enabling auto-QoS with a Cisco IP Phone on a routed port, you must assign a static IP address to the IP phone.
- This release supports only Cisco IP SoftPhone Version 1.3(3) or later.
- Connected devices must use Cisco Call Manager Version 4 or later.
- Beginning with Cisco IOS Release 12.2(40)SE, auto-Qos VoIP uses the priority-queue interface configuration command for an egress interface. You can also configure a policy-map and trust device on the same interface for Cisco IP phones.
- If the switch port was configured by using the auto qos voip cisco-phone interface configuration command in Cisco IOS Release 12.2(37)SE or earlier, the auto-QoS generated commands new to Cisco IOS Release 12.2(40)SE are not applied to the port. To have these commands automatically applied, you must remove and then reapply the configuration to the port.
- Auto-Qos VoIP uses the priority-queue interface configuration command for an egress interface. You can also configure a policy-map and trust device on the same interface for Cisco IP phones.

Auto-QoS Enhanced Considerations

- The auto qos srnd4 global configuration command is generated as a result of enhanced auto-QoS configuration.
- If the legacy auto qos voip commands are executed on the switch and the mls qos command is disabled, the enhanced auto-QoS configuration is generated. Otherwise, legacy auto-QoS commands are executed.

Enabling Auto-QoS

For optimum QoS performance, enable auto-QoS on all the devices in your network.

Beginning in privileged EXEC mode, follow these steps to enable auto-QoS devices within a QoS domain:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Specify the port that is connected to a video device or the uplink port that is connected to another trusted switch or router in the network interior, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

Step 1 | Command      | Purpose                                      |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
To display the QoS commands that are automatically generated when auto-QoS is enabled or disabled, enter the `debug auto qos` privileged EXEC command before you enable auto-QoS. For more information, see the `debug auto qos` command in the command reference for this release.

To disable auto-QoS on a port, use the `no` form of the `auto qos` command interface configuration command, such as `no auto qos voip`. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the `no auto`
The **qos voip** command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

You can use the **no mls qos** global configuration command to disable the auto-QoS-generated global configuration commands. With QoS disabled, there is no concept of trusted or untrusted ports because the packets are not modified (the CoS, DSCP, and IP precedence values in the packet are not changed). Traffic is switched in pass-through mode (packets are switched without any rewrites and classified as best effort without any policing).

## Displaying Auto-QoS Information

To display the initial auto-QoS configuration, use the **show auto qos [interface [interface-id]]** privileged EXEC command. To display any user changes to that configuration, use the **show running-config** privileged EXEC command. You can compare the **show auto qos** and the **show running-config** command output to identify the user-defined QoS settings.

To display information about the QoS configuration that might be affected by auto-QoS, use one of these commands:

- `show mls qos`
- `show mls qos maps cos-dscp`
- `show mls qos interface [interface-id] [buffers | queueing]`
- `show mls qos maps [cos-dscp | cos-input-q | cos-output-q | dscp-cos | dscp-input-q | dscp-output-q]`
- `show mls qos input-queue`
- `show running-config`

For more information about these commands, see the command reference for this release.

## Configuring Standard QoS

Before configuring standard QoS, you must have a thorough understanding of these items:

- The types of applications used and the traffic patterns on your network.
- Traffic characteristics and needs of your network. Is the traffic bursty? Do you need to reserve bandwidth for voice and video streams?
- Bandwidth requirements and speed of the network.
- Location of congestion points in the network.

These sections contain this configuration information:

- **Default Standard QoS Configuration**, page 1-37
- **Standard QoS Configuration Guidelines**, page 1-40
- **Enabling QoS Globally**, page 1-42 (required)
- **Enabling VLAN-Based QoS on Physical Ports**, page 1-43 (optional)
- **Configuring Classification Using Port Trust States**, page 1-44 (required)
- **Configuring a QoS Policy**, page 1-50 (required)
Default Standard QoS Configuration

QoS is disabled. There is no concept of trusted or untrusted ports because the packets are not modified (the CoS, DSCP, and IP precedence values in the packet are not changed). Traffic is switched in pass-through mode (packets are switched without any rewrites and classified as best effort without any policing).

When QoS is enabled with the `mls qos` global configuration command and all other QoS settings are at their defaults, traffic is classified as best effort (the DSCP and CoS value is set to 0) without any policing. No policy maps are configured. The default port trust state on all ports is untrusted. The default ingress and egress queue settings are described in the “Default Ingress Queue Configuration” section on page 1-37 and the “Default Egress Queue Configuration” section on page 1-39.

Default Ingress Queue Configuration

Table 1-6 shows the default ingress queue configuration when QoS is enabled.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Queue 1</th>
<th>Queue 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer allocation</td>
<td>90 percent</td>
<td>10 percent</td>
</tr>
<tr>
<td>Bandwidth allocation</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Priority queue bandwidth</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>WTD drop threshold 1</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>WTD drop threshold 2</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
</tbody>
</table>

1. The bandwidth is equally shared between the queues. SRR sends packets in shared mode only.
2. Queue 2 is the priority queue. SRR services the priority queue for its configured share before servicing the other queue.

Table 1-7 shows the default CoS input queue threshold map when QoS is enabled.

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4</td>
<td>1–1</td>
</tr>
<tr>
<td>5</td>
<td>2–1</td>
</tr>
<tr>
<td>6, 7</td>
<td>1–1</td>
</tr>
</tbody>
</table>
Table 1-8 shows the default DSCP input queue threshold map when QoS is enabled.

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–39</td>
<td>1–1</td>
</tr>
<tr>
<td>40–47</td>
<td>2–1</td>
</tr>
<tr>
<td>48–63</td>
<td>1–1</td>
</tr>
</tbody>
</table>
Default Egress Queue Configuration

Table 1-9 shows the default egress queue configuration for each queue-set when QoS is enabled. All ports are mapped to queue-set 1. The port bandwidth limit is set to 100 percent and rate unlimited.

**Table 1-9 Default Egress Queue Configuration**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Queue 1</th>
<th>Queue 2</th>
<th>Queue 3</th>
<th>Queue 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer allocation</td>
<td>25 percent</td>
<td>25 percent</td>
<td>25 percent</td>
<td>25 percent</td>
</tr>
<tr>
<td>WTD drop threshold 1</td>
<td>100 percent</td>
<td>200 percent</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>WTD drop threshold 2</td>
<td>100 percent</td>
<td>200 percent</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>Reserved threshold</td>
<td>50 percent</td>
<td>50 percent</td>
<td>50 percent</td>
<td>50 percent</td>
</tr>
<tr>
<td>Maximum threshold</td>
<td>400 percent</td>
<td>400 percent</td>
<td>400 percent</td>
<td>400 percent</td>
</tr>
<tr>
<td>SRR shaped weights (absolute) 1</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SRR shared weights 2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

1. A shaped weight of zero means that this queue is operating in shared mode.
2. One quarter of the bandwidth is allocated to each queue.

Table 1-10 shows the default CoS output queue threshold map when QoS is enabled.

**Table 1-10 Default CoS Output Queue Threshold Map**

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>2–1</td>
</tr>
<tr>
<td>2, 3</td>
<td>3–1</td>
</tr>
<tr>
<td>4</td>
<td>4–1</td>
</tr>
<tr>
<td>5</td>
<td>1–1</td>
</tr>
<tr>
<td>6, 7</td>
<td>4–1</td>
</tr>
</tbody>
</table>

Table 1-11 shows the default DSCP output queue threshold map when QoS is enabled.

**Table 1-11 Default DSCP Output Queue Threshold Map**

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–15</td>
<td>2–1</td>
</tr>
<tr>
<td>16–31</td>
<td>3–1</td>
</tr>
<tr>
<td>32–39</td>
<td>4–1</td>
</tr>
<tr>
<td>40–47</td>
<td>1–1</td>
</tr>
<tr>
<td>48–63</td>
<td>4–1</td>
</tr>
</tbody>
</table>
Default Mapping Table Configuration

Table 1-12 on page 1-74 shows the default CoS-to-DSCP map.
Table 1-13 on page 1-75 shows the default IP-precedence-to-DSCP map.
Table 1-14 on page 1-77 shows the default DSCP-to-CoS map.

The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.

The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value (no markdown).

Standard QoS Configuration Guidelines

Before beginning the QoS configuration, you should be aware of this information in these sections:

- “QoS ACL Guidelines” section on page 1-40
- “IPv6 QoS ACL Guidelines” section on page 1-40
- “Applying QoS on Interfaces” section on page 1-40
- “Configuring IPv6 QoS on Switch Stacks” section on page 1-41
- “Policing Guidelines” section on page 1-41
- “General QoS Guidelines” section on page 1-42

QoS ACL Guidelines

These are the guidelines with for configuring QoS with access control lists (ACLs):

- It is not possible to match IP fragments against configured IP extended ACLs to enforce QoS. IP fragments are sent as best-effort. IP fragments are denoted by fields in the IP header.
- Only one ACL per class map and only one match class-map configuration command per class map are supported. The ACL can have multiple ACEs, which match fields against the contents of the packet.
- A trust statement in a policy map requires multiple hardware entries per ACL line. If an input service policy map contains a trust statement in an ACL, the access list might be too large to fit into the available QoS hardware memory, and an error can occur when you apply the policy map to a port. Whenever possible, you should minimize the number of lines is a QoS ACL.

IPv6 QoS ACL Guidelines

See Understanding IPv6 ACLs, page 1-2.

Applying QoS on Interfaces

These are the guidelines for configuring QoS on physical ports and SVIs (Layer 3 VLAN interfaces):

- You can configure QoS on physical ports and SVIs. When configuring QoS on physical ports, you create and apply nonhierarchical policy maps. When configuring QoS on SVIs, you can create and apply nonhierarchical and hierarchical policy maps.
• Incoming traffic is classified, policed, and marked down (if configured) regardless of whether the traffic is bridged, routed, or sent to the CPU. It is possible for bridged frames to be dropped or to have their DSCP and CoS values modified.

• Follow these guidelines when configuring policy maps on physical ports or SVIs:
  – You cannot apply the same policy map to a physical port and to an SVI.
  – If VLAN-based QoS is configured on a physical port, the switch removes all the port-based policy maps on the port. The traffic on this physical port is now affected by the policy map attached to the SVI to which the physical port belongs.
  – In a hierarchical policy map attached to an SVI, you can only configure an individual policer at the interface level on a physical port to specify the bandwidth limits for the traffic on the port. The ingress port must be configured as a trunk or as a static-access port. You cannot configure policers at the VLAN level of the hierarchical policy map.
  – The switch does not support aggregate policers in hierarchical policy maps.
  – After the hierarchical policy map is attached to an SVI, the interface-level policy map cannot be modified or removed from the hierarchical policy map. A new interface-level policy map also cannot be added to the hierarchical policy map. If you want these changes to occur, the hierarchical policy map must first be removed from the SVI. You also cannot add or remove a class map specified in the hierarchical policy map.

### Configuring IPv6 QoS on Switch Stacks

You can enable IPv6 QoS on a switch or a switch stack. If the stack includes only Catalyst 3750-X and Catalyst 3750-E switches, the QoS configuration applies to all traffic. These are the guidelines for IPv6 QoS in a stack that includes one or more Catalyst 3750 switches:

• Any switch can be the stack master.
• You can attach policies with IPv6 ACLs only on Catalyst 3750-X and 3750-E switch interfaces.
• You can modify an attached policy to include an IPv6 ACL only on Catalyst 3750-X and Catalyst 3750-E switch interfaces.
• A policy that includes the `match protocol IPv6` classification applies only on Catalyst 3750-X and Catalyst 3750-E switch interfaces.
• A QoS policy with both IPv4 and IPv6 classification can be attached to an SVI on a mixed switch stack, but the policy applies to only IPv4 traffic entering Cisco 3750 switch interfaces, and to both IPv4 and IPv6 traffic on Catalyst 3750-X and Catalyst 3750-E switch interfaces.
• IPv6 trust is supported on Catalyst 3750, Catalyst 3750-X, and Catalyst 3750-E switches.
• QoS policies that include IPv6-specific classification (such as an IPv6 ACL or the `match protocol ipv6` command) are supported on Catalyst 3750-X and Catalyst 3750-E interfaces and on any SVI when a Catalyst 3750-X or Catalyst 3750-E switch is part of the stack.
• QoS policies that include common IPv4 and IPv6 classifications are supported on all Catalyst 3750-X and Catalyst 3750-E interfaces in the stack. Only IPv4 classification is supported on other switches in the stack.

### Policing Guidelines

• The port ASIC device, which controls more than one physical port, supports 256 policers (255 user-configurable + policers plus 1 policer reserved for system internal use). The maximum number of user-configurable policers supported per port is 63. For example, you could configure 32
policers on a Gigabit Ethernet port and 7 policers on a 10-Gigabit Ethernet port, or you could configure 64 policers on a Gigabit Ethernet port and 4 policers on a 10-Gigabit Ethernet port. Policers are allocated on demand by the software and are constrained by the hardware and ASIC boundaries. You cannot reserve policers per port; there is no guarantee that a port will be assigned to any policer.

- Only one policer is applied to a packet on an ingress port. Only the average rate and committed burst parameters are configurable.

- You can create an aggregate policer that is shared by multiple traffic classes within the same nonhierarchical policy map. However, you cannot use the aggregate policer across different policy maps.

- On a port configured for QoS, all traffic received through the port is classified, policed, and marked according to the policy map attached to the port. On a trunk port configured for QoS, traffic in all VLANs received through the port is classified, policed, and marked according to the policy map attached to the port.

- If you have EtherChannel ports configured on your switch, you must configure QoS classification, policing, mapping, and queueing on the individual physical ports that comprise the EtherChannel. You must decide whether the QoS configuration should match on all ports in the EtherChannel.

- If you need to modify a policy map of an existing QoS policy, first remove the policy map from all interfaces, and then modify or copy the policy map. After you finish the modification, apply the modified policy map to the interfaces. If you do not first remove the policy map from all interfaces, high CPU usage can occur, which, in turn, can cause the console to pause for a very long time.

**General QoS Guidelines**

- Control traffic (such as spanning-tree bridge protocol data units [BPDUs] and routing update packets) received by the switch are subject to all ingress QoS processing.

- You are likely to lose data when you change queue settings; therefore, try to make changes when traffic is at a minimum.

- A switch that is running the IP services feature set supports QoS DSCP and IP precedence matching in policy-based routing (PBR) route maps with these limitations:
  - You cannot apply QoS DSCP mutation maps and PBR route maps to the same interface.
  - You cannot configure DSCP transparency and PBR DSCP route maps on the same switch.

**Enabling QoS Globally**

By default, QoS is disabled on the switch. To enable IPv6 QoS on the switch, you must first configure a dual-ipv4-and ipv6 SDM template and reload the switch. This template enables both IPv4 and IPv6 QoS configuration.
Beginning in privileged EXEC mode, follow these steps to enable QoS. This procedure is required.

### Configuring Standard QoS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: mls qos</td>
<td>Enable QoS globally. QoS runs with the default settings described in the “Default Standard QoS Configuration” section on page 1-37, the “Queueing and Scheduling on Ingress Queues” section on page 1-16, and the “Queueing and Scheduling on Egress Queues” section on page 1-19.</td>
</tr>
<tr>
<td>Step 3: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4: show mls qos</td>
<td>Verify the QoS configuration.</td>
</tr>
<tr>
<td>Step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable QoS, use the `no mls qos` global configuration command.

### Enabling VLAN-Based QoS on Physical Ports

By default, VLAN-based QoS is disabled on all physical switch ports. The switch applies QoS, including class maps and policy maps, only on a physical-port basis. In Cisco IOS Release 12.2(25)SE or later, you can enable VLAN-based QoS on a switch port.

Beginning in privileged EXEC mode, follow these steps to enable VLAN-based QoS. This procedure is required on physical ports that are specified in the interface level of a hierarchical policy map on an SVI.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify the physical port, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3: mls qos vlan-based</td>
<td>Enable VLAN-based QoS on the port.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show mls qos interface interface-id</td>
<td>Verify if VLAN-based QoS is enabled on the physical port.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no mls qos vlan-based` interface configuration command to disable VLAN-based QoS on the physical port.
Configuring Classification Using Port Trust States

These sections describe how to classify incoming traffic by using port trust states. Depending on your network configuration, you must perform one or more of these tasks or one or more of the tasks in the “Configuring a QoS Policy” section on page 1-50:

- Configuring the Trust State on Ports within the QoS Domain, page 1-44
- Configuring the CoS Value for an Interface, page 1-45
- Configuring a Trusted Boundary to Ensure Port Security, page 1-46
- Enabling DSCP Transparency Mode, page 1-47
- Configuring the DSCP Trust State on a Port Bordering Another QoS Domain, page 1-48

Configuring the Trust State on Ports within the QoS Domain

Packets entering a QoS domain are classified at the edge of the QoS domain. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the QoS domain. Figure 1-14 shows a sample network topology.

*Figure 1-14 Port Trusted States within the QoS Domain*
Beginning in privileged EXEC mode, follow these steps to configure the port to trust the classification of the traffic that it receives:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Specify the port to be trusted, and enter interface configuration mode. Valid interfaces are physical ports.</td>
</tr>
<tr>
<td>Step 3</td>
<td>mls qos trust [cos</td>
</tr>
<tr>
<td></td>
<td>• cos—Classifies an ingress packet by using the packet CoS value. For an untagged packet, the port default CoS value is used. The default port CoS value is 0.</td>
</tr>
<tr>
<td></td>
<td>• dscp—Classifies an ingress packet by using the packet DSCP value. For a non-IP packet, the packet CoS value is used if the packet is tagged; for an untagged packet, the default port CoS is used. Internally, the switch maps the CoS value to a DSCP value by using the CoS-to-DSCP map.</td>
</tr>
<tr>
<td></td>
<td>• ip-precedence—Classifies an ingress packet by using the packet IP-precedence value. For a non-IP packet, the packet CoS value is used if the packet is tagged; for an untagged packet, the default port CoS is used. Internally, the switch maps the CoS value to a DSCP value by using the CoS-to-DSCP map.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos interface Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return a port to its untrusted state, use the no mls qos trust interface configuration command.

For information on how to change the default CoS value, see the “Configuring the CoS Value for an Interface” section on page 1-45. For information on how to configure the CoS-to-DSCP map, see the “Configuring the CoS-to-DSCP Map” section on page 1-74.

**Configuring the CoS Value for an Interface**

QoS assigns the CoS value specified with the mls qos cos interface configuration command to untagged frames received on trusted and untrusted ports.

Beginning in privileged EXEC mode, follow these steps to define the default CoS value of a port or to assign the default CoS to all incoming packets on the port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Specify the port to be configured, and enter interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
</tbody>
</table>
To return to the default setting, use the `no mls qos cos {default-cos | override}` interface configuration command.

### Configuring a Trusted Boundary to Ensure Port Security

In a typical network, you connect a Cisco IP Phone to a switch port, as shown in Figure 1-14 on page 1-44, and cascade devices that generate data packets from the back of the telephone. The Cisco IP Phone guarantees the voice quality through a shared data link by marking the CoS level of the voice packets as high priority (CoS = 5) and by marking the data packets as low priority (CoS = 0). Traffic sent from the telephone to the switch is typically marked with a tag that uses the 802.1Q header. The header contains the VLAN information and the class of service (CoS) 3-bit field, which is the priority of the packet.

For most Cisco IP Phone configurations, the traffic sent from the telephone to the switch should be trusted to ensure that voice traffic is properly prioritized over other types of traffic in the network. By using the `mls qos trust cos` interface configuration command, you configure the switch port to which the telephone is connected to trust the CoS labels of all traffic received on that port. Use the `mls qos trust dscp` interface configuration command to configure a routed port to which the telephone is connected to trust the DSCP labels of all traffic received on that port.

With the trusted setting, you also can use the trusted boundary feature to prevent misuse of a high-priority queue if a user bypasses the telephone and connects the PC directly to the switch. Without trusted boundary, the CoS labels generated by the PC are trusted by the switch (because of the trusted CoS setting). By contrast, trusted boundary uses CDP to detect the presence of a Cisco IP Phone (such as the Cisco IP Phone 7910, 7935, 7940, and 7960) on a switch port. If the telephone is not detected, the trusted boundary feature disables the trusted setting on the switch port and prevents misuse of a high-priority queue. Note that the trusted boundary feature is not effective if the PC and Cisco IP Phone are connected to a hub that is connected to the switch.
In some situations, you can prevent a PC connected to the Cisco IP Phone from taking advantage of a high-priority data queue. You can use the `switchport priority extend cos` interface configuration command to configure the telephone through the switch CLI to override the priority of the traffic received from the PC.

Beginning in privileged EXEC mode, follow these steps to enable trusted boundary on a port:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>cdp run</code></td>
<td>Enable CDP globally. By default, CDP is enabled.</td>
</tr>
<tr>
<td>3</td>
<td><code>interface interface-id</code></td>
<td>Specify the port connected to the Cisco IP Phone, and enter interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
<tr>
<td>4</td>
<td><code>cdp enable</code></td>
<td>Enable CDP on the port. By default, CDP is enabled.</td>
</tr>
<tr>
<td>5</td>
<td><code>mls qos trust cos</code></td>
<td>Configure the switch port to trust the CoS value in traffic received from the Cisco IP Phone. Or <code>mls qos trust dscp</code> Configure the routed port to trust the DSCP value in traffic received from the Cisco IP Phone. By default, the port is not trusted.</td>
</tr>
<tr>
<td>6</td>
<td><code>mls qos trust device cisco-phone</code></td>
<td>Specify that the Cisco IP Phone is a trusted device. You cannot enable both trusted boundary and auto-QoS (<code>auto qos voip</code> interface configuration command) at the same time; they are mutually exclusive.</td>
</tr>
<tr>
<td>7</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>8</td>
<td><code>show mls qos interface</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>9</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the trusted boundary feature, use the `no mls qos trust device` interface configuration command.

**Enabling DSCP Transparency Mode**

The switch supports the DSCP transparency feature. It affects only the DSCP field of a packet at egress. By default, DSCP transparency is disabled. The switch modifies the DSCP field in an incoming packet, and the DSCP field in the outgoing packet is based on the quality of service (QoS) configuration, including the port trust setting, policing and marking, and the DSCP-to-DSCP mutation map.

If DSCP transparency is enabled by using the `no mls qos rewrite ip dscp` command, the switch does not modify the DSCP field in the incoming packet, and the DSCP field in the outgoing packet is the same as that in the incoming packet.

**Note** Enabling DSCP transparency does not affect the port trust settings on IEEE 802.1Q tunneling ports.
Regardless of the DSCP transparency configuration, the switch modifies the internal DSCP value of the packet, which the switch uses to generate a class of service (CoS) value that represents the priority of the traffic. The switch also uses the internal DSCP value to select an egress queue and threshold.

Beginning in privileged EXEC mode, follow these steps to enable DSCP transparency on a switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos</td>
</tr>
<tr>
<td>Step 3</td>
<td>no mls qos rewrite ip dscp</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos interface [interface-id]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To configure the switch to modify the DSCP value based on the trust setting or on an ACL by disabling DSCP transparency, use the `mls qos rewrite ip dscp` global configuration command.

If you disable QoS by using the `no mls qos` global configuration command, the CoS and DSCP values are not changed (the default QoS setting).

If you enter the `no mls qos rewrite ip dscp` global configuration command to enable DSCP transparency and then enter the `mls qos trust [cos | dscp]` interface configuration command, DSCP transparency is still enabled.

### Configuring the DSCP Trust State on a Port Bordering Another QoS Domain

If you are administering two separate QoS domains between which you want to implement QoS features for IP traffic, you can configure the switch ports bordering the domains to a DSCP-trusted state as shown in Figure 1-15. Then the receiving port accepts the DSCP-trusted value and avoids the classification stage of QoS. If the two domains use different DSCP values, you can configure the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition in the other domain.

**Figure 1-15  DSCP-Trusted State on a Port Bordering Another QoS Domain**

Set interface to the DSCP-trusted state. Configure the DSCP-to-DSCP-mutation map.
Beginning in privileged EXEC mode, follow these steps to configure the DSCP-trusted state on a port and modify the DSCP-to-DSCP-mutation map. To ensure a consistent mapping strategy across both QoS domains, you must perform this procedure on the ports in both domains:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>mls qos map dscp-mutation dscp-mutation-name in-dscp to out-dscp</td>
<td>Modify the DSCP-to-DSCP-mutation map. The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For <strong>dscp-mutation-name</strong>, enter the mutation map name. You can create more than one map by specifying a new name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For <strong>in-dscp</strong>, enter up to eight DSCP values separated by spaces. Then enter the <strong>to</strong> keyword.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For <strong>out-dscp</strong>, enter a single DSCP value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The DSCP range is 0 to 63.</td>
</tr>
<tr>
<td>3</td>
<td>interface interface-id</td>
<td>Specify the port to be trusted, and enter interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
<tr>
<td>4</td>
<td>mls qos trust dscp</td>
<td>Configure the ingress port as a DSCP-trusted port. By default, the port is not trusted.</td>
</tr>
<tr>
<td>5</td>
<td>mls qos dscp-mutation dscp-mutation-name</td>
<td>Apply the map to the specified ingress DSCP-trusted port. For <strong>dscp-mutation-name</strong>, specify the mutation map name created in Step 2. You can configure multiple DSCP-to-DSCP-mutation maps on an ingress port.</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td>show mls qos maps dscp-mutation</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return a port to its non-trusted state, use the **no mls qos trust** interface configuration command. To return to the default DSCP-to-DSCP-mutation map values, use the **no mls qos map dscp-mutation dscp-mutation-name** global configuration command.

This example shows how to configure a port to the DSCP-trusted state and to modify the DSCP-to-DSCP-mutation map (named **gi1/0/2-mutation**) so that incoming DSCP values 10 to 13 are mapped to DSCP 30:

```
Switch(config)# mls qos map dscp-mutation gigabitethernet1/0/2-mutation 10 11 12 13 to 30
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation gigabitethernet1/0/2-mutation
Switch(config-if)# end
```
Chapter 1      Configuring QoS

Configuring a QoS Policy

Configuring a QoS policy typically requires classifying traffic into classes, configuring policies applied to those traffic classes, and attaching policies to ports.

For background information, see the “Classification” section on page 1-5 and the “Policing and Marking” section on page 1-9. For configuration guidelines, see the “Standard QoS Configuration Guidelines” section on page 1-40.

These sections describe how to classify, police, and mark traffic. Depending on your network configuration, you must perform one or more of these tasks:

- Classifying Traffic by Using ACLs, page 1-50
- Classifying Traffic by Using Class Maps, page 1-55
- Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps, page 1-59
- Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps, page 1-64

Classifying Traffic by Using ACLs

You can classify IP traffic by using IPv4 standard or IP extended ACLs. You can also use IPv6 ACLs. You can classify non-IP traffic by using Layer 2 MAC ACLs.

Creating an IP Standard ACL

Beginning in privileged EXEC mode, follow these steps to create an IP standard ACL for IPv4 traffic:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>access-list access-list-number [deny</td>
<td>permit] source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For access-list-number, enter the access list number. The range is 1 to 99 and 1300 to 1999.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the permit keyword to permit a certain type of traffic if the conditions are matched. Use the deny keyword to deny a certain type of traffic if conditions are matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For source, enter the network or host from which the packet is being sent. You can use the any keyword as an abbreviation for 0.0.0.0 255.255.255.255.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: When you create an access list, remember that by default the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show access-lists</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To delete an access list, use the `no access-list access-list-number` global configuration command.

This example shows how to allow access for only those hosts on the three specified networks. The wildcard bits apply to the host portions of the network addresses. Any host with a source address that does not match the access list statements is rejected.

```
Switch(config)# access-list 1 permit 192.5.255.0 0.0.0.255
Switch(config)# access-list 1 permit 128.88.0.0 0.0.255.255
Switch(config)# access-list 1 permit 36.0.0.0 0.0.0.255
! (Note: all other access implicitly denied)
```

## Creating an IP Extended ACL

Beginning in privileged EXEC mode, follow these steps to create an IP extended ACL for IPv4 traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | access-list access-list-number {deny | permit} protocol source source-wildcard destination destination-wildcard | Create an IP extended ACL, repeating the command as many times as necessary.  
- For **access-list-number**, enter the access list number. The range is 100 to 199 and 2000 to 2699.  
- Use the **permit** keyword to permit a certain type of traffic if the conditions are matched. Use the **deny** keyword to deny a certain type of traffic if conditions are matched.  
- For **protocol**, enter the name or number of an IP protocol. Use the question mark (?) to see a list of available protocol keywords.  
- For **source**, enter the network or host from which the packet is being sent. You specify this by using dotted decimal notation, by using the **any** keyword as an abbreviation for source 0.0.0.0 source-wildcard 255.255.255.255, or by using the **host** keyword for source 0.0.0.0.  
- For **source-wildcard**, enter the wildcard bits by placing ones in the bit positions that you want to ignore. You specify the wildcard by using dotted decimal notation, by using the **any** keyword as an abbreviation for source 0.0.0.0 source-wildcard 255.255.255.255, or by using the **host** keyword for source 0.0.0.0.  
- For **destination**, enter the network or host to which the packet is being sent. You have the same options for specifying the **destination and destination-wildcard** as those described by **source** and **source-wildcard**.  
  **Note** When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end. |
| **Step 3** | end | Return to privileged EXEC mode. |
| **Step 4** | show access-lists | Verify your entries. |
| **Step 5** | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To delete an access list, use the `no access-list access-list-number` global configuration command.
This example shows how to create an ACL that permits IP traffic from any source to any destination that has the DSCP value set to 32:

```
Switch(config)# access-list 100 permit ip any any dscp 32
```

This example shows how to create an ACL that permits IP traffic from a source host at 10.1.1.1 to a destination host at 10.1.1.2 with a precedence value of 5:

```
Switch(config)# access-list 100 permit ip host 10.1.1.1 host 10.1.1.2 precedence 5
```

This example shows how to create an ACL that permits PIM traffic from any source to a destination group address of 224.0.0.2 with a DSCP set to 32:

```
Switch(config)# access-list 102 permit pim any 224.0.0.2 dscp 32
```

### Creating an IPv6 ACL

Beginning in privileged EXEC mode, follow these steps to create an IPv6 ACL for IPv6 traffic:

> **Note**
> Before creating IPv6 ACLs, you must enable a dual ipv4-and-ipv6 SDM template and reload the switch.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>ipv6 access-list</code></td>
<td>Create an IPv6 ACL, and enter IPv6 access-list configuration mode.</td>
</tr>
<tr>
<td><em>access-list-name</em></td>
<td>Access list names cannot contain a space or quotation mark or begin with a numeric.</td>
</tr>
</tbody>
</table>
### Configuring Standard QoS

To delete an access list, use the `no ipv6 access-list access-list-number` global configuration command.

### Command and Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3**

```plaintext
{deny | permit} protocol
{source-ipv6-prefix/prefix-length | any | host
source-ipv6-address}
[operator [port-number]]
{destination-ipv6-prefix/prefix-length | any | host
destination-ipv6-address}
[operator [port-number]]
[dscp value] [fragments] [log | log-input] [routing]
[sequence value] [time-range name]
```

Enter `deny` or `permit` to specify whether to deny or permit the packet if conditions are matched. These are the conditions:

- For `protocol`, enter the name or number of an Internet protocol: `ahp`, `esp`, `icmp`, `ipv6`, `pcp`, `step`, `tcp`, or `udp`, or an integer in the range 0 to 255 representing an IPv6 protocol number.

**Note** For additional specific parameters for ICMP, TCP, and UDP, see Creating IPv6 ACLs, page 1-5.

- The `source-ipv6-prefix/prefix-length` or `destination-ipv6-prefix/prefix-length` is the source or destination IPv6 network or class of networks for which to set deny or permit conditions, specified in hexadecimal using 16-bit values between colons (see RFC 2373).

- Enter `any` as an abbreviation for the IPv6 prefix `::/0`.

- For `host source-ipv6-address` or `destination-ipv6-address`, enter the source or destination IPv6 host address for which to set deny or permit conditions, specified in hexadecimal using 16-bit values between colons.

- (Optional) For `operator`, specify an operand that compares the source or destination ports of the specified protocol. Operands are `lt` (less than), `gt` (greater than), `eq` (equal), `neq` (not equal), and `range`.

  If the operator follows the `source-ipv6-prefix/prefix-length` argument, it must match the source port. If the operator follows the `destination-ipv6-prefix/prefix-length` argument, it must match the destination port.

- (Optional) The `port-number` is a decimal number from 0 to 65535 or the name of a TCP or UDP port. You can use TCP port names only when filtering TCP. You can use UDP port names only when filtering UDP.

- (Optional) Enter `dscp value` to match a differentiated services code point value against the traffic class value in the Traffic Class field of each IPv6 packet header. The acceptable range is from 0 to 63.

- (Optional) Enter `fragments` to check noninitial fragments. This keyword is visible only if the protocol is `ipv6`.

- (Optional) Enter `log` to cause a logging message to be sent to the console about the packet that matches the entry. Enter `log-input` to include the input interface in the log entry. Logging is supported only for router ACLs.

- (Optional) Enter `routing` to specify that IPv6 packets be routed.

- (Optional) Enter `sequence value` to specify the sequence number for the access list statement. The acceptable range is from 1 to 4294967295.

- (Optional) Enter `time-range name` to specify the time range that applies to the deny or permit statement.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>end</strong></td>
<td><strong>end</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show ipv6 access-list</strong></td>
<td><strong>show ipv6 access-list</strong></td>
<td>Verify the access list configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>copy running-config startup-config</strong></td>
<td><strong>copy running-config startup-config</strong></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to create an ACL that permits IPv6 traffic from any source to any destination that has the DSCP value set to 32:

```
Switch(config)# ipv6 access-list 100 permit ip any any dscp 32
```

This example shows how to create an ACL that permits IPv6 traffic from a source host at 10.1.1.1 to a destination host at 10.1.1.2 with a precedence value of 5:

```
Switch(config)# ipv6 access-list ipv6_Name_ACL permit ip host 10::1 host 10.1.1.2 precedence 5
```

**Creating a Layer 2 MAC ACL**

Beginning in privileged EXEC mode, follow these steps to create a Layer 2 MAC ACL for non-IP traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mac access-list extended name</td>
</tr>
<tr>
<td>Step 3</td>
<td>{permit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show access-lists [access-list-number</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete an access list, use the **no mac access-list extended access-list-name** global configuration command.
Chapter 1      Configuring QoS

This example shows how to create a Layer 2 MAC ACL with two permit statements. The first statement allows traffic from the host with MAC address 0001.0000.0001 to the host with MAC address 0002.0000.0001. The second statement allows only Ethertype XNS-IDP traffic from the host with MAC address 0001.0000.0002 to the host with MAC address 0002.0000.0002.

```
Switch(config)# mac access-list extended maclist1
Switch(config-ext-macl)# permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0
Switch(config-ext-macl)# permit 0001.0000.0002 0.0.0 0002.0000.0002 0.0.0 xns-idp
```

(Note: all other access implicitly denied)

### Classifying Traffic by Using Class Maps

Classifying Traffic by Using Class Maps

You use the `class-map` global configuration command to name and to isolate a specific traffic flow (or class) from all other traffic. The class map defines the criteria to use to match against a specific traffic flow to further classify it. Match statements can include criteria such as an ACL, IP precedence values, or DSCP values. The match criterion is defined with one match statement entered within the class-map configuration mode.

**Note**

You can also create class-maps during policy map creation by using the `class` policy-map configuration command. For more information, see the “Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps” section on page 1-59 and the “Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps” section on page 1-64.

Beginning in privileged EXEC mode, follow these steps to create a class map and to define the match criterion to classify traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>access-list access-list-number [deny</td>
</tr>
<tr>
<td>or</td>
<td>access-list access-list-number [deny</td>
</tr>
<tr>
<td>or</td>
<td>ipv6 access-list access-list-name [deny</td>
</tr>
<tr>
<td>or</td>
<td>mac access-list extended name [permit</td>
</tr>
</tbody>
</table>

Create an IP standard or extended ACL, an IPv6 ACL for IP traffic, or a Layer 2 MAC ACL for non-IP traffic, repeating the command as many times as necessary.

For more information, see the “Classifying Traffic by Using ACLs” section on page 1-50.

**Note**

When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.
<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>class-map [match-all</td>
<td>match-any]</td>
</tr>
<tr>
<td></td>
<td>class-map-name</td>
<td>• (Optional) Use the <strong>match-all</strong> keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Use the <strong>match-any</strong> keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <strong>class-map-name</strong>, specify the name of the class map. If neither the <strong>match-all</strong> or <strong>match-any</strong> keyword is specified, the default is <strong>match-all</strong>.</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td>Because only one <strong>match</strong> command per class map is supported, the <strong>match-all</strong> and <strong>match-any</strong> keywords function the same. See the “Creating Named Standard and Extended ACLs” section on page 1-16 for limitations when using the <strong>match-all</strong> and the <strong>match-any</strong> keywords.</td>
</tr>
<tr>
<td>Step 4</td>
<td>match protocol [ip</td>
<td>ipv6]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the argument <strong>ip</strong> to specify IPv4 traffic, and <strong>ipv6</strong> to specify IPv6 traffic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• When you use the <strong>match protocol</strong> command, only the <strong>match-all</strong> keyword is supported for the <strong>class-map</strong> command.</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td>This command is available only when the dual IPv4 and IPv6 SDM template is configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can use the <strong>match protocol</strong> command with the <strong>match ip dscp</strong> or <strong>match precedence</strong> commands, but not with the <strong>match access-group</strong> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information about the <strong>match protocol</strong> command, see the Cisco IOS Quality of Service Solutions Command Reference.</td>
</tr>
</tbody>
</table>
Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>match {access-group acl-index-or-name</td>
<td>ip dscp dscp-list</td>
</tr>
<tr>
<td></td>
<td>By default, no match criterion is defined.</td>
</tr>
<tr>
<td></td>
<td>Only one match criterion per class map is supported, and only one ACL per class map is supported.</td>
</tr>
<tr>
<td></td>
<td>• For access-group acl-index-or-name, specify the number or name of the ACL created in Step 2.</td>
</tr>
<tr>
<td></td>
<td>• To filter IPv6 traffic with the match access-group command, create an IPv6 ACL, as described in Step 2.</td>
</tr>
<tr>
<td></td>
<td>• For ip dscp dscp-list, enter a list of up to eight IP DSCP values to match against incoming packets. Separate each value with a space. The range is 0 to 63.</td>
</tr>
<tr>
<td></td>
<td>• For ip precedence ip-precedence-list, enter a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7.</td>
</tr>
</tbody>
</table>

Step 6

end

Return to privileged EXEC mode.

Step 7

show class-map

Verify your entries.

Step 8

copy running-config startup-config

(Optional) Save your entries in the configuration file.

To delete an existing policy map, use the no policy-map policy-map-name global configuration command. To delete an existing class map, use the no class-map [match-all | match-any] class-map-name global configuration command. To remove a match criterion, use the no match {access-group acl-index-or-name | ip dscp | ip precedence} class-map configuration command.

This example shows how to configure the class map called class1. The class1 has one match criterion, which is access list 103. It permits traffic from any host to any destination that matches a DSCP value of 10.

Switch(config)# access-list 103 permit ip any any dscp 10
Switch(config)# class-map class1
Switch(config-cmap)# match access-group 103
Switch(config-cmap)# end
Switch#

This example shows how to create a class map called class2, which matches incoming traffic with DSCP values of 10, 11, and 12.

Switch(config)# class-map class2
Switch(config-cmap)# match ip dscp 10 11 12
Switch(config-cmap)# end
Switch#

This example shows how to create a class map called class3, which matches incoming traffic with IP-precedence values of 5, 6, and 7:

Switch(config)# class-map class3
Switch(config-cmap)# match ip precedence 5 6 7
Switch(config-cmap)# end
Switch#
## Classifying Traffic by Using Class Maps and Filtering IPv6 Traffic

The switch supports both IPv4 and IPv6 QoS when a dual-ipv4-and-ipv6 SDM template is configured. When the dual IP SDM template is configured, the `match ip dscp` and `match ip precedence` classifications match both IPv4 and IPv6 traffic. The `match protocol` command allows you to create a secondary match classification that filters traffic by IP version (IPv4 or IPv6).

To apply the primary match criteria to only IPv4 traffic, use the `match protocol` command with the `ip` keyword. To apply the primary match criteria to only IPv6 traffic, use the `match protocol` command with the `ipv6` keyword. For more information about the `match protocol` command, see the *Cisco IOS Quality of Service Solutions Command Reference*.

Beginning in privileged EXEC mode, follow these steps to create a class map, define the match criterion to classify traffic, and filter IPv6 traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
</tr>
</tbody>
</table>
| **Step 2** | `class-map {match-all} class-map-name` | Create a class map, and enter class-map configuration mode.  
By default, no class maps are defined.  
When you use the `match protocol` command, only the `match-all` keyword is supported.  
• For `class-map-name`, specify the name of the class map.  
If neither the `match-all` or `match-any` keyword is specified, the default is `match-all`. |
| **Step 3** | `match protocol [ip | ipv6]` | (Optional) Specify the IP protocol to which the class map applies:  
• Use the argument `ip` to specify IPv4 traffic and `ipv6` to specify IPv6 traffic.  
• When you use the `match protocol` command, only the `match-all` keyword is supported for the `class-map` command.  
**Note** This command is available only when the dual IPv4 and IPv6 SDM template is configured.  
For more information about the `match protocol` command, see the *Cisco IOS Quality of Service Solutions Command Reference*. |
| **Step 4** | `match {ip dscp dscp-list | ip precedence ip-precedence-list}` | Define the match criterion to classify traffic.  
By default, no match criterion is defined.  
• For `ip dscp dscp-list`, enter a list of up to eight IP DSCP values to match against incoming packets. Separate each value with a space.  
  The range is 0 to 63.  
• For `ip precedence ip-precedence-list`, enter a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space.  
  The range is 0 to 7. |
| **Step 5** | `end` | Return to privileged EXEC mode. |
| **Step 6** | `show class-map` | Verify your entries. |
| **Step 7** | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |
To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class-map [match-all | match-any] class-map-name` global configuration command. To remove a match criterion, use the `no match {access-group acl-index-or-name | ip dscp | ip precedence}` class-map configuration command.

This example shows how to configure a class map to match IP DSCP and IPv6:

```
Switch(config)# Class-map cm-1
Switch(config-cmap)# match ip dscp 10
Switch(config-cmap)# match protocol ipv6
Switch(config-cmap)# exit
Switch(config)# Class-map cm-2
Switch(config-cmap)# match ip dscp 20
Switch(config-cmap)# match protocol ip
Switch(config-cmap)# exit
Switch(config)# Policy-map pm1
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config-pmap)# class cm-2
Switch(config-pmap-c)# set dscp 6
Switch(config-pmap-c)# exit
Switch(config)# interface G1/0/1
Switch(config-if)# service-policy input pm1
```

This example shows how to configure a class map that applies to both IPv4 and IPv6 traffic:

```
Switch(config)# ip access-list 101 permit ip any any
Switch(config)# ipv6 access-list ipv6-any permit ip any any
Switch(config)# Class-map cm-1
Switch(config-cmap)# match access-group 101
Switch(config-cmap)# exit
Switch(config)# Class-map cm-2
Switch(config-cmap)# match access-group name ipv6-any
Switch(config-cmap)# exit
Switch(config)# Policy-map pm1
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config-pmap)# class cm-2
Switch(config-pmap-c)# set dscp 6
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface G0/1
Switch(config-if)# switch mode access
Switch(config-if)# service-policy input pm1
```

### Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps

You can configure a nonhierarchical policy map on a physical port that specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values in the traffic class; setting a specific DSCP or IP precedence value in the traffic class; and specifying the traffic bandwidth limitations for each matched traffic class (policer) and the action to take when the traffic is out of profile (marking).

A policy map also has these characteristics:

- A policy map can contain multiple class statements, each with different match criteria and policers.
- A policy map can contain a pre-defined default traffic class explicitly placed at the end of the map.
- A separate policy-map class can exist for each type of traffic received through a port.
Follow these guidelines when configuring policy maps on physical ports:

- You can attach only one policy map per ingress port.
- If you configure the IP-precedence-to-DSCP map by using the `mls qos map ip-prec-dscp` `dscp1...dscp8` global configuration command, the settings only affect packets on ingress interfaces that are configured to trust the IP precedence value. In a policy map, if you set the packet IP precedence value to a new value by using the `set ip precedence new-precedence` policy-map class configuration command, the egress DSCP value is not affected by the IP-precedence-to-DSCP map. If you want the egress DSCP value to be different than the ingress value, use the `set dscp new-dscp` policy-map class configuration command.
- If you enter or have used the `set ip dscp` command, the switch changes this command to `set dscp` in its configuration.
- You can use the `set ip precedence` or the `set precedence` policy-map class configuration command to change the packet IP precedence value. This setting appears as `set ip precedence` in the switch configuration.
- You can configure a separate second-level policy map for each class defined for the port. The second-level policy map specifies the police action to take for each traffic class. For information on configuring a hierarchical policy map, see the “Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps” section on page 1-64.
- A policy-map and a port trust state can both run on a physical interface. The policy-map is applied before the port trust state.
- When you configure a default traffic class by using the `class class-default` policy-map configuration command, unclassified traffic (traffic that does not meet the match criteria specified in the traffic classes) is treated as the default traffic class (`class-default`).

Beginning in privileged EXEC mode, follow these steps to create a nonhierarchical policy map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`class-map [match-all</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use the <code>match-all</code> keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use the <code>match-any</code> keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.</td>
</tr>
<tr>
<td></td>
<td>For <code>class-map-name</code>, specify the name of the class map. If neither the <code>match-all</code> or <code>match-any</code> keyword is specified, the default is <code>match-all</code>.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Because only one <code>match</code> command per class map is supported, the <code>match-all</code> and <code>match-any</code> keywords function the same. See the “Creating Named Standard and Extended ACLs” section on page 1-16 for limitations when using the <code>match-all</code> and the <code>match-any</code> keywords.</td>
</tr>
</tbody>
</table>
**Chapter 1 Configuring QoS**

**Configuring Standard QoS**

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
|        | policy-map policy-map-name | Create a policy map by entering the policy map name, and enter policy-map configuration mode.  
|        |                    | By default, no policy maps are defined.  
|        |                    | The default behavior of a policy map is to set the DSCP to 0 if the packet is an IP packet and to set the CoS to 0 if the packet is tagged. No policing is performed. |

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
|        | class [class-map-name | Define a traffic classification, and enter policy-map class configuration mode.  
|        | class-default]     | By default, no policy map class-maps are defined.  
|        |                    | If a traffic class has already been defined by using the class-map global configuration command, specify its name for class-map-name in this command.  
|        |                    | A class-default traffic class is pre-defined and can be added to any policy. It is always placed at the end of a policy map. With an implied match any included in the class-default class, all packets that have not already matched the other traffic classes will match class-default. |

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
|        | trust [cos | dscp | ip-precedence] | Configure the trust state, which QoS uses to generate a CoS-based or DSCP-based QoS label.  
|        | Note | This command is mutually exclusive with the set command within the same policy map. If you enter the trust command, go to Step 6.  
|        |        | By default, the port is not trusted. If no keyword is specified when the command is entered, the default is dscp.  
|        |        | The keywords have these meanings:  
|        |        | * cos—QoS derives the DSCP value by using the received or default port CoS value and the CoS-to-DSCP map.  
|        |        | * dscp—QoS derives the DSCP value by using the DSCP value from the ingress packet. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.  
|        |        | * ip-precedence—QoS derives the DSCP value by using the IP precedence value from the ingress packet and the IP-precedence-to-DSCP map. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.  
|        |        | For more information, see the “Configuring the CoS-to-DSCP Map” section on page 1-74. |
To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class class-map-name` policy-map configuration command. To remove an assigned DSCP or IP precedence value, use the `no set {dscp new-dscp | ip precedence new-precedence}` policy-map configuration command. To remove an existing policer, use the `no police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}]` policy-map configuration command. To remove the policy map and port association, use the `no service-policy input policy-map-name` interface configuration command.
This example shows how to create a policy map and attach it to an ingress port. In the configuration, the IP standard ACL permits traffic from network 10.1.0.0. For traffic matching this classification, the DSCP value in the incoming packet is trusted. If the matched traffic exceeds an average traffic rate of 48000 b/s and a normal burst size of 8000 bytes, its DSCP is marked down (based on the policed-DSCP map) and sent:

```
Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# policy-map flow1t
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police 1000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# service-policy input flow1t
```

This example shows how to create a Layer 2 MAC ACL with two permit statements and attach it to an ingress port. The first permit statement allows traffic from the host with MAC address 0001.0000.0001 destined for the host with MAC address 0002.0000.0001. The second permit statement allows only Ethertype XNS-IDP traffic from the host with MAC address 0001.0000.0002 destined for the host with MAC address 0002.0000.0002.

```
Switch(config)# mac access-list extended maclist1
Switch(config-ext-mac)# permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0
Switch(config-ext-mac)# permit 0001.0000.0002 0.0.0 0002.0000.0002 0.0.0 xns-idp
Switch(config-ext-mac)# exit
Switch(config)# mac access-list extended maclist2
Switch(config-ext-mac)# permit 0001.0000.0003 0.0.0 0002.0000.0003 0.0.0
Switch(config-ext-mac)# permit 0001.0000.0004 0.0.0 0002.0000.0004 0.0.0 aarp
Switch(config-ext-mac)# exit
Switch(config)# class-map macclass1
Switch(config-cmap)# match access-group maclist1
Switch(config-cmap)# exit
Switch(config)# class-map macclass2 maclist2
Switch(config-cmap)# set dscp 63
Switch(config-cmap)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust cos
Switch(config-if)# service-policy input macpolicy1
```

This example shows how to create a class map that applies to both IPv4 and IPv6 traffic with the default class applied to unclassified traffic:

```
Switch(config)# ip access-list 101 permit ip any any
Switch(config)# ipv6 access-list ipv6-any permit ip any any
Switch(config)# class-map cm-1
Switch(config-cmap)# match access-group 101
Switch(config-cmap)# exit
Switch(config)# class-map cm-2
Switch(config-cmap)# match access-group name ipv6-any
Switch(config-cmap)# exit
Switch(config)# policy-map pml
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
```
Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps

You can configure hierarchical policy maps on SVIs, but not on other types of interfaces. Hierarchical policing combines the VLAN- and interface-level policy maps to create a single policy map.

On an SVI, the VLAN-level policy map specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values or setting a specific DSCP or IP precedence value in the traffic class. Use the interface-level policy map to specify the physical ports that are affected by individual policers.

Beginning with Cisco IOS Release 12.2(52)SE, you can configure hierarchical policy maps that filter IPv4 and IPv6 traffic.

Follow these guidelines when configuring hierarchical policy maps:

- Before configuring a hierarchical policy map, you must enable VLAN-based QoS on the physical ports that are to be specified at the interface level of the policy map.
- You can attach only one policy map per ingress port or SVI.
- A policy map can contain multiple class statements, each with different match criteria and actions.
- A separate policy-map class can exist for each type of traffic received on the SVI.
- In a switch stack, you cannot use the `match input-interface` class-map configuration command to specify interfaces across stack members in a policy-map class.
- A policy-map and a port trust state can both run on a physical interface. The policy-map is applied before the port trust state.
- If you configure the IP-precedence-to-DSCP map by using the `mls qos map ip-prec-dscp dscp1...dscp8` global configuration command, the settings only affect packets on ingress interfaces that are configured to trust the IP precedence value. In a policy map, if you set the packet IP precedence value to a new value by using the `set ip precedence new-precedence` policy-map class configuration command, the egress DSCP value is not affected by the IP-precedence-to-DSCP map. If you want the egress DSCP value to be different than the ingress value, use the `set dscp new-dscp` policy-map class configuration command.
- If you enter or have used the `set ip dscp` command, the switch changes this command to `set dscp` in its configuration. If you enter the `set ip dscp` command, this setting appears as `set dscp` in the switch configuration.
- You can use the `set ip precedence` or the `set precedence` policy-map class configuration command to change the packet IP precedence value. This setting appears as `set ip precedence` in the switch configuration.
- If VLAN-based QoS is enabled, the hierarchical policy map supersedes the previously configured port-based policy map.
• The hierarchical policy map is attached to the SVI and affects all traffic in the VLAN. The actions specified in the VLAN-level policy map affect the traffic belonging to the SVI. The police action on the port-level policy map affects the ingress traffic on the affected physical interfaces.

• When configuring a hierarchical policy map on trunk ports, the VLAN ranges must not overlap. If the ranges overlap, the actions specified in the policy map affect the incoming and outgoing traffic on the overlapped VLANs.

• Aggregate policers are not supported in hierarchical policy maps.

• When VLAN-based QoS is enabled, the switch supports VLAN-based features, such as the VLAN map.

• You can configure a hierarchical policy map only on the primary VLAN of a private VLAN.

• When you enable VLAN-based QoS and configure a hierarchical policy map in a switch stack, these automatic actions occur when the stack configuration changes:
  – When a new stack master is selected, the stack master re-enables and reconfigures these features on all applicable interfaces on the stack master.
  – When a stack member is added, the stack master re-enables and reconfigures these features on all applicable ports on the stack member.
  – When you merge switch stacks, the new stack master re-enables and reconfigures these features on the switches in the new stack.
  – When the switch stack divides into two or more switch stacks, the stack master in each switch stack re-enables and reconfigures these features on all applicable interfaces on the stack members, including the stack master.
When you configure a default traffic class by using the `class class-default` policy-map configuration command, unclassified traffic (traffic that does not meet the match criteria specified in the traffic classes) is treated as default traffic class (`class-default`).

Beginning in privileged EXEC mode, follow these steps to create a hierarchical policy map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>**class-map [match-all</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>**match {access-group acl-index-or-name</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1      Configuring QoS

Configuring Standard QoS

Step 4

match protocol [ip | ipv6]

( Optional) Specify the IP protocol to which the class map applies.

- Use the argument ip to specify IPv4 traffic, and ipv6 to specify IPv6 traffic.
- When you use the match protocol command, only the match-all keyword is supported for the first level class map.

Note This command is available only when the dual IPv4 and IPv6 SDM template is configured.

You can use the match protocol command with the match ip dscp or match precedence commands, but not with the match access-group command.

For more information about the match protocol command, see the Cisco IOS Quality of Service Solutions Command Reference.

Step 5

exit

Return to class-map configuration mode.

Step 6

exit

Return to global configuration mode.

Step 7

class-map [match-all | match-any] class-map-name

Create an interface-level class map, and enter class-map configuration mode.

By default, no class maps are defined.

- (Optional) Use the match-all keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.
- (Optional) Use the match-any keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.
- For class-map-name, specify the name of the class map.

If neither the match-all or match-any keyword is specified, the default is match-all.

Note Because only one match command per class map is supported, the match-all and match-any keywords function the same. See the "Creating Named Standard and Extended ACLs" section on page 1-16 for limitations when using the match-all and the match-any keywords.

Step 8

match input-interface interface-id-list

Specify the physical ports on which the interface-level class map acts. You can specify up to six ports as follows:

- A single port (counts as one entry)
- A list of ports separated by a space (each port counts as an entry)
- A range of ports separated by a hyphen (counts as two entries)

This command can only be used in the child-level policy map and must be the only match condition in the child-level policy map.

Step 9

exit

Return to class-map configuration mode.

Step 10

exit

Return to global configuration mode.
Chapter 1      Configuring QoS

Configuring Standard QoS

Step 11

policy-map policy-map-name

Create an interface-level policy map by entering the policy-map name, and enter policy-map configuration mode.

By default, no policy maps are defined, and no policing is performed.

Step 12

class-map class-map-name

Define an interface-level traffic classification, and enter policy-map configuration mode.

By default, no policy-map class-maps are defined.

If a traffic class has already been defined by using the class-map global configuration command, specify its name for class-map-name in this command.

Step 13

police rate-bps burst-byte [exceed-action drop | policed-dscp-transmit]

Define an individual policer for the classified traffic.

By default, no policer is defined. For information on the number of policers supported, see the “Standard QoS Configuration Guidelines” section on page 1-40.

- For rate-bps, specify average traffic rate in bits per second (b/s). The range is 8000 to 10000000000.
- For burst-byte, specify the normal burst size in bytes. The range is 8000 to 1000000.
- (Optional) Specify the action to take when the rates are exceeded. Use the exceed-action drop keywords to drop the packet. Use the exceed-action policed-dscp-transmit keywords to mark down the DSCP value (by using the policed-DSCP map) and to send the packet. For more information, see the “Configuring the Policed-DSCP Map” section on page 1-76.

Step 14

exit

Return to policy-map configuration mode.

Step 15

exit

Return to global configuration mode.

Step 16

policy-map policy-map-name

Create a VLAN-level policy map by entering the policy-map name, and enter policy-map configuration mode.

By default, no policy maps are defined.

The default behavior of a policy map is to set the DSCP to 0 if the packet is an IP packet and to set the CoS to 0 if the packet is tagged. No policing is performed.

Step 17

class [class-map-name | class-default]

Define a VLAN-level traffic classification, and enter policy-map class configuration mode.

By default, no policy-map class-maps are defined.

If a traffic class has already been defined by using the class-map global configuration command, specify its name for class-map-name in this command.

A class-default traffic class is pre-defined and can be added to any policy. It is always placed at the end of a policy map. With an implied match any included in the class-default class, all packets that have not already matched the other traffic classes will match class-default.
### Configuring Standard QoS

#### Step 18

**Command**: trust [cos | dscp | ip-precedence]  
**Purpose**: Configure the trust state, which QoS uses to generate a CoS-based or DSCP-based QoS label.

**Note**: This command is mutually exclusive with the `set` command within the same policy map. If you enter the `trust` command, omit Step 18.

By default, the port is not trusted. If no keyword is specified when the command is entered, the default is `dscp`.

The keywords have these meanings:

- **cos**—QoS derives the DSCP value by using the received or default port CoS value and the CoS-to-DSCP map.
- **dscp**—QoS derives the DSCP value by using the DSCP value from the ingress packet. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.
- **ip-precedence**—QoS derives the DSCP value by using the IP precedence value from the ingress packet and the IP-precedence-to-DSCP map. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.

For more information, see the “Configuring the CoS-to-DSCP Map” section on page 1-74.

#### Step 19

**Command**: set {dscp new-dscp | ip precedence new-precedence}  
**Purpose**: Classify IP traffic by setting a new value in the packet.

- For `dscp new-dscp`, enter a new DSCP value to be assigned to the classified traffic. The range is 0 to 63.
- For `ip precedence new-precedence`, enter a new IP-precedence value to be assigned to the classified traffic. The range is 0 to 7.

#### Step 20

**Command**: service-policy policy-map-name  
**Purpose**: Specify the interface-level policy-map name (from Step 10) and associate it with the VLAN-level policy map.

If the VLAN-level policy map specifies more than one class, each class can have a different `service-policy policy-map-name` command.

#### Step 21

**Command**: exit  
**Purpose**: Return to policy-map configuration mode.

#### Step 22

**Command**: exit  
**Purpose**: Return to global configuration mode.

#### Step 23

**Command**: interface interface-id  
**Purpose**: Specify the SVI to which to attach the hierarchical policy map, and enter interface configuration mode.
To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class class-map-name` policy-map configuration command.

To return to the untrusted state in a policy map, use the `no trust policy-map configuration` command. To remove an assigned DSCP or IP precedence value, use the `no set {dscp new-dscp | ip precedence new-precedence}` policy-map configuration command.

To remove an existing policer in an interface-level policy map, use the `no police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}]` policy-map configuration command. To remove the hierarchical policy map and port associations, use the `no service-policy policy-map-name` interface configuration command.

This example shows how to create a hierarchical policy map:

```
Switch> enable
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# access-list 101 permit ip any any
Switch(config)# class-map cm-1
Switch(config-cmap)# match access 101
Switch(config-cmap)# exit
Switch(config)# exit
Switch#
```

This example shows how to attach the new map to an SVI:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# class-map cm-interface-1
Switch(config-cmap)# match input gigabitethernet3/0/1 - gigabitethernet3/0/2
Switch(config-cmap)# exit
Switch(config)# policy-map port-plcmap
Switch(config-pmap)# class cm-interface-1
Switch(config-pmap-c)# police 900000 9000 exc policed-dscp-transmit
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# policy-map vlan-plcmap
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 7
Switch(config-pmap-c)# service-policy port-plcmap-1
```
Switch(config-pmap-c)# exit
Switch(config-pmap)# class cm-2
Switch(config-pmap-c)# service-policy port-plcmap-1
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap)# exit
Switch(config-pmap)# class cm-3
Switch(config-pmap-c)# service-policy port-plcmap-2
Switch(config-pmap-c)# set dscp 20
Switch(config-pmap)# exit
Switch(config-pmap)# class cm-4
Switch(config-pmap-c)# trust dscp
Switch(config-pmap)# exit
Switch(config)# interface vlan 10
Switch(config-if)# service-policy input vlan-plcmap
Switch(config-if)# exit
Switch(config)# exit

This example shows that when a child-level policy map is attached below a class, an action must be specified for the class:

Switch(config)# policy-map vlan-plcmap
Switch(config-pmap)# class cm-5
Switch(config-pmap-c)# set dscp 7
Switch(config-pmap-c)# service-policy port-plcmap-1

This example shows how to configure a class map to match IP DSCP and IPv6:

Switch(config)# class-map cm-1
Switch(config-cmap)# match ip dscp 10
Switch(config-cmap)# match protocol ipv6
Switch(config-cmap)# exit
Switch(config)# class-map cm-2
Switch(config-cmap)# match ip dscp 20
Switch(config-cmap)# match protocol ip
Switch(config-cmap)# exit
Switch(config)# policy-map pm1
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class cm-2
Switch(config-pmap-c)# set dscp 6
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# exit
Switch(config-if)# interface G1/0/1
Switch(config-if)# service-policy input pm1

This example shows how to configure default traffic class to a policy map:

Switch# configure terminal
Switch(config)# class-map cm-3
Switch(config-cmap)# match ip dscp 30
Switch(config-cmap)# match protocol ipv6
Switch(config-cmap)# exit
Switch(config)# class-map cm-4
Switch(config-cmap)# match ip dscp 40
Switch(config-cmap)# match protocol ip
Switch(config-cmap)# exit
Switch(config)# policy-map pm3
Switch(config-pmap)# class class-default
Switch(config-pmap)# set dscp 10
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class cm-3
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config-pmap)# class cm-4
Switch(config-pmap-c)# trust cos
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit

This example shows how the default traffic class is automatically placed at the end of policy-map pm3 even though class-default was configured first:

Switch# show policy-map pm3
Policy Map pm3
  Class cm-3
    set dscp 4
  Class cm-4
    trust cos
  Class class-default
    police 8000 80000 exceed-action drop
Switch#

Classifying, Policing, and Marking Traffic by Using Aggregate Policers

By using an aggregate policer, you can create a policer that is shared by multiple traffic classes within the same policy map. However, you cannot use the aggregate policer across different policy maps or ports.

You can configure aggregate policers only in nonhierarchical policy maps on physical ports.

Beginning in privileged EXEC mode, follow these steps to create an aggregate policer:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>`mls qos aggregate-policer aggregate-policer-name rate-bps burst-byte exceed-action [drop</td>
</tr>
<tr>
<td></td>
<td>• For <code>aggregate-policer-name</code>, specify the name of the aggregate policer.</td>
</tr>
<tr>
<td></td>
<td>• For <code>rate-bps</code>, specify average traffic rate in bits per second (b/s). The range is 8000 to 10000000000.</td>
</tr>
<tr>
<td></td>
<td>• For <code>burst-byte</code>, specify the normal burst size in bytes. The range is 8000 to 100000.</td>
</tr>
<tr>
<td></td>
<td>• Specify the action to take when the rates are exceeded. Use the <code>exceed-action drop</code> keywords to drop the packet. Use the <code>exceed-action policed-dscp-transmit</code> keywords to mark down the DSCP value (by using the policed-DSCP map) and to send the packet. For more information, see the “Configuring the Policed-DSCP Map” section on page 1-76.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>`class-map [match-all</td>
</tr>
</tbody>
</table>
### Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Create a policy map by entering the policy map name, and enter policy-map configuration mode. For more information, see the “Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps” section on page 1-59.</td>
</tr>
</tbody>
</table>

### Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>class [class-name</td>
<td>Define a traffic classification, and enter policy-map class configuration mode. For more information, see the “Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps” section on page 1-59.</td>
</tr>
</tbody>
</table>

### Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>police aggregate</td>
<td>Apply an aggregate policer to multiple classes in the same policy map. For aggregate-policer-name, enter the name specified in Step 2.</td>
</tr>
</tbody>
</table>

### Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>

### Step 8

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface interface-id</td>
<td>Specify the port to attach to the policy map, and enter interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
</tbody>
</table>

### Step 9

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>service-policy input</td>
<td>Specify the policy-map name, and apply it to an ingress port. Only one policy map per ingress port is supported.</td>
</tr>
</tbody>
</table>

### Step 10

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

### Step 11

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mls qos aggregate-policer [aggregate-policer-name]</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

### Step 12

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the specified aggregate policer from a policy map, use the **no policy aggregate aggregate-policer-name** policy map configuration mode. To delete an aggregate policer and its parameters, use the **no mls qos aggregate-policer aggregate-policer-name** global configuration command.

This example shows how to create an aggregate policer and attach it to multiple classes within a policy map. In the configuration, the IP ACLs permit traffic from network 10.1.0.0 and from host 11.3.1.1. For traffic coming from network 10.1.0.0, the DSCP in the incoming packets is trusted. For traffic coming from host 11.3.1.1, the DSCP in the packet is changed to 56. The traffic rate from the 10.1.0.0 network and from host 11.3.1.1 is policed. If the traffic exceeds an average rate of 48000 b/s and a normal burst size of 8000 bytes, its DSCP is marked down (based on the policed-DSCP map) and sent. The policy map is attached to an ingress port.

```
Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# access-list 2 permit 11.3.1.1
Switch(config)# mls qos aggregate-police transmit 1 48000 8000 exceed-action policed-dscp-transmit
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# class-map ipclass2
Switch(config-cmap)# match access-group 2
Switch(config-cmap)# exit
Switch(config)# policy-map aggflow1
Switch(config-pmap)# class ipclass1
```
Configuring DSCP Maps

- Configuring the CoS-to-DSCP Map, page 1-74 (optional)
- Configuring the IP-Precedence-to-DSCP Map, page 1-75 (optional)
- Configuring the Policed-DSCP Map, page 1-76 (optional, unless the null settings in the map are not appropriate)
- Configuring the DSCP-to-CoS Map, page 1-77 (optional)
- Configuring the DSCP-to-DSCP-Mutation Map, page 1-78 (optional, unless the null settings in the map are not appropriate)

All the maps, except the DSCP-to-DSCP-mutation map, are globally defined and are applied to all ports.

Configuring the CoS-to-DSCP Map

You use the CoS-to-DSCP map to map CoS values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.

Table 1-12 shows the default CoS-to-DSCP map.

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.

Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police aggregate transmit1
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class ipclass2
Switch(config-pmap-c)# set dscp 56
Switch(config-pmap-c)# police aggregate transmit1
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class class-default
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# service-policy input aggflo1
Switch(config-if)# exit
Beginning in privileged EXEC mode, follow these steps to modify the CoS-to-DSCP map. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 mls qos map cos-dscp</td>
<td>Modify the CoS-to-DSCP map. For dscp1...dscp8, enter eight DSCP values that correspond to CoS values 0 to 7. Separate each DSCP value with a space. The DSCP range is 0 to 63.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show mls qos maps cos-dscp</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default map, use the no mls qos cos-dscp global configuration command.

This example shows how to modify and display the CoS-to-DSCP map:

```
Switch(config)# mls qos map cos-dscp 10 15 20 25 30 35 40 45
Switch(config)# end
Switch# show mls qos maps cos-dscp
```

**Cos-dscp map:**
```
cos: 0 1 2 3 4 5 6 7

dscp: 10 15 20 25 30 35 40 45
```

### Configuring the IP-Precedence-to-DSCP Map

You use the IP-precedence-to-DSCP map to map IP precedence values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.

Table 1-13 shows the default IP-precedence-to-DSCP map:

<table>
<thead>
<tr>
<th>IP Precedence Value</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.
Beginning in privileged EXEC mode, follow these steps to modify the IP-precedence-to-DSCP map. This procedure is optional.

### Configuring Standard QoS

#### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map ip-prec-dscp dscp1...dscp8</td>
<td>Modify the IP-precedence-to-DSCP map. For dscp1...dscp8, enter eight DSCP values that correspond to the IP precedence values 0 to 7. Separate each DSCP value with a space. The DSCP range is 0 to 63.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps ip-prec-dscp</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default map, use the no mls qos ip-prec-dscp global configuration command.

This example shows how to modify and display the IP-precedence-to-DSCP map:

```
Switch(config)# mls qos map ip-prec-dscp 10 15 20 25 30 35 40 45
Switch(config)# end
Switch# show mls qos maps ip-prec-dscp

IpPrecedence-dscp map:
 ipprec: 0 1 2 3 4 5 6 7

 dscp: 10 15 20 25 30 35 40 45
```

### Configuring the Policed-DSCP Map

You use the policed-DSCP map to mark down a DSCP value to a new value as the result of a policing and marking action.

The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value.

Beginning in privileged EXEC mode, follow these steps to modify the policed-DSCP map. This procedure is optional.

#### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map policed-dscp dscp-list to mark-down-dscp</td>
<td>Modify the policed-DSCP map. For dscp-list, enter up to eight DSCP values separated by spaces. Then enter the to keyword. For mark-down-dscp, enter the corresponding policed (marked down) DSCP value.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps policed-dscp</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To return to the default map, use the `no mls qos policed-dscp` global configuration command.

This example shows how to map DSCP 50 to 57 to a marked-down DSCP value of 0:

```
Switch(config)# mls qos map policed-dscp 50 51 52 53 54 55 56 57 to 0
Switch(config)# end
Switch# show mls qos maps policed-dscp
```

This example shows how to map DSCP 50 to 57 to a marked-down DSCP value of 0:

```
Switch(config)# mls qos map policed-dscp 50 51 52 53 54 55 56 57 to 0
Switch(config)# end
Switch# show mls qos maps policed-dscp
```

```
Policed-dscp map:
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 00 01 02 03 04 05 06 07 08 09
 1 : 10 11 12 13 14 15 16 17 18 19
 2 : 20 21 22 23 24 25 26 27 28 29
 3 : 30 31 32 33 34 35 36 37 38 39
 4 : 40 41 42 43 44 45 46 47 48 49
 5 : 00 00 00 00 00 00 00 00 58 59
 6 : 60 61 62 63
```

**Note**

In this policed-DSCP map, the marked-down DSCP values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the original DSCP; the d2 row specifies the least-significant digit of the original DSCP. The intersection of the d1 and d2 values provides the marked-down value. For example, an original DSCP value of 53 corresponds to a marked-down DSCP value of 0.

---

### Configuring the DSCP-to-CoS Map

You use the DSCP-to-CoS map to generate a CoS value, which is used to select one of the four egress queues.

Table 1-14 shows the default DSCP-to-CoS map.

**Table 1-14 Default DSCP-to-CoS Map**

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>CoS Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–7</td>
<td>0</td>
</tr>
<tr>
<td>8–15</td>
<td>1</td>
</tr>
<tr>
<td>16–23</td>
<td>2</td>
</tr>
<tr>
<td>24–31</td>
<td>3</td>
</tr>
<tr>
<td>32–39</td>
<td>4</td>
</tr>
<tr>
<td>40–47</td>
<td>5</td>
</tr>
<tr>
<td>48–55</td>
<td>6</td>
</tr>
<tr>
<td>56–63</td>
<td>7</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.
Configuring Standard QoS

Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-CoS map. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map dscp-cos dscp-list to cos</td>
</tr>
<tr>
<td></td>
<td>- For dscp-list, enter up to eight DSCP values separated by spaces.</td>
</tr>
<tr>
<td></td>
<td>- Then enter the to keyword.</td>
</tr>
<tr>
<td></td>
<td>- For cos, enter the CoS value to which the DSCP values correspond.</td>
</tr>
<tr>
<td></td>
<td>The DSCP range is 0 to 63; the CoS range is 0 to 7.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps dscp-to-cos</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default map, use the no mls qos dscp-cos global configuration command.

This example shows how to map DSCP values 0, 8, 16, 24, 32, 40, 48, and 50 to CoS value 0 and to display the map:

```
Switch(config)# mls qos map dscp-cos 0 8 16 24 32 40 48 50 to 0
Switch(config)# end
Switch# show mls qos maps dscp-to-cos
Dscp-cos map:
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 00 00 00 00 00 00 00 00 01
 1 : 01 01 01 01 01 01 00 02 02
 2 : 02 02 02 02 03 03 03 03 03
 3 : 03 03 00 04 04 04 04 04 04
 4 : 00 05 05 05 05 05 05 05 00
 5 : 00 06 06 06 06 06 07 07 07
 6 : 07 07 07 07
```

In the above DSCP-to-CoS map, the CoS values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the DSCP; the d2 row specifies the least-significant digit of the DSCP. The intersection of the d1 and d2 values provides the CoS value. For example, in the DSCP-to-CoS map, a DSCP value of 08 corresponds to a CoS value of 0.

### Configuring the DSCP-to-DSCP-Mutation Map

If two QoS domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate one set of DSCP values to match the definition of another domain. You apply the DSCP-to-DSCP-mutation map to the receiving port (ingress mutation) at the boundary of a QoS administrative domain.

With ingress mutation, the new DSCP value overwrites the one in the packet, and QoS treats the packet with this new value. The switch sends the packet out the port with the new DSCP value.

You can configure multiple DSCP-to-DSCP-mutation maps on an ingress port. The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.
Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-DSCP-mutation map. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>mls qos map dscp-mutation</td>
</tr>
<tr>
<td></td>
<td>dscp-mutation-name in-dscp to out-dscp</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>mls qos trust dscp</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>mls qos dscp-mutation</td>
</tr>
<tr>
<td></td>
<td>dscp-mutation-name</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>show mls qos maps dscp-mutation</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default map, use the **no mls qos dscp-mutation** `dscp-mutation-name` global configuration command.

This example shows how to define the DSCP-to-DSCP-mutation map. All the entries that are not explicitly configured are not modified (remains as specified in the null map):

```
Switch(config)# mls qos map dscp-mutation mutation1 1 2 3 4 5 6 7 to 0
Switch(config)# mls qos map dscp-mutation mutation1 8 9 10 11 12 13 to 10
Switch(config)# mls qos map dscp-mutation mutation1 20 21 22 to 20
Switch(config)# mls qos map dscp-mutation mutation1 30 31 32 33 34 to 30
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation mutation1
Switch(config-if)# end
Switch# show mls qos maps dscp-mutation
Dscp-dscp mutation map:
mutation1:
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 00 00 00 00 00 00 00 10 10 10 10
 1 : 10 10 10 10 14 15 16 17 18 18 19
 2 : 20 20 20 23 24 25 26 27 28 29 29
 3 : 30 30 30 30 35 36 37 38 39 39 39
 4 : 40 41 42 43 44 45 46 47 48 49 49
 5 : 50 51 52 53 54 55 56 57 58 59 59
 6 : 60 61 62 63
```

```
In the above DSCP-to-DSCP-mutation map, the mutated values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the original DSCP; the d2 row specifies the least-significant digit of the original DSCP. The intersection of the d1 and d2 values provides the mutated value. For example, a DSCP value of 12 corresponds to a mutated value of 10.

Configuring Ingress Queue Characteristics

Depending on the complexity of your network and your QoS solution, you might need to perform all of the tasks in the next sections. You will need to make decisions about these characteristics:

- Which packets are assigned (by DSCP or CoS value) to each queue?
- What drop percentage thresholds apply to each queue, and which CoS or DSCP values map to each threshold?
- How much of the available buffer space is allocated between the queues?
- How much of the available bandwidth is allocated between the queues?
- Is there traffic (such as voice) that should be given high priority?

These sections contain this configuration information:

- Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds, page 1-81 (optional)
- Allocating Buffer Space Between the Ingress Queues, page 1-82 (optional)
- Allocating Bandwidth Between the Ingress Queues, page 1-82 (optional)
- Configuring the Ingress Priority Queue, page 1-83 (optional)
Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds

You can prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues and adjusting the queue thresholds so that packets with lower priorities are dropped.

Beginning in privileged EXEC mode, follow these steps to map DSCP or CoS values to an ingress queue and to set WTD thresholds. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2
mls qos srr-queue input dscp-map queue queue-id threshold threshold-id dscp1...dscp8
or
mls qos srr-queue input cos-map queue queue-id threshold threshold-id cos1...cos8</td>
<td>Map DSCP or CoS values to an ingress queue and to a threshold ID. By default, DSCP values 0–39 and 48–63 are mapped to queue 1 and threshold 1. DSCP values 40–47 are mapped to queue 2 and threshold 1. By default, CoS values 0–4, 6, and 7 are mapped to queue 1 and threshold 1. CoS value 5 is mapped to queue 2 and threshold 1.</td>
</tr>
<tr>
<td>Step 3
mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2</td>
<td>Assign the two WTD threshold percentages for (threshold 1 and 2) to an ingress queue. The default, both thresholds are set to 100 percent.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show mls qos maps</td>
<td>Verify your entries. The DSCP input queue threshold map appears as a matrix. The d1 column specifies the most-significant digit of the DSCP number; the d2 row specifies the least-significant digit in the DSCP number. The intersection of the d1 and the d2 values provides the queue ID and threshold ID; for example, queue 2 and threshold 1 (02-01). The CoS input queue threshold map shows the CoS value in the top row and the corresponding queue ID and threshold ID in the second row; for example, queue 2 and threshold 2 (2-2).</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default CoS input queue threshold map or the default DSCP input queue threshold map, use the `no mls qos srr-queue input cos-map` or the `no mls qos srr-queue input dscp-map` global configuration command. To return to the default WTD threshold percentages, use the `no mls qos srr-queue input threshold queue-id` global configuration command.
This example shows how to map DSCP values 0 to 6 to ingress queue 1 and to threshold 1 with a drop threshold of 50 percent. It maps DSCP values 20 to 26 to ingress queue 1 and to threshold 2 with a drop threshold of 70 percent:

```
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 1 0 1 2 3 4 5 6
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 20 21 22 23 24 25 26
Switch(config)# mls qos srr-queue input threshold 1 50 70
```

In this example, the DSCP values (0 to 6) are assigned the WTD threshold of 50 percent and will be dropped sooner than the DSCP values (20 to 26) assigned to the WTD threshold of 70 percent.

Allocating Buffer Space Between the Ingress Queues

You define the ratio (allocate the amount of space) with which to divide the ingress buffers between the two queues. The buffer and the bandwidth allocation control how much data can be buffered before packets are dropped.

Beginning in privileged EXEC mode, follow these steps to allocate the buffers between the ingress queues. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>mls qos srr-queue input buffers</th>
</tr>
</thead>
</table>
| | percentage1 percentage2 | Allocate the buffers between the ingress queues
| | | By default 90 percent of the buffers are allocated to queue 1, and 10 percent of the buffers are allocated to queue 2.
| | | For percentage1 percentage2, the range is 0 to 100. Separate each value with a space.
| | | You should allocate the buffers so that the queues can handle any incoming bursty traffic.

| Step 3 | end | Return to privileged EXEC mode. |

<table>
<thead>
<tr>
<th>Step 4</th>
<th>show mls qos interface buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>show mls qos input-queue</td>
</tr>
</tbody>
</table>

| Step 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default setting, use the `no mls qos srr-queue input buffers` global configuration command.

This example shows how to allocate 60 percent of the buffer space to ingress queue 1 and 40 percent of the buffer space to ingress queue 2:

```
Switch(config)# mls qos srr-queue input buffers 60 40
```

Allocating Bandwidth Between the Ingress Queues

You need to specify how much of the available bandwidth is allocated between the ingress queues. The ratio of the weights is the ratio of the frequency in which the SRR scheduler sends packets from each queue. The bandwidth and the buffer allocation control how much data can be buffered before packets are dropped. On ingress queues, SRR operates only in shared mode.
Beginning in privileged EXEC mode, follow these steps to allocate bandwidth between the ingress queues. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos srr-queue input bandwidth weight1 weight2</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos interface queueing</td>
</tr>
<tr>
<td>or</td>
<td>show mls qos input-queue</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no mls qos srr-queue input bandwidth global configuration command.

This example shows how to assign the ingress bandwidth to the queues. Priority queueing is disabled, and the shared bandwidth ratio allocated to queue 1 is 25/(25+75) and to queue 2 is 75/(25+75):

Switch(config)# mls qos srr-queue input priority-queue 2 bandwidth 0
Switch(config)# mls qos srr-queue input bandwidth 25 75

Configuring the Ingress Priority Queue

You should use the priority queue only for traffic that needs to be expedited (for example, voice traffic, which needs minimum delay and jitter).

The priority queue is guaranteed part of the bandwidth to reduce the delay and jitter under heavy network traffic on an oversubscribed ring (when there is more traffic than the backplane can carry, and the queues are full and dropping frames).

SRR services the priority queue for its configured weight as specified by the bandwidth keyword in the mls qos srr-queue input priority-queue queue-id bandwidth weight global configuration command. Then, SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the mls qos srr-queue input bandwidth weight1 weight2 global configuration command.
Beginning in privileged EXEC mode, follow these steps to configure the priority queue. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>mls qos srr-queue input priority-queue queue-id bandwidth weight</td>
<td>Assign a queue as the priority queue and guarantee bandwidth on the stack or internal ring if the ring is congested. By default, the priority queue is queue 2, and 10 percent of the bandwidth is allocated to it. - For <code>queue-id</code>, the range is 1 to 2. - For <code>bandwidth weight</code>, assign the bandwidth percentage of the stack or internal ring. The range is 0 to 40. The amount of bandwidth that can be guaranteed is restricted because a large value affects the entire ring and can degrade the switch or stack performance.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>show mls qos interface queueing</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>show mls qos input-queue</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no mls qos srr-queue input priority-queue queue-id` global configuration command. To disable priority queueing, set the bandwidth weight to 0, for example, `mls qos srr-queue input priority-queue queue-id bandwidth 0`.

This example shows how to assign the ingress bandwidths to the queues. Queue 1 is the priority queue with 10 percent of the bandwidth allocated to it. The bandwidth ratios allocated to queues 1 and 2 is 4/(4+4). SRR services queue 1 (the priority queue) first for its configured 10 percent bandwidth. Then SRR equally shares the remaining 90 percent of the bandwidth between queues 1 and 2 by allocating 45 percent to each queue:

```
Switch(config)# mls qos srr-queue input priority-queue 1 bandwidth 10
Switch(config)# mls qos srr-queue input bandwidth 4 4
```

Configuring Egress Queue Characteristics

Depending on the complexity of your network and your QoS solution, you might need to perform all of the tasks in the next sections. You will need to make decisions about these characteristics:

- Which packets are mapped by DSCP or CoS value to each queue and threshold ID?
- What drop percentage thresholds apply to the queue-set (four egress queues per port), and how much reserved and maximum memory is needed for the traffic type?
- How much of the fixed buffer space is allocated to the queue-set?
- Does the bandwidth of the port need to be rate limited?
- How often should the egress queues be serviced and which technique (shaped, shared, or both) should be used?
These sections contain this configuration information:

- Configuration Guidelines, page 1-85
- Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set, page 1-85 (optional)
- Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID, page 1-87 (optional)
- Configuring SRR Shaped Weights on Egress Queues, page 1-89 (optional)
- Configuring SRR Shared Weights on Egress Queues, page 1-90 (optional)
- Configuring the Egress Expedite Queue, page 1-90 (optional)
- Limiting the Bandwidth on an Egress Interface, page 1-91 (optional)

Configuration Guidelines

Follow these guidelines when the expedite queue is enabled or the egress queues are serviced based on their SRR weights:

- If the egress expedite queue is enabled, it overrides the SRR shaped and shared weights for queue 1.
- If the egress expedite queue is disabled and the SRR shaped and shared weights are configured, the shaped mode overrides the shared mode for queue 1, and SRR services this queue in shaped mode.
- If the egress expedite queue is disabled and the SRR shaped weights are not configured, SRR services this queue in shared mode.

Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set

You can guarantee the availability of buffers, set WTD thresholds, and configure the maximum allocation for a queue-set by using the `mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold` global configuration command.

Each threshold value is a percentage of the queue’s allocated buffers, which you specify by using the `mls qos queue-set output qset-id buffers allocation1 ... allocation4` global configuration command. The queues use WTD to support distinct drop percentages for different traffic classes.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.
Beginning in privileged EXEC mode, follow these steps to configure the memory allocation and to drop thresholds for a queue-set. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos queue-set output qset-id buffers allocation1 ... allocation4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>queue-set qset-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
</tbody>
</table>
Configuring Standard QoS

To return to the default setting, use the `no mls qos queue-set output qset-id buffers` global configuration command. To return to the default WTD threshold percentages, use the `no mls qos queue-set output qset-id threshold [queue-id]` global configuration command.

This example shows how to map a port to queue-set 2. It allocates 40 percent of the buffer space to egress queue 1 and 20 percent to egress queues 2, 3, and 4. It configures the drop thresholds for queue 2 to 40 and 60 percent of the allocated memory, guarantees (reserves) 100 percent of the allocated memory, and configures 200 percent as the maximum memory that this queue can have before packets are dropped:

```bash
Switch(config)# mls qos queue-set output 2 buffers 40 20 20 20
Switch(config)# mls qos queue-set output 2 threshold 2 40 60 100 200
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# queue-set 2
```

Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID

You can prioritize traffic by placing packets with particular DSCPs or costs of service into certain queues and adjusting the queue thresholds so that packets with lower priorities are dropped.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of egress queues and if these settings do not meet your QoS solution.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show mls qos interface [interface-id] buffers</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Command Purpose

- `show mls qos interface [interface-id] buffers`: Verifies your entries.
- `copy running-config startup-config`: (Optional) Saves your entries in the configuration file.
Beginning in privileged EXEC mode, follow these steps to map DSCP or CoS values to an egress queue and to a threshold ID. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>mls qos srr-queue output dscp-map queue queue-id threshold threshold-id dscp1...dscp8</code> or <code>mls qos srr-queue output cos-map queue queue-id threshold threshold-id cos1...cos8</code></td>
</tr>
<tr>
<td></td>
<td>Map DSCP or CoS values to an egress queue and to a threshold ID.</td>
</tr>
<tr>
<td></td>
<td>By default, DSCP values 0–15 are mapped to queue 2 and threshold 1. DSCP values 16–31 are mapped to queue 3 and threshold 1. DSCP values 32–39 and 48–63 are mapped to queue 4 and threshold 1. DSCP values 40–47 are mapped to queue 1 and threshold 1.</td>
</tr>
<tr>
<td></td>
<td>By default, CoS values 0 and 1 are mapped to queue 2 and threshold 1. CoS values 2 and 3 are mapped to queue 3 and threshold 1. CoS values 4, 6, and 7 are mapped to queue 4 and threshold 1. CoS value 5 is mapped to queue 1 and threshold 1.</td>
</tr>
<tr>
<td></td>
<td>• For <code>queue-id</code>, the range is 1 to 4.</td>
</tr>
<tr>
<td></td>
<td>• For <code>threshold-id</code>, the range is 1 to 3. The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state.</td>
</tr>
<tr>
<td></td>
<td>• For <code>dscp1...dscp8</code>, enter up to eight values, and separate each value with a space. The range is 0 to 63.</td>
</tr>
<tr>
<td></td>
<td>• For <code>cos1...cos8</code>, enter up to eight values, and separate each value with a space. The range is 0 to 7.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show mls qos maps</code></td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>The DSCP output queue threshold map appears as a matrix. The d1 column specifies the most-significant digit of the DSCP number; the d2 row specifies the least-significant digit in the DSCP number. The intersection of the d1 and the d2 values provides the queue ID and threshold ID; for example, queue 2 and threshold 1 (02-01).</td>
</tr>
<tr>
<td></td>
<td>The CoS output queue threshold map shows the CoS value in the top row and the corresponding queue ID and threshold ID in the second row; for example, queue 2 and threshold 2 (2-2).</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default DSCP output queue threshold map or the default CoS output queue threshold map, use the `no mls qos srr-queue output dscp-map` or the `no mls qos srr-queue output cos-map` global configuration command.

This example shows how to map DSCP values 10 and 11 to egress queue 1 and to threshold 2:

```
Switch(config)# mls qos srr-queue output dscp-map queue 1 threshold 2 10 11
```
Configuring SRR Shaped Weights on Egress Queues

You can specify how much of the available bandwidth is allocated to each queue. The ratio of the weights is the ratio of frequency in which the SRR scheduler sends packets from each queue.

You can configure the egress queues for shaped or shared weights, or both. Use shaping to smooth bursty traffic or to provide a smoother output over time. For information about shaped weights, see the “SRR Shaping and Sharing” section on page 1-15. For information about shared weights, see the “Configuring SRR Shared Weights on Egress Queues” section on page 1-90.

Beginning in privileged EXEC mode, follow these steps to assign the shaped weights and to enable bandwidth shaping on the four egress queues mapped to a port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>srr-queue bandwidth shape weight1 weight2 weight3 weight4</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos interface interface-id queueing</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no srr-queue bandwidth shape** interface configuration command.

This example shows how to configure bandwidth shaping on queue 1. Because the weight ratios for queues 2, 3, and 4 are set to 0, these queues operate in shared mode. The bandwidth weight for queue 1 is 1/8, which is 12.5 percent:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth shape 8 0 0 0
```
Chapter 1 Configuring QoS

Configuring SRR Shared Weights on Egress Queues

In shared mode, the queues share the bandwidth among them according to the configured weights. The bandwidth is guaranteed at this level but not limited to it. For example, if a queue empties and does not require a share of the link, the remaining queues can expand into the unused bandwidth and share it among them. With sharing, the ratio of the weights controls the frequency of dequeuing; the absolute values are meaningless.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Beginning in privileged EXEC mode, follow these steps to assign the shared weights and to enable bandwidth sharing on the four egress queues mapped to a port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>srr-queue bandwidth share weight1 weight2 weight3 weight4</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos interface interface-id queueing</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no srr-queue bandwidth share interface configuration command.

This example shows how to configure the weight ratio of the SRR scheduler running on an egress port. Four queues are used, and the bandwidth ratio allocated for each queue in shared mode is 1/(1+2+3+4), 2/(1+2+3+4), 3/(1+2+3+4), and 4/(1+2+3+4), which is 10 percent, 20 percent, 30 percent, and 40 percent for queues 1, 2, 3, and 4. This means that queue 4 has four times the bandwidth of queue 1, twice the bandwidth of queue 2, and one-and-a-third times the bandwidth of queue 3.

Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth share 1 2 3 4

Configuring the Egress Expedite Queue

You can ensure that certain packets have priority over all others by queuing them in the egress expedite queue. SRR services this queue until it is empty before servicing the other queues.
Beginning in privileged EXEC mode, follow these steps to enable the egress expedite queue. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: mls qos</td>
<td>Enable QoS on a switch.</td>
</tr>
<tr>
<td>Step 3: interface interface-id</td>
<td>Specify the egress port, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 4: priority-queue out</td>
<td>Enable the egress expedite queue, which is disabled by default.</td>
</tr>
<tr>
<td></td>
<td>When you configure this command, the SRR weight and queue size ratios</td>
</tr>
<tr>
<td></td>
<td>are affected because there is one fewer queue participating in SRR. This</td>
</tr>
<tr>
<td></td>
<td>means that weight1 in the srr-queue bandwidth shape or the srr-queue</td>
</tr>
<tr>
<td></td>
<td>bandwidth share command is ignored (not used in the ratio calculation).</td>
</tr>
<tr>
<td>Step 5: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the egress expedite queue, use the no priority-queue out interface configuration command.

This example shows how to enable the egress expedite queue when the SRR weights are configured. The egress expedite queue overrides the configured SRR weights.

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# srr-queue bandwidth shape 25 0 0 0
Switch(config-if)# srr-queue bandwidth share 30 20 25 25
Switch(config-if)# priority-queue out
Switch(config-if)# end
```

Limiting the Bandwidth on an Egress Interface

You can limit the bandwidth on an egress port. For example, if a customer pays only for a small percentage of a high-speed link, you can limit the bandwidth to that amount.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Beginning in privileged EXEC mode, follow these steps to limit the bandwidth on an egress port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify the port to be rate limited, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3: srr-queue bandwidth limit weight1</td>
<td>Specify the percentage of the port speed to which the port should be limited. The range is 10 to 90.</td>
</tr>
<tr>
<td></td>
<td>By default, the port is not rate limited and is set to 100 percent.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring QoS

Displaying Standard QoS Information

The commands listed in Table 1-15 apply to both IPv4 and IPv6 traffic when a dual-ipv4-and-ipv6 SDM templates is configured.

Table 1-15 Commands for Displaying Standard QoS Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show class-map [class-map-name]</td>
<td>Display QoS class maps, which define the match criteria to classify traffic.</td>
</tr>
<tr>
<td>show mls qos</td>
<td>Display global QoS configuration information.</td>
</tr>
<tr>
<td>show mls qos aggregate-policer</td>
<td>Display the aggregate policer configuration.</td>
</tr>
<tr>
<td>show mls qos input-queue</td>
<td>Display QoS settings for the ingress queues.</td>
</tr>
<tr>
<td>show mls qos interface [interface-id] [buffers</td>
<td>policers</td>
</tr>
<tr>
<td>show mls qos queue-set [qset-id]</td>
<td>Display QoS settings for the egress queues.</td>
</tr>
<tr>
<td>show mls qos vlan vlan-id</td>
<td>Display the policy maps attached to the specified SVI.</td>
</tr>
<tr>
<td>show policy-map [policy-map-name [class class-map-name]]</td>
<td>Display QoS policy maps, which define classification criteria for incoming traffic.</td>
</tr>
<tr>
<td>Note Do not use the show policy-map interface privileged EXEC command to display classification information for incoming traffic. The control-plane and interface keywords are not supported, and the statistics shown in the display should be ignored.</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>include rewrite</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no srr-queue bandwidth limit** interface configuration command.

This example shows how to limit the bandwidth on a port to 80 percent:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth limit 80
```

When you configure this command to 80 percent, the port is idle 20 percent of the time. The line rate drops to 80 percent of the connected speed, which is 800 Mb/s. These values are not exact because the hardware adjusts the line rate in increments of six.
CHAPTER 1

Configuring IPv6 ACLs

You can filter IP Version 6 (IPv6) traffic by creating IPv6 access control lists (ACLs) and applying them to interfaces similarly to the way that you create and apply IP Version 4 (IPv4) named ACLs. You can also create and apply input router ACLs to filter Layer 3 management traffic when the switch is running the IP base feature set.

Note
IPv6 ACLs are not supported on switches running the LAN base feature set.

This chapter includes information about configuring IPv6 ACLs on the switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note
To use IPv6, you must configure the dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch. You select the template by entering the `sdm prefer dual-ipv4-and-ipv6 {default | routing | vlan}` global configuration command.

For related information, see these chapters:
- For more information about SDM templates, see Chapter 1, “Configuring SDM Templates.”
- For information about IPv6 on the switch, see Chapter 1, “Configuring IPv6 Unicast Routing.”.
- For information about ACLs on the switch, see Chapter 1, “Configuring Network Security with ACLs.”

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release or the Cisco IOS documentation referenced in the procedures.

This chapter contains these sections:
- Understanding IPv6 ACLs, page 1-2
- Configuring IPv6 ACLs, page 1-4
- Displaying IPv6 ACLs, page 1-8
Understanding IPv6 ACLs

A switch supports two types of IPv6 ACLs:

- IPv6 router ACLs are supported on outbound or inbound traffic on Layer 3 interfaces, which can be routed ports, switch virtual interfaces (SVIs), or Layer 3 EtherChannels. IPv6 router ACLs apply only to IPv6 packets that are routed.

- IPv6 port ACLs are supported on inbound traffic on Layer 2 interfaces only. IPv6 port ACLs are applied to all IPv6 packets entering the interface.

A switch running the IP base feature set supports only input router IPv6 ACLs. It does not support port ACLs or output IPv6 router ACLs.

Note
If you configure unsupported IPv6 ACLs, an error message appears and the configuration does not take affect.

The switch does not support VLAN ACLs (VLAN maps) for IPv6 traffic.

Note
For more information about ACL support on the switch, see Chapter 1, “Configuring Network Security with ACLs.”

You can apply both IPv4 and IPv6 ACLs to an interface. As with IPv4 ACLs, IPv6 port ACLs take precedence over router ACLs:

- When an input router ACL and input port ACL exist in an SVI, packets received on ports to which a port ACL is applied are filtered by the port ACL. Routed IP packets received on other ports are filtered by the router ACL. Other packets are not filtered.

- When an output router ACL and input port ACL exist in an SVI, packets received on the ports to which a port ACL is applied are filtered by the port ACL. Outgoing routed IPv6 packets are filtered by the router ACL. Other packets are not filtered.

Note
If any port ACL (IPv4, IPv6, or MAC) is applied to an interface, that port ACL is used to filter packets, and any router ACLs attached to the SVI of the port VLAN are ignored.

These sections describe some characteristics of IPv6 ACLs on the switch:

- Supported ACL Features, page 1-2
- IPv6 ACL Limitations, page 1-3
- IPv6 ACLs and Switch Stacks, page 1-3

Supported ACL Features

IPv6 ACLs on the switch have these characteristics:

- Fragmented frames (the `fragments` keyword as in IPv4) are supported.

- The same statistics supported in IPv4 are supported for IPv6 ACLs.

- If the switch runs out of hardware space, packets associated with the ACL are forwarded to the CPU, and the ACLs are applied in software.
Chapter 1 Configuring IPv6 ACLs

Understanding IPv6 ACLs

- Routed or bridged packets with hop-by-hop options have IPv6 ACLs applied in software.
- Logging is supported for router ACLs, but not for port ACLs.
- The switch supports IPv6 address-matching for a full range of prefix-lengths.

IPv6 ACL Limitations

With IPv4, you can configure standard and extended numbered IP ACLs, named IP ACLs, and MAC ACLs. IPv6 supports only named ACLs.

The switch supports most Cisco IOS-supported IPv6 ACLs with some exceptions:

- The switch does not support matching on these keywords: flowlabel, routing header, and undetermined-transport.
- The switch does not support reflexive ACLs (the reflect keyword).
- This release supports only port ACLs and router ACLs for IPv6; it does not support VLAN ACLs (VLAN maps).
- The switch does not apply MAC-based ACLs on IPv6 frames.
- You cannot apply IPv6 port ACLs to Layer 2 EtherChannels.
- The switch does not support output port ACLs.
- Output router ACLs and input port ACLs for IPv6 are supported only on switch stacks. Switches support only control plane (incoming) IPv6 ACLs.
- When configuring an ACL, there is no restriction on keywords entered in the ACL, regardless of whether or not they are supported on the platform. When you apply the ACL to an interface that requires hardware forwarding (physical ports or SVIs), the switch checks to determine whether or not the ACL can be supported on the interface. If not, attaching the ACL is rejected.
- If an ACL is applied to an interface and you attempt to add an access control entry (ACE) with an unsupported keyword, the switch does not allow the ACE to be added to the ACL that is currently attached to the interface.

IPv6 ACLs and Switch Stacks

The stack master supports IPv6 ACLs in hardware and distributes the IPv6 ACLs to the stack members.

Note

For full IPv6 functionality in a switch stack, all stack members must be running the IP services feature set.

If a new switch takes over as stack master, it distributes the ACL configuration to all stack members. The member switches sync up the configuration distributed by the new stack master and flush out entries that are not required.

When an ACL is modified, attached to, or detached from an interface, the stack master distributes the change to all stack members.
Configuring IPv6 ACLs

Before configuring IPv6 ACLs, you must select one of the dual IPv4 and IPv6 SDM templates.

To filter IPv6 traffic, you perform these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Create an IPv6 ACL, and enter IPv6 access list configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configure the IPv6 ACL to block (deny) or pass (permit) traffic.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Apply the IPv6 ACL to an interface. For router ACLs, you must also configure an IPv6 address on the Layer 3 interface to which the ACL is applied.</td>
</tr>
</tbody>
</table>

These sections describe how to configure and apply IPv6 ACLs:

- Default IPv6 ACL Configuration, page 1-4
- Interaction with Other Features and Switches, page 1-4
- Creating IPv6 ACLs, page 1-5
- Applying an IPv6 ACL to an Interface, page 1-7

Default IPv6 ACL Configuration

There are no IPv6 ACLs configured or applied.

Interaction with Other Features and Switches

- If an IPv6 router ACL is configured to deny a packet, the packet is not routed. A copy of the packet is sent to the Internet Control Message Protocol (ICMP) queue to generate an ICMP unreachable message for the frame.
- If a bridged frame is to be dropped due to a port ACL, the frame is not bridged.
- You can create both IPv4 and IPv6 ACLs on a switch or switch stack, and you can apply both IPv4 and IPv6 ACLs to the same interface. Each ACL must have a unique name; an error message appears if you try to use a name that is already configured.

You use different commands to create IPv4 and IPv6 ACLs and to attach IPv4 or IPv6 ACLs to the same Layer 2 or Layer 3 interface. If you use the wrong command to attach an ACL (for example, an IPv4 command to attach an IPv6 ACL), you receive an error message.

- You cannot use MAC ACLs to filter IPv6 frames. MAC ACLs can only filter non-IP frames.
- If the hardware memory is full, for any additional configured ACLs, packets are forwarded to the CPU, and the ACLs are applied in software.
Creating IPv6 ACLs

Beginning in privileged EXEC mode, follow these steps to create an IPv6 ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 access-list access-list-name</td>
</tr>
<tr>
<td>Step 3a</td>
<td>{deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 3b

Command

```
{deny | permit} tcp
  [source-ipv6-prefix/prefix-length | any | host source-ipv6-address]
  [operator [port-number]]
  [destination-ipv6-prefix/prefix-length | any | host
destination-ipv6-address]
  [operator [port-number]]
  [ack] [dscp value]
  [established] [fin] [log]
  [log-input] [neq {port | protocol}] [psh] [range
  {port | protocol}] [rst]
  [routing] [sequence value]
  [syn] [time-range name]
  [urg]
```

Purpose

(Optional) Define a TCP access list and the access conditions.

Enter `tcp` for Transmission Control Protocol. The parameters are the same as those
described in Step 3a, with these additional optional parameters:

- **ack**—Acknowledgment bit set.
- **established**—An established connection. A match occurs if the TCP datagram has
 the ACK or RST bits set.
- **fin**—Finished bit set; no more data from sender.
- **neq {port | protocol}**—Matches only packets that are not on a given port number.
- **psh**—Push function bit set.
- **range {port | protocol}**—Matches only packets in the port number range.
- **rst**—Reset bit set.
- **syn**—Synchronize bit set.
- **urg**—Urgent pointer bit set.

Step 3c

Command

```
{deny | permit} udp
  [source-ipv6-prefix/prefix-length | any | host source-ipv6-address]
  [operator [port-number]]
  [destination-ipv6-prefix/prefix-length | any | host
destination-ipv6-address]
  [operator [port-number]]
  [dscp value] [log]
  [log-input] [neq {port | protocol}] [psh] [range
  {port | protocol}] [routing]
  [sequence value]
  [time-range name]
```

Purpose

(Optional) Define a UDP access list and the access conditions.

Enter `udp` for the User Datagram Protocol. The UDP parameters are the same as those
described for TCP, except that the `[operator [port]]` port number or name must be a
UDP port number or name, and the `established` parameter is not valid for UDP.

Step 3d

Command

```
{deny | permit} icmp
  [source-ipv6-prefix/prefix-length | any | host source-ipv6-address]
  [operator [port-number]]
  [destination-ipv6-prefix/prefix-length | any | host
destination-ipv6-address]
  [operator [port-number]]
  [icmp-type [icmp-code] | icmp-message] [dscp
  value] [log] [log-input]
  [routing] [sequence value]
  [time-range name]
```

Purpose

(Optional) Define an ICMP access list and the access conditions.

Enter `icmp` for Internet Control Message Protocol. The ICMP parameters are the same
as those described for most IP protocols in Step 3a, with the addition of the ICMP
message type and code parameters. These optional keywords have these meanings:

- **icmp-type**—Enter to filter by ICMP message type, a number from 0 to 255.
- **icmp-code**—Enter to filter ICMP packets that are filtered by the ICMP message
code type, a number from 0 to 255.
- **icmp-message**—Enter to filter ICMP packets by the ICMP message type name or
 the ICMP message type and code name. To see a list of ICMP message type names
 and code names, use the ? key or see command reference for this release.

Step 4

Command

```
end
```

Purpose

Return to privileged EXEC mode.
Use the `no {deny | permit}` IPv6 access-list configuration commands with keywords to remove the deny or permit conditions from the specified access list.

This example configures the IPv6 access list named CISCO. The first deny entry in the list denies all packets that have a destination TCP port number greater than 5000. The second deny entry denies packets that have a source UDP port number less than 5000. The second deny also logs all matches to the console. The first permit entry in the list permits all ICMP packets. The second permit entry in the list permits all other traffic. The second permit entry is necessary because an implicit deny -all condition is at the end of each IPv6 access list.

```
Switch(config)# ipv6 access-list CISCO
Switch(config-ipv6-acl)# deny tcp any any gt 5000
Switch(config-ipv6-acl)# deny ::/0 lt 5000 ::/0 log
Switch(config-ipv6-acl)# permit icmp any any
Switch(config-ipv6-acl)# permit any any
```

Applying an IPv6 ACL to an Interface

This section describes how to apply IPv6 ACLs to network interfaces. You can apply an ACL to outbound or inbound traffic on Layer 3 interfaces, or to inbound traffic on Layer 2 interfaces. You can also apply ACLs only to inbound management traffic on Layer 3 interfaces.

Beginning in privileged EXEC mode, follow these steps to control access to an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>Step 6</td>
</tr>
<tr>
<td><code>show ipv6 access-list</code></td>
<td>Verify the access list configuration.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Step 2</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Identify a Layer 2 interface (for port ACLs) or Layer 3 interface (for router ACLs) on which to apply an access list, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Note</td>
<td>Switches running the IP base feature set do not support port ACLs.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Step 4</td>
</tr>
<tr>
<td><code>no switchport</code></td>
<td>If applying a router ACL, change the interface from Layer 2 mode (the default) to Layer 3 mode.</td>
</tr>
<tr>
<td><code>ipv6 address ipv6-address</code></td>
<td>Configure an IPv6 address on a Layer 3 interface (for router ACLs).</td>
</tr>
<tr>
<td>Note</td>
<td>This command is not required on Layer 2 interfaces or if the interface has already been configured with an explicit IPv6 address.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Step 6</td>
</tr>
<tr>
<td>`ipv6 traffic-filter access-list-name {in</td>
<td>out}`</td>
</tr>
<tr>
<td>Note</td>
<td>The <code>out</code> keyword is not supported for Layer 2 interfaces (port ACLs). If the switch is running the IP base feature set, the <code>out</code> keyword is not supported for Layer 3 interfaces.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify the access list configuration.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Displaying IPv6 ACLs

You can display information about all configured access lists, all IPv6 access lists, or a specific access list by using one or more of the privileged EXEC commands in Table 1-1.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show access-lists</code></td>
<td>Display all access lists configured on the switch.</td>
</tr>
<tr>
<td><code>show ipv6 access-list</code></td>
<td>Display all configured IPv6 access list or the access list specified by name.</td>
</tr>
</tbody>
</table>

This is an example of the output from the `show access-lists` privileged EXEC command. The output shows all access lists that are configured on the switch or switch stack.

```
Switch #show access-lists
Extended IP access list hello
  10 permit ip any any
IPv6 access list ipv6
  permit ipv6 any any sequence 10
```

This is an example of the output from the `show ipv6 access-list` privileged EXEC command. The output shows only IPv6 access lists configured on the switch or switch stack.

```
Switch# show ipv6 access-list
IPv6 access list inbound
  permit tcp any any eq bgp (8 matches) sequence 10
  permit tcp any any eq telnet (15 matches) sequence 20
  permit udp any any sequence 30

IPv6 access list outbound
  deny udp any any sequence 10
  deny tcp any any eq telnet sequence 20
```
Configuring EtherChannels and Link-State Tracking

This chapter describes how to configure EtherChannels on Layer 2 and Layer 3 ports on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. EtherChannel provides fault-tolerant high-speed links between switches, routers, and servers. You can use it to increase the bandwidth between the wiring closets and the data center, and you can deploy it anywhere in the network where bottlenecks are likely to occur. EtherChannel provides automatic recovery for the loss of a link by redistributing the load across the remaining links. If a link fails, EtherChannel redirects traffic from the failed link to the remaining links in the channel without intervention.

Note

Layer 3 EtherChannels are not supported on switches running the LAN base feature set.

This chapter also describes how to configure link-state tracking.

Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

- Understanding EtherChannels, page 1-1
- Configuring EtherChannels, page 1-11
- Displaying EtherChannel, PAgP, and LACP Status, page 1-24
- Understanding Link-State Tracking, page 1-25
- Configuring Link-State Tracking, page 1-27

Understanding EtherChannels

- EtherChannel Overview, page 1-2
- Port-Channel Interfaces, page 1-4
- Port Aggregation Protocol, page 1-5
- Link Aggregation Control Protocol, page 1-7
- EtherChannel On Mode, page 1-8
EtherChannel Overview

An EtherChannel consists of individual Gigabit Ethernet links bundled into a single logical link as shown in Figure 1-1.

![Figure 1-1 Typical EtherChannel Configuration](image)

The EtherChannel provides full-duplex bandwidth up to 8 Gb/s (Gigabit EtherChannel) or 80 Gb/s (10-Gigabit EtherChannel) between your switch and another switch or host.

Each EtherChannel can consist of up to eight compatibly configured Ethernet ports. All ports in each EtherChannel must be configured as either Layer 2 or Layer 3 ports. The number of EtherChannels is limited to 48. For more information, see the “EtherChannel Configuration Guidelines” section on page 1-12. The EtherChannel Layer 3 ports are made up of routed ports. Routed ports are physical ports configured to be in Layer 3 mode by using the `no switchport` interface configuration command. For more information, see the Chapter 1, “Configuring Interface Characteristics.”

Note

Layer 3 EtherChannels are not supported on switches running the LAN base feature set.
You can configure an EtherChannel in one of these modes: Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), or On. Configure both ends of the EtherChannel in the same mode:

- When you configure one end of an EtherChannel in either PAgP or LACP mode, the system negotiates with the other end of the channel to determine which ports should become active. If the remote port cannot negotiate an EtherChannel, the local port is put into an independent state and continues to carry data traffic as would any other single link. The port configuration does not change, but the port does not participate in the EtherChannel.

- When you configure an EtherChannel in the **on** mode, no negotiations take place. The switch forces all compatible ports to become active in the EtherChannel. The other end of the channel (on the other switch) must also be configured in the **on** mode; otherwise, packet loss can occur.

You can create an EtherChannel on a standalone switch, on a single switch in the stack, or on multiple switches in the stack (known as cross-stack EtherChannel). See Figure 1-2 and Figure 1-3.

If a link within an EtherChannel fails, traffic previously carried over that failed link moves to the remaining links within the EtherChannel. If traps are enabled on the switch, a trap is sent for a failure that identifies the switch, the EtherChannel, and the failed link. Inbound broadcast and multicast packets on one link in an EtherChannel are blocked from returning on any other link of the EtherChannel.

Figure 1-2 Single-Switch EtherChannel
Port-Channel Interfaces

When you create an EtherChannel, a port-channel logical interface is involved:

- With Layer 2 ports, use the `channel-group` interface configuration command to dynamically create the port-channel logical interface.

 You also can use the `interface port-channel port-channel-number` global configuration command to manually create the port-channel logical interface, but then you must use the `channel-group channel-group-number` command to bind the logical interface to a physical port. The `channel-group-number` can be the same as the `port-channel-number`, or you can use a new number. If you use a new number, the `channel-group` command dynamically creates a new port channel.

- With Layer 3 ports, you should manually create the logical interface by using the `interface port-channel` global configuration command followed by the `no switchport` interface configuration command. Then you manually assign an interface to the EtherChannel by using the `channel-group` interface configuration command.

For both Layer 2 and Layer 3 ports, the `channel-group` command binds the physical port and the logical interface together as shown in Figure 1-4.

Each EtherChannel has a port-channel logical interface numbered from 1 to 48. This port-channel interface number corresponds to the one specified with the `channel-group` interface configuration command.
After you configure an EtherChannel, configuration changes applied to the port-channel interface apply to all the physical ports assigned to the port-channel interface. Configuration changes applied to the physical port affect only the port where you apply the configuration. To change the parameters of all ports in an EtherChannel, apply configuration commands to the port-channel interface, for example, spanning-tree commands or commands to configure a Layer 2 EtherChannel as a trunk.

Port Aggregation Protocol

The Port Aggregation Protocol (PAgP) is a Cisco-proprietary protocol that can be run only on Cisco switches and on those switches licensed by vendors to support PAgP. PAgP facilitates the automatic creation of EtherChannels by exchanging PAgP packets between Ethernet ports. You can use PAgP only in single-switch EtherChannel configurations; PAgP cannot be enabled on cross-stack EtherChannels. For more information, see the “EtherChannel Configuration Guidelines” section on page 1-12.

By using PAgP, the switch or switch stack learns the identity of partners capable of supporting PAgP and the capabilities of each port. It then dynamically groups similarly configured ports (on a single switch in the stack) into a single logical link (channel or aggregate port). Similarly configured ports are grouped based on hardware, administrative, and port parameter constraints. For example, PAgP groups the ports with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, PAgP adds the group to the spanning tree as a single switch port.
Chapter 1 Configuring EtherChannels and Link-State Tracking

Understanding EtherChannels

PAgP Modes

Table 1-1 shows the user-configurable EtherChannel PAgP modes for the `channel-group` interface configuration command.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Places a port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This setting minimizes the transmission of PAgP packets. This mode is not supported when the EtherChannel members are from different switches in the switch stack (cross-stack EtherChannel).</td>
</tr>
<tr>
<td>desirable</td>
<td>Places a port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This mode is not supported when the EtherChannel members are from different switches in the switch stack (cross-stack EtherChannel).</td>
</tr>
</tbody>
</table>

Switch ports exchange PAgP packets only with partner ports configured in the `auto` or `desirable` modes. Ports configured in the `on` mode do not exchange PAgP packets.

Both the `auto` and `desirable` modes enable ports to negotiate with partner ports to form an EtherChannel based on criteria such as port speed and, for Layer 2 EtherChannels, trunking state and VLAN numbers.

Ports can form an EtherChannel when they are in different PAgP modes as long as the modes are compatible. For example:

- A port in the `desirable` mode can form an EtherChannel with another port that is in the `desirable` or `auto` mode.
- A port in the `auto` mode can form an EtherChannel with another port in the `desirable` mode.

A port in the `auto` mode cannot form an EtherChannel with another port that is also in the `auto` mode because neither port starts PAgP negotiation.

If your switch is connected to a partner that is PAgP-capable, you can configure the switch port for nonsilent operation by using the `non-silent` keyword. If you do not specify `non-silent` with the `auto` or `desirable` mode, silent mode is assumed.

Use the silent mode when the switch is connected to a device that is not PAgP-capable and seldom, if ever, sends packets. An example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port connected to a silent partner prevents that switch port from ever becoming operational. However, the silent setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.

PAgP Interaction with Virtual Switches and Dual-Active Detection

A virtual switch can be two or more Catalyst 6500 core switches connected by virtual switch links (VSLs) that carry control and data traffic between them. One of the switches is in active mode. The others are in standby mode. For redundancy, remote switches, such as Catalyst 3750-E or 3560-E switches, are connected to the virtual switch by remote satellite links (RSLs).

If the VSL between two switches fails, one switch does not know the status of the other. Both switches could change to the active mode, causing a dual-active situation in the network with duplicate configurations (including duplicate IP addresses and bridge identifiers). The network might go down.
To prevent a dual-active situation, the core switches send PAgP protocol data units (PDUs) through the RSLs to the remote switches. The PAgP PDUs identify the active switch, and the remote switches forward the PDUs to core switches so that the core switches are in sync. If the active switch fails or resets, the standby switch takes over as the active switch. If the VSL goes down, one core switch knows the status of the other and does not change state.

PAgP Interaction with Other Features

The Dynamic Trunking Protocol (DTP) and the Cisco Discovery Protocol (CDP) send and receive packets over the physical ports in the EtherChannel. Trunk ports send and receive PAgP protocol data units (PDUs) on the lowest numbered VLAN.

In Layer 2 EtherChannels, the first port in the channel that comes up provides its MAC address to the EtherChannel. If this port is removed from the bundle, one of the remaining ports in the bundle provides its MAC address to the EtherChannel. For Layer 3 EtherChannels, the MAC address is allocated by the stack master as soon as the interface is created (through the `interface port-channel` global configuration command).

PAgP sends and receives PAgP PDUs only from ports that are up and have PAgP enabled for the auto or desirable mode.

Link Aggregation Control Protocol

The LACP is defined in IEEE 802.3ad and enables Cisco switches to manage Ethernet channels between switches that conform to the IEEE 802.3ad protocol. LACP facilitates the automatic creation of EtherChannels by exchanging LACP packets between Ethernet ports.

By using LACP, the switch or switch stack learns the identity of partners capable of supporting LACP and the capabilities of each port. It then dynamically groups similarly configured ports into a single logical link (channel or aggregate port). Similarly configured ports are grouped based on hardware, administrative, and port parameter constraints. For example, LACP groups the ports with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, LACP adds the group to the spanning tree as a single switch port.

LACP Modes

Table 1-2 shows the user-configurable EtherChannel LACP modes for the `channel-group` interface configuration command.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Places a port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets.</td>
</tr>
<tr>
<td>passive</td>
<td>Places a port into a passive negotiating state in which the port responds to LACP packets that it receives, but does not start LACP packet negotiation. This setting minimizes the transmission of LACP packets.</td>
</tr>
</tbody>
</table>

Both the `active` and `passive` LACP modes enable ports to negotiate with partner ports to an EtherChannel based on criteria such as port speed and, for Layer 2 EtherChannels, trunking state and VLAN numbers.
Ports can form an EtherChannel when they are in different LACP modes as long as the modes are compatible. For example:

- A port in the **active** mode can form an EtherChannel with another port that is in the **active** or **passive** mode.
- A port in the **passive** mode cannot form an EtherChannel with another port that is also in the **passive** mode because neither port starts LACP negotiation.

LACP Interaction with Other Features

The DTP and the CDP send and receive packets over the physical ports in the EtherChannel. Trunk ports send and receive LACP PDUs on the lowest numbered VLAN.

In Layer 2 EtherChannels, the first port in the channel that comes up provides its MAC address to the EtherChannel. If this port is removed from the bundle, one of the remaining ports in the bundle provides its MAC address to the EtherChannel. For Layer 3 EtherChannels, the MAC address is allocated by the stack master as soon as the interface is created through the `interface port-channel` global configuration command.

LACP sends and receives LACP PDUs only from ports that are up and have LACP enabled for the active or passive mode.

EtherChannel On Mode

EtherChannel **on** mode can be used to manually configure an EtherChannel. The **on** mode forces a port to join an EtherChannel without negotiations. The **on** mode can be useful if the remote device does not support PAgP or LACP. In the **on** mode, a usable EtherChannel exists only when the switches at both ends of the link are configured in the **on** mode.

Ports that are configured in the **on** mode in the same channel group must have compatible port characteristics, such as speed and duplex. Ports that are not compatible are suspended, even though they are configured in the **on** mode.

Caution

You should use care when using the **on** mode. This is a manual configuration, and ports on both ends of the EtherChannel must have the same configuration. If the group is misconfigured, packet loss or spanning-tree loops can occur.

Load-Balancing and Forwarding Methods

EtherChannel balances the traffic load across the links in a channel by reducing part of the binary pattern formed from the addresses in the frame to a numerical value that selects one of the links in the channel. EtherChannel load-balancing can use MAC addresses or IP addresses, source or destination addresses, or both source and destination addresses. The selected mode applies to all EtherChannels configured on the switch. You configure the load-balancing and forwarding method by using the `port-channel load-balance` global configuration command.

With source-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the source-MAC address of the incoming packet. Therefore, to provide load-balancing, packets from different hosts use different ports in the channel, but packets from the same host use the same port in the channel.
With destination-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the destination host’s MAC address of the incoming packet. Therefore, packets to the same destination are forwarded over the same port, and packets to a different destination are sent on a different port in the channel.

With source-and-destination MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on both the source and destination MAC addresses. This forwarding method, a combination source-MAC and destination-MAC address forwarding methods of load distribution, can be used if it is not clear whether source-MAC or destination-MAC address forwarding is better suited on a particular switch. With source-and-destination MAC-address forwarding, packets sent from host A to host B, host A to host C, and host C to host B could all use different ports in the channel.

With source-IP address-based forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the EtherChannel based on the source-IP address of the incoming packet. Therefore, to provide load-balancing, packets from different IP addresses use different ports in the channel, but packets from the same IP address use the same port in the channel.

With destination-IP address-based forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the EtherChannel based on the destination-IP address of the incoming packet. Therefore, to provide load-balancing, packets from the same IP source address sent to different IP destination addresses could be sent on different ports in the channel. But packets sent from different source IP addresses to the same destination IP address are always sent on the same port in the channel.

With source-and-destination IP address-based forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the EtherChannel based on both the source and destination IP addresses of the incoming packet. This forwarding method, a combination of source-IP and destination-IP address-based forwarding, can be used if it is not clear whether source-IP or destination-IP address-based forwarding is better suited on a particular switch. In this method, packets sent from the IP address A to IP address B, from IP address A to IP address C, and from IP address C to IP address B could all use different ports in the channel.

Different load-balancing methods have different advantages, and the choice of a particular load-balancing method should be based on the position of the switch in the network and the kind of traffic that needs to be load-distributed. In Figure 1-5, an EtherChannel of four workstations communicates with a router. Because the router is a single-MAC-address device, source-based forwarding on the switch EtherChannel ensures that the switch uses all available bandwidth to the router. The router is configured for destination-based forwarding because the large number of workstations ensures that the traffic is evenly distributed from the router EtherChannel.

Use the option that provides the greatest variety in your configuration. For example, if the traffic on a channel is going only to a single MAC address, using the destination-MAC address always chooses the same link in the channel. Using source addresses or IP addresses might result in better load-balancing.
EtherChannel and Switch Stacks

If a stack member that has ports participating in an EtherChannel fails or leaves the stack, the stack master removes the failed stack member switch ports from the EtherChannel. The remaining ports of the EtherChannel, if any, continue to provide connectivity.

When a switch is added to an existing stack, the new switch receives the running configuration from the stack master and updates itself with the EtherChannel-related stack configuration. The stack member also receives the operational information (the list of ports that are up and are members of a channel).

When two stacks merge that have EtherChannels configured between them, self-looped ports result. Spanning tree detects this condition and acts accordingly. Any PAgP or LACP configuration on a winning switch stack is not affected, but the PAgP or LACP configuration on the losing switch stack is lost after the stack reboots.

With PAgP, if the stack master fails or leaves the stack, a new stack master is elected. A spanning-tree reconvergence is not triggered unless there is a change in the EtherChannel bandwidth. The new stack master synchronizes the configuration of the stack members to that of the stack master. The PAgP configuration is not affected after a stack master change unless the EtherChannel has ports residing on the old stack master.

With LACP, the system-id uses the stack MAC address from the stack master, and if the stack master changes, the LACP system-id can change. If the LACP system-id changes, the entire EtherChannel will flap, and there will be an STP reconvergence. Use the `stack-mac persistent timer` command to control whether or not the stack MAC address changes during a master failover.
Configuring EtherChannels

These sections contain this configuration information:

- Default EtherChannel Configuration, page 1-11
- EtherChannel Configuration Guidelines, page 1-12
- Configuring Layer 2 EtherChannels, page 1-13 (required)
- Configuring LACP Standalone or Independent Mode, page 1-15 (optional)
- Configuring Layer 3 EtherChannels, page 1-16 (required)
- Configuring EtherChannel Load-Balancing, page 1-20 (optional)
- Configuring the PAgP Learn Method and Priority, page 1-21 (optional)
- Configuring LACP Hot-Standby Ports, page 1-22 (optional)

Note: Make sure that the ports are correctly configured. For more information, see the “EtherChannel Configuration Guidelines” section on page 1-12.

Note: After you configure an EtherChannel, configuration changes applied to the port-channel interface apply to all the physical ports assigned to the port-channel interface, and configuration changes applied to the physical port affect only the port where you apply the configuration.

Default EtherChannel Configuration

Table 1-3 Default EtherChannel Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel groups</td>
<td>None assigned.</td>
</tr>
<tr>
<td>Port-channel logical interface</td>
<td>None defined.</td>
</tr>
<tr>
<td>PAgP mode</td>
<td>No default.</td>
</tr>
<tr>
<td>PAgP learn method</td>
<td>Aggregate-port learning on all ports.</td>
</tr>
<tr>
<td>PAgP priority</td>
<td>128 on all ports.</td>
</tr>
<tr>
<td>LACP mode</td>
<td>No default.</td>
</tr>
<tr>
<td>LACP learn method</td>
<td>Aggregate-port learning on all ports.</td>
</tr>
<tr>
<td>LACP port priority</td>
<td>32768 on all ports.</td>
</tr>
<tr>
<td>LACP system priority</td>
<td>32768.</td>
</tr>
<tr>
<td>LACP system ID</td>
<td>LACP system priority and the switch or stack MAC address.</td>
</tr>
<tr>
<td>Load-balancing</td>
<td>Load distribution on the switch is based on the source-MAC address of the incoming packet.</td>
</tr>
</tbody>
</table>
EtherChannel Configuration Guidelines

If improperly configured, some EtherChannel ports are automatically disabled to avoid network loops and other problems. Follow these guidelines to avoid configuration problems:

- Do not try to configure more than 48 EtherChannels on the switch or switch stack.
- Configure a PAgP EtherChannel with up to eight Ethernet ports of the same type.
- Configure a LACP EtherChannel with up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.
- Configure all ports in an EtherChannel to operate at the same speeds and duplex modes.
- Enable all ports in an EtherChannel. A port in an EtherChannel that is disabled by using the `shutdown` interface configuration command is treated as a link failure, and its traffic is transferred to one of the remaining ports in the EtherChannel.
- When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, you must also make the changes to all ports in the group:
 - Allowed-VLAN list
 - Spanning-tree path cost for each VLAN
 - Spanning-tree port priority for each VLAN
 - Spanning-tree Port Fast setting
- Do not configure a port to be a member of more than one EtherChannel group.
- Do not configure an EtherChannel in both the PAgP and LACP modes. EtherChannel groups running PAgP and LACP can coexist on the same switch or on different switches in the stack. Individual EtherChannel groups can run either PAgP or LACP, but they cannot interoperate.
- Do not configure a Switched Port Analyzer (SPAN) destination port as part of an EtherChannel.
- Do not configure a private-VLAN port as part of an EtherChannel.
- Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an IEEE 802.1x port. If you try to enable IEEE 802.1x on an EtherChannel port, an error message appears, and IEEE 802.1x is not enabled.
- If EtherChannels are configured on switch interfaces, remove the EtherChannel configuration from the interfaces before globally enabling IEEE 802.1x on a switch by using the `dot1x system-auth-control` global configuration command.
- Do not enable link-state tracking on individual interfaces that will be part of a downstream EtherChannel interface.
- For Layer 2 EtherChannels:
 - Assign all ports in the EtherChannel to the same VLAN, or configure them as trunks. Ports with different native VLANs cannot form an EtherChannel.
 - If you configure an EtherChannel from trunk ports, verify that the trunking mode (ISL or IEEE 802.1Q) is the same on all the trunks. Inconsistent trunk modes on EtherChannel ports can have unexpected results.
 - An EtherChannel supports the same allowed range of VLANs on all the ports in a trunking Layer 2 EtherChannel. If the allowed range of VLANs is not the same, the ports do not form an EtherChannel even when PAgP is set to the `auto` or `desirable` mode.
- Ports with different spanning-tree path costs can form an EtherChannel if they are otherwise compatibly configured. Setting different spanning-tree path costs does not, by itself, make ports incompatible for the formation of an EtherChannel.

- For Layer 3 EtherChannels, assign the Layer 3 address to the port-channel logical interface, not to the physical ports in the channel.

Note
Layer 3 EtherChannels are not supported on switches running the LAN base feature set.

- For cross-stack EtherChannel configurations, ensure that all ports targeted for the EtherChannel are either configured for LACP or are manually configured to be in the channel group using the `channel-group channel-group-number mode` interface configuration command. The PAgP protocol is not supported on cross-stack EtherChannels.

- If cross-stack EtherChannel is configured and the switch stack partitions, loops and forwarding misbehaviors can occur.

Configuring Layer 2 EtherChannels

You configure Layer 2 EtherChannels by assigning ports to a channel group with the `channel-group` interface configuration command. This command automatically creates the port-channel logical interface.

If you enabled PAgP on a port in the `auto` or `desirable` mode, you must reconfigure it for either the `on` mode or the LACP mode before adding this port to a cross-stack EtherChannel. PAgP does not support cross-stack EtherChannels.

Beginning in privileged EXEC mode, follow these steps to assign a Layer 2 Ethernet port to a Layer 2 EtherChannel. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 interface interface-id | Specify a physical port, and enter interface configuration mode.
Valid interfaces include physical ports.
For a PAgP EtherChannel, you can configure up to eight ports of the same type and speed for the same group.
For a LACP EtherChannel, you can configure up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode. |
| Step 3 switchport mode {access | trunk} | Assign all ports as static-access ports in the same VLAN, or configure them as trunks.
If you configure the port as a static-access port, assign it to only one VLAN. The range is 1 to 4094. |
To remove a port from the EtherChannel group, use the `no channel-group` interface configuration command.

Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `channel-group channel-group-number mode [auto [non-silent] | desirable [non-silent] | on] | [active | passive]` | Assign the port to a channel group, and specify the PAgP or the LACP mode. For `channel-group-number`, the range is 1 to 48. For `mode`, select one of these keywords:
- **auto**—Enables PAgP only if a PAgP device is detected. It places the port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This keyword is not supported when EtherChannel members are from different switches in the switch stack.
- **desirable**—Unconditionally enables PAgP. It places the port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This keyword is not supported when EtherChannel members are from different switches in the switch stack.
- **on**—Forces the port to channel without PAgP or LACP. In the on mode, an EtherChannel exists only when a port group in the on mode is connected to another port group in the on mode.
- **non-silent**—(Optional) If your switch is connected to a partner that is PAgP-capable, configure the switch port for nonsilent operation when the port is in the auto or desirable mode. If you do not specify non-silent, silent is assumed. The silent setting is for connections to file servers or packet analyzers. This setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.
- **active**—Enables LACP only if a LACP device is detected. It places the port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets.
- **passive**—Enables LACP on the port and places it into a passive negotiating state in which the port responds to LACP packets that it receives, but does not start LACP packet negotiation.
For information on compatible modes for the switch and its partner, see the “PAgP Modes” section on page 1-6 and the “LACP Modes” section on page 1-7. |
| `end` | Return to privileged EXEC mode. |
| `show running-config` | Verify your entries. |
| `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |
This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two ports as static-access ports in VLAN 10 to channel 5 with the PAgP mode desirable:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode desirable non-silent
Switch(config-if-range)# end
```

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two ports as static-access ports in VLAN 10 to channel 5 with the LACP mode active:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode active
Switch(config-if-range)# end
```

This example shows how to configure a cross-stack EtherChannel. It uses LACP passive mode and assigns two ports on stack member 2 and one port on stack member 3 as static-access ports in VLAN 10 to channel 5:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode active
Switch(config-if-range)# exit
Switch(config)# interface gigabitethernet3/0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 10
Switch(config-if)# channel-group 5 mode active
Switch(config-if)# exit
```

Configuring LACP Standalone or Independent Mode

This feature is particularly relevant when a port (A) in a Layer 2 LACP EtherChannel is connected to an unresponsive port (B) on the peer. When LACP standalone is disabled on the EtherChannel, all traffic arriving on A is blocked (the default behavior on a switch). In some scenarios, you might want to allow management traffic on such ports. You can do this by enabling LACP standalone (or independent) mode.

Note

This `port-channel standalone-disable` command only applies to Layer 2 EtherChannels

Note

LACP Standalone Disable is enabled by default.

To configure the LACP Standalone or Independent mode, perform this task:
Chapter 1 Configuring EtherChannels and Link-State Tracking

Configuring EtherChannels

This example shows how to configure the LACP Standalone mode:

```
Switch# configure terminal
Switch(config)# no port-channel standalone-disable
Switch(config)# port-channel standalone-disable
```

Enables the LACP standalone or independent mode.

Reverts to the default.

```
Step 2
Switch(config-if)# end
```

Exits configuration mode.

```
Step 3
Switch# show running configuration (fastethernet | gigabitethernet) slot/port port-channel port_channel_number
```

Verifies the configuration.

Configuring Layer 3 EtherChannels

To configure Layer 3 EtherChannels, you create the port-channel logical interface and then put the Ethernet ports into the port-channel as described in the next two sections.
Creating Port-Channel Logical Interfaces

When configuring Layer 3 EtherChannels, you should first manually create the port-channel logical interface by using the `interface port-channel` global configuration command. Then you put the logical interface into the channel group by using the `channel-group` interface configuration command.

To move an IP address from a physical port to an EtherChannel, you must delete the IP address from the physical port before configuring it on the port-channel interface.

Beginning in privileged EXEC mode, follow these steps to create a port-channel interface for a Layer 3 EtherChannel. This procedure is required.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface port-channel <code>port-channel-number</code></td>
<td>Specify the port-channel logical interface, and enter interface configuration mode. For <code>port-channel-number</code>, the range is 1 to 48.</td>
</tr>
<tr>
<td>3</td>
<td>no switchport</td>
<td>Put the interface into Layer 3 mode.</td>
</tr>
<tr>
<td>4</td>
<td>ip address <code>ip-address</code> <code>mask</code></td>
<td>Assign an IP address and subnet mask to the EtherChannel.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show etherchannel <code>channel-group-number</code> <code>detail</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Assign an Ethernet port to the Layer 3 EtherChannel. For more information, see the “Configuring the Physical Interfaces” section on page 1-17.</td>
</tr>
</tbody>
</table>

To remove the port-channel, use the `no interface port-channel `port-channel-number` global configuration command.

This example shows how to create the logical port channel 5 and assign 172.10.20.10 as its IP address:

```
Switch# configure terminal
Switch(config)# interface port-channel 5
Switch(config-if)# no switchport
Switch(config-if)# ip address 172.10.20.10 255.255.255.0
Switch(config-if)# end
```

Configuring the Physical Interfaces

Beginning in privileged EXEC mode, follow these steps to assign an Ethernet port to a Layer 3 EtherChannel. This procedure is required.
Configuring EtherChannels

Command Purpose

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Specify a physical port, and enter interface configuration mode. Valid interfaces include physical ports. For a PAgP EtherChannel, you can configure up to eight ports of the same type and speed for the same group. For a LACP EtherChannel, you can configure up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>no ip address</td>
<td>Ensure that there is no IP address assigned to the physical port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>no switchport</td>
<td>Put the port into Layer 3 mode.</td>
</tr>
</tbody>
</table>
Configuring EtherChannels

Step 5

```plaintext
channel-group channel-group-number mode
    { auto [non-silent] | desirable [non-silent] | on } | 
    { active | passive }
```

Assign the port to a channel group, and specify the PAgP or the LACP mode.

For `channel-group-number`, the range is 1 to 48. This number must be the same as the `port-channel-number` (logical port) configured in the “Creating Port-Channel Logical Interfaces” section on page 1-17.

For `mode`, select one of these keywords:

- **auto**—Enables PAgP only if a PAgP device is detected. It places the port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This keyword is not supported when EtherChannel members are from different switches in the switch stack.

- **desirable**—Unconditionally enables PAgP. It places the port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This keyword is not supported when EtherChannel members are from different switches in the switch stack.

- **on**—Forces the port to channel without PAgP or LACP. In the `on` mode, an EtherChannel exists only when a port group in the `on` mode is connected to another port group in the `on` mode.

- **non-silent**—(Optional) If your switch is connected to a partner that is PAgP capable, configure the switch port for nonsilent operation when the port is in the `auto` or `desirable` mode. If you do not specify `non-silent`, silent is assumed. The silent setting is for connections to file servers or packet analyzers. This setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.

- **active**—Enables LACP only if a LACP device is detected. It places the port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets.

- **passive**—Enables LACP on the port and places it into a passive negotiating state in which the port responds to LACP packets that it receives, but does not start LACP packet negotiation.

For information on compatible modes for the switch and its partner, see the “PAgP Modes” section on page 1-6 and the “LACP Modes” section on page 1-7.

Step 6

```plaintext
end
```

Return to privileged EXEC mode.

Step 7

```plaintext
show running-config
```

Verify your entries.

Step 8

```plaintext
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.
This example shows how to configure an EtherChannel. It assigns two ports to channel 5 with the LACP mode active:

Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# no ip address
Switch(config-if-range)# no switchport
Switch(config-if-range)# channel-group 5 mode active
Switch(config-if-range)# end

This example shows how to configure a cross-stack EtherChannel. It assigns two ports on stack member 2 and one port on stack member 3 to channel 7 using LACP active mode:

Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# no ip address
Switch(config-if-range)# no switchport
Switch(config-if-range)# channel-group 7 mode active
Switch(config-if-range)# exit
Switch(config)# interface gigabitethernet3/0/3
Switch(config-if)# no ip address
Switch(config-if)# no switchport
Switch(config-if)# channel-group 7 mode active
Switch(config-if)# exit

Configuring EtherChannel Load-Balancing

This section describes how to configure EtherChannel load-balancing by using source-based or destination-based forwarding methods. For more information, see the “Load-Balancing and Forwarding Methods” section on page 1-8.

Beginning in privileged EXEC mode, follow these steps to configure EtherChannel load-balancing. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>port-channel load-balance {dst-ip</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To return EtherChannel load-balancing to the default configuration, use the `no port-channel load-balance` global configuration command.

Configuring the PAgP Learn Method and Priority

Network devices are classified as PAgP physical learners or aggregate-port learners. A device is a physical learner if it learns addresses by physical ports and directs transmissions based on that knowledge. A device is an aggregate-port learner if it learns addresses by aggregate (logical) ports. The learn method must be configured the same at both ends of the link.

When a device and its partner are both aggregate-port learners, they learn the address on the logical port-channel. The device sends packets to the source by using any of the ports in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives.

PAgP cannot automatically detect when the partner device is a physical learner and when the local device is an aggregate-port learner. Therefore, you must manually set the learning method on the local device to learn addresses by physical ports. You also must set the load-distribution method to source-based distribution, so that any given source MAC address is always sent on the same physical port.

You also can configure a single port within the group for all transmissions and use other ports for hot standby. The unused ports in the group can be swapped into operation in just a few seconds if the selected single port loses hardware-signal detection. You can configure which port is always selected for packet transmission by changing its priority with the `pagp port-priority` interface configuration command. The higher the priority, the more likely that the port will be selected.

To configure the PAgP learn method and priority:

1. **Step 3**
 - `end`
 - Return to privileged EXEC mode.

2. **Step 4**
 - `show etherchannel load-balance`
 - Verify your entries.

3. **Step 5**
 - `copy running-config startup-config`
 - (Optional) Save your entries in the configuration file.

The switch supports address learning only on aggregate ports even though the `physical-port` keyword is provided in the CLI. The `pagp learn-method` command and the `pagp port-priority` command have no effect on the switch hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner of the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch is a physical learner (such as a Catalyst 1900 series switch), we recommend that you configure the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch as a physical-port learner by using the `pagp learn-method physical-port` interface configuration command. Set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` global configuration command. The switch then sends packets to the Catalyst 1900 switch using the same port in the EtherChannel from which it learned the source address. Only use the `pagp learn-method` command in this situation.
Beginning in privileged EXEC mode, follow these steps to configure your switch as a PAgP physical-port learner and to adjust the priority so that the same port in the bundle is selected for sending packets. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the port for transmission, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 3** pagp learn-method physical-port | Select the PAgP learning method.
By default, aggregation-port learning is selected, which means the switch sends packets to the source by using any of the ports in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives.
Select physical-port to connect with another switch that is a physical learner. Make sure to configure the port-channel load-balance global configuration command to src-mac as described in the “Configuring EtherChannel Load-Balancing” section on page 1-20.
The learning method must be configured the same at both ends of the link. |
| **Step 4** pagp port-priority priority | Assign a priority so that the selected port is chosen for packet transmission.
For priority, the range is 0 to 255. The default is 128. The higher the priority, the more likely that the port will be used for PAgP transmission. |
| **Step 5** end | Return to privileged EXEC mode. |
| **Step 6** show running-config | Verify your entries. |
| **Step 7** copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return the priority to its default setting, use the **no pagp port-priority** interface configuration command. To return the learning method to its default setting, use the **no pagp learn-method** interface configuration command.

Configuring LACP Hot-Standby Ports

When enabled, LACP tries to configure the maximum number of LACP-compatible ports in a channel, up to a maximum of 16 ports. Only eight LACP links can be active at one time. The software places any additional links in a hot-standby mode. If one of the active links becomes inactive, a link that is in the hot-standby mode becomes active in its place.
If you configure more than eight links for an EtherChannel group, the software automatically decides which of the hot-standby ports to make active based on the LACP priority. To every link between systems that operate LACP, the software assigns a unique priority made up of these elements (in priority order):

- LACP system priority
- System ID (the switch MAC address)
- LACP port priority
- Port number

In priority comparisons, numerically lower values have higher priority. The priority decides which ports should be put in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating.

Determining which ports are active and which are hot standby is a two-step procedure. First the system with a numerically lower system priority and system-id is placed in charge of the decision. Next, that system decides which ports are active and which are hot standby, based on its values for port priority and port number. The port-priority and port-number values for the other system are not used.

You can change the default values of the LACP system priority and the LACP port priority to affect how the software selects active and standby links. For more information, see the “Configuring the LACP System Priority” section on page 1-23 and the “Configuring the LACP Port Priority” section on page 1-24.

Configuring the LACP System Priority

You can configure the system priority for all the EtherChannels that are enabled for LACP by using the `lacp system-priority` global configuration command. You cannot configure a system priority for each LACP-configured channel. By changing this value from the default, you can affect how the software selects active and standby links.

You can use the `show etherchannel summary` privileged EXEC command to see which ports are in the hot-standby mode (denoted with an H port-state flag).

Beginning in privileged EXEC mode, follow these steps to configure the LACP system priority. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | lacp system-priority `priority` | Configure the LACP system priority.
 *For priority, the range is 1 to 65535. The default is 32768.
 The lower the value, the higher the system priority.* |
| 3 | end | Return to privileged EXEC mode. |
| 4 | show running-config | Verify your entries. |
| | or show lacp sys-id | |
| 5 | copy running-config startup-config | *(Optional) Save your entries in the configuration file.* |

To return the LACP system priority to the default value, use the `no lacp system-priority` global configuration command.
Configuring the LACP Port Priority

By default, all ports use the same port priority. If the local system has a lower value for the system priority and the system ID than the remote system, you can affect which of the hot-standby links become active first by changing the port priority of LACP EtherChannel ports to a lower value than the default. The hot-standby ports that have lower port numbers become active in the channel first. You can use the `show etherchannel summary` privileged EXEC command to see which ports are in the hot-standby mode (denoted with an H port-state flag).

Note
If LACP is not able to aggregate all the ports that are compatible (for example, the remote system might have more restrictive hardware limitations), all the ports that cannot be actively included in the EtherChannel are put in the hot-standby state and are used only if one of the channeled ports fails.

Beginning in privileged EXEC mode, follow these steps to configure the LACP port priority. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>interface interface-id</code></td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3: <code>lacp port-priority priority</code></td>
<td>Configure the LACP port priority. For <code>priority</code>, the range is 1 to 65535. The default is 32768. The lower the value, the more likely that the port will be used for LACP transmission.</td>
</tr>
<tr>
<td>Step 4: <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: <code>show running-config</code> or <code>show lacp [channel-group-number] internal</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6: <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the LACP port priority to the default value, use the `no lacp port-priority` interface configuration command.

Displaying EtherChannel, PAgP, and LACP Status

Table 1-4 Commands for Displaying EtherChannel, PAgP, and LACP Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show etherchannel [channel-group-number { detail</td>
<td>port</td>
</tr>
<tr>
<td>`show pagg [channel-group-number] { counters</td>
<td>internal</td>
</tr>
</tbody>
</table>
Understanding Link-State Tracking

Link-state tracking, also known as trunk failover, is a feature that binds the link state of multiple interfaces. Link-state tracking provides redundancy in the network when used with server network interface card (NIC) adapter teaming. When the server network adapters are configured in a primary or secondary relationship known as teaming and the link is lost on the primary interface, connectivity transparently changes to the secondary interface.

Figure 1-6 on page 1-26 shows a network configured with link-state tracking. To enable link-state tracking, create a link-state group, and specify the interfaces that are assigned to the link-state group. An interface can be an aggregation of ports (an EtherChannel), a single physical port in access or trunk mode, or a routed port. In a link-state group, these interfaces are bundled together. The downstream interfaces are bound to the upstream interfaces. Interfaces connected to servers are referred to as downstream interfaces, and interfaces connected to distribution switches and network devices are referred to as upstream interfaces.

You can clear PAgP channel-group information and traffic counters by using the `clear pagp {channel-group-number counters | counters}` privileged EXEC command.

You can clear LACP channel-group information and traffic counters by using the `clear lacp {channel-group-number counters | counters}` privileged EXEC command.

For detailed information about the fields in the displays, see the command reference for this release.

Understanding Link-State Tracking

Table 1-4 Commands for Displaying EtherChannel, PAgP, and LACP Status (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show pagp [channel-group-number] dual-active</code></td>
<td>Displays the dual-active detection status.</td>
</tr>
<tr>
<td>`show lacp [channel-group-number] {counters</td>
<td>internal</td>
</tr>
</tbody>
</table>

You can clear PAgP channel-group information and traffic counters by using the `clear pagp {channel-group-number counters | counters}` privileged EXEC command.

You can clear LACP channel-group information and traffic counters by using the `clear lacp {channel-group-number counters | counters}` privileged EXEC command.

For detailed information about the fields in the displays, see the command reference for this release.
Understanding Link-State Tracking

The configuration in Figure 1-6 ensures that the network traffic flow is balanced as follows:

- For links to switches and other network devices
 - Server 1 and server 2 use switch A for primary links and switch B for secondary links.
 - Server 3 and server 4 use switch B for primary links and switch A for secondary links.

- Link-state group 1 on switch A
 - Switch A provides primary links to server 1 and server 2 through link-state group 1. Port 1 is connected to server 1, and port 2 is connected to server 2. Port 1 and port 2 are the downstream interfaces in link-state group 1.
 - Port 5 and port 6 are connected to distribution switch 1 through link-state group 1. Port 5 and port 6 are the upstream interfaces in link-state group 1.
• Link-state group 2 on switch A
 – Switch A provides secondary links to server 3 and server 4 through link-state group 2. Port 3 is connected to server 3, and port 4 is connected to server 4. Port 3 and port 4 are the downstream interfaces in link-state group 2.
 – Port 7 and port 8 are connected to distribution switch 2 through link-state group 2. Port 7 and port 8 are the upstream interfaces in link-state group 2.

• Link-state group 2 on switch B
 – Switch B provides primary links to server 3 and server 4 through link-state group 2. Port 3 is connected to server 3, and port 4 is connected to server 4. Port 3 and port 4 are the downstream interfaces in link-state group 2.
 – Port 5 and port 6 are connected to distribution switch 2 through link-state group 2. Port 5 and port 6 are the upstream interfaces in link-state group 2.

• Link-state group 1 on switch B
 – Switch B provides secondary links to server 1 and server 2 through link-state group 1. Port 1 is connected to server 1, and port 2 is connected to server 2. Port 1 and port 2 are the downstream interfaces in link-state group 1.
 – Port 7 and port 8 are connected to distribution switch 1 through link-state group 1. Port 7 and port 8 are the upstream interfaces in link-state group 1.

In a link-state group, the upstream ports can become unavailable or lose connectivity because the distribution switch or router fails, the cables are disconnected, or the link is lost. These are the interactions between the downstream and upstream interfaces when link-state tracking is enabled:

- If any of the upstream interfaces are in the link-up state, the downstream interfaces can change to or remain in the link-up state.
- If all of the upstream interfaces become unavailable, link-state tracking automatically puts the downstream interfaces in the error-disabled state. Connectivity to and from the servers is automatically changed from the primary server interface to the secondary server interface.

For an example of a connectivity change from link-state group 1 to link-state group 2 on switch A, see Figure 1-6 on page 1-26. If the upstream link for port 6 is lost, the link states of downstream ports 1 and 2 do not change. However, if the link for upstream port 5 is also lost, the link state of the downstream ports changes to the link-down state. Connectivity to server 1 and server 2 is then changed from link-state group 1 to link-state group 2. The downstream ports 3 and 4 do not change state because they are in link-group 2.

- If the link-state group is configured, link-state tracking is disabled, and the upstream interfaces lose connectivity, the link states of the downstream interfaces remain unchanged. The server does not recognize that upstream connectivity has been lost and does not failover to the secondary interface.

You can recover a downstream interface link-down condition by removing the failed downstream port from the link-state group. To recover from multiple downstream interfaces, disable the link-state group.

Configuring Link-State Tracking

- Default Link-State Tracking Configuration, page 1-28
- Link-State Tracking Configuration Guidelines, page 1-28
- Configuring Link-State Tracking, page 1-28
- Displaying Link-State Tracking Status, page 1-29
Default Link-State Tracking Configuration

There are no link-state groups defined, and link-state tracking is not enabled for any group.

Link-State Tracking Configuration Guidelines

- An interface that is defined as an upstream interface cannot also be defined as a downstream interface in the same or a different link-state group. The reverse is also true.
- An interface cannot be a member of more than one link-state group.
- Do not enable link-state tracking on individual interfaces that will be part of a downstream Etherchannel interface.
- You can configure only two link-state groups per Catalyst 3560-E switch.
- You can configure only ten link-state groups per Catalyst 3750-E switch.
- You can configure only two link-state groups per Catalyst 3560-X switch.
- You can configure only ten link-state groups per Catalyst 3750-X switch.

Configuring Link-State Tracking

Beginning in privileged EXEC mode, follow these steps to configure a link-state group and to assign an interface to a group:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>link state track number</td>
<td>Create a link-state group, and enable link-state tracking. For Catalyst 3560-E Catalyst 3560-X switches, the group number can be 1 to 2. For Catalyst 3750-E Catalyst 3750-X switches, the group number can be 1 to 10. The default is 1.</td>
</tr>
<tr>
<td>3</td>
<td>interface interface-id</td>
<td>Specify a physical interface or range of interfaces to configure, and enter interface configuration mode. Valid interfaces include switch ports in access or trunk mode (IEEE 802.1q), routed ports, or multiple ports bundled into an upstream EtherChannel interface (static, PAgP, or LACP), also in trunk mode. Note Do not enable link-state tracking on individual interfaces that will be part of a downstream Etherchannel interface.</td>
</tr>
<tr>
<td>4</td>
<td>link state group [number] {upstream</td>
<td>downstream}</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to create a link-state group and to configure the interfaces:

Switch# configure terminal
Switch(config)# link state track 1
Switch(config)# interface range gigabitethernet1/0/21 -22
Switch(config-if)# link state group 1 upstream
Switch(config-if)# interface gigabitethernet1/0/1
Switch(config-if)# link state group 1 downstream
Switch(config-if)# interface gigabitethernet1/0/3
Switch(config-if)# link state group 1 downstream
Switch(config-if)# interface gigabitethernet1/0/5
Switch(config-if)# link state group 1 downstream
Switch(config-if)# end

Note

If the interfaces are part of an EtherChannel, you must specify the port channel name as part of the link-state group, not the individual port members.

To disable a link-state group, use the `no link state track number` global configuration command.

Displaying Link-State Tracking Status

Use the `show link state group` command to display the link-state group information. Enter this command without keywords to display information about all link-state groups. Enter the group number to display information specific to the group. Enter the `detail` keyword to display detailed information about the group.

This is an example of output from the `show link state group 1` command:

Switch> show link state group 1
Link State Group: 1 Status: Enabled, Down

This is an example of output from the `show link state group detail` command:

Switch> show link state group detail
(Up): Interface up (Dwn): Interface Down (Dis): Interface disabled
Link State Group: 1 Status: Enabled, Down
Upstream Interfaces : Gi1/0/15(Dwn) Gi1/0/16(Dwn)
Downstream Interfaces : Gi1/0/11(Dis) Gi1/0/12(Dis) Gi1/0/13(Dis) Gi1/0/14(Dis)

Link State Group: 2 Status: Enabled, Down
Upstream Interfaces : Gi1/0/15(Dwn) Gi1/0/16(Dwn) Gi1/0/17(Dwn)
Downstream Interfaces : Gi1/0/11(Dis) Gi1/0/12(Dis) Gi1/0/13(Dis) Gi1/0/14(Dis)

(Up): Interface up (Dwn): Interface Down (Dis): Interface disabled

For detailed information about the fields in the display, see the command reference for this release.
Configuring TelePresence E911 IP Phone Support

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
This feature is not supported on switches running the LAN base feature set.

The Catalyst 3750-E and 3560-E 3750-X and 3560-X switch command reference has command syntax and usage information.
- Understanding TelePresence E911 IP Phone Support, page 1-1
- Configuring TelePresence E911 IP Phone Support, page 1-2

Understanding TelePresence E911 IP Phone Support

You can use a Cisco IP phone as a user interface in a Cisco TelePresence System. See in Figure 1. In this configuration, the IP phone must always be on and available for emergency calls. If the power to the codec in the Cisco TelePresence System fails, is disrupted or if the codec fails, the IP phone is not available.

Figure 1-1 Phone-Codec-Switch Connection

<table>
<thead>
<tr>
<th>1</th>
<th>Switch</th>
<th>3</th>
<th>IP phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Cisco TelePresence System with a codec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use the TelePresence E911 IP phone support feature to ensure that the IP phone is always on and available for emergency calls. When a CDP-enabled IP phone is connected to the codec through a switch, you can configure the switch to forward CDP packets from the IP phone only to the codec in the Cisco TelePresence System. The switch adds ingress-egress port pairs to the CDP forwarding table. An ingress-egress port pair is a one-to-one mapping between an ingress switch port connected to the IP phone and an egress switch port connected to the codec.

The IP phone and the codec communicate through the IP network. If power to the codec fails, is disrupted or if the codec fails, the IP phone is still connected to the IP network and is available for emergency calls. The switch forwards all CDP packets received on the ingress port to the egress port. If multiple IP phones are connected to the codec through a single port on the switch, only one phone communicates with it through the IP network. This phone is usually the one that sent the first CDP packet received by the codec.

![Figure 1-2 Phone-Switch-Codec Connection](image)

<table>
<thead>
<tr>
<th></th>
<th>Switch</th>
<th>3</th>
<th>CDP-enabled IP phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cisco TelePresence System with a codec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuring TelePresence E911 IP Phone Support

- Configuration Guidelines, page 1-2
- Enabling TelePresence E911 IP Phone Support, page 1-3
- Example, page 1-3

Configuration Guidelines

- You must use only CDP-enabled phones with TelePresence E911 IP phone support.
- You can connect the IP phone and codec in the Cisco TelePresence System through any two ports in a switch stack.
Enabling TelePresence E911 IP Phone Support

Beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>cdp forward ingress <code>port-id</code> egress <code>port-id</code></td>
<td>Configures an ingress-egress port pair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>ingress port-id</code>—Specifies the port connected to the CDP-enabled IP phone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>egress port-id</code>—Specifies the port connected to the codec in the Cisco TelePresence System.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repeat this step to configure additional ingress-egress port pairs.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show cdp forward</td>
<td>Verifies the ingress-egress port pairs. The command output also shows the number of forwarded and dropped packets.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Example

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# cdp forward ingress gigabitethernet2/0/1 egress gigabitethernet2/0/12
Switch(config)# cdp forward ingress gigabitethernet2/0/1 egress gigabitethernet2/0/13
Ingress interface already configured
Switch(config)# cdp forward ingress gigabitethernet2/0/2 egress gigabitethernet2/0/12
Egress interface already configured
Switch(config)# cdp forward ingress gigabitethernet2/0/2 egress gigabitethernet2/0/13
Switch(config)# end
Switch# show running-config | include cdp
cdp forward ingress GigabitEthernet2/0/1 egress GigabitEthernet2/0/12
cdp forward ingress GigabitEthernet2/0/1 egress GigabitEthernet2/0/13
Switch# show cdp forward

<table>
<thead>
<tr>
<th>Ingress Port</th>
<th>Egress Port</th>
<th># packets forwarded</th>
<th># packets dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/1</td>
<td>Gi2/0/12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi2/0/2</td>
<td>Gi2/0/13</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# no cdp forward ingress gigabitethernet2/0/1
Switch(config)# end
Switch# *Mar 1 13:39:14.120: %SYS-5-CONFIG_I: Configured from console by console
Switch# show running-config | include cdp
cdp forward ingress GigabitEthernet2/0/2 egress GigabitEthernet2/0/13
```
Switch# `show cdp forward`

<table>
<thead>
<tr>
<th>Ingress</th>
<th>Egress</th>
<th># packets forwarded</th>
<th># packets dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/2</td>
<td>Gi2/0/13</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Switch#
Configuring IP Unicast Routing

This chapter describes how to configure IP Version 4 (IPv4) unicast routing on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch.

On switches running the LAN base feature, static routing on VLANs is supported only with Cisco IOS Release 12.2(58)SE and later.

Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack. A switch stack operates and appears as a single router to the rest of the routers in the network. Basic routing functions, including static routing and the Routing Information Protocol (RIP), are available with both the IP base feature set and the IP services feature set. To use advanced routing features and other routing protocols, you must have the IP services feature set enabled on the standalone switch or on the stack master.

In addition to IPv4 traffic, you can also enable IP Version 6 (IPv6) unicast routing and configure interfaces to forward IPv6 traffic if the switch or switch stack is running the IP base or IP services feature set. For information about configuring IPv6 on the switch, see Chapter 1, “Configuring IPv6 Unicast Routing.”

For more detailed IP unicast configuration information, see the Cisco IOS IP Configuration Guide, Release 12.4. For complete syntax and usage information for the commands used in this chapter, see these command references:

- Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.4
- Cisco IOS IP Command Reference, Volume 3 of 3: Multicast, Release 12.4

This chapter consists of these sections:

- Understanding IP Routing, page 1-2
- Steps for Configuring Routing, page 1-5
- Configuring IP Addressing, page 1-6
- Enabling IP Unicast Routing, page 1-20
- Configuring RIP, page 1-21
- Configuring OSPF, page 1-27
- Configuring EIGRP, page 1-37
• Configuring BGP, page 1-45
• Configuring ISO CLNS Routing, page 1-66
• Configuring Multi-VRF CE, page 1-76
• Configuring Protocol-Independent Features, page 1-91
• Monitoring and Maintaining the IP Network, page 1-106

Note

When configuring routing parameters on the switch and to allocate system resources to maximize the number of unicast routes allowed, you can use the `sdm prefer routing` global configuration command to set the Switch Database Management (sdm) feature to the routing template. For more information on the SDM templates, see Chapter 1, “Configuring SDM Templates” or see the `sdm prefer` command in the command reference for this release.

Note

On switches running the IP base or IP services feature set, when configuring routing parameters on the switch and to allocate system resources to maximize the number of unicast routes allowed, you can use the `sdm prefer routing` global configuration command to set the Switch Database Management (sdm) feature to the routing template. On switches running the LAN base feature set, IP static routing is supported only with the default sdm template. For more information on the SDM templates, see Chapter 1, “Configuring SDM Templates” or see the `sdm prefer` command in the command reference for this release.

Understanding IP Routing

In some network environments, VLANs are associated with individual networks or subnetworks. In an IP network, each subnetwork is mapped to an individual VLAN. Configuring VLANs helps control the size of the broadcast domain and keeps local traffic local. However, network devices in different VLANs cannot communicate with one another without a Layer 3 device (router) to route traffic between the VLAN, referred to as inter-VLAN routing. You configure one or more routers to route traffic to the appropriate destination VLAN.

Figure 1-1 shows a basic routing topology. Switch A is in VLAN 10, and Switch B is in VLAN 20. The router has an interface in each VLAN.

Figure 1-1 Routing Topology Example

When Host A in VLAN 10 needs to communicate with Host B in VLAN 10, it sends a packet addressed to that host. Switch A forwards the packet directly to Host B, without sending it to the router.
When Host A sends a packet to Host C in VLAN 20, Switch A forwards the packet to the router, which receives the traffic on the VLAN 10 interface. The router checks the routing table, finds the correct outgoing interface, and forwards the packet on the VLAN 20 interface to Switch B. Switch B receives the packet and forwards it to Host C.

This section contains information on these routing topics:
- Types of Routing, page 1-3
- IP Routing and Switch Stacks, page 1-4

Types of Routing

Routers and Layer 3 switches can route packets in three different ways:
- By using default routing
- By using preprogrammed static routes for the traffic
- By dynamically calculating routes by using a routing protocol

Default routing refers to sending traffic with a destination unknown to the router to a default outlet or destination.

Static unicast routing forwards packets from predetermined ports through a single path into and out of a network. Static routing is secure and uses little bandwidth, but does not automatically respond to changes in the network, such as link failures, and therefore, might result in unreachable destinations. As networks grow, static routing becomes a labor-intensive liability.

Beginning with Cisco IOS release 12.2(58)SE, switches running the LAN base feature set support 16 user-configured static routes, in addition to any default routes used for the management interface. The LAN base image supports static routing only on SVIs and only when the switch is running the default SDM template.

Dynamic routing protocols are used by routers to dynamically calculate the best route for forwarding traffic. There are two types of dynamic routing protocols:
- Routers using distance-vector protocols maintain routing tables with distance values of networked resources, and periodically pass these tables to their neighbors. Distance-vector protocols use one or a series of metrics for calculating the best routes. These protocols are easy to configure and use.
- Routers using link-state protocols maintain a complex database of network topology, based on the exchange of link-state advertisements (LSAs) between routers. LSAs are triggered by an event in the network, which speeds up the convergence time or time required to respond to these changes. Link-state protocols respond quickly to topology changes, but require greater bandwidth and more resources than distance-vector protocols.

Distance-vector protocols supported by the switch are Routing Information Protocol (RIP), which uses a single distance metric (cost) to determine the best path and Border Gateway Protocol (BGP), which adds a path vector mechanism. The switch also supports the Open Shortest Path First (OSPF) link-state protocol and Enhanced IGRP (EIGRP), which adds some link-state routing features to traditional Interior Gateway Routing Protocol (IGRP) to improve efficiency.

Note

On a switch or switch stack, the supported protocols are determined by the software running on the switch or stack master. If the switch or stack master is running the IP base feature set, only default routing, static routing and RIP are supported. If the switch is running the LAN base feature set, you can configure 16 static routes on SVIs. All other routing protocols require the IP services feature set.
IP Routing and Switch Stacks

A switch stack appears to the network as a single router, regardless of which switch in the stack is connected to a routing peer. For additional information about switch stack operation, see Chapter 1, “Managing Switch Stacks.”

The stack master performs these functions:

- It initializes and configures the routing protocols.
- It sends routing protocol messages and updates to other routers.
- It processes routing protocol messages and updates received from peer routers.
- It generates, maintains, and distributes the distributed Cisco Express Forwarding (dCEF) database to all stack members. The routes are programmed on all switches in the stack bases on this database.
- The MAC address of the stack master is used as the router MAC address for the whole stack, and all outside devices use this address to send IP packets to the stack.
- All IP packets that require software forwarding or processing go through the CPU of the stack master.

Stack members perform these functions:

- They act as routing standby switches, ready to take over in case they are elected as the new stack master if the stack master fails.
- They program the routes into hardware. The routes programmed by the stack members are the same that are downloaded by the stack master as part of the dCEF database.

If a stack master fails, the stack detects that the stack master is down and elects one of the stack members to be the new stack master. During this period, except for a momentary interruption, the hardware continues to forward packets with no active protocols.

However, even though the switch stack maintains the hardware identification after a failure, the routing protocols on the router neighbors might flapping during the brief interruption before the stack master restarts. Routing protocols such as OSPF and EIGRP need to recognize neighbor transitions. The router uses two levels of nonstop forwarding (NSF) to detect a switchover, to continue forwarding network traffic, and to recover route information from peer devices:

- NSF-aware routers tolerate neighboring router failures. After the neighbor router restarts, an NSF-aware router supplies information about its state and route adjacencies on request.
- NSF-capable routers support NSF. When they detect a stack master change, they rebuild routing information from NSF-aware or NSF-capable neighbors and do not wait for a restart.

The switch stack supports NSF-capable routing for OSPF and EIGRP. For more information, see the “OSPF NSF Capability” section on page 1-30 and the “EIGRP NSF Capability” section on page 1-41.

Upon election, the new stack master performs these functions:

- It starts generating, receiving, and processing routing updates.
- It builds routing tables, generates the CEF database, and distributes it to stack members.
- It uses its MAC address as the router MAC address. To notify its network peers of the new MAC address, it periodically (every few seconds for 5 minutes) sends a gratuitous ARP reply with the new router MAC address.
Note

If you configure the persistent MAC address feature on the stack and the stack master changes, the stack MAC address does not change for the configured time period. If the previous stack master rejoins the stack as a member switch during that time period, the stack MAC address remains the MAC address of the previous stack master. See the “Enabling Persistent MAC Address” section on page 1-24.

- It attempts to determine the reachability of every proxy ARP entry by sending an ARP request to the proxy ARP IP address and receiving an ARP reply. For each reachable proxy ARP IP address, it generates a gratuitous ARP reply with the new router MAC address. This process is repeated for 5 minutes after a new stack master election.

Note

When a stack master is running the IP services feature set, the stack can run all supported protocols, including Open Shortest Path First (OSPF), Enhanced IGRP (EIGRP), and Border Gateway Protocol (BGP). If the stack master fails and the new elected stack master is running the IP base or LAN base feature set, these protocols will no longer run in the stack.

Caution

Partitioning of the switch stack into two or more stacks might lead to undesirable behavior in the network.

Steps for Configuring Routing

By default, IP routing is disabled on the switch, and you must enable it before routing can take place. For detailed IP routing configuration information, see the Cisco IOS IP Configuration Guide, Release 12.4

In the following procedures, the specified interface must be one of these Layer 3 interfaces:

- A routed port: a physical port configured as a Layer 3 port by using the no switchport interface configuration command.
- A switch virtual interface (SVI): a VLAN interface created by using the interface vlan vlan_id global configuration command and by default a Layer 3 interface.

Note

If the switch is running the LAN base feature set, static routes are supported only on SVIs.

- An EtherChannel port channel in Layer 3 mode: a port-channel logical interface created by using the interface port-channel port-channel-number global configuration command and binding the Ethernet interface into the channel group. For more information, see the “Configuring Layer 3 EtherChannels” section on page 1-16.

Note

The switch does not support tunnel interfaces for unicast routed traffic.

All Layer 3 interfaces on which routing will occur must have IP addresses assigned to them. See the “Assigning IP Addresses to Network Interfaces” section on page 1-7.
Configuring IP Unicast Routing

Chapter 1

Configuring IP Addressing

Note

A Layer 3 switch can have an IP address assigned to each routed port and SVI. The number of routed ports and SVIs that you can configure is not limited by software. However, the interrelationship between this number and the number and volume of features being implemented might have an impact on CPU utilization because of hardware limitations. To optimize system memory for routing, use the `sdm prefer routing` global configuration command when running the IP base or IP services feature set.

Configuring routing consists of several main procedures:

- To support VLAN interfaces, create and configure VLANs on the switch or switch stack, and assign VLAN membership to Layer 2 interfaces. For more information, see Chapter 1, “Configuring VLANs.”
- Configure Layer 3 interfaces.
- Enable IP routing on the switch.
- Assign IP addresses to the Layer 3 interfaces.
- Enable selected routing protocols on the switch.
- Configure routing protocol parameters (optional).

Configuring IP Addressing

A required task for configuring IP routing is to assign IP addresses to Layer 3 network interfaces to enable the interfaces and allow communication with the hosts on those interfaces that use IP. These sections describe how to configure various IP addressing features. Assigning IP addresses to the interface is required; the other procedures are optional.

Note

On switches running the LAN base feature set, you can only assign an IP address to an SVI and configure a static unicast route on the interface. Other configurations are not supported.

- Default Addressing Configuration, page 1-7
- Assigning IP Addresses to Network Interfaces, page 1-7
- Configuring Address Resolution Methods, page 1-10
- Routing Assistance When IP Routing is Disabled, page 1-13
- Configuring Broadcast Packet Handling, page 1-15
- Monitoring and Maintaining IP Addressing, page 1-19
Default Addressing Configuration

Table 1-1 Default Addressing Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>None defined.</td>
</tr>
<tr>
<td>ARP</td>
<td>No permanent entries in the Address Resolution Protocol (ARP) cache.</td>
</tr>
<tr>
<td></td>
<td>Encapsulation: Standard Ethernet-style ARP.</td>
</tr>
<tr>
<td></td>
<td>Timeout: 14400 seconds (4 hours).</td>
</tr>
<tr>
<td>IP broadcast address</td>
<td>255.255.255.255 (all ones).</td>
</tr>
<tr>
<td>IP classless routing</td>
<td>Enabled.</td>
</tr>
<tr>
<td>IP default gateway</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP directed broadcast</td>
<td>Disabled (all IP directed broadcasts are dropped).</td>
</tr>
<tr>
<td>IP domain</td>
<td>Domain list: No domain names defined.</td>
</tr>
<tr>
<td></td>
<td>Domain lookup: Enabled.</td>
</tr>
<tr>
<td></td>
<td>Domain name: Enabled.</td>
</tr>
<tr>
<td>IP forward-protocol</td>
<td>If a helper address is defined or User Datagram Protocol (UDP) flooding is configured, UDP forwarding is enabled on default ports.</td>
</tr>
<tr>
<td></td>
<td>Any-local-broadcast: Disabled.</td>
</tr>
<tr>
<td></td>
<td>Spanning Tree Protocol (STP): Disabled.</td>
</tr>
<tr>
<td></td>
<td>Turbo-flood: Disabled.</td>
</tr>
<tr>
<td>IP helper address</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP host</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IRDP</td>
<td>Disabled.</td>
</tr>
<tr>
<td></td>
<td>Defaults when enabled:</td>
</tr>
<tr>
<td></td>
<td>• Broadcast IRDP advertisements.</td>
</tr>
<tr>
<td></td>
<td>• Maximum interval between advertisements: 600 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Minimum interval between advertisements: 0.75 times max interval</td>
</tr>
<tr>
<td></td>
<td>• Preference: 0.</td>
</tr>
<tr>
<td>IP proxy ARP</td>
<td>Enabled.</td>
</tr>
<tr>
<td>IP routing</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP subnet-zero</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

Assigning IP Addresses to Network Interfaces

An IP address identifies a location to which IP packets can be sent. Some IP addresses are reserved for special uses and cannot be used for host, subnet, or network addresses. RFC 1166, “Internet Numbers,” contains the official description of IP addresses.
An interface can have one primary IP address. A mask identifies the bits that denote the network number in an IP address. When you use the mask to subnet a network, the mask is referred to as a subnet mask. To receive an assigned network number, contact your Internet service provider.

Beginning in privileged EXEC mode, follow these steps to assign an IP address and a network mask to a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td></td>
<td>Note Only SVI interfaces are supported on switches running the LAN base feature set.</td>
</tr>
<tr>
<td>Step 3 no switchport</td>
<td>Remove the interface from Layer 2 configuration mode (if it is a physical interface).</td>
</tr>
<tr>
<td>Step 4 ip address ip-address subnet-mask</td>
<td>Configure the IP address and IP subnet mask.</td>
</tr>
<tr>
<td>Step 5 no shutdown</td>
<td>Enable the physical interface.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show ip route [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td></td>
</tr>
<tr>
<td>show running-config interface [interface-id]</td>
<td></td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

On switches running the LAN base image, you can only assign an IP address to an SVI and then configure a static route for the SVI. The switch supports 16 user-configured static routes. See the “Configuring Static Unicast Routes” section on page 1-94. No other routing configurations are supported.

Use of Subnet Zero

Subnetting with a subnet address of zero is strongly discouraged because of the problems that can arise if a network and a subnet have the same addresses. For example, if network 131.108.0.0 is subnetted as 255.255.255.0, subnet zero would be written as 131.108.0.0, which is the same as the network address.

You can use the all ones subnet (131.108.255.0) and even though it is discouraged, you can enable the use of subnet zero if you need the entire subnet space for your IP address.

Beginning in privileged EXEC mode, follow these steps to enable subnet zero:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip subnet-zero</td>
<td>Enable the use of subnet zero for interface addresses and routing updates.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>
Use the **no ip subnet-zero** global configuration command to restore the default and disable the use of subnet zero.

Classless Routing

By default, classless routing behavior is enabled on the switch when it is configured to route. With classless routing, if a router receives packets for a subnet of a network with no default route, the router forwards the packet to the best supernet route. A *supernet* consists of contiguous blocks of Class C address spaces used to simulate a single, larger address space and is designed to relieve the pressure on the rapidly depleting Class B address space.

In Figure 1-2, classless routing is enabled. When the host sends a packet to 120.20.4.1, instead of discarding the packet, the router forwards it to the best supernet route. If you disable classless routing and a router receives packets destined for a subnet of a network with no network default route, the router discards the packet.

![Figure 1-2 IP Classless Routing](image)

In Figure 1-3, the router in network 128.20.0.0 is connected to subnets 128.20.1.0, 128.20.2.0, and 128.20.3.0. If the host sends a packet to 120.20.4.1, because there is no network default route, the router discards the packet.
To prevent the switch from forwarding packets destined for unrecognized subnets to the best supernet route possible, you can disable classless routing behavior.

Beginning in privileged EXEC mode, follow these steps to disable classless routing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>no ip classless</td>
<td>Disable classless routing behavior.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To restore the default and have the switch forward packets destined for a subnet of a network with no network default route to the best supernet route possible, use the `ip classless` global configuration command.

Configuring Address Resolution Methods

You can control interface-specific handling of IP by using address resolution. A device using IP can have both a local address or MAC address, which uniquely defines the device on its local segment or LAN, and a network address, which identifies the network to which the device belongs.

Note

In a switch stack, network communication uses a single MAC address and the IP address of the stack.

The local address or MAC address is known as a data link address because it is contained in the data link layer (Layer 2) section of the packet header and is read by data link (Layer 2) devices. To communicate with a device on Ethernet, the software must learn the MAC address of the device. The process of learning the MAC address from an IP address is called *address resolution*. The process of learning the IP address from the MAC address is called *reverse address resolution*.
The switch can use these forms of address resolution:

- **Address Resolution Protocol (ARP)** is used to associate IP address with MAC addresses. Taking an IP address as input, ARP learns the associated MAC address and then stores the IP address/MAC address association in an ARP cache for rapid retrieval. Then the IP datagram is encapsulated in a link-layer frame and sent over the network. Encapsulation of IP datagrams and ARP requests or replies on IEEE 802 networks other than Ethernet is specified by the Subnetwork Access Protocol (SNAP).

- **Proxy ARP** helps hosts with no routing tables learn the MAC addresses of hosts on other networks or subnets. If the switch (router) receives an ARP request for a host that is not on the same interface as the ARP request sender, and if the router has all of its routes to the host through other interfaces, it generates a proxy ARP packet giving its own local data link address. The host that sent the ARP request then sends its packets to the router, which forwards them to the intended host.

The switch also uses the **Reverse Address Resolution Protocol (RARP)**, which functions the same as ARP does, except that the RARP packets request an IP address instead of a local MAC address. Using RARP requires a RARP server on the same network segment as the router interface. Use the `ip rarp-server address` interface configuration command to identify the server. For more information on RARP, see the *Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.4*.

You can perform these tasks to configure address resolution:

- **Define a Static ARP Cache**, page 1-11
- **Set ARP Encapsulation**, page 1-12
- **Enable Proxy ARP**, page 1-13

Define a Static ARP Cache

ARP and other address resolution protocols provide dynamic mapping between IP addresses and MAC addresses. Because most hosts support dynamic address resolution, you usually do not need to specify static ARP cache entries. If you must define a static ARP cache entry, you can do so globally, which installs a permanent entry in the ARP cache that the switch uses to translate IP addresses into MAC addresses. Optionally, you can also specify that the switch respond to ARP requests as if it were the owner of the specified IP address. If you do not want the ARP entry to be permanent, you can specify a timeout period for the ARP entry.

Beginning in privileged EXEC mode, follow these steps to provide static mapping between IP addresses and MAC addresses:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>arp ip-address hardware-address type</code></td>
<td>Globally associate an IP address with a MAC (hardware) address in the ARP cache, and specify encapsulation type as one of these:</td>
</tr>
<tr>
<td></td>
<td>• <code>arpa</code>—ARP encapsulation for Ethernet interfaces</td>
</tr>
<tr>
<td></td>
<td>• <code>snap</code>—Subnetwork Address Protocol encapsulation for Token Ring and FDDI interfaces</td>
</tr>
<tr>
<td></td>
<td>• <code>sap</code>—HP’s ARP type</td>
</tr>
</tbody>
</table>
Configuring IP Addressing

To remove an entry from the ARP cache, use the `no arp ip-address hardware-address type [alias]` global configuration command. To remove all nonstatic entries from the ARP cache, use the `clear arp-cache` privileged EXEC command.

Set ARP Encapsulation

By default, Ethernet ARP encapsulation (represented by the `arpa` keyword) is enabled on an IP interface. You can change the encapsulation methods to SNAP if required by your network.

Beginning in privileged EXEC mode, follow these steps to specify the ARP encapsulation type:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
</tbody>
</table>
| Step 3 | `arp {arpa | snap}` Specify the ARP encapsulation method:
| | • **arpa**—Address Resolution Protocol
| | • **snap**—Subnetwork Address Protocol |
| Step 4 | `end` Return to privileged EXEC mode. |
| Step 5 | `show interfaces [interface-id]` Verify ARP encapsulation configuration on all interfaces or the specified interface. |
| Step 6 | `copy running-config startup-config` (Optional) Save your entries in the configuration file. |

To disable an encapsulation type, use the `no arp arpa` or `no arp snap` interface configuration command.
Enable Proxy ARP

By default, the switch uses proxy ARP to help hosts learn MAC addresses of hosts on other networks or subnets.

Beginning in privileged EXEC mode, follow these steps to enable proxy ARP if it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3 ip proxy-arp</td>
<td>Enable proxy ARP on the interface.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip interface [interface-id]</td>
<td>Verify the configuration on the interface or all interfaces.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable proxy ARP on the interface, use the no ip proxy-arp interface configuration command.

Routing Assistance When IP Routing is Disabled

These mechanisms allow the switch to learn about routes to other networks when it does not have IP routing enabled:

- Proxy ARP, page 1-13
- Default Gateway, page 1-13
- ICMP Router Discovery Protocol (IRDP), page 1-14

Proxy ARP

Proxy ARP, the most common method for learning about other routes, enables an Ethernet host with no routing information to communicate with hosts on other networks or subnets. The host assumes that all hosts are on the same local Ethernet and that they can use ARP to learn their MAC addresses. If a switch receives an ARP request for a host that is not on the same network as the sender, the switch evaluates whether it has the best route to that host. If it does, it sends an ARP reply packet with its own Ethernet MAC address, and the host that sent the request sends the packet to the switch, which forwards it to the intended host. Proxy ARP treats all networks as if they are local and performs ARP requests for every IP address.

Proxy ARP is enabled by default. To enable it after it has been disabled, see the “Enable Proxy ARP” section on page 1-13. Proxy ARP works as long as other routers support it.

Default Gateway

Another method for locating routes is to define a default router or default gateway. All nonlocal packets are sent to this router, which either routes them appropriately or sends an IP Control Message Protocol (ICMP) redirect message back, defining which local router the host should use. The switch caches the redirect messages and forwards each packet as efficiently as possible. A limitation of this method is that there is no means of detecting when the default router has gone down or is unavailable.
Beginning in privileged EXEC mode, follow these steps to define a default gateway (router) when IP routing is disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip default-gateway ip-address</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip redirects</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the **no ip default-gateway** global configuration command to disable this function.

ICMP Router Discovery Protocol (IRDP)

Router discovery allows the switch to dynamically learn about routes to other networks using IRDP. IRDP allows hosts to locate routers. When operating as a client, the switch generates router discovery packets. When operating as a host, the switch receives router discovery packets. The switch can also listen to Routing Information Protocol (RIP) routing updates and use this information to infer locations of routers. The switch does not actually store the routing tables sent by routing devices; it merely keeps track of which systems are sending the data. The advantage of using IRDP is that it allows each router to specify both a priority and the time after which a device is assumed to be down if no further packets are received.

Each device discovered becomes a candidate for the default router, and a new highest-priority router is selected when a higher priority router is discovered, when the current default router is declared down, or when a TCP connection is about to time out because of excessive retransmissions.

The only required task for IRDP routing on an interface is to enable IRDP processing on that interface. When enabled, the default parameters apply. You can optionally change any of these parameters.

Beginning in privileged EXEC mode, follow these steps to enable and configure IRDP on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip irdp</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip irdp multicast</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip irdp holdtime seconds</td>
</tr>
</tbody>
</table>

Note: This command allows for compatibility with Sun Microsystems Solaris, which requires IRDP packets to be sent out as multicasts. Many implementations cannot receive these multicasts; ensure end-host ability before using this command.
Configuring IP Addressing

If you change the `maxadvertinterval` value, the `holdtime` and `minadvertinterval` values also change, so it is important to first change the `maxadvertinterval` value, before manually changing either the `holdtime` or `minadvertinterval` values.

Use the `no ip irdp` interface configuration command to disable IRDP routing.

Configuring Broadcast Packet Handling

After configuring an IP interface address, you can enable routing and configure one or more routing protocols, or you can configure the way the switch responds to network broadcasts. A broadcast is a data packet destined for all hosts on a physical network. The switch supports two kinds of broadcasting:

- A directed broadcast packet is sent to a specific network or series of networks. A directed broadcast address includes the network or subnet fields.
- A flooded broadcast packet is sent to every network.

You can also limit broadcast, unicast, and multicast traffic on Layer 2 interfaces by using the `storm-control` interface configuration command to set traffic suppression levels. For more information, see Chapter 1, “Configuring Port-Based Traffic Control.”

Routers provide some protection from broadcast storms by limiting their extent to the local cable. Bridges (including intelligent bridges), because they are Layer 2 devices, forward broadcasts to all network segments, thus propagating broadcast storms. The best solution to the broadcast storm problem is to use a single broadcast address scheme on a network. In most modern IP implementations, you can set the address to be used as the broadcast address. Many implementations, including the one in the switch, support several addressing schemes for forwarding broadcast messages.

Perform the tasks in these sections to enable these schemes:

- **Enabling Directed Broadcast-to-Physical Broadcast Translation**, page 1-16
- **Forwarding UDP Broadcast Packets and Protocols**, page 1-17
- **Establishing an IP Broadcast Address**, page 1-17
- **Flooding IP Broadcasts**, page 1-18

Command Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td><code>ip irdp maxadvertinterval seconds</code></td>
<td>(Optional) Set the IRDP maximum interval between advertisements. The default is 600 seconds.</td>
</tr>
<tr>
<td>7</td>
<td><code>ip irdp minadvertinterval seconds</code></td>
<td>(Optional) Set the IRDP minimum interval between advertisements. The default is 0.75 times the <code>maxadvertinterval</code>. If you change the <code>maxadvertinterval</code>, this value changes to the new default (0.75 of <code>maxadvertinterval</code>).</td>
</tr>
<tr>
<td>8</td>
<td><code>ip irdp preference number</code></td>
<td>(Optional) Set a device IRDP preference level. The allowed range is -2^{31} to 2^{31}. The default is 0. A higher value increases the router preference level.</td>
</tr>
<tr>
<td>9</td>
<td><code>ip irdp address address [number]</code></td>
<td>(Optional) Specify an IRDP address and preference to proxy-advertise.</td>
</tr>
<tr>
<td>10</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>11</td>
<td><code>show ip irdp</code></td>
<td>Verify settings by displaying IRDP values.</td>
</tr>
<tr>
<td>12</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Enabling Directed Broadcast-to-Physical Broadcast Translation

By default, IP directed broadcasts are dropped; they are not forwarded. Dropping IP-directed broadcasts makes routers less susceptible to denial-of-service attacks.

You can enable forwarding of IP-directed broadcasts on an interface where the broadcast becomes a physical (MAC-layer) broadcast. Only those protocols configured by using the `ip forward-protocol` global configuration command are forwarded.

You can specify an access list to control which broadcasts are forwarded. When an access list is specified, only those IP packets permitted by the access list are eligible to be translated from directed broadcasts to physical broadcasts. For more information on access lists, see Chapter 1, “Configuring Network Security with ACLs.”

Beginning in privileged EXEC mode, follow these steps to enable forwarding of IP-directed broadcasts on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip directed-broadcast [access-list-number]</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
</tbody>
</table>
| **Step 5** | **ip forward-protocol {udp [port] | nd | sdns}** | Specify which protocols and ports the router forwards when forwarding broadcast packets.
- **udp**—Forward UDP datagrams.
 `port:` (Optional) Destination port that controls which UDP services are forwarded.
- **nd**—Forward ND datagrams.
- **sdns**—Forward SDNS datagrams |
| **Step 6** | **end** | Return to privileged EXEC mode. |
| **Step 7** | **show ip interface [interface-id]** or **show running-config** | Verify the configuration on the interface or all interfaces. |
| **Step 8** | **copy running-config startup-config** | (Optional) Save your entries in the configuration file. |

Use the `no ip directed-broadcast` interface configuration command to disable translation of directed broadcast to physical broadcasts. Use the `no ip forward-protocol` global configuration command to remove a protocol or port.
Forwarding UDP Broadcast Packets and Protocols

User Datagram Protocol (UDP) is an IP host-to-host layer protocol, as is TCP. UDP provides a low-overhead, connectionless session between two end systems and does not provide for acknowledgment of received datagrams. Network hosts occasionally use UDP broadcasts to find address, configuration, and name information. If such a host is on a network segment that does not include a server, UDP broadcasts are normally not forwarded. You can remedy this situation by configuring an interface on a router to forward certain classes of broadcasts to a helper address. You can use more than one helper address per interface.

You can specify a UDP destination port to control which UDP services are forwarded. You can specify multiple UDP protocols. You can also specify the Network Disk (ND) protocol, which is used by older diskless Sun workstations and the network security protocol SDNS.

By default, both UDP and ND forwarding are enabled if a helper address has been defined for an interface. The description for the `ip forward-protocol` interface configuration command in the *Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.4* lists the ports that are forwarded by default if you do not specify any UDP ports.

If you do not specify any UDP ports when you configure the forwarding of UDP broadcasts, you are configuring the router to act as a BOOTP forwarding agent. BOOTP packets carry DHCP information.

Beginning in privileged EXEC mode, follow these steps to enable forwarding UDP broadcast packets on an interface and specify the destination address:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>3</td>
<td>ip helper-address address</td>
<td>Enable forwarding and specify the destination address for forwarding UDP broadcast packets, including BOOTP.</td>
</tr>
<tr>
<td>4</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>5</td>
<td>ip forward-protocol { udp [port]</td>
<td>nd</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td>show ip interface [interface-id]</td>
<td>Verify the configuration on the interface or all interfaces.</td>
</tr>
<tr>
<td></td>
<td>or show running-config</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no ip helper-address` interface configuration command to disable the forwarding of broadcast packets to specific addresses. Use the `no ip forward-protocol` global configuration command to remove a protocol or port.

Establishing an IP Broadcast Address

The most popular IP broadcast address (and the default) is an address consisting of all ones (255.255.255.255). However, the switch can be configured to generate any form of IP broadcast address.

Beginning in privileged EXEC mode, follow these steps to set the IP broadcast address on an interface:
To restore the default IP broadcast address, use the `no ip broadcast-address` interface configuration command.

Flooding IP Broadcasts

You can allow IP broadcasts to be flooded throughout your internetwork in a controlled fashion by using the database created by the bridging STP. Using this feature also prevents loops. To support this capability, bridging must be configured on each interface that is to participate in the flooding. If bridging is not configured on an interface, it still can receive broadcasts. However, the interface never forwards broadcasts it receives, and the router never uses that interface to send broadcasts received on a different interface.

Packets that are forwarded to a single network address using the IP helper-address mechanism can be flooded. Only one copy of the packet is sent on each network segment.

To be considered for flooding, packets must meet these criteria. (Note that these are the same conditions used to consider packet forwarding using IP helper addresses.)

- The packet must be a MAC-level broadcast.
- The packet must be an IP-level broadcast.
- The packet must be a TFTP, DNS, Time, NetBIOS, ND, or BOOTP packet, or a UDP specified by the `ip forward-protocol udp` global configuration command.
- The time-to-live (TTL) value of the packet must be at least two.

A flooded UDP datagram is given the destination address specified with the `ip broadcast-address` interface configuration command on the output interface. The destination address can be set to any address. Thus, the destination address might change as the datagram propagates through the network. The source address is never changed. The TTL value is decremented.

When a flooded UDP datagram is sent out an interface (and the destination address possibly changed), the datagram is handed to the normal IP output routines and is, therefore, subject to access lists, if they are present on the output interface.

Beginning in privileged EXEC mode, follow these steps to use the bridging spanning-tree database to flood UDP datagrams:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Enter interface configuration mode, and specify the interface to configure.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip broadcast-address ip-address</code> Enter a broadcast address different from the default, for example 128.1.255.255.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show ip interface [interface-id]</code> Verify the broadcast address on the interface or all interfaces.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring IP Addressing

Use the no ip forward-protocol spanning-tree global configuration command to disable the flooding of IP broadcasts.

In the switch, the majority of packets are forwarded in hardware; most packets do not go through the switch CPU. For those packets that do go to the CPU, you can speed up spanning tree-based UDP flooding by a factor of about four to five times by using turbo-flooding. This feature is supported over Ethernet interfaces configured for ARP encapsulation.

Beginning in privileged EXEC mode, follow these steps to increase spanning-tree-based flooding:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no ip forward-protocol spanning-tree global configuration command to disable the feature.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2 ip forward-protocol turbo-flood</td>
<td>Use the spanning-tree database to speed up flooding of UDP datagrams.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this feature, use the no ip forward-protocol turbo-flood global configuration command.

Monitoring and Maintaining IP Addressing

When the contents of a particular cache, table, or database have become or are suspected to be invalid, you can remove all its contents by using the clear privileged EXEC commands. Table 1-2 lists the commands for clearing contents.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear arp-cache</td>
<td>Clear the IP ARP cache and the fast-switching cache.</td>
</tr>
<tr>
<td>clear host {name</td>
<td>*}</td>
</tr>
<tr>
<td>clear ip route {network</td>
<td>mask</td>
</tr>
</tbody>
</table>

You can display specific statistics, such as the contents of IP routing tables, caches, and databases; the reachability of nodes; and the routing path that packets are taking through the network. Table 1-3 lists the privileged EXEC commands for displaying IP statistics.
Chapter 1 Configuring IP Unicast Routing

Enabling IP Unicast Routing

By default, the switch is in Layer 2 switching mode and IP routing is disabled. To use the Layer 3 capabilities of the switch, you must enable IP routing.

Beginning in privileged EXEC mode, follow these steps to enable IP routing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>step 2 ip routing</td>
<td>Enable IP routing.</td>
</tr>
<tr>
<td>step 3 router ip_routing_protocol</td>
<td>Specify an IP routing protocol. This step might include other commands, such as specifying the networks to route with the network (RIP) router configuration command. For information on specific protocols, see sections later in this chapter and to the Cisco IOS IP Configuration Guide, Release 12.4.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no ip routing` global configuration command to disable routing.

This example shows how to enable IP routing using RIP as the routing protocol:

```
Switch# configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# router rip
```

Commands to Display Caches, Tables, and Databases

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show arp</td>
<td>Display the entries in the ARP table.</td>
</tr>
<tr>
<td>show hosts</td>
<td>Display the default domain name, style of lookup service, name server hosts, and the cached list of hostnames and addresses.</td>
</tr>
<tr>
<td>show ip aliases</td>
<td>Display IP addresses mapped to TCP ports (aliases).</td>
</tr>
<tr>
<td>show ip arp</td>
<td>Display the IP ARP cache.</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td>Display the IP status of interfaces.</td>
</tr>
<tr>
<td>show ip irdp</td>
<td>Display IRDP values.</td>
</tr>
<tr>
<td>show ip masks address</td>
<td>Display the masks used for network addresses and the number of subnets using each mask.</td>
</tr>
<tr>
<td>show ip redirects</td>
<td>Display the address of a default gateway.</td>
</tr>
<tr>
<td>show ip route [address [mask]]</td>
<td>Display the current state of the routing table.</td>
</tr>
<tr>
<td>show ip route summary</td>
<td>Display the current state of the routing table in summary form.</td>
</tr>
</tbody>
</table>
Switch(config-router)# network 10.0.0.0
Switch(config-router)# end

You can now set up parameters for the selected routing protocols as described in these sections:

- Configuring RIP, page 1-21
- Configuring OSPF, page 1-27
- Configuring EIGRP, page 1-37
- Configuring BGP, page 1-45
- Configuring Unicast Reverse Path Forwarding, page 1-91
- Configuring Protocol-Independent Features, page 1-91 (optional)

Configuring RIP

The Routing Information Protocol (RIP) is an interior gateway protocol (IGP) created for use in small, homogeneous networks. It is a distance-vector routing protocol that uses broadcast User Datagram Protocol (UDP) data packets to exchange routing information. The protocol is documented in RFC 1058. You can find detailed information about RIP in *IP Routing Fundamentals*, published by Cisco Press.

Note

RIP is the only routing protocol supported by the IP base feature set; other routing protocols require the switch or stack master to be running the IP services feature set.

Using RIP, the switch sends routing information updates (advertisements) every 30 seconds. If a router does not receive an update from another router for 180 seconds or more, it marks the routes served by that router as unusable. If there is still no update after 240 seconds, the router removes all routing table entries for the non-updating router.

RIP uses hop counts to rate the value of different routes. The hop count is the number of routers that can be traversed in a route. A directly connected network has a hop count of zero; a network with a hop count of 16 is unreachable. This small range (0 to 15) makes RIP unsuitable for large networks.

If the router has a default network path, RIP advertises a route that links the router to the pseudonetwork 0.0.0.0. The 0.0.0.0 network does not exist; it is treated by RIP as a network to implement the default routing feature. The switch advertises the default network if a default was learned by RIP or if the router has a gateway of last resort and RIP is configured with a default metric. RIP sends updates to the interfaces in specified networks. If an interface’s network is not specified, it is not advertised in any RIP update.

These sections contain this configuration information:

- Default RIP Configuration, page 1-22
- Configuring Basic RIP Parameters, page 1-22
- Configuring RIP Authentication, page 1-24
- Configuring Summary Addresses and Split Horizon, page 1-24
Chapter 1 Configuring IP Unicast Routing

Default RIP Configuration

To configure RIP, you enable RIP routing for a network and optionally configure other parameters. On the Catalyst 3750-E and 3560-E Catalyst 3750-X and 3560-X switches, RIP configuration commands are ignored until you configure the network number.

Beginning in privileged EXEC mode, follow these steps to enable and configure RIP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip routing</td>
<td>Enable IP routing. (Required only if IP routing is disabled.)</td>
</tr>
<tr>
<td>Step 3 router rip</td>
<td>Enable a RIP routing process, and enter router configuration mode.</td>
</tr>
</tbody>
</table>
Step 4

network network number

Associate a network with a RIP routing process. You can specify multiple `network` commands. RIP routing updates are sent and received through interfaces only on these networks.

Note You must configure a network number for the RIP commands to take effect.

Step 5

neighbor ip-address

(Optional) Define a neighboring router with which to exchange routing information. This step allows routing updates from RIP (normally a broadcast protocol) to reach nonbroadcast networks.

Step 6

offset list [access-list number | name] {in | out} offset [type number]

(Optional) Apply an offset list to routing metrics to increase incoming and outgoing metrics to routes learned through RIP. You can limit the offset list with an access list or an interface.

Step 7

timers basic update invalid holddown flush

(Optional) Adjust routing protocol timers. Valid ranges for all timers are 0 to 4294967295 seconds.

- **update**—The time between sending routing updates. The default is 30 seconds.
- **invalid**—The timer after which a route is declared invalid. The default is 180 seconds.
- **holddown**—The time before a route is removed from the routing table. The default is 180 seconds.
- **flush**—The amount of time for which routing updates are postponed. The default is 240 seconds.

Step 8

version {1 | 2}

(Optional) Configure the switch to receive and send only RIP Version 1 or RIP Version 2 packets. By default, the switch receives Version 1 and 2 but sends only Version 1. You can also use the interface commands `ip rip {send | receive} version {1 | 2 | 1 2}` to control what versions are used for sending and receiving on interfaces.

Step 9

no auto summary

(Optional) Disable automatic summarization. By default, the switch summarizes subprefixes when crossing classful network boundaries. Disable summarization (RIP Version 2 only) to advertise subnet and host routing information to classful network boundaries.

Step 10

no validate-update-source

(Optional) Disable validation of the source IP address of incoming RIP routing updates. By default, the switch validates the source IP address of incoming RIP routing updates and discards the update if the source address is not valid. Under normal circumstances, disabling this feature is not recommended. However, if you have a router that is off-network and you want to receive its updates, you can use this command.

Step 11

output-delay delay

(Optional) Add interpacket delay for RIP updates sent. By default, packets in a multiple-packet RIP update have no delay added between packets. If you are sending packets to a lower-speed device, you can add an interpacket delay in the range of 8 to 50 milliseconds.

Step 12

end

Return to privileged EXEC mode.

Step 13

show ip protocols

Verify your entries.

Step 14

copy running-config startup-config

(Optional) Save your entries in the configuration file.
To turn off the RIP routing process, use the `no router rip` global configuration command.

To display the parameters and current state of the active routing protocol process, use the `show ip protocols` privileged EXEC command. Use the `show ip rip database` privileged EXEC command to display summary address entries in the RIP database.

Configuring RIP Authentication

RIP Version 1 does not support authentication. If you are sending and receiving RIP Version 2 packets, you can enable RIP authentication on an interface. The key chain specifies the set of keys that can be used on the interface. If a key chain is not configured, no authentication is performed, not even the default. Therefore, you must also perform the tasks in the “Managing Authentication Keys” section on page 1-105.

The switch supports two modes of authentication on interfaces for which RIP authentication is enabled: plain text and MD5. The default is plain text.

Beginning in privileged EXEC mode, follow these steps to configure RIP authentication on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip rip authentication key-chain name-of-chain</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>`ip rip authentication mode [text</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>show running-config interface [interface-id]</code></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

To restore clear text authentication, use the `no ip rip authentication mode` interface configuration command. To prevent authentication, use the `no ip rip authentication key-chain` interface configuration command.

Configuring Summary Addresses and Split Horizon

Routers connected to broadcast-type IP networks and using distance-vector routing protocols normally use the split-horizon mechanism to reduce the possibility of routing loops. Split horizon blocks information about routes from being advertised by a router on any interface from which that information originated. This feature usually optimizes communication among multiple routers, especially when links are broken.

Note

In general, disabling split horizon is not recommended unless you are certain that your application requires it to properly advertise routes.
If you want to configure an interface running RIP to advertise a summarized local IP address pool on a network access server for dial-up clients, use the \texttt{ip summary-address rip} interface configuration command.

\textbf{Note}

If split horizon is enabled, neither autosummary nor interface IP summary addresses are advertised.

Beginning in privileged EXEC mode, follow these steps to set an interface to advertise a summarized local IP address and to disable split horizon on the interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{configure terminal}</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>\texttt{interface interface-id}</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>\texttt{ip address ip-address subnet-mask}</td>
<td>Configure the IP address and IP subnet.</td>
</tr>
<tr>
<td>\texttt{ip summary-address rip ip address ip-network mask}</td>
<td>Configure the IP address to be summarized and the IP network mask.</td>
</tr>
<tr>
<td>\texttt{no ip split-horizon}</td>
<td>Disable split horizon on the interface.</td>
</tr>
<tr>
<td>\texttt{end}</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>\texttt{show ip interface interface-id}</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>\texttt{copy running-config startup-config}</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable IP summarization, use the \texttt{no ip summary-address rip} router configuration command.

In this example, the major net is 10.0.0.0. The summary address 10.2.0.0 overrides the autosummary address of 10.0.0.0 so that 10.2.0.0 is advertised out interface Gigabit Ethernet port 2, and 10.0.0.0 is not advertised. In the example, if the interface is still in Layer 2 mode (the default), you must enter a \texttt{no switchport} interface configuration command before entering the \texttt{ip address} interface configuration command.

\textbf{Note}

If split horizon is enabled, neither autosummary nor interface summary addresses (those configured with the \texttt{ip summary-address rip} router configuration command) are advertised.

\begin{verbatim}
Switch(config)# router rip
Switch(config-router)# interface gigabitethernet1/0/2
Switch(config-if)# ip address 10.1.5.1 255.255.255.0
Switch(config-if)# ip summary-address rip 10.2.0.0 255.255.0.0
Switch(config-if)# no ip split-horizon
Switch(config-if)# exit
Switch(config)# router rip
Switch(config-router)# network 10.0.0.0
Switch(config-router)# neighbor 2.2.2.2 peer-group mygroup
Switch(config-router)# end
\end{verbatim}
Configuring Split Horizon

Routers connected to broadcast-type IP networks and using distance-vector routing protocols normally use the split-horizon mechanism to reduce the possibility of routing loops. Split horizon blocks information about routes from being advertised by a router on any interface from which that information originated. This feature can optimize communication among multiple routers, especially when links are broken.

Note

In general, we do not recommend disabling split horizon unless you are certain that your application requires it to properly advertise routes.

Beginning in privileged EXEC mode, follow these steps to disable split horizon on the interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to configure.</td>
</tr>
<tr>
<td>Step 3 ip address ip-address subnet-mask</td>
<td>Configure the IP address and IP subnet.</td>
</tr>
<tr>
<td>Step 4 no ip split-horizon</td>
<td>Disable split horizon on the interface.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show ip interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To enable the split horizon mechanism, use the `ip split-horizon` interface configuration command.
Configuring OSPF

This section briefly describes how to configure Open Shortest Path First (OSPF). For a complete description of the OSPF commands, see the “OSPF Commands” chapter of the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.4.

Note

OSPF classifies different media into broadcast, nonbroadcast, and point-to-point networks. The switch supports broadcast (Ethernet, Token Ring, and FDDI) and point-to-point networks (Ethernet interfaces configured as point-to-point links).

OSPF is an Interior Gateway Protocol (IGP) designed expressly for IP networks, supporting IP subnetting and tagging of externally derived routing information. OSPF also allows packet authentication and uses IP multicast when sending and receiving packets. The Cisco implementation supports RFC 1253, OSPF management information base (MIB).

The Cisco implementation conforms to the OSPF Version 2 specifications with these key features:

- Definition of stub areas is supported.
- Routes learned through any IP routing protocol can be redistributed into another IP routing protocol. At the intradomain level, this means that OSPF can import routes learned through EIGRP and RIP. OSPF routes can also be exported into RIP.
- Plain text and MD5 authentication among neighboring routers within an area is supported.
- Configurable routing interface parameters include interface output cost, retransmission interval, interface transmit delay, router priority, router dead and hello intervals, and authentication key.
- Virtual links are supported.
- Not-so-stubby-areas (NSSAs) per RFC 1587 are supported.

OSPF typically requires coordination among many internal routers, area border routers (ABRs) connected to multiple areas, and autonomous system boundary routers (ASBRs). The minimum configuration would use all default parameter values, no authentication, and interfaces assigned to areas. If you customize your environment, you must ensure coordinated configuration of all routers.

These sections contain this configuration information:

- Default OSPF Configuration, page 1-28
- Configuring Basic OSPF Parameters, page 1-31
- Configuring OSPF Interfaces, page 1-32
- Configuring OSPF Area Parameters, page 1-33
- Configuring Other OSPF Parameters, page 1-34
- Changing LSA Group Pacing, page 1-36
- Configuring a Loopback Interface, page 1-36
- Monitoring OSPF, page 1-37
Default OSPF Configuration

Table 1-5 Default OSPF Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface parameters</td>
<td>Cost: No default cost predefined.</td>
</tr>
<tr>
<td></td>
<td>Retransmit interval: 5 seconds.</td>
</tr>
<tr>
<td></td>
<td>Transmit delay: 1 second.</td>
</tr>
<tr>
<td></td>
<td>Priority: 1.</td>
</tr>
<tr>
<td></td>
<td>Hello interval: 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>Dead interval: 4 times the hello interval.</td>
</tr>
<tr>
<td></td>
<td>No authentication.</td>
</tr>
<tr>
<td></td>
<td>No password specified.</td>
</tr>
<tr>
<td></td>
<td>MD5 authentication disabled.</td>
</tr>
<tr>
<td>Area</td>
<td>Authentication type: 0 (no authentication).</td>
</tr>
<tr>
<td></td>
<td>Default cost: 1.</td>
</tr>
<tr>
<td></td>
<td>Range: Disabled.</td>
</tr>
<tr>
<td></td>
<td>Stub: No stub area defined.</td>
</tr>
<tr>
<td></td>
<td>NSSA: No NSSA area defined.</td>
</tr>
<tr>
<td>Auto cost</td>
<td>100 Mb/s.</td>
</tr>
<tr>
<td>Default-information originate</td>
<td>Disabled. When enabled, the default metric setting is 10, and the external route type default is Type 2.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Built-in, automatic metric translation, as appropriate for each routing protocol.</td>
</tr>
<tr>
<td>Distance OSPF</td>
<td>dist1 (all routes within an area): 110.</td>
</tr>
<tr>
<td></td>
<td>dist2 (all routes from one area to another): 110.</td>
</tr>
<tr>
<td></td>
<td>dist3 (routes from other routing domains): 110.</td>
</tr>
<tr>
<td>OSPF database filter</td>
<td>Disabled. All outgoing link-state advertisements (LSAs) are flooded to the interface.</td>
</tr>
<tr>
<td>IP OSPF name lookup</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Log adjacency changes</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>None specified.</td>
</tr>
<tr>
<td>Neighbor database filter</td>
<td>Disabled. All outgoing LSAs are flooded to the neighbor.</td>
</tr>
<tr>
<td>Network area</td>
<td>Disabled.</td>
</tr>
<tr>
<td>NSF^1 awareness</td>
<td>Enabled^2. Allows Layer 3 switches to continue forwarding packets from a neighboring NSF-capable router during hardware or software changes.</td>
</tr>
<tr>
<td>NSF capability</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Router ID</td>
<td>No OSPF routing process defined.</td>
</tr>
<tr>
<td>Summary address</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Timers LSA group pacing</td>
<td>240 seconds.</td>
</tr>
</tbody>
</table>

Note The switch stack supports OSPF NSF-capable routing for IPv4.
Chapter 1 Configuring IP Unicast Routing

Configuring OSPF

OSPF for Routed Access

With Cisco IOS Release 12.2(55)SE, the IP Base image supports OSPF for routed access. The IP services image is required if you need multiple OSPFv2 and OSPFv3 instances without route restrictions. Additionally, the IP services image is required to enable the multi-VRF-CE feature.

OSPF for Routed Access is specifically designed so that you can extend Layer 3 routing capabilities to the wiring closet.

Note

OSPF for Routed Access supports only one OSPFv2 and one OSPFv3 instance with a combined total of 200 dynamically learned routes. The IP Base image provides OSPF for routed access.

However, these restrictions are not enforced in this release.

With the typical topology (hub and spoke) in a campus environment, where the wiring closets (spokes) are connected to the distribution switch (hub) that forwards all nonlocal traffic to the distribution layer, the wiring closet switch need not hold a complete routing table. A best practice design, where the distribution switch sends a default route to the wiring closet switch to reach interarea and external routes (OSPF stub or totally stub area configuration) should be used when OSPF for Routed Access is used in the wiring closet.

For more details, see the “High Availability Campus Network Design—Routed Access Layer using EIGRP or OSPF” document.

OSPF Nonstop Forwarding

The switch or switch stack supports two levels of nonstop forwarding (NSF):

- **OSPF NSF Awareness, page 1-30**
- **OSPF NSF Capability, page 1-30**

Table 1-5 Default OSPF Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timers shortest path first (spf)</td>
<td>spf delay: 5 seconds.; spf-holdtime: 10 seconds.</td>
</tr>
<tr>
<td>Virtual link</td>
<td>No area ID or router ID defined.</td>
</tr>
<tr>
<td></td>
<td>Hello interval: 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>Retransmit interval: 5 seconds.</td>
</tr>
<tr>
<td></td>
<td>Transmit delay: 1 second.</td>
</tr>
<tr>
<td></td>
<td>Dead interval: 40 seconds.</td>
</tr>
<tr>
<td></td>
<td>Authentication key: no key predefined.</td>
</tr>
<tr>
<td></td>
<td>Message-digest key (MD5): no key predefined.</td>
</tr>
</tbody>
</table>

1. NSF = Nonstop forwarding.
2. OSPF NSF awareness is enabled for IPv4 on Catalyst 3750-E and 3560-E switches running the IP services and IP Base feature sets.
OSPF NSF Awareness

The IP-services and IP-Base feature sets support OSPF NSF Awareness supported for IPv4. When the neighboring router is NSF-capable, the Layer 3 switch continues to forward packets from the neighboring router during the interval between the primary Route Processor (RP) in a router crashing and the backup RP taking over, or while the primary RP is manually reloaded for a non-disruptive software upgrade.

This feature cannot be disabled. For more information on this feature, see OSPF Nonstop Forwarding (NSF) Awareness:

OSPF NSF Capability

Beginning with Cisco IOS Release 12.2(58)SE, and Release 15.2(1)E, the IP services and IP-Base feature sets respectively support the OSPFv2 NSF IETF format in addition to the OSPFv2 NSF Cisco format that is supported in earlier releases. For information about this feature, see NSF—OSPF (RFC 3623 OSPF Graceful Restart).

The IP-services and IP-Base feature sets also support OSPF NSF-capable routing for IPv4 for better convergence and lower traffic loss following a stack master change. When a stack master change occurs in an OSPF NSF-capable stack, the new stack master must do two things to resynchronize its link-state database with its OSPF neighbors:

- Release the available OSPF neighbors on the network without resetting the neighbor relationship.
- Reacquire the contents of the link-state database for the network.

After a stack master change, the new master sends an OSPF NSF signal to neighboring NSF-aware devices. A device recognizes this signal to mean that it should not reset the neighbor relationship with the stack. As the NSF-capable stack master receives signals from other routes on the network, it begins to rebuild its neighbor list.

When the neighbor relationships are reestablished, the NSF-capable stack master resynchronizes its database with its NSF-aware neighbors, and routing information is exchanged between the OSPF neighbors. The new stack master uses this routing information to remove stale routes, to update the routing information database (RIB), and to update the forwarding information base (FIB) with the new information. The OSPF protocols then fully converge.

Use the `nsf` OSPF routing configuration command to enable OSPF NSF routing. Use the `show ip ospf` privileged EXEC command to verify that it is enabled.

For more information, see Cisco Nonstop Forwarding:

Note

OSPF NSF requires that all neighbor networking devices be NSF-aware. If an NSF-capable router discovers non-NSF aware neighbors on a network segment, it disables NSF capabilities for that segment. Other network segments where all devices are NSF-aware or NSF-capable continue to provide NSF capabilities.

Use the `nsf` OSPF routing configuration command to enable OSPF NSF routing. Use the `show ip ospf` privileged EXEC command to verify that it is enabled.

For more information, see Cisco Nonstop Forwarding:

Note

NSF is not supported on interfaces configured for Hot Standby Router Protocol (HSRP).
Configuring Basic OSPF Parameters

To enable OSPF, create an OSPF routing process, specify the range of IP addresses to associate with the routing process, and assign area IDs to be associated with that range. Beginning in Cisco IOS Release 12.2(58)SE, for switches running the IP services image, you can configure either the Cisco OSPFv2 NSF format or the IETF OSPFv2 NSF format.

Beginning in privileged EXEC mode, follow these steps to enable OSPF:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>router ospf process-id</td>
<td>Enable OSPF routing, and enter router configuration mode. The process ID is an internally used identification parameter that is locally assigned and can be any positive integer. Each OSPF routing process has a unique value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note OSPF for Routed Access supports only one OSPFv2 and one OSPFv3 instance with a maximum number of 200 dynamically learned routes.</td>
</tr>
<tr>
<td>3</td>
<td>nsf cisco [enforce global]</td>
<td>(Optional) Enable Cisco NSF operations for OSPF. The enforce global keyword cancels NSF restart when non-NSF-aware neighboring networking devices are detected.</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>nsf ietf [restart-interval seconds]</td>
</tr>
<tr>
<td>4</td>
<td>network address wildcard-mask area area-id</td>
<td>Define an interface on which OSPF runs and the area ID for that interface. You can use the wildcard-mask to use a single command to define one or more multiple interfaces to be associated with a specific OSPF area. The area ID can be a decimal value or an IP address.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show ip protocols</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To end an OSPF routing process, use the **no router ospf process-id** global configuration command.

This example shows how to configure an OSPF routing process and assign it a process number of 109:

```
Switch(config)# router ospf 109
Switch(config-router)# network 131.108.0.0 255.255.255.0 area 24
```
Configuring OSPF Interfaces

You can use the `ip ospf` interface configuration commands to modify interface-specific OSPF parameters. You are not required to modify any of these parameters, but some interface parameters (hello interval, dead interval, and authentication key) must be consistent across all routers in an attached network. If you modify these parameters, be sure all routers in the network have compatible values.

Note

The `ip ospf` interface configuration commands are all optional.

Beginning in privileged EXEC mode, follow these steps to modify OSPF interface parameters:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>3</td>
<td>ip ospf cost</td>
<td>(Optional) Explicitly specify the cost of sending a packet on the interface.</td>
</tr>
<tr>
<td>4</td>
<td>ip ospf retransmit-interval seconds</td>
<td>(Optional) Specify the number of seconds between link state advertisement transmissions. The range is 1 to 65535 seconds. The default is 5 seconds.</td>
</tr>
<tr>
<td>5</td>
<td>ip ospf transmit-delay seconds</td>
<td>(Optional) Set the estimated number of seconds to wait before sending a link state update packet. The range is 1 to 65535 seconds. The default is 1 second.</td>
</tr>
<tr>
<td>6</td>
<td>ip ospf priority number</td>
<td>(Optional) Set priority to help find the OSPF designated router for a network. The range is from 0 to 255. The default is 1.</td>
</tr>
<tr>
<td>7</td>
<td>ip ospf hello-interval seconds</td>
<td>(Optional) Set the number of seconds between hello packets sent on an OSPF interface. The value must be the same for all nodes on a network. The range is 1 to 65535 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td>8</td>
<td>ip ospf dead-interval seconds</td>
<td>(Optional) Set the number of seconds after the last device hello packet was seen before its neighbors declare the OSPF router to be down. The value must be the same for all nodes on a network. The range is 1 to 65535 seconds. The default is 4 times the hello interval.</td>
</tr>
<tr>
<td>9</td>
<td>ip ospf authentication-key key</td>
<td>(Optional) Assign a password to be used by neighboring OSPF routers. The password can be any string of keyboard-entered characters up to 8 bytes in length. All neighboring routers on the same network must have the same password to exchange OSPF information.</td>
</tr>
<tr>
<td>10</td>
<td>ip ospf message digest-key keyid md5 key</td>
<td>(Optional) Enable MDS authentication.</td>
</tr>
<tr>
<td></td>
<td>keyid—An identifier from 1 to 255.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>key—An alphanumeric password of up to 16 bytes.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ip ospf database-filter all out</td>
<td>(Optional) Block flooding of OSPF LSA packets to the interface. By default, OSPF floods new LSAs over all interfaces in the same area, except the interface on which the LSA arrives.</td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>13</td>
<td>show ip ospf interface [interface-name]</td>
<td>Display OSPF-related interface information.</td>
</tr>
</tbody>
</table>
Chapter 1: Configuring IP Unicast Routing

Configuring OSPF

Use the `no` form of these commands to remove the configured parameter value or return to the default value.

Configuring OSPF Area Parameters

You can optionally configure several OSPF area parameters. These parameters include authentication for password-based protection against unauthorized access to an area, stub areas, and not-so-stubby-areas (NSSAs). Stub areas are areas into which information on external routes is not sent. Instead, the area border router (ABR) generates a default external route into the stub area for destinations outside the autonomous system (AS). An NSSA does not flood all LSAs from the core into the area, but can import AS external routes within the area by redistribution.

Route summarization is the consolidation of advertised addresses into a single summary route to be advertised by other areas. If network numbers are contiguous, you can use the `area range` router configuration command to configure the ABR to advertise a summary route that covers all networks in the range.

Note
The OSPF area router configuration commands are all optional.

Beginning in privileged EXEC mode, follow these steps to configure area parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>router ospf process-id</code></td>
<td>Enable OSPF routing, and enter router configuration mode.</td>
</tr>
<tr>
<td><code>area area-id authentication</code></td>
<td>(Optional) Allow password-based protection against unauthorized access to the identified area. The identifier can be either a decimal value or an IP address.</td>
</tr>
<tr>
<td><code>area area-id authentication message-digest</code></td>
<td>(Optional) Enable MD5 authentication on the area.</td>
</tr>
<tr>
<td><code>area area-id stub [no-summary]</code></td>
<td>(Optional) Define an area as a stub area. The <code>no-summary</code> keyword prevents an ABR from sending summary link advertisements into the stub area.</td>
</tr>
</tbody>
</table>
Configuring OSPF

Use the **no** form of these commands to remove the configured parameter value or to return to the default value.

Configuring Other OSPF Parameters

You can optionally configure other OSPF parameters in router configuration mode.

- **Route summarization**: When redistributing routes from other protocols as described in the "Using Route Maps to Redistribute Routing Information" section on page 1-96, each route is advertised individually in an external LSA. To help decrease the size of the OSPF link state database, you can use the **summary-address** router configuration command to advertise a single router for all the redistributed routes included in a specified network address and mask.

- **Virtual links**: In OSPF, all areas must be connected to a backbone area. You can establish a virtual link in case of a backbone-continuity break by configuring two Area Border Routers as endpoints of a virtual link. Configuration information includes the identity of the other virtual endpoint (the other ABR) and the nonbackbone link that the two routers have in common (the transit area). Virtual links cannot be configured through a stub area.

- **Default route**: When you specifically configure redistribution of routes into an OSPF routing domain, the route automatically becomes an autonomous system boundary router (ASBR). You can force the ASBR to generate a default route into the OSPF routing domain.

- **Domain Name Server (DNS) names for use in all OSPF show** privileged EXEC command displays makes it easier to identify a router than displaying it by router ID or neighbor ID.

- **Default Metrics**: OSPF calculates the OSPF metric for an interface according to the bandwidth of the interface. The metric is calculated as \(\frac{\text{ref-bw}}{\text{bw}} \), where \(\text{ref} \) is 10 by default, and \(\text{bw} \) is specified by the **bandwidth** interface configuration command. For multiple links with high bandwidth, you can specify a larger number to differentiate the cost on those links.
Administrative distance is a rating of the trustworthiness of a routing information source, an integer between 0 and 255, with a higher value meaning a lower trust rating. An administrative distance of 255 means the routing information source cannot be trusted at all and should be ignored. OSPF uses three different administrative distances: routes within an area (interarea), routes to another area (interarea), and routes from another routing domain learned through redistribution (external). You can change any of the distance values.

- Passive interfaces: Because interfaces between two devices on an Ethernet represent only one network segment, to prevent OSPF from sending hello packets for the sending interface, you must configure the sending device to be a passive interface. Both devices can identify each other through the hello packet for the receiving interface.

- Route calculation timers: You can configure the delay time between when OSPF receives a topology change and when it starts the shortest path first (SPF) calculation and the hold time between two SPF calculations.

- Log neighbor changes: You can configure the router to send a syslog message when an OSPF neighbor state changes, providing a high-level view of changes in the router.

Beginning in privileged EXEC mode, follow these steps to configure these OSPF parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router ospf process-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>summary-address address mask</td>
</tr>
<tr>
<td>Step 4</td>
<td>area area-id virtual-link router-id [hello-interval seconds] [retransmit-interval seconds] [trans] [authentication-key key]</td>
</tr>
<tr>
<td>Step 5</td>
<td>default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip ospf name-lookup</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip auto-cost reference-bandwidth ref-bw</td>
</tr>
<tr>
<td>Step 8</td>
<td>distance ospf [inter-area dist1] [inter-area dist2] [external dist3]</td>
</tr>
<tr>
<td>Step 9</td>
<td>passive-interface type number</td>
</tr>
<tr>
<td>Step 10</td>
<td>timers throttle spf spf-delay spf-holdtime spf-wait</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>ospf log-adj-changes</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IP Unicast Routing

Configuring OSPF

Changing LSA Group Pacing

The OSPF LSA group pacing feature allows the router to group OSPF LSAs and pace the refreshing, check-summing, and aging functions for more efficient router use. This feature is enabled by default with a 4-minute default pacing interval, and you will not usually need to modify this parameter. The optimum group pacing interval is inversely proportional to the number of LSAs the router is refreshing, check-summing, and aging. For example, if you have approximately 10,000 LSAs in the database, decreasing the pacing interval would benefit you. If you have a very small database (40 to 100 LSAs), increasing the pacing interval to 10 to 20 minutes might benefit you slightly.

Beginning in privileged EXEC mode, follow these steps to configure OSPF LSA pacing:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>13</td>
<td>show ip ospf [process-id [area-id]] database</td>
<td>Display lists of information related to the OSPF database for a specific router. For some of the keyword options, see the “Monitoring OSPF” section on page 1-37.</td>
</tr>
<tr>
<td>14</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default value, use the no timers lsa-group-pacing router configuration command.

Configuring a Loopback Interface

OSPF uses the highest IP address configured on the interfaces as its router ID. If this interface is down or removed, the OSPF process must recalculate a new router ID and resend all its routing information out its interfaces. If a loopback interface is configured with an IP address, OSPF uses this IP address as its router ID, even if other interfaces have higher IP addresses. Because loopback interfaces never fail, this provides greater stability. OSPF automatically prefers a loopback interface over other interfaces, and it chooses the highest IP address among all loopback interfaces.

Beginning in privileged EXEC mode, follow these steps to configure a loopback interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>router ospf process-id</td>
<td>Enable OSPF routing, and enter router configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>timers lsa-group-pacing seconds</td>
<td>Change the group pacing of LSAs.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

OSPF uses the highest IP address configured on the interfaces as its router ID. If this interface is down or removed, the OSPF process must recalculate a new router ID and resend all its routing information out its interfaces. If a loopback interface is configured with an IP address, OSPF uses this IP address as its router ID, even if other interfaces have higher IP addresses. Because loopback interfaces never fail, this provides greater stability. OSPF automatically prefers a loopback interface over other interfaces, and it chooses the highest IP address among all loopback interfaces.

Beginning in privileged EXEC mode, follow these steps to configure a loopback interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface loopback 0</td>
<td>Create a loopback interface, and enter interface configuration mode.</td>
</tr>
<tr>
<td>ip address address mask</td>
<td>Assign an IP address to this interface.</td>
</tr>
</tbody>
</table>
Use the `no interface loopback 0` global configuration command to disable the loopback interface.

Monitoring OSPF

You can display specific statistics such as the contents of IP routing tables, caches, and databases. Table 1-6 lists some of the privileged EXEC commands for displaying statistics. For more `show ip ospf database` privileged EXEC command options and for explanations of fields in the resulting display, see the *Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.4*.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip ospf</code> [process-id] database [router] [link-state-id]</td>
<td>Display lists of information related to the OSPF database.</td>
</tr>
<tr>
<td><code>show ip ospf</code> [process-id] database [router] [self-originate]</td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf</code> [process-id] database [adv-router [ip-address]]</td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf</code> [process-id] database [network] [link-state-id]</td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf</code> [process-id] database [summary] [link-state-id]</td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf</code> [process-id] database [asbr-summary] [link-state-id]</td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf</code> [process-id] database [external] [link-state-id]</td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf</code> [process-id area-id] database [database-summary]</td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf border-routes</code></td>
<td>Display the internal OSPF routing ABR and ASBR table entries.</td>
</tr>
<tr>
<td><code>show ip ospf interface</code> [interface-name]</td>
<td>Display OSPF-related interface information.</td>
</tr>
<tr>
<td><code>show ip ospf neighbor</code> [interface-name] [neighbor-id] detail</td>
<td>Display OSPF interface neighbor information.</td>
</tr>
<tr>
<td><code>show ip ospf virtual-links</code></td>
<td>Display OSPF-related virtual links information.</td>
</tr>
</tbody>
</table>

Configuring EIGRP

Enhanced IGRP (EIGRP) is a Cisco proprietary enhanced version of the IGRP. EIGRP uses the same distance vector algorithm and distance information as IGRP; however, the convergence properties and the operating efficiency of EIGRP are significantly improved.

The convergence technology employs an algorithm referred to as the Diffusing Update Algorithm (DUAL), which guarantees loop-free operation at every instant throughout a route computation and allows all devices involved in a topology change to synchronize at the same time. Routers that are not affected by topology changes are not involved in recomputations.
IP EIGRP provides increased network width. With RIP, the largest possible width of your network is 15 hops. Because the EIGRP metric is large enough to support thousands of hops, the only barrier to expanding the network is the transport-layer hop counter. EIGRP increments the transport control field only when an IP packet has traversed 15 routers and the next hop to the destination was learned through EIGRP. When a RIP route is used as the next hop to the destination, the transport control field is incremented as usual.

EIGRP offers these features:

- Fast convergence.
- Incremental updates when the state of a destination changes, instead of sending the entire contents of the routing table, minimizing the bandwidth required for EIGRP packets.
- Less CPU usage because full update packets need not be processed each time they are received.
- Protocol-independent neighbor discovery mechanism to learn about neighboring routers.
- Variable-length subnet masks (VLSMs).
- Arbitrary route summarization.
- EIGRP scales to large networks.

EIGRP has these four basic components:

- **Neighbor discovery and recovery** is the process that routers use to dynamically learn of other routers on their directly attached networks. Routers must also discover when their neighbors become unreachable or inoperative. Neighbor discovery and recovery is achieved with low overhead by periodically sending small hello packets. As long as hello packets are received, the Cisco IOS software can learn that a neighbor is alive and functioning. When this status is determined, the neighboring routers can exchange routing information.

- The **reliable transport protocol** is responsible for guaranteed, ordered delivery of EIGRP packets to all neighbors. It supports intermixed transmission of multicast and unicast packets. Some EIGRP packets must be sent reliably, and others need not be. For efficiency, reliability is provided only when necessary. For example, on a multiaccess network that has multicast capabilities (such as Ethernet), it is not necessary to send hellos reliably to all neighbors individually. Therefore, EIGRP sends a single multicast hello with an indication in the packet informing the receivers that the packet need not be acknowledged. Other types of packets (such as updates) require acknowledgment, which is shown in the packet. The reliable transport has a provision to send multicast packets quickly when there are unacknowledged packets pending. Doing so helps ensure that convergence time remains low in the presence of varying speed links.

- The **DUAL finite state machine** embodies the decision process for all route computations. It tracks all routes advertised by all neighbors. DUAL uses the distance information (known as a metric) to select efficient, loop-free paths. DUAL selects routes to be inserted into a routing table based on feasible successors. A successor is a neighboring router used for packet forwarding that has a least-cost path to a destination that is guaranteed not to be part of a routing loop. When there are no feasible successors, but there are neighbors advertising the destination, a recomputation must occur. This is the process whereby a new successor is determined. The amount of time it takes to recompute the route affects the convergence time. Recomputation is processor-intensive; it is advantageous to avoid recomputation if it is not necessary. When a topology change occurs, DUAL tests for feasible successors. If there are feasible successors, it uses any it finds to avoid unnecessary recomputation.

- The **protocol-dependent modules** are responsible for network layer protocol-specific tasks. An example is the IP EIGRP module, which is responsible for sending and receiving EIGRP packets that are encapsulated in IP. It is also responsible for parsing EIGRP packets and informing DUAL of the new information received. EIGRP asks DUAL to make routing decisions, but the results are stored in the IP routing table. EIGRP is also responsible for redistributing routes learned by other IP routing protocols.
These sections contain this configuration information:

- Default EIGRP Configuration, page 1-39
- Configuring Basic EIGRP Parameters, page 1-41
- Configuring EIGRP Interfaces, page 1-42
- Configuring EIGRP Route Authentication, page 1-43
- EIGRP Stub Routing, page 1-44
- Monitoring and Maintaining EIGRP, page 1-45

Note
To enable EIGRP, the switch or stack master must be running the IP services feature set.

Default EIGRP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto summary</td>
<td>Enabled. Subprefixes are summarized to the classful network boundary when crossing classful network boundaries.</td>
</tr>
<tr>
<td>Default-information</td>
<td>Exterior routes are accepted and default information is passed between EIGRP processes when doing redistribution.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Only connected routes and interface static routes can be redistributed without a default metric. The metric includes:</td>
</tr>
<tr>
<td></td>
<td>• Bandwidth: 0 or greater kb/s.</td>
</tr>
<tr>
<td></td>
<td>• Delay (tens of microseconds): 0 or any positive number that is a multiple of 39.1 nanoseconds.</td>
</tr>
<tr>
<td></td>
<td>• Reliability: any number between 0 and 255 (255 means 100 percent reliability).</td>
</tr>
<tr>
<td></td>
<td>• Loading: effective bandwidth as a number between 0 and 255 (255 is 100 percent loading).</td>
</tr>
<tr>
<td></td>
<td>• MTU: maximum transmission unit size of the route in bytes. 0 or any positive integer.</td>
</tr>
<tr>
<td>Distance</td>
<td>Internal distance: 90.</td>
</tr>
<tr>
<td></td>
<td>External distance: 170.</td>
</tr>
<tr>
<td>EIGRP log-neighbor changes</td>
<td>Disabled. No adjacency changes logged.</td>
</tr>
<tr>
<td>IP authentication key-chain</td>
<td>No authentication provided.</td>
</tr>
<tr>
<td>IP authentication mode</td>
<td>No authentication provided.</td>
</tr>
<tr>
<td>IP bandwidth-percent</td>
<td>50 percent.</td>
</tr>
<tr>
<td>IP hello interval</td>
<td>For low-speed nonbroadcast multiaccess (NBMA) networks: 60 seconds; all other networks: 5 seconds.</td>
</tr>
<tr>
<td>IP hold-time</td>
<td>For low-speed NBMA networks: 180 seconds; all other networks: 15 seconds.</td>
</tr>
<tr>
<td>IP split-horizon</td>
<td>Enabled.</td>
</tr>
<tr>
<td>IP summary address</td>
<td>No summary aggregate addresses are predefined.</td>
</tr>
<tr>
<td>Metric weights</td>
<td>tos: 0; k1 and k3: 1; k2, k4, and k5: 0</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IP Unicast Routing

Configuring EIGRP

To create an EIGRP routing process, you must enable EIGRP and associate networks. EIGRP sends updates to the interfaces in the specified networks. If you do not specify an interface network, it is not advertised in any EIGRP update.

Note
If you have routers on your network that are configured for IGRP, and you want to change to EIGRP, you must designate transition routers that have both IGRP and EIGRP configured. In these cases, perform Steps 1 through 3 in the next section and also see the “Configuring Split Horizon” section on page 1-26. You must use the same AS number for routes to be automatically redistributed.

EIGRP Nonstop Forwarding

The switch stack supports two levels of EIGRP nonstop forwarding:

- EIGRP NSF Awareness, page 1-40
- EIGRP NSF Capability, page 1-41

EIGRP NSF Awareness

The IP-services and IP-Base feature sets support EIGRP NSF Awareness for IPv4. When the neighboring router is NSF-capable, the Layer 3 switch continues to forward packets from the neighboring router during the interval between the primary Route Processor (RP) in a router failing and the backup RP taking over, or while the primary RP is manually reloaded for a nondisruptive software upgrade.

This feature cannot be disabled. For more information on this feature, see the “EIGRP Nonstop Forwarding (NSF) Awareness” section of the Cisco IOS IP Routing Protocols Configuration Guide, Release 12.4.

Table 1-7 Default EIGRP Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>None specified.</td>
</tr>
<tr>
<td>NSF(^1) Awareness</td>
<td>Enabled(^2). Allows Layer 3 switches to continue forwarding packets from a neighboring NSF-capable router during hardware or software changes.</td>
</tr>
<tr>
<td>NSF capability</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Offset-list</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Router EIGRP</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Set metric</td>
<td>No metric set in the route map.</td>
</tr>
<tr>
<td>Traffic-share</td>
<td>Distributed proportionately to the ratios of the metrics.</td>
</tr>
<tr>
<td>Variance</td>
<td>1 (equal-cost load-balancing).</td>
</tr>
</tbody>
</table>

1. NSF = Nonstop Forwarding
2. EIGRP NSF awareness is enabled for IPv4 on switches running the IP services and IP Base feature sets.
EIGRP NSF Capability

Beginning with Cisco IOS Release 12.2(58)SE, and Release 15.2(1)E, the IP services and IP-Base feature sets respectively support EIGRP Cisco NSF routing to speed up convergence and to eliminate traffic loss after a stack master change. For details about this NSF capability, see the “Configuring Nonstop Forwarding” chapter in the High Availability Configuration Guide, Cisco IOS XE Release 3S.

The IP-services and IP-Base feature sets also support EIGRP NSF-capable routing for IPv4 for better convergence and lower traffic loss following a stack master change. When an EIGRP NSF-capable stack master restarts or a new stack master starts up and NSF restarts, the switch has no neighbors, and the topology table is empty. The switch must bring up the interfaces, reacquire neighbors, and rebuild the topology and routing tables without interrupting the traffic directed toward the switch stack. EIGRP peer routers maintain the routes learned from the new stack master and continue forwarding traffic through the NSF restart process.

To prevent an adjacency reset by the neighbors, the new stack master uses a new Restart (RS) bit in the EIGRP packet header to show the restart. When the neighbor receives this, it synchronizes the stack in its peer list and maintains the adjacency with the stack. The neighbor then sends its topology table to the stack master with the RS bit set to show that it is NSF-aware and is aiding the new stack master.

If at least one of the stack peer neighbors is NSF-aware, the stack master receives updates and rebuilds its database. Each NSF-aware neighbor sends an end of table (EOT) marker in the last update packet to mark the end of the table content. The stack master recognizes the convergence when it receives the EOT marker, and it then begins sending updates. When the stack master has received all EOT markers from its neighbors or when the NSF converge timer expires, EIGRP notifies the routing information database (RIB) of convergence and floods its topology table to all NSF-aware peers.

Note

NSF is not supported on interfaces configured for Hot Standby Router Protocol (HSRP).

Use the `nsf` EIGRP routing configuration command to enable EIGRP NSF routing. Use the `show ip protocols` privileged EXEC command to verify that NSF is enabled on the device. See the command reference for this release for information about the `nsf` command.

Configuring Basic EIGRP Parameters

Beginning in privileged EXEC mode, follow these steps to configure EIGRP. Configuring the routing process is required; other steps are optional:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>router eigrp autonomous-system</td>
<td>Enable an EIGRP routing process, and enter router configuration mode. The AS number identifies the routes to other EIGRP routers and is used to tag routing information.</td>
</tr>
<tr>
<td>3</td>
<td>nsf</td>
<td>(Optional) Enable EIGRP NSF. Enter this command on the stack master and on all of its peers.</td>
</tr>
<tr>
<td>4</td>
<td>network network-number</td>
<td>Associate networks with an EIGRP routing process. EIGRP sends updates to the interfaces in the specified networks.</td>
</tr>
<tr>
<td>5</td>
<td>eigrp log-neighbor-changes</td>
<td>(Optional) Enable logging of EIGRP neighbor changes to monitor routing system stability.</td>
</tr>
</tbody>
</table>
Use the `no` forms of these commands to disable the feature or return the setting to the default value.

Configuring EIGRP Interfaces

Other optional EIGRP parameters can be configured on an interface basis.

Beginning in privileged EXEC mode, follow these steps to configure EIGRP interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface <code>interface-id</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip bandwidth-percent eigrp percent</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>ip summary-address eigrp autonomous-system-number address mask</code></td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IP Unicast Routing

Configuring EIGRP

EIGRP route authentication provides MD5 authentication of routing updates from the EIGRP routing protocol to prevent the introduction of unauthorized or false routing messages from unapproved sources.

Beginning in privileged EXEC mode, follow these steps to enable authentication:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3 ip authentication mode eigrp autonomous-system md5</td>
<td>Enable MD5 authentication in IP EIGRP packets.</td>
</tr>
<tr>
<td>Step 4 ip authentication key-chain eigrp autonomous-system key-chain</td>
<td>Enable authentication of IP EIGRP packets.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 6 key chain name-of-chain</td>
<td>Identify a key chain and enter key-chain configuration mode. Match the name configured in Step 4.</td>
</tr>
<tr>
<td>Step 7 key number</td>
<td>In key-chain configuration mode, identify the key number.</td>
</tr>
<tr>
<td>Step 8 key-string text</td>
<td>In key-chain key configuration mode, identify the key string.</td>
</tr>
</tbody>
</table>

Use the no forms of these commands to disable the feature or return the setting to the default value.
EIGRP Stub Routing

The EIGRP stub routing feature, available in all feature sets, reduces resource utilization by moving routed traffic closer to the end user.

The IP base feature set contains EIGRP stub routing capability, which only advertises connected or summary routes from the routing tables to other switches in the network. The switch uses EIGRP stub routing at the access layer to eliminate the need for other types of routing advertisements. For enhanced capability and complete EIGRP routing, the switch must be running the IP services feature set. On a switch running the IP base feature set, if you try to configure multi-VRF-CE and EIGRP stub routing at the same time, the configuration is not allowed.

In a network using EIGRP stub routing, the only allowable route for IP traffic to the user is through a switch that is configured with EIGRP stub routing. The switch sends the routed traffic to interfaces that are configured as user interfaces or are connected to other devices.

When using EIGRP stub routing, you need to configure the distribution and remote routers to use EIGRP and to configure only the switch as a stub. Only specified routes are propagated from the switch. The switch responds to all queries for summaries, connected routes, and routing updates.

Any neighbor that receives a packet informing it of the stub status does not query the stub router for any routes, and a router that has a stub peer does not query that peer. The stub router depends on the distribution router to send the proper updates to all peers.

In **Figure 1-4**, switch B is configured as an EIGRP stub router. Switches A and C are connected to the rest of the WAN. Switch B advertises connected, static, redistribution, and summary routes to switch A and C. Switch B does not advertise any routes learned from switch A (and the reverse).
Chapter 1 Configuring IP Unicast Routing

Configuring BGP

The Border Gateway Protocol (BGP) is an exterior gateway protocol used to set up an interdomain routing system that guarantees the loop-free exchange of routing information between autonomous systems. Autonomous systems are made up of routers that operate under the same administration and that run Interior Gateway Protocols (IGPs), such as RIP or OSPF, within their boundaries and that interconnect by using an Exterior Gateway Protocol (EGP). BGP Version 4 is the standard EGP for interdomain routing in the Internet. The protocol is defined in RFCs 1163, 1267, and 1771. You can find detailed information about BGP in Internet Routing Architectures, published by Cisco Press, and in the “Configuring BGP” chapter in the Cisco IP and IP Routing Configuration Guide.

Monitoring and Maintaining EIGRP

You can delete neighbors from the neighbor table. You can also display various EIGRP routing statistics. Table 1-8 lists the privileged EXEC commands for deleting neighbors and displaying statistics. For explanations of fields in the resulting display, see the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.4.

Table 1-8 IP EIGRP Clear and Show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip eigrp neighbors [if-address</td>
<td>Delete neighbors from the neighbor table.</td>
</tr>
<tr>
<td>interface]</td>
<td></td>
</tr>
<tr>
<td>show ip eigrp interface [interface] [as number]</td>
<td>Display information about interfaces configured for EIGRP.</td>
</tr>
<tr>
<td>show ip eigrp neighbors [type-number]</td>
<td>Display EIGRP discovered neighbors.</td>
</tr>
<tr>
<td>show ip eigrp topology [autonomous-system-number] [[ip-address] mask]</td>
<td>Display the EIGRP topology table for a given process.</td>
</tr>
<tr>
<td>show ip eigrp traffic [autonomous-system-number]</td>
<td>Display the number of packets sent and received for all or a specified EIGRP process.</td>
</tr>
</tbody>
</table>

For details about BGP commands and keywords, see the “IP Routing Protocols” part of the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.4. For a list of BGP commands that are visible but not supported by the switch, see Appendix 1, “Unsupported Commands in Cisco IOS Release 15.2(1E).”

Routers that belong to the same autonomous system (AS) and that exchange BGP updates run *internal BGP* (IBGP), and routers that belong to different autonomous systems and that exchange BGP updates run *external BGP* (EBGP). Most configuration commands are the same for configuring EBGP and IBGP. The difference is that the routing updates are exchanged either between autonomous systems (EBGP) or within an AS (IBGP). Figure 1-5 shows a network that is running both EBGP and IBGP.

Figure 1-5
EBGP, IBGP, and Multiple Autonomous Systems

Before exchanging information with an external AS, BGP ensures that networks within the AS can be reached by defining internal BGP peering among routers within the AS and by redistributing BGP routing information to IGP s that run within the AS, such as IGRP and OSPF.

Routers that run a BGP routing process are often referred to as BGP *speakers*. BGP uses the Transmission Control Protocol (TCP) as its transport protocol (specifically port 179). Two BGP speakers that have a TCP connection to each other for exchanging routing information are known as *peers* or *neighbors*. In Figure 1-5, Routers A and B are EBGP peers, as are Routers B and C and Routers C and D. The routing information is a series of AS numbers that describe the full path to the destination network. BGP uses this information to construct a loop-free map of autonomous systems.

The network has these characteristics:

- Routers A and B are running EBGP, and Routers B and C are running IBGP. Note that the EBGP peers are directly connected and that the IBGP peers are not. As long as there is an IGP running that allows the two neighbors to reach one another, IBGP peers do not have to be directly connected.
- All BGP speakers within an AS must establish a peer relationship with each other. That is, the BGP speakers within an AS must be fully meshed logically. BGP4 provides two techniques that reduce the requirement for a logical full mesh: *confederations* and *route reflectors*.
- AS 200 is a *transit AS* for AS 100 and AS 300—that is, AS 200 is used to transfer packets between AS 100 and AS 300.

BGP peers initially exchange their full BGP routing tables and then send only incremental updates. BGP peers also exchange keepalive messages (to ensure that the connection is up) and notification messages (in response to errors or special conditions).
In BGP, each route consists of a network number, a list of autonomous systems that information has passed through (the autonomous system path), and a list of other path attributes. The primary function of a BGP system is to exchange network reachability information, including information about the list of AS paths, with other BGP systems. This information can be used to determine AS connectivity, to prune routing loops, and to enforce AS-level policy decisions.

A router or switch running Cisco IOS does not select or use an IBGP route unless it has a route available to the next-hop router and it has received synchronization from an IGP (unless IGP synchronization is disabled). When multiple routes are available, BGP bases its path selection on attribute values. See the “Configuring BGP Decision Attributes” section on page 1-54 for information about BGP attributes.

BGP Version 4 supports classless interdomain routing (CIDR) so you can reduce the size of your routing tables by creating aggregate routes, resulting in supernets. CIDR eliminates the concept of network classes within BGP and supports the advertising of IP prefixes.

These sections contain this configuration information:

- Default BGP Configuration, page 1-47
- Enabling BGP Routing, page 1-50
- Managing Routing Policy Changes, page 1-52
- Configuring BGP Decision Attributes, page 1-54
- Configuring BGP Filtering with Route Maps, page 1-56
- Configuring BGP Filtering by Neighbor, page 1-56
- Configuring Prefix Lists for BGP Filtering, page 1-58
- Configuring BGP Community Filtering, page 1-59
- Configuring BGP Neighbors and Peer Groups, page 1-60
- Configuring Aggregate Addresses, page 1-62
- Configuring Routing Domain Confederations, page 1-63
- Configuring BGP Route Reflectors, page 1-63
- Configuring Route Dampening, page 1-64
- Monitoring and Maintaining BGP, page 1-65

For a list of BGP commands that are visible but not supported by the switch, see Appendix 1, “Unsupported Commands in Cisco IOS Release 15.2(1)E.”

Default BGP Configuration

Table 1-9 shows the basic default BGP configuration. For the defaults for all characteristics, see the specific commands in the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.4.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate address</td>
<td>Disabled: None defined.</td>
</tr>
<tr>
<td>AS path access list</td>
<td>None defined.</td>
</tr>
<tr>
<td>Auto summary</td>
<td>Enabled.</td>
</tr>
</tbody>
</table>
| Best path | - The router considers *as-path* in choosing a route and does not compare similar routes from external BGP peers.
 - Compare router ID: Disabled. |
| BGP community list | - Number: None defined. When you permit a value for the community number, the list defaults to an implicit deny for everything else that has not been permitted.
 - Format: Cisco default format (32-bit number). |
| BGP confederation identifier/peers| - Identifier: None configured.
 - Peers: None identified. |
| BGP Fast external fallover | Enabled. |
| BGP local preference | 100. The range is 0 to 4294967295 with the higher value preferred. |
| BGP network | None specified; no backdoor route advertised. |
| BGP route dampening | Disabled by default. When enabled:
 - Half-life is 15 minutes.
 - Re-use is 750 (10-second increments).
 - Suppress is 2000 (10-second increments).
 - Max-suppress-time is 4 times half-life; 60 minutes. |
| BGP router ID | The IP address of a loopback interface if one is configured or the highest IP address configured for a physical interface on the router. |
| Default information originate (protocol or network redistribution) | Disabled. |
| Default metric | Built-in, automatic metric translations. |
| Distance | - External route administrative distance: 20 (acceptable values are from 1 to 255).
 - Internal route administrative distance: 200 (acceptable values are from 1 to 255).
 - Local route administrative distance: 200 (acceptable values are from 1 to 255). |
| Distribute list | - In (filter networks received in updates): Disabled.
 - Out (suppress networks from being advertised in updates): Disabled. |
| Internal route redistribution | Disabled. |
| IP prefix list | None defined. |
| Multi exit discriminator (MED) | - Always compare: Disabled. Does not compare MEDs for paths from neighbors in different autonomous systems.
 - Best path compare: Disabled.
 - MED missing as worst path: Disabled.
 - Deterministic MED comparison is disabled. |
Table 1-9 Default BGP Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
</table>
| Neighbor | • Advertisement interval: 30 seconds for external peers; 5 seconds for internal peers.
| | • Change logging: Enabled. |
| | • Conditional advertisement: Disabled. |
| | • Default originate: No default route is sent to the neighbor. |
| | • Description: None. |
| | • Distribute list: None defined. |
| | • External BGP multihop: Only directly connected neighbors are allowed. |
| | • Filter list: None used. |
| | • Maximum number of prefixes received: No limit. |
| | • Next hop (router as next hop for BGP neighbor): Disabled. |
| | • Password: Disabled. |
| | • Peer group: None defined; no members assigned. |
| | • Prefix list: None specified. |
| | • Remote AS (add entry to neighbor BGP table): No peers defined. |
| | • Private AS number removal: Disabled. |
| | • Route maps: None applied to a peer. |
| | • Send community attributes: None sent to neighbors. |
| | • Shutdown or soft reconfiguration: Not enabled. |
| | • Timers: keepalive: 60 seconds; holdtime: 180 seconds. |
| | • Update source: Best local address. |
| | • Weight: Routes learned through BGP peer: 0; routes sourced by the local router: |
| | 32768. |
| NSF1 Awareness | Disabled2. Allows Layer 3 switches to continue forwarding packets from a neighboring
| | NSF-capable router during hardware or software changes. |
| Route reflector | None configured. |
| Synchronization (BGP and IGP) | Enabled. |
| Table map update | Disabled. |
| Timers | Keepalive: 60 seconds; holdtime: 180 seconds. |

1. NSF = Nonstop Forwarding
2. NSF Awareness can be enabled for IPv4 on switches with the IP services feature set by enabling Graceful Restart.

Nonstop Forwarding Awareness

The BGP NSF Awareness feature is supported for IPv4 in the IP services feature set. To enable this feature with BGP routing, you need to enable Graceful Restart. When the neighboring router is NSF-capable, and this feature is enabled, the Layer 3 switch continues to forward packets from the
neighboring router during the interval between the primary Route Processor (RP) in a router failing and the backup RP taking over, or while the primary RP is manually reloaded for a nondisruptive software upgrade.

For more information, see the “BGP Nonstop Forwarding (NSF) Awareness” section of the Cisco IOS IP Routing Protocols Configuration Guide, Release 12.4.

Enabling BGP Routing

To enable BGP routing, you establish a BGP routing process and define the local network. Because BGP must completely recognize the relationships with its neighbors, you must also specify a BGP neighbor.

BGP supports two kinds of neighbors: internal and external. **Internal neighbors** are in the same AS; **external neighbors** are in different autonomous systems. External neighbors are usually adjacent to each other and share a subnet, but internal neighbors can be anywhere in the same AS.

The switch supports the use of private AS numbers, usually assigned by service providers and given to systems whose routes are not advertised to external neighbors. The private AS numbers are from 64512 to 65535. You can configure external neighbors to remove private AS numbers from the AS path by using the `neighbor remove-private-as` router configuration command. Then when an update is passed to an external neighbor, if the AS path includes private AS numbers, these numbers are dropped.

If your AS will be passing traffic through it from another AS to a third AS, it is important to be consistent about the routes it advertises. If BGP advertised a route before all routers in the network had learned about the route through the IGP, the AS might receive traffic that some routers could not yet route. To prevent this from happening, BGP must wait until the IGP has propagated information across the AS so that BGP is synchronized with the IGP. Synchronization is enabled by default. If your AS does not pass traffic from one AS to another AS, or if all routers in your autonomous systems are running BGP, you can disable synchronization, which allows your network to carry fewer routes in the IGP and allows BGP to converge more quickly.

Note

To enable BGP, the switch or stack master must be running the IP services feature set.

Beginning in privileged EXEC mode, follow these steps to enable BGP routing, establish a BGP routing process, and specify a neighbor:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>ip routing</td>
<td>Enable IP routing (required only if IP routing is disabled).</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>router bgp</td>
<td>Enable a BGP routing process, assign it an AS number, and enter router configuration mode. The AS number can be from 1 to 65535, with 64512 to 65535 designated as private autonomous numbers.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>network</td>
<td>Configure a network as local to this AS, and enter it in the BGP table.</td>
</tr>
<tr>
<td>network-number</td>
<td></td>
</tr>
<tr>
<td>[mask network-mask]</td>
<td></td>
</tr>
<tr>
<td>[route-map route-map-name]</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IP Unicast Routing

Configuring BGP

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} remote-as number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For EBGP, neighbors are usually directly connected, and the IP address is the address of the interface at the other end of the connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For IBGP, the IP address can be the address of any of the router interfaces.</td>
</tr>
<tr>
<td>6</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} remove-private-as</td>
</tr>
<tr>
<td>7</td>
<td>no synchronization</td>
<td>(Optional) Disable synchronization between BGP and an IGP.</td>
</tr>
<tr>
<td>8</td>
<td>no auto-summary</td>
<td>(Optional) Disable automatic network summarization. By default, when a subnet is redistributed from an IGP into BGP, only the network route is inserted into the BGP table.</td>
</tr>
<tr>
<td>9</td>
<td>bgp fast-external-fallover</td>
<td>(Optional) Automatically reset a BGP session when a link between external neighbors goes down. By default, the session is not immediately reset.</td>
</tr>
<tr>
<td>10</td>
<td>bgp graceful-restart</td>
<td>(Optional) Enable NSF awareness on switch. By default, NSF awareness is disabled.</td>
</tr>
<tr>
<td>11</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>12</td>
<td>show ip bgp network network-number</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>show ip bgp neighbor</td>
<td>Verify that NSF awareness (Graceful Restart) is enabled on the neighbor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If NSF awareness is enabled on the switch and the neighbor, this message appears:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graceful Restart Capability: advertised and received</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If NSF awareness is enabled on the switch, but not on the neighbor, this message appears:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graceful Restart Capability: advertised</td>
</tr>
<tr>
<td>13</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the **no router bgp autonomous-system** global configuration command to remove a BGP AS. Use the **no network network-number** router configuration command to remove the network from the BGP table. Use the **no neighbor {ip-address | peer-group-name} remote-as number** router configuration command to remove a neighbor. Use the **no neighbor {ip-address | peer-group-name} remove-private-as** router configuration command to include private AS numbers in updates to a neighbor. Use the **synchronization** router configuration command to re-enable synchronization.

These examples show how to configure BGP on the routers in Figure 1-5.

Router A:

```bash
Switch(config)# router bgp 100
Switch(config-router)# neighbor 129.213.1.1 remote-as 200
```
Catalyst 3750-X and 3560-X Switch Software Configuration Guide

Chapter 1 Configuring IP Unicast Routing

Configuring BGP

Router B:

Switch(config)# router bgp 200
Switch(config-router)# neighbor 129.213.1.2 remote-as 100
Switch(config-router)# neighbor 175.220.1.2 remote-as 200

Router C:

Switch(config)# router bgp 200
Switch(config-router)# neighbor 175.220.212.1 remote-as 200
Switch(config-router)# neighbor 192.208.10.1 remote-as 300

Router D:

Switch(config)# router bgp 300
Switch(config-router)# neighbor 192.208.10.2 remote-as 200

To verify that BGP peers are running, use the `show ip bgp neighbors` privileged EXEC command. This is the output of this command on Router A:

Switch# show ip bgp neighbors
BGP neighbor is 129.213.1.1, remote AS 200, external link
BGP version 4, remote router ID 175.220.212.1
BGP state = established, table version = 3, up for 0:10:59
Last read 0:00:29, hold time is 180, keepalive interval is 60 seconds
Minimum time between advertisement runs is 30 seconds
Received 2828 messages, 0 notifications, 0 in queue
Sent 2826 messages, 0 notifications, 0 in queue
Connections established 11; dropped 10

Anything other than `state = established` means that the peers are not running. The remote router ID is the highest IP address on that router (or the highest loopback interface). Each time the table is updated with new information, the table version number increments. A table version number that continually increments means that a route is flapping, causing continual routing updates.

For exterior protocols, a reference to an IP network from the `network` router configuration command controls only which networks are advertised. This is in contrast to Interior Gateway Protocols (IGPs), such as EIGRP, which also use the `network` command to specify where to send updates.

For detailed descriptions of BGP configuration, see the “IP Routing Protocols” part of the Cisco IOS IP Configuration Guide, Release 12.4. For details about specific commands, see the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.4. See Appendix 1, “Unsupported Commands in Cisco IOS Release 15.2(1)E,” for a list of BGP commands that are visible but not supported by the switch.

Managing Routing Policy Changes

Routing policies for a peer include all the configurations that might affect inbound or outbound routing table updates. When you have defined two routers as BGP neighbors, they form a BGP connection and exchange routing information. If you later change a BGP filter, weight, distance, version, or timer, or make a similar configuration change, you must reset the BGP sessions so that the configuration changes take effect.

There are two types of reset, hard reset and soft reset. Cisco IOS Releases 12.1 and later support a soft reset without any prior configuration. To use a soft reset without preconfiguration, both BGP peers must support the soft route refresh capability, which is advertised in the OPEN message sent when the peers
establish a TCP session. A soft reset allows the dynamic exchange of route refresh requests and routing information between BGP routers and the subsequent re-advertisement of the respective outbound routing table.

- When soft reset generates inbound updates from a neighbor, it is called *dynamic inbound soft reset*.
- When soft reset sends a set of updates to a neighbor, it is called *outbound soft reset*.

A soft inbound reset causes the new inbound policy to take effect. A soft outbound reset causes the new local outbound policy to take effect without resetting the BGP session. As a new set of updates is sent during outbound policy reset, a new inbound policy can also take effect.

Table 1-10 lists the advantages and disadvantages hard reset and soft reset.

<table>
<thead>
<tr>
<th>Type of Reset</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard reset</td>
<td>No memory overhead</td>
<td>The prefixes in the BGP, IP, and FIB tables provided by the neighbor are lost. Not recommended.</td>
</tr>
<tr>
<td>Outbound soft reset</td>
<td>No configuration, no storing of routing table updates</td>
<td>Does not reset inbound routing table updates.</td>
</tr>
<tr>
<td>Dynamic inbound soft reset</td>
<td>Does not clear the BGP session and cache and has no memory overhead</td>
<td>Both BGP routers must support the route refresh capability (in Cisco IOS Release 12.1 and later).</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to learn if a BGP peer supports the route refresh capability and to reset the BGP session:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show ip bgp neighbors</td>
<td>Display whether a neighbor supports the route refresh capability. When supported, this message appears for the router: Received route refresh capability from peer.</td>
</tr>
<tr>
<td>Step 2 clear ip bgp { *</td>
<td>address</td>
</tr>
<tr>
<td></td>
<td>- Enter an asterisk (*) to specify that all connections be reset.</td>
</tr>
<tr>
<td></td>
<td>- Enter an IP address to specify the connection to be reset.</td>
</tr>
<tr>
<td></td>
<td>- Enter a peer group name to reset the peer group.</td>
</tr>
<tr>
<td>Step 3 clear ip bgp { *</td>
<td>address</td>
</tr>
<tr>
<td></td>
<td>- Enter an asterisk (*) to specify that all connections be reset.</td>
</tr>
<tr>
<td></td>
<td>- Enter an IP address to specify the connection to be reset.</td>
</tr>
<tr>
<td></td>
<td>- Enter a peer group name to reset the peer group.</td>
</tr>
<tr>
<td>Step 4 show ip bgp</td>
<td>Verify the reset by checking information about the routing table and about BGP neighbors.</td>
</tr>
<tr>
<td>show ip bgp neighbors</td>
<td></td>
</tr>
</tbody>
</table>
Configuring BGP Decision Attributes

When a BGP speaker receives updates from multiple autonomous systems that describe different paths to the same destination, it must choose the single best path for reaching that destination. When chosen, the selected path is entered into the BGP routing table and propagated to its neighbors. The decision is based on the value of attributes that the update contains and other BGP-configurable factors.

When a BGP peer learns two EBGP paths for a prefix from a neighboring AS, it chooses the best path and inserts that path in the IP routing table. If BGP multipath support is enabled and the EBGP paths are learned from the same neighboring autonomous systems, instead of a single best path, multiple paths are installed in the IP routing table. Then, during packet switching, per-packet or per-destination load-balancing is performed among the multiple paths. The `maximum-paths` router configuration command controls the number of paths allowed.

These factors summarize the order in which BGP evaluates the attributes for choosing the best path:

1. If the path specifies a next hop that is inaccessible, drop the update. The BGP next-hop attribute, automatically determined by the software, is the IP address of the next hop that is going to be used to reach a destination. For EBGP, this is usually the IP address of the neighbor specified by the `neighbor remote-as` router configuration command. You can disable next-hop processing by using route maps or the `neighbor next-hop-self` router configuration command.

2. Prefer the path with the largest weight (a Cisco proprietary parameter). The weight attribute is local to the router and not propagated in routing updates. By default, the weight attribute is 32768 for paths that the router originates and zero for other paths. Routes with the largest weight are preferred. You can use access lists, route maps, or the `neighbor weight` router configuration command to set weights.

3. Prefer the route with the highest local preference. Local preference is part of the routing update and exchanged among routers in the same AS. The default value of the local preference attribute is 100. You can set local preference by using the `bgp default local-preference` router configuration command or by using a route map.

4. Prefer the route that was originated by BGP running on the local router.

5. Prefer the route with the shortest AS path.

6. Prefer the route with the lowest origin type. An interior route or IGP is lower than a route learned by EGP, and an EGP-learned route is lower than one of unknown origin or learned in another way.

7. Prefer the route with the lowest multi-exit discriminator (MED) metric attribute if the neighboring AS is the same for all routes considered. You can configure the MED by using route maps or by using the `default-metric` router configuration command. When an update is sent to an IBGP peer, the MED is included.

8. Prefer the external (EBGP) path over the internal (IBGP) path.

9. Prefer the route that can be reached through the closest IGP neighbor (the lowest IGP metric). This means that the router will prefer the shortest internal path within the AS to reach the destination (the shortest path to the BGP next-hop).

10. If the following conditions are all true, insert the route for this path into the IP routing table:

 • Both the best route and this route are external.
 • Both the best route and this route are from the same neighboring autonomous system.
 • `maximum-paths` is enabled.

11. If multipath is not enabled, prefer the route with the lowest IP address value for the BGP router ID. The router ID is usually the highest IP address on the router or the loopback (virtual) address, but might be implementation-specific.
Beginning in privileged EXEC mode, follow these steps to configure some decision attributes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td>Step 3</td>
<td>bgp best-path as-path ignore</td>
</tr>
<tr>
<td>Step 4</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 5</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 6</td>
<td>default-metric number</td>
</tr>
<tr>
<td>Step 7</td>
<td>bgp bestpath med missing-as-worst</td>
</tr>
<tr>
<td>Step 8</td>
<td>bgp always-compare med</td>
</tr>
<tr>
<td>Step 9</td>
<td>bgp bestpath med confed</td>
</tr>
<tr>
<td>Step 10</td>
<td>bgp deterministic med</td>
</tr>
<tr>
<td>Step 11</td>
<td>bgp default local-preference value</td>
</tr>
<tr>
<td>Step 12</td>
<td>maximum-paths number</td>
</tr>
<tr>
<td>Step 13</td>
<td>end</td>
</tr>
</tbody>
</table>
Configuring BGP Filter with Route Maps

Within BGP, route maps can be used to control and to modify routing information and to define the conditions by which routes are redistributed between routing domains. See the “Using Route Maps to Redistribute Routing Information” section on page 1-96 for more information about route maps. Each route map has a name that identifies the route map (map tag) and an optional sequence number.

Beginning in privileged EXEC mode, follow these steps to use a route map to disable next-hop processing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>route-map map-tag [[permit</td>
</tr>
<tr>
<td>Step 3</td>
<td>set ip next-hop ip-address [...ip-address] [peer-address]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show route-map [map-name]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no route-map map-tag command to delete the route map. Use the no set ip next-hop ip-address command to re-enable next-hop processing.

Configuring BGP Filtering by Neighbor

You can filter BGP advertisements by using AS-path filters, such as the as-path access-list global configuration command and the neighbor filter-list router configuration command. You can also use access lists with the neighbor distribute-list router configuration command. Distribute-list filters are applied to network numbers. See the “Controlling Advertising and Processing in Routing Updates” section on page 1-104 for information about the distribute-list command.

You can use route maps on a per-neighbor basis to filter updates and to modify various attributes. A route map can be applied to either inbound or outbound updates. Only the routes that pass the route map are sent or accepted in updates. On both inbound and outbound updates, matching is supported based on AS
path, community, and network numbers. Autonomous system path matching requires the `match as-path`
access-list route-map command, community based matching requires the `match community-list`
route-map command, and network-based matching requires the `ip access-list` global configuration
command.

Beginning in privileged EXEC mode, follow these steps to apply a per-neighbor route map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td></td>
<td>Enable a BGP routing process, assign it an AS number, and enter</td>
</tr>
<tr>
<td></td>
<td>router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>**neighbor {ip-address</td>
</tr>
<tr>
<td></td>
<td>(Optional) Filter BGP routing updates to or from neighbors as specified</td>
</tr>
<tr>
<td></td>
<td>in an access list.</td>
</tr>
<tr>
<td></td>
<td>Note You can also use the <code>neighbor prefix-list</code> router configuration</td>
</tr>
<tr>
<td></td>
<td>command to filter updates, but you cannot use both commands to</td>
</tr>
<tr>
<td></td>
<td>configure the same BGP peer.</td>
</tr>
<tr>
<td>Step 4</td>
<td>**neighbor {ip-address</td>
</tr>
<tr>
<td></td>
<td>(Optional) Apply a route map to filter an incoming or outgoing route.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ip bgp neighbors</td>
</tr>
<tr>
<td></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no neighbor distribute-list` command to remove the access list from the neighbor. Use the `no neighbor route-map map-tag` router configuration command to remove the route map from the
neighbor.

Another method of filtering is to specify an access list filter on both incoming and outbound updates,
based on the BGP autonomous system paths. Each filter is an access list based on regular expressions.
(See the “Regular Expressions” appendix in the Cisco IOS Dial Technologies Command Reference,
Release 12.4 for more information on forming regular expressions.) To use this method, define an
autonomous system path access list, and apply it to updates to and from particular neighbors.

Beginning in privileged EXEC mode, follow these steps to configure BGP path filtering:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip as-path access-list access-list-number</td>
</tr>
<tr>
<td></td>
<td>{permit</td>
</tr>
<tr>
<td></td>
<td>Define a BGP-related access list.</td>
</tr>
<tr>
<td>Step 3</td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td></td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>**neighbor {ip-address</td>
</tr>
<tr>
<td></td>
<td>Establish a BGP filter based on an access list.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ip bgp neighbors [paths regular-expression]</td>
</tr>
<tr>
<td></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring Prefix Lists for BGP Filtering

You can use prefix lists as an alternative to access lists in many BGP route filtering commands, including the `neighbor distribute-list` router configuration command. The advantages of using prefix lists include performance improvements in loading and lookup of large lists, incremental update support, easier CLI configuration, and greater flexibility.

Filtering by a prefix list involves matching the prefixes of routes with those listed in the prefix list, as when matching access lists. When there is a match, the route is used. Whether a prefix is permitted or denied is based upon these rules:

- An empty prefix list permits all prefixes.
- An implicit deny is assumed if a given prefix does not match any entries in a prefix list.
- When multiple entries of a prefix list match a given prefix, the sequence number of a prefix list entry identifies the entry with the lowest sequence number.

By default, sequence numbers are generated automatically and incremented in units of five. If you disable the automatic generation of sequence numbers, you must specify the sequence number for each entry. You can specify sequence values in any increment. If you specify increments of one, you cannot insert additional entries into the list; if you choose very large increments, you might run out of values.

You do not need to specify a sequence number when removing a configuration entry. **Show** commands include the sequence numbers in their output.

Before using a prefix list in a command, you must set up the prefix list. Beginning in privileged EXEC mode, follow these steps to create a prefix list or to add an entry to a prefix list:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip prefix-list list-name [seq seq-value] deny</td>
<td>Create a prefix list with an optional sequence number to deny access for matching conditions. You must enter at least one <code>permit</code> or <code>deny</code> clause.</td>
</tr>
<tr>
<td></td>
<td>permit network/len [ge ge-value] [le le-value]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ip prefix-list list-name seq seq-value deny</td>
<td>(Optional) Add an entry to a prefix list, and assign a sequence number to the entry.</td>
</tr>
<tr>
<td></td>
<td>permit network/len [ge ge-value] [le le-value]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show ip prefix list [detail</td>
<td>summary] name [network/len] [seq seq-num] [longer] [first-match]</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete a prefix list and all of its entries, use the `no ip prefix-list list-name` global configuration command. To delete an entry from a prefix list, use the `no ip prefix-list seq seq-value` global configuration command. To disable automatic generation of sequence numbers, use the `no ip prefix-list`
sequence number command; to reenable automatic generation, use the `ip prefix-list sequence number` command. To clear the hit-count table of prefix list entries, use the `clear ip prefix-list` privileged EXEC command.

Configuring BGP Community Filtering

One way that BGP controls the distribution of routing information based on the value of the COMMUNITIES attribute. The attribute is a way to groups destinations into communities and to apply routing decisions based on the communities. This method simplifies configuration of a BGP speaker to control distribution of routing information.

A community is a group of destinations that share some common attribute. Each destination can belong to multiple communities. AS administrators can define to which communities a destination belongs. By default, all destinations belong to the general Internet community. The community is identified by the COMMUNITIES attribute, an optional, transitive, global attribute in the numerical range from 1 to 4294967200. These are some predefined, well-known communities:

- internet—Advertise this route to the Internet community. All routers belong to it.
- no-export—Do not advertise this route to EBGP peers.
- no-advertise—Do not advertise this route to any peer (internal or external).
- local-as—Do not advertise this route to peers outside the local autonomous system.

Based on the community, you can control which routing information to accept, prefer, or distribute to other neighbors. A BGP speaker can set, append, or modify the community of a route when learning, advertising, or redistributing routes. When routes are aggregated, the resulting aggregate has a COMMUNITIES attribute that contains all communities from all the initial routes.

You can use community lists to create groups of communities to use in a match clause of a route map. As with an access list, a series of community lists can be created. Statements are checked until a match is found. As soon as one statement is satisfied, the test is concluded.

To set the COMMUNITIES attribute and match clauses based on communities, see the `match community-list` and `set community` route-map configuration commands in the “Using Route Maps to Redistribute Routing Information” section on page 1-96.

By default, no COMMUNITIES attribute is sent to a neighbor. You can specify that the COMMUNITIES attribute be sent to the neighbor at an IP address by using the `neighbor send-community` router configuration command.

Beginning in privileged EXEC mode, follow these steps to create and to apply a community list:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip community-list community-list-number {permit</td>
<td>deny} community-number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The <code>community-list-number</code> is an integer from 1 to 99 that identifies one or more permit or deny groups of communities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The <code>community-number</code> is the number configured by a <code>set community</code> route-map configuration command.</td>
</tr>
<tr>
<td>Step 3</td>
<td>router bgp autonomous-system</td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>neighbor {ip-address</td>
<td>peer-group name} send-community</td>
</tr>
</tbody>
</table>
Configuring BGP Neighbors and Peer Groups

Often many BGP neighbors are configured with the same update policies (that is, the same outbound route maps, distribute lists, filter lists, update source, and so on). Neighbors with the same update policies can be grouped into peer groups to simplify configuration and to make updating more efficient. When you have configured many peers, we recommend this approach.

To configure a BGP peer group, you create the peer group, assign options to the peer group, and add neighbors as peer group members. You configure the peer group by using the `neighbor` router configuration commands. By default, peer group members inherit all the configuration options of the peer group, including the remote-as (if configured), version, update-source, out-route-map, out-filter-list, out-dist-list, minimum-advertisement-interval, and next-hop-self. All peer group members also inherit changes made to the peer group. Members can also be configured to override the options that do not affect outbound updates.

To assign configuration options to an individual neighbor, specify any of these router configuration commands by using the neighbor IP address. To assign the options to a peer group, specify any of the commands by using the peer group name. You can disable a BGP peer or peer group without removing all the configuration information by using the `neighbor shutdown` router configuration command.

Beginning in privileged EXEC mode, use these commands to configure BGP peers:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>router bgp autonomous-system</code></td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td><code>neighbor peer-group-name peer-group</code></td>
<td>Create a BGP peer group.</td>
</tr>
<tr>
<td>4</td>
<td><code>neighbor ip-address peer-group peer-group-name</code></td>
<td>Make a BGP neighbor a member of the peer group.</td>
</tr>
<tr>
<td>5</td>
<td>`neighbor [ip-address</td>
<td>peer-group-name] remote-as number`</td>
</tr>
<tr>
<td>6</td>
<td>`neighbor [ip-address</td>
<td>peer-group-name] description text`</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} default-originate [route-map map-name]</td>
</tr>
<tr>
<td>8</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} send-community</td>
</tr>
<tr>
<td>9</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} update-source interface</td>
</tr>
<tr>
<td>10</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} ebgp-multihop</td>
</tr>
<tr>
<td>11</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} local-as number</td>
</tr>
<tr>
<td>12</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} advertisement-interval seconds</td>
</tr>
<tr>
<td>13</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} maximum-prefix maximum [threshold]</td>
</tr>
<tr>
<td>14</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} next-hop-self</td>
</tr>
<tr>
<td>15</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} password string</td>
</tr>
<tr>
<td>16</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} route-map map-name {in</td>
</tr>
<tr>
<td>17</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} send-community</td>
</tr>
</tbody>
</table>
| 18 | neighbor {ip-address | peer-group-name} timers keepalive holdtime | (Optional) Set timers for the neighbor or peer group.
- The keepalive interval is the time within which keepalive messages are sent to peers. The range is 1 to 4294967295 seconds; the default is 60.
- The holdtime is the interval after which a peer is declared inactive after not receiving a keepalive message from it. The range is 1 to 4294967295 seconds; the default is 180. |
| 19 | neighbor {ip-address | peer-group-name} weight weight | (Optional) Specify a weight for all routes from a neighbor. | | |
| 20 | neighbor {ip-address | peer-group-name} distribute-list {access-list-number | name} {in | out} | (Optional) Filter BGP routing updates to or from neighbors, as specified in an access list. |
| 21 | neighbor {ip-address | peer-group-name} filter-list access-list-number {in | out | weight weight} | (Optional) Establish a BGP filter. |
| 22 | neighbor {ip-address | peer-group-name} version value | (Optional) Specify the BGP version to use when communicating with a neighbor. |
To disable an existing BGP neighbor or neighbor peer group, use the `neighbor shutdown` router configuration command. To enable a previously existing neighbor or neighbor peer group that had been disabled, use the `no neighbor shutdown` router configuration command.

Configuring Aggregate Addresses

Classless interdomain routing (CIDR) enables you to create aggregate routes (or *supernets*) to minimize the size of routing tables. You can configure aggregate routes in BGP either by redistributing an aggregate route into BGP or by creating an aggregate entry in the BGP routing table. An aggregate address is added to the BGP table when there is at least one more specific entry in the BGP table.

Beginning in privileged EXEC mode, use these commands to create an aggregate address in the routing table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router bgp autonomous-system</td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 3 aggregate-address address mask</td>
<td>Create an aggregate entry in the BGP routing table. The aggregate route is advertised as coming from the AS, and the atomic aggregate attribute is set to indicate that information might be missing.</td>
</tr>
<tr>
<td>Step 4 aggregate-address address mask as-set</td>
<td>(Optional) Generate AS set path information. This command creates an aggregate entry following the same rules as the previous command, but the advertised path will be an AS_SET consisting of all elements contained in all paths. Do not use this keyword when aggregating many paths because this route must be continually withdrawn and updated.</td>
</tr>
<tr>
<td>Step 5 aggregate-address address-mask summary-only</td>
<td>(Optional) Advertise summary addresses only.</td>
</tr>
<tr>
<td>Step 6 aggregate-address address mask suppress-map map-name</td>
<td>(Optional) Suppress selected, more specific routes.</td>
</tr>
<tr>
<td>Step 7 aggregate-address address mask advertise-map map-name</td>
<td>(Optional) Generate an aggregate based on conditions specified by the route map.</td>
</tr>
<tr>
<td>Step 8 aggregate-address address mask attribute-map map-name</td>
<td>(Optional) Generate an aggregate with attributes specified in the route map.</td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10 show ip bgp neighbors [advertised-routes]</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 11 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring BGP

To delete an aggregate entry, use the `no aggregate-address address mask` router configuration command. To return options to the default values, use the command with keywords.

Configuring Routing Domain Confederations

One way to reduce the IBGP mesh is to divide an autonomous system into multiple subautonomous systems and to group them into a single confederation that appears as a single autonomous system. Each autonomous system is fully meshed within itself and has a few connections to other autonomous systems in the same confederation. Even though the peers in different autonomous systems have EBGP sessions, they exchange routing information as if they were IBGP peers. Specifically, the next hop, MED, and local preference information is preserved. You can then use a single IGP for all of the autonomous systems.

To configure a BGP confederation, you must specify a confederation identifier that acts as the autonomous system number for the group of autonomous systems.

Beginning in privileged EXEC mode, use these commands to configure a BGP confederation:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router bgp autonomous-system</td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 3 bgp confederation identifier autonomous-system</td>
<td>Configure a BGP confederation identifier.</td>
</tr>
<tr>
<td>Step 4 bgp confederation peers autonomous-system [autonomous-system ...]</td>
<td>Specify the autonomous systems that belong to the confederation and that will be treated as special EBGP peers.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show ip bgp neighbor show ip bgp network</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring BGP Route Reflectors

BGP requires that all of the IBGP speakers be fully meshed. When a router receives a route from an external neighbor, it must advertise it to all internal neighbors. To prevent a routing information loop, all IBGP speakers must be connected. The internal neighbors do not send routes learned from internal neighbors to other internal neighbors.

With route reflectors, all IBGP speakers need not be fully meshed because another method is used to pass learned routes to neighbors. When you configure an internal BGP peer to be a `route reflector`, it is responsible for passing IBGP learned routes to a set of IBGP neighbors. The internal peers of the route reflector are divided into two groups: `client peers` and `nonclient peers` (all the other routers in the autonomous system). A route reflector reflects routes between these two groups. The route reflector and its client peers form a `cluster`. The nonclient peers must be fully meshed with each other, but the client peers need not be fully meshed. The clients in the cluster do not communicate with IBGP speakers outside their cluster.
When the route reflector receives an advertised route, it takes one of these actions, depending on the neighbor:

- A route from an external BGP speaker is advertised to all clients and nonclient peers.
- A route from a nonclient peer is advertised to all clients.
- A route from a client is advertised to all clients and nonclient peers. Hence, the clients need not be fully meshed.

Usually a cluster of clients have a single route reflector, and the cluster is identified by the route reflector router ID. To increase redundancy and to avoid a single point of failure, a cluster might have more than one route reflector. In this case, all route reflectors in the cluster must be configured with the same 4-byte cluster ID so that a route reflector can recognize updates from route reflectors in the same cluster. All the route reflectors serving a cluster should be fully meshed and should have identical sets of client and nonclient peers.

Beginning in privileged EXEC mode, use these commands to configure a route reflector and clients:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td>Step 3</td>
<td>neighbor <code>ip-address</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>route-reflector-client</td>
</tr>
<tr>
<td>Step 5</td>
<td>bgp cluster-id <code>cluster-id</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip bgp</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Configuring Route Dampening

Route flap dampening is a BGP feature designed to minimize the propagation of flapping routes across an internetwork. A route is considered to be flapping when it is repeatedly available, then unavailable, then available, then unavailable, and so on. When route dampening is enabled, a numeric *penalty* value is assigned to a route when it flaps. When a route’s accumulated penalties reach a configurable limit, BGP suppresses advertisements of the route, even if the route is running. The *reuse limit* is a configurable value that is compared with the penalty. If the penalty is less than the reuse limit, a suppressed route that is up is advertised again.

Dampening is not applied to routes that are learned by IBGP. This policy prevents the IBGP peers from having a higher penalty for routes external to the AS.
Beginning in privileged EXEC mode, use these commands to configure BGP route dampening:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>configure terminal</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system</td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>bgp dampening</td>
<td>Enable BGP route dampening.</td>
</tr>
<tr>
<td>Step 4</td>
<td>bgp dampening half-life reuse suppress max-suppress [route-map map]</td>
<td>(Optional) Change the default values of route dampening factors.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ip bgp flap-statistics [{regexp regexp}</td>
<td>(Optional) Monitor the flaps of all paths that are flapping. The statistics are deleted when the route is not suppressed and is stable.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip bgp dampened-paths</td>
<td>(Optional) Display the dampened routes, including the time remaining before they are suppressed.</td>
</tr>
<tr>
<td>Step 8</td>
<td>clear ip bgp flap-statistics [{regexp regexp}</td>
<td>(Optional) Clear BGP flap statistics to make it less likely that a route will be dampened.</td>
</tr>
<tr>
<td>Step 9</td>
<td>clear ip bgp dampening</td>
<td>(Optional) Clear route dampening information, and unsuppress the suppressed routes.</td>
</tr>
<tr>
<td>Step 10</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable flap dampening, use the **no bgp dampening** router configuration command without keywords. To set dampening factors back to the default values, use the **no bgp dampening** router configuration command with values.

Monitoring and Maintaining BGP

You can remove all contents of a particular cache, table, or database. This might be necessary when the contents of the particular structure have become or are suspected to be invalid.

You can display specific statistics, such as the contents of BGP routing tables, caches, and databases. You can use the information to get resource utilization and solve network problems. You can also display information about node reachability and discover the routing path your device’s packets are taking through the network.

Table 1-8 lists the privileged EXEC commands for clearing and displaying BGP. For explanations of the display fields, see the *Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.4*.

Table 1-11 *IP BGP Clear and Show Commands*

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip bgp address</td>
<td>Reset a particular BGP connection.</td>
</tr>
<tr>
<td>clear ip bgp *</td>
<td>Reset all BGP connections.</td>
</tr>
<tr>
<td>clear ip bgp peer-group tag</td>
<td>Remove all members of a BGP peer group.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IP Unicast Routing

Configuring ISO CLNS Routing

You can also enable the logging of messages generated when a BGP neighbor resets, comes up, or goes down by using the `bgp log-neighbor changes` router configuration command.

Configuring ISO CLNS Routing

The International Organization for Standardization (ISO) Connectionless Network Service (CLNS) protocol is a standard for the network layer of the Open System Interconnection (OSI) model. Addresses in the ISO network architecture are referred to as network service access point (NSAP) addresses and network entity titles (NETs). Each node in an OSI network has one or more NETs. In addition, each node has many NSAP addresses.

When you enable connectionless routing on the switch by using the `clns routing` global configuration command, the switch makes only forwarding decisions, with no routing-related functionality. For dynamic routing, you must also enable a routing protocol. The switch supports the Intermediate System-to-Intermediate System (IS-IS) dynamic routing protocol that is based on the OSI routing protocol for ISO CLNS networks.

Table 1-11 IP BGP Clear and Show Commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip bgp prefix</code></td>
<td>Display peer groups and peers not in peer groups to which the prefix has been advertised. Also display prefix attributes such as the next hop and the local prefix.</td>
</tr>
<tr>
<td><code>show ip bgp cidr-only</code></td>
<td>Display all BGP routes that contain subnet and supernet network masks.</td>
</tr>
<tr>
<td><code>show ip bgp community [community-number] [exact]</code></td>
<td>Display routes that belong to the specified communities.</td>
</tr>
<tr>
<td><code>show ip bgp community-list community-list-number [exact-match]</code></td>
<td>Display routes that are permitted by the community list.</td>
</tr>
<tr>
<td><code>show ip bgp filter-list access-list-number</code></td>
<td>Display routes that are matched by the specified AS path access list.</td>
</tr>
<tr>
<td><code>show ip bgp inconsistent-as</code></td>
<td>Display the routes with inconsistent originating autonomous systems.</td>
</tr>
<tr>
<td><code>show ip bgp regexp regular-expression</code></td>
<td>Display the routes that have an AS path that matches the specified regular expression entered on the command line.</td>
</tr>
<tr>
<td><code>show ip bgp</code></td>
<td>Display the contents of the BGP routing table.</td>
</tr>
<tr>
<td><code>show ip bgp neighbors [address]</code></td>
<td>Display detailed information on the BGP and TCP connections to individual neighbors.</td>
</tr>
<tr>
<td>`show ip bgp neighbors [address] [advertised-routes</td>
<td>dampened-routes</td>
</tr>
<tr>
<td><code>show ip bgp paths</code></td>
<td>Display all BGP paths in the database.</td>
</tr>
<tr>
<td><code>show ip bgp peer-group [tag] [summary]</code></td>
<td>Display information about BGP peer groups.</td>
</tr>
<tr>
<td><code>show ip bgp summary</code></td>
<td>Display the status of all BGP connections.</td>
</tr>
</tbody>
</table>
When dynamically routing, you use IS-IS. This routing protocol supports the concept of areas. Within an area, all routers know how to reach all the system IDs. Between areas, routers know how to reach the proper area. IS-IS supports two levels of routing: station routing (within an area) and area routing (between areas).

The key difference between the ISO IGRP and IS-IS NSAP addressing schemes is in the definition of area addresses. Both use the system ID for Level 1 routing (routing within an area). However, they differ in the way addresses are specified for area routing. An ISO IGRP NSAP address includes three separate fields for routing: the domain, area, and system ID. An IS-IS address includes two fields: a single continuous area field (comprising the domain and area fields) and the system ID.

For more detailed information about ISO CLNS, see the Cisco IOS Apollo Domain, Banyan VINES, DECnet, ISO CLNS and XNS Configuration Guide, Release 12.4. For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS Apollo Domain, Banyan VINES, DECnet, ISO CLNS and XNS Command Reference, Release 12.4, use the IOS command reference master index, or search online.

Configuring IS-IS Dynamic Routing

IS-IS is an ISO dynamic routing protocol (described in ISO 105890). Unlike other routing protocols, enabling IS-IS requires that you create an IS-IS routing process and assign it to a specific interface, rather than to a network. You can specify more than one IS-IS routing process per Layer 3 switch or router by using the multiarea IS-IS configuration syntax. You then configure the parameters for each instance of the IS-IS routing process.

Small IS-IS networks are built as a single area that includes all the routers in the network. As the network grows larger, it is usually reorganized into a backbone area made up of the connected set of all Level 2 routers from all areas, which is in turn connected to local areas. Within a local area, routers know how to reach all system IDs. Between areas, routers know how to reach the backbone, and the backbone routers know how to reach other areas.

Routers establish Level 1 adjacencies to perform routing within a local area (station routing). Routers establish Level 2 adjacencies to perform routing between Level 1 areas (area routing).

A single Cisco router can participate in routing in up to 29 areas and can perform Level 2 routing in the backbone. In general, each routing process corresponds to an area. By default, the first instance of the routing process configured performs both Level 1 and Level 2 routing. You can configure additional router instances, which are automatically treated as Level 1 areas. You must configure the parameters for each instance of the IS-IS routing process individually.

For IS-IS multiarea routing, you can configure only one process to perform Level 2 routing, although you can define up to 29 Level 1 areas for each Cisco unit. If Level 2 routing is configured on any process, all additional processes are automatically configured as Level 1. You can configure this process to perform Level 1 routing at the same time. If Level 2 routing is not desired for a router instance, remove the Level 2 capability using the `is-type` global configuration command. Use the `is-type` command also to configure a different router instance as a Level 2 router.

For more detailed information about IS-IS, see the “IP Routing Protocols” chapter of the Cisco IOS IP Configuration Guide, Release 12.4. For complete syntax and usage information for the commands used in this section, see the Cisco IOS IP Command Reference, Release 12.4.
These sections briefly describes how to configure IS-IS routing.

- Default IS-IS Configuration, page 1-68
- Enabling IS-IS Routing, page 1-69
- Configuring IS-IS Global Parameters, page 1-71
- Configuring IS-IS Interface Parameters, page 1-73

Default IS-IS Configuration

Table 1-12 Default IS-IS Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore link-state PDU (LSP) errors</td>
<td>Enabled.</td>
</tr>
<tr>
<td>IS-IS type</td>
<td>Conventional IS-IS: the router acts as both a Level 1 (station) and a Level 2</td>
</tr>
<tr>
<td></td>
<td>(area) router.</td>
</tr>
<tr>
<td></td>
<td>Multiarea IS-IS: the first instance of the IS-IS routing process is a Level 1-2</td>
</tr>
<tr>
<td></td>
<td>router. Remaining instances are Level 1 routers.</td>
</tr>
<tr>
<td>Default-information originate</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Log IS-IS adjacency state changes.</td>
<td>Disabled.</td>
</tr>
<tr>
<td>LSP generation throttling timers</td>
<td>Maximum interval between two consecutive occurrences: 5 seconds.</td>
</tr>
<tr>
<td></td>
<td>Initial LSP generation delay: 50 ms.</td>
</tr>
<tr>
<td></td>
<td>Hold time between the first and second LSP generation: 5000 ms.</td>
</tr>
<tr>
<td>LSP maximum lifetime (without a refresh)</td>
<td>1200 seconds (20 minutes) before the LSP packet is deleted.</td>
</tr>
<tr>
<td>LSP refresh interval</td>
<td>Send LSP refreshes every 900 seconds (15 minutes).</td>
</tr>
<tr>
<td>Maximum LSP packet size</td>
<td>1497 bytes.</td>
</tr>
<tr>
<td>NSF Awareness1</td>
<td>Enabled2. Allows Layer 3 switches to continue forwarding packets from a</td>
</tr>
<tr>
<td></td>
<td>neighboring NSF-capable router during hardware or software changes.</td>
</tr>
<tr>
<td>Partial route computation (PRC) throttling</td>
<td>Maximum PRC wait interval: 5 seconds.</td>
</tr>
<tr>
<td>timers</td>
<td>Initial PRC calculation delay after a topology change: 2000 ms.</td>
</tr>
<tr>
<td></td>
<td>Hold time between the first and second PRC calculation: 5000 ms.</td>
</tr>
<tr>
<td>Partition avoidance</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Password</td>
<td>No area or domain password is defined, and authentication is disabled.</td>
</tr>
<tr>
<td>Set-overload-bit</td>
<td>Disabled. When enabled, if no arguments are entered, the overload bit is set</td>
</tr>
<tr>
<td></td>
<td>immediately and remains set until you enter the no set-overload-bit command.</td>
</tr>
<tr>
<td>Shortest path first (SPF) throttling timers</td>
<td>Maximum interval between consecutive SFPs: 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>Initial SPF calculation after a topology change: 5500 ms.</td>
</tr>
<tr>
<td></td>
<td>Holdtime between the first and second SPF calculation: 5500 ms.</td>
</tr>
<tr>
<td>Summary-address</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

1. NSF = Nonstop Forwarding
2. IS-IS NSF awareness is enabled for IPv4 on switches running Cisco IOS Release 12.2(25)SEG or later.
Nonstop Forwarding Awareness

The integrated IS-IS NSF Awareness feature is supported for IPv4, beginning with Cisco IOS Release 12.2(25)SEG. The feature allows customer premises equipment (CPE) routers that are NSF-aware to help NSF-capable routers perform nonstop forwarding of packets. The local router is not necessarily performing NSF, but its awareness of NSF allows the integrity and accuracy of the routing database and link-state database on the neighboring NSF-capable router to be maintained during the switchover process.

This feature is automatically enabled and requires no configuration. For more information on this feature, see the Integrated IS-IS Nonstop Forwarding (NSF) Awareness Feature Guide.

Enabling IS-IS Routing

To enable IS-IS, you specify a name and NET for each routing process. You then enable IS-IS routing on the interface and specify the area for each instance of the routing process.

Beginning in privileged EXEC mode, follow these steps to enable IS-IS and specify the area for each instance of the IS-IS routing process:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>clns routing</code> Enable ISO connectionless routing on the switch.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>router isis [area tag]</code> Enable the IS-IS routing for the specified routing process and enter IS-IS routing configuration mode. (Optional) Use the <code>area tag</code> argument to identify the area to which the IS-IS router is assigned. You must enter a value if you are configuring multiple IS-IS areas. The first IS-IS instance configured is Level 1-2 by default. Later instances are automatically Level 1. You can change the level of routing by using the <code>is-type</code> global configuration command.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>net network-entity-title</code> Configure the NETs for the routing process. If you are configuring multiarea IS-IS, specify a NET for each routing process. You can specify a name for a NET and for an address.</td>
</tr>
</tbody>
</table>
| Step 5 | `is-type {level-1 | level-1-2 | level-2-only}` (Optional) You can configure the router to act as a Level 1 (station) router, a Level 2 (area) router for multi-area routing, or both (the default):
 * `level-1`—act as a station router only
 * `level-1-2`—act as both a station router and an area router
 * `level 2`—act as an area router only |
| Step 6 | `exit` Return to global configuration mode. |
| Step 7 | `interface interface-id` Specify an interface to route IS-IS, and enter interface configuration mode. If the interface is not already configured as a Layer 3 interface, enter the `no switchport` command to put it into Layer 3 mode. |
| Step 8 | `ip router isis [area tag]` Configure an IS-IS routing process for ISO CLNS on the interface and attach an area designator to the routing process. |
| Step 9 | `clns router isis [area tag]` Enable ISO CLNS on the interface. |
To disable IS-IS routing, use the `no router isis area-tag` router configuration command.

This example shows how to configure three routers to run conventional IS-IS as an IP routing protocol. In conventional IS-IS, all routers act as Level 1 and Level 2 routers (by default).

Router A
```
Switch(config)# clns routing
Switch(config)# router isis
Switch(config-router)# net 49.0001.0000.0000.000a.00
Switch(config-router)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config-router)# exit
```

Router B
```
Switch(config)# clns routing
Switch(config)# router isis
Switch(config-router)# net 49.0001.0000.0000.000b.00
Switch(config-router)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config-router)# exit
```

Router C
```
Switch(config)# clns routing
Switch(config)# router isis
Switch(config-router)# net 49.0001.0000.0000.000c.00
Switch(config-router)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config-router)# exit
```

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><code>ip address ip-address-mask</code></td>
<td>Define the IP address for the interface. An IP address is required on all interfaces in an area enabled for IS-IS if any one interface is configured for IS-IS routing.</td>
</tr>
<tr>
<td>11</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>12</td>
<td><code>show isis [area tag] database detail</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>13</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable IS-IS routing, use the `no router isis area-tag` router configuration command.
Configuring IS-IS Global Parameters

These are some optional IS-IS global parameters that you can configure:

- You can force a default route into an IS-IS routing domain by configuring a default route controlled by a route map. You can also specify other filtering options configurable under a route map.
- You can configure the router to ignore IS-IS LSPs that are received with internal checksum errors or to purge corrupted LSPs, which causes the initiator of the LSP to regenerate it.
- You can assign passwords to areas and domains.
- You can create aggregate addresses that are represented in the routing table by a summary address (route-summarization). Routes learned from other routing protocols can also be summarized. The metric used to advertise the summary is the smallest metric of all the specific routes.
- You can set an overload bit.
- You can configure the LSP refresh interval and the maximum time that an LSP can remain in the router database without a refresh.
- You can set the throttling timers for LSP generation, shortest path first computation, and partial route computation.
- You can configure the switch to generate a log message when an IS-IS adjacency changes state (up or down).
- If a link in the network has a maximum transmission unit (MTU) size of less than 1500 bytes, you can lower the LSP MTU so that routing will still occur.
- The partition avoidance router configuration command prevents an area from becoming partitioned when full connectivity is lost among a Level1-2 border router, adjacent Level 1 routers, and end hosts.

Beginning in privileged EXEC mode, follow these steps to configure IS-IS parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 clns routing</td>
<td>Enable ISO connectionless routing on the switch.</td>
</tr>
<tr>
<td>Step 3 router isis</td>
<td>Specify the IS-IS routing protocol and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 4 default-information originate [route-map map-name]</td>
<td>(Optional) Force a default route into the IS-IS routing domain. If you enter <code>route-map map-name</code>, the routing process generates the default route if the route map is satisfied.</td>
</tr>
<tr>
<td>Step 5 ignore-lsp-errors</td>
<td>(Optional) Configure the router to ignore LSPs with internal checksum errors, instead of purging the LSPs. This command is enabled by default (corrupted LSPs are dropped). To purge the corrupted LSPs, enter the no <code>ignore-lsp-errors</code> router configuration command.</td>
</tr>
<tr>
<td>Step 6 area-password password</td>
<td>(Optional) Configure the area authentication password, which is inserted in Level 1 (station router level) LSPs.</td>
</tr>
<tr>
<td>Step 7 domain-password password</td>
<td>(Optional) Configure the routing domain authentication password, which is inserted in Level 2 (area router level) LSPs.</td>
</tr>
<tr>
<td>Step 8 summary-address address mask [level-1</td>
<td>level-1-2</td>
</tr>
<tr>
<td>Command</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>set-overload-bit [on-startup [seconds</td>
</tr>
</tbody>
</table>

(Optional) Set an overload bit (a hippity bit) to allow other routers to ignore the router in their shortest path first (SPF) calculations if the router is having problems.

- (Optional) **on-startup**—sets the overload bit only on startup. If **on-startup** is not specified, the overload bit is set immediately and remains set until you enter the **no set-overload-bit** command. If **on-startup** is specified, you must enter a number of seconds or **wait-for-bgp**.

- **seconds**—When the **on-startup** keyword is configured, causes the overload bit to be set upon system startup and remain set for this number of seconds. The range is from 5 to 86400 seconds.

- **wait-for-bgp**—When the **on-startup** keyword is configured, causes the overload bit to be set upon system startup and remain set until BGP has converged. If BGP does not signal IS-IS that it is converged, IS-IS will turn off the overload bit after 10 minutes.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10</td>
</tr>
</tbody>
</table>

(Optional) Set an LSP refresh interval in seconds. The range is from 1 to 65535 seconds. The default is to send LSP refreshes every 900 seconds (15 minutes).

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 11</td>
</tr>
</tbody>
</table>

(Optional) Set the maximum time that LSP packets remain in the router database without being refreshed. The range is from 1 to 1200 seconds (20 minutes). After the specified time interval, the LSP packet is deleted.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 12</td>
</tr>
</tbody>
</table>

(Optional) Set the IS-IS LSP generation throttling timers:

- **lsp-max-wait**—the maximum interval (in seconds) between two consecutive occurrences of an LSP being generated. The range is 1 to 120, the default is 5.

- **lsp-initial-wait**—the initial LSP generation delay (in milliseconds). The range is 1 to 10000; the default is 50.

- **lsp-second-wait**—the hold time between the first and second LSP generation (in milliseconds). The range is 1 to 10000; the default is 5000.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 13</td>
</tr>
</tbody>
</table>

(Optional) Sets IS-IS shortest path first (SPF) throttling timers.

- **spf-max-wait**—the maximum interval between consecutive SFPs (in seconds). The range is 1 to 120, the default is 10.

- **spf-initial-wait**—the initial SFP calculation after a topology change (in milliseconds). The range is 1 to 10000; the default is 5500.

- **spf-second-wait**—the holdtime between the first and second SFP calculation (in milliseconds). The range is 1 to 10000; the default is 5500.
Chapter 1 Configuring IP Unicast Routing

Configuring IS-IS Interface Parameters

You can optionally configure certain interface-specific IS-IS parameters, independently from other attached routers. However, if you change some values from the defaults, such as multipliers and time intervals, it makes sense to also change them on multiple routers and interfaces. Most of the interface parameters can be configured for level 1, level 2, or both.

These are some interface level parameters you can configure:

- The default metric on the interface, which is used as a value for the IS-IS metric and assigned when there is no quality of service (QoS) routing performed.
- The hello interval (length of time between hello packets sent on the interface) or the default hello packet multiplier used on the interface to determine the hold time sent in IS-IS hello packets. The hold time determines how long a neighbor waits for another hello packet before declaring the neighbor down. This determines how quickly a failed link or neighbor is detected so that routes can be recalculated. Change the hello-multiplier in circumstances where hello packets are lost.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 14** | **prc-interval prc-max-wait**
[**prc-initial-wait prc-second-wait**] | (Optional) Sets IS-IS partial route computation (PRC) throttling timers.
- **prc-max-wait**—the maximum interval (in seconds) between two consecutive PRC calculations. The range is 1 to 120; the default is 5.
- **prc-initial-wait**—the initial PRC calculation delay (in milliseconds) after a topology change. The range is 1 to 10,000; the default is 2000.
- **prc-second-wait**—the hold time between the first and second PRC calculation (in milliseconds). The range is 1 to 10,000; the default is 5000. |
| **Step 15** | **log-adjacency-changes [all]** | (Optional) Set the router to log IS-IS adjacency state changes. Enter all to include all changes generated by events that are not related to the Intermediate System-to-Intermediate System Hellos, including End System-to-Intermediate System PDUs and link state packets (LSPs). |
| **Step 16** | **lsp-mtu size** | (Optional) Specify the maximum LSP packet size in bytes. The range is 128 to 4352; the default is 1497 bytes.
Note If any link in the network has a reduced MTU size, you must change the LSP MTU size on all routers in the network. |
| **Step 17** | **partition avoidance** | (Optional) Causes an IS-IS Level 1-2 border router to stop advertising the Level 1 area prefix into the Level 2 backbone when full connectivity is lost among the border router, all adjacent level 1 routers, and end hosts. |
| **Step 18** | **end** | Return to privileged EXEC mode. |
| **Step 19** | **show clns** | Verify your entries. |
| **Step 20** | **copy running-config startup-config** | (Optional) Save your entries in the configuration file. |

To disable default route generation, use the **no default-information originate** router configuration command. Use the **no area-password** or **no domain-password** router configuration command to disable passwords. To disable LSP MTU settings, use the **no lsp mtu** router configuration command. To return to the default conditions for summary addressing, LSP refresh interval, LSP lifetime, LSP timers, SFP timers, and PRC timers, use the **no** form of the commands. Use the **no partition avoidance** router configuration command to disable the output format.
frequently and IS-IS adjacencies are failing unnecessarily. You can raise the hello multiplier and lower the hello interval correspondingly to make the hello protocol more reliable without increasing the time required to detect a link failure.

- Other time intervals:
 - Complete sequence number PDU (CSNP) interval. CSNPs are sent by the designated router to maintain database synchronization
 - Retransmission interval. This is the time between retransmission of IS-IS LSPs for point-to-point links.
 - IS-IS LSP retransmission throttle interval. This is the maximum rate (number of milliseconds between packets) at which IS-IS LSPs are re-sent on point-to-point links. This interval is different from the retransmission interval, which is the time between successive retransmissions of the same LSP.
 - Designated router election priority, which allows you to reduce the number of adjacencies required on a multiaccess network, which in turn reduces the amount of routing protocol traffic and the size of the topology database.
 - The interface circuit type, which is the type of adjacency desired for neighbors on the specified interface.
 - Password authentication for the interface.

Beginning in privileged EXEC mode, follow these steps to configure IS-IS interface parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>isis metric default-metric [level-1</td>
</tr>
</tbody>
</table>
| Step 4 | isis hello-interval {seconds | minimal} [level-1 | level-2] | (Optional) Specify the length of time between hello packets sent by the switch. By default, a value three times the hello interval seconds is advertised as the holdtime in the hello packets sent. With smaller hello intervals, topological changes are detected faster, but there is more routing traffic.
 - minimal—causes the system to compute the hello interval based on the hello multiplier so that the resulting hold time is 1 second.
 - seconds—the range is from 1 to 65535. The default is 10 seconds. |
| Step 5 | isis hello-multiplier multiplier [level-1 | level-2] | (Optional) Specify the number of IS-IS hello packets a neighbor must miss before the router should declare the adjacency as down. The range is from 3 to 1000. The default is 3. Using a smaller hello-multiplier causes fast convergence, but can result in more routing instability. |
| Step 6 | isis csnp-interval seconds [level-1 | level-2] | (Optional) Configure the IS-IS complete sequence number PDU (CSNP) interval for the interface. The range is from 0 to 65535. The default is 10 seconds. |
Chapter 1 Configuring IP Unicast Routing

Configuring ISO CLNS Routing

To return to the default settings, use the no forms of the commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>isis retransmit-interval seconds (Optional) Configure the number of seconds between retransmission of IS-IS LSPs for point-to-point links. The value you specify should be an integer greater than the expected round-trip delay between any two routers on the network. The range is from 0 to 65535. The default is 5 seconds.</td>
</tr>
<tr>
<td>Step 8</td>
<td>isis retransmit-throttle-interval milliseconds (Optional) Configure the IS-IS LSP retransmission throttle interval, which is the maximum rate (number of milliseconds between packets) at which IS-IS LSPs will be re-sent on point-to-point links. The range is from 0 to 65535. The default is 5 seconds.</td>
</tr>
<tr>
<td>Step 9</td>
<td>**isis priority value [level-1</td>
</tr>
<tr>
<td>Step 10</td>
<td>**isis circuit-type {level-1</td>
</tr>
<tr>
<td></td>
<td>• level-1—a Level 1 adjacency is established if there is at least one area address common to both this node and its neighbors.</td>
</tr>
<tr>
<td></td>
<td>• level-1-2—a Level 1 and 2 adjacency is established if the neighbor is also configured as both Level 1 and Level 2 and there is at least one area in common. If there is no area in common, a Level 2 adjacency is established. This is the default.</td>
</tr>
<tr>
<td></td>
<td>• level 2—a Level 2 adjacency is established. If the neighbor router is a Level 1 router, no adjacency is established.</td>
</tr>
<tr>
<td>Step 11</td>
<td>**isis password password [level-1</td>
</tr>
<tr>
<td>Step 12</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 13</td>
<td>show clns interface interface-id Verify your entries.</td>
</tr>
<tr>
<td>Step 14</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining ISO IGRP and IS-IS

You can remove all contents of a CLNS cache or remove information for a particular neighbor or route. You can display specific CLNS or IS-IS statistics, such as the contents of routing tables, caches, and databases. You can also display information about specific interfaces, filters, or neighbors.

Table 1-13 lists the privileged EXEC commands for clearing and displaying ISO CLNS and IS-IS routing. For explanations of the display fields, see the Cisco IOS Apollo Domain, Banyan VINES, DECnet, ISO CLNS and XNS Command Reference, Release 12.4, use the Cisco IOS command reference master index, or search online.
Virtual Private Networks (VPNs) provide a secure way for customers to share bandwidth over an ISP backbone network. A VPN is a collection of sites sharing a common routing table. A customer site is connected to the service-provider network by one or more interfaces, and the service provider associates each interface with a VPN routing table, called a VPN routing/forwarding (VRF) table.

The switch supports multiple VPN routing/forwarding (multi-VRF) instances in customer edge (CE) devices (multi-VRF CE) when the it is running the IP services or advanced IP services feature set. Multi-VRF CE allows a service provider to support two or more VPNs with overlapping IP addresses.
The switch does not use Multiprotocol Label Switching (MPLS) to support VPNs. For information about MPLS VRF, see the Cisco IOS Switching Services Configuration Guide, Release 12.4.

- Understanding Multi-VRF CE, page 1-77
- Default Multi-VRF CE Configuration, page 1-79
- Multi-VRF CE Configuration Guidelines, page 1-79
- Configuring VRFs, page 1-80
- Configuring VRF-Aware Services, page 1-81
- Configuring Multicast VRFs, page 1-85
- Configuring a VPN Routing Session, page 1-86
- Configuring BGP PE to CE Routing Sessions, page 1-86
- Multi-VRF CE Configuration Example, page 1-87
- Displaying Multi-VRF CE Status, page 1-91

Understanding Multi-VRF CE

Multi-VRF CE is a feature that allows a service provider to support two or more VPNs, where IP addresses can be overlapped among the VPNs. Multi-VRF CE uses input interfaces to distinguish routes for different VPNs and forms virtual packet-forwarding tables by associating one or more Layer 3 interfaces with each VRF. Interfaces in a VRF can be either physical, such as Ethernet ports, or logical, such as VLAN SVIs, but an interface cannot belong to more than one VRF at any time.

Note: Multi-VRF CE interfaces must be Layer 3 interfaces.

Multi-VRF CE includes these devices:

- **Customer edge (CE) devices** provide customers access to the service-provider network over a data link to one or more provider edge routers. The CE device advertises the site’s local routes to the router and learns the remote VPN routes from it. A Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch can be a CE.

- **Provider edge (PE) routers** exchange routing information with CE devices by using static routing or a routing protocol such as BGP, RIPv2, OSPF, or EIGRP. The PE is only required to maintain VPN routes for those VPNs to which it is directly attached, eliminating the need for the PE to maintain all of the service-provider VPN routes. Each PE router maintains a VRF for each of its directly connected sites. Multiple interfaces on a PE router can be associated with a single VRF if all of these sites participate in the same VPN. Each VPN is mapped to a specified VRF. After learning local VPN routes from CEs, a PE router exchanges VPN routing information with other PE routers by using internal BGP (IBGP).

- **Provider routers or core routers** are any routers in the service provider network that do not attach to CE devices.

With multi-VRF CE, multiple customers can share one CE, and only one physical link is used between the CE and the PE. The shared CE maintains separate VRF tables for each customer and switches or routes packets for each customer based on its own routing table. Multi-VRF CE extends limited PE functionality to a CE device, giving it the ability to maintain separate VRF tables to extend the privacy and security of a VPN to the branch office.
Figure 1-6 shows a configuration using Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switches as multiple virtual CEs. This scenario is suited for customers who have low bandwidth requirements for their VPN service, for example, small companies. In this case, multi-VRF CE support is required in the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switches. Because multi-VRF CE is a Layer 3 feature, each interface in a VRF must be a Layer 3 interface.

When the CE switch receives a command to add a Layer 3 interface to a VRF, it sets up the appropriate mapping between the VLAN ID and the policy label (PL) in multi-VRF-CE-related data structures and adds the VLAN ID and PL to the VLAN database.

When multi-VRF CE is configured, the Layer 3 forwarding table is conceptually partitioned into two sections:

- The multi-VRF CE routing section contains the routes from different VPNs.
- The global routing section contains routes to non-VPN networks, such as the Internet.

VLAN IDs from different VRFs are mapped into different policy labels, which are used to distinguish the VRFs during processing. For each new VPN route learned, the Layer 3 setup function retrieves the policy label by using the VLAN ID of the ingress port and inserts the policy label and new route to the multi-VRF CE routing section. If the packet is received from a routed port, the port internal VLAN ID number is used; if the packet is received from an SVI, the VLAN number is used.

This is the packet-forwarding process in a multi-VRF-CE-enabled network:

- When the switch receives a packet from a VPN, the switch looks up the routing table based on the input policy label number. When a route is found, the switch forwards the packet to the PE.
- When the ingress PE receives a packet from the CE, it performs a VRF lookup. When a route is found, the router adds a corresponding MPLS label to the packet and sends it to the MPLS network.
- When an egress PE receives a packet from the network, it strips the label and uses the label to identify the correct VPN routing table. Then it performs the normal route lookup. When a route is found, it forwards the packet to the correct adjacency.
- When a CE receives a packet from an egress PE, it uses the input policy label to look up the correct VPN routing table. If a route is found, it forwards the packet within the VPN.
To configure VRF, you create a VRF table and specify the Layer 3 interface associated with the VRF. Then configure the routing protocols in the VPN and between the CE and the PE. BGP is the preferred routing protocol used to distribute VPN routing information across the provider’s backbone. The multi-VRF CE network has three major components:

- **VPN route target communities**—lists of all other members of a VPN community. You need to configure VPN route targets for each VPN community member.
- **Multiprotocol BGP peering of VPN community PE routers**—propagates VRF reachability information to all members of a VPN community. You need to configure BGP peering in all PE routers within a VPN community.
- **VPN forwarding**—transports all traffic between all VPN community members across a VPN service-provider network.

Default Multi-VRF CE Configuration

Table 1-14 Default VRF Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>Disabled. No VRFs are defined.</td>
</tr>
<tr>
<td>Maps</td>
<td>No import maps, export maps, or route maps are defined.</td>
</tr>
<tr>
<td>VRF maximum routes</td>
<td>Fast Ethernet switches: 8000</td>
</tr>
<tr>
<td></td>
<td>Gigabit Ethernet switches: 12000.</td>
</tr>
<tr>
<td>Forwarding table</td>
<td>The default for an interface is the global routing table.</td>
</tr>
</tbody>
</table>

Multi-VRF CE Configuration Guidelines

Note
To use multi-VRF CE, you must have the IP services or advanced IP services feature set enabled on your switch.

- A switch with multi-VRF CE is shared by multiple customers, and each customer has its own routing table.
- Because customers use different VRF tables, the same IP addresses can be reused. Overlapped IP addresses are allowed in different VPNs.
- Multi-VRF CE lets multiple customers share the same physical link between the PE and the CE. Trunk ports with multiple VLANs separate packets among customers. Each customer has its own VLAN.
- Multi-VRF CE does not support all MPLS-VRF functionality. It does not support label exchange, LDP adjacency, or labeled packets.
- For the PE router, there is no difference between using multi-VRF CE or using multiple CEIs. In Figure 1-6, multiple virtual Layer 3 interfaces are connected to the multi-VRF CE device.
- The switch supports configuring VRF by using physical ports, VLAN SVIs, or a combination of both. The SVIs can be connected through an access port or a trunk port.
A customer can use multiple VLANs as long as they do not overlap with those of other customers. A customer’s VLANs are mapped to a specific routing table ID that is used to identify the appropriate routing tables stored on the switch.

The switch supports one global network and up to 26 VRFs.

Most routing protocols (BGP, OSPF, RIP, and static routing) can be used between the CE and the PE. However, we recommend using external BGP (eBGP) for these reasons:

- BGP does not require multiple algorithms to communicate with multiple CEs.
- BGP is designed for passing routing information between systems run by different administrations.
- BGP makes it easy to pass attributes of the routes to the CE.

Multi-VRF CE does not affect the packet switching rate.

VPN multicast is not supported.

You can configure 104 policies whether or not VRFs are configured on the switch or switch stack.

You can enable VRF on a private VLAN, and the reverse.

You cannot enable VRF when policy-based routing (PBR) is enabled on an interface, and the reverse.

You cannot enable VRF when Web Cache Communication Protocol (WCCP) is enabled on an interface, and the reverse.

Configuring VRFs

Beginning in privileged EXEC mode, follow these steps to configure one or more VRFs. For complete syntax and usage information for the commands, see the switch command reference for this release and the *Cisco IOS Switching Services Command Reference, Release 12.4*.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip routing</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip vrf vrf-name or vrf definition vrf-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
</tr>
<tr>
<td>Step 5</td>
<td>rd route-distinguisher</td>
</tr>
<tr>
<td>Step 6</td>
<td>route-target { export</td>
</tr>
<tr>
<td>Step 7</td>
<td>import map route-map</td>
</tr>
</tbody>
</table>

(Optional) Associates a route map with the VRF.
Chapter 1 Configuring IP Unicast Routing

Configuring Multi-VRF CE

Use the `no ip vrf vrf-name` or `no vrf definition vrf-name` global configuration commands to delete a VRF and to remove all interfaces from it. Use the `no ip vrf forwarding vrf-name` or `no vrf forwarding vrf-name` interface configuration commands to remove an interface from the VRF.

Configuring VRF-Aware Services

IP Services can be configured on global interfaces, and these services run within the global routing instance. IP services are enhanced to run on multiple routing instances; they are VRF-aware. Any configured VRF in the system can be specified for a VRF-aware service.

VRF-Aware services are implemented in platform-independent modules. VRF means multiple routing instances in Cisco IOS. Each platform has its own limit on the number of VRFs it supports.

VRF-aware services have the following characteristics:
- The user can ping a host in a user-specified VRF.
- ARP entries are learned in separate VRFs. The user can display Address Resolution Protocol (ARP) entries for specific VRFs.

These services are VRF-Aware:
- ARP
- Ping
- Simple Network Management Protocol (SNMP)
- Hot Standby Router Protocol (HSRP)
- Unicast Reverse Path Forwarding (uRPF)
- Syslog
- Traceroute
- FTP and TFTP

Note

The switch does not support VRF-aware services for Unicast Reverse Path Forwarding (uRPF) or Network Time Protocol (NTP).
Chapter 1 Configuring IP Unicast Routing

User Interface for ARP

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for ARP. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the *Cisco IOS Switching Services Command Reference, Release 12.4*.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip arp vrf vrf-name</td>
<td>Displays the ARP table in the specified VRF.</td>
</tr>
</tbody>
</table>

User Interface for PING

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for ping. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the *Cisco IOS Switching Services Command Reference, Release 12.4*.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping vrf vrf-name ip-host</td>
<td>Displays the ARP table in the specified VRF.</td>
</tr>
</tbody>
</table>

User Interface for SNMP

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for SNMP. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the *Cisco IOS Switching Services Command Reference, Release 12.4*.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 snmp-server trap authentication vrf</td>
<td>Enables SNMP traps for packets on a VRF.</td>
</tr>
<tr>
<td>Step 3 snmp-server engineID remote host vrf vpn-instance engine-id string</td>
<td>Configures a name for the remote SNMP engine on a switch.</td>
</tr>
<tr>
<td>Step 4 snmp-server host host vrf vpn-instance traps community</td>
<td>Specifies the recipient of an SNMP trap operation and specify the VRF table to be used for sending SNMP traps.</td>
</tr>
<tr>
<td>Step 5 snmp-server host host vrf vpn-instance informs community</td>
<td>Specifies the recipient of an SNMP inform operation and specify the VRF table to be used for sending SNMP informs.</td>
</tr>
<tr>
<td>Step 6 snmp-server user user group remote host vrf vpn-instance security model</td>
<td>Adds a user to an SNMP group for a remote host on a VRF for SNMP access.</td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

User Interface for HSRP

HSRP support for VRFs ensures that HSRP virtual IP addresses are added to the correct IP routing table. Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for HSRP. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the *Cisco IOS Switching Services Command Reference, Release 12.4*.
Chapter 1 Configuring IP Unicast Routing

Configuring Multi-VRF CE

User Interface for uRPF

uRPF can be configured on an interface assigned to a VRF, and source lookup is done in the VRF table.

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for uRPF. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the Cisco IOS Switching Services Command Reference, Release 12.4.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enters interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3 no switchport</td>
<td>Removes the interface from Layer 2 configuration mode if it is a physical interface.</td>
</tr>
<tr>
<td>Step 4 ip vrf forwarding vrf-name</td>
<td>Configures VRF on the interface.</td>
</tr>
<tr>
<td>Step 5 ip address ip-address</td>
<td>Enters the IP address for the interface.</td>
</tr>
<tr>
<td>Step 6 standby 1 ip ip-address</td>
<td>Enables HSRP and configure the virtual IP address.</td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

User Interface for VRF-Aware RADIUS

To configure VRF-Aware RADIUS, you must first enable AAA on a RADIUS server. The switch supports the ip vrf forwarding vrf-name server-group configuration and the ip radius source-interface global configuration commands, as described in the Per VRF AAA Feature Guide:

User Interface for Syslog

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for Syslog. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the Cisco IOS Switching Services Command Reference, Release 12.4.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2: logging on</td>
<td>Enables or temporarily disable logging of storage router event message.</td>
</tr>
<tr>
<td>Step 3: logging host ip-address vrf vrf-name</td>
<td>Specifies the host address of the syslog server where logging messages are to be sent.</td>
</tr>
<tr>
<td>Step 4: logging buffered logging buffered size debugging</td>
<td>Logs messages to an internal buffer.</td>
</tr>
<tr>
<td>Step 5: logging trap debugging</td>
<td>Limits the logging messages sent to the syslog server.</td>
</tr>
<tr>
<td>Step 6: logging facility facility</td>
<td>Sends system logging messages to a logging facility.</td>
</tr>
<tr>
<td>Step 7: end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

User Interface for Traceroute

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for traceroute. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the Cisco IOS Switching Services Command Reference, Release 12.4.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2: traceroute vrf vrf-name ipaddress</td>
<td>Specifies the name of a VPN VRF in which to find the destination address.</td>
</tr>
</tbody>
</table>

User Interface for FTP and TFTP

So that FTP and TFTP are VRF-aware, you must configure some FTP/TFTP CLIs. For example, if you want to use a VRF table that is attached to an interface, say E1/0, you need to configure the CLI `ip [t]ftp source-interface E1/0` to inform [t]ftp to use a specific routing table. In this example, the VRF table is used to look up the destination IP address. These changes are backward-compatible and do not affect existing behavior. That is, you can use the source-interface CLI to send packets out a particular interface even if no VRF is configured on that interface.

To specify the source IP address for FTP connections, use the `ip ftp source-interface` show mode command. To use the address of the interface where the connection is made, use the `no` form of this command.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2: ip ftp source-interface interface-type interface-number</td>
<td>Specifies the source IP address for FTP connections.</td>
</tr>
<tr>
<td>Step 3: end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
To specify the IP address of an interface as the source address for TFTP connections, use the `ip tftp source-interface` show mode command. To return to the default, use the `no` form of this command.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip tftp source-interface interface-type interface-number</td>
<td>Specifies the source IP address for TFTP connections.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Configuring Multicast VRFs

Beginning in privileged EXEC mode, follow these steps to configure a multicast within a VRF table. For complete syntax and usage information for the commands, see the switch command reference for this release and the *Cisco IOS Switching Services Command Reference, Release 12.4*.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip routing</td>
<td>Enables IP routing mode.</td>
</tr>
<tr>
<td>3</td>
<td>ip vrf vrf-name</td>
<td>Names the VRF, and enters VRF configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td>rd route-distinguisher</td>
<td>Creates a VRF table by specifying a route distinguisher. Enters either an AS number and an arbitrary number (xxx:y) or an IP address and an arbitrary number (A.B.C.D:y).</td>
</tr>
<tr>
<td>5</td>
<td>route-target { export</td>
<td>import</td>
</tr>
<tr>
<td>6</td>
<td>import map route-map</td>
<td>(Optional) Associates a route map with the VRF.</td>
</tr>
<tr>
<td>7</td>
<td>ip multicast-routing vrf vrf-name distributed</td>
<td>(Optional) Enables global multicast routing for VRF table.</td>
</tr>
<tr>
<td>8</td>
<td>interface interface-id</td>
<td>Specifies the Layer 3 interface to be associated with the VRF, and enter interface configuration mode. The interface can be a routed port or an SVI.</td>
</tr>
<tr>
<td>9</td>
<td>ip vrf forwarding vrf-name</td>
<td>Associates the VRF with the Layer 3 interface.</td>
</tr>
<tr>
<td>10</td>
<td>ip address ip-address mask</td>
<td>Configures IP address for the Layer 3 interface.</td>
</tr>
<tr>
<td>11</td>
<td>ip pim sparse-dense mode</td>
<td>Enables PIM on the VRF-associated Layer 3 interface.</td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>13</td>
<td>show ip vrf [brief</td>
<td>detail</td>
</tr>
<tr>
<td>14</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

For more information about configuring a multicast within a Multi-VRF CE, see the *Cisco IOS IP Multicast Configuration Guide, Release 12.4*.
Configuring a VPN Routing Session

Routing within the VPN can be configured with any supported routing protocol (RIP, OSPF, EIGRP, or BGP) or with static routing. The configuration shown here is for OSPF, but the process is the same for other protocols.

Note

To configure an EIGRP routing process to run within a VRF instance, you must configure an autonomous-system number by entering the `autonomous-system autonomous-system-number` address-family configuration mode command.

Beginning in privileged EXEC mode, follow these steps to configure OSPF in the VPN:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router ospf process-id vrf vrf-name</td>
<td>Enables OSPF routing, specify a VPN forwarding table, and enters router configuration mode.</td>
</tr>
<tr>
<td>Step 3 log-adjacency-changes</td>
<td>(Optional) Logs changes in the adjacency state. This is the default state.</td>
</tr>
<tr>
<td>Step 4 redistribute bgp autonomous-system-number subnets</td>
<td>Sets the switch to redistribute information from the BGP network to the OSPF network.</td>
</tr>
<tr>
<td>Step 5 network network-number area area-id</td>
<td>Defines a network address and mask on which OSPF runs and the area ID for that network address.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show ip ospf process-id</td>
<td>Verifies the configuration of the OSPF network.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no router ospf process-id vrf vrf-name` global configuration command to disassociate the VPN forwarding table from the OSPF routing process.

Configuring BGP PE to CE Routing Sessions

Beginning in privileged EXEC mode, follow these steps to configure a BGP PE to CE routing session:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router bgp autonomous-system-number</td>
<td>Configures the BGP routing process with the AS number passed to other BGP routers, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3 network network-number mask network-mask</td>
<td>Specifies a network and mask to announce using BGP.</td>
</tr>
<tr>
<td>Step 4 redistribute ospf process-id match internal</td>
<td>Sets the switch to redistribute OSPF internal routes.</td>
</tr>
<tr>
<td>Step 5 network network-number area area-id</td>
<td>Defines a network address and mask on which OSPF runs and the area ID for that network address.</td>
</tr>
</tbody>
</table>
Use the `no router bgp autonomous-system-number` global configuration command to delete the BGP routing process. Use the command with keywords to delete routing characteristics.

Multi-VRF CE Configuration Example

Figure 1-7 is a simplified example of the physical connections in a network similar to that in Figure 1-6. OSPF is the protocol used in VPN1, VPN2, and the global network. BGP is used in the CE to PE connections. The examples following the illustration show how to configure a switch as CE Switch A, and the VRF configuration for customer switches D and F. Commands for configuring CE Switch C and the other customer switches are not included but would be similar. The example also includes commands for configuring traffic to Switch A for a Catalyst 6000 or Catalyst 6500 switch acting as a PE router.
Configuring Switch A

On Switch A, enable routing and configure VRF:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# ip vrf v11
Switch(config-vrf)# rd 800:1
Switch(config-vrf)# route-target export 800:1
Switch(config-vrf)# route-target import 800:1
Switch(config-vrf)# exit
Switch(config)# ip vrf v12
Switch(config-vrf)# rd 800:2
Switch(config-vrf)# route-target export 800:2
Switch(config-vrf)# route-target import 800:2
Switch(config-vrf)# exit
```

Configure the loopback and physical interfaces on Switch A. Gigabit Ethernet port 1 is a trunk connection to the PE. Gigabit Ethernet ports 8 and 11 connect to VPNs:

```
Switch(config)# interface loopback1
Switch(config-if)# ip vrf forwarding v11
Switch(config-if)# ip address 8.8.1.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface loopback2
Switch(config-if)# ip vrf forwarding v12
Switch(config-if)# ip address 8.8.2.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface gigabitethernet1/0/5
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# no ip address
Switch(config-if)# exit

Switch(config)# interface gigabitethernet1/0/8
Switch(config-if)# switchport access vlan 208
Switch(config-if)# no ip address
Switch(config-if)# exit

Switch(config)# interface gigabitethernet1/0/11
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# no ip address
Switch(config-if)# exit
```

Configure the VLANs used on Switch A. VLAN 10 is used by VRF 11 between the CE and the PE. VLAN 20 is used by VRF 12 between the CE and the PE. VLANs 118 and 208 are used for the VPNs that include Switch F and Switch D, respectively:

```
Switch(config)# interface vlan10
Switch(config-if)# ip vrf forwarding v11
Switch(config-if)# ip address 38.0.0.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface vlan20
Switch(config-if)# ip vrf forwarding v12
Switch(config-if)# ip address 83.0.0.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface vlan118
```
Switch(config-if)# ip vrf forwarding v12
Switch(config-if)# ip address 118.0.0.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface vlan208
Switch(config-if)# ip vrf forwarding v11
Switch(config-if)# ip address 208.0.0.8 255.255.255.0
Switch(config-if)# exit

Configure OSPF routing in VPN1 and VPN2.
Switch(config)# router ospf 1 vrf vl1
Switch(config-router)# redistribute bgp 800 subnets
Switch(config-router)# network 208.0.0.0 0.0.0.255 area 0
Switch(config-router)# exit
Switch(config)# router ospf 2 vrf vl2
Switch(config-router)# redistribute bgp 800 subnets
Switch(config-router)# network 118.0.0.0 0.0.0.255 area 0
Switch(config-router)# exit

Configure BGP for CE to PE routing.
Switch(config)# router bgp 800
Switch(config-router)# address-family ipv4 vrf vl2
Switch(config-router-af)# redistribute ospf 2 match internal
Switch(config-router-af)# neighbor 83.0.0.3 remote-as 100
Switch(config-router-af)# neighbor 83.0.0.3 activate
Switch(config-router-af)# network 8.8.2.0 mask 255.255.255.0
Switch(config-router-af)# exit
Switch(config-router-af)# address-family ipv4 vrf vl1
Switch(config-router-af)# redistribute ospf 1 match internal
Switch(config-router-af)# neighbor 38.0.0.3 remote-as 100
Switch(config-router-af)# neighbor 38.0.0.3 activate
Switch(config-router-af)# network 8.8.1.0 mask 255.255.255.0
Switch(config-router-af)# end

Configuring Switch D

Switch D belongs to VPN 1. Configure the connection to Switch A by using these commands.
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 208.0.0.20 255.255.255.0
Switch(config-if)# exit

Switch(config)# router ospf 101
Switch(config-router)# network 208.0.0.0 0.0.0.255 area 0
Switch(config-router)# end

Configuring Switch F

Switch F belongs to VPN 2. Configure the connection to Switch A by using these commands.
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# no ip address
Configuring Multi-VRF CE

When used on switch B (the PE router), these commands configure only the connections to the CE device, Switch A.

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip vrf v1
Router(config-vrf)# rd 100:1
Router(config-vrf)# route-target export 100:1
Router(config-vrf)# route-target import 100:1
Router(config-vrf)# exit

Router(config)# ip vrf v2
Router(config-vrf)# rd 100:2
Router(config-vrf)# route-target export 100:2
Router(config-vrf)# route-target import 100:2
Router(config-vrf)# exit

Router(config)# ip cef
Router(config)# interface Loopback1
Router(config-if)# ip vrf forwarding v1
Router(config-if)# ip address 3.3.1.3 255.255.255.0
Router(config-if)# exit

Router(config)# interface Loopback2
Router(config-if)# ip vrf forwarding v2
Router(config-if)# ip address 3.3.2.3 255.255.255.0
Router(config-if)# exit

Router(config)# interface gigabitethernet1/1/0.10
Router(config-if)# encapsulation dot1q 10
Router(config-if)# ip vrf forwarding v1
Router(config-if)# ip address 38.0.0.3 255.255.255.0
Router(config-if)# exit

Router(config)# interface gigabitethernet1/1/0.20
Router(config-if)# encapsulation dot1q 20
Router(config-if)# ip vrf forwarding v2
Router(config-if)# ip address 83.0.0.3 255.255.255.0
Router(config-if)# exit

Router(config)# router bgp 100
Router(config-router)# address-family ipv4 vrf v2
Router(config-router-af)# neighbor 83.0.0.8 remote-as 800
Router(config-router-af)# neighbor 83.0.0.8 activate
Router(config-router-af)# network 3.3.2.0 mask 255.255.255.0
Router(config-router-af)# exit
Router(config-router)# address-family ipv4 vrf v1
Router(config-router-af)# neighbor 38.0.0.8 remote-as 800
Router(config-router-af)# neighbor 38.0.0.8 activate
Router(config-router-af)# network 3.3.1.0 mask 255.255.255.0
Router(config-router-af)# exit

Configuring the PE Switch B

When used on switch B (the PE router), these commands configure only the connections to the CE device, Switch A.
Displaying Multi-VRF CE Status

Table 1-15 Commands for Displaying Multi-VRF CE Information

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip protocols vrf vrf-name</td>
<td>Displays routing protocol information associated with a VRF.</td>
</tr>
<tr>
<td>show ip route vrf vrf-name [connected] [protocol [as-number]] [list] [mobile] [odr] [profile] [static] [summary] [supernets-only]</td>
<td>Displays IP routing table information associated with a VRF.</td>
</tr>
<tr>
<td>show ip vrf [brief</td>
<td>detail</td>
</tr>
</tbody>
</table>

For more information about the information in the displays, see the *Cisco IOS Switching Services Command Reference, Release 12.4*.

Configuring Unicast Reverse Path Forwarding

The unicast reverse path forwarding (unicast RPF) feature helps to mitigate problems that are caused by the introduction of malformed or forged (spoofed) IP source addresses into a network by discarding IP packets that lack a verifiable IP source address. For example, a number of common types of denial-of-service (DoS) attacks, including Smurf and Tribal Flood Network (TFN), can take advantage of forged or rapidly changing source IP addresses to allow attackers to thwart efforts to locate or filter the attacks. For Internet service providers (ISPs) that provide public access, Unicast RPF deflects such attacks by forwarding only packets that have source addresses that are valid and consistent with the IP routing table. This action protects the network of the ISP, its customer, and the rest of the Internet.

Note

Do not configure unicast RPF if the switch is in a mixed hardware stack combining more than one switch type: Catalyst 3750-X, Catalyst 3750-E, and Catalyst 3750 switches.

For detailed IP unicast RPF configuration information, see the *Other Security Features* chapter in the *Cisco IOS Security Configuration Guide, Release 12.4*.

Configuring Protocol-Independent Features

This section describes how to configure IP routing protocol-independent features. These features are available on switches running the IP base or the IP services feature set; except that with the IP base feature set, protocol-related features are available only for RIP. For a complete description of the IP routing protocol-independent commands in this chapter, see the “IP Routing Protocol-Independent Commands” chapter of the *Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.4*.

- Configuring Distributed Cisco Express Forwarding, page 1-92
- Configuring the Number of Equal-Cost Routing Paths, page 1-93
- Configuring Static Unicast Routes, page 1-94
- Specifying Default Routes and Networks, page 1-95
Cisco Express Forwarding (CEF) is a Layer 3 IP switching technology used to optimize network performance. CEF implements an advanced IP look-up and forwarding algorithm to deliver maximum Layer 3 switching performance. CEF is less CPU-intensive than fast switching route caching, allowing more CPU processing power to be dedicated to packet forwarding. In a switch stack, the hardware uses distributed CEF (dCEF) in the stack. In dynamic networks, fast switching cache entries are frequently invalidated because of routing changes, which can cause traffic to be process switched using the routing table, instead of fast switched using the route cache. CEF and dCEF use the Forwarding Information Base (FIB) lookup table to perform destination-based switching of IP packets.

The two main components in CEF and dCEF are the distributed FIB and the distributed adjacency tables.

- The FIB is similar to a routing table or information base and maintains a mirror image of the forwarding information in the IP routing table. When routing or topology changes occur in the network, the IP routing table is updated, and those changes are reflected in the FIB. The FIB maintains next-hop address information based on the information in the IP routing table. Because the FIB contains all known routes that exist in the routing table, CEF eliminates route cache maintenance, is more efficient for switching traffic, and is not affected by traffic patterns.

- Nodes in the network are said to be adjacent if they can reach each other with a single hop across a link layer. CEF uses adjacency tables to prepend Layer 2 addressing information. The adjacency table maintains Layer 2 next-hop addresses for all FIB entries.

Because the switch or switch stack uses Application Specific Integrated Circuits (ASICs) to achieve Gigabit-speed line rate IP traffic, CEF or dCEF forwarding applies only to the software-forwarding path, that is, traffic that is forwarded by the CPU.

CEF or distributed CEF is enabled globally by default. If for some reason it is disabled, you can re-enable it by using the `ip cef` or `ip cef distributed` global configuration command.

The default configuration is CEF or dCEF enabled on all Layer 3 interfaces. Entering the `no ip route-cache cef` interface configuration command disables CEF for traffic that is being forwarded by software. This command does not affect the hardware forwarding path. Disabling CEF and using the `debug ip packet detail` privileged EXEC command can be useful to debug software-forwarded traffic. To enable CEF on an interface for the software-forwarding path, use the `ip route-cache cef` interface configuration command.

Caution

Although the `no ip route-cache cef` interface configuration command to disable CEF on an interface is visible in the CLI, we strongly recommend that you do not disable CEF or dCEF on interfaces except for debugging purposes.

Beginning in privileged EXEC mode, follow these steps to enable CEF or dCEF globally and on an interface for software-forwarded traffic if it has been disabled:
Configuring the Number of Equal-Cost Routing Paths

When a router has two or more routes to the same network with the same metrics, these routes can be thought of as having an equal cost. The term *parallel path* is another way to see occurrences of equal-cost routes in a routing table. If a router has two or more equal-cost paths to a network, it can use them concurrently. Parallel paths provide redundancy in case of a circuit failure and also enable a router to load balance packets over the available paths for more efficient use of available bandwidth. Equal-cost routes are supported across switches in a stack.

Even though the router automatically learns about and configures equal-cost routes, you can control the maximum number of parallel paths supported by an IP routing protocol in its routing table. Although the switch software allows a maximum of 32 equal-cost routes, the switch hardware will never use more than 16 paths per route.

Beginning in privileged EXEC mode, follow these steps to change the maximum number of parallel paths installed in a routing table from the default:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>router {bgp</td>
<td>rip</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IP Unicast Routing

Configuring Protocol-Independent Features

Use the `no maximum-paths` router configuration command to restore the default value.

Configuring Static Unicast Routes

Static unicast routes are user-defined routes that cause packets moving between a source and a destination to take a specified path. Static routes can be important if the router cannot build a route to a particular destination and are useful for specifying a gateway of last resort to which all unroutable packets are sent.

Starting with Cisco IOS Release 12.2(58)SE, switches running the LAN base image support 16 user-configured static routes on SVIs. Static routing configuration is supported on the LAN base image only with the default SDM template and only on SVI interfaces. No routing protocols are supported.

Beginning in privileged EXEC mode, follow these steps to configure a static route:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip route <code>prefix mask </code> <code>address</code> <code>interface</code> <code>distance</code></td>
<td>Establishes a static route.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show ip route</td>
<td>Displays the current state of the routing table to verify the configuration.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no ip route prefix mask ` `address` `interface` global configuration command to remove a static route.

The switch retains static routes until you remove them. However, you can override static routes with dynamic routing information by assigning administrative distance values. Each dynamic routing protocol has a default administrative distance, as listed in Table 1-16. If you want a static route to be overridden by information from a dynamic routing protocol, set the administrative distance of the static route higher than that of the dynamic protocol.

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Default Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected interface</td>
<td>0</td>
</tr>
<tr>
<td>Static route</td>
<td>1</td>
</tr>
<tr>
<td>Enhanced IRGP summary route</td>
<td>5</td>
</tr>
<tr>
<td>External BGP</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 1-16 Dynamic Routing Protocol Default Administrative Distances
Chapter 1 Configuring IP Unicast Routing

Configuring Protocol-Independent Features

Table 1-16 Dynamic Routing Protocol Default Administrative Distances (continued)

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Default Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Enhanced IGRP</td>
<td>90</td>
</tr>
<tr>
<td>IGRP</td>
<td>100</td>
</tr>
<tr>
<td>OSPF</td>
<td>110</td>
</tr>
<tr>
<td>Internal BGP</td>
<td>200</td>
</tr>
<tr>
<td>Unknown</td>
<td>225</td>
</tr>
</tbody>
</table>

Static routes that point to an interface are advertised through RIP, IGRP, and other dynamic routing protocols, whether or not static `redistribute` router configuration commands were specified for those routing protocols. These static routes are advertised because static routes that point to an interface are considered in the routing table to be connected and hence lose their static nature. However, if you define a static route to an interface that is not one of the networks defined in a network command, no dynamic routing protocols advertise the route unless a `redistribute` static command is specified for these protocols.

When an interface goes down, all static routes through that interface are removed from the IP routing table. When the software can no longer find a valid next hop for the address specified as the forwarding router’s address in a static route, the static route is also removed from the IP routing table.

Specifying Default Routes and Networks

A router might not be able to learn the routes to all other networks. To provide complete routing capability, you can use some routers as smart routers and give the remaining routers default routes to the smart router. (Smart routers have routing table information for the entire internetwork.) These default routes can be dynamically learned or can be configured in the individual routers. Most dynamic interior routing protocols include a mechanism for causing a smart router to generate dynamic default information that is then forwarded to other routers.

If a router has a directly connected interface to the specified default network, the dynamic routing protocols running on that device generate a default route. In RIP, it advertises the pseudonetwork 0.0.0.0.

A router that is generating the default for a network also might need a default of its own. One way a router can generate its own default is to specify a static route to the network 0.0.0.0 through the appropriate device.

Beginning in privileged EXEC mode, follow these steps to define a static route to a network as the static default route:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip default-network <code>network number</code></td>
<td>Specifies a default network.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show ip route</td>
<td>Displays the selected default route in the gateway of last resort display.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no ip default-network `network number` global configuration command to remove the route.
When default information is passed through a dynamic routing protocol, no further configuration is required. The system periodically scans its routing table to choose the optimal default network as its default route. In IGRP networks, there might be several candidate networks for the system default. Cisco routers use administrative distance and metric information to set the default route or the gateway of last resort.

If dynamic default information is not being passed to the system, candidates for the default route are specified with the `ip default-network` global configuration command. If this network appears in the routing table from any source, it is flagged as a possible choice for the default route. If the router has no interface on the default network, but does have a path to it, the network is considered as a possible candidate, and the gateway to the best default path becomes the gateway of last resort.

Using Route Maps to Redistribute Routing Information

The switch can run multiple routing protocols simultaneously, and it can redistribute information from one routing protocol to another. Redistributing information from one routing protocol to another applies to all supported IP-based routing protocols.

You can also conditionally control the redistribution of routes between routing domains by defining enhanced packet filters or route maps between the two domains. The `match` and `set` route-map configuration commands define the condition portion of a route map. The `match` command specifies that a criterion must be matched. The `set` command specifies an action to be taken if the routing update meets the conditions defined by the match command. Although redistribution is a protocol-independent feature, some of the `match` and `set` route-map configuration commands are specific to a particular protocol.

One or more `match` commands and one or more `set` commands follow a `route-map` command. If there are no `match` commands, everything matches. If there are no `set` commands, nothing is done, other than the match. Therefore, you need at least one `match` or `set` command.

Note

A route map with no `set` route-map configuration commands is sent to the CPU, which could cause high CPU utilization.

You can also identify route-map statements as `permit` or `deny`. If the statement is marked as a deny, the packets meeting the match criteria are sent back through the normal forwarding channels (destination-based routing). If the statement is marked as permit, set clauses are applied to packets meeting the match criteria. Packets that do not meet the match criteria are forwarded through the normal routing channel.

You can use the BGP route map `continue` clause to execute additional entries in a route map after an entry is executed with successful match and set clauses. You can use the `continue` clause to configure and organize more modular policy definitions so that specific policy configurations need not be repeated within the same route map. Beginning in Cisco IOS Release 12.2(37)SE, the switch supports the `continue` clause for outbound policies. For more information about using the route map `continue` clause, see the BGP Route-Map Continue Support for an Outbound Policy feature guide for Cisco IOS Release 12.4(4)T.

Although each of Steps 3 through 14 in the following section is optional, you must enter at least one `match` route-map configuration command and one `set` route-map configuration command.
Beginning in privileged EXEC mode, follow these steps to configure a route map for redistribution:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>route-map map-tag [permit</td>
<td>deny] [sequence number]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>map-tag—A meaningful name for the route map. The redistribute router configuration command uses this name to reference this route map. Multiple route maps might share the same map tag name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) If permit is specified and the match criteria are met for this route map, the route is redistributed as controlled by the set actions. If deny is specified, the route is not redistributed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sequence number (Optional)— Number that indicates the position a new route map is to have in the list of route maps already configured with the same name.</td>
</tr>
<tr>
<td>3</td>
<td>match as-path path-list-number</td>
<td>Matches a BGP AS path access list.</td>
</tr>
<tr>
<td>4</td>
<td>match community-list community-list-number [exact]</td>
<td>Matches a BGP community list.</td>
</tr>
<tr>
<td>5</td>
<td>match ip address {access-list-number</td>
<td>access-list-name} [...access-list-number</td>
</tr>
<tr>
<td>6</td>
<td>match metric metric-value</td>
<td>Matches the specified route metric. The metric-value can be an EIGRP metric with a specified value from 0 to 4294967295.</td>
</tr>
<tr>
<td>7</td>
<td>match ip next-hop {access-list-number</td>
<td>access-list-name} [...access-list-number</td>
</tr>
<tr>
<td>8</td>
<td>match tag tag value [...tag-value]</td>
<td>Matches the specified tag value in a list of one or more route tag values. Each can be an integer from 0 to 4294967295.</td>
</tr>
<tr>
<td>9</td>
<td>match interface type number [...type number]</td>
<td>Matches the specified next hop route out one of the specified interfaces.</td>
</tr>
<tr>
<td>10</td>
<td>match ip route-source {access-list-number</td>
<td>access-list-name} [...access-list-number</td>
</tr>
<tr>
<td>11</td>
<td>match route-type {local</td>
<td>internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>local—Locally generated BGP routes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>internal—OSPF intra-area and interarea routes or EIGRP internal routes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>external—OSPF external routes (Type 1 or Type 2) or EIGRP external routes.</td>
</tr>
<tr>
<td>12</td>
<td>set dampening half-life reuse suppress max-suppress-time</td>
<td>Sets BGP route dampening factors.</td>
</tr>
<tr>
<td>13</td>
<td>set local-preference value</td>
<td>Assigns a value to a local BGP path.</td>
</tr>
<tr>
<td>14</td>
<td>set origin {igp</td>
<td>egp as</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IP Unicast Routing

Configuring Protocol-Independent Features

To delete an entry, use the `no route-map map tag` global configuration command or the `no match` or `no set` route-map configuration commands.

You can distribute routes from one routing domain into another and control route distribution.

Beginning in privileged EXEC mode, follow these steps to control route redistribution. Note that the keywords are the same as defined in the previous procedure.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>`router [bgp</td>
<td>rip</td>
</tr>
</tbody>
</table>
To disable redistribution, use the no form of the commands.

The metrics of one routing protocol do not necessarily translate into the metrics of another. For example, the RIP metric is a hop count, and the IGRP metric is a combination of five qualities. In these situations, an artificial metric is assigned to the redistributed route. Uncontrolled exchanging of routing information between different routing protocols can create routing loops and seriously degrade network operation.

If you have not defined a default redistribution metric that replaces metric conversion, some automatic metric translations occur between routing protocols:

- RIP can automatically redistribute static routes. It assigns static routes a metric of 1 (directly connected).
- Any protocol can redistribute other routing protocols if a default mode is in effect.

Configuring Policy-Based Routing

You can use policy-based routing (PBR) to configure a defined policy for traffic flows. By using PBR, you can have more control over routing by reducing the reliance on routes derived from routing protocols. PBR can specify and implement routing policies that allow or deny paths based on:

- Identity of a particular end system
- Application
- Protocol

You can use PBR to provide equal-access and source-sensitive routing, routing based on interactive versus batch traffic, or routing based on dedicated links. For example, you could transfer stock records to a corporate office on a high-bandwidth, high-cost link for a short time while transmitting routine application data such as e-mail over a low-bandwidth, low-cost link.
With PBR, you classify traffic using access control lists (ACLs) and then make traffic go through a different path. PBR is applied to incoming packets. All packets received on an interface with PBR enabled are passed through route maps. Based on the criteria defined in the route maps, packets are forwarded (routed) to the appropriate next hop.

- If packets do not match any route map statements, all set clauses are applied.
- If a statement is marked as permit and the packets do not match any route-map statements, the packets are sent through the normal forwarding channels, and destination-based routing is performed.
- For PBR, route-map statements marked as deny are not supported.

For more information about configuring route maps, see the “Using Route Maps to Redistribute Routing Information” section on page 1-96.

You can use standard IP ACLs to specify match criteria for a source address or extended IP ACLs to specify match criteria based on an application, a protocol type, or an end station. The process proceeds through the route map until a match is found. If no match is found, normal destination-based routing occurs. There is an implicit deny at the end of the list of match statements.

If match clauses are satisfied, you can use a set clause to specify the IP addresses identifying the next hop router in the path.

For details about PBR commands and keywords, see the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.4. For a list of PBR commands that are visible but not supported by the switch, see Appendix 1, “Unsupported Commands in Cisco IOS Release 15.2(1)E.”

PBR configuration is applied to the whole stack, and all switches use the stack master configuration.

Note
This software release does not support Policy-Based Routing (PBR) when processing IPv4 and IPv6 traffic.

PBR Configuration Guidelines

- To use PBR, you must have the IP services feature set enabled on the switch or stack master.
- Multicast traffic is not policy-routed. PBR applies to only to unicast traffic.
- You can enable PBR on a routed port or an SVI.
- The switch does not support route-map deny statements for PBR.
- You can apply a policy route map to an EtherChannel port channel in Layer 3 mode, but you cannot apply a policy route map to a physical interface that is a member of the EtherChannel. If you try to do so, the command is rejected. When a policy route map is applied to a physical interface, that interface cannot become a member of an EtherChannel.
- You can define a maximum of 246 IP policy route maps on the switch or switch stack.
- You can define a maximum of 512 access control entries (ACEs) for PBR on the switch or switch stack.
- When configuring match criteria in a route map, follow these guidelines:
 - Do not match ACLs that permit packets destined for a local address. PBR would forward these packets, which could cause ping or Telnet failure or route protocol flapping.
 - Do not match ACLs with deny ACEs. Packets that match a deny ACE are sent to the CPU, which could cause high CPU utilization.
To use PBR, you must first enable the routing template by using the `sdm prefer routing` global configuration command. PBR is not supported with the VLAN or default template. For more information on the SDM templates, see Chapter 1, “Configuring SDM Templates.”

VRF and PBR are mutually exclusive on a switch interface. You cannot enable VRF when PBR is enabled on an interface. The reverse is also true, you cannot enable PBR when VRF is enabled on an interface.

Web Cache Communication Protocol (WCCP) and PBR are mutually exclusive on a switch interface. You cannot enable WCCP when PBR is enabled on an interface. The reverse is also true, you cannot enable PBR when WCCP is enabled on an interface.

The number of hardware entries used by PBR depends on the route map itself, the ACLs used, and the order of the ACLs and route-map entries.

Policy-based routing based on packet length, TOS, set interface, set default next hop, or set default interface are not supported. Policy maps with no valid set actions or with set action set to `Don’t Fragment` are not supported.

`ip next-hop recursive` and `ip next-hop verify availability` features are not available and the next-hop should be directly connected.

The switch supports QoS DSCP and IP precedence matching in PBR route maps, with these limitations:

- You cannot apply QoS DSCP mutation maps and PBR route maps to the same interface.
- You cannot configure DSCP transparency and PBR DSCP route maps on the same switch.
- When you configure PBR with QoS DSCP, you can set QoS to be enabled (by entering the `mls qos` global configuration command) or disabled (by entering the `no mls qos` command). When QoS is enabled, to ensure that the DSCP value of the traffic is unchanged, you should configure DSCP trust state on the port where traffic enters the switch by entering the `mls qos trust dscp` interface configuration command. If the trust state is not DSCP, by default all nontrusted traffic would have the DSCP value marked as 0.

Enabling PBR

By default, PBR is disabled on the switch. To enable PBR, you must create a route map that specifies the match criteria and the resulting action if all of the match clauses are met. Then, you must enable PBR for that route map on an interface. All packets arriving on the specified interface matching the match clauses are subject to PBR.

PBR can be fast-switched or implemented at speeds that do not slow down the switch. Fast-switched PBR supports most match and set commands. PBR must be enabled before you enable fast-switched PBR. Fast-switched PBR is disabled by default.

Packets that are generated by the switch, or local packets, are not normally policy-routed. When you globally enable local PBR on the switch, all packets that originate on the switch are subject to local PBR. Local PBR is disabled by default.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>To enable PBR, the switch or stack master must be running the IP services feature set.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to configure PBR:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Defines any route maps used to control where packets are output, and enter route-map configuration mode.</td>
</tr>
<tr>
<td>route-map map-tag [permit] [sequence number]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• map-tag—A meaningful name for the route map. The <code>ip policy route-map</code> interface configuration command uses this name to reference the route map. Multiple route maps might share the same map tag name.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) If <code>permit</code> is specified and the match criteria are met for this route map, the route is policy-routed as controlled by the set actions.</td>
</tr>
<tr>
<td></td>
<td>Note The <code>route-map deny</code> statement is not supported in PBR route maps to be applied to an interface.</td>
</tr>
<tr>
<td></td>
<td>• <code>sequence number</code> (Optional)— Number that shows the position of a new route map in the list of route maps already configured with the same name.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Matches the source and destination IP address that is permitted by one or more standard or extended access lists.</td>
</tr>
<tr>
<td>match ip address {access-list-number</td>
<td>access-list-name} [...access-list-number</td>
</tr>
<tr>
<td></td>
<td>If you do not specify a <code>match</code> command, the route map applies to all packets.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies the action to take on the packets that match the criteria. Set next hop to which to route the packet (the next hop must be adjacent).</td>
</tr>
<tr>
<td>set ip next-hop ip-address [...ip-address]</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Enters interface configuration mode, and specify the interface to configure.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Enables PBR on a Layer 3 interface, and identify the route map to use. You can configure only one route map on an interface. However, you can have multiple route map entries with different sequence numbers. These entries are evaluated in sequence number order until the first match. If there is no match, packets are routed as usual.</td>
</tr>
<tr>
<td>ip policy route-map map-tag</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>(Optional) Enables fast-switching PBR. You must first enable PBR before enabling fast-switching PBR.</td>
</tr>
<tr>
<td>ip route-cache policy</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>(Optional) Enables local PBR to perform policy-based routing on packets originating at the switch. This applies to packets generated by the switch and not to incoming packets.</td>
</tr>
<tr>
<td>ip local policy route-map map-tag</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IP Unicast Routing

Configuring Protocol-Independent Features

Filtering Routing Information

You can filter routing protocol information by performing the tasks described in this section.

Note When routes are redistributed between OSPF processes, no OSPF metrics are preserved.

Setting Passive Interfaces

To prevent other routers on a local network from dynamically learning about routes, you can use the `passive-interface` router configuration command to keep routing update messages from being sent through a router interface. When you use this command in the OSPF protocol, the interface address you specify as passive appears as a stub network in the OSPF domain. OSPF routing information is neither sent nor received through the specified router interface.

In networks with many interfaces, to avoid having to manually set them as passive, you can set all interfaces to be passive by default by using the `passive-interface default` router configuration command and manually setting interfaces where adjacencies are desired.

Beginning in privileged EXEC mode, follow these steps to configure passive interfaces:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router {bgp</td>
</tr>
<tr>
<td>Step 3</td>
<td>passive-interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>passive-interface default</td>
</tr>
<tr>
<td>Step 5</td>
<td>no passive-interface interface type</td>
</tr>
<tr>
<td>Step 6</td>
<td>network network-address</td>
</tr>
</tbody>
</table>
Controlling Advertising and Processing in Routing Updates

You can use the `distribute-list` router configuration command with access control lists to suppress routes from being advertised in routing updates and to prevent other routers from learning one or more routes. When used in OSPF, this feature applies to only external routes, and you cannot specify an interface name.

You can also use a `distribute-list` router configuration command to avoid processing certain routes listed in incoming updates. (This feature does not apply to OSPF.)

Beginning in privileged EXEC mode, follow these steps to control the advertising or processing of routing updates:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>`router {bgp</td>
<td>rip</td>
</tr>
<tr>
<td>`distribute-list {access-list-number</td>
<td>access-list-name} out [interface-name</td>
</tr>
<tr>
<td>`distribute-list {access-list-number</td>
<td>access-list-name} in [type-number]`</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no distribute-list in` router configuration command to change or cancel a filter. To cancel suppression of network advertisements in updates, use the `no distribute-list out` router configuration command.

Filtering Sources of Routing Information

Because some routing information might be more accurate than others, you can use filtering to prioritize information coming from different sources. An administrative distance is a rating of the trustworthiness of a routing information source, such as a router or group of routers. In a large network, some routing protocols can be more reliable than others. By specifying administrative distance values, you enable the router to intelligently discriminate between sources of routing information. The router always picks the

Use a network monitoring privileged EXEC command such as `show ip ospf interface` to verify the interfaces that you enabled as passive, or use the `show ip interface` privileged EXEC command to verify the interfaces that you enabled as active.

To re-enable the sending of routing updates, use the `no passive-interface interface-id` router configuration command. The `default` keyword sets all interfaces as passive by default. You can then configure individual interfaces where you want adjacencies by using the `no passive-interface` router configuration command. The `default` keyword is useful in Internet service provider and large enterprise networks where many of the distribution routers have more than 200 interfaces.
route whose routing protocol has the lowest administrative distance. Table 1-16 on page 1-94 shows the default administrative distances for various routing information sources.

Because each network has its own requirements, there are no general guidelines for assigning administrative distances.

Beginning in privileged EXEC mode, follow these steps to filter sources of routing information:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>router {bgp</td>
<td>rip</td>
</tr>
</tbody>
</table>
| 3 | distance weight {ip-address {ip-address mask}} [ip access list] | Defines an administrative distance.
weight—The administrative distance as an integer from 10 to 255. Used alone, weight specifies a default administrative distance that is used when no other specification exists for a routing information source. Routes with a distance of 255 are not installed in the routing table.
(Optional) ip access list—An IP standard or extended access list to be applied to incoming routing updates. |
| 4 | end | Returns to privileged EXEC mode. |
| 5 | show ip protocols | Displays the default administrative distance for a specified routing process. |
| 6 | copy running-config startup-config | (Optional) Saves your entries in the configuration file. |

To remove a distance definition, use the **no distance** router configuration command.

Managing Authentication Keys

Key management is a method of controlling authentication keys used by routing protocols. Not all protocols can use key management. Authentication keys are available for EIGRP and RIP Version 2.

Before you manage authentication keys, you must enable authentication. See the appropriate protocol section to see how to enable authentication for that protocol. To manage authentication keys, define a key chain, identify the keys that belong to the key chain, and specify how long each key is valid. Each key has its own key identifier (specified with the **key number** key chain configuration command), which is stored locally. The combination of the key identifier and the interface associated with the message uniquely identifies the authentication algorithm and Message Digest 5 (MD5) authentication key in use.

You can configure multiple keys with life times. Only one authentication packet is sent, regardless of how many valid keys exist. The software examines the key numbers in order from lowest to highest, and uses the first valid key it encounters. The lifetimes allow for overlap during key changes. Note that the router must know these lifetimes.
Beginning in privileged EXEC mode, follow these steps to manage authentication keys:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>key chain name-of-chain</td>
<td>Identifies a key chain, and enter key chain configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>key number</td>
<td>Identifies the key number. The range is 0 to 2147483647.</td>
</tr>
<tr>
<td>Step 4</td>
<td>key-string text</td>
<td>Identifies the key string. The string can contain from 1 to 80 uppercase and lowercase alphanumeric characters, but the first character cannot be a number.</td>
</tr>
<tr>
<td>Step 5</td>
<td>accept-lifetime start-time {infinite \ end-time \ duration seconds}</td>
<td>(Optional) Specifies the time period during which the key can be received. The start-time and end-time syntax can be either hh:mm:ss Month date year or hh:mm:ss date Month year. The default is forever with the default start-time and the earliest acceptable date as January 1, 1993. The default end-time and duration is infinite.</td>
</tr>
<tr>
<td>Step 6</td>
<td>send-lifetime start-time {infinite \ end-time \ duration seconds}</td>
<td>(Optional) Specifies the time period during which the key can be sent. The start-time and end-time syntax can be either hh:mm:ss Month date year or hh:mm:ss date Month year. The default is forever with the default start-time and the earliest acceptable date as January 1, 1993. The default end-time and duration is infinite.</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>show key chain</td>
<td>Displays authentication key information.</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the key chain, use the **no key chain name-of-chain** global configuration command.

Monitoring and Maintaining the IP Network

You can remove all contents of a particular cache, table, or database. You can also display specific statistics. Use the privileged EXEC commands in Table 1-17 to clear routes or display status:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip route *</td>
<td>Clears one or more routes from the IP routing table.</td>
</tr>
<tr>
<td>show ip protocols</td>
<td>Displays the parameters and state of the active routing protocol process.</td>
</tr>
<tr>
<td>show ip route *</td>
<td>Displays the current state of the routing table.</td>
</tr>
</tbody>
</table>

Table 1-17 - Commands to Clear IP Routes or Display Route Status
Table 1-17 Commands to Clear IP Routes or Display Route Status (continued)

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip route summary</code></td>
<td>Displays the current state of the routing table in summary form.</td>
</tr>
<tr>
<td><code>show ip route supernets-only</code></td>
<td>Displays supernets.</td>
</tr>
<tr>
<td><code>show ip cache</code></td>
<td>Displays the routing table used to switch IP traffic.</td>
</tr>
<tr>
<td><code>show route-map [map-name]</code></td>
<td>Displays all route maps configured or only the one specified.</td>
</tr>
</tbody>
</table>
CHAPTER 1

Configuring IPv6 Unicast Routing

This chapter describes how to configure IPv6 unicast routing on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch.

For information about configuring IPv4 unicast routing, see Chapter 1, “Configuring IP Unicast Routing.” For information about configuring IPv6 Multicast Listener Discovery (MLD) snooping, see Chapter 1, “Configuring IPv6 MLD Snooping.” For information on configuring IPv6 access control lists (ACLs) see Chapter 1, “Configuring IPv6 ACLs.”

Note
To use all IPv6 features in this chapter, the switch or stack master must be running the IP services feature set. Switches running the IP base feature set support only IPv6 static routing and RIP for IPv6. Switches running the LAN base feature set support only IPv6 host functionality.

Unless otherwise noted, the term switch refers to a 3750-X or 3560-X standalone switch and to a Catalyst 3750-X switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS documentation referenced in the procedures.

This chapter consists of these sections:

- Understanding IPv6, page 1-1
- Configuring IPv6, page 1-17
- Configuring Multi-VRF CE, page 1-41
- Displaying IPv6, page 1-49

Understanding IPv6

IPv4 users can move to IPv6 and receive services such as end-to-end security, quality of service (QoS), and globally unique addresses. The IPv6 address space reduces the need for private addresses and Network Address Translation (NAT) processing by border routers at network edges.

For information about how Cisco Systems implements IPv6, go to:

For information about IPv6 and other features in this chapter
- See the Cisco IOS IPv6 Configuration Library.
• Use the Search field on Cisco.com to locate the Cisco IOS software documentation. For example, if you want information about static routes, you can enter Implementing Static Routes for IPv6 in the search field to learn about static routes.

This section describes IPv6 implementation on the switch. These sections are included:

- IPv6 Addresses, page 1-2
- Supported IPv6 Unicast Routing Features, page 1-2
- Unsupported IPv6 Unicast Routing Features, page 1-15
- Limitations, page 1-15
- IPv6 and Switch Stacks, page 1-16

IPv6 Addresses

The switch supports only IPv6 unicast addresses. It does not support site-local unicast addresses, anycast addresses, or multicast addresses.

The IPv6 128-bit addresses are represented as a series of eight 16-bit hexadecimal fields separated by colons in the format: n:n:n:n:n:n:n:n. This is an example of an IPv6 address:

2031:0000:130F:0000:09C0:080F:130B

For easier implementation, leading zeros in each field are optional. This is the same address without leading zeros:

2031:0:130F:0:0:9C0:80F:130B

You can also use two colons (::) to represent successive hexadecimal fields of zeros, but you can use this short version only once in each address:

2031:0:130F::09C0:080F:130B

For more information about IPv6 address formats, address types, and the IPv6 packet header, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter of Cisco IOS IPv6 Configuration Library on Cisco.com.

In the “Information About Implementing Basic Connectivity for IPv6” chapter, these sections apply to the switch:

- IPv6 Address Formats
- IPv6 Address Type: Unicast
- IPv6 Address Output Display
- Simplified IPv6 Packet Header

Supported IPv6 Unicast Routing Features

These sections describe the IPv6 protocol features supported by the switch:

- 128-Bit Wide Unicast Addresses, page 1-3
- DNS for IPv6, page 1-4
- Path MTU Discovery for IPv6 Unicast, page 1-4
- ICMPv6, page 1-4
- Neighbor Discovery, page 1-4
• First Hop Security in IPv6, page 1-4
• Default Router Preference, page 1-10
• IPv6 Stateless Autoconfiguration and Duplicate Address Detection, page 1-10
• IPv6 Applications, page 1-11
• Dual IPv4 and IPv6 Protocol Stacks, page 1-11
• DHCP for IPv6 Address Assignment, page 1-12
• Static Routes for IPv6, page 1-12
• RIP for IPv6, page 1-12
• OSPF for IPv6, page 1-13
• OSPFv3 Graceful Restart, page 1-13
• Fast Convergence: LSA and SPF Throttling, page 1-13
• Authentication Support with IPsec, page 1-13
• EIGRP IPv6, page 1-14
• HSRP for IPv6, page 1-14
• SNMP and Syslog Over IPv6, page 1-14
• HTTP(S) Over IPv6, page 1-15

Support on the switch includes expanded address capability, header format simplification, improved support of extensions and options, and hardware parsing of the extension header. The switch supports hop-by-hop extension header packets, which are routed or bridged in software.

The switch provides IPv6 routing capability over native Ethernet Inter-Switch Link (ISL) or 802.1Q trunk ports for static routes, Routing Information Protocol (RIP) for IPv6, and Open Shortest Path First (OSPF) Version 3 Protocol. It supports up to 16 equal-cost routes and can simultaneously forward IPv4 and IPv6 frames at line rate.

128-Bit Wide Unicast Addresses

The switch supports aggregatable global unicast addresses and link-local unicast addresses. It does not support site-local unicast addresses.

• Aggregatable global unicast addresses are IPv6 addresses from the aggregatable global unicast prefix. The address structure enables strict aggregation of routing prefixes and limits the number of routing table entries in the global routing table. These addresses are used on links that are aggregated through organizations and eventually to the Internet service provider.

These addresses are defined by a global routing prefix, a subnet ID, and an interface ID. Current global unicast address allocation uses the range of addresses that start with binary value 001 (2000::/3). Addresses with a prefix of 2000::/3(001) through E000::/3(111) must have 64-bit interface identifiers in the extended unique identifier (EUI)-64 format.

• Link local unicast addresses can be automatically configured on any interface by using the link-local prefix FE80::/10(1111 1110 10) and the interface identifier in the modified EUI format. Link-local addresses are used in the neighbor discovery protocol (NDP) and the stateless autoconfiguration process. Nodes on a local link use link-local addresses and do not require globally unique addresses to communicate. IPv6 routers do not forward packets with link-local source or destination addresses to other links.

For more information, see the section about IPv6 unicast addresses in the “Implementing IPv6 Addressing and Basic Connectivity” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.
DNS for IPv6

IPv6 supports Domain Name System (DNS) record types in the DNS name-to-address and address-to-name lookup processes. The DNS AAAA resource record types support IPv6 addresses and are equivalent to an A address record in IPv4. The switch supports DNS resolution for IPv4 and IPv6.

Path MTU Discovery for IPv6 Unicast

The switch supports advertising the system maximum transmission unit (MTU) to IPv6 nodes and path MTU discovery. Path MTU discovery allows a host to dynamically discover and adjust to differences in the MTU size of every link along a given data path. In IPv6, if a link along the path is not large enough to accommodate the packet size, the source of the packet handles the fragmentation. The switch does not support path MTU discovery for multicast packets.

ICMPv6

The Internet Control Message Protocol (ICMP) in IPv6 generates error messages, such as ICMP destination unreachable messages, to report errors during processing and other diagnostic functions. In IPv6, ICMP packets are also used in the neighbor discovery protocol and path MTU discovery.

Neighbor Discovery

The switch supports NDP for IPv6, a protocol running on top of ICMPv6, and static neighbor entries for IPv6 stations that do not support NDP. The IPv6 neighbor discovery process uses ICMP messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local link), to verify the reachability of the neighbor, and to keep track of neighboring routers.

The switch supports ICMPv6 redirect for routes with mask lengths less than 64 bits. ICMP redirect is not supported for host routes or for summarized routes with mask lengths greater than 64 bits.

Neighbor discovery throttling ensures that the switch CPU is not unnecessarily burdened while it is in the process of obtaining the next hop forwarding information to route an IPv6 packet. The switch drops any additional IPv6 packets whose next hop is the same neighbor that the switch is actively trying to resolve. This drop avoids further load on the CPU.

First Hop Security in IPv6

This section provides information about configuring the functions that comprise the first hop security (FHS) feature in IPv6.

Note

First Hop Security in IPv6 is not supported on EtherChannels.

For more information on FHS, see this URL:

The functions available under FHS are also called as IPv6 policies. Policies can be applied at the interface or VLAN level. IPv6 policies provide policy database services to features with regard to storing and accessing those policies. Every time a policy is configured, the attributes of the policy are stored in the software policy database. The policy is then applied to an interface and the software policy database entry is updated to include this interface to which the policy is applied. You can use the following IPv6 policies:
Prerequisites for implementing first hop security

- You have configured the necessary IPv6 enabled SDM template.
- You should be familiar with the IPv6 neighbor discovery feature. For information, see “Implementing IPv6 Addressing and Basic Connectivity” chapter of the Cisco IOS IPv6 Configuration Library on Cisco.com.
Restrictions for implementing first hop security

Although visible in the command-line help strings, the IPv6 first hop security (FHS) is not supported on the Catalyst 3750-G and 3750v2 switches. The command-line help strings are visible on these switches to support the FHS feature in a mixed switch stack scenario where one of these switches could become a master.

IPv6 Snooping

IPv6 snooping acts as a container policy that enables most of the features available with FHS in IPv6. For more information, see the “Configuring an IPv6 Snooping Policy” section on page 1-21.

IPv6 First-Hop Security Binding Table

A database table of IPv6 neighbors connected to the switch is created from multiple sources of information. For example, Neighbor Discovery Protocol (NDP) snooping and Dynamic Host Configuration Protocol (DHCP) snooping. This database or binding table is used by various IPv6 guard features such as IPv6 Neighbor Discovery (ND) inspection (to validate the link-layer address (LLA)), per-port address limit (to validate the IPv4 or IPv6 addresses), and IPv6 device tracking (to prefix binding of the neighbors to prevent spoofing and redirect attacks).

These categories of traffic carry information that the binding table snoops for:

- ND traffic—For more information, see the “NDP Address Gleaning” section on page 1-6.
- DHCP traffic—For more information, see the “IPv6 DHCP Address Gleaning” section on page 1-6.
- Data traffic—For more information, see the “IPv6 DHCP Address Gleaning” section on page 1-6.

NDP Address Gleaning

The NDP address gleaning feature is enabled by default when you configure the ipv6 snooping policy global configuration command. To disable this function, enter the no protocol ndp global configuration command and attach the policy to the target port or VLAN.

IPv6 DHCP Address Gleaning

The IPv6 DHCP address gleaning feature provides the ability to extract addresses from DHCP messages and populate the binding table. The switch extracts address binding information from the following types of DHCPv6 exchanges (using User Datagram Protocol (UDP), ports 546 and 547):

- DHCP-REQUEST
- DHCP-CONFIRM
- DHCP- RENEW
- DHCP-REBIND
- DHCP-REPLY
- DHCP-RELEASE
- DHCP-DECLINE

After a switch receives a DHCP-REQUEST message from a client, one of the following can happen:

- The switch receives a DHCP-REPLY message from the DHCP server and a binding table entry is created in the REACHABLE state and completed. The reply contains the IP address and the MAC address in the Layer 2 DMAC field.
Chapter 1 Configuring IPv6 Unicast Routing

Understanding IPv6

Creating an entry in the binding table allows the switch to learn addresses assigned by DHCP. A binding table can have one of the following states:

- **INCOMPLETE**—Address resolution is in progress and the link-layer address is not yet known.
- **REACHABLE**—The table is known to be reachable within the last reachable time interval.
- **STALE**—The table requires re-resolution.
- **SEARCH**—The feature creating the entry does not have the Layer 2 address and requests the binding table to search for the Layer 2 address.
- **VERIFY**—The Layer 2 and Layer 3 addresses are known and a duplicate address detection (DAD) Neighbor solicitation (NS) unicast message is sent to the Layer 2 and Layer 3 destinations to verify the addresses.
- **DOWN**—The interface from which the entry was learned is down, preventing verification.

- The DHCP server sends a DHCP-DECLINE or DHCP release message and the entry is deleted.
- The client sends a DHCP-RENEW message to the server that allocated the address or a DHCP-REBIND message to any server and the lifespan of the entry is extended.
- The server does not reply and the session is timed-out.

To enable this feature, configure a policy using the `ipv6 snooping policy policy-name` global configuration command. For more information, see the “Configuring an IPv6 Snooping Policy” section on page 1-21.

You can configure a policy and attach it to a DHCP guard to prevent the binding table from being filled with forged DHCP messages. For more information, see the “IPv6 DHCP Guard” section on page 1-9 and “Configuring IPv6 DHCP Guard” section on page 1-23.

IPv6 Binding Table Recovery Mechanism

The IPv6 first-hop security binding table recovery feature recovers the missing binding table entries when the resolution for a destination address fails in the destination guard. Upon a failure, a binding table entry is recovered by querying the DHCP server or the destination host depending on the configuration.

The recovery mechanism blocks any data traffic sourced from an unknown source, that is, a source not already specified in the binding table and previously learned by using NDP or Dynamic Host Configuration Protocol (DHCP) gleaning.

For detailed information about IPv6 binding table recovery, see the “IPv6 First-Hop Security Binding Table” chapter of the *Cisco IOS IPv6 Configuration Guide Library* on Cisco.com.

IPv6 Data Address Gleaning

The IPv6 data address gleaning feature provides the ability to extract addresses from redirected data traffic, to discover neighbors, and to populate binding tables.

When a port receives a data packet where the binding is unknown, that is, the neighbor is in an INCOMPLETE state and the link-layer address is not yet known, the switch sends a DAD NS NDP unicast message to the port from which the data packet was received.

After the host replies with a DAD Neighbor Advertisement (NA) NDP message, the binding table is updated and a private VLAN ACL (PVACL) is installed in the hardware for this binding.

If the host does not reply with a DAD NA, after the binding table timer expires, the hardware is notified and any resources associated with that binding are released.
To enable this feature, configure a policy with `data-glean` and attach the policy to a target port. To debug the policy, use the `debug ipv6 snooping` privileged EXEC command.

IPv6 ND Inspection

IPv6 ND inspection learns and secures bindings for stateless autoconfiguration addresses in Layer 2 neighbor tables. IPv6 ND inspection analyzes neighbor discovery messages in order to build a trusted binding table database and IPv6 neighbor discovery messages that do not conform are dropped. An SA ND message is considered trustworthy if its IPv6-to-media access control (MAC) mapping is verifiable. This feature mitigates some of the inherent vulnerabilities of the ND mechanism, such as attacks on DAD, address resolution, router discovery, and the neighbor cache.

IPv6 Device Tracking

The IPv6 device tracking feature provides IPv6 host liveness tracking so that a neighbor table can be updated when an IPv6 host disappears. The feature tracks the liveness of the neighbors connected through the Layer 2 switch on regular basis in order to revoke network access privileges as they become inactive.

IPv6 Port-Based Access List Support

The IPv6 port-based access list (PACL) feature provides the ability to provide access control (permit or deny) on Layer 2 switch ports for IPv6 traffic. IPv6 PACLs are similar to IPv4 PACLs, which provide access control on Layer 2 switch ports for IPv4 traffic.

With Catalyst 3750-E, 3750X, 3560E, 3560-X, 3750v2, and 3560 v2 switches, this feature is supported in hardware and only in ingress direction. In a mixed stack scenario where the stack has a switch that does not support IPv6 FHS, the VLAN target is disabled on the whole switch for security. Port targets are allowed on the IPv6 FHS-capable ports of the switch. If a nonsupporting switch becomes the stack master, the IPv6 FHS functions are still supported on the IPv6 FHS-capable ports of the switch.

Access lists determine which traffic is blocked and which traffic is forwarded at switch interfaces and allow filtering based on source and destination addresses, inbound and outbound, to a specific interface. Each access list has an implicit deny statement at the end. To configure an IPv6 PACL, you have to create an IPv6 access list and then configure the PACL mode on the specified IPv6 Layer 2 interface.

PACL can filter ingress traffic on Layer 2 interfaces based on Layer 3 and Layer 4 header information or non-IP Layer 2 information.

IPv6 Router Advertisement Guard

The IPv6 Router Advertisement (RA) guard feature enables the network administrator to block or reject unwanted or rogue RA guard messages that arrive at the network switch platform. RAs are used by routers to announce themselves on the link. The RA guard feature analyzes the RAs and filters out bogus RAs sent by unauthorized routers. In host mode, all router advertisement and router redirect messages are disallowed on the port. The RA guard feature compares configuration information on the Layer 2 device with the information found in the received RA frame. Once the Layer 2 device has validated the content of the RA frame and router redirect frame against the configuration, it forwards the RA to its unicast or multicast destination. If the RA frame content is not validated, the RA is dropped.

For detailed information about RA guard, see the “IPv6 RA Guard” chapter of the *Cisco IOS IPv6 Configuration Guide Library* on Cisco.com.
IPv6 DHCP Guard

You can use the DHCP guard to prevent forged messages from being entered in the binding table. The DHCP guard blocks DHCP server messages when they are received on ports that are not explicitly configured as facing a DHCP server or DHCP relay.

To use this feature, configure a policy and attach it to a DHCP guard. To debug DHCP guard packets, use the `debug ipv6 snooping dhcp-guard` privileged EXEC command.

For detailed information about IPv6 DHCP Guard, see the “IPv6 DHCP Guard” chapter of the Cisco IOS IPv6 Configuration Guide Library on Cisco.com.

IPv6 Source Guard

A source guard programs the hardware to allow or deny traffic based on source or destination addresses. It deals exclusively with data packet traffic.

The IPv6 source guard feature provides the ability to use the IPv6 binding table to install PACLs to prevent a host from sending packets with an invalid IPv6 source address.

To debug source-guard packets, use the `debug ipv6 snooping source-guard` privileged EXEC command.

The IPv6 PACL feature is supported only in the ingress direction; it is not supported in the egress direction.

The following restrictions apply:

- When IPv6 source guard is enabled on a switch port, NDP or DHCP snooping must be enabled on the interface to which the switch port belongs. Otherwise, all data traffic from this port will be blocked.
- An IPv6 source guard policy cannot be attached to a VLAN. It is supported only at the interface level.
- IPv6 source guard is not supported on EtherChannels.

For information about configuring IPv6 access lists, see the “Implementing Traffic Filters and Firewalls for IPv6 Security” chapter of the Cisco IOS IPv6 Configuration Library on Cisco.com.

IPv6 Prefix Guard

The IPv6 prefix guard feature works within the IPv6 source guard feature, to enable the device to deny traffic originated from nontopologically correct addresses. IPv6 prefix guard is often used when IPv6 prefixes are delegated to devices (for example, home gateways) using DHCP prefix delegation. The feature discovers ranges of addresses assigned to the link and blocks any traffic sourced with an address outside this range.

For detailed information about prefix guard, see the “IPv6 Prefix Guard” chapter of the Cisco IOS IPv6 Configuration Guide Library on Cisco.com.

IPv6 Destination Guard

The IPv6 destination guard feature works with IPv6 neighbor discovery to ensure that the device performs address resolution only for those addresses that are known to be active on the link. It relies on the address glean functionality to populate all destinations active on the link into the binding table and then blocks resolutions before they happen when the destination is not found in the binding table.
For detailed information about destination guard, see the “IPv6 Destination Guard” chapter of the Cisco IOS IPv6 Configuration Guide Library on Cisco.com.

IPv6 Neighbor Discovery Multicast Suppress

The IPv6 Neighbor Discovery multicast suppress feature is an IPv6 snooping feature that runs on a switch or a wireless controller and is used to reduce the amount of control traffic necessary for proper link operations.

For detailed information about Neighbor Discovery multicast suppress, see the “IPv6 Neighbor Discovery Multicast Suppress” chapter of the Cisco IOS IPv6 Configuration Guide Library on Cisco.com and “Configuring IPv6 DHCP Guard” section on page 1-23.

DHCPv6 Relay—Lightweight DHCPv6 Relay Agent

The DHCPv6 Relay—Lightweight DHCPv6 Relay Agent feature allows relay agent information to be inserted by an access node that performs a link-layer bridging (non-routing) function. Lightweight DHCPv6 Relay Agent (LDRA) functionality can be implemented in existing access nodes, such as DSL access multiplexers (DSLAMs) and Ethernet switches, that do not support IPv6 control or routing functions. LDRA is used to insert relay-agent options in DHCP version 6 (DHCPv6) message exchanges primarily to identify client-facing interfaces. LDRA functionality can be enabled on an interface and on a VLAN.

Default Router Preference

The switch supports IPv6 default router preference (DRP), an extension in router advertisement messages. DRP improves the ability of a host to select an appropriate router, especially when the host is multihomed and the routers are on different links. The switch does not support the Route Information Option in RFC 4191.

An IPv6 host maintains a default router list from which it selects a router for traffic to offlink destinations. The selected router for a destination is then cached in the destination cache. NDP for IPv6 specifies that routers that are reachable or probably reachable are preferred over routers whose reachability is unknown or suspect. For reachable or probably reachable routers, ND can either select the same router every time or cycle through the router list. By using DRP, you can configure an IPv6 host to prefer one router over another, provided both are reachable or probably reachable.

For more information about DRP for IPv6, see the “Implementing IPv6 Addresses and Basic Connectivity” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

IPv6 Stateless Autoconfiguration and Duplicate Address Detection

The switch uses stateless autoconfiguration to manage link, subnet, and site addressing changes, such as management of host and mobile IP addresses. A host autonomously configures its own link-local address, and booting nodes send router solicitations to request router advertisements for configuring interfaces.

For more information about autoconfiguration and duplicate address detection, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter of Cisco IOS IPv6 Configuration Library on Cisco.com.
IPv6 Applications

The switch has IPv6 support for these applications:

- Ping, traceroute, Telnet, and TFTP
- Secure Shell (SSH) over an IPv6 transport
- HTTP server access over IPv6 transport
- DNS resolver for AAAA over IPv4 transport
- Cisco Discovery Protocol (CDP) support for IPv6 addresses

For more information about managing these applications, see the “Managing Cisco IOS Applications over IPv6” chapter and the “Implementing IPv6 Addressing and Basic Connectivity” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Dual IPv4 and IPv6 Protocol Stacks

You must use the dual IPv4 and IPv6 template to allocate hardware memory usage to both IPv4 and IPv6 protocols.

Figure 1-1 shows a router forwarding both IPv4 and IPv6 traffic through the same interface, based on the IP packet and destination addresses.

Use the dual IPv4 and IPv6 switch database management (SDM) template to enable IPv6 routing dual stack environments (supporting both IPv4 and IPv6). For more information about the dual IPv4 and IPv6 SDM template, see Chapter 1, “Configuring SDM Templates.”

The dual IPv4 and IPv6 templates allow the switch to be used in dual stack environments.

- If you try to configure IPv6 without first selecting a dual IPv4 and IPv6 template, a warning message appears.
- In IPv4-only environments, the switch routes IPv4 packets and applies IPv4 QoS and ACLs in hardware. IPv6 packets are not supported.
- In dual IPv4 and IPv6 environments, the switch routes both IPv4 and IPv6 packets and applies IPv4 QoS in hardware.
- The switch supports QoS for both IPv4 and IPv6 traffic.
- If you do not plan to use IPv6, do not use the dual stack template because this template results in less hardware memory capacity for each resource.
For more information about IPv4 and IPv6 protocol stacks, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter of Cisco IOS IPv6 Configuration Library on Cisco.com.

DHCP for IPv6 Address Assignment

DHCPv6 enables DHCP servers to pass configuration parameters, such as IPv6 network addresses, to IPv6 clients. The address assignment feature manages non-duplicate address assignment in the correct prefix based on the network where the host is connected. Assigned addresses can be from one or multiple prefix pools. Additional options, such as default domain and DNS name-server address, can be passed back to the client. Address pools can be assigned for use on a specific interface, on multiple interfaces, or the server can automatically find the appropriate pool.

Beginning with Cisco IOS Release 12.2(58)SE, the switch supports these features:

- **DHCPv6 bulk-lease query**

 DHCPv6 bulk-lease query allows a client to request information about DHCPv6 bindings. This functionality adds new query types and allows the bulk transfer of DHCPv6 binding data through TCP. Bulk transfer of DHCPv6 binding data is useful when the relay server switch is rebooted and the relay server has lost all the binding information. After the reboot, the relay server automatically generates a bulk-lease query to get the binding information from the DHCP server.

- **DHCPv6 relay source configuration**

 The DHCPv6 server replies to the source address of the DHCP relay agent. Typically, messages from a DHCPv6 relay agent show the source address of the interface from which they are sent. You can use the DHCPv6 relay source configuration feature to configure a more stable address (such as a loopback interface) as the source address for messages from the relay agent. You can configure the source address globally for the switch or for a specific interface. An address configured on an interface takes precedence over one configured globally.

For more information and to configure these features, see the Cisco IOS IPv6 Configuration Guide, Release 12.4.

This document describes only the DHCPv6 address assignment. For more information about configuring the DHCPv6 client, server, or relay agent functions, see the “Implementing DHCP for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Static Routes for IPv6

Static routes are manually configured and define an explicit route between two networking devices. Static routes are useful for smaller networks with only one path to an outside network or to provide security for certain types of traffic in a larger network.

For more information about static routes, see the “Implementing Static Routes for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

RIP for IPv6

Routing Information Protocol (RIP) for IPv6 is a distance-vector protocol that uses hop count as a routing metric. It includes support for IPv6 addresses and prefixes and the all-RIP-routers multicast group address FF02::9 as the destination address for RIP update messages.

For more information about RIP for IPv6, see the “Implementing RIP for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.
OSPF for IPv6

The switch running the IP-services feature set supports Open Shortest Path First (OSPF) for IPv6, a link-state protocol for IP. For more information, see the “Implementing OSPF for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

OSPFv3 Graceful Restart

Beginning with Cisco IOS Release 12.2(58)SE, switches running the IP Services feature set support the graceful restart feature in OSPFv3. This feature allows nonstop data forwarding along known routes while the OSPFv3 routing protocol information is restored. A switch uses graceful restart either in restart mode (for a graceful-restart-capable switch) or in helper mode (for a graceful-restart-aware switch).

To use the graceful restart function, a switch must be in high-availability stateful switchover (SSO) mode (dual route processor). A switch capable of graceful restart uses it when these failures occur:

- A route processor failure that results in changeover to the standby route processor
- A planned route processor changeover to the standby route processor

The graceful restart feature requires that neighboring switches be graceful-restart aware.

For more information, see the “Implementing OSFP for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Fast Convergence: LSA and SPF Throttling

The OSPFv3 link-state advertisements (LSA) and shortest path first (SPF) throttling feature provides a dynamic method to slow down link-state advertisement updates in OSPFv3 during times of network instability. This feature also allows faster OSPFv3 convergence by providing LSA rate limiting in milliseconds.

OSPFv3 previously used static timers for rate-limiting SPF calculation and LSA generation. Although these timers are configurable, the values are specified in seconds, which poses a limitation on OSPFv3 convergence. LSA and SPF throttling achieves subsecond convergence by providing a more sophisticated SPF and LSA rate-limiting method can react quickly to changes and also provide stability and protection during prolonged periods of instability.

For more information, see the “Implementing OSPFv3” chapter of the Cisco IOS IPv6 Configuration Library on Cisco.com.

Authentication Support with IPsec

To ensure that OSPF for IPv6 (OSPFv3) packets are not altered and resent to the switch, OSPFv3 packets must be authenticated. OSPFv3 uses the IPsec secure socket API to add authentication to OSPFv3 packets. This API has been extended to provide support for IPv6.

OSPFv3 requires the use of IPsec to enable authentication. Crypto images are required to use authentication, because only crypto images include the IPsec API needed for use with OSPFv3.

For more information, see the OSPFv3 Authentication Support with IPsec section of the Cisco IOS IPv6 Configuration Library on Cisco.com.
EIGRP IPv6

Switches running the IP Services feature set support the Enhanced Interior Gateway Routing Protocol (EIGRP) for IPv6. It is configured on the interfaces on which it runs and does not require a global IPv6 address.

Note

Switches running the IP Base feature set support IPv6 EIGRP stub routing only.

Before running, an instance of EIGRP IPv6 requires an implicit or explicit router ID. An implicit router ID is derived from a local IPv4 address, so any IPv4 node always has an available router ID. However, EIGRP IPv6 might be running in a network with only IPv6 nodes and therefore might not have an available IPv4 router ID.

For more information about EIGRP for IPv6, see the “Implementing EIGRP for IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

HSRP for IPv6

Switches running the IP Services feature set support the Hot Standby Router Protocol (HSRP) for IPv6. HSRP provides routing redundancy for routing IPv6 traffic not dependent on the availability of any single router. IPv6 hosts learn of available routers through IPv6 neighbor discovery router advertisement messages. These messages are multicast periodically or are solicited by hosts.

An HSRP IPv6 group has a virtual MAC address that is derived from the HSRP group number and a virtual IPv6 link-local address that is, by default, derived from the HSRP virtual MAC address. Periodic messages are sent for the HSRP virtual IPv6 link-local address when the HSRP group is active. These messages stop after a final one is sent when the group leaves the active state.

For more information about configuring HSRP for IPv6, see the “Configuring First Hop Redundancy Protocols in IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

SNMP and Syslog Over IPv6

To support both IPv4 and IPv6, IPv6 network management requires both IPv6 and IPv4 transports. Syslog over IPv6 supports address data types for these transports.

SNMP and syslog over IPv6 provide these features:

- Support for both IPv4 and IPv6
- IPv6 transport for SNMP and to modify the SNMP agent to support traps for an IPv6 host
- SNMP- and syslog-related MIBs to support IPv6 addressing
- Configuration of IPv6 hosts as trap receivers

For support over IPv6, SNMP modifies the existing IP transport mapping to simultaneously support IPv4 and IPv6. These SNMP actions support IPv6 transport management:

- Opens User Datagram Protocol (UDP) SNMP socket with default settings
- Provides a new transport mechanism called *SR_IPV6_TRANSPORT*
- Sends SNMP notifications over IPv6 transport
- Supports SNMP-named access lists for IPv6 transport
- Supports SNMP proxy forwarding using IPv6 transport
• Verifies SNMP Manager feature works with IPv6 transport

For information on SNMP over IPv6, including configuration procedures, see the “Managing Cisco IOS Applications over IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

For information about syslog over IPv6, including configuration procedures, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

HTTP(S) Over IPv6

The HTTP client sends requests to both IPv4 and IPv6 HTTP servers, which respond to requests from both IPv4 and IPv6 HTTP clients. URLs with literal IPv6 addresses must be specified in hexadecimal using 16-bit values between colons.

The accept socket call chooses an IPv4 or IPv6 address family. The accept socket is either an IPv4 or IPv6 socket. The listening socket continues to listen for both IPv4 and IPv6 signals that indicate a connection. The IPv6 listening socket is bound to an IPv6 wildcard address.

The underlying TCP/IP stack supports a dual-stack environment. HTTP relies on the TCP/IP stack and the sockets for processing network-layer interactions.

Basic network connectivity (ping) must exist between the client and the server hosts before HTTP connections can be made.

For more information, see the “Managing Cisco IOS Applications over IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Unsupported IPv6 Unicast Routing Features

The switch does not support these IPv6 features:

- IPv6 policy-based routing
- IPv6 virtual private network (VPN) routing and forwarding (VRF) table support
- IPv6 packets destined to site-local addresses
- Tunneling protocols, such as IPv4-to-IPv6 or IPv6-to-IPv4
- The switch as a tunnel endpoint supporting IPv4-to-IPv6 or IPv6-to-IPv4 tunneling protocols
- IPv6 unicast reverse-path forwarding
- IPv6 general prefixes

Limitations

Because IPv6 is implemented in switch hardware, some limitations occur due to the IPv6 compressed addresses in the hardware memory. These hardware limitations result in some loss of functionality and limits some features:

ICMPv6 redirect functionality is not supported for IPv6 host routes (routes used to reach a specific host) or for IPv6 routes with masks greater than 64 bits. The switch cannot redirect hosts to a better first-hop router for a specific destination that is reachable through a host route or through a route with masks greater than 64 bits.

- Load balancing using equal cost and unequal cost routes is not supported for IPv6 host routes or for IPv6 routes with a mask greater than 64 bits.
• The switch cannot forward SNAP-encapsulated IPv6 packets.

Note
There is a similar limitation for IPv4 SNAP-encapsulated packets, but the packets are dropped at the switch and are not forwarded.

• The switch routes IPv6-to-IPv4 and IPv4-to-IPv6 packets in hardware, but the switch cannot be an IPv6-to-IPv4 or IPv4-to-IPv6 tunnel endpoint.

• Bridged IPv6 packets with hop-by-hop extension headers are forwarded in software. In IPv4, these packets are routed in software, but bridged in hardware.

• Interface counters for IPv6 traffic include software-forwarded traffic only; hardware-switched traffic is excluded.

• In addition to the normal SPAN and RSPAN limitations defined in the software configuration guide, these limitations are specific to IPv6 packets:
 – When you send RSPAN IPv6-routed packets, the source MAC address in the SPAN output packet can be incorrect.
 – When you send RSPAN IPv6-routed packets, the destination MAC address can be incorrect. Normal traffic is not affected.

• The switch cannot apply QoS classification or policy-based routing on source-routed IPv6 packets in hardware.

• The switch cannot generate ICMPv6 Packet Too Big messages for multicast packets.

IPv6 and Switch Stacks

The switch supports IPv6 forwarding across the stack and IPv6 host functionality on the stack master. The stack master runs the IPv6 unicast routing protocols and computes the routing tables. Using distributed CEF (dCEF), the stack master downloads the routing table to the stack member switches. They receive the tables and create hardware IPv6 routes for forwarding. The stack master also runs all IPv6 applications.

Note
To route IPv6 packets in a stack, all switches in the stack should be running the IP Services feature set.

If a new switch becomes the stack master, it recomputes the IPv6 routing tables and distributes them to the member switches. While the new stack master is being elected and is resetting, the switch stack does not forward IPv6 packets. The stack MAC address changes, which also changes the IPv6 address. When you specify the stack IPv6 address with an extended unique identifier (EUI) by using the `ipv6 address ipv6-prefix/prefix length eui-64` interface configuration command, the address is based on the interface MAC address. See the “Configuring IPv6 Addressing and Enabling IPv6 Routing” section on page 1-18.

If you configure the persistent MAC address feature on the stack and the stack master changes, the stack MAC address does not change for approximately 4 minutes. For more information, see the “Enabling Persistent MAC Address” section on page 1-24 in Chapter 1, “Managing Switch Stacks.”

The IPv6 stack master and members have these features:

• Stack master:
 – Runs IPv6 routing protocols
 – Generates routing tables
- Distributes CEFv6 routing tables to stack members that use dCEFv6
- Runs IPv6 host functionality and IPv6 applications

- Stack member (must be running the IP services feature set):
 - Receives CEFv6 routing tables from the stack master
 - Programs the routes into hardware

Note
IPv6 packets are routed in hardware across the stack if the packet does not have exceptions (IPv6 Options) and the switches in the stack have not run out of hardware resources.

- Flushes the CEFv6 tables on master re-election

Configuring IPv6

- Default IPv6 Configuration, page 1-17
- Configuring IPv6 Addressing and Enabling IPv6 Routing, page 1-18
- Configuring First Hop Security in IPv6, page 1-20
- Configuring Default Router Preference, page 1-26
- Configuring IPv4 and IPv6 Protocol Stacks, page 1-27
- Configuring DHCP for IPv6 Address Assignment, page 1-28
- Configuring IPv6 ICMP Rate Limiting, page 1-32
- Configuring CEF and dCEF for IPv6, page 1-32
- Configuring Static Routing for IPv6, page 1-33
- Configuring RIP for IPv6, page 1-34
- Configuring OSPF for IPv6, page 1-35
- Tuning LSA and SPF Timers for OSPFv3 Fast Convergence, page 1-37
- Configuring LSA and SPF Throttling for OSPFv3 Fast Convergence, page 1-37
- Configuring IPSec on OSPFv3, page 1-38
- Configuring EIGRP for IPv6, page 1-38
- Configuring HSRP for IPv6, page 1-38

Default IPv6 Configuration

Table 1-1 Default IPv6 Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDM template</td>
<td>Default desktop.</td>
</tr>
<tr>
<td>IPv6 routing</td>
<td>Disabled globally and on all interfaces</td>
</tr>
</tbody>
</table>
Configuring IPv6 Addressing and Enabling IPv6 Routing

This section describes how to assign IPv6 addresses to individual Layer 3 interfaces and to globally forward IPv6 traffic on the switch.

Before configuring IPv6 on the switch, consider these guidelines:

- Be sure to select a dual IPv4 and IPv6 SDM template.
- Not all features discussed in this chapter are supported by the switch. See the “Unsupported IPv6 Unicast Routing Features” section on page 1-15.
- In the `ipv6 address` interface configuration command, you must enter the `ipv6-address` and `ipv6-prefix` variables with the address specified in hexadecimal using 16-bit values between colons. The `prefix-length` variable (preceded by a slash `/`) is a decimal value that shows how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address).

To forward IPv6 traffic on an interface, you must configure a global IPv6 address on that interface. Configuring an IPv6 address on an interface automatically configures a link-local address and activates IPv6 for the interface. The configured interface automatically joins these required multicast groups for that link:

- solicited-node multicast group FF02:0:0:0:0:1:ff00::/104 for each unicast address assigned to the interface (This address is used in the neighbor discovery process.)
- all-nodes link-local multicast group FF02::1
- all-routers link-local multicast group FF02::2

For more information about configuring IPv6 routing, see the “Implementing Addressing and Basic Connectivity for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Beginning in privileged EXEC mode, follow these steps to assign an IPv6 address to a Layer 3 interface and enable IPv6 routing:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** `sdm prefer dual-ipv4-and-ipv6 {default | routing | vlan}` | Selects an SDM template that supports IPv4 and IPv6.
- `default`—Sets the switch to the default template to balance system resources.
- `routing`—Sets the switch to the routing template to support IPv4 and IPv6 routing, including IPv4 policy-based routing.
- `vlan`—Maximizes VLAN configuration on the switch with no routing supported in hardware. |
| **Step 3** end | Returns to privileged EXEC mode. |
Chapter 1 Configuring IPv6 Unicast Routing

Configuring IPv6

To remove an IPv6 address from an interface, use the `no ipv6 address ipv6-prefix/prefix length eui-64` command. To remove all manually configured IPv6 addresses from an interface, use the `no ipv6 address` command without arguments. To disable IPv6 processing on an interface that has not been explicitly configured with an IPv6 address, use the `no ipv6 enable` command. To globally disable IPv6 routing, use the `no ipv6 unicast-routing` command.

This example shows how to enable IPv6 with both a link-local address and a global address based on the IPv6 prefix 2001:0DB8:c18:1::/64. The EUI-64 interface ID is used in the low-order 64 bits of both addresses. Output from the `show ipv6 interface` EXEC command is included to show how the interface ID (20B:46FF:FE2F:D940) is appended to the link-local prefix FE80::/64 of the interface.

```
Switch(config)# sdm prefer dual-ipv4-and-ipv6 default
Switch(config)# ipv6 unicast-routing
Switch(config)# interface gigabitethernet1/0/11
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001:0DB8:c18:1::64 eui 64
Switch(config-if)# end
Switch# show ipv6 interface gigabitethernet1/0/11
```

Step-by-Step Procedure

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 reload</td>
<td>Reloads the operating system.</td>
</tr>
<tr>
<td>Step 5 configure terminal</td>
<td>Enters global configuration mode after the switch reloads.</td>
</tr>
<tr>
<td>Step 6 interface interface-id</td>
<td>Enters interface configuration mode, and specifies the Layer 3 interface to configure. The interface can be a physical interface, a switch virtual interface (SVI), or a Layer 3 EtherChannel.</td>
</tr>
<tr>
<td>Step 7 no switchport</td>
<td>Removes the interface from Layer 2 configuration mode (if it is a physical interface).</td>
</tr>
<tr>
<td>Step 8 ipv6 address ipv6-prefix/prefix length eui-64</td>
<td>Specifies a global IPv6 address with an extended unique identifier (EUI) in the low-order 64 bits of the IPv6 address. Specify only the network prefix; the last 64 bits are automatically computed from the switch MAC address. This enables IPv6 processing on the interface.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>ipv6 address ipv6-address/prefix length</td>
<td>Manually configures an IPv6 address on the interface.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>ipv6 address ipv6-address link-local</td>
<td>Specifies a link-local address on the interface to be used instead of the link-local address that is automatically configured when IPv6 is enabled on the interface. This command enables IPv6 processing on the interface.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>ipv6 enable</td>
<td>Automatically configures an IPv6 link-local address on the interface, and enables the interface for IPv6 processing. The link-local address can only be used to communicate with nodes on the same link.</td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 10 ip routing</td>
<td>Enables IP routing on the switch.</td>
</tr>
<tr>
<td>Step 11 ipv6 unicast-routing</td>
<td>Enables forwarding of IPv6 unicast data packets.</td>
</tr>
<tr>
<td>Step 12 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 13 show ipv6 interface interface-id</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Step 14 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>
GigabitEthernet1/0/11 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::20B:46FF:FE2F:D940
Global unicast address(es):
 2001:0DB8:c18:1:20B:46FF:FE2F:D940, subnet is 2001:0DB8:c18:1::/64 [EUI]
Joined group address(es):
 FF02::1
 FF02::2
 FF02::1:FF2F:D940
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
Hosts use stateless autoconfig for addresses.

Configuring First Hop Security in IPv6

- Configuring an IPv6 Snooping Policy, page 1-21
- Configuring the IPv6 Binding Table Content
- Configuring IPv6 Device Tracking
- Configuring IPv6 ND Inspection
- Configuring IPv6 Router Advertisement Guard
- Configuring IPv6 Destination Guard
- Configuring Lightweight DHCPv6 Relay Agent
- Configuring IPv6 PACL
- Configuring IPv6 Neighbor Discovery Multicast Suppress Policy, page 1-22
- Configuring IPv6 DHCP Guard, page 1-23
- Configuring IPv6 Source Guard, page 1-24
- Configuration Examples for Implementing First Hop Security in IPv6, page 1-24
Configuring an IPv6 Snooping Policy

<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>ipv6 snooping policy policy-name</td>
<td>Creates a snooping policy in global configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td>data-glean</td>
<td>Enables data address gleaning, validates messages against various criteria, specifies the security level for messages.</td>
</tr>
<tr>
<td></td>
<td>default</td>
<td>(Optional) disables data address gleaning. This option is disabled by default.</td>
</tr>
<tr>
<td></td>
<td>device-role [node switch]</td>
<td>(Optional) Qualifies the role of the device attached to the port.</td>
</tr>
<tr>
<td></td>
<td>limit [address-count value]</td>
<td>(Optional) Limits the number of addresses allowed per target.</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>(Optional) Negates a command or sets its defaults.</td>
</tr>
<tr>
<td></td>
<td>protocol [all</td>
<td>dhcp</td>
</tr>
<tr>
<td></td>
<td>security-level [glean guard inspect]</td>
<td>(Optional) Specifies the level of security enforced by the feature.</td>
</tr>
<tr>
<td></td>
<td>tracking [disable enable]</td>
<td>(Optional) Overrides the default tracking behavior and specifies a tracking option.</td>
</tr>
<tr>
<td></td>
<td>trusted-port</td>
<td>(Optional) Sets up a trusted port. It disables the guard on applicable targets. Bindings learned through a trusted port have preference over bindings learned through any other port. A trusted port is also given preference in case of a collision while making an entry in the table.</td>
</tr>
<tr>
<td>5</td>
<td>exit</td>
<td>Exits the snooping policy configuration mode.</td>
</tr>
<tr>
<td>6</td>
<td>show ipv6 snooping policy policy-name</td>
<td>Displays the snooping policy configuration.</td>
</tr>
</tbody>
</table>
To attach a snooping policy to an interface or VLAN, complete the following steps:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface type and number, and enters the interface</td>
</tr>
<tr>
<td>Step 4 switchport</td>
<td>Configures the interface as a Layer 2 port.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits the interface configuration mode</td>
</tr>
<tr>
<td>Step 6 ipv6 snooping attach-policy policy-name</td>
<td>Attaches the snooping policy (where data gleaning is enabled) to an</td>
</tr>
<tr>
<td>or</td>
<td>interface. Specifies the port and the policy that is attached to the port.</td>
</tr>
<tr>
<td>Step 7 show ipv6 snooping policy policy-name</td>
<td>Displays the snooping policy configuration.</td>
</tr>
<tr>
<td>Step 8 show ipv6 neighbors binding</td>
<td>Displays the binding table entries populated by the snooping policy.</td>
</tr>
</tbody>
</table>

To configure Neighbor Discovery Multicast Suppress Policy:

To configure Neighbor Discovery Multicast Suppress policy on a device, complete the following steps:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3 ipv6 nd suppress policy policy-name</td>
<td>Defines the Neighbor Discovery suppress policy name and enters Neighbor</td>
</tr>
<tr>
<td></td>
<td>Discovery suppress policy configuration mode.</td>
</tr>
<tr>
<td>Step 4 mode dad-proxy</td>
<td>Enables Neighbor Discovery suppress in IPv6 DAD proxy mode.</td>
</tr>
<tr>
<td>Step 5 mode full-proxy</td>
<td>Enables Neighbor Discovery suppress to proxy multicast and unicast</td>
</tr>
<tr>
<td></td>
<td>Neighbor Solicitation messages.</td>
</tr>
<tr>
<td>Step 6 mode mc-proxy</td>
<td>Enables Neighbor Discovery suppress to proxy multicast Neighbor</td>
</tr>
<tr>
<td></td>
<td>Solicitation messages.</td>
</tr>
</tbody>
</table>

To configure Neighbor Discovery Multicast Suppress policy on an interface, complete the following steps:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface type and number, and places the device in interface</td>
</tr>
<tr>
<td></td>
<td>configuration mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IPv6 Unicast Routing

Configuring IPv6

Configuring IPv6 DHCP Guard

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv6 dhcp guard policy policy-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>[default</td>
</tr>
<tr>
<td></td>
<td>(Optional) default—Set a command to its defaults.</td>
</tr>
<tr>
<td></td>
<td>(Optional) device-role [client</td>
</tr>
<tr>
<td></td>
<td>– client—Specifies that the attached device is a client. This is the default. Any server messages are dropped on this port.</td>
</tr>
<tr>
<td></td>
<td>– server—Specifies that the attached device is a DHCP server. Server messages are allowed on this port.</td>
</tr>
<tr>
<td></td>
<td>(Optional) no—Removes the configured policy parameters.</td>
</tr>
<tr>
<td></td>
<td>(Optional) exit—Exits the DHCP guard policy global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>(Optional) trusted-port—Sets the port to a trusted mode. No further policing takes place on the port.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface type number</td>
</tr>
<tr>
<td>Step 7</td>
<td>ipv6 dhcp guard attach-policy policy-name</td>
</tr>
<tr>
<td></td>
<td>Or</td>
</tr>
<tr>
<td>Step 8</td>
<td>show ipv6 dhcp guard policy policy-name</td>
</tr>
</tbody>
</table>
Configuring IPv6 Source Guard

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3 ipv6 source-guard policy policy-name</td>
<td>Specifies the source guard policy name and enters the source guard policy configuration mode.</td>
</tr>
<tr>
<td>Step 4 permit link-local</td>
<td>Allows all data traffic that is sourced by a link-local address.</td>
</tr>
<tr>
<td>Step 5 deny global-autoconf</td>
<td>Denies data traffic from auto-configured global addresses. This is useful when all global addresses on a link are DHCP-assigned and the administrator wants to block hosts with self-configured addresses to send traffic.</td>
</tr>
<tr>
<td>Step 6 ipv6 source-guard [attach-policy policy-name]</td>
<td>Specifies the policy name. (Optional) attach-policy policy-name—Filters based on the policy name</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits the source guard policy configuration mode.</td>
</tr>
<tr>
<td>Step 8 show ipv6 source-guard policy policy name</td>
<td>Shows the policy configuration and all the interfaces where the policy is applied.</td>
</tr>
</tbody>
</table>

Configuration Examples for Implementing First Hop Security in IPv6

This example shows you how to attach a snooping policy to a VLAN and to configure an RA trusted router port and DHCP trusted server port:

```
Switch(config)# vlan configuration 100
Switch(config-vlan-config)# ipv6 snooping
Switch(config-vlan-config)# exit

Switch(config)# ipv6 nd raguard policy router
Switch(config-nd-raguard)# device-role router
Switch(config-nd-raguard)# exit

Switch(config)# ipv6 dhcp guard policy server
Switch(config-dhcp-guard)# device-role server
Switch(config-dhcp-guard)# exit
```

2/1/2 is a router-facing port:

```
Switch(config)# interface fastethernet 2/1/2
Switch(config-if)# switchport
Switch(config-if)# switchport access vlan 100
Switch(config-if)# ipv6 nd raguard attach-policy router
Switch(config-if)# exit
```

1/0/17 is a DHCP server-facing port:

```
Switch(config)# interface gigabitethernet 1/0/17
Switch(config-if)# switchport access vlan 100
Switch(config-if)# ipv6 dhcp guard attach-policy server
Switch(config-if)# exit
Switch(config)# exit
```

Switch# show ipv6 snooping policies
Target Type Policy Feature Target range
Gi1/0/17 PORT server DHCP Guard vlan all
This example shows you how to create a snooping policy called Test and enable data address gleaning on it:

```
Switch(config)# ipv6 snooping policy Test
Switch(config-ipv6-snooping)# data-glean
Switch(config-ipv6-snooping)# device-role node
Switch(config-ipv6-snooping)# limit address-count 1
Switch(config-ipv6-snooping)# protocol dhcp
Switch(config-ipv6-snooping)# security-level glean
Switch(config-ipv6-snooping)# tracking enable
Switch(config-ipv6-snooping)# no trusted-port
Switch(config-ipv6-snooping)# exit
```

This example shows you how to configure snooping policy named Test, enable data address gleaning on the policy, and enable source guard where link-local addresses are permitted and global autoconfiguration addresses are denied entry:

```
Switch(config)# ipv6 snooping policy Test
Switch(config-ipv6-snooping)# data-glean
Switch(config-ipv6-snooping)# exit
Switch(config)# ipv6 source-guard policy Test
Switch(config-sisf-sourceguard)# permit link-local
Switch(config-sisf-sourceguard)# deny global-autoconf
Switch(config-sisf-sourceguard)# exit
```

This example shows you how to attach a snooping policy with source guard to an interface:

```
Switch(config)# interface gigabitethernet2/0/3
Switch(config-if)# ipv6 snooping attach-policy Test
Switch(config-if)# ipv6 source-guard attach-policy Test

Switch# show ipv6 source-guard policy Test
Policy Test configuration:
  permit link-local
  deny global-autoconf
Policy Test is applied on the following targets:
  Target  Type  Policy Feature    Target range
  Gi2/0/3 PORT  Test   Source guard vlan all
```

This example shows you how to configure a DHCP guard policy named Test and attach it to an interface:

```
Switch(config)# ipv6 dhcp-guard policy Test
Switch(config-dhcp-guard)# no trusted-port
Switch(config-dhcp-guard)# exit

Switch(config)# interface gigabitethernet2/0/3
Switch(config-if)# ipv6 dhcp guard attach-policy Test
Switch(config-if)# exit
OR
Switch(config)# vlan configuration 1-10
Switch(config-vlan-config)# ipv6 dhcp guard attach-policy Test
Switch(config-vlan-config)# exit

Switch# show ipv6 dhcp-guard policy Test
Dhcp guard policy: Test
Device Role: dhcp server
Target: Gi2/0/3 vlan 1 vlan 2 vlan 3 vlan 4 vlan 5 vlan 6 vlan 7 vlan 8 vlan 9 vlan 10
Max Preference: 255
Min Preference: 0
```
This example shows how you can enable the FHS feature on an interface or VLAN, without creating a snooping policy.

Creating a policy gives you the flexibility to configure as per your needs. If you enable the feature without creating a policy, then the default policy configuration is applied:

```
Switch(config)# interface GigabitEthernet1/0/9
Switch(config-if)# ipv6 nd inspection
Switch(config-if)# ipv6 nd raguard
Switch(config-if)# ipv6 snooping
Switch(config-if)# ipv6 dhcp guard
Switch(config-if)# ipv6 source-guard
Switch(config-if)# end
```

OR

```
Switch(config)# vlan configuration 1
Switch(config-vlan-config)# ipv6 nd inspection
Switch(config-vlan-config)# ipv6 nd raguard
Switch(config-vlan-config)# ipv6 dhcp guard
Switch(config-vlan-config)# ipv6 snooping
```

You cannot apply a source-guard policy to the VLAN.

For more examples, see the Configuration Examples for Implementing First Hop Security in IPv6 section of the Cisco IOS IPv6 Configuration Library on Cisco.com.

Configuring Default Router Preference

Router advertisement messages are sent with the default router preference (DRP) configured by the `ipv6 nd router-preference` interface configuration command. If no DRP is configured, RAs are sent with a medium preference.

A DRP is useful when two routers on a link might provide equivalent, but not equal-cost routing, and the policy might dictate that hosts should prefer one of the routers.

Beginning in privileged EXEC mode, follow these steps to configure a DRP for a router on an interface.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enters interface configuration mode, and enters the Layer 3 interface on which you want to specify the DRP.</td>
</tr>
<tr>
<td>Step 3 ipv6 nd router-preference {high</td>
<td>medium</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ipv6 interface</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no ipv6 nd router-preference` interface configuration command to disable an IPv6 DRP.
Chapter 1 Configuring IPv6 Unicast Routing

This example shows how to configure a DRP of high for the router on an interface.

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ipv6 nd router-preference high
Switch(config-if)# end
```

For more information about configuring DRP for IPv6, see the “Implementing IPv6 Addresses and Basic Connectivity” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Configuring IPv4 and IPv6 Protocol Stacks

Before configuring IPv6 routing, you must select an SDM template that supports IPv4 and IPv6. If not already configured, use the `sdm prefer dual-ipv4-and-ipv6 {default | routing | vlan} [desktop]` global configuration command to configure a template that supports IPv6. When you select a new template, you must reload the switch by using the `reload` privileged EXEC command so that the template takes effect.

Beginning in privileged EXEC mode, follow these steps to configure a Layer 3 interface to support both IPv4 and IPv6 and to enable IPv6 routing.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip routing</td>
<td>Enables routing on the switch.</td>
</tr>
<tr>
<td>Step 3 ipv6 unicast-routing</td>
<td>Enables forwarding of IPv6 data packets on the switch.</td>
</tr>
<tr>
<td>Step 4 interface interface-id</td>
<td>Enters interface configuration mode, and specifies the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 5 no switchport</td>
<td>Removes the interface from Layer 2 configuration mode (if it is a physical interface).</td>
</tr>
<tr>
<td>Step 6 ip address ip-address mask [secondary]</td>
<td>Specifies a primary or secondary IPv4 address for the interface.</td>
</tr>
<tr>
<td>Step 7 ipv6 address ipv6-prefix/prefix length eui-64</td>
<td>Specifies a global IPv6 address. Specify only the network prefix; the last 64 bits are automatically computed from the switch MAC address.</td>
</tr>
<tr>
<td>or ipv6 address ipv6-address link-local</td>
<td>Specifies a link-local address on the interface to be used instead of the automatically configured link-local address when IPv6 is enabled on the interface.</td>
</tr>
<tr>
<td>or ipv6 enable</td>
<td>Automatically configures an IPv6 link-local address on the interface, and enables the interface for IPv6 processing. The link-local address can only be used to communicate with nodes on the same link.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9 show interface interface-id</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>show ip interface interface-id</td>
<td></td>
</tr>
<tr>
<td>show ipv6 interface interface-id</td>
<td></td>
</tr>
<tr>
<td>Step 10 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable IPv4 routing, use the **no ip routing** global configuration command. To disable IPv6 routing, use the **no ipv6 unicast-routing** global configuration command. To remove an IPv4 address from an interface, use the **no ip address ip-address mask** interface configuration command. To remove an IPv6 address from an interface, use the **no ipv6 address ipv6-prefix/prefix length eui-64** or **no ipv6 address ipv6-address link-local** interface configuration command. To remove all manually configured IPv6 addresses from an interface, use the **no ipv6 address** interface configuration command without arguments. To disable IPv6 processing on an interface that has not been explicitly configured with an IPv6 address, use the **no ipv6 enable** interface configuration command.

This example shows how to enable IPv4 and IPv6 routing on an interface:

```
Switch(config)# sdm prefer dual-ipv4-and-ipv6 default
Switch(config)# ip routing
Switch(config)# ipv6 unicast-routing
Switch(config)# interface fastethernet1/0/11
Switch(config-if)# no switchport
Switch(config-if)# ip address 192.168.99.1 255.255.255.0
Switch(config-if)# ipv6 address 2001:0DB8:c18:1::/64 eui 64
Switch(config-if)# end
```

Configuring DHCP for IPv6 Address Assignment

- Default DHCPv6 Address Assignment Configuration, page 1-29
- DHCPv6 Address Assignment Configuration Guidelines, page 1-29
- Enabling DHCPv6 Server Function, page 1-29
- Enabling DHCPv6 Client Function, page 1-31
Default DHCPv6 Address Assignment Configuration

By default, no DHCPv6 features are configured on the switch.

DHCPv6 Address Assignment Configuration Guidelines

When configuring DHCPv6 address assignment, consider these guidelines:

- In the procedures, the specified interface must be one of these Layer 3 interfaces:
 - DHCPv6 IPv6 routing must be enabled on a Layer 3 interface.
 - SVI— A VLAN interface created by using the `interface vlan vlan_id` command.
 - EtherChannel port channel in Layer 3 mode — A port-channel logical interface created by using the `interface port-channel port-channel-number` command.
- Before configuring DHCPv6, you must select a Switch Database Management (SDM) template that supports IPv4 and IPv6.
- The switch can act as a DHCPv6 client, server, or relay agent. The DHCPv6 client, server, and relay function are mutually exclusive on an interface.
- The DHCPv6 client, server, or relay agent runs only on the master switch. When there is a stack master reelection, the new master switch retains the DHCPv6 configuration. However, the local RAM copy of the DHCP server database lease information is not retained.

Enabling DHCPv6 Server Function

Beginning in privileged EXEC mode, follow these steps to enable the DHCPv6 server function on an interface:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 dhcp pool poolname</td>
<td>Enters DHCP pool configuration mode, and defines the name for the IPv6 DHCP pool. The pool name can be a symbolic string (such as Engineering) or an integer (such as 0).</td>
</tr>
<tr>
<td>Step 3</td>
<td>address prefix IPv6-prefix lifetime {t1 t1</td>
<td>infinite}</td>
</tr>
<tr>
<td>Step 4</td>
<td>link-address IPv6-prefix</td>
<td>(Optional) Specifies a link-address IPv6 prefix. When an address on the incoming interface or a link-address in the packet matches the specified IPv6 prefix, the server uses the configuration information pool. This address must be in hexadecimal using 16-bit values between colons.</td>
</tr>
</tbody>
</table>
Configuring IPv6

Chapter 1 Configuring IPv6 Unicast Routing

To delete a DHCPv6 pool, use the `no ipv6 dhcp pool poolname` global configuration command. Use the `no` form of the DHCP pool configuration mode commands to change the DHCPv6 pool characteristics. To disable the DHCPv6 server function on an interface, use the `no ipv6 dhcp server` interface configuration command.

This example shows how to configure a pool called `engineering with an IPv6 address prefix`:

```
Switch# configure terminal
Switch(config)# ipv6 dhcp pool engineering
Switch(config-dhcpv6)# address prefix 2001:1000::0/64
Switch(config-dhcpv6)# end
```

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>vendor-specific <code>vendor-id</code> (Optional) Enters vendor-specific configuration mode and enter a vendor-specific identification number. This number is the vendor IANA Private Enterprise Number. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td>Step 6</td>
<td>suboption `number {address IPv6-address</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>exit</code> Returns to DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>exit</code> Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>interface <code>interface-id</code> Enters interface configuration mode, and specifies the interface to configure.</td>
</tr>
<tr>
<td>Step 10</td>
<td>`ipv6 dhcp server [poolname</td>
</tr>
<tr>
<td></td>
<td>- <code>poolname</code>—(Optional) User-defined name for the IPv6 DHCP pool. The pool name can be a symbolic string (such as Engineering) or an integer (such as 0).</td>
</tr>
<tr>
<td></td>
<td>- <code>automatic</code>—(Optional) Enables the system to automatically determine which pool to use when allocating addresses for a client.</td>
</tr>
<tr>
<td></td>
<td>- <code>rapid-commit</code>—(Optional) Allows two-message exchange method.</td>
</tr>
<tr>
<td></td>
<td>- <code>preference value</code>—(Optional) The preference value carried in the preference option in the advertise message sent by the server. The range is from 0 to 255. The preference value default is 0.</td>
</tr>
<tr>
<td></td>
<td>- <code>allow-hint</code>—(Optional) Specifies whether the server should consider client suggestions in the SOLICIT message. By default, the server ignores client hints.</td>
</tr>
<tr>
<td>Step 11</td>
<td><code>end</code> Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td><code>show ipv6 dhcp pool</code> or <code>show ipv6 dhcp interface</code> Verifies DHCPv6 pool configuration. Verifies that the DHCPv6 server function is enabled on an interface.</td>
</tr>
<tr>
<td>Step 13</td>
<td><code>copy running-config startup-config</code> (Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to configure a pool called testgroup with three link-addresses and an IPv6 address prefix:

```
Switch# configure terminal
Switch(config)# ipv6 dhcp pool testgroup
Switch(config-dhcpv6)# link-address 2001:1001::0/64
Switch(config-dhcpv6)# link-address 2001:1002::0/64
Switch(config-dhcpv6)# link-address 2001:2000::0/48
Switch(config-dhcpv6)# address prefix 2001:1003::0/64
Switch(config-dhcpv6)# end
```

This example shows how to configure a pool called 350 with vendor-specific options:

```
Switch# configure terminal
Switch(config)# ipv6 dhcp pool 350
Switch(config-dhcpv6)# address prefix 2001:1005::0/48
Switch(config-dhcpv6)# vendor-specific 9
Switch(config-dhcpv6-vs)# suboption 1 address 1000:235D::1
Switch(config-dhcpv6-vs)# suboption 2 ascii "IP-Phone"
Switch(config-dhcpv6-vs)# end
```

Enabling DHCPv6 Client Function

Beginning in privileged EXEC mode, follow these steps to enable DHCPv6 client function on an interface:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv6 address dhcp [rapid-commit]</td>
</tr>
<tr>
<td>Step 4</td>
<td>ipv6 dhcp client request [vendor-specific]</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ipv6 dhcp interface</td>
</tr>
</tbody>
</table>

To disable the DHCPv6 client function, use the `no ipv6 address dhcp` interface configuration command. To remove the DHCPv6 client request, use the `no ipv6 address dhcp client request` interface configuration command.

This example shows how to acquire an IPv6 address and to enable the rapid-commit option:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ipv6 address dhcp rapid-commit
```

This document describes only the DHCPv6 address assignment. For more information about configuring the DHCPv6 client, server, or relay agent functions, see the “Implementing DHCP for IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.
Configuring IPv6 ICMP Rate Limiting

ICMP rate limiting is enabled by default with a default interval between error messages of 100 milliseconds and a bucket size (maximum number of tokens to be stored in a bucket) of 10.

Beginning in privileged EXEC mode, follow these steps to change the ICMP rate-limiting parameters:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | ipv6 icmp error-interval interval [bucketsize] | Configures the interval and bucket size for IPv6 ICMP error messages:
 - interval—The interval (in milliseconds) between tokens being added to the bucket. The range is from 0 to 2147483647 milliseconds.
 - bucketsize—(Optional) The maximum number of tokens stored in the bucket. The range is from 1 to 200. |
| Step 3 | end | Returns to privileged EXEC mode. |
| Step 4 | show ipv6 interface [interface-id] | Verifies your entries. |
| Step 5 | copy running-config startup-config | (Optional) Saves your entries in the configuration file. |

To return to the default configuration, use the no ipv6 icmp error-interval global configuration command.

This example shows how to configure an IPv6 ICMP error message interval of 50 milliseconds and a bucket size of 20 tokens.

```
Switch(config)#ipv6 icmp error-interval 50 20
```

Configuring CEF and dCEF for IPv6

Cisco Express Forwarding (CEF) is a Layer 3 IP switching technology to improve network performance. CEF implements an advanced IP lookup and forwarding algorithm to deliver maximum Layer 3 switching performance. It is less CPU-intensive than fast-switching route-caching, allowing more CPU processing power to be dedicated to packet forwarding. In a Catalyst 3750-E switch stack, the hardware uses distributed CEF (dCEF) in the stack. IPv4 CEF and dCEF are enabled by default. IPv6 CEF and dCEF are disabled by default, but automatically enabled when you configure IPv6 routing.

To route IPv6 unicast packets, you must first globally configure forwarding of IPv6 unicast packets by using the ipv6 unicast-routing global configuration command, and you must configure an IPv6 address and IPv6 processing on an interface by using the ipv6 address interface configuration command.

To disable IPv6 CEF or distributed CEF, use the no ipv6 cef or no ipv6 cef distributed global configuration command. To reenable IPv6 CEF or dCEF if it has been disabled, use the ipv6 cef or ipv6 cef distributed global configuration command. You can verify the IPv6 state by entering the show ipv6 cef privileged EXEC command.

For more information about configuring CEF and dCEF, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.
Configuring Static Routing for IPv6

Before configuring a static IPv6 route, you must enable routing by using the `ip routing` global configuration command, enable the forwarding of IPv6 packets by using the `ipv6 unicast-routing` global configuration command, and enable IPv6 on at least one Layer 3 interface by configuring an IPv6 address on the interface.

Beginning in privileged EXEC mode, follow these steps to configure an IPv6 static route:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`ipv6 route ipv6-prefix/prefixlength [ipv6-address</td>
<td>interface-id [ipv6-address]] [administrative distance]`</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>ipv6-prefix</code>—The IPv6 network that is the destination of the static route. It can also be a hostname when static host routes are configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>/prefix length</code>—The length of the IPv6 prefix. A decimal value that shows how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>ipv6-address</code>—The IPv6 address of the next hop that can be used to reach the specified network. The IPv6 address of the next hop need not be directly connected; recursion is done to find the IPv6 address of the directly connected next hop. The address must be in the form documented in RFC 2373, specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>interface-id</code>—Specifies direct static routes from point-to-point and broadcast interfaces. With point-to-point interfaces, there is no need to specify the IPv6 address of the next hop. With broadcast interfaces, you should always specify the IPv6 address of the next hop, or ensure that the specified prefix is assigned to the link, specifying a link-local address as the next hop. You can optionally specify the IPv6 address of the next hop to which packets are sent.</td>
</tr>
<tr>
<td>Note</td>
<td>You must specify an <code>interface-id</code> when using a link-local address as the next hop (the link-local next hop must also be an adjacent router).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>administrative distance</code>—(Optional) An administrative distance. The range is 1 to 254; the default value is 1, which gives static routes precedence over any other type of route except connected routes. To configure a floating static route, use an administrative distance greater than that of the dynamic routing protocol.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IPv6 Unicast Routing

Configuring IPv6

To remove a configured static route, use the `no ipv6 route ipv6-prefix/prefix length {ipv6-address | interface interface-id} [administrative distance]` global configuration command.

This example shows how to configure a floating static route to an interface with an administrative distance of 130:

```
Switch(config)# ipv6 route 2001:0DB8::/32 gigabitethernet2/0/1 130
```

For more information about configuring static IPv6 routing, see the “Implementing Static Routes for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Configuring RIP for IPv6

Before configuring the switch to run IPv6 RIP, you must enable routing by using the `ip routing` global configuration command, enable the forwarding of IPv6 packets by using the `ipv6 unicast-routing` global configuration command, and enable IPv6 on any Layer 3 interfaces on which IPv6 RIP is to be enabled.

Beginning in privileged EXEC mode, follow these required and optional steps to configure IPv6 RIP:

Action or Command **Purpose**

Step 1 configure terminal Enters global configuration mode.

Step 2 ipv6 router rip name Configures an IPv6 RIP routing process, and enters router configuration mode for the process.

Step 3 maximum-paths number-paths (Optional) Defines the maximum number of equal-cost routes that IPv6 RIP can support. The range is from 1 to 64, and the default is four routes.

Step 4 exit Returns to global configuration mode.

Step 5 interface interface-id Enters interface configuration mode, and specifies the Layer 3 interface to configure.

Step 6 ipv6 rip name enable Enables the specified IPv6 RIP routing process on the interface.
To disable a RIP routing process, use the `no ipv6 router rip name` global configuration command. To disable the RIP routing process for an interface, use the `no ipv6 rip name` interface configuration command.

This example shows how to enable the RIP routing process `cisco` with a maximum of eight equal-cost routes and to enable it on an interface:

```
Switch(config)# ipv6 router rip cisco
Switch(config-router)# maximum-paths 8
Switch(config)# exit
Switch(config)# interface gigabitethernet2/0/11
Switch(config-if)# ipv6 rip cisco enable
```

For more information about configuring RIP routing for IPv6, see the “Implementing RIP for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com

Configuring OSPF for IPv6

You can customize OSPF for IPv6 for your network. However, the defaults for OSPF in IPv6 are set to meet the requirements of most customers and features.

Follow these guidelines:

- Be careful when changing the defaults for IPv6 commands. Changing the defaults might adversely affect OSPF for the IPv6 network.

- Before you enable IPv6 OSPF on an interface, you must enable routing by using the `ip routing` global configuration command, enable the forwarding of IPv6 packets by using the `ipv6 unicast-routing` global configuration command, and enable IPv6 on Layer 3 interfaces on which you are enabling IPv6 OSPF.
Beginning in privileged EXEC mode, follow these required and optional steps to configure IPv6 OSPF:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 router ospf process-id</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enables OSPF router configuration mode for the process. The process ID is the number assigned administratively when enabling the OSPF for IPv6 routing process. It is locally assigned and can be a positive integer from 1 to 65535.</td>
</tr>
<tr>
<td>Step 3</td>
<td>area area-id range {ipv6-prefix/prefix length} [advertise</td>
</tr>
<tr>
<td>Purpose</td>
<td>(Optional) Consolidates and summarizes routes at an area boundary.</td>
</tr>
<tr>
<td></td>
<td>• area-id—Identifier of the area about which routes are to be summarized. It can be specified as either a decimal value or as an IPv6 prefix.</td>
</tr>
<tr>
<td></td>
<td>• ipv6-prefix/prefix length—The destination IPv6 network and a decimal value that shows how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark (/) must precede the decimal value.</td>
</tr>
<tr>
<td></td>
<td>• advertise—(Optional) Sets the address range status to advertise and generate a Type 3 summary link-state advertisement (LSA).</td>
</tr>
<tr>
<td></td>
<td>• not-advertise—(Optional) Sets the address range status to DoNotAdvertise. The Type 3 summary LSA is suppressed, and component networks remain hidden from other networks.</td>
</tr>
<tr>
<td></td>
<td>• cost cost—(Optional) Metric or cost for this summary route, which is used during OSPF SPF calculation to determine the shortest paths to the destination. The value can be 0 to 16777215.</td>
</tr>
<tr>
<td>Step 4</td>
<td>maximum paths number-paths</td>
</tr>
<tr>
<td>Purpose</td>
<td>(Optional) Defines the maximum number of equal-cost routes to the same destination that IPv6 OSPF should enter in the routing table. The range is from 1 to 64, and the default is 16 paths.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Purpose</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 7</td>
<td>ipv6 ospf process-id area area-id [instance instance-id]</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enables OSPF for IPv6 on the interface.</td>
</tr>
<tr>
<td></td>
<td>• instance instance-id—(Optional) Instance identifier.</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td>Purpose</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>show ipv6 ospf [process-id] [area-id] interface [interface-id]</td>
</tr>
<tr>
<td>Purpose</td>
<td>Displays information about OSPF interfaces.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>show ipv6 ospf [process-id] [area-id]</td>
</tr>
<tr>
<td>Purpose</td>
<td>Displays general information about OSPF routing processes.</td>
</tr>
<tr>
<td>Step 10</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Purpose</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable an OSPF routing process, use the `no ipv6 router ospf process-id` global configuration command. To disable the OSPF routing process for an interface, use the `no ipv6 ospf process-id area area-id` interface configuration command.

For more information about configuring OSPF routing for IPv6, see the “Implementing OSPF for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Tuning LSA and SPF Timers for OSPFv3 Fast Convergence

Beginning in the privileged EXEC mode, follow these steps to tune LSA and SPF timers:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ipv6 router ospf process-id</td>
<td>Enables OSPFv3 router configuration mode.</td>
</tr>
<tr>
<td>Step 3 timers lsa arrival milliseconds</td>
<td>Sets the minimum interval at which the software accepts the same LSA from OSPFv3 neighbors.</td>
</tr>
<tr>
<td>Step 4 timers pacing flood milliseconds</td>
<td>Configures LSA flood packet pacing.</td>
</tr>
<tr>
<td>Step 5 timers pacing lsa-group seconds</td>
<td>Changes the interval at which OSPFv3 LSAs are collected into a group and refreshed, checksummed, or aged.</td>
</tr>
<tr>
<td>Step 6 timers pacing retransmission milliseconds</td>
<td>Configures LSA retransmission packet pacing in OSPFv3.</td>
</tr>
</tbody>
</table>

Configuring LSA and SPF Throttling for OSPFv3 Fast Convergence

Beginning in the privileged EXEC mode, follow these steps to configure LSA and SPF throttling:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ipv6 router ospf process-id</td>
<td>Enables OSPFv3 router configuration mode.</td>
</tr>
<tr>
<td>Step 3 timers throttle spf spf-start spf-hold spf-max-wait</td>
<td>Turns on SPF throttling.</td>
</tr>
<tr>
<td>Step 4 timers throttle lsa start-interval hold-interval max-interval</td>
<td>Sets rate-limiting values for OSPFv3 LSA generation.</td>
</tr>
<tr>
<td>Step 5 timers lsa arrival milliseconds</td>
<td>Sets the minimum interval at which the software accepts the same LSA from OSPFv3 neighbors.</td>
</tr>
<tr>
<td>Step 6 timers pacing flood milliseconds</td>
<td>Configures LSA flood packet pacing.</td>
</tr>
</tbody>
</table>

For more information, see the “Enabling Event Logging for LSA and SPF Rate Limiting,” “Verifying OSPFv3 Configuration and Operation,” and “Example: Configuring LSA and SPF Throttling for OSPFv3 Fast Convergence” sections of the Implementing OSPFv3 chapter of the Cisco IOS IPv6 Configuration Library on Cisco.com.
Configuring IPsec on OSPFv3

Note

To enable authentication and encryption, configure the IP Security (IPsec) secure socket application program interface (API) on OSPFv3.

For information about configuring IPsec, see the following sections of the *Cisco IOS IPv6 Configuration Library* on Cisco.com:

- Defining Authentication on an Interface
- Defining Encryption on an Interface
- Defining Authentication in an OSPFv3 Area
- Defining Encryption in an OSPFv3 Area
- Defining Authentication and Encryption for a Virtual Link in an OSPFv3 Area
- Verifying OSPFv3 Configuration and Operation

Configuring EIGRP for IPv6

By default, EIGRP for IPv6 is disabled. You can configure EIGRP for IPv6 on an interface. After configuring the router and the interface for EIGRP, enter the `no shutdown` privileged EXEC command to start EIGRP.

Note

If EIGRP for IPv6 is not in shutdown mode, EIGRP might start running before you enter the EIGRP router-mode commands to configure the router and the interface.

To set an explicit router ID, use the `show ipv6 eigrp` command to see the configured router IDs, and then use the `router-id` command.

As with EIGRP IPv4, you can use EIGRPv6 to specify your EIGRP IPv4 interfaces and to select a subset of those as passive interfaces. Use the `passive-interface default` command to make all interfaces passive, and then use the `no passive-interface` command on selected interfaces to make them active.

EIGRP IPv6 does not need to be configured on a passive interface.

For more configuration procedures, see the “Implementing EIGRP for IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

Configuring HSRP for IPv6

Hot Standby Router Protocol (HSRP) for IPv6 provides routing redundancy for routing IPv6 traffic not dependent on the availability of any single router.

When HSRP for IPv6 is enabled on a switch, IPv6 hosts learn of available IPv6 routers through IPv6 neighbor discovery router advertisement messages. An HSRP IPv6 group has a virtual MAC address that is derived from the HSRP group number. By default, the group has a virtual IPv6 link-local address that is derived from the HSRP virtual MAC address. Periodic messages are sent for the HSRP virtual IPv6 link-local address when the HSRP group is active.

When configuring HSRP for IPv6, you must enable HSRP version 2 (HSRPv2) on the interface.
For configuration guidelines when configuring HSRP for IPv6 with HSRPv1 and HSRPv2, see the “Default HSRP Configuration” section on page 1-5 and the “Troubleshooting HSRP for Mixed Stacks of Catalyst 3750-X, 3750-E and 3750 Switches” section on page 1-12.

For more information about HSRP for IPv6 and HSRPv2, see the Chapter 1, “Configuring HSRP and VRRP.”

Note

Before configuring an HSRP for IPv6 group, you must enable the forwarding of IPv6 packets by using the `ipv6 unicast-routing` global configuration command and enable IPv6 on the interface on which you will configure an HSRP for IPv6 group.

Enabling HSRP Version 2

Beginning in privileged EXEC mode, follow these steps to enable HSRP version 2 on a Layer 3 interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enters interface configuration mode, and enter the Layer 3 interface on which you want to specify the standby version.</td>
</tr>
<tr>
<td>3</td>
<td>standby version {1</td>
<td>2}</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show standby</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Enabling an HSRP Group for IPv6

Beginning in privileged EXEC mode, follow these steps to create or enable HSRP for IPv6 on a Layer 3 interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enters interface configuration mode, and enter the Layer 3 interface on which you want to enable HSRP for IPv6.</td>
</tr>
</tbody>
</table>
Configuring IPv6 Unicast Routing

Chapter 1

Catalyst 3750-X and 3560-X Switch Software Configuration Guide

Action or Command

Purpose

Step 3

```bash
standby [group-number] ipv6 [link-local-address | autoconfig]
```

Creates (or enables) the HSRP for IPv6 group.

- **(Optional) group-number** — The group number on the interface for which HSRP is being enabled. The range is 0 to 4095. The default is 0. If there is only one HSRP group, you do not need to enter a group number.

- **Enter the link-local address of the hot standby router interface, or enable the link-local address to be generated automatically from the link-local prefix and a modified EUI-64 format interface identifier, where the EUI-64 interface identifier is created from the relevant HSRP virtual MAC address.**

Step 4

```bash
standby [group-number] preempt [delay {minimum seconds | reload seconds | sync seconds}]
```

Configures the router to **preempt**, which means that when the local router has a higher priority than the active router, it assumes control as the active router.

- **(Optional) group-number** — The group number to which the command applies.

- **(Optional) delay** — Sets the local router to postpone taking over the active role for the shown number of seconds. The range is 0 to 3600 (1 hour). The default is 0 (no delay before taking over).

- **(Optional) reload** — Sets the preemption delay, in seconds, after a reload. The delay period applies only to the first interface-up event after the router reloads.

- **(Optional) sync** — Sets the maximum synchronization period, in seconds, for IP redundancy clients.

Use the **no** form of the command to restore the default values.

Step 5

```bash
standby [group-number] priority priority
```

Sets a **priority** value used in choosing the active router. The range is 1 to 255; the default priority is 100. The highest number represents the highest priority.

Use the **no** form of the command to restore the default values.

Step 6

```bash
end
```

Returns to privileged EXEC mode.

Step 7

```bash
show standby [interface-id [group-number]]
```

Verifies the configuration.

Step 8

```bash
copy running-config startup-config
```

(Optional) Saves your entries in the configuration file.

Note

This procedure is the minimum number of steps required to enable HSRP for IPv6. Other configurations are optional.

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby 1 ipv6 autoconfig

This example shows how to activate HSRP for IPv6 for group 1 on a port. The IP address used by the hot standby group is learned by using HSRP for IPv6.
Switch(config-if)# end
Switch# show standby

For more information about configuring HSRP for IPv6, see the “Configuring First Hop Redundancy Protocols in IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Configuring Multi-VRF CE

The switch supports multiple VPN routing/forwarding (multi-VRF) instances in customer edge (CE) devices (multi-VRF CE) when it is running the IP Services feature set. Multi-VRF CE allows a service provider to support two or more VPNs with overlapping IP addresses.

To understand multi-VRF CE, see the “Understanding Multi-VRF CE” section on page 1-77.

Multi-VRF CE can be configured for a particular IP address family (IPv4 or IPv6 or both). This section provides information about multi-VRF CE for IPv6.

Note

The switch does not use Multiprotocol Label Switching (MPLS) to support VPNs. IPv6 multicast routing is not supported on a VRF associated interface.

- Default Multi-VRF CE Configuration, page 1-79
- Configuring VRFs, page 1-41
- Configuring VRF-Aware Services, page 1-81
- Configuring a VPN Routing Session, page 1-86
- Configuring BGP PE to CE Routing Sessions, page 1-45
- Multi-VRF CE Configuration Example, page 1-46
- Displaying Multi-VRF CE Status, page 1-91

Default Multi-VRF CE Configuration

<table>
<thead>
<tr>
<th>Table 1-2 Default VRF Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
</tr>
<tr>
<td>VRF</td>
</tr>
<tr>
<td>Maps</td>
</tr>
<tr>
<td>Forwarding table</td>
</tr>
</tbody>
</table>

Configuring VRFs

Beginning in privileged EXEC mode, follow these steps to configure one or more VRFs.
Chapter 1 Configuring IPv6 Unicast Routing

Configuring Multi-VRF CE

Use the no vrf definition vrf-name global configuration command to delete a VRF and to remove all interfaces from it. Use the no vrf forwarding vrf-name interface configuration command to remove an interface from the VRF.

Configuring VRF-Aware Services

These services are VRF-Aware:
- Neighbor discovery
- Ping
- Hot Standby Router Protocol (HSRP)
- Traceroute
- FTP and TFTP

User Interface for Neighbor Discovery

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for Neighbor discovery.
User Interface for PING

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for ping.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ping vrf vrf-name ipv6 ipv6-address</code></td>
<td>Verifies the address reachability for a specified VRF.</td>
</tr>
</tbody>
</table>

User Interface for HSRP

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for HSRP.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>interface interface-id</code></td>
<td>Enters interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>3</td>
<td><code>no switchport</code></td>
<td>Removes the interface from Layer 2 configuration mode if it is a physical interface.</td>
</tr>
<tr>
<td>4</td>
<td><code>vrf forwarding vrf-name</code></td>
<td>Configures VRF on the interface.</td>
</tr>
<tr>
<td>5</td>
<td><code>ipv6 address ipv6-address</code></td>
<td>Enters the IPv6 address for the interface.</td>
</tr>
<tr>
<td>6</td>
<td><code>standby 1 ipv6 ipv6-address</code></td>
<td>Enables HSRP and configure the virtual IP address.</td>
</tr>
<tr>
<td>7</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

User Interface for Traceroute

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for traceroute.

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>traceroute vrf vrf-name ipv6-address</code></td>
<td>Specifies the name of a VPN VRF in which to find the destination address.</td>
</tr>
</tbody>
</table>

User Interface for FTP and TFTP

To specify the source IP address for FTP connections, use the `ip ftp source-interface` command. To use the address of the interface where the connection is made, use the `no` form of this command.
Configuring Multi-VRF CE

To specify the IP address of an interface as the source address for TFTP connections, use the `ip tftp source-interface` command. To return to the default, use the `no` form of this command.

```
<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>ip tftp source-interface interface-type</code></td>
<td>Specifies the source IP address for FTP connections.</td>
</tr>
<tr>
<td></td>
<td><code>interface-number</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
```

Configuring a VPN Routing Session

Routing within the VPN can be configured with static routing or with any supported routing protocol (OSPF, EIGRP, or BGP).

Static Route

```
<table>
<thead>
<tr>
<th>Step</th>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>ipv6 route [vrf vrf-name]</code></td>
<td>Configures static routes specific to VRF.</td>
</tr>
<tr>
<td></td>
<td><code>ipv6-prefix/prefix-length</code> <code>ipv6-address</code> <code>interface-type</code> <code>interface-number</code> <code>ipv6-address</code></td>
<td></td>
</tr>
</tbody>
</table>
```

Routing Protocols

The configuration shown here is for OSPF, but the process is the same for other protocols.

Note

To configure an EIGRP routing process to run within a VRF instance, you must configure an autonomous-system number by entering the `autonomous-system autonomous-system-number` address-family configuration mode command.
Beginning in privileged EXEC mode, follow these steps to configure OSPF in the VPN:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router ospfv3 process-id</td>
<td>Enables OSPF routing, specifies a VPN forwarding table, and enters router configuration mode.</td>
</tr>
<tr>
<td>Step 3 router router-id</td>
<td>Specifies the OSPF router-id in IP address format for this OSPFv3 process.</td>
</tr>
<tr>
<td>Step 4 log-adjacency-changes</td>
<td>(Optional) Logs changes in the adjacency state. This is the default state.</td>
</tr>
<tr>
<td>Step 5 address-family ipv6 unicast vrf vrf-name</td>
<td>Enters address family command mode for the VRF.</td>
</tr>
<tr>
<td>Step 6 area area-id normal</td>
<td>Specifies OSPFv3 area parameters and type.</td>
</tr>
<tr>
<td>Step 7 redistribute bgp autonomous-system-number</td>
<td>Redistributes routes from BGP routing process to OSPF routing process.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9 show ospfv3 vrf vrf-name</td>
<td>Verifies the configuration of the OSPFv3 network.</td>
</tr>
<tr>
<td>Step 10 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no router ospfv3 process-id global configuration command to disassociate the VPN forwarding table from the OSPF routing process.

Configuring BGP PE to CE Routing Sessions

Beginning in privileged EXEC mode, follow these steps to configure a BGP PE to CE routing session:

<table>
<thead>
<tr>
<th>Action or Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router bgp autonomous-system-number</td>
<td>Configures the BGP routing process with the AS number passed to other BGP routers, and enters router configuration mode.</td>
</tr>
<tr>
<td>Step 3 bgp router-id router-id</td>
<td>(Optional) Configures a fixed 32-bit router id as the identifier of the local router running BGP.</td>
</tr>
<tr>
<td>Step 4 redistribute ospf process-id</td>
<td>Sets the switch to redistribute OSPF internal routes.</td>
</tr>
<tr>
<td>Step 5 address family ipv6 vrf vrf-name</td>
<td>Defines BGP parameters for PE to CE routing sessions, and enters VRF address-family mode.</td>
</tr>
<tr>
<td>Step 6 network ipv6 network-number</td>
<td>Specifies an IPv6 Network number to announce via BGP.</td>
</tr>
<tr>
<td>Step 7 neighbor ipv6 address remote-as as-number</td>
<td>Defines a BGP session between PE and CE routers.</td>
</tr>
<tr>
<td>Step 8 neighbor address activate</td>
<td>Activates the advertisement of the address family.</td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10 show bgp vrf vrf-name</td>
<td>Verifies BGP configuration on the VRF.</td>
</tr>
<tr>
<td>Step 11 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Use the **no router bgp autonomous-system-number** global configuration command to delete the BGP routing process. Use the command with keywords to delete routing characteristics.

Multi-VRF CE Configuration Example

Figure 1-2 is a simplified example of the physical connections in a network similar to that in **Figure 1-6**. OSPF is the protocol used in VPN1, VPN2, and the global network. BGP is used in the CE to PE connections. The examples following the illustration show how to configure a switch as CE Switch A, and the VRF configuration for customer switches D and E. Commands for configuring CE Switch C and the other customer switches are not included but would be similar.

Configuring Switch A

On Switch A, enable routing and configure VRF.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ipv6 unicast-routing
Switch(config)# vrf definition v11
Switch(config-vrf)# rd 11:1
Switch(config-vrf)# address-family ipv6
Switch(config-vrf-af)# exit
Switch(config-vrf)# vrf definition v12
Switch(config-vrf)# rd 12:1
Switch(config-vrf)# address-family ipv6
Switch(config-vrf-af)# end
```
Configure the physical interfaces on Switch A. Gigabit Ethernet interface 1/0/24 is a trunk connection to the PE. Gigabit Ethernet ports 1/0/1 and 1/0/2 connect to VPNs.

Configure the VLANs used on Switch A. VLAN 10 is used by VRF11 between the CE and the PE. VLAN 20 is used by VRF12 between the CE and the PE. VLANs 118 and 208 are used for the VPNs that include Switch E and Switch D, respectively.

Configure OSPFv3 routing on VPN1 and VPN2.

Configure BGP for CE to PE routing.
Switch(config-router-af)# redistribute ospf 1
Switch(config-router-af)# neighbor 1000::2 remote-as 100
Switch(config-router-af)# neighbor 1000::2 activate
Switch(config-router-af)# network 3000::/64
Switch(config-router-af)# exit

Switch(config-router)# address-family ipv6 vrf v12
Switch(config-router-af)# redistribute ospf 2
Switch(config-router-af)# neighbor 2000::2 remote-as 100
Switch(config-router-af)# neighbor 2000::2 activate
Switch(config-router-af)# network 4000::/64

Configuring Switch D

Switch D belongs to VPN 1. Configure the connection to Switch A by using these commands.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ipv6 unicast-routing
Switch(config)# interface GigabitEthernet 5/0/16
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 3000::2/64
Switch(config-if)# exit

Switch(config-router)# router ospfv3 101
Switch(config-router)# address-family ipv6
Switch(config-router-af)# area 0 normal
Switch(config-router-af)# redistribute connected
Switch(config-router-af)# exit
Switch(config-router)# exit

Configuring Switch E

Switch E belongs to VPN 2. Configure the connection to Switch A by using these commands.

Switch(config)# ipv6 unicast-routing
Switch(config)# interface gigabitEthernet 3/0/13
Switch(config-if)# switchport access vlan 20
Switch(config-if)# exit
Switch(config)# interface vlan 20
Switch(config-if)# ipv6 address 4000::2/64
Switch(config-if)# exit
Switch(config)# router ospfv3 101
Switch(config-router)# address-family ipv6
Switch(config-router-af)# area 0 normal
Switch(config-router-af)# redistribute connected
Switch(config-router-af)# exit

Configuring the PE Switch B

When used on switch B (the PE router), these commands configure only the connections to the CE device, Switch A.

Switch(config)# vrf definition v1
Switch(config-vrf)# rd 1:1
Switch(config-vrf)# address-family ipv6
Switch(config-vrf-af)# exit
Switch(config-vrf)# exit
Switch(config)# vrf definition v2
Switch(config-vrf)# rd 2:1
Switch(config-vrf)# address-family ipv6
Switch(config-vrf-af)# exit
Switch(config-vrf)# exit

Switch(config-if)# interface g 1/0/2
Switch(config-if)# vrf forwarding v1
Switch(config-if)# ipv6 address 1000::2/64
Switch(config-if)# exit
Switch(config)# interface g 1/0/4
Switch(config-if)# vrf forwarding v2
Switch(config-if)# ipv6 address 2000::2/64

Switch(config-if)# interface gigabitEthernet 1/0/1
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk

Switch(config)# router bgp 100
Switch(config-router)# address-family ipv6 vrf v1
Switch(config-router-af)# neighbor 1000::1 remote-as 100
Switch(config-router-af)# neighbor 1000::1 activate
Switch(config-router-af)# network 3000::/64
Switch(config-router-af)# exit

Displaying Multi-VRF CE Status

Table 1-3 Commands for Displaying Multi-VRF CE Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 protocols vrf vrf-name</td>
<td>Displays routing protocol information associated with a VRF.</td>
</tr>
<tr>
<td>show ipv6 route vrf vrf-name [connected] [protocol [as-number]] [list] [mobile] [odr] [profile] [static] [summary] [supernets-only]</td>
<td>Displays IP routing table information associated with a VRF.</td>
</tr>
<tr>
<td>show ipv6 vrf [brief</td>
<td>detail</td>
</tr>
</tbody>
</table>

Displaying IPv6

For complete syntax and usage information on these commands, see the Cisco IOS command reference publications.

Table 1-4 Commands for Monitoring IPv6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 access-list</td>
<td>Displays a summary of access lists.</td>
</tr>
<tr>
<td>show ipv6 cef</td>
<td>Displays Cisco Express Forwarding for IPv6.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IPv6 Unicast Routing

Table 1-4 Commands for Displaying EIGRP IPv6 Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 eigrp [as-number] interface</td>
<td>Displays information about interfaces configured for EIGRP IPv6.</td>
</tr>
<tr>
<td>show ipv6 eigrp [as-number] neighbor</td>
<td>Displays the neighbors discovered by EIGRP IPv6.</td>
</tr>
<tr>
<td>show ipv6 eigrp [as-number] traffic</td>
<td>Displays the number of EIGRP IPv6 packets sent and received.</td>
</tr>
<tr>
<td>show ipv6 eigrp topology [as-number</td>
<td>ipv6-address] [active</td>
</tr>
</tbody>
</table>

Table 1-6 Commands for Displaying IPv4 and IPv6 Address Types

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip http server history</td>
<td>Displays the previous 20 connections to the HTTP server, including the IP address accessed and the time when the connection was closed.</td>
</tr>
<tr>
<td>show ip http server connection</td>
<td>Displays the current connections to the HTTP server, including the local and remote IP addresses being accessed.</td>
</tr>
<tr>
<td>show ip http client connection</td>
<td>Displays the configuration values for HTTP client connections to HTTP servers.</td>
</tr>
<tr>
<td>show ip http client history</td>
<td>Displays a list of the last 20 requests made by the HTTP client to the server.</td>
</tr>
</tbody>
</table>

This is an example of the output from the show ipv6 interface privileged EXEC command:

```
Switch# show ipv6 interface
Vlan1 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::20B:46FF:FE2F:D940
  Global unicast address(es):
    3FFE:C000:0:1:20B:46FF:FE2F:D940, subnet is 3FFE:C000:0:1::/64 [EUI]
  Joined group address(es):
    FF02::1
```
602::2
602::1:FF2F:D940
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 3000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
<output truncated>
Chapter 1

Configuring HSRP and VRRP

This chapter describes how to use Hot Standby Router Protocol (HSRP) on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch to provide routing redundancy for routing IP traffic without being dependent on the availability of any single router. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

You can also use a version of HSRP in Layer 2 mode to configure a redundant command switch to take over cluster management if the cluster command switch fails. For more information about clustering, see Chapter 1, “Clustering Switches” and see the Getting Started with Cisco Network Assistant, available on Cisco.com. If the switch is running the LAN base feature set, only Layer 2 mode is supported.

Cisco IOS Release 12.2(58)SE adds support for the Virtual Router Redundancy Protocol (VRRP) for IPv4 and IPv6 on switches running the IP base image.

For complete syntax and usage information for the commands used in this chapter, see these documents:
- Switch command reference for this release

This chapter consists of these sections:
- Understanding HSRP, page 1-1
- Configuring HSRP, page 1-5
- Displaying HSRP Configurations, page 1-13
- Configuring VRRP, page 1-13

Understanding HSRP

HSRP is Cisco’s standard method of providing high network availability by providing first-hop redundancy for IP hosts on an IEEE 802 LAN configured with a default gateway IP address. HSRP routes IP traffic without relying on the availability of any single router. It enables a set of router interfaces to work together to present the appearance of a single virtual router or default gateway to the hosts on a LAN. When HSRP is configured on a network or segment, it provides a virtual Media Access Control (MAC) address and an IP address that is shared among a group of configured routers. HSRP allows two or more HSRP-configured routers to use the MAC address and IP network address of a virtual router. The virtual router does not exist; it represents the common target for routers that are configured to
provide backup to each other. One of the routers is selected to be the active router and another to be the standby router, which assumes control of the group MAC address and IP address should the designated active router fail.

Note

Routers in an HSRP group can be any router interface that supports HSRP, including Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X routed ports and switch virtual interfaces (SVIs). Switches running the LAN base feature set support only static routing on SVIs.

HSRP provides high network availability by providing redundancy for IP traffic from hosts on networks. In a group of router interfaces, the active router is the router of choice for routing packets; the standby router is the router that takes over the routing duties when an active router fails or when preset conditions are met.

HSRP is useful for hosts that do not support a router discovery protocol and cannot switch to a new router when their selected router reloads or loses power. When HSRP is configured on a network segment, it provides a virtual MAC address and an IP address that is shared among router interfaces in a group of router interfaces running HSRP. The router selected by the protocol to be the active router receives and routes packets destined for the group’s MAC address. For \(n \) routers running HSRP, there are \(n + 1 \) IP and MAC addresses assigned.

HSRP detects when the designated active router fails, and a selected standby router assumes control of the Hot Standby group’s MAC and IP addresses. A new standby router is also selected at that time. Devices running HSRP send and receive multicast UDP-based hello packets to detect router failure and to designate active and standby routers. When HSRP is configured on an interface, Internet Control Message Protocol (ICMP) redirect messages are automatically enabled for the interface.

You can configure multiple Hot Standby groups among switches and switch stacks that are operating in Layer 3 to make more use of the redundant routers. To do so, specify a group number for each Hot Standby command group you configure for an interface. For example, you might configure an interface on switch 1 as an active router and one on switch 2 as a standby router and also configure another interface on switch 2 as an active router with another interface on switch 1 as its standby router.

Figure 1-1 shows a segment of a network configured for HSRP. Each router is configured with the MAC address and IP network address of the virtual router. Instead of configuring hosts on the network with the IP address of Router A, you configure them with the IP address of the virtual router as their default router. When Host C sends packets to Host B, it sends them to the MAC address of the virtual router. If for any reason, Router A stops transferring packets, Router B responds to the virtual IP address and virtual MAC address and becomes the active router, assuming the active router duties. Host C continues to use the IP address of the virtual router to address packets destined for Host B, which Router B now receives and sends to Host B. Until Router A resumes operation, HSRP allows Router B to provide uninterrupted service to users on Host C’s segment that need to communicate with users on Host B’s segment and also continues to perform its normal function of handling packets between the Host A segment and Host B.
HSRP Versions

Cisco IOS Release 12.2(46)SE and later support these Hot Standby Router Protocol (HSRP) versions:

The switch supports these HSRP versions:

- **HSRPv1**—Version 1 of the HSRP, the default version of HSRP. It has these features:
 - The HSRP group number can be from 0 to 255.
 - HSRPv1 uses the multicast address 224.0.0.2 to send hello packets, which can conflict with Cisco Group Management Protocol (CGMP) leave processing. You cannot enable HSRPv1 and CGMP at the same time; they are mutually exclusive.

- **HSRPv2**—Version 2 of the HSRP has these features:
 - To match the HSRP group number to the VLAN ID of a subinterface, HSRPv2 can use a group number from 0 to 4095 and a MAC address from 0000.0C9F.F000 to 0000.0C9F.FFFF.
 - HSRPv2 uses the multicast address 224.0.0.102 to send hello packets. HSRPv2 and CGMP leave processing are no longer mutually exclusive, and both can be enabled at the same time.
 - HSRPv2 has a different packet format than HRPv1.

A switch running HSRPv1 cannot identify the physical router that sent a hello packet because the source MAC address of the router is the virtual MAC address.
HSRPv2 has a different packet format than HSRPv1. A HSRPv2 packet uses the type-length-value (TLV) format and has a 6-byte identifier field with the MAC address of the physical router that sent the packet.

If an interface running HSRPv1 gets an HSRPv2 packet, the type field is ignored.

Multiple HSRP

The switch supports Multiple HSRP (MHSRP), an extension of HSRP that allows load sharing between two or more HSRP groups. You can configure MHSRP to achieve load-balancing and to use two or more standby groups (and paths) from a host network to a server network.

In Figure 1-2, half the clients are configured for Router A, and half the clients are configured for Router B. Together, the configuration for Routers A and B establishes two HSRP groups. For group 1, Router A is the default active router because it has the assigned highest priority, and Router B is the standby router. For group 2, Router B is the default active router because it has the assigned highest priority, and Router A is the standby router. During normal operation, the two routers share the IP traffic load. When either router becomes unavailable, the other router becomes active and assumes the packet-transfer functions of the router that is unavailable.

See the “Configuring MHSRP” section on page 1-10 for the example configuration steps.

For MHSRP, you need to enter the `standby preempt` interface configuration command on the HSRP interfaces so that if a router fails and then comes back up, preemption restores load sharing.
HSRP and Switch Stacks

HSRP hello messages are generated by the stack master. If an HSRP-active stack master fails, a flap in the HSRP active state might occur. This is because HSRP hello messages are not generated while a new stack master is elected and initialized, and the standby router might become active after the stack master fails.

Configuring HSRP

- Default HSRP Configuration, page 1-5
- HSRP Configuration Guidelines, page 1-6
- Enabling HSRP, page 1-6
- Configuring HSRP Priority, page 1-8
- Configuring MHSRP, page 1-10
- Configuring HSRP Authentication and Timers, page 1-10
- Enabling HSRP Support for ICMP Redirect Messages, page 1-12
- Configuring HSRP Groups and Clustering, page 1-12
- Troubleshooting HSRP for Mixed Stacks of Catalyst 3750-X, 3750-E and 3750 Switches, page 1-12

Default HSRP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSRP version</td>
<td>Version 1</td>
</tr>
<tr>
<td>HSRP groups</td>
<td>None configured</td>
</tr>
<tr>
<td>Standby group number</td>
<td>0</td>
</tr>
<tr>
<td>Standby MAC address</td>
<td>System assigned as: 0000.0c07.acXX, where XX is the HSRP group number</td>
</tr>
<tr>
<td>Standby priority</td>
<td>100</td>
</tr>
<tr>
<td>Standby delay</td>
<td>0 (no delay)</td>
</tr>
<tr>
<td>Standby track interface priority</td>
<td>10</td>
</tr>
<tr>
<td>Standby hello time</td>
<td>3 seconds</td>
</tr>
<tr>
<td>Standby holdtime</td>
<td>10 seconds</td>
</tr>
</tbody>
</table>
HSRP Configuration Guidelines

- HSRPv2 and HSRPv1 are mutually exclusive. HSRPv2 is not interoperable with HSRPv1 on an interface and the reverse.

- In the procedures, the specified interface must be one of these Layer 3 interfaces:
 - Routed port: a physical port configured as a Layer 3 port by entering the `no switchport` interface configuration command.
 - SVI: a VLAN interface created by using the `interface vlan vlan_id` global configuration command and by default a Layer 3 interface.
 - Etherchannel port channel in Layer 3 mode: a port-channel logical interface created by using the `interface port-channel port-channel-number` global configuration command and binding the Ethernet interface into the channel group. For more information, see the “Configuring Layer 3 EtherChannels” section on page 1-16.

- All Layer 3 interfaces must have IP addresses assigned to them. See the “Configuring Layer 3 Interfaces” section on page 1-38.

- The version of an HSRP group can be changed from HSRPv2 to HSRPv1 only if the group number is less than 256.

- If you change the HSRP version on an interface, each HSRP group resets because it now has a new virtual MAC address.

- Only on mixed stacks of Catalyst 3750-X or Catalyst 3750-E and 3750 switches:
 - HSRP for IPv4 and HSRP for IPv6 are mutually exclusive. You cannot enable both at the same time.
 - HSRP groups can be configured up to 32 instances.
 - Configure only one instance of a First Hop Redundancy Protocol (FHRP). The switches support HSRPv1, HSRPv2, and HSRP for IPv6.
 - When configuring group numbers for HSRPv2 and HSRP, you must use group numbers in ranges that are multiples of 256. Valid ranges are 0 to 255, 256 to 511, 512 to 767, 3840 to 4095, and so on.

Examples of valid and invalid group numbers:

If you configure groups with the numbers 2, 150, and 225, you cannot configure another group with the number 3850. It is not in the range of 0 to 255.

If you configure groups with the numbers 520, 600, and 700, you cannot configure another group with the number 900. It is not in the range of 512 to 767.

Enabling HSRP

The `standby ip` interface configuration command activates HSRP on the configured interface. If an IP address is specified, that address is used as the designated address for the Hot Standby group. If no IP address is specified, the address is learned through the standby function. You must configure at least one Layer 3 port on the LAN with the designated address. Configuring an IP address always overrides another designated address currently in use.

When the `standby ip` command is enabled on an interface and proxy ARP is enabled, if the interface’s Hot Standby state is active, proxy ARP requests are answered using the Hot Standby group MAC address. If the interface is in a different state, proxy ARP responses are suppressed.
Beginning in privileged EXEC mode, follow these steps to create or enable HSRP on a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>standby version {1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you do not enter this command or do not specify a keyword, the interface runs the default HSRP version, HSRP v1.</td>
</tr>
<tr>
<td>Step 4</td>
<td>standby [group-number] ip [ip-address [secondary]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show standby [interface-id [group]]</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no standby [group-number] ip [ip-address] interface configuration command to disable HSRP.

This example shows how to activate HSRP for group 1 on an interface. The IP address used by the hot standby group is learned by using HSRP.

Note

This procedure is the minimum number of steps required to enable HSRP. Other configuration is optional.

```bash
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby 1 ip
Switch(config-if)# end
Switch# show standby
```
Configuring HSRP Priority

The standby priority, standby preempt, and standby track interface configuration commands are all used to set characteristics for finding active and standby routers and behavior regarding when a new active router takes over.

When configuring HSRP priority, follow these guidelines:

- Assigning a priority allows you to select the active and standby routers. If preemption is enabled, the router with the highest priority becomes the active router. If priorities are equal, the current active router does not change.
- The highest number (1 to 255) represents the highest priority (most likely to become the active router).
- When setting the priority, preempt, or both, you must specify at least one keyword (priority, preempt, or both).
- The priority of the device can change dynamically if an interface is configured with the standby track command and another interface on the router goes down.
- The standby track interface configuration command ties the router hot standby priority to the availability of its interfaces and is useful for tracking interfaces that are not configured for HSRP. When a tracked interface fails, the hot standby priority on the device on which tracking has been configured decreases by 10. If an interface is not tracked, its state changes do not affect the hot standby priority of the configured device. For each interface configured for hot standby, you can configure a separate list of interfaces to be tracked.
- The standby track interface-priority interface configuration command specifies how much to decrement the hot standby priority when a tracked interface goes down. When the interface comes back up, the priority is incremented by the same amount.
- When multiple tracked interfaces are down and interface-priority values have been configured, the configured priority decrements are cumulative. If tracked interfaces that were not configured with priority values fail, the default decrement is 10, and it is noncumulative.
- When routing is first enabled for the interface, it does not have a complete routing table. If it is configured to preempt, it becomes the active router, even though it is unable to provide adequate routing services. To solve this problem, configure a delay time to allow the router to update its routing table.

Beginning in privileged EXEC mode, use one or more of these steps to configure HSRP priority characteristics on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and enter the HSRP interface on which you want to set priority.</td>
</tr>
</tbody>
</table>
| Step 3 standby [group-number] priority | Set a priority value used in choosing the active router. The range is 1 to 255; the default priority is 100. The highest number represents the highest priority.
 *(Optional) group-number—The group number to which the command applies. Use the no form of the command to restore the default values. |
Step 4

Command

```
standby [group-number] preempt [delay [minimum seconds] [reload seconds] [sync seconds]]
```

Purpose

Configure the router to **preempt**, which means that when the local router has a higher priority than the active router, it becomes the active router.

- **group-number** (Optional) — The group number to which the command applies.
- **delay minimum** (Optional) — Set to cause the local router to postpone taking over the active role for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over).
- **delay reload** (Optional) — Set to cause the local router to postpone taking over the active role after a reload for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over after a reload).
- **delay sync** (Optional) — Set to cause the local router to postpone taking over the active role so that IP redundancy clients can reply (either with an *ok* or *wait* reply) for the number of seconds shown. The range is 0 to 3600 seconds (1 hour); the default is 0 (no delay before taking over).

Use the **no** form of the command to restore the default values.

Step 5

Command

```
standby [group-number] track type number [interface-priority]
```

Purpose

Configure an interface to track other interfaces so that if one of the other interfaces goes down, the device’s Hot Standby priority is lowered.

- **group-number** (Optional) — The group number to which the command applies.
- **type** — Enter the interface type (combined with interface number) that is tracked.
- **number** — Enter the interface number (combined with interface type) that is tracked.
- **interface-priority** (Optional) — Enter the amount by which the hot standby priority for the router is decremented or incremented when the interface goes down or comes back up. The default value is 10.

Step 6

Command

```
end
```

Purpose

Return to privileged EXEC mode.

Step 7

Command

```
show running-config
```

Purpose

Verify the configuration of the standby groups.

Step 8

Command

```
copy running-config startup-config
```

Purpose

(Optional) Save your entries in the configuration file.

Use the **no standby [group-number] priority priority [preempt [delay delay]]** and **no standby [group-number] [priority priority] preempt [delay delay]** interface configuration commands to restore default priority, preempt, and delay values.

Use the **no standby [group-number] track type number [interface-priority]** interface configuration command to remove the tracking.

This example activates a port, sets an IP address and a priority of 120 (higher than the default value), and waits for 300 seconds (5 minutes) before attempting to become the active router:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby ip 172.20.128.3
Switch(config-if)# standby priority 120 preempt delay 300
Switch(config-if)# end
```
Configuring MHSRP

To enable MHSRP and load-balancing, you configure two routers as active routers for their groups, with virtual routers as standby routers. This example shows how to enable the MHSRP configuration shown in Figure 1-2. You need to enter the `standby preempt` interface configuration command on each HSRP interface so that if a router fails and comes back up, the preemption occurs and restores load-balancing.

Router A is configured as the active router for group 1, and Router B is configured as the active router for group 2. The HSRP interface for Router A has an IP address of 10.0.0.1 with a group 1 standby priority of 110 (the default is 100). The HSRP interface for Router B has an IP address of 10.0.0.2 with a group 2 standby priority of 110.

Group 1 uses a virtual IP address of 10.0.0.3 and group 2 uses a virtual IP address of 10.0.0.4.

Router A Configuration
```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.0.0.1 255.255.255.0
Switch(config-if)# standby 1 ip 10.0.0.3
Switch(config-if)# standby 1 priority 110
Switch(config-if)# standby 1 preempt
Switch(config-if)# standby 2 ip 10.0.0.4
Switch(config-if)# standby 2 preempt
Switch(config-if)# end
```

Router B Configuration
```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.0.0.2 255.255.255.0
Switch(config-if)# standby 1 ip 10.0.0.3
Switch(config-if)# standby 1 preempt
Switch(config-if)# standby 2 ip 10.0.0.4
Switch(config-if)# standby 2 priority 110
Switch(config-if)# standby 2 preempt
Switch(config-if)# end
```

Configuring HSRP Authentication and Timers

You can optionally configure an HSRP authentication string or change the hello-time interval and holdtime.

When configuring these attributes, follow these guidelines:

- The authentication string is sent unencrypted in all HSRP messages. You must configure the same authentication string on all routers and access servers on a cable to ensure interoperability. Authentication mismatch prevents a device from learning the designated Hot Standby IP address and timer values from other routers configured with HSRP.
- Routers or access servers on which standby timer values are not configured can learn timer values from the active or standby router. The timers configured on an active router always override any other timer settings.
- All routers in a Hot Standby group should use the same timer values. Normally, the holdtime is greater than or equal to 3 times the hello time.
Beginning in privileged EXEC mode, use one or more of these steps to configure HSRP authentication and timers on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>standby [group-number] authentication string</td>
</tr>
</tbody>
</table>
| Step 4 | standby [group-number] timers hellotime holdtime | (Optional) Configure the time between hello packets and the time before other routers declare the active router to be down.
| | | • **group-number**—The group number to which the command applies.
| | | • **hellotime**—The hello interval in seconds. The range is from 1 to 255; the default is 3 seconds.
| | | • **holdtime**—The time in seconds before the active or standby router is declared to be down. The range is from 1 to 255; the default is 10 seconds. |
| Step 5 | end | Return to privileged EXEC mode. |
| Step 6 | show running-config | Verify the configuration of the standby groups. |
| Step 7 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

Use the **no standby [group-number] authentication string** interface configuration command to delete an authentication string. Use the **no standby [group-number] timers hellotime holdtime** interface configuration command to restore timers to their default values.

This example shows how to configure *word* as the authentication string required to allow Hot Standby routers in group 1 to interoperate:

```
Switch# configure terminal  
Switch(config)# interface gigabitethernet1/0/1  
Switch(config-if)# no switchport  
Switch(config-if)# standby 1 authentication word  
Switch(config-if)# end
```

This example shows how to set the timers on standby group 1 with the time between hello packets at 5 seconds and the time after which a router is considered down to be 15 seconds:

```
Switch# configure terminal  
Switch(config)# interface gigabitethernet1/0/1  
Switch(config-if)# no switchport  
Switch(config-if)# standby 1 ip  
Switch(config-if)# standby 1 timers 5 15  
Switch(config-if)# end
```
Enabling HSRP Support for ICMP Redirect Messages

ICMP redirect messages are automatically enabled on interfaces configured with HSRP. ICMP is a network layer Internet protocol that provides message packets to report errors and other information relevant to IP processing. ICMP provides diagnostic functions, such as sending and directing error packets to the host. This feature filters outgoing ICMP redirect messages through HSRP, in which the next hop IP address might be changed to an HSRP virtual IP address. For more information, see the Cisco IOS IP Configuration Guide, Release 12.4.

Configuring HSRP Groups and Clustering

When a device is participating in an HSRP standby routing and clustering is enabled, you can use the same standby group for command switch redundancy and HSRP redundancy. Use the cluster standby-group HSRP-group-name [routing-redundancy] global configuration command to enable the same HSRP standby group to be used for command switch and routing redundancy. If you create a cluster with the same HSRP standby group name without entering the routing-redundancy keyword, HSRP standby routing is disabled for the group.

This example shows how to bind standby group my_hsrp to the cluster and enable the same HSRP group to be used for command switch redundancy and router redundancy. The command can only be executed on the cluster command switch. If the standby group name or number does not exist, or if the switch is a cluster member switch, an error message appears.

Switch# configure terminal
Switch(config)# cluster standby-group my_hsrp routing-redundancy
Switch(config)# end

Troubleshooting HSRP for Mixed Stacks of Catalyst 3750-X, 3750-E and 3750 Switches

If one of the situations in Table 1-2 occurs, this message appears:

%FHRP group not consistent with already configured groups on the switch stack - virtual MAC reservation failed

Table 1-2 Troubleshooting HSRP

<table>
<thead>
<tr>
<th>Situation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>You configure more than 32 HSRP group instances.</td>
<td>Remove HSRP groups so that up to 32 group instances are configured.</td>
</tr>
<tr>
<td>You configure HSRP for IPv4 and HSRP for IPv6 at the same time</td>
<td>Configure either HSRP for IPv4 or HSRP for IPv6 on the switch.</td>
</tr>
<tr>
<td>You configure group numbers that are not in valid ranges of 256.</td>
<td>Configure group numbers in a valid range.</td>
</tr>
</tbody>
</table>
Displaying HSRP Configurations

From privileged EXEC mode, use this command to display HSRP settings:

```
show standby [interface-id [group]] [brief] [detail]
```

You can display HSRP information for the whole switch, for a specific interface, for an HSRP group, or for an HSRP group on an interface. You can also specify whether to display a concise overview of HSRP information or detailed HSRP information. The default display is `detail`. If there are a large number of HSRP groups, using the `show standby` command without qualifiers can result in an unwieldy display.

This is an example of output from the `show standby` privileged EXEC command, displaying HSRP information for two standby groups (group 1 and group 100):

```
Switch# show standby
VLAN1 - Group 1
  Local state is Standby, priority 105, may preempt
  Hellotime 3 holdtime 10
  Next hello sent in 00:00:02.182
  Hot standby IP address is 172.20.128.3 configured
  Active router is 172.20.128.1 expires in 00:00:09
  Standby router is local
  Standby virtual mac address is 0000.0c07.ac01
  Name is bbb
VLAN1 - Group 100
  Local state is Active, priority 105, may preempt
  Hellotime 3 holdtime 10
  Next hello sent in 00:00:02.262
  Hot standby IP address is 172.20.138.51 configured
  Active router is local
  Standby router is unknown expired
  Standby virtual mac address is 0000.0c07.ac64
  Name is test
```

Configuring VRRP

VRRP is an election protocol that dynamically assigns responsibility for one or more virtual routers to the VRRP routers on a LAN, allowing several routers on a multi-access link to use the same virtual IP address. A VRRP router is configured to run VRRP in conjunction with one or more other routers attached to a LAN. In a VRRP configuration, one router is elected as the virtual router master, and the other routers act as backups in case it fails.

VRRP Limitations

- You can configure both HSRP and VRRP on a switch or switch stack. However, you cannot add a switch model that supports only one protocol to a stack that is configured for both protocols.
- The VRRP implementation on the switch does not support the MIB specified in RFC 2787.
- The VRRP implementation on the switch supports only text-based authentication.
- The switch supports VRRP only for IPv4.

For more VRRP information and configuration instructions, see the `Configuring VRRP` feature module.
Configuring Cisco IOS IP SLAs Operations

This chapter describes how to use Cisco IOS IP Service Level Agreements (SLAs) on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Cisco IP SLAs is a part of Cisco IOS software that allows Cisco customers to analyze IP service levels for IP applications and services by using active traffic monitoring—the generation of traffic in a continuous, reliable, and predictable manner—for measuring network performance. With Cisco IOS IP SLAs, service provider customers can measure and provide service level agreements, and enterprise customers can verify service levels, verify outsourced service level agreements, and understand network performance. Cisco IOS IP SLAs can perform network assessments, verify quality of service (QoS), ease the deployment of new services, and assist with network troubleshooting.

Switches running the IP base feature set support only IP SLAs responder functionality and must be configured with another device that supports full IP SLAs functionality, for example, a Catalyst 3750E switch running the IP services feature set.

Switches running the IP base or LAN base feature set support only IP SLAs responder functionality and must be configured with another device that supports full IP SLAs functionality, for example, a Catalyst 3750-ECatalyst 3750-X switch running the IP services feature set.

Note

Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Beginning with Cisco IOS 12.2(58)SE, the switch also supports the Built-in Traffic Simulator using Cisco IOS IP SLAs video operations to generate synthetic traffic for a variety of video applications, such as Telepresence, IPTV and IP video surveillance camera. You can use the simulator tool:

- for network assessment before deploying applications that have stringent network performance requirements.
- along with the Cisco Mediatrace for post-deployment troubleshooting for any network related performance issues.

The traffic simulator includes a sophisticated scheduler that allows the user to run several tests simultaneously or periodically and over extended time periods. For information on configuring this feature, see the Configuring Cisco IOS IP SLAs Video Operations document at:

For more information about IP SLAs, see the Cisco IOS IP SLAs Configuration Guide, Release 12.4T:

For command syntax information, see the command reference:

This chapter consists of these sections:
Cisco IOS IP SLAs sends data across the network to measure performance between multiple network locations or across multiple network paths. It simulates network data and IP services and collects network performance information in real time. Cisco IOS IP SLAs generates and analyzes traffic either between Cisco IOS devices or from a Cisco IOS device to a remote IP device such as a network application server. Measurements provided by the various Cisco IOS IP SLAs operations can be used for troubleshooting, for problem analysis, and for designing network topologies.

Depending on the specific Cisco IOS IP SLAs operation, various network performance statistics are monitored within the Cisco device and stored in both command-line interface (CLI) and Simple Network Management Protocol (SNMP) MIBs. IP SLAs packets have configurable IP and application layer options such as source and destination IP address, User Datagram Protocol (UDP)/TCP port numbers, a type of service (ToS) byte (including Differentiated Services Code Point [DSCP] and IP Prefix bits), Virtual Private Network (VPN) routing/forwarding instance (VRF), and URL web address.

Because Cisco IP SLAs is Layer 2 transport independent, you can configure end-to-end operations over disparate networks to best reflect the metrics that an end user is likely to experience. IP SLAs collects a unique subset of these performance metrics:

- Delay (both round-trip and one-way)
- Jitter (directional)
- Packet loss (directional)
- Packet sequencing (packet ordering)
- Path (per hop)
- Connectivity (directional)
- Server or website download time

Because Cisco IOS IP SLAs is SNMP-accessible, it can also be used by performance-monitoring applications like CiscoWorks Internetwork Performance Monitor (IPM) and other third-party Cisco partner performance management products. You can find more details about network management products that use Cisco IOS IP SLAs:

http://www.cisco.com/go/ipsla

Using IP SLAs can provide these benefits:

- Service-level agreement monitoring, measurement, and verification.
- Network performance monitoring
 - Measures the jitter, latency, or packet loss in the network.
 - Provides continuous, reliable, and predictable measurements.
- IP service network health assessment to verify that the existing QoS is sufficient for new IP services.
- Edge-to-edge network availability monitoring for proactive verification and connectivity testing of network resources (for example, shows the network availability of an NFS server used to store business critical data from a remote site).
Using Cisco IOS IP SLAs to Measure Network Performance

You can use IP SLAs to monitor the performance between any area in the network—core, distribution, and edge—without deploying a physical probe. It uses generated traffic to measure network performance between two networking devices. Figure 1-1 shows how IP SLAs begins when the source device sends a generated packet to the destination device. After the destination device receives the packet, depending on the type of IP SLAs operation, it responds with time-stamp information for the source to make the calculation on performance metrics. An IP SLAs operation performs a network measurement from the source device to a destination in the network using a specific protocol such as UDP.

To implement IP SLAs network performance measurement, you need to perform these tasks:

1. Enable the IP SLAs responder, if required.
2. Configure the required IP SLAs operation type.
3. Configure any options available for the specified operation type.
4. Configure threshold conditions, if required.
5. Schedule the operation to run, then let the operation run for a period of time to gather statistics.
6. Display and interpret the results of the operation using the Cisco IOS CLI or a network management system (NMS) system with SNMP.

For more information about IP SLAs operations, see the operation-specific chapters in the Cisco IOS IP SLAs Configuration Guide:

The switch does not support Voice over IP (VoIP) service levels using the gatekeeper registration delay operations measurements. Before configuring any IP SLAs application, you can use the `show ip sla application` privileged EXEC command to verify that the operation type is supported on your software image.

IP SLAs Responder and IP SLAs Control Protocol

The IP SLAs responder is a component embedded in the destination Cisco device that allows the system to anticipate and respond to IP SLAs request packets. The responder provides accurate measurements without the need for dedicated probes. The responder uses the Cisco IOS IP SLAs Control Protocol to provide a mechanism through which it can be notified on which port it should listen and respond. Only a Cisco IOS device can be a source for a destination IP SLAs Responder.

Note

The IP SLAs responder can be a Cisco IOS Layer 2, responder-configurable switch, such as a Catalyst 3750-X or 3560-X switch running the LAN base feature set or a Catalyst 2960 switch. The responder does not need to support full IP SLAs functionality.

Figure 1-1 shows where the Cisco IOS IP SLAs responder fits in the IP network. The responder listens on a specific port for control protocol messages sent by an IP SLAs operation. Upon receipt of the control message, it enables the specified UDP or TCP port for the specified duration. During this time, the responder accepts the requests and responds to them. It disables the port after it responds to the IP SLAs packet, or when the specified time expires. MD5 authentication for control messages is available for added security.

You do not need to enable the responder on the destination device for all IP SLAs operations. For example, a responder is not required for services that are already provided by the destination router (such as Telnet or HTTP). You cannot configure the IP SLAs responder on non-Cisco devices and Cisco IOS IP SLAs can send operational packets only to services native to those devices.

Response Time Computation for IP SLAs

Switches and routers can take tens of milliseconds to process incoming packets due to other high priority processes. This delay affects the response times because the test-packet reply might be in a queue while waiting to be processed. In this situation, the response times would not accurately represent true network delays. IP SLAs minimizes these processing delays on the source device as well as on the target device (if the responder is being used) to determine true round-trip times. IP SLAs test packets use time stamping to minimize the processing delays.

When the IP SLAs responder is enabled, it allows the target device to take time stamps when the packet arrives on the interface at interrupt level and again just as it is leaving, eliminating the processing time. This time stamping is made with a granularity of sub-milliseconds (ms).

Figure 1-2 demonstrates how the responder works. Four time stamps are taken to make the calculation for round-trip time. At the target router, with the responder functionality enabled, time stamp 2 (TS2) is subtracted from time stamp 3 (TS3) to produce the time spent processing the test packet as represented...
by delta. This delta value is then subtracted from the overall round-trip time. Notice that the same
principle is applied by IP SLAs on the source router where the incoming time stamp 4 (TS4) is also taken
at the interrupt level to allow for greater accuracy.

An additional benefit of the two time stamps at the target device is the ability to track one-way delay,
jitter, and directional packet loss. Because much network behavior is asynchronous, it is critical to have
these statistics. However, to capture one-way delay measurements, you must configure both the source
router and target router with Network Time Protocol (NTP) so that the source and target are
synchronized to the same clock source. One-way jitter measurements do not require clock
synchronization.

IP SLAs Operation Scheduling

When you configure an IP SLAs operation, you must schedule the operation to begin capturing statistics
and collecting error information. You can schedule an operation to start immediately or to start at a
certain month, day, and hour. You can use the *pending* option to set the operation to start at a later time.
The pending option is an internal state of the operation that is visible through SNMP. The pending state
is also used when an operation is a reaction (threshold) operation waiting to be triggered. You can
schedule a single IP SLAs operation or a group of operations at one time.

You can schedule several IP SLAs operations by using a single command through the Cisco IOS CLI or
the CISCO RTTMON-MIB. Scheduling the operations to run at evenly distributed times allows you to
control the amount of IP SLAs monitoring traffic. This distribution of IP SLAs operations helps
minimize the CPU utilization and thus improves network scalability.

For more details about the IP SLAs multioperations scheduling functionality, see the “IP
SLAs—Multiple Operation Scheduling” chapter of the *Cisco IOS IP SLAs Configuration Guide:*

IP SLAs Operation Threshold Monitoring

To support successful service level agreement monitoring, you must have mechanisms that notify you
immediately of any possible violation. IP SLAs can send SNMP traps that are triggered by events such as these:

- Connection loss
- Timeout
- Round-trip time threshold
- Average jitter threshold
- One-way packet loss
- One-way jitter
- One-way mean opinion score (MOS)
- One-way latency

An IP SLAs threshold violation can also trigger another IP SLAs operation for further analysis. For example, the frequency could be increased or an ICMP path echo or ICMP path jitter operation could be initiated for troubleshooting.

Determining the type of threshold and the level to set can be complex, and depends on the type of IP service being used in the network. For more details on using thresholds with Cisco IOS IP SLAs operations, see the “IP SLAs—Proactive Threshold Monitoring” chapter of the Cisco IOS IP SLAs Configuration Guide.

Configuring IP SLAs Operations

This section does not include configuration information for all available operations as the configuration information details are included in the *Cisco IOS IP SLAs Configuration Guide*. It does include several operations as examples, including configuring the responder, configuring UDP jitter operation, which requires a responder, and configuring ICMP echo operation, which does not require a responder. For details about configuring other operations, see the *Cisco IOS IP SLAs Configuration Guide*:

This section includes this information:

- Default Configuration, page 1-6
- Configuration Guidelines, page 1-6
- Configuring the IP SLAs Responder, page 1-7
- Analyzing IP Service Levels by Using the UDP Jitter Operation, page 1-8
- Analyzing IP Service Levels by Using the ICMP Echo Operation, page 1-11

Default Configuration

No IP SLAs operations are configured.

Configuration Guidelines

For information on the IP SLAs commands, see the *Cisco IOS IP SLAs Command Reference, Release 12.4T* command reference:

For detailed descriptions and configuration procedures, see the *Cisco IOS IP SLAs Configuration Guide, Release 12.4T* L:

Note that not all of the IP SLAs commands or operations described in this guide are supported on the switch. The switch supports IP service level analysis by using UDP jitter, UDP echo, HTTP, TCP connect, ICMP echo, ICMP path echo, ICMP path jitter, FTP, DNS, and DHCP, as well as multiple operation scheduling and proactive threshold monitoring. It does not support VoIP service levels using the gatekeeper registration delay operations measurements.
Before configuring any IP SLAs application, you can use the `show ip sla application` privileged EXEC command to verify that the operation type is supported on your software image. This is an example of the output from the command:

```
Switch# show ip sla application
IP SLAs
Version: 2.2.0 Round Trip Time MIB, Infrastructure Engine-II
Time of last change in whole IP SLAs: 22:17:39.117 UTC Fri Jun
Estimated system max number of entries: 15801

Estimated number of configurable operations: 15801
Number of Entries configured : 0
Number of active Entries : 0
Number of pending Entries : 0
Number of inactive Entries : 0

Supported Operation Types
Type of Operation to Perform: 802.1agEcho
Type of Operation to Perform: 802.1agJitter
Type of Operation to Perform: dhcp
Type of Operation to Perform: dns
Type of Operation to Perform: echo
Type of Operation to Perform: ftp
Type of Operation to Perform: http
Type of Operation to Perform: jitter
Type of Operation to Perform: pathEcho
Type of Operation to Perform: pathJitter
Type of Operation to Perform: tcpConnect
Type of Operation to Perform: udpEcho

IP SLAs low memory water mark: 21741224
```

Configuring the IP SLAs Responder

The IP SLAs responder is available only on Cisco IOS software-based devices, including some Layer 2 switches that do not support full IP SLAs functionality, such as a Catalyst 3750-X or 3560-X switch running the LAN base feature set or a Catalyst 2960 switch.

Beginning in privileged EXEC mode, follow these steps to configure the IP SLAs responder on the target device (the operational target):

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | ip sla responder {tcp-connect | udp-echo} ipaddress ip-address port port-number | Configure the switch as an IP SLAs responder. The keywords have these meanings:
 - `tcp-connect`—Enable the responder for TCP connect operations.
 - `udp-echo`—Enable the responder for User Datagram Protocol (UDP) echo or jitter operations.
 - `ipaddress ip-address`—Enter the destination IP address.
 - `port port-number`—Enter the destination port number.
 Note The IP address and port number must match those configured on the source device for the IP SLAs operation. |
| 3 | end | Return to privileged EXEC mode. |
Analyzing IP Service Levels by Using the UDP Jitter Operation

Jitter means interpacket delay variance. When multiple packets are sent consecutively 10 ms apart from source to destination, if the network is behaving correctly, the destination should receive them 10 ms apart. But if there are delays in the network (like queuing, arriving through alternate routes, and so on) the arrival delay between packets might be more than or less than 10 ms with a positive jitter value meaning that the packets arrived more than 10 ms apart. If the packets arrive 12 ms apart, positive jitter is 2 ms; if the packets arrive 8 ms apart, negative jitter is 2 ms. For delay-sensitive networks, positive jitter values are undesirable, and a jitter value of 0 is ideal.

In addition to monitoring jitter, the IP SLAs UDP jitter operation can be used as a multipurpose data gathering operation. The packets IP SLAs generates carry packet sending and receiving sequence information and sending and receiving time stamps from the source and the operational target. Based on these, UDP jitter operations measure this data:

- Per-direction jitter (source to destination and destination to source)
- Per-direction packet-loss
- Per-direction delay (one-way delay)
- Round-trip delay (average round-trip time)

Because the paths for the sending and receiving of data can be different (asymmetric), you can use the per-direction data to more readily identify where congestion or other problems are occurring in the network.

The UDP jitter operation generates synthetic (simulated) UDP traffic and sends a number of UDP packets, each of a specified size, sent a specified number of milliseconds apart, from a source router to a target router, at a given frequency. By default, ten packet-frames, each with a payload size of 10 bytes are generated every 10 ms, and the operation is repeated every 60 seconds. You can configure each of these parameters to best simulate the IP service you want to provide.

To provide accurate one-way delay (latency) measurements, time synchronization, such as that provided by NTP, is required between the source and the target device. Time synchronization is not required for the one-way jitter and packet loss measurements. If the time is not synchronized between the source and target devices, one-way jitter and packet loss data is returned, but values of 0 are returned for the one-way delay measurements provided by the UDP jitter operation.

Note

Before you configure a UDP jitter operation on the source device, you must enable the IP SLAs responder on the target device (the operational target).
Beginning in privileged EXEC mode, follow these steps to configure UDP jitter operation on the source device:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip sla operation-number</td>
</tr>
<tr>
<td></td>
<td>Create an IP SLAs operation, and enter IP SLAs configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>udp-jitter {destination-ip-address</td>
</tr>
<tr>
<td></td>
<td>Configure the IP SLAs operation as a UDP jitter operation, and enter UDP jitter configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• destination-ip-address</td>
</tr>
<tr>
<td></td>
<td>• destination-port—Specify the destination port number in the range from 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) source-ip</td>
</tr>
<tr>
<td></td>
<td>• (Optional) source-port port-number—Specify the source port number in the range from 1 to 65535. When a port number is not specified, IP SLAs chooses an available port.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) control—Enable or disable sending of IP SLAs control messages to the IP SLAs responder. By default, IP SLAs control messages are sent to the destination device to establish a connection with the IP SLAs responder.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) num-packets number-of-packets—Enter the number of packets to be generated. The range is 1 to 6000; the default is 10.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) interval inter-packet-interval—Enter the interval between sending packets in milliseconds. The range is 1 to 6000; the default value is 20 ms.</td>
</tr>
<tr>
<td>Step 4</td>
<td>frequency seconds</td>
</tr>
<tr>
<td></td>
<td>(Optional) Set the rate at which a specified IP SLAs operation repeats. The range is from 1 to 604800 seconds; the default is 60 seconds.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Exit UDP jitter configuration mode, and return to global configuration mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Cisco IOS IP SLAs Operations

Configuring IP SLAs Operations

To disable the IP SLAs operation, enter the `no ip sla operation-number` global configuration command.

This example shows how to configure a UDP jitter IP SLAs operation:

```plaintext
Switch(config)# ip sla 10
Switch(config-ip-sla)# udp-jitter 172.29.139.134 5000
Switch(config-ip-sla-jitter)# frequency 30
Switch(config-ip-sla-jitter)# exit
Switch(config)# ip sla schedule 5 start-time now life forever
Switch(config)# end
Switch# show ip sla configuration 10
IP SLAs, Infrastructure Engine-II.
Entry number: 10
Owner: 
Tag: 
Type of operation to perform: udp-jitter
Target address/Source address: 1.1.1.1/0.0.0.0
Target port/Source port: 2/0
Request size (ARR data portion): 32
Operation timeout (milliseconds): 5000
Packet Interval (milliseconds)/Number of packets: 20/10
Type Of Service parameters: 0x0
Verify data: No
Vrf Name: 
Control Packets: enabled
```

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>ip sla monitor schedule
`operation-number [life [forever</td>
</tr>
<tr>
<td></td>
<td>• <code>operation-number</code>—Enter the RTR entry number.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) <code>life</code>—Set the operation to run indefinitely (forever) or for a specific number of seconds. The range is from 0 to 2147483647. The default is 3600 seconds (1 hour).</td>
</tr>
<tr>
<td></td>
<td>• (Optional) <code>start-time</code>—Enter the time for the operation to begin collecting information:</td>
</tr>
<tr>
<td></td>
<td>- To start at a specific time, enter the hour, minute, second (in 24-hour notation), and day of the month. If no month is entered, the default is the current month.</td>
</tr>
<tr>
<td></td>
<td>- Enter <code>pending</code> to select no information collection until a start time is selected.</td>
</tr>
<tr>
<td></td>
<td>- Enter <code>now</code> to start the operation immediately.</td>
</tr>
<tr>
<td></td>
<td>- Enter <code>after hh:mm:ss</code> to show that the operation should start after the entered time has elapsed.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) <code>ageout seconds</code>—Enter the number of seconds to keep the operation in memory when it is not actively collecting information. The range is 0 to 2073600 seconds, the default is 0 seconds (never ages out).</td>
</tr>
<tr>
<td></td>
<td>• (Optional) <code>recurring</code>—Set the operation to automatically run every day.</td>
</tr>
<tr>
<td>Step 7</td>
<td>end
Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>show ip sla configuration
<code>[operation-number]</code>
(Optional) Display configuration values, including all defaults for all IP SLAs operations or a specified operation.</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config
(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Analyzing IP Service Levels by Using the ICMP Echo Operation

The ICMP echo operation measures end-to-end response time between a Cisco device and any devices using IP. Response time is computed by measuring the time taken between sending an ICMP echo request message to the destination and receiving an ICMP echo reply. Many customers use IP SLAs ICMP-based operations, in-house ping testing, or ping-based dedicated probes for response time measurements between the source IP SLAs device and the destination IP device. The IP SLAs ICMP echo operation conforms to the same specifications as ICMP ping testing, and the two methods result in the same response times.

Note

This operation does not require the IP SLAs responder to be enabled.

Beginning in privileged EXEC mode, follow these steps to configure an ICMP echo operation on the source device:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2
ip sla operation-number</td>
<td>Create an IP SLAs operation and enter IP SLAs configuration mode.</td>
</tr>
<tr>
<td>Step 3
icmp-echo {destination-ip-address</td>
<td>destination-hostname}</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• destination-ip-address</td>
</tr>
<tr>
<td></td>
<td>(Optional) source-ip {ip-address</td>
</tr>
<tr>
<td></td>
<td>(Optional) source-interface interface-id</td>
</tr>
<tr>
<td>Step 4
frequency seconds</td>
<td>(Optional) Set the rate at which a specified IP SLAs operation repeats. The range is from 1 to 604800 seconds; the default is 60 seconds.</td>
</tr>
<tr>
<td>Step 5
exit</td>
<td>Exit UDP jitter configuration mode, and return to global configuration mode.</td>
</tr>
</tbody>
</table>
Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `ip sla schedule operation-number` [life {forever | seconds}]
[start-time {hh:mm:ss} [month day | day month] | pending | now | after hh:mm:ss] [ageout seconds] [recurring] | Configure the scheduling parameters for an individual IP SLAs operation. |
| | • *operation-number*—Enter the RTR entry number. |
| | • (Optional) *life*—Set the operation to run indefinitely (*forever*) or for a specific number of *seconds*. The range is from 0 to 2147483647. The default is 3600 seconds (1 hour) |
| | • (Optional) *start-time*—Enter the time for the operation to begin collecting information: |
| | ‒ To start at a specific time, enter the hour, minute, second (in 24-hour notation), and day of the month. If no month is entered, the default is the current month. |
| | ‒ Enter *pending* to select no information collection until a start time is selected. |
| | ‒ Enter *now* to start the operation immediately. |
| | ‒ Enter *after hh:mm:ss* to indicate that the operation should start after the entered time has elapsed. |
| | • (Optional) *ageout seconds*—Enter the number of seconds to keep the operation in memory when it is not actively collecting information. The range is 0 to 2073600 seconds; the default is 0 seconds (never ages out). |
| | • (Optional) *recurring*—Set the operation to automatically run every day. |

Step 7

end

Return to privileged EXEC mode.

Step 8

show ip sla configuration [operation-number]

(Optional) Display configuration values including all defaults for all IP SLAs operations or a specified operation.

Step 9

copy running-config startup-config

(Optional) Save your entries in the configuration file.

To disable the IP SLAs operation, enter the `no ip sla operation-number` global configuration command. This example shows how to configure an ICMP echo IP SLAs operation:

```bash
Switch(config)# ip sla 12
Switch(config-ip-sla)# icmp-echo 172.29.139.134
Switch(config-ip-sla-echo)# frequency 30
Switch(config-ip-sla-echo)# exit
Switch(config)# ip sla schedule 5 start-time now life forever
Switch(config)# end
Switch# show ip sla configuration 22
IP SLAs, Infrastructure Engine-II.
```

Entry number: 12
Owner:
Tag:
Type of operation to perform: echo
Target address: 2.2.2.2
Source address: 0.0.0.0
Request size (ARR data portion): 28
Operation timeout (milliseconds): 5000
Type Of Service parameters: 0x0
Verify data: No
Vrf Name:
Schedule:
 Operation frequency (seconds): 60
Next Scheduled Start Time: Pending trigger
Group Scheduled: FALSE
Randomly Scheduled: FALSE
Life (seconds): 3600
Entry Ageout (seconds): never
Recurring (Starting Everyday): FALSE
Status of entry (SNMP RowStatus): notInService
Threshold (milliseconds): 5000

Distribution Statistics:
 Number of statistic hours kept: 2
 Number of statistic distribution buckets kept: 1
 Statistic distribution interval (milliseconds): 20

History Statistics:
 Number of history Lives kept: 0
 Number of history Buckets kept: 15
 History Filter Type: None
Enhanced History:

Monitoring IP SLAs Operations

Use the user EXEC or privileged EXEC commands in Table 1-1 to display IP SLAs operations configuration and results.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip sla application</td>
<td>Display global information about Cisco IOS IP SLAs.</td>
</tr>
<tr>
<td>show ip sla authentication</td>
<td>Display IP SLAs authentication information.</td>
</tr>
<tr>
<td>show ip sla configuration [entry-number]</td>
<td>Display configuration values including all defaults for all IP SLAs operations or a specific operation.</td>
</tr>
<tr>
<td>show ip sla enhanced-history {collection-statistics</td>
<td>distribution statistics} [entry-number]</td>
</tr>
<tr>
<td>show ip sla ethernet-monitor configuration</td>
<td>Display IP SLAs automatic Ethernet configuration.</td>
</tr>
<tr>
<td>show ip sla group schedule [schedule-entry-number]</td>
<td>Display IP SLAs group scheduling configuration and details.</td>
</tr>
<tr>
<td>show ip sla history [entry-number</td>
<td>full</td>
</tr>
<tr>
<td>show ip sla mpls-lsp-monitor {collection-statistics</td>
<td>configuration</td>
</tr>
<tr>
<td>show ip sla reaction-configuration [entry-number]</td>
<td>Display the configured proactive threshold monitoring settings for all IP SLAs operations or a specific operation.</td>
</tr>
<tr>
<td>show ip sla reaction-trigger [entry-number]</td>
<td>Display the reaction trigger information for all IP SLAs operations or a specific operation.</td>
</tr>
<tr>
<td>show ip sla responder</td>
<td>Display information about the IP SLAs responder.</td>
</tr>
<tr>
<td>show ip sla statistics [entry-number</td>
<td>aggregated</td>
</tr>
</tbody>
</table>
Configuring Flexible NetFlow

NetFlow is a monitoring feature used on customer applications for network monitoring, user monitoring and profiling, network planning, security analysis, billing and accounting, and data warehousing and mining. You can use Flexible NetFlow on uplink ports to monitor user-defined flows, collect flow statistics, and perform per-flow policing. It collects and exports flow statistics to a collector device.

Note
Flexible NetFlow is supported only on the Catalyst 3750-X and 3560-X switch running the IP base or IP services feature set and equipped with the network services module. It is not supported on switches running the NPE or the LAN base image.

For more detailed information about Flexible NetFlow, see the NetFlow Configuration Guide:

For information about the commands, see the Cisco IOS Flexible NetFlow Command Reference:

Note
Not all of the Flexible NetFlow commands in the command reference are available on the switch. Unsupported commands are either not visible or generate an error message if entered.

Understanding Flexible NetFlow

With Flexible NetFlow, traffic is processed and packets are classified into flows. New flows are inserted in the NetFlow table, and statistics are automatically updated. You must configure both ingress and egress NetFlow monitoring. The network services module supports one monitor per interface per direction.

Flexible NetFlow has these components:

- **Records** are combinations of key and nonkey fields assigned to monitor Flexible NetFlow monitors to define the cache used to store data.

- **Flow monitors** are applied to interfaces to perform network traffic monitoring. A flow monitor includes a user-defined record, an optional flow exporter, and a cache that is automatically created when the monitor is applied to the first interface. The switch supports normal caches that age out according to settings.

- Flow exporters export the data in the flow monitor cache to a remote system, such as a server running NetFlow collector.
• Flow samplers reduce the load that Flexible NetFlow puts on the networking device to monitor traffic by limiting the number of packets that are analyzed.

You can configure unidirectional flow (destination or source-address based flows), and you can also configure flow aging. These features are supported on the network services module:

• You can configure collection statistics for Layer 2-switched (nonrouting) traffic, Layer 3 IPv4 and IPv6 traffic, and Layer 4 TCP, IGMP, and ICMP traffic.
• NetFlow counting, maintenance, troubleshooting (debugging commands).
• NetFlow analysis is performed on traffic crossing the physical interfaces on the network services module. The switch processes egress (outbound) traffic after forwarding decisions are performed. You can force locally switched or routed traffic through service module ports by configuring private VLANs or protected ports.

These NetFlow characteristics are not supported:

• Netflow-5 protocol
• Predefined flow records
• ISL
• Policy-based NetFlow
• Cisco TrustSec monitoring

Although other modules that can be installed in the Catalyst 3750-X and 3560-X have 1-Gigabit and 10-Gigabit uplink interfaces, NetFlow is supported only on the network services module.

Configuring Flexible NetFlow

These are some basic Flexible NetFlow configurations.

• Configuring a Customized Flow Record, page 1-2
• Configuring the Flow Exporter, page 1-5
• Configuring a Customized Flow Monitor, page 1-6
• Applying a Flow Monitor to an Interface, page 1-7
• Configuring and Enabling Flow Sampling, page 1-9

Configuring a Customized Flow Record

You can match these key fields for the flow record:

• IPv4 or IPv6 destination address
• Datalink fields to identify Layer 2 source and destination address and VLAN for traffic entering or leaving the interfaces, providing the MAC address of the directly connected host. Class of Service (CoS) and Ethertype datalink header fields are also available.
You can collect these key fields for the flow record:

- The total number of bytes, flows or packets sent by the exporter (exporter) or the number of bytes or packets in a 64-bit counter (long).
- The timestamp based on system uptime from the time the first packet was sent or from the time the most recent (last) packet was seen.
- The SNMP index of the input or output interface. The interface for traffic entering or leaving the service module is based on the switch forwarding cache. This field is typically used in conjunction with datalink, IPv4, and IPv6 addresses, and provides the actual first-hop interface for directly connected hosts.
 - A value of 0 means that interface information is not available in the cache.
 - Some NetFlow collectors require this information in the flow record.

See the Cisco IOS Flexible NetFlow Configuration Guide and the Cisco IOS Flexible NetFlow Command Reference for more detailed information.

Beginning in privileged EXEC mode, follow these steps to configure the customized flow record.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>flow record record-name</code></td>
<td>Creates a flow record and enters Flexible NetFlow flow record configuration mode. You can also use this command to modify an existing flow record.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>description description</code></td>
<td>(Optional) Creates a description for the flow record.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>`match {ipv4</td>
<td>ipv6} {destination</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>Repeat step 4 to configure additional fields for the record.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>`collect counter {bytes [exported</td>
<td>long] flows [exported]</td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>Repeat Step 6 as required to configure additional fields for the record.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Flexible NetFlow

Configuring Flexible NetFlow

This example shows how to configure a flow record:

```
Switch(config)# flow record
Switch(config-flow-record)# description record to monitor network traffic
Switch(config-flow-record)# match ipv4 destination address
Switch(config-flow-record)# collect counter packets
Switch(config-flow-record)# collect counter bytes
Switch(config-flow-record)# end
```

This is an example of output from the `show flow record` command:

```
Switch# show flow record
flow record L2L4ipv4:
  Description:        User defined
  No. of users:       1
  Total field space:  56 bytes
  Fields:
    match datalink dot1q priority
    match datalink mac source-address
    match datalink mac destination-address
    match ipv4 tos
    match ipv4 ttl
    match ipv4 protocol
    match ipv4 source address
    match ipv4 destination address
    match transport source-port
    match transport destination-port
    collect interface input snmp
    collect interface output snmp
    collect counter flows
    collect counter bytes
    collect counter packets
    collect timestamp sys-uptime first
    collect timestamp sys-uptime last

flow record L2L4ipv6:
  Description:        User defined
  No. of users:       1
  Total field space:  81 bytes
  Fields:
    match datalink mac source-address
    match datalink mac destination-address
    match ipv6 traffic-class
    match ipv6 protocol
    match ipv6 source address
    match ipv6 destination address
    match ipv6 fragmentation flags
    match transport source-port
    match transport destination-port
    match transport icmp ipv6 type
    match transport icmp ipv6 code
    collect interface input snmp
    collect interface output snmp
    collect counter flows
    collect counter bytes
    collect counter packets
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config flow record</td>
<td>(Optional) Displays the configured flow records.</td>
</tr>
<tr>
<td>show flow record</td>
<td>(Optional) Displays the status of the flow records.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Step 9 show running-config flow record (Optional) Displays the configured flow records.

Step 10 show flow record (Optional) Displays the status of the flow records.

Step 11 copy running-config startup-config (Optional) Saves your entries in the configuration file.
Configuring the Flow Exporter

Beginning in privileged EXEC mode, follow these steps to configure the NetFlow exporter. For more information about configuring Flexible NetFlow flow exporters, see the Configuring Data Export for Cisco IOS Flexible NetFlow with Flow Exporters document:

Note

The optional export-protocol flow exporter configuration command specifies the NetFlow export protocol used by the exporter. The switch supports only netflow-v9. Although visible in the CLI help, netflow-5 is not supported.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>flow exporter exporter-name Creates the flow exporter and enters Flexible NetFlow flow exporter configuration mode. You can also use this command to modify an existing flow exporter.</td>
</tr>
<tr>
<td>Step 3</td>
<td>description description (Optional) Configures a description for the exporter that appears in the configuration and in the display of the show flow exporter command.</td>
</tr>
<tr>
<td>Step 4</td>
<td>destination {hostname</td>
</tr>
<tr>
<td>Step 5</td>
<td>dscp dscp (Optional) Configures differentiated services code point (DSCP) parameters for datagrams sent by the exporter. The DSCP range is from 0 to 63. The default is 0.</td>
</tr>
<tr>
<td>Step 6</td>
<td>source interface-id (Optional) Specifies the local interface from which the exporter uses the IP address as the source IP address for exported datagrams.</td>
</tr>
<tr>
<td>Step 7</td>
<td>option {exporter-stats</td>
</tr>
<tr>
<td>Step 8</td>
<td>template data timeout seconds (Optional) Configures resending of templates based on a timeout. The range is 1 to 86400 seconds (86400 seconds equals 24 hours). The default is 600.</td>
</tr>
<tr>
<td>Step 9</td>
<td>transport udp udp-port Specifies the UDP port on which the destination system is listening for exported datagrams. The range for udp-port is from 1 to 65536.</td>
</tr>
<tr>
<td>Step 10</td>
<td>ttl seconds (Optional) Configures the time-to-live (TTL) value for datagrams sent by the exporter. The range is from 1 to 255 seconds. The default is 255.</td>
</tr>
<tr>
<td>Step 11</td>
<td>end Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td>show running-config flow exporter exporter-name (Optional) Verifies the configured flow exporter.</td>
</tr>
<tr>
<td>Step 13</td>
<td>show flow exporter exporter-name (Optional) Displays the status of a flow exporter.</td>
</tr>
<tr>
<td>Step 14</td>
<td>copy running-config startup-config (Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to configure the flow exporter:

```
Switch(config)# flow exporter QoS-Collector
Switch(config-flow-exporter)# description QoS Collector Bldg 19
Switch(config-flow-exporter)# destination 172.20.244.28
Switch(config-flow-exporter)# source vlan 1
Switch(config-flow-exporter)# dscp 3
Switch(config-flow-exporter)# transport udp 2055
Switch(config-flow-exporter)# end
```

This is an example of output from the `show flow exporter` command:

```
Switch# show flow exporter EXPORTER-1
Flow Exporter QoS-Collector:
  Description:              QoS Collector Bldg 19
  Export protocol:          NetFlow Version 9
  Transport Configuration:
    Destination IP address: 172.20.244.28
    Source IP address:      10.30.0.234
    Source Interface:       Vlan1
    Transport Protocol:     UDP
    Destination Port:       2055
    Source Port:            62401
    DSCP:                   0x3
    TTL:                    255
    Output Features:        Not Used
```

Configuring a Customized Flow Monitor

Beginning in privileged EXEC mode, follow these steps to configure a NetFlow monitor.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>flow monitor name</td>
<td>Creates a flow monitor and enters Flexible NetFlow flow monitor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration mode. You can also use this command to modify an existing flow monitor</td>
</tr>
<tr>
<td>Step 3</td>
<td>description description</td>
<td>(Optional) Configures a description for the flow monitor.</td>
</tr>
<tr>
<td>Step 4</td>
<td>record record-name</td>
<td>Specifies the record for the flow monitor.</td>
</tr>
<tr>
<td>Step 5</td>
<td>cache {timeout active seconds</td>
<td>(Optional) Modifies the flow monitor cache parameters such as timeout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>normal}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• timeout active seconds— Configure the active flow timeout. This defines the granularity of the traffic analysis. The range is from 1 to 604800 seconds. The default is 1800. Typical values are 60 or 300 seconds. See the Configuring Data Export for Cisco IOS Flexible NetFlow with Flow Exporters document for recommended values.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• type normal— Configure normal flow removal from the flow cache.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note Although visible in the command line help, the entries keyword and inactive and update timeouts are not supported.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Repeat step 5 to configure additional cache parameters for the flow monitor.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>exporter exporter-name</td>
<td>(Optional) Specifies the name of an exporter that was created previously.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Flexible NetFlow

Configuring Flexible NetFlow

This example shows how to configure a flow monitor:

Switch(config)# flow monitor FLOW-MONITOR-1
Switch(config-flow-monitor)# record FLOW-RECORD-1
Switch(config-flow-monitor)# cache timeout active 300
Switch(config-flow-monitor)# cache type normal
Switch(config-flow-monitor)# exporter EXPORTER-1
Switch(config-flow-monitor)# exit

This is an example of output from the show flow monitor command:

Switch# show flow monitor FLOW-MONITOR-1

Flow Monitor FLOW-MONITOR-1:
Description: Used for basic ipv4 traffic analysis
Flow Record: FLOW-RECORD-1
Flow Exporter: EXPORTER-1
Cache:
 Type: normal (Platform cache)
 Status: allocated
 Size: Unknown
 Inactive Timeout: 15 secs
 Active Timeout: 1800 secs 1800 secs
 Update Timeout: 1800 secs

Applying a Flow Monitor to an Interface

Beginning in privileged EXEC mode, follow these steps to apply a NetFlow monitor to an interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Identifies an interface and enters interface configuration mode. Flexible Net Flow is supported only on the service module 1-Gigabit or 10-Gigabit Ethernet interfaces.</td>
</tr>
<tr>
<td></td>
<td>Note You cannot attach a NetFlow monitor to a port channel interface.</td>
</tr>
<tr>
<td></td>
<td>If both service module interfaces are part of an EtherChannel, you should attach the monitor to both physical interfaces.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Flexible NetFlow

Configuring Flexible NetFlow

This example shows how to apply a flow monitor to an interface:

```
Switch(config)# interface gigabitethernet 1/1/2
Switch(config-if)# ip flow monitor FLOW-MONITOR-1 input
Switch(config-if)# ip flow monitor FLOW-MONITOR-2 output
Switch(config-if)# end
```

This is an example of output from the `show flow interface` command:

```
Interface Gigabit Ethernet1/1/2
    FNF: monitor: FLOW-MONITOR-1
        direction: Input
        traffic(ip): on
    FNF: monitor: FLOW-MONITOR-2
        direction: Input
        traffic(ipv6): on
```
Configuring and Enabling Flow Sampling

Beginning in privileged EXEC mode, follow these steps to configure and enable flow sampling.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>sampler sampler-name</td>
<td>Creates a flow monitor and enters Flexible NetFlow sampler configuration mode. You can also use this command to modify an existing sampler.</td>
</tr>
<tr>
<td>3</td>
<td>description description</td>
<td>(Optional) Configures a description for the sampler.</td>
</tr>
<tr>
<td>4</td>
<td>mode random 1 out-of window-size</td>
<td>Specifies the mode and window size from which to select packets. The window size range is from 2 to 32768. Note Although visible in the CLI help, the <code>mode deterministic</code> keyword is not supported.</td>
</tr>
<tr>
<td>5</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>6</td>
<td>interface interface-id</td>
<td>Identifies an interface and enters interface configuration mode. Flexible NetFlow is supported only on the service module 1-Gigabit or 10-Gigabit Ethernet interfaces.</td>
</tr>
<tr>
<td>7</td>
<td>{ipl ipv6} flow monitor monitor-name sampler sampler-name [input</td>
<td>output]</td>
</tr>
<tr>
<td>8</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>9</td>
<td>show sampler sampler-name</td>
<td>(Optional) Displays the current status of a flow sampler.</td>
</tr>
<tr>
<td>10</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure and enable a flow sampler:

```
Switch(config)# sampler SAMPLER-1
Switch(config-sampler)# description Sample at 50
Switch(config-sampler)# mode random 1 out-of 2
Switch(config-sampler)# exit
Switch(config)# interface gigabitethernet 1/1/2
Switch(config-if)# ip flow monitor FLOW-MONITOR-1 sampler SAMPLE-1 input
```

This is an example of output from the `show sampler` command:

```
Switch# show sampler SAMPLER-1

Sampler SAMPLER-1:
  ID:  2
  Description:  Sample at 50%
  Type:  random
  Rate:  1 out of 2
  Samples:  2482
  Requests:  4964
  Users (1):
    flow monitor FLOW-MONITOR-1 (ip,Et0/0,I  2482 out of 4964
```
Configuring Enhanced Object Tracking

This chapter describes how to configure enhanced object tracking on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. This feature provides a more complete alternative to the Hot Standby Routing Protocol (HSRP) tracking mechanism, which allows you to track the line-protocol state of an interface. If the line protocol state of an interface goes down, the HSRP priority of the interface is reduced and another HSRP device with a higher priority becomes active. The enhanced object tracking feature separates the tracking mechanism from HSRP and creates a separate, standalone tracking process that can be used by processes other than HSRP. This allows tracking other objects in addition to the interface line-protocol state. A client process, such as HSRP, can register an interest in tracking objects and request notification when the tracked object changes state. This feature increases the availability and speed of recovery of a routing system and decreases outages and outage duration.

Note

Enhanced object tracking is not supported on switches running the LAN base feature set.

Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

The chapter includes these sections:

- Understanding Enhanced Object Tracking, page 1-1
- Configuring Enhanced Object Tracking Features, page 1-2
- Monitoring Enhanced Object Tracking, page 1-12

Understanding Enhanced Object Tracking

Each tracked object has a unique number that is specified in the tracking command-line interface (CLI). Client processes use this number to track a specific object. The tracking process periodically polls the tracked object for value changes and sends any changes (as up or down values) to interested client processes, either immediately or after a specified delay. Several clients can track the same object, and can take different actions when the object changes state.

You can also track a combination of objects in a list by using either a weight threshold or a percentage threshold to measure the state of the list. You can combine objects using Boolean logic. A tracked list with a Boolean “AND” function requires that each object in the list be in an up state for the tracked object to be up. A tracked list with a Boolean “OR” function needs only one object in the list to be in the up state for the tracked object to be up.
Configuring Enhanced Object Tracking Features

- Default Configuration, page 1-2
- Tracking Interface Line-Protocol or IP Routing State, page 1-2
- Configuring a Tracked List, page 1-3
- Configuring HSRP Object Tracking, page 1-7
- Configuring Other Tracking Characteristics, page 1-8
- Configuring IP SLAs Object Tracking, page 1-8
- Configuring Static Routing Support, page 1-10

Default Configuration

No type of object tracking is configured.

Tracking Interface Line-Protocol or IP Routing State

You can track either the interface line protocol state or the interface IP routing state. When you track the IP routing state, these three conditions are required for the object to be up:

- IP routing must be enabled and active on the interface.
- The interface line-protocol state must be up.
- The interface IP address must be known.

If all three of these conditions are not met, the IP routing state is down.

Beginning in privileged EXEC mode, follow these steps to track the line-protocol state or IP routing state of an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>track object-number interface interface-id line-protocol</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>delay {up seconds [down seconds]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Step 5</td>
<td>track object-number interface interface-id ip routing</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Enhanced Object Tracking Features

This example configures the tracking of an interface line-protocol state and verifies the configuration:

```
Switch(config)# track 33 interface gigabitethernet 1/0/1 line-protocol
Switch(config-track)# end
Switch# show track 33
Track 33
  Interface GigabitEthernet1/0/1 line-protocol
  Line protocol is Down (hw down)
  1 change, last change 00:18:28
```

Configuring a Tracked List

You can configure a tracked list of objects with a Boolean expression, a weight threshold, or a percentage threshold. A tracked list contains one or more objects. An object must exist before it can be added to the tracked list.

- You configure a Boolean expression to specify calculation by using either “AND” or “OR” operators.
- When you measure the tracked list state by a weight threshold, you assign a weight number to each object in the tracked list. The state of the tracked list is determined by whether or not the threshold was met. The state of each object is determined by comparing the total weight of all objects against a threshold weight for each object.
- When you measure the tracked list by a percentage threshold, you assign a percentage threshold to all objects in the tracked list. The state of each object is determined by comparing the assigned percentages of each object to the list.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>delay [up seconds [down seconds]]</td>
<td>(Optional) Specify a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds.</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>show track object-number</td>
<td>Verify that the specified objects are being tracked.</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Enhanced Object Tracking

Configuring a Tracked List with a Boolean Expression

Configuring a tracked list with a Boolean expression enables calculation by using either “AND” or “OR” operators. For example, when tracking two interfaces using the “AND” operator, *up* means that both interfaces are up, and *down* means that either interface is down.

Beginning in privileged EXEC mode, follow these steps to configure a tracked list of objects with a Boolean expression:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 track track-number list boolean {and</td>
<td>or}</td>
</tr>
<tr>
<td></td>
<td>• boolean—Specify the state of the tracked list based on a Boolean calculation.</td>
</tr>
<tr>
<td></td>
<td>• and—Specify that the list is up if all objects are up or down if one or more objects are down.</td>
</tr>
<tr>
<td></td>
<td>• or—Specify that the list is up if one object is up or down if all objects are down.</td>
</tr>
<tr>
<td>Step 3 object object-number [not]</td>
<td>Specify the object to be tracked. The range is from 1 to 500. The keyword not negates the state of the object, which means that when the object is up, the tracked list detects the object as down.</td>
</tr>
<tr>
<td></td>
<td>Note An object must exist before you can add it to a tracked list.</td>
</tr>
<tr>
<td>Step 4 delay {up seconds [down seconds]</td>
<td>(Optional) Specify a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show track object-number</td>
<td>Verify that the specified objects are being tracked.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the **no track track-number** global configuration command to delete the tracked list.

This example configures track list 4 with a Boolean AND expression that contains two objects with one object state negated. If the list is up, the list detects that object 2 is down:

```
Switch(config)# track 4 list boolean and
Switch(config-track)# object 1
Switch(config-track)# object 2 not
Switch(config-track)# exit
```
Configuring Enhanced Object Tracking Features

Configuring a Tracked List with a Weight Threshold

To track by weight threshold, configure a tracked list of objects, specify that weight is used as the threshold, and configure a weight for each of its objects. The state of each object is determined by comparing the total weight of all objects that are up against a threshold weight for each object.

You cannot use the Boolean “NOT” operator in a weight threshold list.

Beginning in privileged EXEC mode, follow these steps to configure a tracked list of objects by using a weight threshold and to configure a weight for each object:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>track track-number list threshold weight</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>object object-number [weight weight-number]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>threshold weight {up number} [down number]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>delay {up seconds} [down seconds]</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show track object-number</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the **no track track-number** global configuration command to delete the tracked list.

The example configures track list 4 to track by weight threshold. If object 1 and object 2 are down, then track list 4 is up because object 3 satisfies the up threshold value of up 30. But if object 3 is down, both objects 1 and 2 must be up in order to satisfy the threshold weight.

```
Switch(config)# track 4 list threshold weight
Switch(config-track)# object 1 weight 15
Switch(config-track)# object 2 weight 20
Switch(config-track)# object 3 weight 30
Switch(config-track)# threshold weight up 30 down 10
Switch(config-track)# exit
```

This configuration can be useful if object 1 and object 2 represent two small bandwidth connections and object 3 represents one large bandwidth connection. The configured **down 10** value means that once the tracked object is up, it will not go down until the threshold value is equal to or lower than 10, which in this example means that all connections are down.
Configuring a Tracked List with a Percentage Threshold

To track by percentage threshold, configure a tracked list of objects, specify that a percentage will be used as the threshold, and specify a percentage for all objects in the list. The state of the list is determined by comparing the assigned percentage of each object to the list.

You cannot use the Boolean “NOT” operator in a percentage threshold list.

Beginning in privileged EXEC mode, follow these steps to configure a tracked list of objects by using a percentage threshold:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** track track-number list threshold percentage | Configure a tracked list object and enter tracking configuration mode. The track-number can be from 1 to 500.
 - **threshold**—Specify the state of the tracked list based on a threshold.
 - **percentage**—Specify that the threshold is based on percentage. |
| **Step 3** object object-number | Specify the object to be tracked. The range is from 1 to 500. | |
| **Step 4** threshold percentage {up number | Specify the threshold percentage. |
| | [down number]} |
| | - **up number**—The valid range is from 1 to 100. |
| | - **down number**—(Optional) The range depends on the number selected for the up number. If you configure the up number as 25, the range shown for the down number is 0 to 24. |
| **Step 5** delay {up seconds [down seconds] | (Optional) Specify a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds. |
| | [up seconds] down seconds} | |
| **Step 6** end | Return to privileged EXEC mode. |
| **Step 7** show track object-number | Verify that the specified objects are being tracked. |
| **Step 8** copy running-config startup-config | (Optional) Save your entries in the configuration file. |

Use the no track track-number global configuration command to delete the tracked list.

This example configures tracked list 4 with three objects and a specified percentages to measure the state of the list:

```bash
Switch(config)# track 4 list threshold percentage
Switch(config-track)# object 1
Switch(config-track)# object 2
Switch(config-track)# object 3
Switch(config-track)# threshold percentage up 51 down 10
Switch(config-track)# exit
```
Configuring HSRP Object Tracking

Beginning in privileged EXEC mode, follow these steps to configure a standby HSRP group to track an object and change the HSRP priority based on the object state:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
</tbody>
</table>
| track object-number {interface interface-id | line-protocol | ip routing | ip route ip-address/prefix-length | metric threshold | reachability | list {boolean {and | or}} | {threshold {weight | percentage}}} | (Optional) Create a tracking list to track the configured state and enter tracking configuration mode.
 • The object-number range is from 1 to 500.
 • Enter interface interface-id to select an interface to track.
 • Enter line-protocol to track the interface line protocol state or enter ip routing to track the interface IP routing state.
 • Enter ip route ip-address/prefix-length to track the state of an IP route.
 • Enter metric threshold to track the threshold metric or enter reachability to track if the route is reachable.
 The default up threshold is 254 and the default down threshold is 255.
 • Enter list to track objects grouped in a list. Configure the list as described on the previous pages.
 – For boolean, see the “Configuring a Tracked List with a Boolean Expression” section on page 1-4.
 – For threshold weight, see the “Configuring a Tracked List with a Weight Threshold” section on page 1-5.
 – For threshold percentage, see the “Configuring a Tracked List with a Percentage Threshold” section on page 1-6.
Note Repeat this step for each interface to be tracked. |
| **Step 3** | |
| exit | Return to global configuration mode. |
| **Step 4** | |
| interface interface-id | Enter interface configuration mode. |
| **Step 5** | |
| standby [group-number] ip [ip-address [secondary]] | Create (or enable) the HSRP group by using its number and virtual IP address. |
 • (Optional) group-number—Enter a group number on the interface for which HSRP is being enabled. The range is 0 to 255; the default is 0. If there is only one HSRP group, you do not need to enter a group number.
 • (Optional on all but one interface) ip-address—Specify the virtual IP address of the hot standby router interface. You must enter the virtual IP address for at least one of the interfaces; it can be learned on the other interfaces.
 • (Optional) secondary—Specify that the IP address is a secondary hot standby router interface. If this keyword is omitted, the configured address is the primary IP address. |
Chapter 1 Configuring Enhanced Object Tracking

Configuring Other Tracking Characteristics

You can also use the enhanced object tracking for tracking other characteristics.

- You can track the reachability of an IP route by using the `track ip route reachability` global configuration command.
- You can use the `track ip route metric threshold` global configuration command to determine if a route is above or below threshold.
- You can use the `track resolution` global configuration command to change the metric resolution default values for routing protocols.
- You can use the `track timer` tracking configuration command to configure the tracking process to periodically poll tracked objects.

Use the `show track` privileged EXEC command to verify enhanced object tracking configuration.

Configuring IP SLAs Object Tracking

Cisco IOS IP Service Level Agreements (IP SLAs) is a network performance measurement and diagnostics tool that uses active monitoring by generating traffic to measure network performance. Cisco IP SLAs operations collects real-time metrics that you can use for network troubleshooting, design, and analysis.

For more information about Cisco IP SLAs on the switch, see Chapter 1, “Configuring Cisco IOS IP SLAs Operations.” For IP SLAs command information see the Cisco IOS IP SLAs Command Reference, Release 12.4T.

Object tracking of IP SLAs operations allows clients to track the output from IP SLAs objects and use this information to trigger an action. Every IP SLAs operation maintains an SNMP operation return-code value, such as OK or OverThreshold, that can be interpreted by the tracking process. You can track two
aspects of IP SLAs operation: state and reachability. For state, if the return code is OK, the track state is up; if the return code is not OK, the track state is down. For reachability, if the return code is OK or OverThreshold, reachability is up; if not OK, reachability is down.

Beginning in privileged EXEC mode, follow these steps to track the state of an IP SLAs operation or the reachability of an IP SLAs IP host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** | **track object-number rtr operation-number state** Enter tracking configuration mode to track the state of an IP SLAs operation.
 - The object-number range is from 1 to 500.
 - The operation-number range is from 1 to 2147483647. |
| **Step 3** | **delay [up seconds [down seconds] | [up seconds] down seconds]** (Optional) Specify a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds. |
| **Step 4** | **exit** Return to global configuration mode. |
| **Step 5** | **track object-number rtr operation-number reachability** Enter tracking configuration mode to track the reachability of an IP SLAs IP host.
 - The object-number range is from 1 to 500.
 - The operation-number range is from 1 to 2147483647. |
| **Step 6** | **delay [up seconds [down seconds] | [up seconds] down seconds]** (Optional) Specify a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds. |
| **Step 7** | **end** Return to privileged EXEC mode. |
| **Step 8** | **show track object-number** Display tracking information to verify the configuration. |
| **Step 9** | **copy running-config startup-config** (Optional) Save your entries in the configuration file. |

This example shows how to configure and display IP SLAs state tracking:

```
Switch(config)# track 2 200 state
Switch(config)# end
Switch# show track 2
Track 2
  Response Time Reporter 1 state
  State is Down
  1 change, last change 00:00:47
  Latest operation return code: over threshold
  Latest RTT (milliseconds) 4
  Tracked by:
    MSRP Ethernet0/1 3
```
This example output shows whether a route is reachable:

```
Switch(config)# track 3 500 reachability
Switch(config)# end
Switch# show track 3
Track 3
  Response Time Reporter 1 reachability
  Reachability is Up
  1 change, last change 00:00:47
  Latest operation return code: over threshold
  Latest RTT (milliseconds) 4
  Tracked by:
    HSRP Ethernet0/1 3
```

Configuring Static Routing Support

Switches that are running the IP services feature set with Cisco IOS release 12.2(46)SE or later support enhanced object tracking static routing. Static routing support using enhanced object tracking provides the ability for the switch to use ICMP pings to identify when a preconfigured static route or a DHCP route goes down. When tracking is enabled, the system tracks the state of the route and informs the client when that state changes. Static route object tracking uses Cisco IP SLAs to generate ICMP pings to monitor the state of the connection to the primary gateway.

For more information about Cisco IP SLAs support on the switch, see Chapter 1, “Configuring Cisco IOS IP SLAs Operations.”

- For more information about static route object tracking, see:

You use this process to configure static route object tracking:

- **Step 1** Configure a primary interface for static routing or for DHCP.
- **Step 2** Configure an IP SLAs agent to ping an IP address using a primary interface and a track object to monitor the state of the agent.
- **Step 3** Configure a default static default route using a secondary interface. This route is used only if the primary route is removed.

Configuring a Primary Interface

Beginning in privileged EXEC mode, follow these steps to configure a primary interface for static routing:

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Select a primary or secondary interface and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 description string</td>
<td>Add a description to the interface.</td>
</tr>
<tr>
<td>Step 4 ip address ip-address mask [secondary]</td>
<td>Set the primary or secondary IP address for the interface.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to configure a primary interface for DHCP:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Select a primary or secondary interface and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>description string</td>
<td>Add a description to the interface.</td>
</tr>
<tr>
<td>4</td>
<td>ip dhcp client route track number</td>
<td>Configure the DCHP client to associate any added routes with the specified track number. Valid numbers are from 1 to 500.</td>
</tr>
<tr>
<td>5</td>
<td>ip address dhcp</td>
<td>Acquire an IP address on an Ethernet interface from DHCP.</td>
</tr>
<tr>
<td>6</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>

Configuring a Cisco IP SLAs Monitoring Agent and Track Object

Beginning in privileged EXEC mode, follow these steps to configure network monitoring with Cisco IP SLAs:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip sla operation-number</td>
<td>Begin configuring a Cisco IP SLAs operation and enter IP SLA configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>icmp-echo [destination-ip-address</td>
<td>destined hostname] [source-ip-address] [source-interface interface-id]</td>
</tr>
<tr>
<td>4</td>
<td>timeout milliseconds</td>
<td>Set the amount of time for which the operation waits for a response from its request packet.</td>
</tr>
<tr>
<td>5</td>
<td>frequency seconds</td>
<td>Set the rate at which the operation is sent into the network.</td>
</tr>
<tr>
<td>6</td>
<td>threshold milliseconds</td>
<td>Set the rising threshold (hysteresis) that generates a reaction event and stores history information for the operation.</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Exit IP SLAs ICMP echo configuration mode.</td>
</tr>
<tr>
<td>8</td>
<td>ip sla schedule operation-number [life {forver</td>
<td>seconds}] [start-time time] [pending {now</td>
</tr>
<tr>
<td>9</td>
<td>track object-number rtr operation-number {state</td>
<td>reachability}</td>
</tr>
<tr>
<td>10</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>11</td>
<td>show track object-number</td>
<td>Display tracking information to verify the configuration.</td>
</tr>
<tr>
<td>12</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Enhanced Object Tracking

Configuring a Routing Policy and Default Route

Beginning in privileged EXEC mode, follow these steps to configure a routing policy for backup static routing by using object tracking. For more details about the commands in the procedure, see: http://www.cisco.com/en/US/docs/ios/12_3/12_3x/12_3xe/feature/guide/dbackupx.html

Step 1 configure terminal
Step 2 access-list access-list-number
Step 3 route-map map-tag [permit | deny] [sequence-number]
Step 4 match ip address {access-list number | access-list name}
Step 5 set ip next-hop dynamic dhcp
Step 6 set interface interface-id
Step 7 exit
Step 8 ip local policy route-map map-tag
Step 9 ip route prefix mask {ip-address | interface-id [ip-address]} [distance] [name] [permanent] [track track-number] [tag tag]
Step 10 end
Step 11 show ip route track table
Step 12 copy running-config startup-config

For configuration examples, see: http://www.cisco.com/en/US/docs/ios/12_3/12_3x/12_3xe/feature/guide/dbackupx.html

Monitoring Enhanced Object Tracking

Use the privileged EXEC or user EXEC commands in Table 1-1 to display enhanced object tracking information.

Table 1-1 Commands for Displaying Tracking Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip route track table</td>
<td>Display information about the IP route track table.</td>
</tr>
<tr>
<td>show track [object-number]</td>
<td>Display information about the all tracking lists or the specified list.</td>
</tr>
<tr>
<td>show track brief</td>
<td>Display a single line of tracking information output.</td>
</tr>
<tr>
<td>show track interface [brief]</td>
<td>Display information about tracked interface objects.</td>
</tr>
<tr>
<td>show track ip [object-number] [brief] route</td>
<td>Display information about tracked IP-route objects.</td>
</tr>
</tbody>
</table>
Table 1-1 Commands for Displaying Tracking Information (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show track resolution</td>
<td>Display the resolution of tracked parameters.</td>
</tr>
<tr>
<td>show track timers</td>
<td>Display tracked polling interval timers.</td>
</tr>
</tbody>
</table>
CHAPTER 1

Configuring Cache Services By Using WCCP

This chapter describes how to configure your Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch to redirect traffic to wide-area application engines (such as the Cisco Cache Engine 550) by using the Web Cache Communication Protocol (WCCP). This software release supports only WCCP version 2 (WCCPv2).

To use this feature, the switch or the stack master must be running the IP services feature set.

WCCP is a Cisco-developed content-routing technology that you can use to integrate wide-area application engines—referred to as application engines—into your network infrastructure. The application engines transparently store frequently accessed content and then fulfill successive requests for the same content, eliminating repetitive transmissions of identical content from servers. Application engines accelerate content delivery and ensure maximum scalability and availability of content. In a service-provider network, you can deploy the WCCP and application engine solution at the points of presence (POPs). In an enterprise network, you can deploy the WCCP and application engine solution at the regional site and the small branch office.

Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

For complete syntax and usage information for the commands used in this chapter, see the “WCCP Router Configuration Commands” section in the “System Management Commands” part of the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4.

This chapter consists of these sections:

- Understanding WCCP, page 1-2
- Configuring WCCP, page 1-5
- Monitoring and Maintaining WCCP, page 1-10
Understanding WCCP

The WCCP and Cisco cache engines (or other application engines running WCCP) localize traffic patterns in the network, enabling content requests to be fulfilled locally.

WCCP enables supported Cisco routers and switches to transparently redirect content requests. With transparent redirection, users do not have to configure their browsers to use a web proxy. Instead, they can use the target URL to request content, and their requests are automatically redirected to an application engine. The word *transparent* means that the end user does not know that a requested file (such as a web page) came from the application engine instead of from the originally specified server.

When an application engine receives a request, it attempts to service it from its own local cache. If the requested information is not present, the application engine sends a separate request to the end server to retrieve the requested information. After receiving the requested information, the application engine forwards it to the requesting client and also caches it to fulfill future requests.

With WCCP, the application-engine cluster (a series of application engines) can service multiple routers or switches, as shown Figure 1-1.

WCCP Message Exchange

This sequence of events describes the WCCP message exchange:

1. The application engines send their IP addresses to the WCCP-enabled switch by using WCCP, signaling their presence through a *Here I am* message. The switch and application engines communicate to each other through a control channel based on UDP port 2048.

2. The WCCP-enabled switch uses the application engine IP information to create a cluster view (a list of application engines in the cluster). This view is sent through an *I see you* message to each application engine in the cluster, essentially making all the application engines aware of each other. A stable view is established after the membership of the cluster remains the same for a certain amount of time.

3. When a stable view is established, the application engine in the cluster with the lowest IP address is elected as the designated application engine.
WCCP Negotiation

In the exchange of WCCP protocol messages, the designated application engine and the WCCP-enabled switch negotiate these items:

- **Forwarding method** (the method by which the switch forwards packets to the application engine). The switch rewrites the Layer 2 header by replacing the packet destination MAC address with the target application engine MAC address. It then forwards the packet to the application engine. This forwarding method requires the target application engine to be directly connected to the switch at Layer 2.

- **Assignment method** (the method by which packets are distributed among the application engines in the cluster). The switch uses some bits of the destination IP address, the source IP address, the destination Layer 4 port, and the source Layer 4 port to determine which application engine receives the redirected packets.

- **Packet-return method** (the method by which packets are returned from the application engine to the switch for normal forwarding). These are the typical reasons why an application engine rejects packets and starts the packet-return feature:
 - The application engine is overloaded and has no room to service the packets.
 - The application engine receives an error message (such as a protocol or authentication error) from the server and uses the dynamic client bypass feature. The bypass enables clients to bypass the application engines and to connect directly to the server.

The application engine returns a packet to the WCCP-enabled switch to forward to the server as if the application engine is not present. The application engine does not intercept the reconnection attempt. In this way, the application engine effectively cancels the redirection of a packet to the application engine and creates a bypass flow. If the return method is Layer 2 rewrite, the packets are forwarded in hardware to the target server. When the server responds with the information, the switch uses normal Layer 3 forwarding to return the information to the requesting client.

MD5 Security

WCCP provides an optional security component in each protocol message to enable the switch to use MD5 authentication on messages between the switch and the application engine. Messages that do not authenticate by MD5 (when authentication of the switch is enabled) are discarded by the switch. The password string is combined with the MD5 value to create security for the connection between the switch and the application engine. You must configure the same password on each application engine.

Packet Redirection and Service Groups

You can configure WCCP to classify traffic for redirection, such as FTP, proxy-web-cache handling, and audio and video applications. This classification, known as a service group, is based on the protocol type (TCP or UDP) and the Layer 4 source destination port numbers. The service groups are identified either by well-known names such as web-cache, which means TCP port 80, or a service number, 0 to 99. Service groups are configured to map to a protocol and Layer 4 port numbers and are established and maintained independently. WCCP allows dynamic service groups, where the classification criteria are provided dynamically by a participating application engine.

You can configure up to 8 service groups on a switch or switch stack and up to 32 cache engines per service group. WCCP maintains the priority of the service group in the group definition. WCCP uses the priority to configure the service groups in the switch hardware. For example, if service group 1 has a
priority of 100 and looks for destination port 80, and service group 2 has a priority of 50 and looks for source port 80, the incoming packet with source and destination port 80 is forwarded by using service group 1 because it has the higher priority.

WCCP supports a cluster of application engines for every service group. Redirected traffic can be sent to any one of the application engines. The switch supports the mask assignment method of load balancing the traffic among the application engines in the cluster for a service group.

After WCCP is configured on the switch, the switch forwards all service group packets received from clients to the application engines. However, these packets are not redirected:

- Packets originating from the application engine and targeted to the server.
- Packets originating from the application engine and targeted to the client.
- Packets returned or rejected by the application engine. These packets are sent to the server.

You can configure a single multicast address per service group for sending and receiving protocol messages. When there is a single multicast address, the application engine sends a notification to one address, which provides coverage for all routers in the service group, for example, 225.0.0.0. If you add and remove routers dynamically, using a single multicast address provides easier configuration because you do not need to specifically enter the addresses of all devices in the WCCP network.

You can use a router group list to validate the protocol packets received from the application engine. Packets matching the address in the group list are processed, packets not matching the group list address are dropped.

To disable caching for specific clients, servers, or client/server pairs, you can use a WCCP redirect access control list (ACL). Packets that do not match the redirect ACL bypass the cache and are forwarded normally.

Before WCCP packets are redirected, the switch examines ACLs associated with all inbound features configured on the interface and permits or denies packet forwarding based on how the packet matches the entries in the ACL.

Note

Beginning with Cisco IOS Release 12.2(58)SE, both permit and deny ACL entries are supported in WCCP redirect lists.

When packets are redirected, the output ACLs associated with the redirected interface are applied to the packets. Any ACLs associated with the original port are not applied unless you specifically configure the required output ACLs on the redirected interfaces.

WCCP and Switch Stacks

WCCP support is the same for a switch stack as for a standalone switch. WCCP configuration information is propagated to all switches in the stack. All switches in the stack, including the stack master, process the information and program their hardware. For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”

The stack master performs these WCCP functions:

- It receives protocol packets from any WCCP-enabled interface and sends them out any WCCP-enabled interface in the stack.
- It processes the WCCP configuration and propagates the information to all stack members.
- It distributes the WCCP information to any switch that joins the stack.
- It programs its hardware with the WCCP information it processes.
Stack members receive the WCCP information from the master switch and program their hardware.

Unsupported WCCP Features

These WCCP features are not supported in this software release:

- Packet redirection on an outbound interface that is configured by using the `ip wccp redirect out` interface configuration command. This command is not supported.
- The GRE forwarding method for packet redirection is not supported.
- The hash assignment method for load balancing is not supported.
- There is no SNMP support for WCCP.

Configuring WCCP

These sections describe how to configure WCCP on your switch:

- Default WCCP Configuration, page 1-5
- WCCP Configuration Guidelines, page 1-5
- Enabling the Cache Service, page 1-6 (required)

Default WCCP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCCP enable state</td>
<td>WCCP services are disabled.</td>
</tr>
<tr>
<td>Protocol version</td>
<td>WCCPv2.</td>
</tr>
<tr>
<td>Redirecting traffic received on an interface</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

WCCP Configuration Guidelines

Before configuring WCCP on your switch, make sure to follow these configuration guidelines:

- The application engines and switches in the same service group must be in the same subnetwork directly connected to the switch that has WCCP enabled.
- Configure the switch interfaces that are connected to the clients, the application engines, and the server as Layer 3 interfaces (routed ports and switch virtual interfaces [SVIs]). For WCCP packet redirection to work, the servers, application engines, and clients must be on different subnets.
- Use only nonreserved multicast addresses when configuring a single multicast address for each application engine.
- WCCP entries and PBR entries use the same TCAM region. WCCP is supported only on the templates that support PBR: access, routing, and dual IPv4/v6 routing.
- When TCAM entries are not available to add WCCP entries, packets are not redirected and are forwarded by using the standard routing tables.
The number of available policy-based routing (PBR) labels are reduced as more interfaces are enabled for WCCP ingress redirection. For every interface that supports service groups, one label is consumed. The WCCP labels are taken from the PBR labels. You need to monitor and manage the labels that are available between PBR and WCCP. When labels are not available, the switch cannot add service groups. However, if another interface has the same sequence of service groups, a new label is not needed, and the group can be added to the interface.

- You cannot configure WCCP and VPN routing/forwarding (VRF) on the same switch interface.
- You cannot configure WCCP and PBR on the same switch interface.
- You cannot configure WCCP and a private VLAN (PVLAN) on the same switch interface.

Enabling the Cache Service

For WCCP packet redirection to operate, you must configure the switch interface connected to the client to redirect inbound packets.

This procedure shows how to configure these features on routed ports. To configure these features on SVIs, see the configuration examples that follow the procedure.

Beginning in privileged EXEC mode, follow these steps to enable the cache service, to set a multicast group address or group list, to configure routed interfaces, to redirect inbound packets received from a client to the application engine, enable an interface to listen for a multicast address, and to set a password. This procedure is required.

Note

Before configuring WCCP commands, configure the SDM template, and reboot the switch. For more information, see Chapter 1, “Configuring SDM Templates.”
Configuring Cache Services By Using WCCP

Configuring WCCP

Command Purpose

Step 1
configure terminal
Enter global configuration mode.

Step 2
ip wccp [web-cache | service-number] [group-address group-address] [group-list access-list] [redirect-list access-list] [password encryption-number password]
Enable the cache service, and specify the service number which corresponds to a dynamic service that is defined by the application engine. By default, this feature is disabled.
(Optional) For **group-address group-address**, specify the multicast group address used by the switches and the application engines to participate in the service group.
(Optional) For **group-list access-list**, if a multicast group address is not used, specify a list of valid IP addresses that correspond to the application engines that are participating in the service group.
(Optional) For **redirect-list access-list**, specify the redirect service for specific hosts or specific packets from hosts.
(Optional) For **password encryption-number password**, specify an encryption number. The range is 0 to 7. Use 0 for not encrypted, and use 7 for proprietary. Specify a password name up to seven characters in length. The switch combines the password with the MD5 authentication value to create security for the connection between the switch and the application engine. By default, no password is configured, and no authentication is performed. You must configure the same password on each application engine.
When authentication is enabled, the switch discards messages that are not authenticated.

Step 3
interface interface-id
Specify the interface connected to the application engine or the server, and enter interface configuration mode.

Step 4
no switchport
Enter Layer 3 mode.

Step 5
ip address ip-address subnet-mask
Configure the IP address and subnet mask.

Step 6
no shutdown
Enable the interface.

Step 7
exit
Return to global configuration mode. Repeat Steps 3 through 7 for each application engine and server.

Step 8
interface interface-id
Specify the interface connected to the client, and enter interface configuration mode.

Step 9
no switchport
Enter Layer 3 mode.

Step 10
ip address ip-address subnet-mask
Configure the IP address and subnet mask.

Step 11
no shutdown
Enable the interface.

Step 12
ip wccp [web-cache | service-number] redirect in
Redirect packets received from the client to the application engine. Enable this on the interface connected to the client.

Step 13
ip wccp [web-cache | service-number] group-listen
(Optional) When using a multicast group address, **group-listen** enables the interface to listen for the multicast address. Enable this on the interface connected to the application engine.

Step 14
exit
Return to global configuration mode. Repeat Steps 8 through 13 for each client.

Step 15
end
Return to privileged EXEC mode.
To disable the cache service, use the `no ip wccp web-cache` global configuration command. To disable inbound packet redirection, use the `no ip wccp web-cache redirect in` interface configuration command.

After completing this procedure, configure the application engines in the network.

This example shows how to configure routed interfaces and to enable the cache service with a multicast group address and a redirect access list. Gigabit Ethernet port 1 is connected to the application engine, is configured as a routed port with an IP address of 172.20.10.30, and is re-enabled. Gigabit Ethernet port 2 is connected through the Internet to the server, is configured as a routed port with an IP address of 175.20.20.10, and is re-enabled. Gigabit Ethernet ports 3 to 6 are connected to the clients and are configured as routed ports with IP addresses 175.20.30.20, 175.20.40.30, 175.20.50.40, and 175.20.60.50. The switch listens for multicast traffic and redirects packets received from the client interfaces to the application engine.

```
Switch# configure terminal
Switch(config)# ip wccp web-cache group-address 224.1.1.100 redirect list 12
Switch(config)# access-list 12 permit host 10.1.1.1
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# ip address 172.20.10.30 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# ip wccp web-cache group-listen
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 175.20.20.10 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# no switchport
Switch(config-if)# ip address 175.20.30.20 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# ip wccp web-cache redirect in
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# no switchport
Switch(config-if)# ip address 175.20.40.30 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# ip wccp web-cache redirect in
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/5
Switch(config-if)# no switchport
Switch(config-if)# ip address 175.20.50.40 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# ip wccp web-cache redirect in
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/6
Switch(config-if)# no switchport
Switch(config-if)# ip address 175.20.60.50 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# ip wccp web-cache redirect in
Switch(config-if)# exit
```
This example shows how to configure SVIs and how to enable the cache service with a multicast group list. VLAN 299 is created and configured with an IP address of 175.20.20.10. Gigabit Ethernet port 1 is connected through the Internet to the server and is configured as an access port in VLAN 299. VLAN 300 is created and configured with an IP address of 172.20.10.30. Gigabit Ethernet port 2 is connected to the application engine and is configured as an access port in VLAN 300. VLAN 301 is created and configured with an IP address of 175.20.30.50. Fast Ethernet ports 3 to 6, which are connected to the clients, are configured as access ports in VLAN 301. The switch redirects packets received from the client interfaces to the application engine.

Note
Beginning with Cisco IOS Release 12.2(58)SE, both permit and deny ACL entries are supported in WCCP redirect lists.

```
Switch# configure terminal
Switch(config)# ip wccp web-cache 80 group-list 15
Switch(config)# access-list 15 permit host 171.69.198.102
Switch(config)# access-list 15 permit host 171.69.198.104
Switch(config)# access-list 15 permit host 171.69.198.106
Switch(config)# vlan 299
Switch(config-vlan)# exit
Switch(config)# interface vlan 299
Switch(config-if)# ip address 175.20.20.10 255.255.255.0
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 299
Switch(config)# vlan 300
Switch(config-vlan)# exit
Switch(config)# interface vlan 300
Switch(config-if)# ip address 171.69.198.100 255.255.255.0
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 300
Switch(config-if)# exit
Switch(config)# vlan 301
Switch(config-vlan)# exit
Switch(config)# interface vlan 301
Switch(config-if)# ip address 175.20.30.20 255.255.255.0
Switch(config-if)# ip wccp web-cache redirect in
Switch(config-if)# exit
Switch(config)# interface range gigabitethernet1/0/3-6
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 301
Switch(config-if-range)# exit
```
Monitoring and Maintaining WCCP

To monitor and maintain WCCP, use one or more of the privileged EXEC commands in Table 1-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip wccp web-cache</td>
<td>Removes statistics for the web-cache service.</td>
</tr>
<tr>
<td>show ip wccp web-cache</td>
<td>Displays global information related to WCCP.</td>
</tr>
<tr>
<td>show ip wccp web-cache detail</td>
<td>Displays information for the switch and all application engines in the</td>
</tr>
<tr>
<td></td>
<td>WCCP cluster.</td>
</tr>
<tr>
<td>show ip interface</td>
<td>Displays status about any IP WCCP redirection commands that are</td>
</tr>
<tr>
<td></td>
<td>configured on an interface; for example, Web Cache Redirect is</td>
</tr>
<tr>
<td></td>
<td>enabled / disabled.</td>
</tr>
<tr>
<td>show ip wccp web-cache view</td>
<td>Displays which other members have or have not been detected.</td>
</tr>
</tbody>
</table>
Configuring IP Multicast Routing

This chapter describes how to configure IP multicast routing on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. IP multicasting is a more efficient way to use network resources, especially for bandwidth-intensive services such as audio and video. IP multicast routing enables a host (source) to send packets to a group of hosts (receivers) anywhere within the IP network by using a special form of IP address called the IP multicast group address. The sending host inserts the multicast group address into the IP destination address field of the packet, and IP multicast routers and multilayer switches forward incoming IP multicast packets out all interfaces that lead to members of the multicast group. Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message.

To use this feature, the switch or stack master must be running the IP services feature set. To use the PIM stub routing feature, the switch or stack master can be running the IP base image.

Note
Multicast routing is not supported on switches running the LAN base feature set.

Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS IP Command Reference, Volume 3 of 3: Multicast, Release 12.4.

- Understanding Cisco’s Implementation of IP Multicast Routing, page 1-2
- Multicast Routing and Switch Stacks, page 1-10
- Configuring IP Multicast Routing, page 1-10
- Configuring Advanced PIM Features, page 1-35
- Configuring Optional IGMP Features, page 1-38
- Configuring Optional Multicast Routing Features, page 1-44
- Configuring Basic DVMRP Interoperability Features, page 1-49
- Configuring Advanced DVMRP Interoperability Features, page 1-54
- Monitoring and Maintaining IP Multicast Routing, page 1-63

For information on configuring the Multicast Source Discovery Protocol (MSDP), see Chapter 1, “Configuring MSDP.”
Understanding Cisco’s Implementation of IP Multicast Routing

The Cisco IOS software supports these protocols to implement IP multicast routing:

- Internet Group Management Protocol (IGMP) is used among hosts on a LAN and the routers (and multilayer switches) on that LAN to track the multicast groups of which hosts are members.
- Protocol-Independent Multicast (PIM) protocol is used among routers and multilayer switches to track which multicast packets to forward to each other and to their directly connected LANs.
- Distance Vector Multicast Routing Protocol (DVMRP) is used on the multicast backbone of the Internet (MBONE). The software supports PIM-to-DVMRP interaction.
- Cisco Group Management Protocol (CGMP) is used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP.

Figure 1-1 shows where these protocols operate within the IP multicast environment.

Figure 1-1 IP Multicast Routing Protocols

According to IPv4 multicast standards, the MAC destination multicast address begins with 0100:5e and is appended by the last 23 bits of the IP address. For example, if the IP destination address is 239.1.1.39, the MAC destination address is 0100:5e01:0127.

A multicast packet is unmatched when the destination IPv4 address does not match the destination MAC address. The switch forwards the unmatched packet in hardware based on the MAC address table. If the destination MAC address is not in the MAC address table, the switch floods the packet to the all port in the same VLAN as the receiving port.

This section includes information about these topics:

- Understanding IGMP, page 1-3
- Understanding PIM, page 1-4
- Understanding DVMRP, page 1-9
- Understanding CGMP, page 1-9
Understanding IGMP

To participate in IP multicasting, multicast hosts, routers, and multilayer switches must have the IGMP operating. This protocol defines the querier and host roles:

- A querier is a network device that sends query messages to discover which network devices are members of a given multicast group.
- A host is a receiver that sends report messages (in response to query messages) to inform a querier of a host membership.

A set of queriers and hosts that receive multicast data streams from the same source is called a multicast group. Queriers and hosts use IGMP messages to join and leave multicast groups.

Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message. Membership in a multicast group is dynamic; hosts can join and leave at any time. There is no restriction on the location or number of members in a multicast group. A host can be a member of more than one multicast group at a time. How active a multicast group is and what members it has can vary from group to group and from time to time. A multicast group can be active for a long time, or it can be very short-lived. Membership in a group can constantly change. A group that has members can have no activity.

IP multicast traffic uses group addresses, which are class D addresses. The high-order bits of a Class D address are 1110. Therefore, host group addresses can be in the range 224.0.0.0 through 239.255.255.255. Multicast addresses in the range 224.0.0.0 to 224.0.0.255 are reserved for use by routing protocols and other network control traffic. The address 224.0.0.0 is guaranteed not to be assigned to any group.

IGMP packets are sent using these IP multicast group addresses:

- IGMP general queries are destined to the address 224.0.0.1 (all systems on a subnet).
- IGMP group-specific queries are destined to the group IP address for which the switch is querying.
- IGMP group membership reports are destined to the group IP address for which the switch is reporting.
- IGMP Version 2 (IGMPv2) leave messages are destined to the address 224.0.0.2 (all-multicast-routers on a subnet). In some old host IP stacks, leave messages might be destined to the group IP address rather than to the all-routers address.

IGMP Version 1

IGMP Version 1 (IGMPv1) primarily uses a query-response model that enables the multicast router and multilayer switch to find which multicast groups are active (have one or more hosts interested in a multicast group) on the local subnet. IGMPv1 has other processes that enable a host to join and leave a multicast group. For more information, see RFC 1112.

IGMP Version 2

IGMPv2 extends IGMP functionality by providing such features as the IGMP leave process to reduce leave latency, group-specific queries, and an explicit maximum query response time. IGMPv2 also adds the capability for routers to elect the IGMP querier without depending on the multicast protocol to perform this task. For more information, see RFC 2236.
Understanding PIM

PIM is called protocol-independent: regardless of the unicast routing protocols used to populate the unicast routing table, PIM uses this information to perform multicast forwarding instead of maintaining a separate multicast routing table.

PIM is defined in RFC 2362, Protocol-Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification. PIM is defined in these Internet Engineering Task Force (IETF) Internet drafts:

- Protocol Independent Multicast (PIM): Motivation and Architecture
- Protocol Independent Multicast (PIM), Dense Mode Protocol Specification
- Protocol Independent Multicast (PIM), Sparse Mode Protocol Specification
- draft-ietf-idmr-igmp-v2-06.txt, Internet Group Management Protocol, Version 2
- draft-ietf-pim-v2-dm-03.txt, PIM Version 2 Dense Mode

PIM Versions

PIMv2 includes these improvements over PIMv1:

- A single, active rendezvous point (RP) exists per multicast group, with multiple backup RPs. This single RP compares to multiple active RPs for the same group in PIMv1.
- A bootstrap router (BSR) provides a fault-tolerant, automated RP discovery and distribution mechanism that enables routers and multilayer switches to dynamically learn the group-to-RP mappings.
- Sparse mode and dense mode are properties of a group, as opposed to an interface. We strongly recommend sparse-dense mode, as opposed to either sparse mode or dense mode only.
- PIM join and prune messages have more flexible encoding for multiple address families.
- A more flexible hello packet format replaces the query packet to encode current and future capability options.
- Register messages to an RP specify whether they are sent by a border router or a designated router.
- PIM packets are no longer inside IGMP packets; they are standalone packets.

PIM Modes

PIM can operate in dense mode (DM), sparse mode (SM), or in sparse-dense mode (PIM DM-SM), which handles both sparse groups and dense groups at the same time.

PIM DM

PIM DM builds source-based multicast distribution trees. In dense mode, a PIM DM router or multilayer switch assumes that all other routers or multilayer switches forward multicast packets for a group. If a PIM DM device receives a multicast packet and has no directly connected members or PIM neighbors present, a prune message is sent back to the source to stop unwanted multicast traffic. Subsequent multicast packets are not flooded to this router or switch on this pruned branch because branches without receivers are pruned from the distribution tree, leaving only branches that contain receivers.
When a new receiver on a previously pruned branch of the tree joins a multicast group, the PIM DM device detects the new receiver and immediately sends a graft message up the distribution tree toward the source. When the upstream PIM DM device receives the graft message, it immediately puts the interface on which the graft was received into the forwarding state so that the multicast traffic begins flowing to the receiver.

PIM-SM

PIM-SM uses shared trees and shortest-path-trees (SPTs) to distribute multicast traffic to multicast receivers in the network. In PIM-SM, a router or multilayer switch assumes that other routers or switches do not forward multicast packets for a group, unless there is an explicit request for the traffic (join message). When a host joins a multicast group using IGMP, its directly connected PIM-SM device sends PIM join messages toward the root, also known as the RP. This join message travels router-by-router toward the root, constructing a branch of the shared tree as it goes.

The RP keeps track of multicast receivers. It also registers sources through register messages received from the source’s first-hop router (designated router [DR]) to complete the shared tree path from the source to the receiver. When using a shared tree, sources must send their traffic to the RP so that the traffic reaches all receivers.

Prune messages are sent up the distribution tree to prune multicast group traffic. This action permits branches of the shared tree or SPT that were created with explicit join messages to be torn down when they are no longer needed.

When the number of PIM-enabled interfaces exceeds the hardware capacity and PIM-SM is enabled with the SPT threshold is set to infinity, the switch does not create (S,G) entries in the multicast routing table for the some directly connected interfaces if they are not already in the table. The switch might not correctly forward traffic from these interfaces.

PIM Stub Routing

The PIM stub routing feature, available in all software images, reduces resource usage by moving routed traffic closer to the end user.

Note

The IP base image contains only PIM stub routing. The IP services image contains complete multicast routing. On a switch running the IP base image, if you try to configure a VLAN interface with PIM dense-mode, sparse-mode, or dense-sparse-mode, the configuration is not allowed.

In a network using PIM stub routing, the only allowable route for IP traffic to the user is through a switch that is configured with PIM stub routing. PIM passive interfaces are connected to Layer 2 access domains, such as VLANs, or to interfaces that are connected to other Layer 2 devices. Only directly connected multicast (IGMP) receivers and sources are allowed in the Layer 2 access domains. The PIM passive interfaces do not send or process any received PIM control packets.

When using PIM stub routing, you should configure the distribution and remote routers to use IP multicast routing and configure only the switch as a PIM stub router. The switch does not route transit traffic between distribution routers. You also need to configure a routed uplink port on the switch. The switch uplink port cannot be used with SVIs. If you need PIM for an SVI uplink port, you should upgrade to the IP services feature set.

You must also configure EIGRP stub routing when configuring PIM stub routing on the switch. For more information, see the “EIGRP Stub Routing” section on page 1-44.
The redundant PIM stub router topology is not supported. The redundant topology exists when there is more than one PIM router forwarding multicast traffic to a single access domain. PIM messages are blocked, and the PIM asset and designated router election mechanisms are not supported on the PIM passive interfaces. Only the nonredundant access router topology is supported by the PIM stub feature. By using a nonredundant topology, the PIM passive interface assumes that it is the only interface and designated router on that access domain.

The PIM stub feature is enforced in the IP base image. If you upgrade to a higher software version, the PIM stub configuration remains until you reconfigure the interfaces.

In Figure 1-2, Switch A routed uplink port 25 is connected to the router and PIM stub routing is enabled on the VLAN 100 interfaces and on Host 3. This configuration allows the directly connected hosts to receive traffic from multicast source 200.1.1.3. See the “Configuring PIM Stub Routing” section on page 1-22 for more information.

Figure 1-2 PIM Stub Router Configuration

IGMP Helper

PIM stub routing moves routed traffic closer to the end user and reduces network traffic. You can also reduce traffic by configuring a stub router (switch) with the IGMP helper feature.

You can configure a stub router (switch) with the `igmp helper help-address` interface configuration command to enable the switch to send reports to the next-hop interface. Hosts that are not directly connected to a downstream router can then join a multicast group sourced from an upstream network. The IGMP packets from a host wanting to join a multicast stream are forwarded upstream to the next-hop device when this feature is configured. When the upstream central router receives the helper IGMP reports or leaves, it adds or removes the interfaces from its outgoing interface list for that group.

For complete syntax and usage information for the `ip igmp helper-address` command, see the Cisco IOS IP and IP Routing Command Reference, Release 12.4.
Auto-RP

This proprietary feature eliminates the need to manually configure the RP information in every router and multilayer switch in the network. For auto-RP to work, you configure a Cisco router or multilayer switch as the mapping agent. It uses IP multicast to learn which routers or switches in the network are possible candidate RPs to receive candidate RP announcements. Candidate RPs periodically send multicast RP-announce messages to a particular group or group range to announce their availability.

Mapping agents listen to these candidate RP announcements and use the information to create entries in their Group-to-RP mapping caches. Only one mapping cache entry is created for any Group-to-RP range received, even if multiple candidate RPs are sending RP announcements for the same range. As the RP-announce messages arrive, the mapping agent selects the router or switch with the highest IP address as the active RP and stores this RP address in the Group-to-RP mapping cache.

Mapping agents periodically multicast the contents of their Group-to-RP mapping caches. Thus, all routers and switches automatically discover which RP to use for the groups that they support. If a router or switch fails to receive RP-discovery messages and the Group-to-RP mapping information expires, it changes to a statically configured RP that was defined with the `ip pim rp-address` global configuration command. If no statically configured RP exists, the router or switch changes the group to dense-mode operation.

Multiple RPs serve different group ranges or serve as hot backups of each other.

Bootstrap Router

PIMv2 BSR is another method to distribute group-to-RP mapping information to all PIM routers and multilayer switches in the network. It eliminates the need to manually configure RP information in every router and switch in the network. However, instead of using IP multicast to distribute group-to-RP mapping information, BSR uses hop-by-hop flooding of special BSR messages to distribute the mapping information.

The BSR is elected from a set of candidate routers and switches in the domain that have been configured to function as BSRs. The election mechanism is similar to the root-bridge election mechanism used in bridged LANs. The BSR election is based on the BSR priority of the device contained in the BSR messages that are sent hop-by-hop through the network. Each BSR device examines the message and forwards out all interfaces only the message that has either a higher BSR priority than its BSR priority or the same BSR priority, but with a higher BSR IP address. Using this method, the BSR is elected.

The elected BSR sends BSR messages with a TTL of 1. Neighboring PIMv2 routers or multilayer switches receive the BSR message and multicast it out all other interfaces (except the one on which it was received) with a TTL of 1. In this way, BSR messages travel hop-by-hop throughout the PIM domain. Because BSR messages contain the IP address of the current BSR, the flooding mechanism enables candidate RPs to automatically learn which device is the elected BSR.

Candidate RPs send candidate RP advertisements showing the group range for which they are responsible to the BSR, which stores this information in its local candidate-RP cache. The BSR periodically advertises the contents of this cache in BSR messages to all other PIM devices in the domain. These messages travel hop-by-hop through the network to all routers and switches, which store the RP information in the BSR message in their local RP cache. The routers and switches select the same RP for a given group because they all use a common RP hashing algorithm.
Multicast Forwarding and Reverse Path Check

With unicast routing, routers and multilayer switches forward traffic through the network along a single path from the source to the destination host whose IP address appears in the destination address field of the IP packet. Each router and switch along the way makes a unicast forwarding decision, using the destination IP address in the packet, by looking up the destination address in the unicast routing table and forwarding the packet through the specified interface to the next hop toward the destination.

With multicasting, the source is sending traffic to an arbitrary group of hosts represented by a multicast group address in the destination address field of the IP packet. To decide whether to forward or drop an incoming multicast packet, the router or multilayer switch uses a reverse path forwarding (RPF) check on the packet as follows and shown in Figure 1-3:

1. The router or multilayer switch examines the source address of the arriving multicast packet to decide whether the packet arrived on an interface that is on the reverse path back to the source.
2. If the packet arrives on the interface leading back to the source, the RPF check is successful and the packet is forwarded to all interfaces in the outgoing interface list (which might not be all interfaces on the router).
3. If the RPF check fails, the packet is discarded.

Some multicast routing protocols, such as DVMRP, maintain a separate multicast routing table and use it for the RPF check. However, PIM uses the unicast routing table to perform the RPF check.

Figure 1-3 shows port 2 receiving a multicast packet from source 151.10.3.21. Table 1-1 shows that the port on the reverse path to the source is port 1, not port 2. Because the RPF check fails, the multilayer switch discards the packet. Another multicast packet from source 151.10.3.21 is received on port 1, and the routing table shows this port is on the reverse path to the source. Because the RPF check passes, the switch forwards the packet to all port in the outgoing port list.

Table 1-1 Routing Table Example for an RPF Check

<table>
<thead>
<tr>
<th>Network</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.10.0.0/16</td>
<td>Gigabit Ethernet 1/0/1</td>
</tr>
<tr>
<td>198.14.32.0/32</td>
<td>Gigabit Ethernet 1/0/3</td>
</tr>
<tr>
<td>204.1.16.0/24</td>
<td>Gigabit Ethernet 1/0/4</td>
</tr>
</tbody>
</table>
PIM uses both source trees and RP-rooted shared trees to forward datagrams (described in the “PIM DM” section on page 1-4 and the “PIM-SM” section on page 1-5). The RPF check is performed differently for each:

- If a PIM router or multilayer switch has a source-tree state (that is, an (S,G) entry is present in the multicast routing table), it performs the RPF check against the IP address of the source of the multicast packet.
- If a PIM router or multilayer switch has a shared-tree state (and no explicit source-tree state), it performs the RPF check on the RP address (which is known when members join the group).

Sparse-mode PIM uses the RPF lookup function to decide where it needs to send joins and prunes:
- (S,G) joins (which are source-tree states) are sent toward the source.
- (*,G) joins (which are shared-tree states) are sent toward the RP.

DVMRP and dense-mode PIM use only source trees and use RPF as previously described.

Understanding DVMRP

DVMRP is implemented in the equipment of many vendors and is based on the public-domain mrouted program. This protocol has been deployed in the MBONE and in other intradomain multicast networks.

Cisco routers and multilayer switches run PIM and can forward multicast packets to and receive from a DVMRP neighbor. It is also possible to propagate DVMRP routes into and through a PIM cloud. The software propagates DVMRP routes and builds a separate database for these routes on each router and multilayer switch, but PIM uses this routing information to make the packet-forwarding decision. The software does not implement the complete DVMRP. However, it supports dynamic discovery of DVMRP routers and can interoperate with them over traditional media (such as Ethernet and FDDI) or over DVMRP-specific tunnels.

DVMRP neighbors build a route table by periodically exchanging source network routing information in route-report messages. The routing information stored in the DVMRP routing table is separate from the unicast routing table and is used to build a source distribution tree and to perform multicast forward using RPF.

DVMRP is a dense-mode protocol and builds a parent-child database using a constrained multicast model to build a forwarding tree rooted at the source of the multicast packets. Multicast packets are initially flooded down this source tree. If redundant paths are on the source tree, packets are not forwarded along those paths. Forwarding occurs until prune messages are received on those parent-child links, which further constrain the broadcast of multicast packets.

Understanding CGMP

This software release provides CGMP-server support on your switch; no client-side functionality is provided. The switch serves as a CGMP server for devices that do not support IGMP snooping but have CGMP-client functionality.

CGMP is a protocol used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP. CGMP permits Layer 2 group membership information to be communicated from the CGMP server to the switch. The switch can then learn on which interfaces multicast members reside instead of flooding multicast traffic to all switch interfaces. (IGMP snooping is another method to constrain the flooding of multicast packets. For more information, see Chapter 1, “Configuring IGMP Snooping and MVR.”)
CGMP is necessary because the Layer 2 switch cannot distinguish between IP multicast data packets and IGMP report messages, which are both at the MAC-level and are addressed to the same group address.

CGMP is mutually exclusive with HSRPv1. You cannot enable CGMP leaving processing and HSRPv1 at the same time. However, you can enable CGMP and HSRPv2 at the same time. For more information, see the “HSRP Versions” section on page 1-3.

Multicast Routing and Switch Stacks

For all multicast routing protocols, the entire stack appears as a single router to the network and operates as a single multicast router.

In a switch stack, the routing master (stack master) performs these functions:

- It is responsible for completing the IP multicast routing functions of the stack. It fully initializes and runs the IP multicast routing protocols.
- It builds and maintains the multicast routing table for the entire stack.
- It is responsible for distributing the multicast routing table to all stack members.

The stack members perform these functions:

- They act as multicast routing standby devices and are ready to take over if there is a stack master failure.

If the stack master fails, all stack members delete their multicast routing tables. The newly elected stack master starts building the routing tables and distributes them to the stack members.

Note If a stack master running the IP services feature set fails and if the newly elected stack master is running the IP base feature set, the switch stack loses its multicast routing capability.

For information about the stack master election process, see Chapter 1, “Managing Switch Stacks.”

- They do not build multicast routing tables. Instead, they use the multicast routing table that is distributed by the stack master.

Configuring IP Multicast Routing

- Default Multicast Routing Configuration, page 1-11
- Multicast Routing Configuration Guidelines, page 1-11
- Configuring Basic Multicast Routing, page 1-12 (required)
- Configuring Source-Specific Multicast, page 1-14
- Configuring Source Specific Multicast Mapping, page 1-17
- Configuring PIM Stub Routing, page 1-22 (optional)
- Configuring a Rendezvous Point, page 1-24 (required if the interface is in sparse-dense mode, and you want to treat the group as a sparse group)
- Using Auto-RP and a BSR, page 1-34 (required for non-Cisco PIMv2 devices to interoperate with Cisco PIM v1 devices)
- Monitoring the RP Mapping Information, page 1-35 (optional)
- Troubleshooting PIMv1 and PIMv2 Interoperability Problems, page 1-35 (optional)
Default Multicast Routing Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast routing</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>PIM version</td>
<td>Version 2.</td>
</tr>
<tr>
<td>PIM mode</td>
<td>No mode is defined.</td>
</tr>
<tr>
<td>PIM stub routing</td>
<td>None configured.</td>
</tr>
<tr>
<td>PIM RP address</td>
<td>None configured.</td>
</tr>
<tr>
<td>PIM domain border</td>
<td>Disabled.</td>
</tr>
<tr>
<td>PIM multicast boundary</td>
<td>None.</td>
</tr>
<tr>
<td>Candidate BSRs</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Candidate RPs</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Shortest-path tree threshold</td>
<td>0 kb/s.</td>
</tr>
<tr>
<td>PIM router query message interval</td>
<td>30 seconds.</td>
</tr>
</tbody>
</table>

Multicast Routing Configuration Guidelines

To avoid misconfiguring multicast routing on your switch, review the information in these sections:

- PIMv1 and PIMv2 Interoperability, page 1-11
- Auto-RP and BSR Configuration Guidelines, page 1-12

PIMv1 and PIMv2 Interoperability

The Cisco PIMv2 implementation provides interoperability and transition between Version 1 and Version 2, although there might be some minor problems.

You can upgrade to PIMv2 incrementally. PIM Versions 1 and 2 can be configured on different routers and multilayer switches within one network. Internally, all routers and multilayer switches on a shared media network must run the same PIM version. Therefore, if a PIMv2 device detects a PIMv1 device, the Version 2 device downgrades itself to Version 1 until all Version 1 devices have been shut down or upgraded.

PIMv2 uses the BSR to discover and announce RP-set information for each group prefix to all the routers and multilayer switches in a PIM domain. PIMv1, together with the Auto-RP feature, can perform the same tasks as the PIMv2 BSR. However, Auto-RP is a standalone protocol, separate from PIMv1, and is a proprietary Cisco protocol. PIMv2 is a standards track protocol in the IETF. We recommend that you use PIMv2. The BSR mechanism interoperates with Auto-RP on Cisco routers and multilayer switches. For more information, see the “Auto-RP and BSR Configuration Guidelines” section on page 1-12.

When PIMv2 devices interoperate with PIMv1 devices, Auto-RP should have already been deployed. A PIMv2 BSR that is also an Auto-RP mapping agent automatically advertises the RP elected by Auto-RP. That is, Auto-RP sets its single RP on every router or multilayer switch in the group. Not all routers and switches in the domain use the PIMv2 hash function to select multiple RPs.

Dense-mode groups in a mixed PIMv1 and PIMv2 region need no special configuration; they automatically interoperate.
Sparse-mode groups in a mixed PIMv1 and PIMv2 region are possible because the Auto-RP feature in PIMv1 interoperates with the PIMv2 RP feature. Although all PIMv2 devices can also use PIMv1, we recommend that the RPs be upgraded to PIMv2. To ease the transition to PIMv2, we have these recommendations:

- Use Auto-RP throughout the region.
- Configure sparse-dense mode throughout the region.

If Auto-RP is not already configured in the PIMv1 regions, configure Auto-RP. For more information, see the “Configuring Auto-RP” section on page 1-26.

Auto-RP and BSR Configuration Guidelines

There are two approaches to using PIMv2. You can use Version 2 exclusively in your network or migrate to Version 2 by employing a mixed PIM version environment.

- If your network is all Cisco routers and multilayer switches, you can use either Auto-RP or BSR.
- If you have non-Cisco routers in your network, you must use BSR.
- If you have Cisco PIMv1 and PIMv2 routers and multilayer switches and non-Cisco routers, you must use both Auto-RP and BSR. If your network includes routers from other vendors, configure the Auto-RP mapping agent and the BSR on a Cisco PIMv2 device. Ensure that no PIMv1 device is located in the path between the BSR and a non-Cisco PIMv2 device.
- Because bootstrap messages are sent hop-by-hop, a PIMv1 device prevents these messages from reaching all routers and multilayer switches in your network. Therefore, if your network has a PIMv1 device in it and only Cisco routers and multilayer switches, it is best to use Auto-RP.
- If you have a network that includes non-Cisco routers, configure the Auto-RP mapping agent and the BSR on a Cisco PIMv2 router or multilayer switch. Ensure that no PIMv1 device is on the path between the BSR and a non-Cisco PIMv2 router.
- If you have non-Cisco PIMv2 routers that need to interoperate with Cisco PIMv1 routers and multilayer switches, both Auto-RP and a BSR are required. We recommend that a Cisco PIMv2 device be both the Auto-RP mapping agent and the BSR. For more information, see the “Using Auto-RP and a BSR” section on page 1-34.

Configuring Basic Multicast Routing

You must enable IP multicast routing and configure the PIM version and the PIM mode. Then the software can forward multicast packets, and the switch can populate its multicast routing table.

You can configure an interface to be in PIM dense mode, sparse mode, or sparse-dense mode. The switch populates its multicast routing table and forwards multicast packets it receives from its directly connected LANs according to the mode setting. You must enable PIM in one of these modes for an interface to perform IP multicast routing. Enabling PIM on an interface also enables IGMP operation on that interface.

> **Note**
> If you enable PIM on multiple interfaces, when most of these interfaces are not on the outgoing interface list, and IGMP snooping is disabled, the outgoing interface might not be able to sustain line rate for multicast traffic because of the extra replication.
In populating the multicast routing table, dense-mode interfaces are always added to the table. Sparse-mode interfaces are added to the table only when periodic join messages are received from downstream devices or when there is a directly connected member on the interface. When forwarding from a LAN, sparse-mode operation occurs if there is an RP known for the group. If so, the packets are encapsulated and sent toward the RP. When no RP is known, the packet is flooded in a dense-mode fashion. If the multicast traffic from a specific source is sufficient, the receiver’s first-hop router might send join messages toward the source to build a source-based distribution tree.

By default, multicast routing is disabled, and there is no default mode setting. This procedure is required.

Beginning in privileged EXEC mode, follow these steps to enable IP multicasting, to configure a PIM version, and to configure a PIM mode. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip multicast-routing distributed</td>
<td>Enable IP multicast distributed switching</td>
</tr>
</tbody>
</table>
| Step 3 interface interface-id | Specify the Layer 3 interface on which you want to enable multicast routing, and enter interface configuration mode. The specified interface must be one of the following:
 - A routed port: a physical port that has been configured as a Layer 3 port by entering the no switchport interface configuration command.
 - An SVI: a VLAN interface created by using the interface vlan vlan-id global configuration command. These interfaces must have IP addresses assigned to them. For more information, see the “Configuring Layer 3 Interfaces” section on page 1-38. |
| Step 4 ip pim version [1 | 2] | Configure the PIM version on the interface. By default, Version 2 is enabled and is the recommended setting. An interface in PIMv2 mode automatically downgrades to PIMv1 mode if that interface has a PIMv1 neighbor. The interface returns to Version 2 mode after all Version 1 neighbors are shut down or upgraded. For more information, see the “PIMv1 and PIMv2 Interoperability” section on page 1-11. |
| Step 5 ip pim {dense-mode | sparse-mode | sparse-dense-mode} | Enable a PIM mode on the interface. By default, no mode is configured. The keywords have these meanings:
 - dense-mode—Enables dense mode of operation.
 - sparse-mode—Enables sparse mode of operation. If you configure sparse mode, you must also configure an RP. For more information, see the “Configuring a Rendezvous Point” section on page 1-24.
 - sparse-dense-mode—Causes the interface to be treated in the mode in which the group belongs. Sparse-dense mode is the recommended setting. |
| Step 6 end | Return to privileged EXEC mode. |
Configuring IP Multicast Routing

To disable multicasting, use the `no ip multicast-routing distributed` global configuration command. To return to the default PIM version, use the `no ip pim version` interface configuration command. To disable PIM on an interface, use the `no ip pim` interface configuration command.

Configuring Source-Specific Multicast

This section describes how to configure source-specific multicast (SSM). For a complete description of the SSM commands in this section, refer to the “IP Multicast Routing Commands” chapter of the *Cisco IOS IP Command Reference, Volume 3 of 3: Multicast*. To locate documentation for other commands that appear in this chapter, use the command reference master index, or search online.

The SSM feature is an extension of IP multicast in which datagram traffic is forwarded to receivers from only those multicast sources that the receivers have explicitly joined. For multicast groups configured for SSM, only SSM distribution trees (no shared trees) are created.

SSM Components Overview

SSM is a datagram delivery model that best supports one-to-many applications, also known as broadcast applications. SSM is a core networking technology for the Cisco implementation of IP multicast solutions targeted for audio and video broadcast application environments. The switch supports these components that support the implementation of SSM:

- Protocol independent multicast source-specific mode (PIM-SSM)

 PIM-SSM is the routing protocol that supports the implementation of SSM and is derived from PIM sparse mode (PIM-SM).

- Internet Group Management Protocol version 3 (IGMPv3)

 To run SSM with IGMPv3, SSM must be supported in the Cisco IOS router, the host where the application is running, and the application itself.

How SSM Differs from Internet Standard Multicast

The current IP multicast infrastructure in the Internet and many enterprise intranets is based on the PIM-SM protocol and Multicast Source Discovery Protocol (MSDP). These protocols have the limitations of the Internet Standard Multicast (ISM) service model. For example, with ISM, the network must maintain knowledge about which hosts in the network are actively sending multicast traffic.

The ISM service consists of the delivery of IP datagrams from any source to a group of receivers called the multicast host group. The datagram traffic for the multicast host group consists of datagrams with an arbitrary IP unicast source address S and the multicast group address G as the IP destination address. Systems receive this traffic by becoming members of the host group.

Membership in a host group simply requires signalling the host group through IGMP version 1, 2, or 3. In SSM, delivery of datagrams is based on (S, G) channels. In both SSM and ISM, no signalling is required to become a source. However, in SSM, receivers must subscribe or unsubscribe to (S, G) channels to receive or not receive traffic from specific sources. In other words, receivers can receive traffic only from (S, G) channels to which they are subscribed, whereas in ISM, receivers need not know...
the IP addresses of sources from which they receive their traffic. The proposed standard approach for channel subscription signalling use IGMP include mode membership reports, which are supported only in IGMP version 3.

SSM IP Address Range

SSM can coexist with the ISM service by applying the SSM delivery model to a configured subset of the IP multicast group address range. Cisco IOS software allows SSM configuration for the IP multicast address range of 224.0.0.0 through 239.255.255.255. When an SSM range is defined, existing IP multicast receiver applications do not receive any traffic when they try to use an address in the SSM range (unless the application is modified to use an explicit (S, G) channel subscription).

SSM Operations

An established network, in which IP multicast service is based on PIM-SM, can support SSM services. SSM can also be deployed alone in a network without the full range of protocols required for interdomain PIM-SM (for example, MSDP, Auto-RP, or bootstrap router [BSR]) if only SSM service is needed. If SSM is deployed in a network already configured for PIM-SM, only the last-hop routers support SSM. Routers that are not directly connected to receivers do not require support for SSM. In general, these not-last-hop routers must only run PIM-SM in the SSM range and might need additional access control configuration to suppress MSDP signalling, registering, or PIM-SM shared tree operations from occurring within the SSM range.

Use the `ip pim ssm` global configuration command to configure the SSM range and to enable SSM. This configuration has the following effects:

- For groups within the SSM range, (S, G) channel subscriptions are accepted through IGMPv3 include-mode membership reports.
- PIM operations within the SSM range of addresses change to PIM-SSM, a mode derived from PIM-SM. In this mode, only PIM (S, G) join and prune messages are generated by the router, and no (S, G) rendezvous point tree (RPT) or (*, G) RPT messages are generated. Incoming messages related to RPT operations are ignored or rejected, and incoming PIM register messages are immediately answered with register-stop messages. PIM-SSM is backward-compatible with PIM-SM unless a router is a last-hop router. Therefore, routers that are not last-hop routers can run PIM-SM for SSM groups (for example, if they do not yet support SSM).
- No MSDP source-active (SA) messages within the SSM range are accepted, generated, or forwarded.

IGMPv3 Host Signalling

In IGMPv3, hosts signal membership to last hop routers of multicast groups. Hosts can signal group membership with filtering capabilities with respect to sources. A host can either signal that it wants to receive traffic from all sources sending to a group except for some specific sources (called exclude mode), or that it wants to receive traffic only from some specific sources sending to the group (called include mode).

IGMPv3 can operate with both ISM and SSM. In ISM, both exclude and include mode reports are applicable. In SSM, only include mode reports are accepted by the last-hop router. Exclude mode reports are ignored.
Configuration Guidelines

This section contains the guidelines for configuring SSM.

Legacy Applications Within the SSM Range Restrictions

Existing applications in a network predating SSM do not work within the SSM range unless they are modified to support (S, G) channel subscriptions. Therefore, enabling SSM in a network can cause problems for existing applications if they use addresses within the designated SSM range.

Address Management Restrictions

Address management is still necessary to some degree when SSM is used with Layer 2 switching mechanisms. Cisco Group Management Protocol (CGMP), IGMP snooping, or Router-Port Group Management Protocol (RGMP) support only group-specific filtering, not (S, G) channel-specific filtering. If different receivers in a switched network request different (S, G) channels sharing the same group, they do not benefit from these existing mechanisms. Instead, both receivers receive all (S, G) channel traffic and filter out the unwanted traffic on input. Because SSM can re-use the group addresses in the SSM range for many independent applications, this situation can lead to decreased traffic filtering in a switched network. For this reason, it is important to use random IP addresses from the SSM range for an application to minimize the chance for re-use of a single address within the SSM range between different applications. For example, an application service providing a set of television channels should, even with SSM, use a different group for each television (S, G) channel. This setup guarantees that multiple receivers to different channels within the same application service never experience traffic aliasing in networks that include Layer 2 switches.

IGMP Snooping and CGMP Limitations

IGMPv3 uses new membership report messages that might not be correctly recognized by older IGMP snooping switches.

For more information about switching issues related to IGMP (especially with CGMP), see the “Configuring IGMP Version 3” section of the “Configuring IP Multicast Routing” chapter.

State Maintenance Limitations

In PIM-SSM, the last hop router continues to periodically send (S, G) join messages if appropriate (S, G) subscriptions are on the interfaces. Therefore, as long as receivers send (S, G) subscriptions, the shortest path tree (SPT) state from the receivers to the source is maintained, even if the source does not send traffic for longer periods of time (or even never).

This case is opposite to PIM-SM, where (S, G) state is maintained only if the source is sending traffic and receivers are joining the group. If a source stops sending traffic for more than 3 minutes in PIM-SM, the (S, G) state is deleted and only re-established after packets from the source arrive again through the RPT. Because no mechanism in PIM-SSM notifies a receiver that a source is active, the network must maintain the (S, G) state in PIM-SSM as long as receivers are requesting receipt of that channel.
Configuring SSM

Beginning in privileged EXEC mode, follow these steps to configure SSM. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>ip pim ssm [default</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type number Select an interface that is connected to hosts on which IGMPv3 can be enabled, and enter the interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip pim { sparse-mode</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip igmp version 3 Enable IGMPv3 on this interface. The default version of IGMP is set to Version 2.</td>
</tr>
</tbody>
</table>

Monitoring SSM

Beginning in privileged EXEC mode, use these commands to monitor SSM.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp groups detail</td>
<td>Display the (S, G) channel subscription through IGMPv3.</td>
</tr>
<tr>
<td>show ip mroute</td>
<td>Display whether a multicast group supports SSM service or whether a source-specific host report was received.</td>
</tr>
</tbody>
</table>

Configuring Source Specific Multicast Mapping

The Source Specific Multicast (SSM) mapping feature supports SSM transition when supporting SSM on the end system is impossible or unwanted due to administrative or technical reasons. You can use SSM mapping to leverage SSM for video delivery to legacy STBs that do not support IGMPv3 or for applications that do not use the IGMPv3 host stack.

- SSM Mapping Configuration Guidelines and Restrictions, page 1-17
- SSM Mapping Overview, page 1-18
- Configuring SSM Mapping, page 1-19
- Monitoring SSM Mapping, page 1-22

SSM Mapping Configuration Guidelines and Restrictions

These are the SSM mapping configuration guidelines:

- Before you configure SSM mapping, enable IP multicast routing, enable PIM sparse mode, and configure SSM. For information on enabling IP multicast routing and PIM sparse mode, see the “Default Multicast Routing Configuration” section on page 1-11.
- Before you configure static SSM mapping, you must configure access control lists (ACLs) that define the group ranges to be mapped to source addresses. For information on configuring an ACL, see Chapter 1, “Configuring Network Security with ACLs.”
Before you can configure and use SSM mapping with DNS lookups, you must be able to add records to a running DNS server. If you do not already have a DNS server running, you need to install one. You can use a product such as Cisco Network Registrar.

These are the SSM mapping restrictions:

- The SSM mapping feature does not have all the benefits of full SSM. Because SSM mapping takes a group join from a host and identifies this group with an application associated with one or more sources, it can only support one such application per group. Full SSM applications can still share the same group as in SSM mapping.
- Enable IGMPv3 with care on the last hop router when you rely solely on SSM mapping as a transition solution for full SSM. When you enable both SSM mapping and IGMPv3 and the hosts already support IGMPv3 (but not SSM), the hosts send IGMPv3 group reports. SSM mapping does not support these IGMPv3 group reports, and the router does not correctly associate sources with these reports.

SSM Mapping Overview

In a typical STB deployment, each TV channel uses one separate IP multicast group and has one active server host sending the TV channel. A single server can send multiple TV channels, but each to a different group. In this network environment, if a router receives an IGMPv1 or IGMPv2 membership report for a particular group, the report addresses the well-known TV server for the TV channel associated with the multicast group.

When SSM mapping is configured, if a router receives an IGMPv1 or IGMPv2 membership report for a particular group, the router translates this report into one or more channel memberships for the well-known sources associated with this group.

When the router receives an IGMPv1 or IGMPv2 membership report for a group, the router uses SSM mapping to determine one or more source IP addresses for the group. SSM mapping then translates the membership report as an IGMPv3 report and continues as if it had received an IGMPv3 report. The router then sends PIM joins and continues to be joined to these groups as long as it continues to receive the IGMPv1 or IGMPv2 membership reports, and the SSM mapping for the group remains the same.

SSM mapping enables the last hop router to determine the source addresses either by a statically configured table on the router or through a DNS server. When the statically configured table or the DNS mapping changes, the router leaves the current sources associated with the joined groups.

For additional information on SSM mapping, see the “Source Specific Multicast (SSM) Mapping” chapter of the Cisco IOS IP Multicast Configuration Guide, Release 12.4T.

Static SSM Mapping

With static SSM mapping, you can configure the last hop router to use a static map to determine the sources that are sending to groups. Static SSM mapping requires that you configure ACLs to define group ranges. Then you can map the groups permitted by those ACLs to sources by using the ip igmp static ssm-map global configuration command.

You can configure static SSM mapping in smaller networks when a DNS is not needed or to locally override DNS mappings. When configured, static SSM mappings take precedence over DNS mappings.

DNS-Based SSM Mapping

You can use DNS-based SSM mapping to configure the last hop router to perform a reverse DNS lookup to determine sources sending to groups. When DNS-based SSM mapping is configured, the router constructs a domain name that includes the group address and performs a reverse lookup into the DNS.
The router looks up IP address resource records and uses them as the source addresses associated with this group. SSM mapping supports up to 20 sources for each group. The router joins all sources configured for a group (see Figure 1-4).

Figure 1-4 DNS-Based SSM-Mapping

The SSM mapping mechanism that enables the last hop router to join multiple sources for a group can provide source redundancy for a TV broadcast. In this context, the last hop router provides redundancy using SSM mapping to simultaneously join two video sources for the same TV channel. However, to prevent the last hop router from duplicating the video traffic, the video sources must use a server-side switchover mechanism. One video source is active, and the other backup video source is passive. The passive source waits until an active source failure is detected before sending the video traffic for the TV channel. Thus, the server-side switchover mechanism ensures that only one of the servers is actively sending video traffic for the TV channel.

To look up one or more source addresses for a group that includes G1, G2, G3, and G4, you must configure these DNS records on the DNS server:

```
IN A source-address-2
IN A source-address-n
```

See your DNS server documentation for more information about configuring DNS resource records.

Configuring SSM Mapping

- Configuring Static SSM Mapping, page 1-20 (required)
- Configuring DNS-Based SSM Mapping, page 1-20 (required)
- Configuring Static Traffic Forwarding with SSM Mapping, page 1-21 (optional)
Configuring Static SSM Mapping

Beginning in privileged EXEC mode, follow these steps to configure static SSM mapping:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp ssm-map enable</td>
<td>Enable SSM mapping for groups in the configured SSM range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note By default, this command enables DNS-based SSM mapping.</td>
</tr>
<tr>
<td>Step 3</td>
<td>no ip igmp ssm-map query dns</td>
<td>(Optional) Disable DNS-based SSM mapping.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note Disable DNS-based SSM mapping if you only want to rely on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>static SSM mapping. By default, the ip igmp ssm-map global</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration command enables DNS-based SSM mapping.</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip igmp ssm-map static access-list source-address</td>
<td>Configure static SSM mapping. The ACL supplied for access-list defines the groups to be mapped to the source IP address entered for the source-address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note You can configure additional static SSM mappings. If additional SSM mappings are configured and the router receives an IGMPv1 or IGMPv2 membership report for a group in the SSM range, the switch determines the source addresses associated with the group by using each configured ip igmp ssm-map static command. The switch associates up to 20 sources per group.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Repeat Step 4 to configure additional static SSM mappings, if required.</td>
<td>—</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

For additional information on SSM mapping, see the “Source Specific Multicast (SSM) Mapping” chapter of the *Cisco IOS IP Multicast Configuration Guide, Release 12.4T*.

Configuring DNS-Based SSM Mapping

To configure DNS-based SSM mapping, you need to create a DNS server zone or add records to an existing zone. If the routers that are using DNS-based SSM mapping are also using DNS for other purposes, you should use a normally configured DNS server. If DNS-based SSM mapping is the only DNS implementation being used on the router, you can configure a false DNS setup with an empty root zone or a root zone that points back to itself.

Beginning in privileged EXEC mode, follow these steps to configure DNS-based SSM mapping:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp ssm-map enable</td>
<td>Enable SSM mapping for groups in a configured SSM range.</td>
</tr>
</tbody>
</table>
Configuring Static Traffic Forwarding with SSM Mapping

Use static traffic forwarding with SSM mapping to statically forward SSM traffic for certain groups.

Beginning in privileged EXEC mode, follow these steps to configure static traffic forwarding with SSM mapping:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface type number</td>
<td>Select an interface on which to statically forward traffic for a multicast group using SSM mapping, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Note: Static forwarding of traffic with SSM mapping works with either DNS-based SSM mapping or statically configured SSM mapping.</td>
</tr>
<tr>
<td>Step 3 ip igmp static-group group-address source ssm-map</td>
<td>Configure SSM mapping to statically forward a (S, G) channel from the interface.</td>
</tr>
<tr>
<td></td>
<td>Use this command if you want to statically forward SSM traffic for certain groups. Use DNS-based SSM mapping to determine the source addresses of the channels.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Monitoring SSM Mapping

Use the privileged EXEC commands in Table 1-3 to monitor SSM mapping.

Table 1-3 SSM Mapping Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp ssm-mapping</td>
<td>Display information about SSM mapping.</td>
</tr>
<tr>
<td>show ip igmp ssm-mapping group-address</td>
<td>Display the sources that SSM mapping uses for a particular group.</td>
</tr>
<tr>
<td>show ip igmp groups [group-name</td>
<td>Display the multicast groups with receivers that are directly connected to the router and that were learned through IGMP.</td>
</tr>
<tr>
<td>group-address</td>
<td>interface-type interface-number] [detail]</td>
</tr>
<tr>
<td>show host</td>
<td>Display the default domain name, the style of name lookup service, a list of name server hosts, and the cached list of hostnames and addresses.</td>
</tr>
<tr>
<td>debug ip igmp group-address</td>
<td>Display the IGMP packets received and sent and IGMP host-related events.</td>
</tr>
</tbody>
</table>

For additional information on SSM mapping, see the “Source Specific Multicast (SSM) Mapping” chapter of the Cisco IOS IP Multicast Configuration Guide, Release 12.4T.

Configuring PIM Stub Routing

The PIM Stub routing feature supports multicast routing between the distribution layer and the access layer. It supports two types of PIM interfaces, uplink PIM interfaces, and PIM passive interfaces. A routed interface configured with the PIM passive mode does not pass or forward PIM control traffic, it only passes and forwards IGMP traffic.

PIM Stub Routing Configuration Guidelines

- Before configuring PIM stub routing, you must have IP multicast routing configured on both the stub router and the central router. You must also have PIM mode (dense-mode, sparse-mode, or dense-sparse-mode) configured on the uplink interface of the stub router.
- The PIM stub router does not route the transit traffic between the distribution routers. Unicast (EIGRP) stub routing enforces this behavior. You must configure unicast stub routing to assist the PIM stub router behavior. For more information, see the “EIGRP Stub Routing” section on page 1-44.
- Only directly connected multicast (IGMP) receivers and sources are allowed in the Layer 2 access domains. The PIM protocol is not supported in access domains.
- The redundant PIM stub router topology is not supported.
Enabling PIM Stub Routing

Beginning in privileged EXEC mode, follow these steps to enable PIM stub routing on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Specify the interface on which you want to enable PIM stub routing, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip pim passive</code> Configure the PIM stub feature on the interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show ip pim interface</code> Display the PIM stub that is enabled on each interface.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable PIM stub routing on an interface, use the `no ip pim passive` interface configuration command.

In this example, IP multicast routing is enabled, Switch A PIM uplink port 25 is configured as a routed uplink port with `spare-dense-mode` enabled. PIM stub routing is enabled on the VLAN 100 interfaces and on Gigabit Ethernet port 20 in Figure 1-2:

```
Switch(config)# ip multicast-routing distributed
Switch(config)# interface GigabitEthernet3/0/25
Switch(config-if)# no switchport
Switch(config-if)# ip address 3.1.1.2 255.255.255.0
Switch(config-if)# ip pim sparse-dense-mode
Switch(config-if)# exit
Switch(config)# interface vlan100
Switch(config-if)# ip pim passive
Switch(config-if)# exit
Switch(config)# interface GigabitEthernet3/0/20
Switch(config-if)# ip pim passive
Switch(config-if)# exit
Switch(config)# interface vlan100
Switch(config-if)# ip address 100.1.1.1 255.255.255.0
Switch(config-if)# ip pim passive
Switch(config-if)# exit
Switch(config)# interface GigabitEthernet3/0/20
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.1.1.1 255.255.255.0
Switch(config-if)# ip pim passive
Switch(config-if)# end
```

To verify that PIM stub is enabled for each interface, use the `show ip pim interface` privileged EXEC command:

```
Switch#show ip pim interface
Address Interface Ver/ Nbr Query DR DR Mode Count Intvl Prior
3.1.1.2 GigabitEthernet3/0/25 v2/SD 1 30 1 3.1.1.2
100.1.1.1 Vlan100 v2/P 0 30 1 100.1.1.1
10.1.1.1 GigabitEthernet3/0/20 v2/P 0 30 1 10.1.1.1
```
Use these privileged EXEC commands to display information about PIM stub configuration and status:

- `show ip pim interface` displays the PIM stub that is enabled on each interface.
- `show ip igmp detail` displays the interested clients that have joined the specific multicast source group.
- `show ip igmp mroute` verifies that the multicast stream forwards from the source to the interested clients.

Configuring a Rendezvous Point

You must have an RP if the interface is in sparse-dense mode and if you want to treat the group as a sparse group. You can use several methods, as described in these sections:

- Manually Assigning an RP to Multicast Groups, page 1-24
- Configuring Auto-RP, page 1-26 (a standalone, Cisco-proprietary protocol separate from PIMv1)
- Configuring PIMv2 BSR, page 1-30 (a standards track protocol in the Internet Engineering Task Force [IETF])

You can use auto-RP, BSR, or a combination of both, depending on the PIM version that you are running and the types of routers in your network. For more information, see the “PIMv1 and PIMv2 Interoperability” section on page 1-11 and the “Auto-RP and BSR Configuration Guidelines” section on page 1-12.

Manually Assigning an RP to Multicast Groups

This section explains how to manually configure an RP. If the RP for a group is learned through a dynamic mechanism (such as auto-RP or BSR), you need not perform this task for that RP.

Senders of multicast traffic announce their existence through register messages received from the source first-hop router (designated router) and forwarded to the RP. Receivers of multicast packets use RPs to join a multicast group by using explicit join messages. RPs are not members of the multicast group; rather, they serve as a *meeting place* for multicast sources and group members.

You can configure a single RP for multiple groups defined by an access list. If there is no RP configured for a group, the multilayer switch treats the group as dense and uses the dense-mode PIM techniques.
Beginning in privileged EXEC mode, follow these steps to manually configure the address of the RP. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>ip pim rp-address ip-address</td>
<td>Configure the address of a PIM RP.</td>
</tr>
<tr>
<td>[access-list-number]</td>
<td>By default, no PIM RP address is configured. You must configure the IP</td>
</tr>
<tr>
<td>[override]</td>
<td>address of RPs on all routers and multilayer switches (including the RP).</td>
</tr>
<tr>
<td></td>
<td>If there is no RP configured for a group, the switch treats the group as</td>
</tr>
<tr>
<td></td>
<td>dense, using the dense-mode PIM techniques.</td>
</tr>
<tr>
<td></td>
<td>A PIM device can be an RP for more than one group. Only one RP address</td>
</tr>
<tr>
<td></td>
<td>can be used at a time within a PIM domain. The access-list conditions</td>
</tr>
<tr>
<td></td>
<td>specify for which groups the device is an RP.</td>
</tr>
<tr>
<td></td>
<td>• For ip-address, enter the unicast address of the RP in dotted-decimal</td>
</tr>
<tr>
<td></td>
<td>notation.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For access-list-number, enter an IP standard access list</td>
</tr>
<tr>
<td></td>
<td>number from 1 to 99. If no access list is configured, the RP is used for</td>
</tr>
<tr>
<td></td>
<td>all groups.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) The override keyword means that if there is a conflict</td>
</tr>
<tr>
<td></td>
<td>between the RP configured with this command and one learned by Auto-RP</td>
</tr>
<tr>
<td></td>
<td>or BSR, the RP configured with this command prevails.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>access-list access-list-number [deny</td>
<td>Create a standard access list, repeating the command as many times as</td>
</tr>
<tr>
<td></td>
<td>• For access-list-number, enter the access list number specified in</td>
</tr>
<tr>
<td></td>
<td>Step 2.</td>
</tr>
<tr>
<td></td>
<td>• The deny keyword denies access if the conditions are matched. The</td>
</tr>
<tr>
<td></td>
<td>permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>• For source, enter the multicast group address for which the RP should</td>
</tr>
<tr>
<td></td>
<td>be used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For source-wildcard, enter the wildcard bits in dotted</td>
</tr>
<tr>
<td></td>
<td>decimal notation to be applied to the source. Place ones in the bit</td>
</tr>
<tr>
<td></td>
<td>positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny</td>
</tr>
<tr>
<td></td>
<td>statement for everything.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove an RP address, use the **no ip pim rp-address ip-address [access-list-number] [override]** global configuration command.

This example shows how to configure the address of the RP to 147.106.6.22 for multicast group 225.2.2.2 only:

```
Switch(config)# access-list 1 permit 225.2.2.2 0.0.0.0
Switch(config)# ip pim rp-address 147.106.6.22 1
```
Configuring Auto-RP

Auto-RP uses IP multicast to automate the distribution of group-to-RP mappings to all Cisco routers and multilayer switches in a PIM network. It has these benefits:

- It is easy to use multiple RPs within a network to serve different group ranges.
- It provides load splitting among different RPs and arrangement of RPs according to the location of group participants.
- It avoids inconsistent, manual RP configurations on every router and multilayer switch in a PIM network, which can cause connectivity problems.

Follow these guidelines when configuring Auto-RP:

- If you configure PIM in sparse mode or sparse-dense mode and do not configure Auto-RP, you must manually configure an RP as described in the “Manually Assigning an RP to Multicast Groups” section on page 1-24.
- If routed interfaces are configured in sparse mode, Auto-RP can still be used if all devices are configured with a manual RP address for the Auto-RP groups.
- If routed interfaces are configured in sparse mode and you enter the `ip pim autorp listener` global configuration command, Auto-RP can still be used even if all devices are not configured with a manual RP address for the Auto-RP groups.

These sections describe how to configure Auto-RP:

- Setting up Auto-RP in a New Internetwork, page 1-26 (optional)
- Adding Auto-RP to an Existing Sparse-Mode Cloud, page 1-26 (optional)
- Preventing Join Messages to False RPs, page 1-28 (optional)
- Filtering Incoming RP Announcement Messages, page 1-28 (optional)

For overview information, see the “Auto-RP” section on page 1-7.

Setting up Auto-RP in a New Internetwork

If you are setting up Auto-RP in a new internetwork, you do not need a default RP because you configure all the interfaces for sparse-dense mode. Follow the process described in the “Adding Auto-RP to an Existing Sparse-Mode Cloud” section on page 1-26. However, omit Step 3 if you want to configure a PIM router as the RP for the local group.

Adding Auto-RP to an Existing Sparse-Mode Cloud

This section contains some suggestions for the initial deployment of Auto-RP into an existing sparse-mode cloud to minimize disruption of the existing multicast infrastructure.
Beginning in privileged EXEC mode, follow these steps to deploy Auto-RP in an existing sparse-mode cloud. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>show running-config</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify that a default RP is already configured on all PIM devices and the RP in the sparse-mode network. It was previously configured with the <code>ip pim rp-address</code> global configuration command. This step is not required for sparse-dense-mode environments. The selected RP should have good connectivity and be available across the network. Use this RP for the global groups (for example 224.x.x.x and other global groups). Do not reconfigure the group address range that this RP serves. RPs dynamically discovered through Auto-RP take precedence over statically configured RPs. Assume that it is desirable to use a second RP for the local groups.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Step 2 | configure terminal | Enter global configuration mode. |

<table>
<thead>
<tr>
<th>Step 3</th>
<th>ip pim send-rp-announce interface-id scope ttl group-list access-list-number interval seconds</th>
<th>Configure another PIM device to be the candidate RP for local groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• For <code>interface-id</code>, enter the interface type and number that identifies the RP address. Valid interfaces include physical ports, port channels, and VLANs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For <code>scope ttl</code>, specify the time-to-live value in hops. Enter a hop count that is high enough so that the RP-announce messages reach all mapping agents in the network. There is no default setting. The range is 1 to 255.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For <code>group-list access-list-number</code>, enter an IP standard access list number from 1 to 99. If no access list is configured, the RP is used for all groups.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For <code>interval seconds</code>, specify how often the announcement messages must be sent. The default is 60 seconds. The range is 1 to 16383.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Step 4 | access-list access-list-number {deny | permit} source [source-wildcard] | Create a standard access list, repeating the command as many times as necessary. |
|---------|---------------------------------|---------------------------------|
| • For `access-list-number`, enter the access list number specified in Step 3. |
| • The `deny` keyword denies access if the conditions are matched. The `permit` keyword permits access if the conditions are matched. |
| • For `source`, enter the multicast group address range for which the RP should be used. |
| • (Optional) For `source-wildcard`, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore. |

Recall that the access list is always terminated by an implicit deny statement for everything.
Chapter 1 Configuring IP Multicast Routing

Configuring IP Multicast Routing

To remove the PIM device configured as the candidate RP, use the no ip pim send-rp-announce
interface-id global configuration command. To remove the switch as the RP-mapping agent, use the no
ip pim send-rp-discovery global configuration command.

This example shows how to send RP announcements out all PIM-enabled interfaces for a maximum of 31
hops. The IP address of port 1 is the RP. Access list 5 describes the group for which this switch serves
as RP:

Switch(config)# ip pim send-rp-announce gigabitethernet1/0/1 scope 31 group-list 5
Switch(config)# access-list 5 permit 224.0.0.0 15.255.255.255

Preventing Join Messages to False RPs

Find whether the ip pim accept-rp command was previously configured throughout the network by
using the show running-config privileged EXEC command. If the ip pim accept-rp command is not
configured on any device, this problem can be addressed later. In those routers or multilayer switches
already configured with the ip pim accept-rp command, you must enter the command again to accept
the newly advertised RP.

To accept all RPs advertised with Auto-RP and reject all other RPs by default, use the ip pim accept-rp
auto-rp global configuration command. This procedure is optional.

If all interfaces are in sparse mode, use a default-configured RP to support the two well-known
groups 224.0.1.39 and 224.0.1.40. Auto-RP uses these two well-known groups to collect and distribute
RP-mapping information. When this is the case and the ip pim accept-rp auto-rp command is
configured, another ip pim accept-rp command accepting the RP must be configured as follows:

Switch(config)# ip pim accept-rp 172.10.20.1 1
Switch(config)# access-list 1 permit 224.0.1.39
Switch(config)# access-list 1 permit 224.0.1.40

Filtering Incoming RP Announcement Messages

You can add configuration commands to the mapping agents to prevent a maliciously configured router
from masquerading as a candidate RP and causing problems.
Beginning in privileged EXEC mode, follow these steps to filter incoming RP announcement messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip pim rp-announce-filter rp-list access-list-number group-list access-list-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove a filter on incoming RP announcement messages, use the **no ip pim rp-announce-filter rp-list access-list-number [group-list access-list-number]** global configuration command.

This example shows a sample configuration on an Auto-RP mapping agent that is used to prevent candidate RP announcements from being accepted from unauthorized candidate RPs:

```
Switch(config)# ip pim rp-announce-filter rp-list 10 group-list 20
Switch(config)# access-list 10 permit host 172.16.5.1
Switch(config)# access-list 10 permit host 172.16.2.1
```
Configuring IP Multicast Routing

Configuring IP Multicast Routing

Switch(config)# access-list 20 deny 239.0.0.0 0.0.255.255
Switch(config)# access-list 20 permit 224.0.0.0 15.255.255.255

In this example, the mapping agent accepts candidate RP announcements from only two devices, 172.16.5.1 and 172.16.2.1. The mapping agent accepts candidate RP announcements from these two devices only for multicast groups that fall in the group range of 224.0.0.0 to 239.255.255.255. The mapping agent does not accept candidate RP announcements from any other devices in the network. Furthermore, the mapping agent does not accept candidate RP announcements from 172.16.5.1 or 172.16.2.1 if the announcements are for any groups in the 239.0.0.0 through 239.255.255.255 range. This range is the administratively scoped address range.

Configuring PIMv2 BSR

- Defining the PIM Domain Border, page 1-30 (optional)
- Defining the IP Multicast Boundary, page 1-31 (optional)
- Configuring Candidate BSRs, page 1-32 (optional)
- Configuring Candidate RPs, page 1-33 (optional)

For overview information, see the “Bootstrap Router” section on page 1-7.

Defining the PIM Domain Border

As IP multicast becomes more widespread, the chance of one PIMv2 domain bordering another PIMv2 domain is increasing. Because these two domains probably do not share the same set of RPs, BSR, candidate RPs, and candidate BSRs, you need to constrain PIMv2 BSR messages from flowing into or out of the domain. Allowing these messages to leak across the domain borders could adversely affect the normal BSR election mechanism and elect a single BSR across all bordering domains and co-mingle candidate RP advertisements, resulting in the election of RPs in the wrong domain.

Beginning in privileged EXEC mode, follow these steps to define the PIM domain border. This procedure is optional.

Command | Purpose
---|---
Step 1 | configure terminal
Enter global configuration mode.

Step 2 | interface interface-id
Specify the interface to be configured, and enter interface configuration mode.

Step 3 | ip pim bsr-border
Define a PIM bootstrap message boundary for the PIM domain.

Step 4 | end
Return to privileged EXEC mode.

Step 5 | show running-config
Verify your entries.

Step 6 | copy running-config startup-config
(Optional) Save your entries in the configuration file.

To remove the PIM border, use the no ip pim bsr-border interface configuration command.
Defining the IP Multicast Boundary

You define a multicast boundary to prevent Auto-RP messages from entering the PIM domain. You create an access list to deny packets destined for 224.0.1.39 and 224.0.1.40, which carry Auto-RP information.

Beginning in privileged EXEC mode, follow these steps to define a multicast boundary. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** access-list access-list-number deny source [source-wildcard] | Create a standard access list, repeating the command as many times as necessary.
 - For *access-list-number*, the range is 1 to 99.
 - The *deny* keyword denies access if the conditions are matched.
 - For *source*, enter multicast addresses 224.0.1.39 and 224.0.1.40, which carry Auto-RP information.
 - (Optional) For *source-wildcard*, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.
 Recall that the access list is always terminated by an implicit deny statement for everything. |
| **Step 3** interface interface-id | Specify the interface to be configured, and enter interface configuration mode. |
| **Step 4** ip multicast boundary access-list-number | Configure the boundary, specifying the access list you created in Step 2. |
| **Step 5** end | Return to privileged EXEC mode. |
| **Step 6** show running-config | Verify your entries. |
| **Step 7** copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To remove the boundary, use the **no ip multicast boundary** interface configuration command.
This example shows a portion of an IP multicast boundary configuration that denies Auto-RP information:

Switch(config)# access-list 1 deny 224.0.1.39
Switch(config)# access-list 1 deny 224.0.1.40
Switch(config)# access-list 1 permit all
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip multicast boundary 1

Configuring Candidate BSRs

You can configure one or more candidate BSRs. The devices serving as candidate BSRs should have good connectivity to other devices and be in the backbone portion of the network.

Beginning in privileged EXEC mode, follow these steps to configure your switch as a candidate BSR. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | ip pim bsr-candidate interface-id hash-mask-length [priority] | Configure your switch to be a candidate BSR.
 - For interface-id, enter the interface on this switch from which the BSR address is derived to make it a candidate. This interface must be enabled with PIM. Valid interfaces include physical ports, port channels, and VLANs.
 - For hash-mask-length, specify the mask length (32 bits maximum) that is to be ANDed with the group address before the hash function is called. All groups with the same seed hash correspond to the same RP. For example, if this value is 24, only the first 24 bits of the group addresses matter.
 - (Optional) For priority, enter a number from 0 to 255. The BSR with the larger priority is preferred. If the priority values are the same, the device with the highest IP address is selected as the BSR. The default is 0. |
| Step 3 | end | Return to privileged EXEC mode. |
| Step 4 | show running-config | Verify your entries. |
| Step 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To remove this device as a candidate BSR, use the **no ip pim bsr-candidate** global configuration command.

This example shows how to configure a candidate BSR, which uses the IP address 172.21.24.18 on a port as the advertised BSR address, uses 30 bits as the hash-mask-length, and has a priority of 10.

Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip address 172.21.24.18 255.255.255.0
Switch(config-if)# ip pim sparse-dense-mode
Switch(config-if)# ip pim bsr-candidate gigabitethernet1/0/2 30 10
Configuring Candidate RPs

You can configure one or more candidate RPs. Similar to BSRs, the RPs should also have good connectivity to other devices and be in the backbone portion of the network. An RP can serve the entire IP multicast address space or a portion of it. Candidate RPs send candidate RP advertisements to the BSR. When deciding which devices should be RPs, consider these options:

- In a network of Cisco routers and multilayer switches where only Auto-RP is used, any device can be configured as an RP.
- In a network that includes only Cisco PIMv2 routers and multilayer switches and with routers from other vendors, any device can be used as an RP.
- In a network of Cisco PIMv1 routers, Cisco PIMv2 routers, and routers from other vendors, configure only Cisco PIMv2 routers and multilayer switches as RPs.

Beginning in privileged EXEC mode, follow these steps to configure your switch to advertise itself as a PIMv2 candidate RP to the BSR. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip pim rp-candidate interface-id [group-list access-list-number]</td>
</tr>
<tr>
<td></td>
<td>Configure your switch to be a candidate RP.</td>
</tr>
<tr>
<td></td>
<td>• For interface-id, specify the interface whose associated IP address is advertised as a candidate RP address. Valid interfaces include physical ports, port channels, and VLANs.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For group-list access-list-number, enter an IP standard access list number from 1 to 99. If no group-list is specified, the switch is a candidate RP for all groups.</td>
</tr>
<tr>
<td>Step 3</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td>Create a standard access list, repeating the command as many times as necessary.</td>
</tr>
<tr>
<td></td>
<td>• For access-list-number, enter the access list number specified in Step 2.</td>
</tr>
<tr>
<td></td>
<td>• The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>• For source, enter the number of the network or host from which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
</tbody>
</table>

| Step 4 | end |
| | Return to privileged EXEC mode. |
| Step 5 | show running-config |
| | Verify your entries. |
| Step 6 | copy running-config startup-config |
| | (Optional) Save your entries in the configuration file. |

To remove this device as a candidate RP, use the **no ip pim rp-candidate interface-id** global configuration command.
Chapter 1 Configuring IP Multicast Routing

This example shows how to configure the switch to advertise itself as a candidate RP to the BSR in its PIM domain. Standard access list number 4 specifies the group prefix associated with the RP that has the address identified by a port. That RP is responsible for the groups with the prefix 239.

```
Switch(config)# ip pim rp-candidate gigabitethernet1/0/2 group-list 4
Switch(config)# access-list 4 permit 239.0.0.0 0.255.255.255
```

Using Auto-RP and a BSR

If there are only Cisco devices in you network (no routers from other vendors), there is no need to configure a BSR. Configure Auto-RP in a network that is running both PIMv1 and PIMv2.

If you have non-Cisco PIMv2 routers that need to interoperate with Cisco PIMv1 routers and multilayer switches, both Auto-RP and a BSR are required. We recommend that a Cisco PIMv2 router or multilayer switch be both the Auto-RP mapping agent and the BSR.

If you must have one or more BSRs, we have these recommendations:

- Configure the candidate BSRs as the RP-mapping agents for Auto-RP. For more information, see the “Configuring Auto-RP” section on page 1-26 and the “Configuring Candidate BSRs” section on page 1-32.

- For group prefixes advertised through Auto-RP, the PIMv2 BSR mechanism should not advertise a subrange of these group prefixes served by a different set of RPs. In a mixed PIMv1 and PIMv2 domain, have backup RPs serve the same group prefixes. This prevents the PIMv2 DRs from selecting a different RP from those PIMv1 DRs, due to the longest match lookup in the RP-mapping database.

Beginning in privileged EXEC mode, follow these steps to verify the consistency of group-to-RP mappings. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show ip pim rp [[group-name</td>
</tr>
</tbody>
</table>
| | group-address] | - (Optional) For group-name, specify the name of the group about which to display RPs.
| | | - (Optional) For group-address, specify the address of the group about which to display RPs.
| | | - (Optional) Use the mapping keyword to display all group-to-RP mappings of which the Cisco device is aware (either configured or learned from Auto-RP).
| Step 2 | show ip pim rp-hash group | On a PIMv2 router or multilayer switch, confirm that the same RP is the one that a PIMv1 system chooses. |
| | | For group, enter the group address for which to display RP information. |
Monitoring the RP Mapping Information

To monitor the RP mapping information, use these commands in privileged EXEC mode:

- `show ip pim bsr` displays information about the elected BSR.
- `show ip pim rp-hash group` displays the RP that was selected for the specified group.
- `show ip pim rp [group-name | group-address | mapping]` displays how the switch learns of the RP (through the BSR or the Auto-RP mechanism).

Troubleshooting PIMv1 and PIMv2 Interoperability Problems

When debugging interoperability problems between PIMv1 and PIMv2, check these in the order shown:

1. Verify RP mapping with the `show ip pim rp-hash` privileged EXEC command, making sure that all systems agree on the same RP for the same group.
2. Verify interoperability between different versions of DRs and RPs. Make sure the RPs are interacting with the DRs properly (by responding with register-stops and forwarding decapsulated data packets from registers).

Configuring Advanced PIM Features

- Understanding PIM Shared Tree and Source Tree, page 1-35
- Delaying the Use of PIM Shortest-Path Tree, page 1-37 (optional)
- Modifying the PIM Router-Query Message Interval, page 1-38 (optional)

Understanding PIM Shared Tree and Source Tree

By default, members of a group receive data from senders to the group across a single data-distribution tree rooted at the RP. Figure 1-6 shows this type of shared-distribution tree. Data from senders is delivered to the RP for distribution to group members joined to the shared tree.
If the data rate warrants, leaf routers (routers without any downstream connections) on the shared tree can use the data distribution tree rooted at the source. This type of distribution tree is called a shortest-path tree or source tree. By default, the software switches to a source tree upon receiving the first data packet from a source.

This process describes the move from a shared tree to a source tree:

1. A receiver joins a group; leaf Router C sends a join message toward the RP.
2. The RP puts a link to Router C in its outgoing interface list.
3. A source sends data; Router A encapsulates the data in a register message and sends it to the RP.
4. The RP forwards the data down the shared tree to Router C and sends a join message toward the source. At this point, data might arrive twice at Router C, once encapsulated and once natively.
5. When data arrives natively (unencapsulated) at the RP, it sends a register-stop message to Router A.
6. By default, reception of the first data packet prompts Router C to send a join message toward the source.
7. When Router C receives data on (S,G), it sends a prune message for the source up the shared tree.
8. The RP deletes the link to Router C from the outgoing interface of (S,G). The RP triggers a prune message toward the source.

Join and prune messages are sent for sources and RPs. They are sent hop-by-hop and are processed by each PIM device along the path to the source or RP. Register and register-stop messages are not sent hop-by-hop. They are sent by the designated router that is directly connected to a source and are received by the RP for the group.

Multiple sources sending to groups use the shared tree.

You can configure the PIM device to stay on the shared tree. For more information, see the "Delaying the Use of PIM Shortest-Path Tree" section on page 1-37.
Delaying the Use of PIM Shortest-Path Tree

The change from shared to source tree happens when the first data packet arrives at the last-hop router (Router C in Figure 1-6). This change occurs because the `ip pim spt-threshold` global configuration command controls that timing.

The shortest-path tree requires more memory than the shared tree but reduces delay. You might want to postpone its use. Instead of allowing the leaf router to immediately move to the shortest-path tree, you can specify that the traffic must first reach a threshold.

You can configure when a PIM leaf router should join the shortest-path tree for a specified group. If a source sends at a rate greater than or equal to the specified kbps rate, the multilayer switch triggers a PIM join message toward the source to construct a source tree (shortest-path tree). If the traffic rate from the source drops below the threshold value, the leaf router switches back to the shared tree and sends a prune message toward the source.

You can specify to which groups the shortest-path tree threshold applies by using a group list (a standard access list). If a value of 0 is specified or if the group list is not used, the threshold applies to all groups.

Beginning in privileged EXEC mode, follow these steps to configure a traffic rate threshold that must be reached before multicast routing is switched from the source tree to the shortest-path tree. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip pim spt-threshold {kbps</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Optional IGMP Features

- Default IGMP Configuration, page 1-39
- Configuring the Switch as a Member of a Group, page 1-39 (optional)
- Controlling Access to IP Multicast Groups, page 1-40 (optional)
- Changing the IGMP Version, page 1-41 (optional)
- Modifying the IGMP Host-Query Message Interval, page 1-42 (optional)
Default IGMP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilayer switch as a member of a multicast group</td>
<td>No group memberships are defined.</td>
</tr>
<tr>
<td>Access to multicast groups</td>
<td>All groups are allowed on an interface.</td>
</tr>
<tr>
<td>IGMP version</td>
<td>Version 2 on all interfaces.</td>
</tr>
<tr>
<td>IGMP host-query message interval</td>
<td>60 seconds on all interfaces.</td>
</tr>
<tr>
<td>IGMP query timeout</td>
<td>60 seconds on all interfaces.</td>
</tr>
<tr>
<td>IGMP maximum query response time</td>
<td>10 seconds on all interfaces.</td>
</tr>
<tr>
<td>Multilayer switch as a statically connected member</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

Configuring the Switch as a Member of a Group

You can configure the switch as a member of a multicast group and discover multicast reachability in a network. If all the multicast-capable routers and multilayer switches that you administer are members of a multicast group, pinging that group causes all these devices to respond. The devices respond to ICMP echo-request packets addressed to a group of which they are members. Another example is the multicast trace-route tools provided in the software.

⚠️ Caution ⚠️
Performing this procedure might impact the CPU performance because the CPU will receive all data traffic for the group address.
Beginning in privileged EXEC mode, follow these steps to configure the switch to be a member of a group. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3: ip igmp join-group group-address</td>
<td>Configure the switch to join a multicast group. By default, no group memberships are defined. For group-address, specify the multicast IP address in dotted decimal notation.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show ip igmp interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To cancel membership in a group, use the no ip igmp join-group group-address interface configuration command.

This example shows how to enable the switch to join multicast group 255.2.2.2:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip igmp join-group 255.2.2.2
```

Controlling Access to IP Multicast Groups

The switch sends IGMP host-query messages to find which multicast groups have members on attached local networks. The switch then forwards to these group members all packets addressed to the multicast group. You can place a filter on each interface to restrict the multicast groups that hosts on the subnet serviced by the interface can join.

Beginning in privileged EXEC mode, follow these steps to filter multicast groups allowed on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3: ip igmp access-group access-list-number</td>
<td>Specify the multicast groups that hosts on the subnet serviced by an interface can join. By default, all groups are allowed on an interface. For access-list-number, specify an IP standard access list number. The range is 1 to 99.</td>
</tr>
<tr>
<td>Step 4: exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>
Chapter 1: Configuring IP Multicast Routing

Configuring Optional IGMP Features

To disable groups on an interface, use the `no ip igmp access-group interface configuration` command.

This example shows how to configure hosts attached to a port as able to join only group 255.2.2.2:

```
Switch(config)# access-list 1 255.2.2.2 0.0.0.0
Switch(config-if)# interface gigabitethernet1/0/1
Switch(config-if)# ip igmp access-group 1
```

Changing the IGMP Version

By default, the switch uses IGMP Version 2, which provides features such as the IGMP query timeout and the maximum query response time.

All systems on the subnet must support the same version. The switch does not automatically detect Version 1 systems and switch to Version 1. You can mix Version 1 and Version 2 hosts on the subnet because Version 2 routers or switches always work correctly with IGMPv1 hosts.

Configure the switch for Version 1 if your hosts do not support Version 2.

Beginning in privileged EXEC mode, follow these steps to change the IGMP version. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip igmp version {1</td>
<td>2}</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring IP Multicast Routing

Configuring Optional IGMP Features

To return to the default setting, use the `no ip igmp version` interface configuration command.

Modifying the IGMP Host-Query Message Interval

The switch periodically sends IGMP host-query messages to discover which multicast groups are present on attached networks. These messages are sent to the all-hosts multicast group (224.0.0.1) with a time-to-live (TTL) of 1. The switch sends host-query messages to refresh its knowledge of memberships present on the network. If, after some number of queries, the software discovers that no local hosts are members of a multicast group, the software stops forwarding multicast packets to the local network from remote origins for that group and sends a prune message upstream toward the source.

The switch elects a PIM designated router (DR) for the LAN (subnet). The DR is the router or multilayer switch with the highest IP address for IGMPv2. For IGMPv1, the DR is elected according to the multicast routing protocol that runs on the LAN. The designated router is responsible for sending IGMP host-query messages to all hosts on the LAN. In sparse mode, the designated router also sends PIM register and PIM join messages toward the RP router.

Beginning in privileged EXEC mode, follow these steps to modify the host-query interval. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 <code>show ip igmp interface [interface-id]</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
You can configure the query interval by entering the `show ip igmp interface interface-id` privileged EXEC command.

Beginning in privileged EXEC mode, follow these steps to change the IGMP query timeout. This procedure is optional.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>ip igmp querier-timeout seconds</td>
<td>Specify the IGMP query timeout. The default is 60 seconds (twice the query interval). The range is 60 to 300.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show ip igmp interface [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip igmp querier-timeout` interface configuration command.

Changing the Maximum Query Response Time for IGMPv2

If you are using IGMPv2, you can change the maximum query response time advertised in IGMP queries. The maximum query response time enables the switch to quickly detect that there are no more directly connected group members on a LAN. Decreasing the value enables the switch to prune groups faster.

Beginning in privileged EXEC mode, follow these steps to change the maximum query response time. This procedure is optional.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>ip igmp query-max-response-time seconds</td>
<td>Change the maximum query response time advertised in IGMP queries. The default is 10 seconds. The range is 1 to 25.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show ip igmp interface [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip igmp query-max-response-time` interface configuration command.
Configuring the Switch as a Statically Connected Member

Sometimes there is either no group member on a network segment or a host cannot report its group membership by using IGMP. However, you might want multicast traffic to go to that network segment. These are ways to pull multicast traffic down to a network segment:

- Use the `ip igmp join-group` interface configuration command. With this method, the switch accepts the multicast packets in addition to forwarding them. Accepting the multicast packets prevents the switch from fast switching.

- Use the `ip igmp static-group` interface configuration command. With this method, the switch does not accept the packets itself, but only forwards them. This method enables fast switching. The outgoing interface appears in the IGMP cache, but the switch itself is not a member, as evidenced by lack of an L (local) flag in the multicast route entry.

Beginning in privileged EXEC mode, follow these steps to configure the switch itself to be a statically connected member of a group (and enable fast switching). This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip igmp static-group group-address</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show ip igmp interface [interface-id]</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

To remove the switch as a member of the group, use the `no ip igmp static-group group-address` interface configuration command.

Configuring Optional Multicast Routing Features

These sections describe how to configure optional multicast routing features:

- Features for Layer 2 connectivity and MBONE multimedia conference session and set up:
 - Enabling CGMP Server Support, page 1-45 (optional)
 - Configuring sdr Listener Support, page 1-46 (optional)

- Features that control bandwidth utilization:
 - Configuring an IP Multicast Boundary, page 1-47 (optional)

- Procedure for configuring a multicast within a VPN routing/forwarding (VRF) table:
 - Configuring Multicast VRFs, page 1-85 (optional)
Enabling CGMP Server Support

The switch serves as a CGMP server for devices that do not support IGMP snooping but have CGMP client functionality. CGMP is a protocol used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP. CGMP is necessary because the Layer 2 switch cannot distinguish between IP multicast data packets and IGMP report messages, which are both at the MAC-level and are addressed to the same group address.

Beginning in privileged EXEC mode, follow these steps to enable the CGMP server on the switch interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>configure terminal</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>interface interface-id</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Specify the interface that is connected to the Layer 2 Catalyst switch, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>ip cgmp [proxy]</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enable CGMP on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>By default, CGMP is disabled on all interfaces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enabling CGMP triggers a CGMP join message. Enable CGMP only on Layer 3 interfaces connected to Layer 2 Catalyst switches.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Optional) When you enter the <code>proxy</code> keyword, the CGMP proxy function is enabled. The proxy router advertises the existence of non-CGMP-capable routers by sending a CGMP join message with the non-CGMP-capable router MAC address and a group address of 0000.0000.0000.</td>
<td></td>
</tr>
</tbody>
</table>

Note

To perform CGMP proxy, the switch must be the IGMP querier. If you configure the `ip cgmp proxy` command, you must manipulate the IP addresses so that the switch is the IGMP querier, which might be the highest or lowest IP address, depending on which version of IGMP is running on the network. An IGMP Version 2 querier is selected based on the lowest IP address on the interface. An IGMP Version 1 querier is selected based on the multicast routing protocol used on the interface.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>end</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>show running-config</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>copy running-config startup-config</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th></th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Verify the Layer 2 Catalyst switch CGMP-client configuration. For more information, see the documentation that shipped with the product.</td>
</tr>
</tbody>
</table>

To disable CGMP on the interface, use the `no ip cgmp` interface configuration command.

When multiple Cisco CGMP-capable devices are connected to a switched network and the `ip cgmp proxy` command is needed, we recommend that all devices be configured with the same CGMP option and have precedence for becoming the IGMP querier over non-Cisco routers.
Configuring sdr Listener Support

The MBONE is the small subset of Internet routers and hosts that are interconnected and capable of forwarding IP multicast traffic. Other multimedia content is often broadcast over the MBONE. Before you can join a multimedia session, you need to know what multicast group address and port are being used for the session, when the session is going to be active, and what sort of applications (audio, video, and so forth) are required on your workstation. The MBONE Session Directory Version 2 (sdr) tool provides this information. This freeware application can be downloaded from several sites on the World Wide Web, one of which is http://www.video.ja.net/mice/index.html.

SDR is a multicast application that listens to a well-known multicast group address and port for Session Announcement Protocol (SAP) multicast packets from SAP clients, which announce their conference sessions. These SAP packets contain a session description, the time the session is active, its IP multicast group addresses, media format, contact person, and other information about the advertised multimedia session. The information in the SAP packet is displayed in the SDR Session Announcement window.

Enabling sdr Listener Support

By default, the switch does not listen to session directory advertisements.

Beginning in privileged EXEC mode, follow these steps to enable the switch to join the default session directory group (224.2.127.254) on the interface and listen to session directory advertisements. This procedure is optional.

To disable sdr support, use the **no ip sdr listen** interface configuration command.

Limiting How Long an sdr Cache Entry Exists

By default, entries are never deleted from the sdr cache. You can limit how long the entry remains active so that if a source stops advertising SAP information, old advertisements are not needlessly kept.
Beginning in privileged EXEC mode, follow these steps to limit how long an sdr cache entry stays active in the cache. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip sdr cache-timeout minutes</td>
<td>Limit how long an sdr cache entry stays active in the cache.</td>
</tr>
<tr>
<td></td>
<td>By default, entries are never deleted from the cache.</td>
</tr>
<tr>
<td></td>
<td>For minutes, the range is 1 to 4294967295.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip sdr cache-timeout` global configuration command. To delete the entire cache, use the `clear ip sdr` privileged EXEC command.

To display the session directory cache, use the `show ip sdr` privileged EXEC command.

Configuring an IP Multicast Boundary

Administratively-scoped boundaries can be used to limit the forwarding of multicast traffic outside of a domain or subdomain. This approach uses a special range of multicast addresses, called *administratively-scoped addresses*, as the boundary mechanism. If you configure an administratively-scoped boundary on a routed interface, multicast traffic whose multicast group addresses fall in this range cannot enter or exit this interface, thereby providing a firewall for multicast traffic in this address range.

Note

Multicast boundaries and TTL thresholds control the scoping of multicast domains; however, TTL thresholds are not supported by the switch. You should use multicast boundaries instead of TTL thresholds to limit the forwarding of multicast traffic outside of a domain or a subdomain.

Figure 1-7 shows that Company XYZ has an administratively-scoped boundary set for the multicast address range 239.0.0.0/8 on all routed interfaces at the perimeter of its network. This boundary prevents any multicast traffic in the range 239.0.0.0 through 239.255.255.255 from entering or leaving the network. Similarly, the engineering and marketing departments have an administratively-scoped boundary of 239.128.0.0/16 around the perimeter of their networks. This boundary prevents multicast traffic in the range of 239.128.0.0 through 239.128.255.255 from entering or leaving their respective networks.
You can define an administratively-scoped boundary on a routed interface for multicast group addresses. A standard access list defines the range of addresses affected. When a boundary is defined, no multicast data packets are allowed to flow across the boundary from either direction. The boundary allows the same multicast group address to be reused in different administrative domains.

The IANA has designated the multicast address range 239.0.0.0 to 239.255.255.255 as the administratively-scoped addresses. This range of addresses can then be reused in domains administered by different organizations. The addresses would be considered local, not globally unique.

Beginning in privileged EXEC mode, follow these steps to set up an administratively-scoped boundary. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number [deny</td>
</tr>
<tr>
<td></td>
<td>permit] source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip multicast boundary access-list-number</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
To remove the boundary, use the `no ip multicast boundary` interface configuration command.

This example shows how to set up a boundary for all administratively-scoped addresses:

```
Switch(config)# access-list 1 deny 239.0.0.0 0.255.255.255
Switch(config)# access-list 1 permit 224.0.0.0 15.255.255.255
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip multicast boundary 1
```

Configuring Basic DVMRP Interoperability Features

- Configuring DVMRP Interoperability, page 1-49 (optional)
- Configuring a DVMRP Tunnel, page 1-51 (optional)
- Advertising Network 0.0.0.0 to DVMRP Neighbors, page 1-53 (optional)
- Responding to mrinfo Requests, page 1-54 (optional)

For more advanced DVMRP features, see the “Configuring Advanced DVMRP Interoperability Features” section on page 1-54.

Configuring DVMRP Interoperability

Cisco multicast routers and multilayer switches using PIM can interoperate with non-Cisco multicast routers that use the DVMRP.

PIM devices dynamically discover DVMRP multicast routers on attached networks by listening to DVMR probe messages. When a DVMRP neighbor has been discovered, the PIM device periodically sends DVMRP report messages advertising the unicast sources reachable in the PIM domain. By default, directly connected subnets and networks are advertised. The device forwards multicast packets that have been forwarded by DVMRP routers and, in turn, forwards multicast packets to DVMRP routers.

You can configure an access list on the PIM routed interface connected to the MBONE to limit the number of unicast routes that are advertised in DVMRP route reports. Otherwise, all routes in the unicast routing table are advertised.

Note

The mrouted protocol is a public-domain implementation of DVMRP. You must use mrouted Version 3.8 (which implements a nonpruning version of DVMRP) when Cisco routers and multilayer switches are directly connected to DVMRP routers or interoperate with DVMRP routers over an MBONE tunnel. DVMRP advertisements produced by the Cisco IOS software can cause older versions of the mrouted protocol to corrupt their routing tables and those of their neighbors.

You can configure what sources are advertised and what metrics are used by configuring the `ip dvmrp metric` interface configuration command. You can also direct all sources learned through a particular unicast routing process to be advertised into DVMRP.
Beginning in privileged EXEC mode, follow these steps to configure the sources that are advertised and the metrics that are used when DVMRP route-report messages are sent. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip dvmrp metric metric [list access-list-number] [protocol process-id]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable the metric or route map, use the no ip dvmrp metric metric [list access-list-number] [protocol process-id] | [dvmrp]] or the no ip dvmrp metric metric route-map map-name interface configuration command.

A more sophisticated way to achieve the same results as the preceding command is to use a route map (ip dvmrp metric metric route-map map-name interface configuration command) instead of an access list. You subject unicast routes to route-map conditions before they are injected into DVMRP.
This example shows how to configure DVMRP interoperability when the PIM device and the DVMRP router are on the same network segment. In this example, access list 1 advertises the networks (198.92.35.0, 198.92.36.0, 198.92.37.0, 131.108.0.0, and 150.136.0.0) to the DVMRP router, and access list 2 prevents all other networks from being advertised (ip dvmrp metric 0 interface configuration command).

```config
Switch(config-if)# interface gigabitethernet1/0/1
Switch(config-if)# ip address 131.119.244.244 255.255.255.0
Switch(config-if)# ip pim dense-mode
Switch(config-if)# ip dvmrp metric 1 list 1
Switch(config-if)# ip dvmrp metric 0 list 2
Switch(config-if)# exit
Switch(config)# access-list 1 permit 198.92.35.0 0.0.0.255
Switch(config)# access-list 1 permit 198.92.36.0 0.0.0.255
Switch(config)# access-list 1 permit 198.92.37.0 0.0.0.255
Switch(config)# access-list 1 permit 131.108.0.0 0.0.255.255
Switch(config)# access-list 1 deny 0.0.0.0 255.255.255.255
Switch(config)# access-list 2 permit 0.0.0.0 255.255.255.255
```

Configuring a DVMRP Tunnel

The software supports DVMRP tunnels to the MBONE. You can configure a DVMRP tunnel on a router or multilayer switch if the other end is running DVMRP. The software then sends and receives multicast packets through the tunnel. This strategy enables a PIM domain to connect to the DVMRP router when all routers on the path do not support multicast routing. You cannot configure a DVMRP tunnel between two routers.

When a Cisco router or multilayer switch runs DVMRP through a tunnel, it advertises sources in DVMRP report messages, much as it does on real networks. The software also caches DVMRP report messages it receives and uses them in its RPF calculation. This behavior enables the software to forward multicast packets received through the tunnel.

When you configure a DVMRP tunnel, you should assign an IP address to a tunnel in these cases:

- To send IP packets through the tunnel
- To configure the software to perform DVMRP summarization

The software does not advertise subnets through the tunnel if the tunnel has a different network number from the subnet. In this case, the software advertises only the network number through the tunnel.
Beginning in privileged EXEC mode, follow these steps to configure a DVMRP tunnel. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td>- For <code>access-list-number</code>, the range is 1 to 99.</td>
</tr>
<tr>
<td></td>
<td>- The <code>deny</code> keyword denies access if the conditions are matched. The <code>permit</code> keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>- For <code>source</code>, enter the number of the network or host from which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For <code>source-wildcard</code>, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface tunnel number</code> Specify a tunnel interface, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>tunnel source ip-address</code> Specify the source address of the tunnel interface. Enter the IP address of the interface on the switch.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>tunnel destination ip-address</code> Specify the destination address of the tunnel interface. Enter the IP address of the mrouted router.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>tunnel mode dvmrp</code> Configure the encapsulation mode for the tunnel to DVMRP.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>ip address address mask</code> Assign an IP address to the interface.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td><code>ip unnumbered type number</code> Configure the interface as unnumbered.</td>
</tr>
<tr>
<td>Step 8</td>
<td>`ip pim [dense-mode</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>ip dvmrp accept-filter access-list-number [distance] neighbor-list access-list-number</code> Configure an acceptance filter for incoming DVMRP reports. By default, all destination reports are accepted with a distance of 0. Reports from all neighbors are accepted.</td>
</tr>
<tr>
<td></td>
<td>- For <code>access-list-number</code>, specify the access list number created in Step 2. Any sources that match the access list are stored in the DVMRP routing table with distance.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For <code>distance</code>, enter the administrative distance to the destination. By default, the administrative distance for DVMRP routes is 0 and take precedence over unicast routing table routes. If you have two paths to a source, one through unicast routing (using PIM as the multicast routing protocol) and another using DVMRP, and if you want to use the PIM path, increase the administrative distance for DVMRP routes. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>- For <code>neighbor-list access-list-number</code>, enter the number of the neighbor list created in Step 2. DVMRP reports are accepted only by those neighbors on the list.</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
To disable the filter, use the `no ip dvmrp accept-filter access-list-number [distance] neighbor-list access-list-number` interface configuration command.

This example shows how to configure a DVMRP tunnel. In this configuration, the IP address of the tunnel on the Cisco switch is assigned `unnumbered`, which causes the tunnel to appear to have the same IP address as port 1. The tunnel endpoint source address is 172.16.2.1, and the tunnel endpoint address of the remote DVMRP router to which the tunnel is connected is 192.168.1.10. Any packets sent through the tunnel are encapsulated in an outer IP header. The Cisco switch is configured to accept incoming DVMRP reports with a distance of 100 from 198.92.37.0 through 198.92.37.255.

```
Switch(config)# ip multicast-routing
Switch(config)# interface tunnel 0
Switch(config-if)# ip unnumbered gigabitethernet1/0/1
Switch(config-if)# ip pim dense-mode
Switch(config-if)# tunnel source gigabitethernet1/0/1
Switch(config-if)# tunnel destination 192.168.1.10
Switch(config-if)# tunnel mode dvmrp
Switch(config-if)# ip dvmrp accept-filter 1 100
Switch(config-if)# interface gigabitethernet1/0/1
Switch(config-if)# ip address 172.16.2.1 255.255.255.0
Switch(config-if)# ip pim dense-mode
Switch(config)# exit
Switch(config)# access-list 1 permit 198.92.37.0 0.0.0.255
```

Advertising Network 0.0.0.0 to DVMRP Neighbors

If your switch is a neighbor of an mrouted Version 3.6 device, you can configure the software to advertise network 0.0.0.0 (the default route) to the DVMRP neighbor. The DVMRP default route computes the RPF information for any multicast sources that do not match a more specific route.

Do not advertise the DVMRP default into the MBONE.

Beginning in privileged EXEC mode, follow these steps to advertise network 0.0.0.0 to DVMRP neighbors on an interface. This procedure is optional.

```
Step 1 configure terminal
Step 2 interface interface-id
Step 3 ip dvmrp default-information {originate | only}
```

The keywords have these meanings:

- **originate**—Specifies that other routes more specific than 0.0.0.0 can also be advertised.
- **only**—Specifies that no DVMRP routes other than 0.0.0.0 are advertised.
Configuring Advanced DVMRP Interoperability Features

Cisco routers and multilayer switches run PIM to forward multicast packets to receivers and receive multicast packets from senders. It is also possible to propagate DVMRP routes into and through a PIM cloud. PIM uses this information; however, Cisco routers and multilayer switches do not implement DVMRP to forward multicast packets.

These sections contain this configuration information:

- **Enabling DVMRP Unicast Routing**, page 1-54 (optional)
- **Rejecting a DVMRP Nonpruning Neighbor**, page 1-55 (optional)
- **Controlling Route Exchanges**, page 1-58 (optional)

For information on basic DVMRP features, see the “Configuring Basic DVMRP Interoperability Features” section on page 1-49.

Enabling DVMRP Unicast Routing

Because multicast routing and unicast routing require separate topologies, PIM must follow the multicast topology to build loopless distribution trees. Using DVMRP unicast routing, Cisco routers, multilayer switches, and mrouted-based machines exchange DVMRP unicast routes, to which PIM can then reverse-path forward.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To prevent the default route advertisement, use the `no ip dvmrp default-information` interface configuration command.

Responding to mrinfo Requests

The software answers mrinfo requests sent by mrouted systems and Cisco routers and multilayer switches. The software returns information about neighbors through DVMRP tunnels and all the routed interfaces. This information includes the metric (always set to 1), the configured TTL threshold, the status of the interface, and various flags. You can also use the `mrinfo` privileged EXEC command to query the router or switch itself, as in this example:

```
Switch# mrinfo
171.69.214.27 (mm1-7kd.cisco.com) [version cisco 11.1] [flags: PMS]:
171.69.214.27 -> 171.69.214.26 (mm1-r7kb.cisco.com) [1/0/pim/querier]
171.69.214.27 -> 171.69.214.25 (mm1-45a.cisco.com) [1/0/pim/querier]
171.69.214.33 -> 171.69.214.34 (mm1-45c.cisco.com) [1/0/pim]
171.69.214.137 -> 0.0.0.0 [1/0/pim/querier/down/leaf]
171.69.214.203 -> 0.0.0.0 [1/0/pim/querier/down/leaf]
171.69.214.18 -> 171.69.214.20 (mm1-45e.cisco.com) [1/0/pim]
171.69.214.18 -> 171.69.214.19 (mm1-45c.cisco.com) [1/0/pim]
171.69.214.18 -> 171.69.214.17 (mm1-45a.cisco.com) [1/0/pim]
```
Cisco devices do not perform DVMRP multicast routing among each other, but they can exchange DVMRP routes. The DVMRP routes provide a multicast topology that might differ from the unicast topology. This enables PIM to run over the multicast topology, thereby enabling sparse-mode PIM over the MBONE topology.

When DVMRP unicast routing is enabled, the router or switch caches routes learned in DVMRP report messages in a DVMRP routing table. When PIM is running, these routes might be preferred over routes in the unicast routing table, enabling PIM to run on the MBONE topology when it is different from the unicast topology.

DVMRP unicast routing can run on all interfaces. For DVMRP tunnels, it uses DVMRP multicast routing. This feature does not enable DVMRP multicast routing among Cisco routers and multilayer switches. However, if there is a DVMRP-capable multicast router, the Cisco device can do PIM/DVMRP multicast routing.

Beginning in privileged EXEC mode, follow these steps to enable DVMRP unicast routing. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface that is connected to the DVMRP router, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip dvmrp unicast-routing</td>
<td>Enable DVMRP unicast routing (to send and receive DVMRP routes).</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this feature, use the `no ip dvmrp unicast-routing` interface configuration command.

Rejecting a DVMRP Nonpruning Neighbor

By default, Cisco devices accept all DVMRP neighbors as peers, regardless of their DVMRP capability. However, some non-Cisco devices run old versions of DVMRP that cannot prune, so they continuously receive forwarded packets, wasting bandwidth. Figure 1-8 shows this scenario.
You can prevent the switch from peering (communicating) with a DVMRP neighbor if that neighbor does not support DVMRP pruning or grafting. To do so, configure the switch (which is a neighbor to the leaf, nonpruning DVMRP machine) with the `ip dvmrp reject-non-pruners` interface configuration command on the interface connected to the nonpruning machine as shown in Figure 1-9. In this case, when the switch receives DVMRP probe or report message without the prune-capable flag set, the switch logs a syslog message and discards the message.
Figure 1-9 Router Rejects Nonpruning DVMRP Neighbor

Note that the `ip dvmrp reject-non-pruners` interface configuration command prevents peering with neighbors only. If there are any nonpruning routers multiple hops away (downstream toward potential receivers) that are not rejected, a nonpruning DVMRP network might still exist.

Beginning in privileged EXEC mode, follow these steps to prevent peering with nonpruning DVMRP neighbors. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Specify the interface connected to the nonpruning DVMRP neighbor, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip dvmrp reject-non-pruners</code> Prevent peering with nonpruning DVMRP neighbors.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this function, use the `no ip dvmrp reject-non-pruners` interface configuration command.
Controlling Route Exchanges

These sections describe how to tune the Cisco device advertisements of DVMRP routes:

- Limiting the Number of DVMRP Routes Advertised, page 1-58 (optional)
- Changing the DVMRP Route Threshold, page 1-58 (optional)
- Configuring a DVMRP Summary Address, page 1-59 (optional)
- Disabling DVMRP Autosummarization, page 1-61 (optional)
- Adding a Metric Offset to the DVMRP Route, page 1-62 (optional)

Limiting the Number of DVMRP Routes Advertised

By default, only 7000 DVMRP routes are advertised over an interface enabled to run DVMRP (that is, a DVMRP tunnel, an interface where a DVMRP neighbor has been discovered, or an interface configured to run the `ip dvmrp unicast-routing` interface configuration command).

Beginning in privileged EXEC mode, follow these steps to change the DVMRP route limit. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip dvmrp route-limit <code>count</code></td>
<td>Change the number of DVMRP routes advertised over an interface enabled for DVMRP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This command prevents misconfigured <code>ip dvmrp metric</code> interface configuration commands from causing massive route injection into the MBONE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, 7000 routes are advertised. The range is 0 to 4294967295.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To configure no route limit, use the `no ip dvmrp route-limit` global configuration command.

Changing the DVMRP Route Threshold

By default, 10,000 DVMRP routes can be received per interface within a 1-minute interval. When that rate is exceeded, a syslog message is issued, warning that there might be a route surge occurring. The warning is typically used to quickly detect when devices have been misconfigured to inject a large number of routes into the MBONE.
Beginning in privileged EXEC mode, follow these steps to change the threshold number of routes that trigger the warning. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip dvmrp routehog-notification route-count</td>
<td>Configure the number of routes that trigger a syslog message. The default is 10,000 routes. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting use the `no ip dvmrp routehog-notification` global configuration command.

Use the `show ip igmp interface` privileged EXEC command to display a running count of routes. When the count is exceeded, ***ALERT*** is appended to the line.

Configuring a DVMRP Summary Address

By default, a Cisco device advertises in DVMRP route-report messages only connected unicast routes (that is, only routes to subnets that are directly connected to the router) from its unicast routing table. These routes undergo normal DVMRP classful route summarization. This process depends on whether the route being advertised is in the same classful network as the interface over which it is being advertised.

Figure 1-10 shows an example of the default behavior. This example shows that the DVMRP report sent by the Cisco router contains the three original routes received from the DVMRP router that have been poison-reversed by adding 32 to the DVMRP metric. Listed after these routes are two routes that are advertisements for the two directly connected networks (176.32.10.0/24 and 176.32.15.0/24) that were taken from the unicast routing table. Because the DVMRP tunnel shares the same IP address as Fast Ethernet port 1 and falls into the same Class B network as the two directly connected subnets, classful summarization of these routes was not performed. As a result, the DVMRP router is able to poison-reverse only these two routes to the directly connected subnets and is able to only RPF properly for multicast traffic sent by sources on these two Ethernet segments. Any other multicast source in the network behind the Cisco router that is not on these two Ethernet segments does not properly RPF-check on the DVMRP router and is discarded.

You can force the Cisco router to advertise the summary address (specified by the address and mask pair in the `ip dvmrp summary-address address mask` interface configuration command) in place of any route that falls in this address range. The summary address is sent in a DVMRP route report if the unicast routing table contains at least one route in this range; otherwise, the summary address is not advertised. In Figure 1-10 and Figure 1-11, you configure the `ip dvmrp summary-address` command on the Cisco router tunnel interface. As a result, the Cisco router sends only a single summarized Class B advertisement for network 176.32.0.0.16 from the unicast routing table.
Chapter 1 Configuring IP Multicast Routing

Figure 1-10 Connected Unicast Routes Advertised by Default (Catalyst 3750-E 3750-X Switches)

<table>
<thead>
<tr>
<th>Source Network</th>
<th>Interface</th>
<th>Metric</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.16.0.0/16</td>
<td>Gi0/1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>172.34.15.0/24</td>
<td>Gi0/1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>202.13.3.0/24</td>
<td>Gi0/1</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

DVMRP Report
151.16.0.0/16 m = 39
172.34.15.0/24 m = 42
202.13.3.0/24 m = 40
176.32.10.0/24 m = 1
176.32.15.0/24 m = 1

DVMRP Router
Tunnel
Cisco Router

Interface tunnel 0
ip unnumbered gigabitethernet1/0/1

Interface gigabitethernet1/0/1
ip addr 176.32.10.1 255.255.255.0
ip pim dense-mode

Figure 1-11 Connected Unicast Routes Advertised by Default (Catalyst 3560-E 3560-X Switches)

<table>
<thead>
<tr>
<th>Source Network</th>
<th>Interface</th>
<th>Metric</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.16.0.0/16</td>
<td>Gi0/1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>172.34.15.0/24</td>
<td>Gi0/1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>202.13.3.0/24</td>
<td>Gi0/1</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

DVMRP Report
151.16.0.0/16 m = 39
172.34.15.0/24 m = 42
202.13.3.0/24 m = 40
176.32.10.0/24 m = 1
176.32.15.0/24 m = 1

DVMRP Router
Tunnel
Cisco Router

Interface tunnel 0
ip unnumbered gi0/1

Interface gigabitethernet0/1
ip addr 176.32.10.1 255.255.255.0
ip pim dense-mode

Interface gigabitethernet0/2
ip addr 176.32.15.1 255.255.255.0
ip pim dense-mode
Beginning in privileged EXEC mode, follow these steps to customize the summarization of DVMRP routes if the default classful autosummarization does not suit your needs. This procedure is optional.

Note At least one more-specific route must be present in the unicast routing table before a configured summary address is advertised.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the interface that is connected to the DVMRP router, and enter interface configuration command.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip dvmrp summary-address address mask [metric value]</td>
</tr>
<tr>
<td></td>
<td>Specify a DVMRP summary address.</td>
</tr>
<tr>
<td></td>
<td>- For summary-address address mask, specify the summary IP address and mask that is advertised instead of the more specific route.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For metric value, specify the metric that is advertised with the summary address. The default is 1. The range is 1 to 32.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the summary address, use the **no ip dvmrp summary-address address mask [metric value]** interface configuration command.

Disabling DVMRP Autosummarization

By default, the software automatically performs some level of DVMRP summarization. Disable this function if you want to advertise all routes, not just a summary. In some special cases, you can use the neighboring DVMRP router with all subnet information to better control the flow of multicast traffic in the DVMRP network. One such case might occur if the PIM network is connected to the DVMRP cloud at several points and more specific (unsummarized) routes are being injected into the DVMRP network to advertise better paths to individual subnets inside the PIM cloud.

If you configure the **ip dvmrp summary-address** interface configuration command and did not configure **no ip dvmrp auto-summary**, you get both custom and autosummaries.

Beginning in privileged EXEC mode, follow these steps to disable DVMRP autosummarization. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the interface connected to the DVMRP router, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>no ip dvmrp auto-summary</td>
</tr>
<tr>
<td></td>
<td>Disable DVMRP autosummarization.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Adding a Metric Offset to the DVMRP Route

By default, the switch increments by one the metric (hop count) of a DVMRP route advertised in incoming DVMRP reports. You can change the metric if you want to favor or not favor a certain route. For example, a route is learned by multilayer switch A, and the same route is learned by multilayer switch B with a higher metric. If you want to use the path through switch B because it is a faster path, you can apply a metric offset to the route learned by switch A to make it larger than the metric learned by switch B, and you can choose the path through switch B.

Beginning in privileged EXEC mode, follow these steps to change the default metric. This procedure is optional.

To return to the default setting, use the `ip dvmrp auto-summary` interface configuration command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip dvmrp auto-summary` interface configuration command.

Adding a Metric Offset to the DVMRP Route

By default, the switch increments by one the metric (hop count) of a DVMRP route advertised in incoming DVMRP reports. You can change the metric if you want to favor or not favor a certain route.

For example, a route is learned by multilayer switch A, and the same route is learned by multilayer switch B with a higher metric. If you want to use the path through switch B because it is a faster path, you can apply a metric offset to the route learned by switch A to make it larger than the metric learned by switch B, and you can choose the path through switch B.

Beginning in privileged EXEC mode, follow these steps to change the default metric. This procedure is optional.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip dvmrp metric-offset [in</td>
<td>out] increment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) in—Specifies that the increment value is added to incoming DVMRP reports and is reported in mrinfo replies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) out—Specifies that the increment value is added to outgoing DVMRP reports for routes from the DVMRP routing table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If neither in nor out is specified, in is the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For increment, specify the value that is added to the metric of a DVMRP router advertised in a report message. The range is 1 to 31.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the ip dvmrp metric-offset command is not configured on an interface, the default increment value for incoming routes is 1, and the default for outgoing routes is 0.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Monitoring and Maintaining IP Multicast Routing

- Clearing Caches, Tables, and Databases, page 1-63
- Displaying System and Network Statistics, page 1-63
- Monitoring IP Multicast Routing, page 1-64

Clearing Caches, Tables, and Databases

You can remove all contents of a particular cache, table, or database. Clearing a cache, table, or database might be necessary when the contents of the particular structure are or suspected to be invalid.

You can use any of the privileged EXEC commands in Table 1-5 to clear IP multicast caches, tables, and databases:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip cgmp</td>
<td>Clear all group entries the Catalyst switches have cached</td>
</tr>
<tr>
<td>clear ip dvmrp route { *</td>
<td>route }</td>
</tr>
<tr>
<td>clear ip igmp group [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>clear ip mroute { *</td>
<td>group [source] }</td>
</tr>
<tr>
<td>clear ip pim auto-rp rp-address</td>
<td>Clear the auto-RP cache</td>
</tr>
<tr>
<td>clear ip sdr [group-address</td>
<td>“session-name”]</td>
</tr>
</tbody>
</table>

Displaying System and Network Statistics

You can display specific statistics, such as the contents of IP routing tables, caches, and databases.

Note

This release does not support per-route statistics.

You can display information to learn resource usage and solve network problems. You can also display information about node reachability and discover the routing path that packets of your device are taking through the network.

You can use any of the privileged EXEC commands in Table 1-6 to display various routing statistics:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping [group-name</td>
<td>group-address]</td>
</tr>
<tr>
<td>show ip dvmrp route [ip-address]</td>
<td>Display the entries in the DVMRP routing table.</td>
</tr>
<tr>
<td>show ip igmp groups [group-name</td>
<td>group-address</td>
</tr>
</tbody>
</table>
Table 1-7 Commands for Monitoring IP Multicast Routing

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip igmp interface</code> [type number]</td>
<td>Display multicast-related information about an interface.</td>
</tr>
<tr>
<td><code>show ip mcache</code> [group [source]]</td>
<td>Display the contents of the IP fast-switching cache.</td>
</tr>
<tr>
<td><code>show ip mpacket</code> [source-address</td>
<td>name] [group-address</td>
</tr>
<tr>
<td><code>show ip mroute</code> [group-name</td>
<td>group-address] [source] [summary] [count] [active kbps]</td>
</tr>
<tr>
<td><code>show ip pim interface</code> [type number] [count] [detail]</td>
<td>Display information about interfaces configured for PIM. This command is available in all software images.</td>
</tr>
<tr>
<td><code>show ip pim neighbor</code> [type number]</td>
<td>List the PIM neighbors discovered by the switch. This command is available in all software images.</td>
</tr>
<tr>
<td><code>show ip pim rp</code> [group-name</td>
<td>group-address]</td>
</tr>
<tr>
<td><code>show ip rpf</code> [source-address</td>
<td>name]</td>
</tr>
</tbody>
</table>

Monitoring IP Multicast Routing

You can use the privileged EXEC commands in Table 1-7 to monitor IP multicast routers, packets, and paths:

Table 1-7 Commands for Monitoring IP Multicast Routing

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mrinfo</code> [hostname</td>
<td>address] [source-address</td>
</tr>
<tr>
<td><code>mstat</code> source [destination] [group]</td>
<td>Display IP multicast packet rate and loss information.</td>
</tr>
<tr>
<td><code>mtrace</code> source [destination] [group]</td>
<td>Trace the path from a source to a destination branch for a multicast distribution tree for a given group.</td>
</tr>
</tbody>
</table>
Implementing IPv6 Multicast

Traditional IP communication allows a host to send packets to a single host (unicast transmission) or to all hosts (broadcast transmission). IPv6 multicast provides a third scheme, allowing a host to send a single data stream to a subset of all hosts (group transmission) simultaneously.

This document provides information on how to implement IPv6 multicast. For the command reference, refer to the Cisco IOS IPv6 Command Reference.

Information About Implementing IPv6 Multicast

- IPv6 Multicast Overview, page 1-1
- IPv6 Multicast Routing Implementation, page 1-2
- Protocol Independent Multicast, page 1-4
- Static Mroutes, page 1-10
- MRIB, page 1-10
- MFIB, page 1-10
- IPv6 Multicast VRF Lite, page 1-11
- IPv6 Multicast Process Switching and Fast Switching, page 1-11
- Multiprotocol BGP for the IPv6 Multicast Address Family, page 1-12
- NSF and SSO Support In IPv6 Multicast, page 1-12
- Bandwidth-Based CAC for IPv6 Multicast, page 1-12

IPv6 Multicast Overview

An IPv6 multicast group is an arbitrary group of receivers that want to receive a particular data stream. This group has no physical or geographical boundaries—receivers can be located anywhere on the Internet or in any private network. Receivers that are interested in receiving data flowing to a particular group must join the group by signaling their local switch. This signaling is achieved with the MLD protocol.

Switches use the MLD protocol to learn whether members of a group are present on their directly attached subnets. Hosts join multicast groups by sending MLD report messages. The network then delivers data to a potentially unlimited number of receivers, using only one copy of the multicast data on each subnet. IPv6 hosts that wish to receive the traffic are known as group members.
Packets delivered to group members are identified by a single multicast group address. Multicast packets are delivered to a group using best-effort reliability, just like IPv6 unicast packets.

The multicast environment consists of senders and receivers. Any host, regardless of whether it is a member of a group, can send to a group. However, only members of a group can listen to and receive the message.

A multicast address is chosen for the receivers in a multicast group. Senders use that address as the destination address of a datagram to reach all members of the group.

Membership in a multicast group is dynamic; hosts can join and leave at any time. There is no restriction on the location or number of members in a multicast group. A host can be a member of more than one multicast group at a time.

How active a multicast group is, its duration, and its membership can vary from group to group and from time to time. A group that has members may have no activity.

Note
IPv6 Multicast Routing is supported only on the IP Services image.

IPv6 Multicast Routing Implementation

The Cisco IOS software supports the following protocols to implement IPv6 multicast routing:

- MLD is used by IPv6 switches to discover multicast listeners (nodes that want to receive multicast packets destined for specific multicast addresses) on directly attached links. There are two versions of MLD: MLD version 1 is based on version 2 of the Internet Group Management Protocol (IGMP) for IPv4, and MLD version 2 is based on version 3 of the IGMP for IPv4. IPv6 multicast for Cisco IOS software uses both MLD version 2 and MLD version 1. MLD version 2 is fully backward-compatible with MLD version 1 (described in RFC 2710). Hosts that support only MLD version 1 will interoperate with a switch running MLD version 2. Mixed LANs with both MLD version 1 and MLD version 2 hosts are likewise supported.

- PIM-SM is used between switches so that they can track which multicast packets to forward to each other and to their directly connected LANs.

- PIM in Source Specific Multicast (PIM-SSM) is similar to PIM-SM with the additional ability to report interest in receiving packets from specific source addresses (or from all but the specific source addresses) to an IP multicast address.

Multicast Listener Discovery Protocol for IPv6

To start implementing multcasting in the campus network, users must first define who receives the multicast. The MLD protocol is used by IPv6 switches to discover the presence of multicast listeners (for example, nodes that want to receive multicast packets) on their directly attached links, and to discover specifically which multicast addresses are of interest to those neighboring nodes. It is used for discovering local group and source-specific group membership. The MLD protocol provides a means to automatically control and limit the flow of multicast traffic throughout your network with the use of special multicast queriers and hosts.

The difference between multicast queriers and hosts is as follows:

- A querier is a network device, such as a switch, that sends query messages to discover which network devices are members of a given multicast group.

- A host is a receiver, including switches, that send report messages to inform the querier of a host membership.
A set of queriers and hosts that receive multicast data streams from the same source is called a multicast group. Queriers and hosts use MLD reports to join and leave multicast groups and to begin receiving group traffic.

MLD uses the Internet Control Message Protocol (ICMP) to carry its messages. All MLD messages are link-local with a hop limit of 1, and they all have the switch alert option set. The switch alert option implies an implementation of the hop-by-hop option header.

MLD has three types of messages:

- Query--General, group-specific, and multicast-address-specific. The multicast address field is set to 0 when MLD sends a general query. The general query learns which multicast addresses have listeners on an attached link.

Group-specific and multicast address-specific queries both set the multicast address field to the address being queried. A group address is a multicast address.

- Report--In a report message, the multicast address field is that of the specific IPv6 multicast address to which the sender is listening.

- Done--In a done message, the multicast address field is that of the specific IPv6 multicast address to which the source of the MLD message is no longer listening.

There is no done message in MLD version 2.

An MLD report must be sent with a valid IPv6 link-local source address, or the unspecified address (::), if the sending interface has not yet acquired a valid link-local address. Sending reports with the unspecified address is allowed to support the use of IPv6 multicast in the Neighbor Discovery Protocol.

For stateless autoconfiguration, a node is required to join several IPv6 multicast groups in order to perform duplicate address detection (DAD). Prior to DAD, the only address the reporting node has for the sending interface is a tentative one, which cannot be used for communication. Therefore, the unspecified address must be used.

MLD states that result from MLD version 2 or MLD version 1 membership reports can be limited globally or by interface. The MLD group limits feature provides protection against denial of service (DoS) attacks caused by MLD packets. Membership reports in excess of the configured limits will not be entered in the MLD cache, and traffic for those excess membership reports will not be forwarded.

MLD provides support for source filtering. Source filtering allows a node to report interest in listening to packets only from specific source addresses (as required to support SSM), or from all addresses except specific source addresses sent to a particular multicast address.

When a host using MLD sends a leave message, the switch needs to send query messages to reconfirm that this host was the last host joined to the group before it can stop forwarding traffic. This function takes about 2 seconds. This “leave latency” is also present in IGMP version 2 for IPv4 multicast.

MLD Access Group

The MLD access group provides receiver access control in Cisco IOS IPv6 multicast switches. This feature limits the list of groups a receiver can join, and it allows or denies sources used to join SSM channels.

Explicit Tracking of Receivers

The explicit tracking feature allows a switch to track the behavior of the hosts within its IPv6 network. This feature also enables the fast leave mechanism to be used with MLD version 2 host reports.
IPv6 Multicast User Authentication and Profile Support

IPv6 multicast by design allows any host in the network to become a receiver or a source for a multicast group. Therefore, multicast access control is needed to control multicast traffic in the network. Access control functionality consists mainly of source access control and accounting, receiver access control and accounting, and provisioning of this access control mechanism.

Multicast access control provides an interface between multicast and authentication, authorization, and accounting (AAA) for provisioning, authorizing, and accounting at the last-hop switch, receiver access control functions in multicast, and group or channel disabling capability in multicast.

When you deploy a new multicast service environment, it is necessary to add user authentication and provide a user profile download on a per-interface basis. The use of AAA and IPv6 multicast supports user authentication and downloading of the user profile in a multicast environment.

The event that triggers the download of a multicast access-control profile from the RADIUS server to the access switch is arrival of an MLD join on the access switch. When this event occurs, a user can cause the authorization cache to time out and request download periodically or use an appropriate multicast clear command to trigger a new download in case of profile changes.

Accounting occurs via RADIUS accounting. Start and stop accounting records are sent to the RADIUS server from the access switch. In order for you to track resource consumption on a per-stream basis, these accounting records provide information about the multicast source and group. The start record is sent when the last-hop switch receives a new MLD report, and the stop record is sent upon MLD leave or if the group or channel is deleted for any reason.

IPv6 MLD Proxy

The MLD proxy feature provides a mechanism for a switch to generate MLD membership reports for all (*, G)/(S, G) entries or a user-defined subset of these entries on the switch's upstream interface. The MLD proxy feature enables a device to learn proxy group membership information, and forward multicast packets based upon that information.

If a switch is acting as RP for mroute proxy entries, MLD membership reports for these entries can be generated on user specified proxy interface.

Protocol Independent Multicast

Protocol Independent Multicast (PIM) is used between switches so that they can track which multicast packets to forward to each other and to their directly connected LANs. PIM works independently of the unicast routing protocol to perform send or receive multicast route updates like other protocols. Regardless of which unicast routing protocols are being used in the LAN to populate the unicast routing table, Cisco IOS PIM uses the existing unicast table content to perform the Reverse Path Forwarding (RPF) check instead of building and maintaining its own separate routing table.

You can configure IPv6 multicast to use either PIM-SM or PIM-SSM operation, or you can use both PIM-SM and PIM-SSM together in your network.

PIM-Sparse Mode

IPv6 multicast provides support for intradomain multicast routing using PIM-SM. PIM-SM uses unicast routing to provide reverse-path information for multicast tree building, but it is not dependent on any particular unicast routing protocol.
PIM-SM is used in a multicast network when relatively few switches are involved in each multicast and these switches do not forward multicast packets for a group, unless there is an explicit request for the traffic. PIM-SM distributes information about active sources by forwarding data packets on the shared tree. PIM-SM initially uses shared trees, which requires the use of an RP.

Requests are accomplished via PIM joins, which are sent hop by hop toward the root node of the tree. The root node of a tree in PIM-SM is the RP in the case of a shared tree or the first-hop switch that is directly connected to the multicast source in the case of a shortest path tree (SPT). The RP keeps track of multicast groups and the hosts that send multicast packets are registered with the RP by that host’s first-hop switch.

As a PIM join travels up the tree, switches along the path set up multicast forwarding state so that the requested multicast traffic will be forwarded back down the tree. When multicast traffic is no longer needed, a switch sends a PIM prune up the tree toward the root node to prune (or remove) the unnecessary traffic. As this PIM prune travels hop by hop up the tree, each switch updates its forwarding state appropriately. Ultimately, the forwarding state associated with a multicast group or source is removed.

A multicast data sender sends data destined for a multicast group. The designated switch (DR) of the sender takes those data packets, unicast-encapsulates them, and sends them directly to the RP. The RP receives these encapsulated data packets, de-encapsulates them, and forwards them onto the shared tree. The packets then follow the (*, G) multicast tree state in the switches on the RP tree, being replicated wherever the RP tree branches, and eventually reaching all the receivers for that multicast group. The process of encapsulating data packets to the RP is called registering, and the encapsulation packets are called PIM register packets.

Designated Switch

Cisco switches use PIM-SM to forward multicast traffic and follow an election process to select a designated switch when there is more than one switch on a LAN segment.

The designated switch is responsible for sending PIM register and PIM join and prune messages toward the RP to inform it about active sources and host group membership.

If there are multiple PIM-SM switches on a LAN, a designated switch must be elected to avoid duplicating multicast traffic for connected hosts. The PIM switch with the highest IPv6 address becomes the DR for the LAN unless you choose to force the DR election by use of the ipv6 pim dr-priority command. This command allows you to specify the DR priority of each switch on the LAN segment (default priority = 1) so that the switch with the highest priority will be elected as the DR. If all switches on the LAN segment have the same priority, then the highest IPv6 address is again used as the tiebreaker.

If the DR should fail, the PIM-SM provides a way to detect the failure of Switch A and elect a failover DR. If the DR (Switch A) became inoperable, Switch B would detect this situation when its neighbor adjacency with Switch A timed out. Because Switch B has been hearing MLD membership reports from Host A, it already has MLD state for Group A on this interface and would immediately send a join to the RP when it became the new DR. This step reestablishes traffic flow down a new branch of the shared tree via Switch B. Additionally, if Host A were sourcing traffic, Switch B would initiate a new register process immediately after receiving the next multicast packet from Host A. This action would trigger the RP to join the SPT to Host A via a new branch through Switch B.

- Two PIM switches are neighbors if there is a direct connection between them. To display your PIM neighbors, use the `show ipv6 pim neighbor` privileged EXEC command.
- The DR election process is required only on multiaccess LANs.
Rendezvous Point

IPv6 PIM provides embedded RP support. Embedded RP support allows the switch to learn RP information using the multicast group destination address instead of the statically configured RP. For switches that are the RP, the switch must be statically configured as the RP.

The switch searches for embedded RP group addresses in MLD reports or PIM messages and data packets. On finding such an address, the switch learns the RP for the group from the address itself. It then uses this learned RP for all protocol activity for the group. For switches that are the RP, the switch is advertised as an embedded RP must be configured as the RP.

To select a static RP over an embedded RP, the specific embedded RP group range or mask must be configured in the access list of the static RP. When PIM is configured in sparse mode, you must also choose one or more switches to operate as an RP. An RP is a single common root placed at a chosen point of a shared distribution tree and is configured statically in each box.

PIM DRs forward data from directly connected multicast sources to the RP for distribution down the shared tree. Data is forwarded to the RP in one of two ways:

- Data is encapsulated in register packets and unicast directly to the RP by the first-hop switch operating as the DR.
- If the RP has itself joined the source tree, it is multicast-forwarded per the RPF forwarding algorithm described in the PIM-Sparse Mode section.

The RP address is used by first-hop switches to send PIM register messages on behalf of a host sending a packet to the group. The RP address is also used by last-hop switches to send PIM join and prune messages to the RP to inform it about group membership. You must configure the RP address on all switches (including the RP switch).

A PIM switch can be an RP for more than one group. Only one RP address can be used at a time within a PIM domain for a certain group. The conditions specified by the access list determine for which groups the switch is an RP.

IPv6 multicast supports the PIM accept register feature, which is the ability to perform PIM-SM register message filtering at the RP. The user can match an access list or compare the AS path for the registered source with the AS path specified in a route map.

PIMv6 Anycast RP Solution Overview

The anycast RP solution in IPv6 PIM allows an IPv6 network to support anycast services for the PIM-SM RP. It allows anycast RP to be used inside a domain that runs PIM only. This feature is useful when interdomain connection is not required. Anycast RP can be used in IPv4 as well as IPv6, but it does not depend on the Multicast Source Discovery Protocol (MSDP), which runs only on IPv4.

Anycast RP is a mechanism that ISP-based backbones use to get fast convergence when a PIM RP device fails. To allow receivers and sources to rendezvous to the closest RP, the packets from a source need to get to all RPs to find joined receivers.

A unicast IP address is chosen as the RP address. This address is either statically configured or distributed using a dynamic protocol to all PIM devices throughout the domain. A set of devices in the domain is chosen to act as RPs for this RP address; these devices are called the anycast RP set. Each device in the anycast RP set is configured with a loopback interface using the RP address. Each device in the anycast RP set also needs a separate physical IP address to be used for communication between the RPs.

The RP address, or a prefix that covers the RP address, is injected into the unicast routing system inside of the domain. Each device in the anycast RP set is configured with the addresses of all other devices in the anycast RP set, and this configuration must be consistent in all RPs in the set.
IPv6 BSR: Configure RP Mapping

PIM switches in a domain must be able to map each multicast group to the correct RP address. The BSR protocol for PIM-SM provides a dynamic, adaptive mechanism to distribute group-to-RP mapping information rapidly throughout a domain. With the IPv6 BSR feature, if an RP becomes unreachable, it will be detected and the mapping tables will be modified so that the unreachable RP is no longer used, and the new tables will be rapidly distributed throughout the domain.

Every PIM-SM multicast group needs to be associated with the IP or IPv6 address of an RP. When a new multicast sender starts sending, its local DR will encapsulate these data packets in a PIM register message and send them to the RP for that multicast group. When a new multicast receiver joins, its local DR will send a PIM join message to the RP for that multicast group. When any PIM switch sends a (*, G) join message, the PIM switch needs to know which is the next switch toward the RP so that G (Group) can send a message to that switch. Also, when a PIM switch is forwarding data packets using (*, G) state, the PIM switch needs to know which is the correct incoming interface for packets destined for G, because it needs to reject any packets that arrive on other interfaces.

A small set of switches from a domain are configured as candidate bootstrap switches (C-BSRs) and a single BSR is selected for that domain. A set of switches within a domain are also configured as candidate RPs (C-RPs); typically, these switches are the same switches that are configured as C-BSRs. Candidate RPs periodically unicast candidate-RP-advertisement (C-RP-Adv) messages to the BSR of that domain, advertising their willingness to be an RP. A C-RP-Adv message includes the address of the advertising C-RP, and an optional list of group addresses and mask length fields, indicating the group prefixes for which the candidacy is advertised. The BSR then includes a set of these C-RPs, along with their corresponding group prefixes, in bootstrap messages (BSMs) it periodically originates. BSMs are distributed hop-by-hop throughout the domain.

Bidirectional BSR support allows bidirectional RPs to be advertised in C-RP messages and bidirectional ranges in the BSM. All switches in a system must be able to use the bidirectional range in the BSM; otherwise, the bidirectional RP feature will not function.

PIM-Source Specific Multicast

PIM-SSM is the routing protocol that supports the implementation of SSM and is derived from PIM-SM. However, unlike PIM-SM where data from all multicast sources are sent when there is a PIM join, the SSM feature forwards datagram traffic to receivers from only those multicast sources that the receivers have explicitly joined, thus optimizing bandwidth utilization and denying unwanted Internet broadcast traffic. Further, instead of the use of RP and shared trees, SSM uses information found on source addresses for a multicast group. This information is provided by receivers through the source addresses relayed to the last-hop switches by MLD membership reports, resulting in shortest-path trees directly to the sources.

In SSM, delivery of datagrams is based on (S, G) channels. Traffic for one (S, G) channel consists of datagrams with an IPv6 unicast source address S and the multicast group address G as the IPv6 destination address. Systems will receive this traffic by becoming members of the (S, G) channel. Signaling is not required, but receivers must subscribe or unsubscribe to (S, G) channels to receive or not receive traffic from specific sources.

MLD version 2 is required for SSM to operate. MLD allows the host to provide source information. Before SSM can run with MLD, SSM must be supported in the Cisco IOS IPv6 switch, the host where the application is running, and the application itself.
SSM Mapping for IPv6

SSM mapping for IPv6 supports both static and dynamic Domain Name System (DNS) mapping for MLD version 1 receivers. This feature allows deployment of IPv6 SSM with hosts that are incapable of providing MLD version 2 support in their TCP/IP host stack and their IP multicast receiving application.

SSM mapping allows the switch to look up the source of a multicast MLD version 1 report either in the running configuration of the switch or from a DNS server. The switch can then initiate an (S, G) join toward the source.

PIM Shared Tree and Source Tree (Shortest-Path Tree)

By default, members of a group receive data from senders to the group across a single data distribution tree rooted at the RP. This type of distribution tree is called shared tree or rendezvous point tree (RPT), as illustrated in the figure below. Data from senders is delivered to the RP for distribution to group members joined to the shared tree.

If the data threshold warrants, leaf switches on the shared tree may initiate a switch to the data distribution tree rooted at the source. This type of distribution tree is called a shortest path tree or source tree. By default, the Cisco IOS software switches to a source tree upon receiving the first data packet from a source.

The following process details the move from shared tree to source tree:
1. Receiver joins a group; leaf Switch C sends a join message toward the RP.
2. RP puts the link to Switch C in its outgoing interface list.
3. Source sends the data; Switch A encapsulates the data in the register and sends it to the RP.
4. RP forwards the data down the shared tree to Switch C and sends a join message toward the source. At this point, data may arrive twice at Switch C, once encapsulated and once natively.
5. When data arrives natively (unencapsulated) at the RP, the RP sends a register-stop message to Switch A.
6. By default, receipt of the first data packet prompts Switch C to send a join message toward the source.
7. When Switch C receives data on (S, G), it sends a prune message for the source up the shared tree.
8. RP deletes the link to Switch C from the outgoing interface of (S, G).
9. RP triggers a prune message toward the source.

Join and prune messages are sent for sources and RPs. They are sent hop-by-hop and are processed by each PIM switch along the path to the source or RP. Register and register-stop messages are not sent hop-by-hop. They are sent by the designated switch that is directly connected to a source and are received by the RP for the group.

Reverse Path Forwarding

Reverse-path forwarding is used for forwarding multicast datagrams. It functions as follows:
- If a switch receives a datagram on an interface it uses to send unicast packets to the source, the packet has arrived on the RPF interface.
- If the packet arrives on the RPF interface, a switch forwards the packet out the interfaces present in the outgoing interface list of a multicast routing table entry.
- If the packet does not arrive on the RPF interface, the packet is silently discarded to prevent loops.
PIM uses both source trees and RP-rooted shared trees to forward datagrams; the RPF check is performed differently for each, as follows:

- If a PIM switch has source-tree state (that is, an \((S, G)\) entry is present in the multicast routing table), the switch performs the RPF check against the IPv6 address of the source of the multicast packet.
- If a PIM switch has shared-tree state (and no explicit source-tree state), it performs the RPF check on the RP's address (which is known when members join the group).

Sparse-mode PIM uses the RPF lookup function to determine where it needs to send joins and prunes. \((S, G)\) joins (which are source-tree states) are sent toward the source. \((*, G)\) joins (which are shared-tree states) are sent toward the RP.

Routable Address Hello Option

When an IPv6 interior gateway protocol is used to build the unicast routing table, the procedure to detect the upstream switch address assumes the address of a PIM neighbor is always same as the address of the next-hop switch, as long as they refer to the same switch. However, it may not be the case when a switch has multiple addresses on a link.

Two typical situations can lead to this situation for IPv6. The first situation can occur when the unicast routing table is not built by an IPv6 interior gateway protocol such as multicast BGP. The second situation occurs when the address of an RP shares a subnet prefix with downstream switches (note that the RP switch address has to be domain-wide and therefore cannot be a link-local address).

The routable address hello option allows the PIM protocol to avoid such situations by adding a PIM hello message option that includes all the addresses on the interface on which the PIM hello message is advertised. When a PIM switch finds an upstream switch for some address, the result of RPF calculation is compared with the addresses in this option, in addition to the PIM neighbor's address itself. Because this option includes all the possible addresses of a PIM switch on that link, it always includes the RPF calculation result if it refers to the PIM switch supporting this option.

Because of size restrictions on PIM messages and the requirement that a routable address hello option fits within a single PIM hello message, a limit of 16 addresses can be configured on the interface.

Bidirectional PIM

Bidirectional PIM allows multicast switches to keep reduced state information, as compared with unidirectional shared trees in PIM-SM. Bidirectional shared trees convey data from sources to the rendezvous point address (RPA) and distribute them from the RPA to the receivers. Unlike PIM-SM, bidirectional PIM does not switch over to the source tree, and there is no register encapsulation of data from the source to the RP.

A single designated forwarder (DF) exists for each RPA on every link within a bidirectional PIM domain (including multiaccess and point-to-point links). The only exception is the RPL on which no DF exists. The DF is the switch on the link with the best route to the RPA, which is determined by comparing MRIB-provided metrics. A DF for a given RPA forwards downstream traffic onto its link and forwards upstream traffic from its link toward the rendezvous point link (RPL). The DF performs this function for all bidirectional groups that map to the RPA. The DF on a link is also responsible for processing Join messages from downstream switches on the link as well as ensuring that packets are forwarded to local receivers discovered through a local membership mechanism such as MLD.

Bidirectional PIM offers advantages when there are many moderate or low-rate sources. However, the bidirectional shared trees may have worse delay characteristics than do the source trees built in PIM-SM (depending on the topology).

Only static configuration of bidirectional RPs is supported in IPv6.
Static Mroutes

IPv6 static mroutes behave much in the same way as IPv4 static mroutes used to influence the RPF check. IPv6 static mroutes share the same database as IPv6 static routes and are implemented by extending static route support for RPF checks. Static mroutes support equal-cost multipath mroutes, and they also support unicast-only static routes.

MRIB

The Multicast Routing Information Base (MRIB) is a protocol-independent repository of multicast routing entries instantiated by multicast routing protocols (routing clients). Its main function is to provide independence between routing protocols and the Multicast Forwarding Information Base (MFIB). It also acts as a coordination and communication point among its clients.

Routing clients use the services provided by the MRIB to instantiate routing entries and retrieve changes made to routing entries by other clients. Besides routing clients, MRIB also has forwarding clients (MFIB instances) and special clients such as MLD. MFIB retrieves its forwarding entries from MRIB and notifies the MRIB of any events related to packet reception. These notifications can either be explicitly requested by routing clients or spontaneously generated by the MFIB.

Another important function of the MRIB is to allow for the coordination of multiple routing clients in establishing multicast connectivity within the same multicast session. MRIB also allows for the coordination between MLD and routing protocols.

MFIB

The MFIB is a platform-independent and routing-protocol-independent library for IPv6 software. Its main purpose is to provide a Cisco IOS platform with an interface with which to read the IPv6 multicast forwarding table and notifications when the forwarding table changes. The information provided by the MFIB has clearly defined forwarding semantics and is designed to make it easy for the platform to translate to its specific hardware or software forwarding mechanisms.

When routing or topology changes occur in the network, the IPv6 routing table is updated, and those changes are reflected in the MFIB. The MFIB maintains next-hop address information based on the information in the IPv6 routing table. Because there is a one-to-one correlation between MFIB entries and routing table entries, the MFIB contains all known routes and eliminates the need for route cache maintenance that is associated with switching paths such as fast switching and optimum switching.

Distributed MFIB

Distributed MFIB (dMFIB) is used to switch multicast IPv6 packets on distributed platforms. dMFIB may also contain platform-specific information on replication across line cards. The basic MFIB routines that implement the core of the forwarding logic are common to all forwarding environments.

dMFIB implements the following functions:

- Distributes a copy of the MFIB to the line cards.
- Relays data-driven protocol events generated in the line cards to PIM.
- Provides an MFIB platform application program interface (API) to propagate MFIB changes to platform-specific code responsible for programming the hardware acceleration engine. This API also includes entry points to switch a packet in software (necessary if the packet is triggering a data-driven event) and to upload traffic statistics to the software.
• Provides hooks to allow clients residing on the RP to read traffic statistics on demand. (dMFIB does not periodically upload these statistics to the RP.)

The combination of dMFIB and MRIB subsystems also allows the switch to have a "customized" copy of the MFIB database in each line card and to transport MFIB-related platform-specific information from the RP to the line cards.

IPv6 Multicast VRF Lite

The IPv6 Multicast VRF Lite feature provides IPv6 multicast support for multiple virtual routing/forwarding contexts (VRFs). The scope of these VRFs is limited to the switch in which the VRFs are defined.

This feature provides separation between routing and forwarding, providing an additional level of security because no communication between devices belonging to different VRFs is allowed unless it is explicitly configured. The IPv6 Multicast VRF Lite feature simplifies the management and troubleshooting of traffic belonging to a specific VRF.

IPv6 Multicast Process Switching and Fast Switching

A unified MFIB is used to provide both fast switching and process switching support for PIM-SM and PIM-SSM in IPv6 multicast. In process switching, the Route Processor must examine, rewrite, and forward each packet. The packet is first received and copied into the system memory. The switch then looks up the Layer 3 network address in the routing table. The Layer 2 frame is then rewritten with the next-hop destination address and sent to the outgoing interface. The RP also computes the cyclic redundancy check (CRC). This switching method is the least scalable method for switching IPv6 packets.

IPv6 multicast fast switching allows switches to provide better packet forwarding performance than process switching. Information conventionally stored in a route cache is stored in several data structures for IPv6 multicast switching. The data structures provide optimized lookup for efficient packet forwarding.

In IPv6 multicast forwarding, the first packet is fast-switched if the PIM protocol logic allows it. In IPv6 multicast fast switching, the MAC encapsulation header is precomputed. IPv6 multicast fast switching uses the MFIB to make IPv6 destination prefix-based switching decisions. In addition to the MFIB, IPv6 multicast fast switching uses adjacency tables to prepend Layer 2 addressing information. The adjacency table maintains Layer 2 next-hop addresses for all MFIB entries.

The adjacency table is populated as adjacencies are discovered. Each time an adjacency entry is created (such as through ARP), a link-layer header for that adjacent node is precomputed and stored in the adjacency table. Once a route is determined, it points to a next hop and corresponding adjacency entry. It is subsequently used for encapsulation during switching of packets.

A route might have several paths to a destination prefix, such as when a switch is configured for simultaneous load balancing and redundancy. For each resolved path, a pointer is added for the adjacency corresponding to the next-hop interface for that path. This mechanism is used for load balancing across several paths.
Chapter 1 Implementing IPv6 Multicast

Multiprotocol BGP for the IPv6 Multicast Address Family

The multiprotocol BGP for the IPv6 multicast address family feature provides multicast BGP extensions for IPv6 and supports the same features and functionality as IPv4 BGP. IPv6 enhancements to multicast BGP include support for an IPv6 multicast address family and network layer reachability information (NLRI) and next hop (the next switch in the path to the destination) attributes that use IPv6 addresses.

Multicast BGP is an enhanced BGP that allows the deployment of interdomain IPv6 multicast. Multiprotocol BGP carries routing information for multiple network layer protocol address families; for example, IPv6 address family and for IPv6 multicast routes. The IPv6 multicast address family contains routes used for RPF lookup by the IPv6 PIM protocol, and multicast BGP IPv6 provides for interdomain transport of the same. Users must use multiprotocol BGP for IPv6 multicast when using IPv6 multicast with BGP because the unicast BGP learned routes will not be used for IPv6 multicast.

Multicast BGP functionality is provided through a separate address family context. A subsequent address family identifier (SAFI) provides information about the type of the network layer reachability information that is carried in the attribute. Multiprotocol BGP unicast uses SAFI 1 messages, and multiprotocol BGP multicast uses SAFI 2 messages. SAFI 1 messages indicate that the routes are only usable for IP unicast, but not IP multicast. Because of this functionality, BGP routes in the IPv6 unicast RIB must be ignored in the IPv6 multicast RPF lookup.

A separate BGP routing table is maintained to configure incongruent policies and topologies (for example, IPv6 unicast and multicast) by using IPv6 multicast RPF lookup. Multicast RPF lookup is very similar to the IP unicast route lookup.

No MRIB is associated with the IPv6 multicast BGP table. However, IPv6 multicast BGP operates on the unicast IPv6 RIB when needed. Multicast BGP does not insert or update routes into the IPv6 unicast RIB.

NSF and SSO Support In IPv6 Multicast

Support for nonstop forwarding (NSF) and stateful switchover (SSO) is provided in IPv6 Multicast.

Bandwidth-Based CAC for IPv6 Multicast

The bandwidth-based call admission control (CAC) for IPv6 multicast feature implements a way to count per-interface mroute state limiters using cost multipliers. This feature can be used to provide bandwidth-based CAC on a per-interface basis in network environments where the multicast flows use different amounts of bandwidth.

This feature limits and accounts for IPv6 multicast state in detail. When this feature is configured, interfaces can be limited to the number of times they may be used as incoming or outgoing interfaces in the IPv6 multicast PIM topology.

With this feature, switch administrators can configure global limit cost commands for state matching access lists and specify which cost multiplier to use when accounting such state against the interface limits. This feature provides the required flexibility to implement bandwidth-based local CAC policy by tuning appropriate cost multipliers for different bandwidth requirements.

Implementing IPv6 Multicast

- Enabling IPv6 Multicast Routing, page 1-13
Enabling IPv6 Multicast Routing

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: ipv6 multicast-routing [vrf vrf-name]</td>
<td>Enables multicast routing on all IPv6-enabled interfaces and enables multicast forwarding for PIM and MLD on all enabled interfaces of the switch.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ipv6 multicast-routing</td>
<td></td>
</tr>
<tr>
<td>Step 3: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Customizing and Verifying the MLD Protocol

- Customizing and Verifying MLD on an Interface, page 1-13
- Implementing MLD Group Limits, page 1-15
- Configuring Explicit Tracking of Receivers to Track Host Behavior, page 1-16
- Configuring Multicast User Authentication and Profile Support, page 1-16
- Enabling MLD Proxy in IPv6, page 1-18
- Resetting the MLD Traffic Counters, page 1-19
- Clearing the MLD Interface Counters, page 1-19

Customizing and Verifying MLD on an Interface

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface type number</td>
<td>Specifies an interface type and number, and places the switch in interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface FastEthernet 1/0</td>
<td></td>
</tr>
</tbody>
</table>
Implementing IPv6 Multicast

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ipv6 mld join-group [group-address] [include</td>
<td>Configures MLD reporting for a specified group and source.</td>
</tr>
<tr>
<td></td>
<td>exclude] [source-address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source-list [acl]]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# ipv6 mld join-group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FF04::10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ipv6 mld access-group access-list-name</td>
<td>Allows the user to perform IPv6 multicast receiver access control.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# ipv6 access-list</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acc-grp-1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ipv6 mld static-group group-address] [include</td>
<td>Statically forwards traffic for the multicast group onto a specified interface and cause the interface to behave as if a MLD joiner were present on the interface.</td>
</tr>
<tr>
<td></td>
<td>exclude] [source-address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source-list [acl]]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# ipv6 mld static-group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ff04::10 include 100::1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ipv6 mld query-max-response-time seconds</td>
<td>Configures the maximum response time advertised in MLD queries.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# ipv6 mld query-max-response-time 20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ipv6 mld query-timeout seconds</td>
<td>Configures the timeout value before the switch takes over as the querier for the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# ipv6 mld query-timeout 130</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>exit</td>
<td>Enter this command twice to exit interface configuration mode and enter privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>show ipv6 mld [vrf vrf-name] groups</td>
<td>Displays the multicast groups that are directly connected to the switch and that were learned through MLD.</td>
</tr>
<tr>
<td></td>
<td>[link-local] [group-name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>group-address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[interface-type interface-number] [detail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>explicit]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# show ipv6 mld groups FastEthernet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2/1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>show ipv6 mld groups summary</td>
<td>Displays the number of (*, G) and (S, G) membership reports present in the MLD cache.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# show ipv6 mld groups summary</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>show ipv6 mld [vrf vrf-name] interface</td>
<td>Displays multicast-related information about an interface.</td>
</tr>
<tr>
<td></td>
<td>[type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# show ipv6 mld interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FastEthernet 2/1</td>
<td></td>
</tr>
</tbody>
</table>
Implementing MLD Group Limits

Per-interface and global MLD limits operate independently of each other. Both per-interface and global MLD limits can be configured on the same switch. The number of MLD limits, globally or per interface, is not configured by default; the limits must be configured by the user. A membership report that exceeds either the per-interface or the global state limit is ignored.

Implementing MLD Group Limits Globally

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ipv6 mld [vrf vrf-name] state-limit number</td>
<td>Limits the number of MLD states globally.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Implementing MLD Group Limits per Interface

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface type number</td>
<td>Specifies an interface type and number, and places the switch in interface configuration mode.</td>
</tr>
<tr>
<td>ipv6 mld limit number [except access-list]</td>
<td>Limits the number of MLD states on a per-interface basis.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring Explicit Tracking of Receivers to Track Host Behavior

The explicit tracking feature allows a switch to track the behavior of the hosts within its IPv6 network and enables the fast leave mechanism to be used with MLD version 2 host reports.

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface FastEthernet 1/0</td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv6 mld explicit-tracking access-list-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# ipv6 mld explicit-tracking list1</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Configuring Multicast User Authentication and Profile Support

Before you configure multicast user authentication and profile support, you should be aware of the following restrictions:

- The port, interface, VC, or VLAN ID is the user or subscriber identity. User identity by hostname, user ID, or password is not supported.
- Enabling AAA Access Control for IPv6 Multicast
- Specifying Method Lists and Enabling Multicast Accounting
- Disabling the Switch from Receiving Unauthenticated Multicast Traffic
- Resetting Authorization Status on an MLD Interface

Enabling AAA Access Control for IPv6 Multicast

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa new-model</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# aaa new-model</td>
</tr>
<tr>
<td>Step 3</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Specifying Method Lists and Enabling Multicast Accounting

Perform this task to specify the method lists used for AAA authorization and accounting and how to enable multicast accounting on specified groups or channels on an interface.
Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>`aaa authorization multicast default [method3</td>
</tr>
<tr>
<td>Example:</td>
<td>method4]`</td>
</tr>
<tr>
<td><code>Switch(config)# aaa authorization multicast default</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>`aaa accounting multicast default [start-stop</td>
</tr>
<tr>
<td>Example:</td>
<td>[stop-only] [broadcast] [method1] [method2] [method3] [method4]`</td>
</tr>
<tr>
<td><code>Switch(config)# aaa accounting multicast default</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>interface type number</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# interface FastEthernet 1/0</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>ipv6 multicast aaa account receive [access-list-name [throttle throttle-number]</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config-if)# ipv6 multicast aaa account receive list1</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

Disabling the Switch from Receiving Unauthenticated Multicast Traffic

In some situations, access control may be needed to prevent multicast traffic from being received unless the subscriber is authenticated and the channels are authorized as per access control profiles. That is, there should be no traffic at all unless specified otherwise by access control profiles.

Perform this task to disable the switch from receiving multicast traffic to be received from unauthenticated groups or unauthorized channels.

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ipv6 multicast [vrf vrf-name] group-range [access-list-name]</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# ipv6 multicast group-range</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>
Enabling MLD Proxy in IPv6

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ipv6 mld host-proxy [group-acl]</td>
<td>Enables the MLD proxy feature.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ipv6 mld host-proxy proxy-group</td>
<td></td>
</tr>
<tr>
<td>Step 3 ipv6 mld host-proxy interface [group-acl]</td>
<td>Enables the MLD proxy feature on a specified interface on an RP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ipv6 mld host-proxy interface Ethernet 0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 show ipv6 mld host-proxy [interface-type interface-number] group [group-address]</td>
<td>Displays IPv6 MLD host proxy information.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# show ipv6 mld host-proxy Ethernet0/0</td>
<td></td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Resetting Authorization Status on an MLD Interface

If no interface is specified, authorization is reset on all MLD interfaces.

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 clear ipv6 multicast aaa authorization [interface-type interface-number]</td>
<td>Clears parameters that restrict user access to an IPv6 multicast network.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# clear ipv6 multicast aaa authorization FastEthernet 1/0</td>
<td></td>
</tr>
<tr>
<td>Step 2 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps:
Resetting the MLD Traffic Counters

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>clear ipv6 mld [vrf vrf-name] traffic</td>
<td>Resets all MLD traffic counters.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# clear ipv6 mld traffic</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>show ipv6 mld [vrf vrf-name] traffic</td>
<td>Displays the MLD traffic counters.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show ipv6 mld traffic</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Clearing the MLD Interface Counters

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>clear ipv6 mld [vrf vrf-name] counters</td>
<td>Clears the MLD interface counters.</td>
</tr>
<tr>
<td>interface-type</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# clear ipv6 mld counters Ethernet1/0</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring PIM

This section explains how to configure PIM.

Configuring PIM-SM and Displaying PIM-SM Information for a Group Range

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>ipv6 pim [vrf vrf-name] rp-address ipv6-address [group-access-list] [bidir]</td>
<td>Configures the address of a PIM RP for a particular group range.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ipv6 pim rp-address 2001:DB8::01:800:200E:8C6C acc-grp-1</td>
<td></td>
</tr>
</tbody>
</table>
Implementing IPv6 Multicast

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><code>exit</code></td>
<td>Exits global configuration mode, and returns the switch to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td><code>show ipv6 pim [vrf vrf-name] interface [state-on] [state-off] [type number]</code></td>
<td>Displays information about interfaces configured for PIM.</td>
</tr>
<tr>
<td>5</td>
<td>`show ipv6 pim [vrf vrf-name] group-map [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>6</td>
<td>`show ipv6 pim [vrf vrf-name] neighbor [detail] [interface-type interface-number</td>
<td>count]`</td>
</tr>
<tr>
<td>7</td>
<td>`show ipv6 pim [vrf vrf-name] range-list [config] [rp-address</td>
<td>rp-name]`</td>
</tr>
<tr>
<td>8</td>
<td><code>show ipv6 pim [vrf vrf-name] tunnel [interface-type interface-number]</code></td>
<td>Displays information about the PIM register encapsulation and de-encapsulation tunnels on an interface.</td>
</tr>
<tr>
<td>9</td>
<td>`debug ipv6 pim [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>10</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring PIM Options

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>ipv6 pim [vrf vrf-name] spt-threshold infinity</code> [group-list access-list-name]</td>
<td>Configures when a PIM leaf switch joins the SPT for the specified groups.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# ipv6 pim spt-threshold infinity group-list acc-grp-1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>`ipv6 pim [vrf vrf-name] accept-register {list access-list</td>
<td>route-map map-name}`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# ipv6 pim accept-register route-map reg-filter</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>interface type number</code></td>
<td>Specifies an interface type and number, and places the switch in interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# interface FastEthernet 1/0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>ipv6 pim dr-priority value</code></td>
<td>Configures the DR priority on a PIM switch.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# ipv6 pim dr-priority 3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>ipv6 pim hello-interval seconds</code></td>
<td>Configures the frequency of PIM hello messages on an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# ipv6 pim hello-interval 45</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>ipv6 pim join-prune-interval seconds</code></td>
<td>Configures periodic join and prune announcement intervals for a specified interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# ipv6 pim join-prune-interval 75</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>exit</code></td>
<td>Enter this command twice to exit interface configuration mode and enter privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>show ipv6 pim [vrf vrf-name] join-prune statistic [interface-type]</code></td>
<td>Displays the average join-prune aggregation for the most recently aggregated packets for each interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# show ipv6 pim join-prune statistic</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Chapter 1 Implementing IPv6 Multicast

Configuring Bidirectional PIM and Displaying Bidirectional PIM Information

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 pim [vrf vrf-name] rp-address ipv6-address [group-access-list] [bidir]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>show ipv6 pim [vrf vrf-name] df [interface-type interface-number] [rp-address]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>show ipv6 pim [vrf vrf-name] df winner [interface-type interface-number] [rp-address]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Resetting the PIM Traffic Counters

If PIM malfunctions or in order to verify that the expected number of PIM packets are received and sent, the user can clear PIM traffic counters. Once the traffic counters are cleared, the user can enter the show ipv6 pim traffic command to verify that PIM is functioning correctly and that PIM packets are being received and sent correctly.

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>clear ipv6 pim [vrf vrf-name] traffic</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>show ipv6 pim [vrf vrf-name] traffic</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Clearing the PIM Topology Table to Reset the MRIB Connection

No configuration is necessary to use the MRIB. However, users may in certain situations want to clear the PIM topology table in order to reset the MRIB connection and verify MRIB information.

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>clear ipv6 pim [vrf vrf-name] topology [group-name</td>
<td>group-address]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# clear ipv6 pim topology FF04::10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>show ipv6 mrib [vrf vrf-name] client [filter] [name</td>
<td>client-name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# show ipv6 mrib client</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>show ipv6 mrib [vrf vrf-name] route [link-local] summary</td>
<td>Displays the MRIB route information.</td>
</tr>
<tr>
<td></td>
<td>[sourceaddress-or-name</td>
<td>*] [groupname-or-address</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# show ipv6 mrib route</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>show ipv6 pim [vrf vrf-name] topology [groupname-or-address</td>
<td>sourceaddress-or-name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# show ipv6 pim topology</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>debug ipv6 mrib [vrf vrf-name] client</td>
<td>Enables debugging on MRIB client management activity.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# debug ipv6 mrib client</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>debug ipv6 mrib [vrf vrf-name] io</td>
<td>Enables debugging on MRIB I/O events.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# debug ipv6 mrib io</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>debug ipv6 mrib proxy</td>
<td>Enables debugging on MRIB proxy activity between the switch processor and line cards on distributed switch platforms.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# debug ipv6 mrib proxy</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>debug ipv6 mrib [vrf vrf-name] route [group-name</td>
<td>group-address]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# debug ipv6 mrib route</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>debug ipv6 mrib [vrf vrf-name] table</td>
<td>Enables debugging on MRIB table management activity.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# debug ipv6 mrib table</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Example: Switch# debug ipv6 mrib route
Configuring a BSR

The tasks included here are described below.

Configuring a BSR and Verifying BSR Information

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 pim [vrf vrf-name] bsr candidate bsr ipv6-address[hash-mask-length] [priority priority-value]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ipv6 pim bsr candidate bsr 2001:DB8:3000:3000::42 124 priority 10</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface FastEthernet 1/0</td>
</tr>
<tr>
<td>Step 4</td>
<td>ipv6 pim bsr border</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# ipv6 pim bsr border</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ipv6 pim [vrf vrf-name] bsr {election</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show ipv6 pim bsr election</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Sending PIM RP Advertisements to the BSR

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 pim [vrf vrf-name] bsr candidate rp ipv6-address [group-list access-list-name] [priority priority-value] [interval seconds] [scope scope-value] [bidir]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ipv6 pim bsr candidate rp 2001:DB8:3000:3000::42 priority 0</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface FastEthernet 1/0</td>
</tr>
<tr>
<td>Step 4</td>
<td>ipv6 pim bsr border</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# ipv6 pim bsr border</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Configuring BSR for Use Within Scoped Zones

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 pim [vrf vrf-name] bsr candidate bsr ipv6-address [hash-mask-length] [priority priority-value]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ipv6 pim bsr candidate bsr 2001:DB8:1:1:4</td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv6 pim [vrf vrf-name] bsr candidate rp ipv6-address [group-list access-list-name] [priority priority-value] [interval seconds] [scope scope-value] [bidir]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ipv6 pim bsr candidate rp 2001:DB8:1:1:1 group-list list scope 6</td>
</tr>
<tr>
<td>Step 4</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface FastEthernet 1/0</td>
</tr>
</tbody>
</table>
Implementing IPv6 Multicast

Chapter 1 Implementing IPv6 Multicast

Configuring BSR Switches to Announce Scope-to-RP Mappings

IPv6 BSR switches can be statically configured to announce scope-to-RP mappings directly instead of learning them from candidate-RP messages. A user might want to configure a BSR switch to announce scope-to-RP mappings so that an RP that does not support BSR is imported into the BSR. Enabling this feature also allows an RP positioned outside the enterprise's BSR domain to be learned by the known remote RP on the local candidate BSR switch.

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 pim [vrf vrf-name] bsr announced rp ipv6-address [group-list access-list-name] [priority priority-value] [bidir] [scope scope-value]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ipv6 pim bsr announced rp 2001:DB8:3000:3000::42 priority 0</td>
</tr>
<tr>
<td>Step 3</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Configuring SSM Mapping

When the SSM mapping feature is enabled, DNS-based SSM mapping is automatically enabled, which means that the switch will look up the source of a multicast MLD version 1 report from a DNS server.

You can use either DNS-based or static SSM mapping, depending on your switch configuration. If you choose to use static SSM mapping, you can configure multiple static SSM mappings. If multiple static SSM mappings are configured, the source addresses of all matching access lists will be used.

Note: To use DNS-based SSM mapping, the switch needs to find at least one correctly configured DNS server, to which the switch may be directly attached.
Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 mld [vrf vrf-name] ssm-map enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ipv6 mld ssm-map enable</td>
</tr>
<tr>
<td>Step 3</td>
<td>no ipv6 mld [vrf vrf-name] ssm-map query dns</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# no ipv6 mld ssm-map query dns</td>
</tr>
<tr>
<td>Step 4</td>
<td>ipv6 mld [vrf vrf-name] ssm-map static access-list source-address</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ipv6 mld ssm-map static SSM_MAP_ACL_2 2001:DB8:1::1</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ipv6 mld [vrf vrf-name] ssm-map [source-address]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show ipv6 mld ssm-map</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Configuring Static Mroutes

Static multicast routes (mroutes) in IPv6 can be implemented as an extension of IPv6 static routes. You can configure your switch to use a static route for unicast routing only, to use a static multicast route for multicast RPF selection only, or to use a static route for both unicast routing and multicast RPF selection.

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 route ipv6-prefix / prefix-length ipv6-address</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ipv6 route 2001:DB8::/64 6::6 100</td>
</tr>
</tbody>
</table>
Implementing IPv6 Multicast

Multicast forwarding is automatically enabled when IPv6 multicast routing is enabled.

Using MFIB in IPv6 Multicast

Multicast forwarding is automatically enabled when IPv6 multicast routing is enabled.

Verifying MFIB Operation in IPv6 Multicast

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 3. *exit*
Example:
Switch(config-if)# exit | Exits global configuration mode, and returns the switch to privileged EXEC mode. |
| Step 4. *show ipv6 mroute [vrf vrf-name] [link-local] [group-name] [group-address [source-address [source-name]]] [summary] [count]
Example:
Switch# show ipv6 mroute ff07::1 | Displays the contents of the IPv6 multicast routing table. |
| Step 5. *show ipv6 mroute [vrf vrf-name] [link-local] [group-name] [group-address] active[kbps]
Example:
Switch# show ipv6 mroute active | Displays the active multicast streams on the switch. |
| Step 6. *show ipv6 rpf [vrf vrf-name] ipv6-prefix*
Example:
Switch# show ipv6 rpf 2001:DB8::1:2 | Checks RPF information for a given unicast host address and prefix. |
| Step 7. *copy running-config startup-config*
(Optional) Save your entries in the configuration file. | |

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1. *show ipv6 mfib [vrf vrf-name] [link-local] [verbose] [group-address-name] [ipv6-prefix] [prefix-length] [source-address-name] active [interface] [count] [interface] [status] [summary]
Example:
Switch# show ipv6 mfib | Displays the forwarding entries and interfaces in the IPv6 MFIB. |
| Step 2. *show ipv6 mfib [vrf vrf-name] [link-local] [group-name] [group-address] active [kbps]
Example:
Switch# show ipv6 mfib active | Displays the rate at which active sources are sending to multicast groups. |
| Step 3. *show ipv6 mfib [vrf vrf-name] [all | linkscope | group-name] [group-address [source-name [source-address]]] count
Example:
Switch# show ipv6 mfib count | Displays summary traffic statistics from the MFIB about the group and source. |
Implementing IPv6 Multicast

Resetting MFIB Traffic Counters

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 clear ipv6 mfib [vrf vrf-name] counters [group-name</td>
<td>group-address [source-address</td>
</tr>
<tr>
<td>Example: Switch# clear ipv6 mfib counters FF04::10</td>
<td></td>
</tr>
</tbody>
</table>

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring MSDP

This chapter describes how to configure the Multicast Source Discovery Protocol (MSDP) on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. The MSDP connects multiple Protocol-Independent Multicast sparse-mode (PIM-SM) domains.

MSDP is not fully supported in this software release because of a lack of support for Multicast Border Gateway Protocol (MBGP), which works closely with MSDP. However, it is possible to create default peers that MSDP can operate with if MBGP is not running.

To use this feature, the switch or stack master must be running the IP services feature set. Unless otherwise noted, the term `switch` refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

For complete syntax and usage information for the commands used in this chapter, see the *Cisco IOS IP Command Reference, Volume 3 of 3: Multicast, Release 12.4*.

This chapter consists of these sections:

- Understanding MSDP, page 1-1
- Configuring MSDP, page 1-3
- Monitoring and Maintaining MSDP, page 1-19

Understanding MSDP

MSDP allows multicast sources for a group to be known to all rendezvous points (RPs) in different domains. Each PIM-SM domain uses its own RPs and does not depend on RPs in other domains. An RP runs MSDP over the Transmission Control Protocol (TCP) to discover multicast sources in other domains.

An RP in a PIM-SM domain has an MSDP peering relationship with MSDP-enabled devices in another domain. The peering relationship occurs over a TCP connection, primarily exchanging a list of sources sending to multicast groups. The TCP connections between RPs are achieved by the underlying routing system. The receiving RP uses the source lists to establish a source path.
The purpose of this topology is to have domains discover multicast sources in other domains. If the
multicast sources are of interest to a domain that has receivers, multicast data is delivered over the
normal, source-tree building mechanism in PIM-SM. MSDP is also used to announce sources sending
to a group. These announcements must originate at the domain’s RP.

MSDP depends heavily on the Border Gateway Protocol (BGP) or MBGP for interdomain operation. We
recommend that you run MSDP in RPs in your domain that are RPs for sources sending to global groups to be announced to the Internet.

MSDP Operation

Figure 1-1 shows MSDP operating between two MSDP peers. PIM uses MSDP as the standard mechanism to register a source with the RP of a domain. When MSDP is configured, this sequence occurs.

When a source sends its first multicast packet, the first-hop router (*designated router* or RP) directly connected to the source sends a PIM register message to the RP. The RP uses the register message to register the active source and to forward the multicast packet down the shared tree in the local domain. With MSDP configured, the RP also forwards a source-active (SA) message to all MSDP peers. The SA message identifies the source, the group the source is sending to, and the address of the RP or the originator ID (the IP address of the interface used as the RP address), if configured.

Each MSDP peer receives and forwards the SA message away from the originating RP to achieve peer reverse-path flooding (RPF). The MSDP device examines the BGP or MBGP routing table to discover which peer is the next hop toward the originating RP of the SA message. Such a peer is called an *RPF peer* (reverse-path forwarding peer). The MSDP device forwards the message to all MSDP peers other than the RPF peer. For information on how to configure an MSDP peer when BGP and MBGP are not supported, see the “Configuring a Default MSDP Peer” section on page 1-4.

If the MSDP peer receives the same SA message from a non-RPF peer toward the originating RP, it drops the message. Otherwise, it forwards the message to all its MSDP peers.

The RP for a domain receives the SA message from an MSDP peer. If the RP has any join requests for the group the SA message describes and if the (*,G) entry exists with a nonempty outgoing interface list, the domain is interested in the group, and the RP triggers an (S,G) join toward the source. After the (S,G) join reaches the source’s DR, a branch of the source tree has been built from the source to the RP in the remote domain. Multicast traffic can now flow from the source across the source tree to the RP and then down the shared tree in the remote domain to the receiver.
MSDP Benefits

MSDP has these benefits:

- It breaks up the shared multicast distribution tree. You can make the shared tree local to your domain. Your local members join the local tree, and join messages for the shared tree never need to leave your domain.
- PIM sparse-mode domains can rely only on their own RPs, decreasing reliance on RPs in another domain. This increases security because you can prevent your sources from being known outside your domain.
- Domains with only receivers can receive data without globally advertising group membership.
- Global source multicast routing table state is not required, saving memory.

Configuring MSDP

- Default MSDP Configuration, page 1-4
- Configuring a Default MSDP Peer, page 1-4 (required)
- Caching Source-Active State, page 1-6 (optional)
- Requesting Source Information from an MSDP Peer, page 1-8 (optional)
- Controlling Source Information that Your Switch Originates, page 1-8 (optional)
Default MSDP Configuration

MSDP is not enabled, and no default MSDP peer exists.

Configuring a Default MSDP Peer

In this software release, because BGP and MBGP are not supported, you cannot configure an MSDP peer on the local switch by using the `ip msdp peer` global configuration command. Instead, you define a default MSDP peer (by using the `ip msdp default-peer` global configuration command) from which to accept all SA messages for the switch. The default MSDP peer must be a previously configured MSDP peer. Configure a default MSDP peer when the switch is not BGP- or MBGP-peering with an MSDP peer. If a single MSDP peer is configured, the switch always accepts all SA messages from that peer.

Figure 1-2 shows a network in which default MSDP peers might be used. In Figure 1-2, a customer who owns Switch B is connected to the Internet through two Internet service providers (ISPs), one owning Router A and the other owning Router C. They are not running BGP or MBGP between them. To learn about sources in the ISP’s domain or in other domains, Switch B at the customer site identifies Router A as its default MSDP peer. Switch B advertises SA messages to both Router A and Router C but accepts SA messages only from Router A or only from Router C. If Router A is first in the configuration file, it is used if it is running. If Router A is not running, only then does Switch B accept SA messages from Router C. This is the default behavior without a prefix list.

If you specify a prefix list, the peer is a default peer only for the prefixes in the list. You can have multiple active default peers when you have a prefix list associated with each. When you do not have any prefix lists, you can configure multiple default peers, but only the first one is the active default peer as long as the router has connectivity to this peer and the peer is alive. If the first configured peer fails or the connectivity to this peer fails, the second configured peer becomes the active default, and so on.

The ISP probably uses a prefix list to define which prefixes it accepts from the customer’s router.
Beginning in privileged EXEC mode, follow these steps to specify a default MSDP peer. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp default-peer ip-address</td>
</tr>
<tr>
<td></td>
<td>name [prefix-list list]</td>
</tr>
<tr>
<td></td>
<td>For ip-address</td>
</tr>
<tr>
<td></td>
<td>(Optional) For prefix-list list, enter the list name that specifies the peer to be the default peer only for the listed prefixes. You can have multiple active default peers when you have a prefix list associated with each.</td>
</tr>
<tr>
<td></td>
<td>When you enter multiple ip msdp default-peer commands with the prefix-list keyword, you use all the default peers at the same time for different RP prefixes. This syntax is typically used in a service provider cloud that connects stub site clouds.</td>
</tr>
<tr>
<td></td>
<td>When you enter multiple ip msdp default-peer commands without the prefix-list keyword, a single active peer accepts all SA messages. If that peer fails, the next configured default peer accepts all SA messages. This syntax is typically used at a stub site.</td>
</tr>
</tbody>
</table>
Configuring MSDP

To remove the default peer, use the `no ip msdp default-peer ip-address | name` global configuration command.

This example shows a partial configuration of Router A and Router C in Figure 1-2. Each of these ISPs have more than one customer (like the customer in Figure 1-2) who use default peering (no BGP or MBGP). In that case, they might have similar configurations. That is, they accept SAs only from a default peer if the SA is permitted by the corresponding prefix list.

Router A

```
Router(config)# ip msdp default-peer 10.1.1.1
Router(config)# ip msdp default-peer 10.1.1.1 prefix-list site-a
Router(config)# ip prefix-list site-b permit 10.0.0.0/1
```

Router C

```
Router(config)# ip msdp default-peer 10.1.1.1 prefix-list site-a
Router(config)# ip prefix-list site-b permit 10.0.0.0/1
```

Caching Source-Active State

By default, the switch does not cache source/group pairs from received SA messages. When the switch forwards the MSDP SA information, it does not store it in memory. Therefore, if a member joins a group soon after a SA message is received by the local RP, that member needs to wait until the next SA message to hear about the source. This delay is known as join latency.

If you want to sacrifice some memory in exchange for reducing the latency of the source information, you can configure the switch to cache SA messages.

Command Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>`ip prefix-list name [description string]</td>
<td>(Optional) Create a prefix list using the name specified in Step 2.</td>
</tr>
<tr>
<td></td>
<td>seq number [permit</td>
<td>deny] network length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>characters to describe this prefix list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For <code>seq number</code>, enter the sequence number of the entry. The range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is 1 to 4294967294.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The <code>deny</code> keyword denies access to matching conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The <code>permit</code> keyword permits access to matching conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For <code>network length</code>, specify the network number and length (in bits)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of the network mask that is permitted or denied.</td>
</tr>
<tr>
<td>4</td>
<td>`ip msdp description {peer-name</td>
<td>peer-address} text`</td>
</tr>
<tr>
<td></td>
<td></td>
<td>easier to identify in a configuration or in <code>show</code> command output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, no description is associated with an MSDP peer.</td>
</tr>
<tr>
<td>5</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the default peer, use the `no ip msdp default-peer ip-address | name` global configuration command.
Beginning in privileged EXEC mode, follow these steps to enable the caching of source/group pairs. This procedure is optional.

To return to the default setting (no SA state is created), use the `no ip msdp cache-sa-state` global configuration command.

This example shows how to enable the cache state for all sources in 171.69.0.0/16 sending to groups 224.2.0.0/16:

```
Switch(config)# ip msdp cache-sa-state 100
Switch(config)# access-list 100 permit ip 171.69.0.0 0.0.255.255 224.2.0.0 0.0.255.255
```
Requesting Source Information from an MSDP Peer

Local RPs can send SA requests and get immediate responses for all active sources for a given group. By default, the switch does not send any SA request messages to its MSDP peers when a new member joins a group and wants to receive multicast traffic. The new member waits to receive the next periodic SA message.

If you want a new member of a group to learn the active multicast sources in a connected PIM sparse-mode domain that are sending to a group, configure the switch to send SA request messages to the specified MSDP peer when a new member joins a group. The peer replies with the information in its SA cache. If the peer does not have a cache configured, this command has no result. Configuring this feature reduces join latency but sacrifices memory.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send SA request messages to the MSDP peer when a new member joins a group and wants to receive multicast traffic. This procedure is optional.

To return to the default setting, use the `no ip msdp sa-request {ip-address | name}` global configuration command.

This example shows how to configure the switch to send SA request messages to the MSDP peer at 171.69.1.1:

```
Switch(config)# ip msdp sa-request 171.69.1.1
```

Controlling Source Information that Your Switch Originates

You can control the multicast source information that originates with your switch:

- Sources you advertise (based on your sources)
- Receivers of source information (based on knowing the requestor)

For more information, see the “Redistributing Sources” section on page 1-9 and the “Filtering Source-Active Request Messages” section on page 1-11.
SA messages originate on RPs to which sources have registered. By default, any source that registers with an RP is advertised. The A flag is set in the RP when a source is registered, which means the source is advertised in an SA unless it is filtered.

Beginning in privileged EXEC mode, follow these steps to further restrict which registered sources are advertised. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp redistribute [list access-list-name] [asn aspath-access-list-number] [route-map map]</td>
</tr>
</tbody>
</table>

- (Optional) For list access-list-name, enter the name or number of an IP standard or extended access list. The range is 1 to 99 for standard access lists and 100 to 199 for extended lists. The access list controls which local sources are advertised and to which groups they send.

- (Optional) For aspath-access-list-number, enter the IP standard or extended access list number in the range 1 to 199. This access list number must also be configured in the ip as-path access-list command.

- (Optional) For route-map map, enter the IP standard or extended access list number in the range 1 to 199. This access list number must also be configured in the ip as-path access-list command.

The switch advertises (S,G) pairs according to the access list or autonomous system path access list.
To remove the filter, use the `no ip msdp redistribute` global configuration command.
Filtering Source-Active Request Messages

By default, only switches that are caching SA information can respond to SA requests. By default, such a switch honors all SA request messages from its MSDP peers and supplies the IP addresses of the active sources.

However, you can configure the switch to ignore all SA requests from an MSDP peer. You can also honor only those SA request messages from a peer for groups described by a standard access list. If the groups in the access list pass, SA request messages are accepted. All other such messages from the peer for other groups are ignored.

Beginning in privileged EXEC mode, follow these steps to configure one of these options. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp filter-sa-request ip-address</td>
</tr>
<tr>
<td></td>
<td>name</td>
</tr>
<tr>
<td></td>
<td>ip msdp filter-sa-request {ip-address</td>
</tr>
<tr>
<td></td>
<td>name} list access-list-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td>permit} source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td>• For access-list-number, the range is 1 to 99.</td>
</tr>
<tr>
<td></td>
<td>• The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>• For source, enter the number of the network or host from which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no ip msdp filter-sa-request {ip-address | name} global configuration command.

This example shows how to configure the switch to filter SA request messages from the MSDP peer at 171.69.2.2. SA request messages from sources on network 192.4.22.0 pass access list 1 and are accepted; all others are ignored.

Switch(config)# ip msdp filter sa-request 171.69.2.2 list 1
Switch(config)# access-list 1 permit 192.4.22.0 0.0.0.255
Controlling Source Information that Your Switch Forwards

By default, the switch forwards all SA messages it receives to all its MSDP peers. However, you can prevent outgoing messages from being forwarded to a peer by using a filter or by setting a time-to-live (TTL) value. These methods are described in the next sections.

Using a Filter

By creating a filter, you can perform one of these actions:

- Filter all source/group pairs
- Specify an IP extended access list to pass only certain source/group pairs
- Filter based on match criteria in a route map

Beginning in privileged EXEC mode, follow these steps to apply a filter. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip msdp sa-filter out ip-address</td>
<td>Filter all SA messages to the specified MSDP peer.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>ip msdp sa-filter out {ip-address \ name}</td>
<td>To the specified peer, pass only those SA messages that pass the IP extended access list. The range for the extended access-list-number is 100 to 199.</td>
</tr>
<tr>
<td>list access-list-number</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>ip msdp sa-filter out {ip-address \ name} route-map route-map map-tag</td>
<td>To the specified MSDP peer, pass only those SA messages that meet the match criteria in the route map map-tag. If all match criteria are true, a permit from the route map passes routes through the filter. A deny filters routes.</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring MSDP

To remove the filter, use the no ip msdp sa-filter out {ip-address | name} [list access-list-number] [route-map map-tag] global configuration command.

This example shows how to allow only (S,G) pairs that pass access list 100 to be forwarded in an SA message to the peer named switch.cisco.com:

Switch(config)# ip msdp peer switch.cisco.com connect-source gigabitethernet1/0/1
Switch(config)# ip msdp sa-filter out switch.cisco.com list 100
Switch(config)# access-list 100 permit ip 171.69.0.0 0.0.255.255 224.20 0 0.0.255.255

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list access-list-number {deny</td>
<td>permit} protocol source source-wildcard destination destination-wildcard</td>
</tr>
<tr>
<td></td>
<td>• For access-list-number, enter the number specified in Step 2.</td>
</tr>
<tr>
<td></td>
<td>• The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>• For protocol, enter ip as the protocol name.</td>
</tr>
<tr>
<td></td>
<td>• For source, enter the number of the network or host from which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td>• For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td>• For destination, enter the number of the network or host to which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td>• For destination-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the filter, use the no ip msdp sa-filter out {ip-address | name} [list access-list-number] [route-map map-tag] global configuration command.

This example shows how to allow only (S,G) pairs that pass access list 100 to be forwarded in an SA message to the peer named switch.cisco.com:

Switch(config)# ip msdp peer switch.cisco.com connect-source gigabitethernet1/0/1
Switch(config)# ip msdp sa-filter out switch.cisco.com list 100
Switch(config)# access-list 100 permit ip 171.69.0.0 0.0.255.255 224.20 0 0.0.255.255
Using TTL to Limit the Multicast Data Sent in SA Messages

You can use a TTL value to control what data is encapsulated in the first SA message for every source. Only multicast packets with an IP-header TTL greater than or equal to the \texttt{ttl} argument are sent to the specified MSDP peer. For example, you can limit internal traffic to a TTL of 8. If you want other groups to go to external locations, you must send those packets with a TTL greater than 8.

Beginning in privileged EXEC mode, follow these steps to establish a TTL threshold. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip msdp ttl-threshold ip-address</td>
<td>Limit which multicast data is encapsulated in the first SA message to the specified MSDP peer.</td>
</tr>
<tr>
<td>ttl name</td>
<td>• For \texttt{ip-address \ name}, enter the IP address or name of the MSDP peer to which the TTL limitation applies.</td>
</tr>
<tr>
<td></td>
<td>• For \texttt{ttl}, enter the TTL value. The default is 0, which means all multicast data packets are forwarded to the peer until the TTL is exhausted. The range is 0 to 255.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the \texttt{no ip msdp ttl-threshold \{ip-address \ name\}} global configuration command.

Controlling Source Information that Your Switch Receives

By default, the switch receives all SA messages that its MSDP RPF peers send to it. However, you can control the source information that you receive from MSDP peers by filtering incoming SA messages. In other words, you can configure the switch to not accept them.

You can perform one of these actions:

• Filter all incoming SA messages from an MSDP peer
• Specify an IP extended access list to pass certain source/group pairs
• Filter based on match criteria in a route map
Beginning in privileged EXEC mode, follow these steps to apply a filter. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip msdp sa-filter in ip-address</td>
<td>Filter all SA messages from the specified MSDP peer.</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>ip msdp sa-filter in {ip-address</td>
<td>From the specified peer, pass only those SA messages that pass the IP extended access list. The range for the extended access-list-number is 100 to 199.</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td>list access-list-number</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>If both the list and the route-map keywords are used, all conditions must be true to pass any (S,G) pair in incoming SA messages.</td>
</tr>
<tr>
<td></td>
<td>ip msdp sa-filter in {ip-address</td>
<td>From the specified MSDP peer, pass only those SA messages that meet the match criteria in the route map map-tag.</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td>route-map map-tag</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>access-list access-list-number</td>
<td>(Optional) Create an IP extended access list, repeating the command as many times as necessary.</td>
</tr>
<tr>
<td></td>
<td>[deny</td>
<td>• For access-list-number, enter the number specified in Step 2.</td>
</tr>
<tr>
<td></td>
<td>permit} protocol source source-wildcard</td>
<td>• The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>destination destination-wildcard</td>
<td>• For protocol, enter ip as the protocol name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For source, enter the number of the network or host from which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For destination, enter the number of the network or host to which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For destination-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the filter, use the no ip msdp sa-filter in {ip-address | name | list access-list-number | route-map map-tag} global configuration command.

This example shows how to filter all SA messages from the peer named switch.cisco.com:

Switch(config)# ip msdp peer switch.cisco.com connect-source gigabitethernet1/0/1
Switch(config)# ip msdp sa-filter in switch.cisco.com
Configuring an MSDP Mesh Group

An MSDP mesh group is a group of MSDP speakers that have fully meshed MSDP connectivity among one another. Any SA messages received from a peer in a mesh group are not forwarded to other peers in the same mesh group. Thus, you reduce SA message flooding and simplify peer-RPF flooding. Use the `ip msdp mesh-group` global configuration command when there are multiple RPs within a domain. It is especially used to send SA messages across a domain. You can configure multiple mesh groups (with different names) in a single switch.

Beginning in privileged EXEC mode, follow these steps to create a mesh group. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>`ip msdp mesh-group name {ip-address</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
</tbody>
</table>

To remove an MSDP peer from a mesh group, use the `no ip msdp mesh-group name {ip-address | name}` global configuration command.

Shutting Down an MSDP Peer

If you want to configure many MSDP commands for the same peer and you do not want the peer to become active, you can shut down the peer, configure it, and later bring it up. When a peer is shut down, the TCP connection is terminated and is not restarted. You can also shut down an MSDP session without losing configuration information for the peer.
Beginning in privileged EXEC mode, follow these steps to shut down a peer. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip msdp shutdown {peer-name</td>
<td>peer address}</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To bring the peer back up, use the no ip msdp shutdown \{peer-name | peer address\} global configuration command. The TCP connection is reestablished.

Including a Bordering PIM Dense-Mode Region in MSDP

You can configure MSDP on a switch that borders a PIM sparse-mode region with a dense-mode region. By default, active sources in the dense-mode region do not participate in MSDP.

- **Note**: We do not recommend using the ip msdp border sa-address global configuration command. It is better to configure the border router in the sparse-mode domain to proxy-register sources in the dense-mode domain to the RP of the sparse-mode domain and have the sparse-mode domain use standard MSDP procedures to advertise these sources.

Beginning in privileged EXEC mode, follow these steps to configure the border router to send SA messages for sources active in the dense-mode region to the MSDP peers. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip msdp border sa-address interface-id</td>
<td>Configure the switch on the border between a dense-mode and sparse-mode region to send SA messages about active sources in the dense-mode region. For interface-id, specify the interface from which the IP address is derived and used as the RP address in SA messages. The IP address of the interface is used as the Originator-ID, which is the RP field in the SA message.</td>
</tr>
<tr>
<td>Step 3 ip msdp redistribute [list access-list-name] [asn aspath-access-list-number] [route-map map]</td>
<td>Configure which (S,G) entries from the multicast routing table are advertised in SA messages. For more information, see the “Redistributing Sources” section on page 1-9.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring MSDP

Note that the `ip msdp originator-id` global configuration command also identifies an interface to be used as the RP address. If both the `ip msdp border sa-address` and the `ip msdp originator-id` global configuration commands are configured, the address derived from the `ip msdp originator-id` command specifies the RP address.

To return to the default setting (active sources in the dense-mode region do not participate in MSDP), use the `no ip msdp border sa-address interface-id` global configuration command.

Configuring an Originating Address other than the RP Address

You can allow an MSDP speaker that originates an SA message to use the IP address of the interface as the RP address in the SA message by changing the Originator ID. You might change the Originator ID in one of these cases:

- If you configure a logical RP on multiple switches in an MSDP mesh group.
- If you have a switch that borders a PIM sparse-mode domain and a dense-mode domain. If a switch borders a dense-mode domain for a site, and sparse-mode is being used externally, you might want dense-mode sources to be known to the outside world. Because this switch is not an RP, it would not have an RP address to use in an SA message. Therefore, this command provides the RP address by specifying the address of the interface.

Beginning in privileged EXEC mode, follow these steps to allow an MSDP speaker that originates an SA message to use the IP address on the interface as the RP address in the SA message. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip msdp originator-id interface-id</td>
<td>Configures the RP address in SA messages to be the address of the originating device interface. For <code>interface-id</code>, specify the interface on the local switch.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

If both the `ip msdp border sa-address` and the `ip msdp originator-id` global configuration commands are configured, the address derived from the `ip msdp originator-id` command specifies the address of the RP.

To prevent the RP address from being derived in this way, use the `no ip msdp originator-id interface-id` global configuration command.
Monitoring and Maintaining MSDP

To monitor MSDP SA messages, peers, state, or peer status, use one or more of the privileged EXEC commands in Table 1-1:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug ip msdp [peer-address</td>
<td>name] [detail] [routes]</td>
</tr>
<tr>
<td>debug ip msdp resets</td>
<td>Debugs MSDP peer reset reasons.</td>
</tr>
<tr>
<td>show ip msdp count [autonomous-system-number]</td>
<td>Displays the number of sources and groups originated in SA messages from each autonomous system. The ip msdp cache-sa-state command must be configured for this command to produce any output.</td>
</tr>
<tr>
<td>show ip msdp peer [peer-address</td>
<td>name]</td>
</tr>
<tr>
<td>show ip msdp sa-cache [group-address</td>
<td>source-address</td>
</tr>
<tr>
<td>show ip msdp summary</td>
<td>Displays MSDP peer status and SA message counts.</td>
</tr>
</tbody>
</table>

To clear MSDP connections, statistics, or SA cache entries, use the privileged EXEC commands in Table 1-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip msdp peer peer-address</td>
<td>name</td>
</tr>
<tr>
<td>clear ip msdp statistics [peer-address</td>
<td>name]</td>
</tr>
<tr>
<td>clear ip msdp sa-cache [group-address</td>
<td>name]</td>
</tr>
</tbody>
</table>
CHAPTER 1

Configuring Fallback Bridging

This chapter describes how to configure fallback bridging (VLAN bridging) on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. With fallback bridging, you can forward non-IP packets that the switch does not route between VLAN bridge domains and routed ports.

To use this feature, the switch or stack master must be running the IP services feature set. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS Bridging and IBM Networking Command Reference, Volume 1 of 2, Release 12.4.

- Understanding Fallback Bridging, page 1-1
- Configuring Fallback Bridging, page 1-3
- Monitoring and Maintaining Fallback Bridging, page 1-10

Understanding Fallback Bridging

- Fallback Bridging Overview, page 1-1
- Fallback Bridging and Switch Stacks, page 1-3

Fallback Bridging Overview

With fallback bridging, the switch bridges together two or more VLANs or routed ports, essentially connecting multiple VLANs within one bridge domain. Fallback bridging forwards traffic that the switch does not route and forwards traffic belonging to a nonroutable protocol such as DECnet.

A VLAN bridge domain is represented with switch virtual interfaces (SVIs). A set of SVIs and routed ports (which do not have any VLANs associated with them) can be configured (grouped together) to form a bridge group. Recall that an SVI represents a VLAN of switch ports as one interface to the routing or bridging function in the system. You associate only one SVI with a VLAN, and you configure an SVI for a VLAN only when you want to route between VLANs, to fallback-bridge nonroutable protocols between VLANs, or to provide IP host connectivity to the switch. A routed port is a physical port that acts like a port on a router, but it is not connected to a router. A routed port is not associated with a particular VLAN, does not support VLAN subinterfaces, but behaves like a normal routed port. For more information about SVIs and routed ports, see Chapter 1, “Configuring Interface Characteristics.”
A bridge group is an internal organization of network interfaces on a switch. You cannot use bridge groups to identify traffic switched within the bridge group outside the switch on which they are defined. Bridge groups on the switch function as distinct bridges; that is, bridged traffic and bridge protocol data units (BPDUs) are not exchanged between different bridge groups on a switch.

Fallback bridging does not allow the spanning trees from the VLANs being bridged to collapse. Each VLAN has its own spanning-tree instance and a separate spanning tree, called the VLAN-bridge spanning tree, which runs on top of the bridge group to prevent loops.

The switch creates a VLAN-bridge spanning-tree instance when a bridge group is created. The switch runs the bridge group and treats the SVIs and routed ports in the bridge group as its spanning-tree ports.

These are the reasons for placing network interfaces into a bridge group:

- To bridge all nonrouted traffic among the network interfaces making up the bridge group. If the packet destination address is in the bridge table, the packet is forwarded on a single interface in the bridge group. If the packet destination address is not in the bridge table, the packet is flooded on all forwarding interfaces in the bridge group. A source MAC address is learned on a bridge group only when the address is learned on a VLAN (the reverse is not true). Any address that is learned on a stack member is learned by all switches in the stack.

- To participate in the spanning-tree algorithm by receiving, and in some cases sending, BPDUs on the LANs to which they are attached. A separate spanning-tree process runs for each configured bridge group. Each bridge group participates in a separate spanning-tree instance. A bridge group establishes a spanning-tree instance based on the BPDUs it receives on only its member interfaces. If the bridge STP BPDU is received on a port whose VLAN does not belong to a bridge group, the BPDU is flooded on all the forwarding ports of the VLAN.

The implementation of fallback bridging on Catalyst 3750-E and 3560-E switches is the same as that on Catalyst 3750 and 3560 switches except for the differences summarized in the Cisco Software Activation and Compatibility Document on Cisco.com.

Figure 1-1 shows a fallback bridging network example. The switch has two ports configured as SVIs with different assigned IP addresses and attached to two different VLANs. Another port is configured as a routed port with its own IP address. If all three of these ports are assigned to the same bridge group, non-IP protocol frames can be forwarded among the end stations connected to the switch even though they are on different networks and in different VLANs. IP addresses do not need to be assigned to routed ports or SVIs for fallback bridging to work.

Figure 1-1 Fallback Bridging Network Example
Fallback Bridging and Switch Stacks

When the stack master fails, a stack member becomes the new stack master by using the election process described in Chapter 1, “Managing Switch Stacks.” The new stack master creates new VLAN-bridge spanning-tree instance, which temporarily puts the spanning-tree ports used for fallback bridging into a nonforwarding state. A momentary traffic disruption occurs until the spanning-tree states transition to the forwarding state. All MAC addresses must be relearned in the bridge group.

If a stack master running the IP services feature set fails and if the newly elected stack master is running the IP base feature set, the switch stack loses its fallback bridging capability.

If stacks merge or if a switch is added to the stack, any new VLANs that are part of a bridge group and become active are included in the VLAN-bridge STP.

When a stack member fails, the addresses learned from this member are deleted from the bridge group MAC address table.

For more information about switch stacks, see Chapter 1, “Managing Switch Stacks.”

Configuring Fallback Bridging

- Default Fallback Bridging Configuration, page 1-3
- Fallback Bridging Configuration Guidelines, page 1-4
- Creating a Bridge Group, page 1-4 (required)
- Adjusting Spanning-Tree Parameters, page 1-5 (optional)

Default Fallback Bridging Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge groups</td>
<td>None are defined or assigned to a port. No VLAN-bridge STP is defined.</td>
</tr>
<tr>
<td>Switch forwards frames for stations that it has dynamically learned</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Spanning tree parameters:</td>
<td></td>
</tr>
<tr>
<td>• Switch priority</td>
<td>• 32768.</td>
</tr>
<tr>
<td>• Port priority</td>
<td>• 128.</td>
</tr>
<tr>
<td>• Port path cost</td>
<td>• 10 Mb/s: 100.</td>
</tr>
<tr>
<td>• Hello BPDU interval</td>
<td>• 100 Mb/s: 19.</td>
</tr>
<tr>
<td>• Forward-delay interval</td>
<td>• 1000 Mb/s: 4.</td>
</tr>
<tr>
<td>• Maximum idle interval</td>
<td>• 2 seconds.</td>
</tr>
<tr>
<td></td>
<td>• 20 seconds.</td>
</tr>
<tr>
<td></td>
<td>• 30 seconds.</td>
</tr>
</tbody>
</table>
Fallback Bridging Configuration Guidelines

Up to 32 bridge groups can be configured on the switch.

An interface (an SVI or routed port) can be a member of only one bridge group.

Use a bridge group for each separately bridged (topologically distinct) network connected to the switch.

Do not configure fallback bridging on a switch configured with private VLANs.

All protocols except IP (Version 4 and Version 6), Address Resolution Protocol (ARP), reverse ARP (RARP), LOOPBACK, Frame Relay ARP, and shared STP packets are fallback bridged.

Creating a Bridge Group

To configure fallback bridging for a set of SVIs or routed ports, these interfaces must be assigned to bridge groups. All interfaces in the same group belong to the same bridge domain. Each SVI or routed port can be assigned to only one bridge group.

Note

The protected port feature is not compatible with fallback bridging. When fallback bridging is enabled, it is possible for packets to be forwarded from one protected port on a switch to another protected port on the same switch if the ports are in different VLANs.

Beginning in privileged EXEC mode, follow these steps to create a bridge group and to assign an interface to it. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** bridge bridge-group protocol vlan-bridge | Assign a bridge group number, and specify the VLAN-bridge spanning-tree protocol to run in the bridge group. The *ibm* and *dec* keywords are not supported.
For *bridge-group*, specify the bridge group number. The range is 1 to 255. You can create up to 32 bridge groups.
Frames are bridged only among interfaces in the same group. |
| **Step 3** interface interface-id | Specify the interface on which you want to assign the bridge group, and enter interface configuration mode.
The specified interface must be one of these:
- A routed port: a physical port that you have configured as a Layer 3 port by entering the *no switchport* interface configuration command.
- An SVI: a VLAN interface that you created by using the *interface vlan vlan-id* global configuration command.
Note You can assign an IP address to the routed port or to the SVI, but it is not required. |
| **Step 4** bridge-group bridge-group | Assign the interface to the bridge group created in Step 2.
By default, the interface is not assigned to any bridge group. An interface can be assigned to only one bridge group. |
Chapter 1 Configuring Fallback Bridging

Configuring Fallback Bridging

To remove a bridge group, use the `no bridge bridge-group` global configuration command. The `no bridge bridge-group` command automatically removes all SVIs and routes ports from that bridge group. To remove an interface from a bridge group and to remove the bridge group, use the `no bridge-group` interface configuration command.

This example shows how to create bridge group 10, to specify that the VLAN-bridge STP runs in the bridge group, to define a port as a routed port, and to assign the port to the bridge group:

```
Switch(config)# bridge 10 protocol vlan-bridge
Switch(config)# interface gigabitethernet3/0/1
Switch(config-if)# no switchport
Switch(config-if)# no shutdown
Switch(config-if)# bridge-group 10
```

This example shows how to create bridge group 10 and to specify that the VLAN-bridge STP runs in the bridge group. It defines an SVI for VLAN 2 and assigns it to the bridge group:

```
Switch(config)# bridge 10 protocol vlan-bridge
Switch(config)# vlan 2
Switch(config-vlan)# exit
Switch(config)# interface vlan2
Switch(config-if)# bridge-group 10
Switch(config-if)# exit
```

Adjusting Spanning-Tree Parameters

You might need to adjust certain spanning-tree parameters if the default values are not suitable. You configure parameters affecting the entire spanning tree by using variations of the `bridge` global configuration command. You configure interface-specific parameters by using variations of the `bridge-group` interface configuration command.

You can adjust spanning-tree parameters by performing any of the tasks in these sections:

- Changing the VLAN-Bridge Spanning-Tree Priority, page 1-6 (optional)
- Changing the Interface Priority, page 1-6 (optional)
- Assigning a Path Cost, page 1-7 (optional)
- Adjusting BPDU Intervals, page 1-7 (optional)
- Disabling the Spanning Tree on an Interface, page 1-9 (optional)

Note

Only network administrators with a good understanding of how switches and STP function should make adjustments to spanning-tree parameters. Poorly planned adjustments can have a negative impact on performance. A good source on switching is the IEEE 802.1D specification. For more information, see the “References and Recommended Reading” appendix in the Cisco IOS Configuration Fundamentals Command Reference.
Changing the VLAN-Bridge Spanning-Tree Priority

You can globally configure the VLAN-bridge spanning-tree priority of a switch when it ties with another switch for the position as the root switch. You also can configure the likelihood that the switch will be selected as the root switch.

Beginning in privileged EXEC mode, follow these steps to change the switch priority. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>bridge bridge-group priority number</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For number, enter a number from 0 to 65535. The default is 32768. The lower the number, the more likely the switch will be chosen as the root.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no bridge bridge-group priority` global configuration command. To change the priority on a port, use the `bridge-group priority` interface configuration command (described in the next section).

This example shows how to set the switch priority to 100 for bridge group 10:

```
Switch(config)# bridge 10 priority 100
```

Changing the Interface Priority

You can change the priority for a port. When two switches tie for position as the root switch, you configure a port priority to break the tie. The switch with the lowest interface value is elected.

Beginning in privileged EXEC mode, follow these steps to change the interface priority. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>bridge-group bridge-group priority number</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For number, enter a number from 0 to 255 in increments of 4. The lower the number, the more likely that the port on the switch will be chosen as the root. The default is 128.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring Fallback Bridging

Configuring Fallback Bridging

To return to the default setting, use the `no bridge-group bridge-group priority` interface configuration command.

This example shows how to change the priority to 20 on a port in bridge group 10:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# bridge-group 10 priority 20
```

Assigning a Path Cost

Each port has a path cost associated with it. By convention, the path cost is 1000/data rate of the attached LAN, in Mb/s.

Beginning in privileged EXEC mode, follow these steps to assign a path cost. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specify the port to set the path cost, and enter interface configuration mode.</td>
</tr>
<tr>
<td><code>bridge-group bridge-group path-cost cost</code></td>
<td>Assign the path cost of a port.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entry.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default path cost, use the `no bridge-group bridge-group path-cost` interface configuration command.

This example shows how to change the path cost to 20 on a port in bridge group 10:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# bridge-group 10 path-cost 20
```

Adjusting BPDU Intervals

- Adjusting the Interval between Hello BPDUs, page 1-8 (optional)
- Changing the Forward-Delay Interval, page 1-8 (optional)
- Changing the Maximum-Idle Interval, page 1-9 (optional)
Chapter 1 Configuring Fallback Bridging

Configuring Fallback Bridging

Note Each switch in a spanning tree adopts the interval between hello BPDUs, the forward delay interval, and the maximum idle interval parameters of the root switch, regardless of what its individual configuration might be.

Adjusting the Interval between Hello BPDUs

Beginning in privileged EXEC mode, follow these step to adjust the interval between hello BPDUs. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 bridge bridge-group hello-time seconds</td>
<td>Specify the interval between hello BPDUs.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For seconds, enter a number from 1 to 10. The default is 2.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no bridge bridge-group hello-time global configuration command.

This example shows how to change the hello interval to 5 seconds in bridge group 10:

Switch(config)# bridge 10 hello-time 5

Changing the Forward-Delay Interval

The forward-delay interval is the amount of time spent listening for topology change information after a port has been activated for switching and before forwarding actually begins.

Beginning in privileged EXEC mode, follow these steps to change the forward-delay interval. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 bridge bridge-group forward-time seconds</td>
<td>Specify the forward-delay interval.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For seconds, enter a number from 4 to 200. The default is 20.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>
To return to the default setting, use the `no bridge bridge-group forward-time` global configuration command.

This example shows how to change the forward-delay interval to 10 seconds in bridge group 10:

```
Switch(config)# bridge 10 forward-time 10
```

Changing the Maximum-Idle Interval

If a switch does not receive BPDUs from the root switch within a specified interval, it recomputes the spanning-tree topology.

Beginning in privileged EXEC mode, follow these steps to change the maximum-idle interval (maximum aging time). This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>bridge bridge-group max-age seconds</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no bridge bridge-group max-age` global configuration command.

This example shows how to change the maximum-idle interval to 30 seconds in bridge group 10:

```
Switch(config)# bridge 10 max-age 30
```

Disabling the Spanning Tree on an Interface

When a loop-free path exists between any two switched subnetworks, you can prevent BPDUs generated in one switching subnetwork from impacting devices in the other switching subnetwork, yet still permit switching throughout the network as a whole. For example, when switched LAN subnetworks are separated by a WAN, BPDUs can be prevented from traveling across the WAN link.

Beginning in privileged EXEC mode, follow these steps to disable spanning tree on a port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>bridge-group bridge-group spanning-disabled</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
</tbody>
</table>
To re-enable spanning tree on the port, use the `no bridge-group bridge-group spanning-disabled` interface configuration command.

This example shows how to disable spanning tree on a port in bridge group 10:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# bridge group 10 spanning-disabled
```

Monitoring and Maintaining Fallback Bridging

Table 1-2 Commands for Monitoring and Maintaining Fallback Bridging

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear bridge bridge-group</td>
<td>Removes any learned entries from the forwarding database.</td>
</tr>
<tr>
<td>show bridge [bridge-group] group</td>
<td>Displays details about the bridge group.</td>
</tr>
<tr>
<td>show bridge [bridge-group] [interface-id</td>
<td>mac-address</td>
</tr>
</tbody>
</table>

To display the bridge-group MAC address table on a stack member, start a session from the stack master to the stack member by using the `session stack-member-number` global configuration command. Enter the `show bridge [bridge-group] [interface-id | mac-address | verbose]` privileged EXEC command at the stack member prompt.

For information about the fields in these displays, see the *Cisco IOS Bridging and IBM Networking Command Reference, Volume 1 of 2, Release 12.4.*
Troubleshooting

This chapter describes how to identify and resolve software problems related to the Cisco IOS software on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch. Depending on the nature of the problem, you can use the command-line interface (CLI), the device manager, or Network Assistant to identify and solve problems.

Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X standalone switch and to a Catalyst 3750-E Catalyst 3750-X switch stack.

Additional troubleshooting information, such as LED descriptions, is provided in the hardware installation guide.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the Cisco IOS Command Summary, Release 12.4.

- Recovering from a Software Failure, page 1-2
- Recovering from a Lost or Forgotten Password, page 1-3
- Preventing Switch Stack Problems, page 1-8
- Recovering from a Command Switch Failure, page 1-9
- Recovering from Lost Cluster Member Connectivity, page 1-12

Note: Recovery procedures require that you have physical access to the switch.

- Preventing Autonegotiation Mismatches, page 1-13
- Troubleshooting Power over Ethernet Switch Ports, page 1-13
- SFP Module Security and Identification, page 1-14
- Monitoring SFP Module Status, page 1-14
- Monitoring Temperature, page 1-15
- Using Ping, page 1-15
- Using Layer 2 Traceroute, page 1-16
- Using IP Traceroute, page 1-18
- Using TDR, page 1-19
- Using Debug Commands, page 1-20
Recovering from a Software Failure

Switch software can be corrupted during an upgrade, by downloading the wrong file to the switch, and by deleting the image file. In all of these cases, the switch does not pass the power-on self-test (POST), and there is no connectivity.

This procedure uses boot loader commands and TFTP to recover from a corrupted or wrong image file. This recovery procedure requires that you have physical access to the switch.

Step 1
From your PC, download the software image tar file (*image_filename.tar*) from Cisco.com.
The Cisco IOS image is stored as a bin file in a directory in the tar file. For information about locating the software image files on Cisco.com, see the release notes.

Step 2
Extract the bin file from the tar file.
- If you are using Windows, use a zip program that can read a tar file. Use the zip program to navigate to and extract the bin file.
- If you are using UNIX, follow these steps:
 1. Display the contents of the tar file by using the `tar -tvf <image_filename.tar>` UNIX command.
     ```bash
     switch% tar -tvf image_filename.tar
     ``
  2. Locate the bin file, and extract it by using the `tar -xvf <image_filename.tar>` UNIX command.
     ```bash
 switch% tar -xvf image_filename.tar image_filename.bin
 x image_name.bin, 3970586 bytes, 7756 tape blocks
     ```
  3. Verify that the bin file was extracted by using the `ls -l <image_filename.bin>` UNIX command.
     ```bash
 switch% ls -l image_filename.bin
 -rw-r--r-- 1 boba 3970586 Apr 21 12:00 image_name.bin
     ```

**Step 3**
Connect your PC to the switch Ethernet management port.

**Step 4**
Unplug the switch power cord.

**Step 5**
Press the **Mode** button, and at the same time, reconnect the power cord to the switch.

You can release the **Mode** button a second or two after the LED above port 1 goes off. Several lines of information about the software appear with instructions:

The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system, and finish loading the operating system software:

```bash
software# flash_init
boot
```
Chapter 1 Troubleshooting

Recovering from a Lost or Forgotten Password

Step 6 Initialize the flash file system:

switch: flash_init

Step 7 Connect the switch to a TFTP server through the Ethernet management port.

Step 8 Start the file transfer by using TFTP.

a. Specify the IP address of the TFTP server:

switch: set IP_ADDR ip_address/mask

b. Specify the default router:

switch: set DEFAULT_ROUTER ip_address

Step 9 Copy the software image from the TFTP server to the switch:

switch: copy tftp://ip_address/filesystem:/source-file-url flash:image_filename.bin

Step 10 Boot up the newly downloaded Cisco IOS image.

switch: boot flash:image_filename.bin

Step 11 Use the archive download-sw privileged EXEC command to download the software image to the switch or to the switch stack.

Step 12 Use the reload privileged EXEC command to restart the switch and to verify that the new software image is operating properly.

Step 13 Delete the flash:image_filename.bin file from the switch.

Recovering from a Lost or Forgotten Password

The default configuration for the switch allows an end user with physical access to the switch to recover from a lost password by interrupting the boot process during power-on and by entering a new password. These recovery procedures require that you have physical access to the switch.

Note

On these switches, a system administrator can disable some of the functionality of this feature by allowing an end user to reset a password only by agreeing to return to the default configuration. If you are an end user trying to reset a password when password recovery has been disabled, a status message shows this during the recovery process.

These sections describes how to recover a forgotten or lost switch password:

- Procedure with Password Recovery Enabled, page 1-5
- Procedure with Password Recovery Disabled, page 1-6

You enable or disable password recovery by using the service password-recovery global configuration command. When you enter the service password-recovery or no service password-recovery command on the stack master, it is propagated throughout the stack and applied to all switches in the stack.
Follow the steps in this procedure if you have forgotten or lost the switch password.

**Step 1**  Use one of these methods to connect a terminal or PC to the switch:

- Connect a terminal or a PC with terminal-emulation software to the switch console port. If you are recovering the password for a switch stack, connect to the console port of the stack master.
- Connect a PC to the Ethernet management port. If you are recovering the password for a switch stack, connect to the Ethernet management port of a Catalyst 3750-E Catalyst 3750-X stack member. For details about using the internal Ethernet management port, see the “Using the Ethernet Management Port” section on page 1-24 and the hardware installation guide.

**Step 2**  Set the line speed on the emulation software to 9600 baud.

**Step 3**  On a Catalyst 3750-E Catalyst 3750-X switch, power off the standalone switch or the entire switch stack. On a Catalyst 3560-E Catalyst 3560-X switch, power off the switch.

**Step 4**  Reconnect the power cord to the switch or the stack master. Within 15 seconds, press the Mode button while the System LED is still flashing green. Continue pressing the Mode button until the System LED turns briefly amber and then solid green; then release the Mode button.

Several lines of information about the software appear with instructions, informing you if the password recovery procedure has been disabled or not.

- If you see a message that begins with this:

  The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system

  proceed to the “Procedure with Password Recovery Enabled” section on page 1-5, and follow the steps.

- If you see a message that begins with this:

  The password-recovery mechanism has been triggered, but is currently disabled.

  proceed to the “Procedure with Password Recovery Disabled” section on page 1-6, and follow the steps.

**Step 5**  After recovering the password, reload the switch or the stack master.

On a Catalyst 3560-E Catalyst 3560-X switch:

```
Switch> reload
Proceed with reload? [confirm] y
```

On a Catalyst 3750-E Catalyst 3750-X switch:

```
Switch> reload
 slot <stack-master-member-number>
Proceed with reload? [confirm] y
```

**Step 6**  For Catalyst 3750-E Catalyst 3750-X switches, power on the rest of the switch stack.
### Procedure with Password Recovery Enabled

If the password-recovery mechanism is enabled, this message appears:

The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system, and finish loading the operating system software:

```
flash_init
load_helper
boot
```

#### Step 1
Initialize the flash file system:
```
switch: flash_init
```

#### Step 2
If you had set the console port speed to anything other than 9600, it has been reset to that particular speed. Change the emulation software line speed to match that of the switch console port.

#### Step 3
Load any helper files:
```
switch: load_helper
```

#### Step 4
Display the contents of flash memory:
```
switch: dir flash:
```

The switch file system appears:

```
Directory of flash:
13 lrwx 192 Mar 01 1993 22:30:48 switch_image
11 -rwx 5825 Mar 01 1993 22:31:59 config.text
18 -rwx 720 Mar 01 1993 02:21:30 vlan.dat
```

16128000 bytes total (10003456 bytes free)

#### Step 5
Rename the configuration file to config.text.old.
This file contains the password definition.
```
switch: rename flash:config.text flash:config.text.old
```

#### Step 6
Boot up the system:
```
switch: boot
```

You are prompted to start the setup program. Enter N at the prompt:
```
Continue with the configuration dialog? [yes/no]: N
```

#### Step 7
At the switch prompt, enter privileged EXEC mode:
```
Switch> enable
```

#### Step 8
Rename the configuration file to its original name:
```
Switch# rename flash:config.text.old flash:config.text
```

---

**Note**

Before continuing to Step 9, power on any connected stack members and wait until they have completely initialized. Failure to follow this step can result in a lost configuration depending on how your switch is set up.
Step 9  Copy the configuration file into memory:

Switch# copy flash:config.text system:running-config
Source filename [config.text]?
Destination filename [running-config]?

Press Return in response to the confirmation prompts.
The configuration file is now reloaded, and you can change the password.

Step 10  Enter global configuration mode:

Switch# configure terminal

Step 11  Change the password:

Switch (config)# enable secret password

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

Step 12  Return to privileged EXEC mode:

Switch (config)# exit
Switch#

Step 13  Write the running configuration to the startup configuration file:

Switch# copy running-config startup-config

The new password is now in the startup configuration.

Note  This procedure is likely to leave your switch virtual interface in a shutdown state. You can see which interface is in this state by entering the show running-config privileged EXEC command. To re-enable the interface, enter the interface vlan vlan-id global configuration command, and specify the VLAN ID of the shutdown interface. With the switch in interface configuration mode, enter the no shutdown command.

Step 14  Reload the switch or switch stack:

Switch# reload

Procedure with Password Recovery Disabled

If the password-recovery mechanism is disabled, this message appears:

The password-recovery mechanism has been triggered, but is currently disabled. Access to the boot loader prompt through the password-recovery mechanism is disallowed at this point. However, if you agree to let the system be reset back to the default system configuration, access to the boot loader prompt can still be allowed.

Would you like to reset the system back to the default configuration (y/n)?

Caution  Returning the switch to the default configuration results in the loss of all existing configurations. We recommend that you contact your system administrator to verify if there are backup switch and VLAN configuration files.
- If you enter \textbf{n} (no), the normal boot process continues as if the \textbf{Mode} button had not been pressed; you cannot access the boot loader prompt, and you cannot enter a new password. You see the message:

\texttt{Press Enter to continue........}

- If you enter \textbf{y} (yes), the configuration file in flash memory and the VLAN database file are deleted. When the default configuration loads, you can reset the password.

\underline{Step 1} Elect to continue with password recovery and lose the existing configuration:

\texttt{Would you like to reset the system back to the default configuration} \texttt{(y/n)? \textbf{Y}}

\underline{Step 2} Load any helper files:

\texttt{Switch: load_helper}

\underline{Step 3} Display the contents of flash memory:

\texttt{switch: dir flash:}

The switch file system appears:

\texttt{Directory of flash:}

\begin{verbatim}
13  drwx      192  Mar 01 1993 22:30:48 switch_image
16128000 bytes total (10003456 bytes free)
\end{verbatim}

\underline{Step 4} Boot up the system:

\texttt{Switch: boot}

You are prompted to start the setup program. To continue with password recovery, enter \textbf{N} at the prompt:

\texttt{Continue with the configuration dialog? [yes/no]: \textbf{N}}

\underline{Step 5} At the switch prompt, enter privileged EXEC mode:

\texttt{Switch> enable}

\underline{Step 6} Enter global configuration mode:

\texttt{Switch# configure terminal}

\underline{Step 7} Change the password:

\texttt{Switch (config)# enable secret password}

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

\underline{Step 8} Return to privileged EXEC mode:

\texttt{Switch (config)# exit}

\texttt{Switch#}

\begin{center}
\textbf{Note} Before continuing to Step 9, power on any connected stack members and wait until they have completely initialized.
\end{center}

\underline{Step 9} Write the running configuration to the startup configuration file:

\texttt{Switch# copy running-config startup-config}

The new password is now in the startup configuration.
Preventing Switch Stack Problems

- Make sure that the switches that you add to or remove from the switch stack are powered off. For all powering considerations in switch stacks, see the “Switch Installation” chapter in the hardware installation guide.

- After adding or removing stack members, make sure that the switch stack is operating at full bandwidth (32 Gb/s). Press the Mode button on a stack member until the Stack mode LED is on. The last two port LEDs on the switch should be green. Depending on the switch model, the last two ports are either 10/100/1000 ports or small form-factor pluggable (SFP) module. If one or both of the last two port LEDs are not green, the stack is not operating at full bandwidth.

- We recommend using only one CLI session when managing the switch stack. Be careful when using multiple CLI sessions to the stack master. Commands that you enter in one session are not displayed in the other sessions. Therefore, it is possible that you might not be able to identify the session from which you entered a command.

- Manually assigning stack member numbers according to the placement of the switches in the stack can make it easier to remotely troubleshoot the switch stack. However, you need to remember that the switches have manually assigned numbers if you add, remove, or rearrange switches later. Use the `switch current-stack-member-number renumber new-stack-member-number` global configuration command to manually assign a stack member number. For more information about stack member numbers, see the “Stack Member Numbers” section on page 1-7.

If you replace a stack member with an identical model, the new switch functions with the exact same configuration as the replaced switch. This is also assuming the new switch is using the same member number as the replaced switch.

Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. If you want the switch stacks to remain separate, change the IP address or addresses of the newly created switch stacks. To recover from a partitioned switch stack:

1. Power off the newly created switch stacks.
2. Reconnect them to the original switch stack through their StackWise Plus ports.
3. Power on the switches.

For the commands that you can use to monitor the switch stack and its members, see the “Displaying Switch Stack Information” section on page 1-30.
Recovering from a Command Switch Failure

This section describes how to recover from a failed command switch. You can configure a redundant command switch group by using the Hot Standby Router Protocol (HSRP). For more information, see Chapter 1, “Clustering Switches.” For more information, see Chapter 1, “Clustering Switches” and Chapter 1, “Configuring HSRP and VRRP.” Also see the Getting Started with Cisco Network Assistant, available on Cisco.com.

Note

HSRP is the preferred method for supplying redundancy to a cluster.

If you have not configured a standby command switch, and your command switch loses power or fails in some other way, management contact with the member switches is lost, and you must install a new command switch. However, connectivity between switches that are still connected is not affected, and the member switches forward packets as usual. You can manage the members as standalone switches through the console port, through the Ethernet management port, or, if they have IP addresses, through the other management interfaces.

You can prepare for a command switch failure by assigning an IP address to a member switch or another switch that is command-capable, making a note of the command-switch password, and cabling your cluster to provide redundant connectivity between the member switches and the replacement command switch. These sections describe two solutions for replacing a failed command switch:

- Replacing a Failed Command Switch with a Cluster Member, page 1-9
- Replacing a Failed Command Switch with Another Switch, page 1-11

These recovery procedures require that you have physical access to the switch.

For information on command-capable switches, see the release notes.

Replacing a Failed Command Switch with a Cluster Member

To replace a failed command switch with a command-capable member in the same cluster, follow these steps:

Step 1  Disconnect the command switch from the member switches, and physically remove it from the cluster.

Step 2  Insert the member switch in place of the failed command switch, and duplicate its connections to the cluster members.

Step 3  Start a CLI session on the new command switch.

You can access the CLI by using the console port, by using the Ethernet management port, or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, see the switch hardware installation guide. For details about using the Ethernet management port, see the “Using the Ethernet Management Port” section on page 1-24 and the hardware installation guide.

Step 4  At the switch prompt, enter privileged EXEC mode:

```
Switch> enable
Switch# ...
```  

Step 5  Enter the password of the failed command switch.
Step 6  Enter global configuration mode.

```bash
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
```

Step 7  Remove the member switch from the cluster.

```bash
Switch(config)# no cluster commander-address
```

Step 8  Return to privileged EXEC mode.

```bash
Switch(config)# end
Switch#
```

Step 9  Use the setup program to configure the switch IP information. This program prompts you for IP address information and passwords. From privileged EXEC mode, enter `setup`, and press `Return`.

```bash
Switch# setup
--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y
```

At any point you may enter a question mark '?' for help. Use `ctrl-c` to abort configuration dialog at any prompt. Default settings are in square brackets '[]'.

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system

Would you like to enter basic management setup? [yes/no]:

Step 10 Enter Y at the first prompt.

The prompts in the setup program vary depending on the member switch that you selected to be the command switch:

```bash
Continue with configuration dialog? [yes/no]: y
or
Configuring global parameters:
```

If this prompt does not appear, enter `enable`, and press `Return`. Enter `setup`, and press `Return` to start the setup program.

Step 11 Respond to the questions in the setup program.

When prompted for the hostname, recall that on a command switch, the hostname is limited to 28 characters; on a member switch to 31 characters. Do not use `-n`, where `n` is a number, as the last characters in a hostname for any switch.

When prompted for the Telnet (virtual terminal) password, recall that it can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

Step 12 When prompted for the `enable secret` and `enable` passwords, enter the passwords of the failed command switch again.

Step 13 When prompted, make sure to enable the switch as the cluster command switch, and press `Return`.

Step 14 When prompted, assign a name to the cluster, and press `Return`.

The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.

Step 15 After the initial configuration displays, verify that the addresses are correct.

Step 16 If the displayed information is correct, enter Y, and press `Return`.

If this information is not correct, enter N, press `Return`, and begin again at Step 9.
Recovering from a Command Switch Failure

Step 17
Start your browser, and enter the IP address of the new command switch.

Step 18
From the Cluster menu, select **Add to Cluster** to display a list of candidate switches to add to the cluster.

**Replacing a Failed Command Switch with Another Switch**

To replace a failed command switch with a switch that is command-capable but is not part of the cluster, follow these steps:

**Step 1**
Insert the new switch in place of the failed command switch, and duplicate its connections to the cluster members.

**Step 2**
Start a CLI session on the new command switch.

You can access the CLI by using the console port, by using the Ethernet management port, or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, see the switch hardware installation guide. For details about using the Ethernet management port, see the “Using the Ethernet Management Port” section on page 1-24 and the hardware configuration guide.

**Step 3**
At the switch prompt, enter privileged EXEC mode:

```
Switch> enable
Switch#
```

**Step 4**
Enter the password of the **failed command switch**.

**Step 5**
Use the setup program to configure the new switch IP information.

This program prompts you for IP address information and passwords. From privileged EXEC mode, enter **setup**, and press **Return**.

```
Switch# setup
--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y
```

At any point you may enter a question mark ‘?’ for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets ‘[ ]’.

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system.

```
Would you like to enter basic management setup? [yes/no]:
```

**Step 6**
Enter **Y** at the first prompt.

The prompts in the setup program vary, depending on the switch you selected to be the command switch:

```
Continue with configuration dialog? [yes/no]: y
```

or

```
Configuring global parameters:
```

If this prompt does not appear, enter **enable**, and press **Return**. Enter **setup**, and press **Return** to start the setup program.
Step 7  Respond to the questions in the setup program.
When prompted for the hostname, recall that on a command switch, the hostname is limited to 28 characters. Do not use \(-n\), where \(n\) is a number, as the last character in a hostname for any switch.
When prompted for the Telnet (virtual terminal) password, recall that it can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

Step 8  When prompted for the enable secret and enable passwords, enter the passwords of the failed command switch again.

Step 9  When prompted, make sure to enable the switch as the cluster command switch, and press Return.

Step 10  When prompted, assign a name to the cluster, and press Return.
The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.

Step 11  When the initial configuration displays, verify that the addresses are correct.

Step 12  If the displayed information is correct, enter Y, and press Return.
If this information is not correct, enter N, press Return, and begin again at Step 9.

Step 13  Start your browser, and enter the IP address of the new command switch.

Step 14  From the Cluster menu, select Add to Cluster to display a list of candidate switches to add to the cluster.

Recovering from Lost Cluster Member Connectivity

Some configurations can prevent the command switch from maintaining contact with member switches. If you are unable to maintain management contact with a member, and the member switch is forwarding packets normally, check for these conflicts:

- A member switch (Catalyst 3750-X, Catalyst 3750-E, Catalyst 3750, Catalyst 356-X, Catalyst 3560-E, Catalyst 3560, Catalyst 3550, Catalyst 2970, Catalyst 2960, CGESM, Catalyst 2950, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switch) cannot connect to the command switch through a port that is defined as a network port.

- Catalyst 3500 XL, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 member switches must connect to the command switch through a port that belongs to the same management VLAN.

- A member switch (Catalyst 3750-X, Catalyst 3750-E, Catalyst 3750, Catalyst 3560-X, Catalyst 3560-E, Catalyst 3560, Catalyst 3550, Catalyst 2970, Catalyst 2960, CGESM, Catalyst 2950, Catalyst 3500 XL, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switch) connected to the command switch through a secured port can lose connectivity if the port is disabled because of a security violation.
Preventing Autonegotiation Mismatches

The IEEE 802.3ab autonegotiation protocol manages the switch settings for speed (10 Mb/s, 100 Mb/s, and 1000 Mb/s, excluding SFP module ports) and duplex (half or full). There are situations when this protocol can incorrectly align these settings, reducing performance. A mismatch occurs under these circumstances:

- A manually set speed or duplex parameter is different from the manually set speed or duplex parameter on the connected port.
- A port is set to autonegotiate, and the connected port is set to full duplex with no autonegotiation.

To maximize switch performance and ensure a link, follow one of these guidelines when changing the settings for duplex and speed:

- Let both ports autonegotiate both speed and duplex.
- Manually set the speed and duplex parameters for the ports on both ends of the connection.

Note

If a remote device does not autonegotiate, configure the duplex settings on the two ports to match. The speed parameter can adjust itself even if the connected port does not autonegotiate.

Troubleshooting Power over Ethernet Switch Ports

- Disabled Port Caused by Power Loss, page 1-13
- Disabled Port Caused by False Link Up, page 1-14

Disabled Port Caused by Power Loss

If a powered device (such as a Cisco IP Phone 7910) that is connected to a PoE switch port and is powered by an AC power source loses power from the AC power source, the device might enter an error-disabled state. To recover from an error-disabled state, enter the `shutdown` interface configuration command, and then enter the `no shutdown` interface command. You can also configure automatic recovery on the switch to recover from the error-disabled state.

On a Catalyst 3750-E Catalyst 3750-X switch, the `errdisable recovery cause loopback` and the `errdisable recovery interval seconds` global configuration commands automatically take the interface out of the error-disabled state after the specified period of time.

Use these commands, described in the command reference for this release, to monitor the PoE port status:

- `show controllers power inline` privileged EXEC command
- `show power inline` privileged EXEC command
- `debug ilpower` privileged EXEC command
Disabled Port Caused by False Link Up

If a Cisco powered device is connected to a port and you configure the port by using the `power inline never` interface configuration command, a false link up can occur, placing the port into an error-disabled state. To take the port out of the error-disabled state, enter the `shutdown` and the `no shutdown` interface configuration commands.

You should not connect a Cisco powered device to a port that has been configured with the `power inline never` command.

SFP Module Security and Identification

Cisco small form-factor pluggable (SFP) modules have a serial EEPROM that contains the module serial number, the vendor name and ID, a unique security code, and cyclic redundancy check (CRC). When an SFP module is inserted in the switch, the switch software reads the EEPROM to verify the serial number, vendor name and vendor ID, and recompute the security code and CRC. If the serial number, the vendor name or vendor ID, the security code, or CRC is invalid, the software generates a security error message and places the interface in an error-disabled state.

Note

The security error message references the GBIC_SECURITY facility. The switch supports SFP modules and does not support GBIC modules. Although the error message text refers to GBIC interfaces and modules, the security messages actually refer to the SFP modules and module interfaces. For more information about error messages, see the system message guide for this release.

If you are using a non-Cisco SFP module, remove the SFP module from the switch, and replace it with a Cisco module. After inserting a Cisco SFP module, use the `errdisable recovery cause gbic-invalid` global configuration command to verify the port status, and enter a time interval for recovering from the error-disabled state. After the elapsed interval, the switch brings the interface out of the error-disabled state and retries the operation. For more information about the `errdisable recovery` command, see the command reference for this release.

If the module is identified as a Cisco SFP module, but the system is unable to read vendor-data information to verify its accuracy, an SFP module error message is generated. In this case, you should remove and re-insert the SFP module. If it continues to fail, the SFP module might be defective.

Monitoring SFP Module Status

You can check the physical or operational status of an SFP module by using the `show interfaces transceiver` privileged EXEC command. This command shows the operational status, such as the temperature and the current for an SFP module on a specific interface and the alarm status. You can also use the command to check the speed and the duplex settings on an SFP module. For more information, see the `show interfaces transceiver` command in the command reference for this release.
Monitoring Temperature

The switch monitors the temperature conditions and uses the temperature information to control the fans. Use the `show env temperature` status privileged EXEC command to display the temperature value, state, and thresholds. The temperature value is the temperature in the switch (not the external temperature). You can configure only the yellow threshold level (in Celsius) by using the `system env temperature threshold yellow value` global configuration command to set the difference between the yellow and red thresholds. You cannot configure the green or red thresholds. For more information, see the command reference for this release.

Using Ping

- Understanding Ping, page 1-15
- Executing Ping, page 1-15

Understanding Ping

The switch supports IP ping, which you can use to test connectivity to remote hosts. Ping sends an echo request packet to an address and waits for a reply. Ping returns one of these responses:

- Normal response—The normal response (hostname is alive) occurs in 1 to 10 seconds, depending on network traffic.
- Destination does not respond—if the host does not respond, a no-answer message is returned.
- Unknown host—if the host does not exist, an unknown host message is returned.
- Destination unreachable—if the default gateway cannot reach the specified network, a destination-unreachable message is returned.
- Network or host unreachable—if there is no entry in the route table for the host or network, a network or host unreachable message is returned.

Executing Ping

If you attempt to ping a host in a different IP subnetwork, you must define a static route to the network or have IP routing configured to route between those subnets. For more information, see Chapter 1, “Configuring IP Unicast Routing.”

IP routing is disabled by default on all switches. If you need to enable or configure IP routing, see Chapter 1, “Configuring IP Unicast Routing.”

Beginning in privileged EXEC mode, use this command to ping another device on the network from the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ping ip host \ address</code></td>
<td>Ping a remote host through IP or by supplying the hostname or network address.</td>
</tr>
</tbody>
</table>
Though other protocol keywords are available with the **ping** command, they are not supported in this release.

This example shows how to ping an IP host:

```
Switch# ping 172.20.52.3
```

Sending 5, 100-byte ICMP Echoes to 172.20.52.3, timeout is 2 seconds:

`!!!!!`

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

Switch#

Table 1-1 describes the possible ping character output.

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Each exclamation point means receipt of a reply.</td>
</tr>
<tr>
<td>.</td>
<td>Each period means the network server timed out while waiting for a reply.</td>
</tr>
<tr>
<td>U</td>
<td>A destination unreachable error PDU was received.</td>
</tr>
<tr>
<td>C</td>
<td>A congestion experienced packet was received.</td>
</tr>
<tr>
<td>I</td>
<td>User interrupted test.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>&amp;</td>
<td>Packet lifetime exceeded.</td>
</tr>
</tbody>
</table>

To end a ping session, enter the escape sequence (**Ctrl-^ X** by default). Simultaneously press and release the **Ctrl**, **Shift**, and **6** keys and then press the **X** key.

### Using Layer 2 Traceroute

- **Understanding Layer 2 Traceroute**, page 1-16
- **Usage Guidelines**, page 1-17
- **Displaying the Physical Path**, page 1-17

### Understanding Layer 2 Traceroute

The Layer 2 traceroute feature allows the switch to identify the physical path that a packet takes from a source device to a destination device. Layer 2 traceroute supports only unicast source and destination MAC addresses. It finds the path by using the MAC address tables of the switches in the path. When the switch detects a device in the path that does not support Layer 2 traceroute, the switch continues to send Layer 2 trace queries and lets them time out.

The switch can only identify the path from the source device to the destination device. It cannot identify the path that a packet takes from source host to the source device or from the destination device to the destination host.
Usage Guidelines

- Cisco Discovery Protocol (CDP) must be enabled on all the devices in the network. For Layer 2 traceroute to function properly, do not disable CDP.

  If any devices in the physical path are transparent to CDP, the switch cannot identify the path through these devices. For more information about enabling CDP, see Chapter 1, “Configuring CDP.”

- A switch is reachable from another switch when you can test connectivity by using the ping privileged EXEC command. All switches in the physical path must be reachable from each other.

- The maximum number of hops identified in the path is ten.

- You can enter the traceroute mac or the traceroute mac ip privileged EXEC command on a switch that is not in the physical path from the source device to the destination device. All switches in the path must be reachable from this switch.

- The traceroute mac command output shows the Layer 2 path only when the specified source and destination MAC addresses belong to the same VLAN. If you specify source and destination MAC addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message appears.

- If you specify a multicast source or destination MAC address, the path is not identified, and an error message appears.

- If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong. If the VLAN is not specified, the path is not identified, and an error message appears.

- The traceroute mac ip command output shows the Layer 2 path when the specified source and destination IP addresses belong to the same subnet. When you specify the IP addresses, the switch uses the Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.
  - If an ARP entry exists for the specified IP address, the switch uses the associated MAC address and identifies the physical path.
  - If an ARP entry does not exist, the switch sends an ARP query and tries to resolve the IP address. If the IP address is not resolved, the path is not identified, and an error message appears.

- When multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port), the Layer 2 traceroute feature is not supported. When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.

- This feature is not supported in Token Ring VLANs.

Displaying the Physical Path

You can display physical path that a packet takes from a source device to a destination device by using one of these privileged EXEC commands:

- traceroute mac [interface interface-id] {source-mac-address} [interface interface-id] {destination-mac-address} [vlan vlan-id] [detail]
- traceroute mac ip {source-ip-address | source-hostname} {destination-ip-address | destination-hostname} [detail]

For more information, see the command reference for this release.
Using IP Traceroute

- Understanding IP Traceroute, page 1-18
- Executing IP Traceroute, page 1-18

Understanding IP Traceroute

You can use IP traceroute to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic passes through on the way to the destination.

Your switches can participate as the source or destination of the `traceroute` privileged EXEC command and might or might not appear as a hop in the `traceroute` command output. If the switch is the destination of the traceroute, it is displayed as the final destination in the traceroute output. Intermediate switches do not show up in the traceroute output if they are only bridging the packet from one port to another within the same VLAN. However, if the intermediate switch is a multilayer switch that is routing a particular packet, this switch shows up as a hop in the traceroute output.

The `traceroute` privileged EXEC command uses the Time To Live (TTL) field in the IP header to cause routers and servers to generate specific return messages. Traceroute starts by sending a User Datagram Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value of 1 or 0, it drops the datagram and sends an Internet Control Message Protocol (ICMP) time-to-live-exceeded message to the sender. Traceroute finds the address of the first hop by examining the source address field of the ICMP time-to-live-exceeded message.

To identify the next hop, traceroute sends a UDP packet with a TTL value of 2. The first router decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL value of 1, discards the datagram, and returns the time-to-live-exceeded message to the source. This process continues until the TTL is incremented to a value large enough for the datagram to reach the destination host (or until the maximum TTL is reached).

To learn when a datagram reaches its destination, traceroute sets the UDP destination port number in the datagram to a very large value that the destination host is unlikely to be using. When a host receives a datagram destined to itself containing a destination port number that is unused locally, it sends an ICMP `port-unreachable` error to the source. Because all errors except port-unreachable errors come from intermediate hops, the receipt of a port-unreachable error means that this message was sent by the destination port.

Executing IP Traceroute

Beginning in privileged EXEC mode, follow this step to trace the path packets take through the network:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>traceroute ip host</code></td>
<td>Trace the path that packets take through the network.</td>
</tr>
</tbody>
</table>

Note

Though other protocol keywords are available with the `traceroute` privileged EXEC command, they are not supported in this release.
This example shows how to perform a traceroute to an IP host:

```
Switch# traceroute ip 171.9.15.10
```

Type escape sequence to abort.
Tracing the route to 171.69.115.10

```
1 172.2.52.1 0 msec 0 msec 4 msec
2 172.2.1.203 12 msec 8 msec 0 msec
3 171.9.16.6 4 msec 0 msec 0 msec
4 171.9.4.5 0 msec 4 msec 0 msec
5 171.9.121.34 0 msec 4 msec 4 msec
6 171.9.15.9 120 msec 132 msec 128 msec
7 171.9.15.10 132 msec 128 msec 128 msec
```

Switch#

The display shows the hop count, the IP address of the router, and the round-trip time in milliseconds for each of the three probes that are sent.

### Table 1-2 Traceroute Output Display Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output means that an access list is blocking traffic.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>U</td>
<td>Port unreachable.</td>
</tr>
</tbody>
</table>

To end a trace in progress, enter the escape sequence (Ctrl-^X by default). Simultaneously press and release the Ctrl, Shift, and 6 keys and then press the X key.

### Using TDR

- Understanding TDR, page 1-19
- Running TDR and Displaying the Results, page 1-20

### Understanding TDR

You can use the Time Domain Reflector (TDR) feature to diagnose and resolve cabling problems. When running TDR, a local device sends a signal through a cable and compares the reflected signal to the initial signal.

TDR is supported only on 10/100/1000 copper Ethernet ports. It is not supported on 10-Gigabit Ethernet ports and on SFP module ports.
TDR can detect these cabling problems:

- Open, broken, or cut twisted-pair wires—The wires are not connected to the wires from the remote device.
- Shorted twisted-pair wires—The wires are touching each other or the wires from the remote device. For example, a shorted twisted pair can occur if one wire of the twisted pair is soldered to the other wire.

If one of the twisted-pair wires is open, TDR can find the length at which the wire is open.

Use TDR to diagnose and resolve cabling problems in these situations:

- Replacing a switch
- Setting up a wiring closet
- Troubleshooting a connection between two devices when a link cannot be established or when it is not operating properly

When you run TDR, the switch reports accurate information if

- The cable for the Gigabit link is a solid-core cable.
- The open-ended cable is not terminated.

When you run TDR, the switch does not report accurate information if

- The cable for the Gigabit link is a twisted-pair cable or is in series with a solid-core cable.
- The link is a 10-Megabit or a 100-Megabit link.
- The cable is a stranded cable.
- The link partner is a Cisco IP Phone.
- The link partner is not IEEE 802.3 compliant.

### Running TDR and Displaying the Results

When you run TDR on an interface, you can run it on the stack master or a stack member.

To run TDR, enter the `test cable-diagnostics tdr interface interface-id` privileged EXEC command:

To display the results, enter the `show cable-diagnostics tdr interface interface-id` privileged EXEC command. For a description of the fields in the display, see the command reference for this release.

### Using Debug Commands

- [Enabling Debugging on a Specific Feature](#), page 1-21
- [Enabling All-System Diagnostics](#), page 1-21
- [Redirecting Debug and Error Message Output](#), page 1-22

**Caution**

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use `debug` commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use `debug` commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased `debug` command processing overhead will affect system use.
Enabling Debugging on a Specific Feature

In a Catalyst 3750-E Catalyst 3750-X switch stack, when you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you must start a session from the stack master by using the `session switch-number` privileged EXEC command. Then, enter the `debug` command at the command-line prompt of the stack member.

All `debug` commands are entered in privileged EXEC mode, and most `debug` commands take no arguments. For example, beginning in privileged EXEC mode, enter this command to enable the debugging for Switched Port Analyzer (SPAN):

```
Switch# debug span-session
```

The switch continues to generate output until you enter the `no` form of the command.

If you enable a `debug` command and no output appears, consider these possibilities:

- The switch might not be properly configured to generate the type of traffic you want to monitor. Use the `show running-config` command to check its configuration.

- Even if the switch is properly configured, it might not generate the type of traffic you want to monitor during the particular period that debugging is enabled. Depending on the feature you are debugging, you can use commands such as the TCP/IP `ping` command to generate network traffic.

To disable debugging of SPAN, enter this command in privileged EXEC mode:

```
Switch# no debug span-session
```

Alternately, in privileged EXEC mode, you can enter the `undebug` form of the command:

```
Switch# undebug span-session
```

To display the state of each debugging option, enter this command in privileged EXEC mode:

```
Switch# show debugging
```

Enabling All-System Diagnostics

Beginning in privileged EXEC mode, enter this command to enable all-system diagnostics:

```
Switch# debug all
```

Because debugging output takes priority over other network traffic, and because the `debug all` privileged EXEC command generates more output than any other `debug` command, it can severely diminish switch performance or even render it unusable. In virtually all cases, it is best to use more specific `debug` commands.

The `no debug all` privileged EXEC command disables all diagnostic output. Using the `no debug all` command is a convenient way to ensure that you have not accidentally left any `debug` commands enabled.
Redirecting Debug and Error Message Output

By default, the network server sends the output from `debug` commands and system error messages to the console. If you use this default, you can use a virtual terminal connection to monitor debug output instead of connecting to the console port or the Ethernet management port.

Possible destinations include the console, virtual terminals, internal buffer, and UNIX hosts running a syslog server. The syslog format is compatible with 4.3 Berkeley Standard Distribution (BSD) UNIX and its derivatives.

**Note**

Be aware that the debugging destination you use affects system overhead. Logging messages to the console produces very high overhead, whereas logging messages to a virtual terminal produces less overhead. Logging messages to a syslog server produces even less, and logging to an internal buffer produces the least overhead of any method.

When stack members generate a system error message, the stack master displays the error message to all stack members. The syslog resides on the stack master.

**Note**

Make sure to save the syslog to flash memory so that the syslog is not lost if the stack master fails.

For more information about system message logging, see Chapter 1, “Configuring System Message Logging and Smart Logging.”

Using the show platform forward Command

The output from the `show platform forward` privileged EXEC command provides some useful information about the forwarding results if a packet entering an interface is sent through the system. Depending upon the parameters entered about the packet, the output provides lookup table results and port maps used to calculate forwarding destinations, bitmaps, and egress information.

**Note**

For more syntax and usage information for the `show platform forward` command, see the switch command reference for this release.

Most of the information in the output from the command is useful mainly for technical support personnel, who have access to detailed information about the switch application-specific integrated circuits (ASICs). However, packet forwarding information can also be helpful in troubleshooting.

This is an example of the output from the `show platform forward` command on port 1 in VLAN 5 when the packet entering that port is addressed to unknown MAC addresses. The packet should be flooded to all other ports in VLAN 5.

```
Switch# show platform forward gigabitethernet1/0/1 vlan 5 1.1.1 2.2.2 ip 13.1.1.1 13.2.2.2 udp 10 20
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5
Ingress:
 Lookup: Key-Used Index-Hit A-Data
 InptACL: 40_0D020202_0D010101_00_40000014_000A0000 01FFA 03000000
 L2Local: 80_00050002_00020002_00_00000000_00000000 00C71 0000002B
 Station Descriptor:02340000, DestIndex:0239, RewriteIndex:F005
```
Using the show platform forward Command

---

**Egress:Asic 2, switch 1**

Output Packets:

<table>
<thead>
<tr>
<th>Packet 1</th>
<th>Lookup</th>
<th>Key-Used</th>
<th>Index-Hit</th>
<th>A-Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutptACL 50_0D020202_0D010101-00_40000014_000A0000</td>
<td>01FFE</td>
<td>03000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Vlan</th>
<th>SrcMac</th>
<th>DstMac</th>
<th>Cos</th>
<th>Dscpv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>0005</td>
<td>0001.0001.0001</td>
<td>0002.0002.0002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Packet 2**

<table>
<thead>
<tr>
<th>Lookup</th>
<th>Key-Used</th>
<th>Index-Hit</th>
<th>A-Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutptACL 50_0D020202_0D010101-00_40000014_000A0000</td>
<td>01FFE</td>
<td>03000000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Vlan</th>
<th>SrcMac</th>
<th>DstMac</th>
<th>Cos</th>
<th>Dscpv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/2</td>
<td>0005</td>
<td>0001.0001.0001</td>
<td>0002.0002.0002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

<output truncated>

---

**Packet 10**

<table>
<thead>
<tr>
<th>Lookup</th>
<th>Key-Used</th>
<th>Index-Hit</th>
<th>A-Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutptACL 50_0D020202_0D010101-00_40000014_000A0000</td>
<td>01FFE</td>
<td>03000000</td>
<td></td>
</tr>
</tbody>
</table>

Packet dropped due to failed DEJA_VU Check on Gi1/0/2

This is an example of the output when the packet coming in on port 1 in VLAN 5 is sent to an address already learned on the VLAN on another port. It should be forwarded from the port on which the address was learned.

Switch# `show platform forward gigabitethernet1/0/1 vlan 5 1.1.1 0009.43A8.0145 ip 13.1.1.1 13.2.2.2 udp 10 20`

Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

---

**Ingress:**

<table>
<thead>
<tr>
<th>Lookup</th>
<th>Key-Used</th>
<th>Index-Hit</th>
<th>A-Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>InptACL 40_0D020202_0D010101-00_40000014_000A0000</td>
<td>01FFA</td>
<td>03000000</td>
<td></td>
</tr>
<tr>
<td>L2Local 80_00050009_43A80145-00_00000000_00000000</td>
<td>00086</td>
<td>02010197</td>
<td></td>
</tr>
</tbody>
</table>

Station Descriptor:F0050003, DestIndex:F005, RewriteIndex:0003

---

**Egress:Asic 3, switch 1**

Output Packets:

---

**Packet 1**

<table>
<thead>
<tr>
<th>Lookup</th>
<th>Key-Used</th>
<th>Index-Hit</th>
<th>A-Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutptACL 50_0D020202_0D010101-00_40000014_000A0000</td>
<td>01FFE</td>
<td>03000000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Vlan</th>
<th>SrcMac</th>
<th>DstMac</th>
<th>Cos</th>
<th>Dscpv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/2</td>
<td>0005</td>
<td>0001.0001.0001</td>
<td>0009.43A8.0145</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This is an example of the output when the packet coming in on port 1 in VLAN 5 has a destination MAC address set to the router MAC address in VLAN 5 and the destination IP address unknown. Because there is no default route set, the packet should be dropped.

Switch# show platform forward gigabitethernet1/0/1 vlan 5 1.1.1 03.e319.ee44 ip 13.1.1.1 udp 10 20
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

Ingress:

Lookup Key-Used Index-Hit A-Data
InptACL 40_0D020202_0D010101-00_41000014_000A0000 01FFA 03000000
L3Local 00_00000000_00000000-90_00001400_0D020202 010FF 01880290
L3Scndr 12_0D020202_0D010101-00_40000014_000A0000 034E0 000C001D_00000000
Lookup Used:Secondary
Station Descriptor:02260000, DestIndex:0226, RewriteIndex:0000

This is an example of the output when the packet coming in on port 1 in VLAN 5 has a destination MAC address set to the router MAC address in VLAN 5 and the destination IP address set to an IP address that is in the IP routing table. It should be forwarded as specified in the routing table.

Switch# show platform forward gigabitethernet1/0/1 vlan 5 1.1.1 03.e319.ee44 ip 110.1.5.5 16.1.10.5
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

Ingress:

Lookup Key-Used Index-Hit A-Data
InptACL 40_10010A05_0A010505-00_41000014_000A0000 01FFA 03000000
L3Local 00_00000000_00000000-90_00001400_10010A05 010FF 01880290
L3Scndr 12_10010A05_0A010505-00_40000014_000A0000 01D28 30090001_00000000
Lookup Used:Secondary
Station Descriptor:F0070007, DestIndex:F007, RewriteIndex:0007

==========================================
Egress:Asic 3, switch 1
Output Packets:

Packet 1
Lookup Key-Used Index-Hit A-Data
OutptACL 50_10010A05_0A010505-00_40000014_000A0000 01FFE 03000000
Port Vlan SrcMac DstMac Cos Dscp
Gi1/0/2 0007 XXXX.XXXX.0246 0009.43A8.0147

Using the crashinfo Files

The crashinfo files save information that helps Cisco technical support representatives to debug problems that caused the Cisco IOS image to fail (crash). The switch writes the crash information to the console at the time of the failure. The switch creates two types of crashinfo files:

- Basic crashinfo file—The switch automatically creates this file the next time you boot up the Cisco IOS image after the failure.
- Extended crashinfo file—The switch automatically creates this file when the system is failing.
Basic crashinfo Files

The information in the basic file includes the Cisco IOS image name and version that failed, a list of the processor registers, and a stack trace. You can provide this information to the Cisco technical support representative by using the `show tech-support` privileged EXEC command.

Basic crashinfo files are kept in this directory on the flash file system:

```
flash:/crashinfo/
```

The filenames are `crashinfo_n` where `n` is a sequence number.

Each new crashinfo file that is created uses a sequence number that is larger than any previously existing sequence number, so the file with the largest sequence number describes the most recent failure. Version numbers are used instead of a timestamp because the switches do not include a real-time clock. You cannot change the name of the file that the system will use when it creates the file. However, after the file is created, you can use the `rename` privileged EXEC command to rename it, but the contents of the renamed file will not be displayed by the `show stacks` or the `show tech-support` privileged EXEC command. You can delete crashinfo files by using the `delete` privileged EXEC command.

You can display the most recent basic crashinfo file (that is, the file with the highest sequence number at the end of its filename) by entering the `show stacks` or the `show tech-support` privileged EXEC command. You also can access the file by using any command that can copy or display files, such as the `more` or the `copy` privileged EXEC command.

Extended crashinfo Files

The switch creates the extended crashinfo file when the system is failing. The information in the extended file includes additional information that can help determine the cause of the switch failure. You provide this information to the Cisco technical support representative by manually accessing the file and using the `more` or the `copy` privileged EXEC command.

Extended crashinfo files are kept in this directory on the flash file system:

```
flash:/crashinfo_ext/
```

The filenames are `crashinfo_ext_n` where `n` is a sequence number.

You can configure the switch to not create the extended crashinfo file by using the `no exception crashinfo` global configuration command.
Using Memory Consistency Check Routines

The switch runs memory consistency check routines to detect and correct invalid ternary content addressable memory (TCAM) table entries that can affect the performance of the switch.

If the switch cannot fix the error, it logs a system error message specifying the TCAM space where the error is located:

- Hulc Forwarding TCAM Manager (HFTM) space: Related to the Layer 2 and Layer 3 forwarding tables.
- Hulc quality of service (QoS)/access control list (ACL) TCAM Manager (HQATM) space: Related to ACL and ACL-like tables such as QoS classification and policy routing.

The output from the show platform tcam errors privileged EXEC command provides information about the TCAM memory consistency integrity on the switch.

Beginning in privileged EXEC mode, use the show platform tcam errors command to display the TCAM memory consistency check errors detected on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show platform tcam errors</td>
<td>Displays TCAM memory consistency check errors in the HQATM, and HFTM.</td>
</tr>
</tbody>
</table>

This example shows the output of the show platform tcam errors command:

```
Switch# show platform tcam errors
TCAM Memory Consistency Checker Errors
TCAM Space Values Masks Fixups Retries Failures
HFTM 0 0 0 0 0
HQATM 0 0 0 0 0
```

**Table 1-3 Definitions of Fields in TCAM Checker Output**

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>The number of invalid values.</td>
</tr>
<tr>
<td>Masks</td>
<td>The number of invalid masks.</td>
</tr>
<tr>
<td>Fixups</td>
<td>The number of initial attempts to fix the invalid values or masks.</td>
</tr>
<tr>
<td>Retries</td>
<td>The number of repeated attempts to fix the invalid values or masks.</td>
</tr>
<tr>
<td>Failures</td>
<td>The number of failed attempts to fix the invalid values or masks.</td>
</tr>
</tbody>
</table>

For more information about the show platform tcam errors privileged EXEC command, see the command reference for this release.

Using On-Board Failure Logging

You can use the on-board-failure logging (OBFL) feature to collect information about the switch. The information includes uptime, temperature, and voltage information and helps Cisco technical support representatives to troubleshoot switch problems. We recommend that you keep OBFL enabled and do not erase the data stored in the flash memory.
Understanding OBFL

By default, OBFL is enabled. It collects information about the switch and small form-factor pluggable (SFP) modules. The switch stores this information in the flash memory:

- CLI commands—Record of the OBFL CLI commands that are entered on a standalone switch or a switch stack member
- Environment data—Unique device identifier (UDI) information for a standalone switch or a stack member and for all the connected FRU devices: the product identification (PID), the version identification (VID), and the serial number
- Message—Record of the hardware-related system messages generated by a standalone switch or a stack member
- Power over Ethernet (PoE)—Record of the power consumption of PoE ports on a standalone switch or a stack member
- Temperature—Temperature of a standalone switch or a stack member
- Uptime data—Time when a standalone switch or a stack member starts, the reason the switch restarts, and the length of time the switch has been running since it last restarted
- Voltage—System voltages of a standalone switch or a stack member

You should manually set the system clock or configure it by using Network Time Protocol (NTP). When the switch is running, you can retrieve the OBFL data by using the `show logging onboard` privileged EXEC commands. If the switch fails, contact your Cisco technical support representative to find out how to retrieve the data.

When an OBFL-enabled switch is restarted, there is a 10-minute delay before logging of new data begins.

Configuring OBFL

To enable OBFL, use the `hw-module module [switch-number] logging onboard [message level level]` global configuration command. On Catalyst 3750-E Catalyst 3750-X switches, the range for `switch-number` is from 1 to 9. On Catalyst 3560-E Catalyst 3750-X switches, the switch number is always 1. Use the `message level level` parameter to specify the severity of the hardware-related messages that the switch generates and stores in the flash memory.

To copy the OBFL data to the local network or a specific file system, use the `copy logging onboard module stack-member destination` privileged EXEC command.

Caution

We recommend that you do not disable OBFL and that you do not remove the data stored in the flash memory.

To disable OBFL, use the `no hw-module module [switch-number] logging onboard [message level level]` global configuration command.
To clear all the OBFL data in the flash memory except for the uptime and CLI command information, use the `clear logging onboard` privileged EXEC command.

In a switch stack, you can enable OBFL on a standalone switch or on all stack members by using the `hw-module module logging onboard [message level level]` global configuration command.

In a switch stack, if you enter the `hw-module module [switch-number] logging onboard` command on a stack member that does not support OBFL, such as a Catalyst 3750 switch, a message appears with that information. If a Catalyst 3750 switch is a stack master in a mixed stack of Catalyst 3750-E Catalyst 3750-X and 3750 switches and you enter an OBFL command on the Catalyst 3750 switch, the command does not take effect on the stack master, but the stack master sends the OBFL configuration information to the stack members.

For more information about the commands in this section, see the command reference for this release.

### Displaying OBFL Information

To display the OBFL information, use one or more of the privileged EXEC commands in Table 1-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show logging onboard [module [switch-number]] clilog</code></td>
<td>Displays the OBFL CLI commands that were entered on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] environment</code></td>
<td>Display the UDI information for a standalone switch or the specified stack members and for all the connected FRU devices: the PID, the VID, and the serial number.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] message</code></td>
<td>Display the hardware-related messages generated by a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] poe</code></td>
<td>Display the power consumption of PoE ports on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] temperature</code></td>
<td>Display the temperature of a standalone switch or the specified switch stack members.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] uptime</code></td>
<td>Display the time when a standalone switch or the specified stack members start, the reason the standalone switch or specified stack members restart, and the length of time that the standalone switch or specified stack members have been running since they last restarted.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] voltage</code></td>
<td>Display the system voltages of a standalone switch or the specified stack members.</td>
</tr>
</tbody>
</table>

For more information about using the commands in Table 1-4 and for examples of OBFL data, see the command reference for this release.

### Fan Failures

The fan failures feature is supported only on the Catalyst 3560E-12D switch. You can use this feature to avoid overheating the switch.
By default, the feature is disabled. When more than one of the fans in a field-replaceable unit (FRU) or in a power supply fails, the switch does not shut down, and this error message appears:

Multiple fan(FRU/PS) failure detected. System may get overheated. Change fan quickly.

The switch might overheat and shut down.

To enable the fan failures feature, enter the `system env fan-fail-action shut` privileged EXEC command.

If more than one fan in the switch fails, the switch automatically shuts down, and this error message appears:

Faulty (FRU/PS) fans detected, shutting down system!

After the first fan shuts down, if the switch detects a second fan failure, the switch waits for 20 seconds before it shuts down.

To restart the switch, it must be power cycled.
Troubleshooting Tables

These tables are a condensed version of troubleshooting documents on Cisco.com.

- “Troubleshooting CPU Utilization” on page -30
- “Troubleshooting Power over Ethernet (PoE)” on page -32
- “Troubleshooting Stackwise (Catalyst 3750-E 3750-X Switches Only)” on page -35

Troubleshooting CPU Utilization

This section lists some possible symptoms that could be caused by the CPU being too busy and shows how to verify a CPU utilization problem. Table 1-5 lists the primary types of CPU utilization problems that you can identify. It gives possible causes and corrective action with links to the Troubleshooting High CPU Utilization document on Cisco.com.

Possible Symptoms of High CPU Utilization

Note that excessive CPU utilization might result in these symptoms, but the symptoms could also result from other causes.

- Spanning tree topology changes
- EtherChannel links brought down due to loss of communication
- Failure to respond to management requests (ICMP ping, SNMP timeouts, slow Telnet or SSH sessions)
- UDLD flapping
- IP SLAs failures because of SLAs responses beyond an acceptable threshold
- DHCP or IEEE 802.1x failures if the switch does not forward or respond to requests

Layer 3 switches:

Note: Layer 3 functions are not supported on switches running the LAN base feature set.

- Dropped packets or increased latency for packets routed in software
- BGP or OSPF routing topology changes
- HSRP flapping

Verifying the Problem and Cause

To determine if high CPU utilization is a problem, enter the show processes cpu sorted privileged EXEC command. Note the underlined information in the first line of the output example.

Switch# show processes cpu sorted
CPU utilization for five seconds: 8%/0%: one minute: 7%; five minutes: 8%
PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process
309 42289103 752750 56180 1.75% 1.20% 1.22% 0 RIP Timers
140 8820183 4942081 1784 0.63% 0.37% 0.30% 0 HRPC qos request
100 3427318 16150534 212 0.47% 0.14% 0.11% 0 HRPC pm-counters
192 3093252 14081112 219 0.31% 0.14% 0.11% 0 Spanning Tree
143 8 37 216 0.15% 0.01% 0.00% 0 Exec
This example shows normal CPU utilization. The output shows that utilization for the last 5 seconds is 8%/0%, which has this meaning:

- The total CPU utilization is 8 percent, including both time running Cisco IOS processes and time spent handling interrupts
- The time spent handling interrupts is zero percent.

For complete information about CPU utilization and how to troubleshoot utilization problems, see the *Troubleshooting High CPU Utilization* document on Cisco.com.
## Troubleshooting Power over Ethernet (PoE)

**Figure 1-1  Power Over Ethernet Troubleshooting Scenarios**

<table>
<thead>
<tr>
<th>Symptom or problem</th>
<th>Possible cause and solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No PoE on only one port. Trouble is on only one switch port. PoE and non-PoE devices do not work on this port, but do on other ports.</td>
<td>Verify that the powered device works on another PoE port. Use the <code>show run</code>, <code>show interface status</code>, or <code>show power inline detail</code> user EXEC commands to verify that the port is not shut down or error disabled. <strong>Note</strong> Most switches turn off port power when the port is shut down, even though the IEEE specifications make this optional. Verify that the Ethernet cable from the powered device to the switch port is good: Connect a known good non-PoE Ethernet device to the Ethernet cable, and make sure that the powered device establishes a link and exchanges traffic with another host. Verify that the total cable length from the switch front panel to the powered device is not more than 100 meters. Disconnect the Ethernet cable from the switch port. Use a short Ethernet cable to connect a known good Ethernet device directly to this port on the switch front panel (not on a patch panel). Verify that it can establish an Ethernet link and exchange traffic with another host, or ping the port VLAN SVI. Next, connect a powered device to this port, and verify that it powers on. If a powered device does not power on when connected with a patch cord to the switch port, compare the total number of connected powered devices to the switch power budget (available PoE). Use the <code>show inline power</code> and <code>show inline power detail</code> commands to verify the amount of available power. For more information, see No PoE On One Port on Cisco.com.</td>
</tr>
</tbody>
</table>
No PoE on all ports or a group of ports. Trouble is on all switch ports. Nonpowered Ethernet devices cannot establish an Ethernet link on any port, and PoE devices do not power on.

If there is a continuous, intermittent, or reoccurring alarm related to power, replace the power supply if possible it is a field-replaceable unit. Otherwise, replace the switch.

If the problem is on a consecutive group of ports but not all ports, the power supply is probably not defective, and the problem could be related to PoE regulators in the switch.

Use the `show log` privileged EXEC command to review alarms or system messages that previously reported PoE conditions or status changes.

If there are no alarms, use the `show interface status` command to verify that the ports are not shut down or error-disabled. If ports are error-disabled, use the `shut` and `no shut` interface configuration commands to re-enable the ports.

Use the `show env power` and `show power inline` privileged EXEC commands to review the PoE status and power budget (available PoE).

Review the running configuration to verify that `power inline never` is not configured on the ports.

Connect a nonpowered Ethernet device directly to a switch port. Use only a short patch cord. Do not use the existing distribution cables. Enter the `shut` and `no shut` interface configuration commands, and verify that an Ethernet link is established. If this connection is good, use a short patch cord to connect a powered device to this port and verify that it powers on. If the device powers on, verify that all intermediate patch panels are correctly connected.

Disconnect all but one of the Ethernet cables from switch ports. Using a short patch cord, connect a powered device to only one PoE port. Verify the powered device does not require more power than can be delivered by the switch port.

Use the `show power inline` privileged EXEC command to verify that the powered device can receive power when the port is not shut down. Alternatively, watch the powered device to verify that it powers on.

If a powered device can power on when only one powered device is connected to the switch, enter the `shut` and `no shut` interface configuration commands on the remaining ports, and then reconnect the Ethernet cables one at a time to the switch PoE ports. Use the `show interface status` and `show power inline` privileged EXEC commands to monitor inline power statistics and port status.

If there is still no PoE at any port, a fuse might be open in the PoE section of the power supply. This normally produces an alarm. Check the log again for alarms reported earlier by system messages.

For more information, see No PoE On Any Port or a Group of Ports on Cisco.com.

<table>
<thead>
<tr>
<th>Symptom or problem</th>
<th>Possible cause and solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No PoE on all ports or a group of ports.</td>
<td>If there is a continuous, intermittent, or reoccurring alarm related to power, replace the power supply if possible it is a field-replaceable unit. Otherwise, replace the switch.</td>
</tr>
<tr>
<td>If the problem is on a consecutive group of ports but not all ports, the power supply is probably not defective, and the problem could be related to PoE regulators in the switch.</td>
<td>Use the <code>show log</code> privileged EXEC command to review alarms or system messages that previously reported PoE conditions or status changes.</td>
</tr>
<tr>
<td>If there are no alarms, use the <code>show interface status</code> command to verify that the ports are not shut down or error-disabled. If ports are error-disabled, use the <code>shut</code> and <code>no shut</code> interface configuration commands to re-enable the ports.</td>
<td>Use the <code>show env power</code> and <code>show power inline</code> privileged EXEC commands to review the PoE status and power budget (available PoE).</td>
</tr>
<tr>
<td>Review the running configuration to verify that <code>power inline never</code> is not configured on the ports.</td>
<td>Connect a nonpowered Ethernet device directly to a switch port. Use only a short patch cord. Do not use the existing distribution cables. Enter the <code>shut</code> and <code>no shut</code> interface configuration commands, and verify that an Ethernet link is established. If this connection is good, use a short patch cord to connect a powered device to this port and verify that it powers on. If the device powers on, verify that all intermediate patch panels are correctly connected.</td>
</tr>
<tr>
<td>Disconnect all but one of the Ethernet cables from switch ports. Using a short patch cord, connect a powered device to only one PoE port. Verify the powered device does not require more power than can be delivered by the switch port.</td>
<td>Use the <code>show power inline</code> privileged EXEC command to verify that the powered device can receive power when the port is not shut down. Alternatively, watch the powered device to verify that it powers on.</td>
</tr>
<tr>
<td>Use the <code>show power inline</code> privileged EXEC command to verify that the powered device can receive power when the port is not shut down. Alternatively, watch the powered device to verify that it powers on.</td>
<td>If a powered device can power on when only one powered device is connected to the switch, enter the <code>shut</code> and <code>no shut</code> interface configuration commands on the remaining ports, and then reconnect the Ethernet cables one at a time to the switch PoE ports. Use the <code>show interface status</code> and <code>show power inline</code> privileged EXEC commands to monitor inline power statistics and port status.</td>
</tr>
<tr>
<td>If there is still no PoE at any port, a fuse might be open in the PoE section of the power supply. This normally produces an alarm. Check the log again for alarms reported earlier by system messages.</td>
<td>For more information, see No PoE On Any Port or a Group of Ports on Cisco.com.</td>
</tr>
</tbody>
</table>
Cisco IP Phone disconnects or resets.

After working normally, a Cisco phone or wireless access point intermittently reloads or disconnects from PoE.

Verify all electrical connections from the switch to the powered device. Any unreliable connection results in power interruptions and irregular powered device functioning such as erratic powered device disconnects and reloads.

Verify that the cable length is not more than 100 meters from the switch port to the powered device.

Notice what changes in the electrical environment at the switch location or what happens at the powered device when the disconnect occurs?

Notice whether any error messages appear at the same time a disconnect occurs. Use the `show log` privileged EXEC command to review error messages.

Verify that an IP phone is not losing access to the Call Manager immediately before the reload occurs. (It might be a network problem and not a PoE problem.)

Replace the powered device with a non-PoE device, and verify that the device works correctly. If a non-PoE device has link problems or a high error rate, the problem might be an unreliable cable connection between the switch port and the powered device.

For more information, see Cisco Phone Disconnects or Resets on Cisco.com.

Non-Cisco powered device does not work on Cisco PoE switch.

A non-Cisco powered device is connected to a Cisco PoE switch, but never powers on or powers on and then quickly powers off. Non-PoE devices work normally.

Use the `show power inline` command to verify that the switch power budget (available PoE) is not depleted before or after the powered device is connected. Verify that sufficient power is available for the powered device type before you connect it.

Use the `show interface status` command to verify that the switch detects the connected powered device.

Use the `show log` command to review system messages that reported an overcurrent condition on the port. Identify the symptom precisely: Does the powered device initially power on, but then disconnect? If so, the problem might be an initial surge-in (or inrush) current that exceeds a current-limit threshold for the port.

For more information, see Non-Cisco PD Does Not Work Correctly on Cisco PoE Switch on Cisco.com.
# Troubleshooting Stackwise (Catalyst 3750-E 3750-X Switches Only)

<table>
<thead>
<tr>
<th>Symptom/problem</th>
<th>How to Verify Problem</th>
<th>Possible Cause/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>General troubleshooting of switch stack issues</td>
<td>Review this document.</td>
<td>Use the Troubleshooting Switch Stacks document for problem solutions and tutorial information.</td>
</tr>
<tr>
<td>Switch cannot join stack</td>
<td>Enter the <code>show switch</code> privileged EXEC command.</td>
<td>Incompatible Cisco IOS versions between stack members and new switch (see Confirming Cisco IOS Versions).</td>
</tr>
<tr>
<td></td>
<td>Enter the <code>show version</code> user EXEC command.</td>
<td>Incompatible license levels in a Catalyst 3750-E switch (see Verifying Software License Compatibility).</td>
</tr>
<tr>
<td></td>
<td>Enter the <code>show platform stack-manager all</code> command.</td>
<td>Incompatible Cisco IOS version numbers between stack members and new switch (see Confirming Cisco IOS Versions).</td>
</tr>
<tr>
<td></td>
<td>Look carefully at the cables and connections.</td>
<td>Unreliable StackWise cable or incomplete connection (see Testing StackWise Cables and Interfaces)</td>
</tr>
<tr>
<td></td>
<td>Enter the <code>show sdm prefer</code> command.</td>
<td>Configuration mismatch (that is, SDM templates) if switch was used for other applications before you added it to the stack. Incompatible IOS version between stack members and new switch (see Configuration Mismatch).</td>
</tr>
<tr>
<td>StackWise port frequently or rapidly changing up/down states (flapping)</td>
<td>Error messages report stack link problems. Possible traffic disruption.</td>
<td>Unreliable StackWise cable connection or interface (see StackWise Port Flapping).</td>
</tr>
<tr>
<td>Switch member port not coming up</td>
<td>Enter the <code>show switch detail</code> privileged EXEC command.</td>
<td>Unreliable StackWise cable connection or interface (see StackWise Port Flapping).</td>
</tr>
<tr>
<td>Reduced stack ring bandwidth, or slow throughput between switch ports or between switches in the stack.</td>
<td>Enter the <code>show switch stack-ring speed</code> user EXEC command.</td>
<td>Bad connection between StackWise cable connection and switch chassis connector (see Testing StackWise Cables and Interfaces).</td>
</tr>
<tr>
<td></td>
<td>Enter the <code>show switch detail</code> user EXEC command to see which stack cable or connection is causing the problem.</td>
<td>Defective or missing StackWise cable (see Testing StackWise Cables and Interfaces).</td>
</tr>
<tr>
<td></td>
<td>• Check the retainer screws on the StackWise cable connectors.</td>
<td>• Loose retainer screws or overly tightened retainer screws (see Verifying StackWise Cable Connections).</td>
</tr>
<tr>
<td></td>
<td>• Enter the <code>show switch</code> privileged EXEC command to see whether new switch shows as Ready, Progressing, or Provisioned.</td>
<td>• Check status of stack members (see Verifying StackWise Cable Connections).</td>
</tr>
<tr>
<td>Port numbering in one or more switches is incorrect or changed.</td>
<td>Enter the <code>show switch detail</code> user EXEC command.</td>
<td>Multiple StackWise cables are disconnected from stack members creating two separate stacks. (see Stack Master Election and Port Number Assignment).</td>
</tr>
</tbody>
</table>
### Table 1-6  
**Switch Stack Troubleshooting Scenarios (continued)**

<table>
<thead>
<tr>
<th>Symptom/problem</th>
<th>How to Verify Problem</th>
<th>Possible Cause/Solution</th>
</tr>
</thead>
</table>
| Slow traffic throughput on stack ring | Test the switch interface. | Defective StackWise switch interface.  
**Note** The only solution is to replace the switch. |
| Problems with stack master election. stacks merging, or new switches joining stack | Review the rules of stack master election. | Current stack master is rebooted or disconnected (see *Stack Master is Rebooted or Disconnected*). |
| Port numbering seems off. | Verify port numbering (see *Stack Master Election and Port Number Assignment*). | |
| Enter the `show switch` privileged EXEC command. | Interpret state messages. (see *Joining a Stack: Typical Sequence States and Rules*). | |
| Stack members need to be upgraded. | Stack members running different major or minor versions of the Cisco IOS software. | Defective StackWise switch interface or cable (see *Quick-and-Easy Catalyst 3750 and Catalyst 3750E Switch Stack Upgrades*). |
| StackWise link connection problems | Look at the LED behavior. | Stack not operating at full bandwidth (see *Verifying StackWise Link Connections Using LEDs*). |
This chapter describes how to configure the online diagnostics on the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

- Understanding Online Diagnostics, page 1-1
- Configuring Online Diagnostics, page 1-1
- Running Online Diagnostic Tests, page 1-5

Understanding Online Diagnostics

With online diagnostics, you can test and verify the hardware functionality of the switch while the switch is connected to a live network.

The online diagnostics contain packet switching tests that check different hardware components and verify the data path and the control signals.

The online diagnostics detect problems in these areas:

- Hardware components
- Interfaces (Ethernet ports and so forth)
- Solder joints

Online diagnostics are categorized as on-demand, scheduled, or health-monitoring diagnostics. On-demand diagnostics run from the CLI; scheduled diagnostics run at user-designated intervals or at specified times when the switch is connected to a live network; and health-monitoring runs in the background.

Configuring Online Diagnostics

You must configure the failure threshold and the interval between tests before enabling diagnostic monitoring.

- Scheduling Online Diagnostics, page 1-2
- Configuring Health-Monitoring Diagnostics, page 1-3
Scheduling Online Diagnostics

You can schedule online diagnostics to run at a designated time of day or on a daily, weekly, or monthly basis for a switch. Use the **no** form of this command to remove the scheduling.

Use this global configuration command to schedule online diagnostics:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `diagnostic schedule switch number test {name | test-id | test-id-range | all | basic | non-disruptive} {daily hh:mm | on mm dd yyyy hh:mm | weekly day-of-week hh:mm}` | Schedule on-demand diagnostic tests for a specific day and time. The `switch number` keyword is supported only on Catalyst 3750-E switches. The range is from 1 to 9. When specifying the tests to be scheduled, use these options:  
  - `name`—Name of the test that appears in the `show diagnostic content` command output.
  - `test-id`—ID number of the test that appears in the `show diagnostic content` command output.
  - `test-id-range`—ID numbers of the tests that appear in the `show diagnostic content` command output.
  - `all`—All of the diagnostic tests.
  - `basic`—Basic on-demand diagnostic tests.
  - `non-disruptive`—Nondisruptive health-monitoring tests. You can schedule the tests as follows:  
    - Daily—Use the `daily hh:mm` parameter.
    - Specific day and time—Use the `on mm dd yyyy hh:mm` parameter.
    - Weekly—Use the `weekly day-of-week hh:mm` parameter. |

For detailed information about this command, see the command reference for this release.

Use the **no** `diagnostic schedule switch number test {name | test-id | test-id-range | all | basic | non-disruptive} {daily hh:mm | on mm dd yyyy hh:mm | weekly day-of-week hh:mm}` global configuration command to remove the scheduled tests.

This example shows how to schedule diagnostic testing for a specific day and time on a Catalyst 3750-E switch:

```
Switch(config)# diagnostic schedule test TestPortAsicCam on december 3 2006 22:25
```

This example shows how to schedule diagnostic testing to occur weekly at a specific time on member switch 6 when this command is entered on a Catalyst 3750-E Catalyst 3750-X stack master:

```
Switch(config)# diagnostic schedule switch 6 test 1-4,7 weekly saturday 10:30
```

For more examples, see the “Examples” section of the `diagnostic schedule` command in the command reference for this release.
## Configuring Health-Monitoring Diagnostics

You can configure health-monitoring diagnostic testing on a switch while it is connected to a live network. You can configure the execution interval for each health-monitoring test, enable the switch to generate a syslog message because of a test failure, and enable a specific test.

By default, health monitoring is disabled, but the switch generates a syslog message when a test fails.

Beginning in privileged EXEC mode, follow these steps to configure and enable the health-monitoring diagnostic tests:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2**<br>diagnostic monitor interval switch number test {name | test-id | test-id-range | all} hh:mm:ss milliseconds day | Configure the health-monitoring interval of the specified tests. The `switch number` keyword is supported only on Catalyst 3750-E Catalyst 3750-X switches. The range is from 1 to 9. When specifying the tests, use one of these parameters:
  - `name`—Name of the test that appears in the `show diagnostic content` command output.
  - `test-id`—ID number of the test that appears in the `show diagnostic content` command output.
  - `test-id-range`—ID numbers of the tests that appear in the `show diagnostic content` command output.
  - `all`—All of the diagnostic tests. When specifying the interval, set these parameters:
    - `hh:mm:ss`—Monitoring interval in hours, minutes, and seconds. The range for `hh` is 0 to 24, and the range for `mm` and `ss` is 0 to 60.
    - `milliseconds`—Monitoring interval in milliseconds (ms). The range is from 0 to 999.
    - `day`—Monitoring interval in the number of days. The range is from 0 to 20. |
| **Step 3**<br>diagnostic monitor syslog | (Optional) Configure the switch to generate a syslog message when a health-monitoring test fails. |
To disable diagnostic testing and return to the default settings, use these commands:

- To disable online diagnostic testing, use the `no diagnostic monitor switch number test {name | test-id | test-id-range | all} global configuration command.

- To return to the default health-monitoring interval, use the `no diagnostic monitor interval switch number test {name | test-id | test-id-range | all} global configuration command.

- To configure the switch to not generate a syslog message when the health-monitoring test fails, use the `no diagnostic monitor syslog global configuration command.

- To return to the default failure threshold, use the `no diagnostic monitor threshold switch number test {name | test-id | test-id-range | all} failure count count` global configuration command.

Note: The `switch number` keyword is supported only on Catalyst 3750-E Catalyst 3750-X switches.
This example shows how to configure a health-monitoring test:

```
Switch(config)# diagnostic monitor threshold switch 3 test 1 failure count 50
Switch(config)# diagnostic monitor interval switch 3 test TestPortAsicRingLoopback
```

### Running Online Diagnostic Tests

After you configure online diagnostics, you can manually start diagnostic tests or display the test results. You can also see which tests are configured for the switch or switch stack and the diagnostic tests that have already run.

- Starting Online Diagnostic Tests, page 1-5
- Displaying Online Diagnostic Tests and Test Results, page 1-6

### Starting Online Diagnostic Tests

After you configure diagnostic tests to run on the switch, use the `diagnostic start` privileged EXEC command to begin diagnostic testing.

Use this privileged EXEC command to manually start online diagnostic testing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `diagnostic start switch number test {name | test-id | test-id-range | all | basic | non-disruptive}` | Start the diagnostic tests. The `switch number` keyword is supported only on Catalyst 3750-E Catalyst 3750-X switches. The range is from 1 to 9. You can specify the tests by using one of these options:  
- `name`—Enter the name of the test. Use the `show diagnostic content` privileged EXEC command to display the test ID list.  
- `test-id`—Enter the ID number of the test. Use the `show diagnostic content` privileged EXEC command to display the test ID list.  
- `test-id-range`—Enter the range of test IDs by using integers separated by a comma and a hyphen. For more information, see the `diagnostic start` command in the command reference for this release.  
- `all`—Use this keyword when you want to run all of the tests.  
- `basic`—Use this keyword when you want to run the basic test suite.  
- `non-disruptive`—Use this keyword when you want to run the non-disruptive test suite. |

After starting the tests, you cannot stop the testing process.

This example shows how to start a diagnostic test by using the test name:

```
Switch# diagnostic start switch 2 test TestInlinePwrCtlr
```

This example shows how to start all of the basic diagnostic tests:

```
Switch# diagnostic start switch 1 test all
```
Displaying Online Diagnostic Tests and Test Results

You can display the online diagnostic tests that are configured for the switch or switch stack and check the test results by using the privileged EXEC `show` commands in Table 1-1:

Table 1-1 Commands for Diagnostic Test Configuration and Results

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show diagnostic content switch [number</td>
<td>all]`¹</td>
</tr>
<tr>
<td><code>show diagnostic status</code></td>
<td>Display the currently running diagnostic tests.</td>
</tr>
<tr>
<td>`show diagnostic result switch [number</td>
<td>all] [detail</td>
</tr>
<tr>
<td>`show diagnostic switch [number</td>
<td>all] [detail]`</td>
</tr>
<tr>
<td>`show diagnostic schedule switch [number</td>
<td>all]¹`</td>
</tr>
<tr>
<td>`show diagnostic post switch [number</td>
<td>all]¹`</td>
</tr>
</tbody>
</table>

¹. The `switch [number | all]` parameter is supported only on Catalyst 3750-E Catalyst 3750-X switches.

For examples of the `show diagnostic` command output, see the “Examples” section of the `show diagnostic` command in the command reference for this release.
This appendix describes how to manipulate the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch flash file system, how to copy configuration files, and how to archive (upload and download) software images to a Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch or to a Catalyst 3750-E Catalyst 3750-X switch stack.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the switch command reference for this release and the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4.

- Working with the Flash File System, page 1-1
- Working with Configuration Files, page 1-9
- Working with Software Images, page 1-25

Working with the Flash File System

The flash file system is a single flash device on which you can store files. It also provides several commands to help you manage software image and configuration files. The default flash file system on the switch is named flash:

As viewed from the stack master, or any stack member, flash: refers to the local flash device, which is the device attached to the same switch on which the file system is being viewed. In a switch stack, each of the flash devices from the various stack members can be viewed from the stack master. The names of these flash file systems include the corresponding switch member numbers. For example, flash3:, as viewed from the stack master, refers to the same file system as does flash: on stack member 3. Use the show file systems privileged EXEC command to list all file systems, including the flash file systems in the switch stack.

No more than one user at a time can manage the software images and configuration files for a switch stack.
These sections contain this configuration information:

- Displaying Available File Systems, page 1-2
- Setting the Default File System, page 1-3
- Displaying Information about Files on a File System, page 1-3
- Changing Directories and Displaying the Working Directory, page 1-4
- Creating and Removing Directories, page 1-5
- Copying Files, page 1-5
- Deleting Files, page 1-6
- Creating, Displaying, and Extracting Files, page 1-6

### Displaying Available File Systems

To display the available file systems on your switch, use the `show file systems` privileged EXEC command as shown in this example for a standalone switch.

```
Switch# show file systems
File Systems: Size(b) Free(b) Type Flags Prefixes
 * 15998976 5135872 flash rw flash:
 - - opaque rw bs:
 - - opaque rw vb:
 524288 520138 nvramp rw nvramp:
 - - network rw tftp:
 - - opaque rw null:
 - - opaque rw system:
 - - opaque ro xmodem:
 - - opaque ro ymodem:
```

This example shows a switch stack. In this example, the stack master is stack member 2; therefore `flash2:` is aliased to `flash:`. The file system on stack member 5 is displayed as `flash5` on the stack master.

```
Switch# show file systems
File Systems: Size(b) Free(b) Type Flags Prefixes
 * 57409536 25664000 flash rw flash: flash2:
 - - opaque rw system:
 524288 512375 nvramp rw nvramp:
 - - opaque ro xmodem:
 - - opaque ro ymodem:
 - - opaque rw null:
 - - opaque ro tar:
 - - network rw tftp:
 - - network rw rcp:
 - - network rw http:
 - - network rw ftp:
 - - opaque ro cns:
 57409536 27306496 flash rw flash5:
```
Appendix 1 Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with the Flash File System

Table 1-1 show file systems Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size(b)</td>
<td>Amount of memory in the file system in bytes.</td>
</tr>
<tr>
<td>Free(b)</td>
<td>Amount of free memory in the file system in bytes.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of file system.</td>
</tr>
<tr>
<td>flash</td>
<td>The file system is for a flash memory device.</td>
</tr>
<tr>
<td>nvramp</td>
<td>The file system is for a NVRAM device.</td>
</tr>
<tr>
<td>opaque</td>
<td>The file system is a locally generated pseudo file system (for example, the system) or a download interface, such as brimux.</td>
</tr>
<tr>
<td>unknown</td>
<td>The file system is an unknown type.</td>
</tr>
<tr>
<td>Flags</td>
<td>Permission for file system.</td>
</tr>
<tr>
<td>ro</td>
<td>read-only.</td>
</tr>
<tr>
<td>rw</td>
<td>read/write.</td>
</tr>
<tr>
<td>wo</td>
<td>write-only.</td>
</tr>
<tr>
<td>Prefixes</td>
<td>Alias for file system.</td>
</tr>
<tr>
<td>flash</td>
<td>Flash file system.</td>
</tr>
<tr>
<td>nvramp</td>
<td>NVRAM.</td>
</tr>
<tr>
<td>null</td>
<td>Null destination for copies. You can copy a remote file to null to find its size.</td>
</tr>
<tr>
<td>rcp</td>
<td>Remote Copy Protocol (RCP) network server.</td>
</tr>
<tr>
<td>system</td>
<td>Contains the system memory, including the running configuration.</td>
</tr>
<tr>
<td>tftp</td>
<td>TFTP network server.</td>
</tr>
<tr>
<td>xmodem</td>
<td>Obtain the file from a network machine by using the Xmodem protocol.</td>
</tr>
<tr>
<td>ymodem</td>
<td>Obtain the file from a network machine by using the Ymodem protocol.</td>
</tr>
</tbody>
</table>

Setting the Default File System

You can specify the file system or directory that the system uses as the default file system by using the cd filesystem: privileged EXEC command. You can set the default file system to omit the filesystem: argument from related commands. For example, for all privileged EXEC commands that have the optional filesystem: argument, the system uses the file system specified by the cd command.

By default, the default file system is flash:

You can display the current default file system as specified by the cd command by using the pwd privileged EXEC command.

Displaying Information about Files on a File System

You can view a list of the contents of a file system before manipulating its contents. For example, before copying a new configuration file to flash memory, you might want to verify that the file system does not already contain a configuration file with the same name. Similarly, before copying a flash configuration file to another location, you might want to verify its filename for use in another command.
To display information about files on a file system, use one of the privileged EXEC commands in Table 1-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dir [/all] [filesystem:] [filename]</td>
<td>Display a list of files on a file system.</td>
</tr>
<tr>
<td>show file systems</td>
<td>Display more information about each of the files on a file system.</td>
</tr>
<tr>
<td>show file information file-url</td>
<td>Display information about a specific file.</td>
</tr>
<tr>
<td>show file descriptors</td>
<td>Display a list of open file descriptors. File descriptors are the internal representations of open files. You can use this command to see if another user has a file open.</td>
</tr>
</tbody>
</table>

To display information about the driver text object in the CISCO-MEMORY-POOL-MIB, use the show memory privileged EXEC command:

```
Switch# show memory
```

<table>
<thead>
<tr>
<th>Head</th>
<th>Total(b)</th>
<th>Used(b)</th>
<th>Free(b)</th>
<th>Lowest(b)</th>
<th>Largest(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>2BF1A9C</td>
<td>205661540</td>
<td>43619116</td>
<td>162042424</td>
<td>159736648</td>
</tr>
<tr>
<td>I/O</td>
<td>F000000</td>
<td>16769024</td>
<td>10503052</td>
<td>6265972</td>
<td>6127744</td>
</tr>
<tr>
<td>Driver te</td>
<td>1800000</td>
<td>4194304</td>
<td>44</td>
<td>4194260</td>
<td>4194260</td>
</tr>
</tbody>
</table>

Changing Directories and Displaying the Working Directory

Beginning in privileged EXEC mode, follow these steps to change directories and to display the working directory.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 dir filesystem:</td>
<td>Display the directories on the specified file system.</td>
</tr>
<tr>
<td></td>
<td>For filesystem:, use flash: for the system board flash device.</td>
</tr>
<tr>
<td>Step 2 cd new_configs</td>
<td>Change to the directory of interest.</td>
</tr>
<tr>
<td></td>
<td>The command example shows how to change to the directory named new_configs.</td>
</tr>
<tr>
<td>Step 3 pwd</td>
<td>Display the working directory.</td>
</tr>
</tbody>
</table>
Creating and Removing Directories

Beginning in privileged EXEC mode, follow these steps to create and remove a directory:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

`dir filesystem:`  
Display the directories on the specified file system.  
For `filesystem:`, use `flash:` for the system board flash device.

**Step 2**

`mkdir old_configs`  
Create a new directory.  
The command example shows how to create the directory named `old_configs`.  
Directory names are case sensitive.  
Directory names are limited to 45 characters between the slashes (`/`); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

**Step 3**

`dir filesystem:`  
Verify your entry.

To delete a directory with all its files and subdirectories, use the `delete /force /recursive filesystem:file-url` privileged EXEC command.

Use the `/recursive` keyword to delete the named directory and all subdirectories and the files contained in it. Use the `/force` keyword to suppress the prompting that confirms a deletion of each file in the directory. You are prompted only once at the beginning of this deletion process. Use the `/force` and `/recursive` keywords for deleting old software images that were installed by using the `archive download-sw` command but are no longer needed.

For `filesystem`, use `flash:` for the system board flash device. For `file-url`, enter the name of the directory to be deleted. All the files in the directory and the directory are removed.

⚠️ **Caution**

When files and directories are deleted, their contents cannot be recovered.

Copying Files

To copy a file from a source to a destination, use the `copy source-url destination-url` privileged EXEC command. For the source and destination URLs, you can use `running-config` and `startup-config` keyword shortcuts. For example, the `copy running-config startup-config` command saves the currently running configuration file to the NVRAM section of flash memory to be used as the configuration during system initialization.

You can also copy from special file systems (`xmodem:`, `ymodem:`) as the source for the file from a network machine that uses the Xmodem or Ymodem protocol.

Network file system URLs include `ftp:`, `rcp:`, and `tftp:` and have these syntaxes:

- `FTP—ftp://username [password]@location[/directory]/filename`
- `RCP—rcp://username@location[/directory]/filename`
- `TFTP—tftp://location[/directory]/filename`

Local writable file systems include `flash:`.
Some invalid combinations of source and destination exist. Specifically, you cannot copy these combinations:

- From a running configuration to a running configuration
- From a startup configuration to a startup configuration
- From a device to the same device (for example, the \texttt{copy flash: flash:} command is invalid)

For specific examples of using the \texttt{copy} command with configuration files, see the “Working with Configuration Files” section on page 1-9.

To copy software images either by downloading a new version or by uploading the existing one, use the \texttt{archive download-sw} or the \texttt{archive upload-sw} privileged EXEC command. For more information, see the “Working with Software Images” section on page 1-25.

### Deleting Files

When you no longer need a file on a flash memory device, you can permanently delete it. To delete a file or directory from a specified flash device, use the \texttt{delete [force] [recursive] [filesystem:]file-url} privileged EXEC command.

Use the \texttt{recursive} keyword for deleting a directory and all subdirectories and the files contained in it. Use the \texttt{force} keyword to suppress the prompting that confirms a deletion of each file in the directory. You are prompted only once at the beginning of this deletion process. Use the \texttt{force} and \texttt{recursive} keywords for deleting old software images that were installed by using the \texttt{archive download-sw} command but are no longer needed.

If you omit the \texttt{filesystem:} option, the switch uses the default device specified by the \texttt{cd} command. For \texttt{file-url}, you specify the path (directory) and the name of the file to be deleted.

When you attempt to delete any files, the system prompts you to confirm the deletion.

\begin{center}
\textbf{Caution}
\end{center}

When files are deleted, their contents cannot be recovered.

This example shows how to delete the file \texttt{myconfig} from the default flash memory device:

\begin{verbatim}
Switch# delete myconfig
\end{verbatim}

### Creating, Displaying, and Extracting Files

You can create a file and write files into it, list the files in a file, and extract the files from a file as described in the next sections.

\begin{center}
\textbf{Note}
\end{center}

Instead of using the \texttt{copy} privileged EXEC command or the \texttt{archive} privileged EXEC command, we recommend using the \texttt{archive download-sw} and \texttt{archive upload-sw} privileged EXEC commands to download and upload software image files. For switch stacks, the \texttt{archive download-sw} and \texttt{archive upload-sw} privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the \texttt{archive copy-sw} privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.
Beginning in privileged EXEC mode, follow these steps to create a file, display the contents, and extract it.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
</tbody>
</table>
| `archive /create destination-url flash:/file-url` | Create a file and add files to it.  
For `destination-url`, specify the destination URL alias for the local or network file system and the name of the file to create. The `-filename`, is the file to be created. These options are supported:  
- Local flash file system syntax:  
  `flash:`  
- FTP syntax:  
  `ftp:[//username[:password]@location][directory][-filename].`  
- RCP syntax:  
  `rcp:[//username@location][directory][-filename].`  
- TFTP syntax:  
  `tftp:[//location][directory][-filename].`  
For `flash:/file-url`, specify the location on the local flash file system in which the new file is created. You can also specify an optional list of files or directories within the source directory to add to the new file. If none are specified, all files and directories at this level are written to the newly created file. |
| **Step 2**       |                                                                         |
| `archive /table source-url` | Display the contents of a file.  
For `source-url`, specify the source URL alias for the local or network file system. The `-filename`, is the file to display. These options are supported:  
- Local flash file system syntax:  
  `flash:`  
- FTP syntax:  
  `ftp:[//username[:password]@location][directory][-filename].`  
- RCP syntax:  
  `rcp:[//username@location][directory][-filename].`  
- TFTP syntax:  
  `tftp:[//location][directory][-filename].`  
You can also limit the file displays by specifying a list of files or directories after the file. Only those files appear. If none are specified, all files and directories appear. |
Working with the Flash File System

**Appendix 1  Working with the Cisco IOS File System, Configuration Files, and Software Images**

**Working with the Flash File System**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>archive /xtract source-url flash:/file-url [dir/file...]</code></td>
<td>Extract a file into a directory on the flash file system.</td>
</tr>
<tr>
<td></td>
<td>For <code>source-url</code>, specify the source URL alias for the local file system. The <code>-filename</code> is the file from which to extract files. These options are supported:</td>
</tr>
<tr>
<td></td>
<td>- local flash file system syntax:</td>
</tr>
<tr>
<td></td>
<td>* <code>flash:</code></td>
</tr>
<tr>
<td></td>
<td>- FTP syntax:</td>
</tr>
<tr>
<td></td>
<td>* <code>ftp://[username[:password]@location]/directory/-filename</code>.</td>
</tr>
<tr>
<td></td>
<td>- RCP syntax:</td>
</tr>
<tr>
<td></td>
<td>* <code>rcp://[username@location]/directory/-filename</code>.</td>
</tr>
<tr>
<td></td>
<td>- TFTP syntax:</td>
</tr>
<tr>
<td></td>
<td>* <code>tftp://[location]/directory/-filename</code>.</td>
</tr>
<tr>
<td></td>
<td>For <code>flash:/file-url [dir/file...]</code>, specify the location on the local flash file system from which the file is extracted. Use the <code>dir/file...</code> option to specify a list of files or directories within the file to be extracted. If none are specified, all files and directories are extracted.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>`more [ /ascii</td>
<td>/binary</td>
</tr>
</tbody>
</table>

This example shows how to create a file. This command writes the contents of the `new-configs` directory on the local flash device to a file named `saved` on the TFTP server at 172.20.10.30:

Switch# `archive /create tftp:172.20.10.30/saved. flash:/new-configs`

**Note**

The following examples show Catalyst 3750-E switch outputs. The outputs would be similar for the Catalyst 3750-X and 3560-X.

This example shows how to display the contents of a switch file that is in flash memory.

Switch# `archive /table flash:/c3750e-universal-mz.122-35.SE2`

- info (239 bytes)
- `c3750e-universal-mz.122-35.SE2/ (directory)
- `c3750e-universal-mz.122-35.SE2/html/ (directory)
- `c3750e-universal-mz.122-35.SE2/html/foo.html` (0 bytes)
- `c3750e-universal-mz.122-35.SE2/info` (219 bytes)

This example shows how to display only the `/html` directory and its contents:

Switch# `archive /table flash: c3750e-universal-mz.122-35/html`

- `c3750e-universal-mz.122-35.SE2/html`
- `c3750e-universal-mz.122-35.SE2/html/ (directory)
- <output truncated>

This example shows how to extract the contents of a file located on the TFTP server at 172.20.10.30.

Switch# `archive /xtract tftp://172.20.10.30/saved. flash:/new-configs`
Working with Configuration Files

This section describes how to create, load, and maintain configuration files.

Note

For information about configuration files in switch stacks, see the “Switch Stack Configuration Files” section on page 1-16.

Configuration files contain commands entered to customize the function of the Cisco IOS software. A way to create a basic configuration file is to use the setup program or to enter the setup privileged EXEC command. For more information, see Chapter 1, “Assigning the Switch IP Address and Default Gateway.”

You can copy (download) configuration files from a TFTP, FTP, or RCP server to the running configuration or startup configuration of the switch. You might want to perform this for one of these reasons:

- To restore a backed-up configuration file.
- To use the configuration file for another switch. For example, you might add another switch to your network and want it to have a configuration similar to the original switch. By copying the file to the new switch, you can change the relevant parts rather than recreating the whole file.
- To load the same configuration commands on all the switches in your network so that all the switches have similar configurations.

You can copy (upload) configuration files from the switch to a file server by using TFTP, FTP, or RCP.

The protocol you use depends on which type of server you are using. The FTP and RCP transport mechanisms provide faster performance and more reliable delivery of data than TFTP. These improvements are possible because FTP and RCP are built on and use the TCP/IP stack, which is connection-oriented.

These sections contain this configuration information:

- Guidelines for Creating and Using Configuration Files, page 1-10
- Configuration File Types and Location, page 1-10
- Creating a Configuration File By Using a Text Editor, page 1-11
- Copying Configuration Files By Using TFTP, page 1-11
- Copying Configuration Files By Using FTP, page 1-13
Guidelines for Creating and Using Configuration Files

Creating configuration files can aid in your switch configuration. Configuration files can contain some or all of the commands needed to configure one or more switches. For example, you might want to download the same configuration file to several switches that have the same hardware configuration.

Use these guidelines when creating a configuration file:

- We recommend that you connect through the console port or Ethernet management port for the initial configuration of the switch. If you are accessing the switch through a network connection instead of through a direct connection to the console port or Ethernet management port, keep in mind that some configuration changes (such as changing the switch IP address or disabling ports) can cause a loss of connectivity to the switch.

- If no password has been set on the switch, we recommend that you set one by using the `enable secret secret-password` global configuration command.

**Note**

The `copy {ftp: | rcp: | tftp:} system:running-config` privileged EXEC command loads the configuration files on the switch as if you were entering the commands at the command line. The switch does not erase the existing running configuration before adding the commands. If a command in the copied configuration file replaces a command in the existing configuration file, the existing command is erased. For example, if the copied configuration file contains a different IP address in a particular command than the existing configuration, the IP address in the copied configuration is used. However, some commands in the existing configuration might not be replaced or negated. In this case, the resulting configuration file is a mixture of the existing configuration file and the copied configuration file, with the copied configuration file having precedence.

To restore a configuration file to an exact copy of a file stored on a server, copy the configuration file directly to the startup configuration (by using the `copy {ftp: | rcp: | tftp:} nvram:startup-config` privileged EXEC command), and reload the switch.

Configuration File Types and Location

Startup configuration files are used during system startup to configure the software. Running configuration files contain the current configuration of the software. The two configuration files can be different. For example, you might want to change the configuration for a short time period rather than permanently. In this case, you would change the running configuration but not save the configuration by using the `copy running-config startup-config` privileged EXEC command.

The running configuration is saved in DRAM; the startup configuration is stored in the NVRAM section of flash memory.
Appendix 1  Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with Configuration Files

Creating a Configuration File By Using a Text Editor

When creating a configuration file, you must list commands logically so that the system can respond appropriately. This is one method of creating a configuration file:

- **Step 1** Copy an existing configuration from a switch to a server.
  
  For more information, see the “Downloading the Configuration File By Using TFTP” section on page 1-12, the “Downloading a Configuration File By Using FTP” section on page 1-14, or the “Downloading a Configuration File By Using RCP” section on page 1-18.

- **Step 2** Open the configuration file in a text editor, such as vi or emacs on UNIX or Notepad on a PC.

- **Step 3** Extract the portion of the configuration file with the desired commands, and save it in a new file.

- **Step 4** Copy the configuration file to the appropriate server location. For example, copy the file to the TFTP directory on the workstation (usually /tftpboot on a UNIX workstation).

- **Step 5** Make sure the permissions on the file are set to world-read.

Copying Configuration Files By Using TFTP

You can configure the switch by using configuration files you create, download from another switch, or download from a TFTP server. You can copy (upload) configuration files to a TFTP server for storage.

These sections contain this configuration information:

- Preparing to Download or Upload a Configuration File By Using TFTP, page 1-11
- Downloading the Configuration File By Using TFTP, page 1-12
- Uploading the Configuration File By Using TFTP, page 1-13

Preparing to Download or Upload a Configuration File By Using TFTP

Before you begin downloading or uploading a configuration file by using TFTP, do these tasks:

- Ensure that the workstation acting as the TFTP server is properly configured. On a Sun workstation, make sure that the /etc/inetd.conf file contains this line:
  
  ```
 tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -p -s /tftpboot
  ```

  Make sure that the /etc/services file contains this line:

  ```
 tftp 69/udp
  ```

  **Note** You must restart the inetd daemon after modifying the /etc/inetd.conf and /etc/services files. To restart the daemon, either stop the inetd process and restart it, or enter a `fastboot` command (on the SunOS 4.x) or a `reboot` command (on Solaris 2.x or SunOS 5.x). For more information on the TFTP daemon, see the documentation for your workstation.

- Ensure that the switch has a route to the TFTP server. The switch and the TFTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the TFTP server by using the `ping` command.
• Ensure that the configuration file to be downloaded is in the correct directory on the TFTP server (usually /tftpboot on a UNIX workstation).

• For download operations, ensure that the permissions on the file are set correctly. The permission on the file should be world-read.

• Before uploading the configuration file, you might need to create an empty file on the TFTP server. To create an empty file, enter the touch filename command, where filename is the name of the file you will use when uploading it to the server.

• During upload operations, if you are overwriting an existing file (including an empty file, if you had to create one) on the server, ensure that the permissions on the file are set correctly. Permissions on the file should be world-write.

### Downloading the Configuration File By Using TFTP

To configure the switch by using a configuration file downloaded from a TFTP server, follow these steps:

**Step 1** Copy the configuration file to the appropriate TFTP directory on the workstation.

**Step 2** Verify that the TFTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using TFTP” section on page 1-11.

**Step 3** Log into the switch through the console port, the Ethernet management port, or a Telnet session.

**Step 4** Download the configuration file from the TFTP server to configure the switch.

Specify the IP address or hostname of the TFTP server and the name of the file to download.

Use one of these privileged EXEC commands:

- `copy tftp://location/directory/filename system:running-config`
- `copy tftp://location/directory/filename nvram:startup-config`
- `copy tftp://location/directory/filename flash[n]:/directory/startup-config`

**Note** You can only enter the flash[n] parameter (for example, flash3) on Catalyst 3750-E switches.

The configuration file downloads, and the commands are executed as the file is parsed line-by-line.

This example shows how to configure the software from the file tokyo-config at IP address 172.16.2.155:

```
Switch# copy tftp://172.16.2.155/tokyo-config system:running-config
Configure using tokyo-config from 172.16.2.155? [confirm] y
Booting tokyo-config from 172.16.2.155:!!! [OK - 874/16000 bytes]
```
Appendix 1  Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with Configuration Files

Uploading the Configuration File By Using TFTP

To upload a configuration file from a switch to a TFTP server for storage, follow these steps:

**Step 1**  Verify that the TFTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using TFTP” section on page 1-11.

**Step 2**  Log into the switch through the console port, the Ethernet management port, or a Telnet session.

**Step 3**  Upload the switch configuration to the TFTP server. Specify the IP address or hostname of the TFTP server and the destination filename.

Use one of these privileged EXEC commands:

- `copy system:running-config tftp://[location]/[directory]/[filename]`
- `copy nvram:startup-config tftp://[location]/[directory]/[filename]`
- `copy flash[n]:/directory/startup-config tftp://[location]/[directory]/[filename]`

**Note**  You can only enter the `flash[n]` parameter (for example, `flash3`) on Catalyst 3750-E switches.

The file is uploaded to the TFTP server.

This example shows how to upload a configuration file from a switch to a TFTP server:

```
Switch# copy system:running-config tftp://172.16.2.155/tokyo-config
Write file tokyo-config on host 172.16.2.155? [confirm] y
#
Writing tokyo-config!!! [OK]
```

Copying Configuration Files By Using FTP

You can copy configuration files to or from an FTP server.

The FTP protocol requires a client to send a remote username and password on each FTP request to a server. When you copy a configuration file from the switch to a server by using FTP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `copy` command if a username is specified.
- The username set by the `ip ftp username username` global configuration command if the command is configured.
- Anonymous.

The switch sends the first valid password in this list:

- The password specified in the `copy` command if a password is specified.
- The password set by the `ip ftp password password` global configuration command if the command is configured.
- The switch forms a password named `username@switchname.domain`. The variable `username` is the username associated with the current session, `switchname` is the configured hostname, and `domain` is the domain of the switch.
The username and password must be associated with an account on the FTP server. If you are writing to the server, the FTP server must be properly configured to accept your FTP write request.

Use the `ip ftp username` and `ip ftp password` commands to specify a username and password for all copies. Include the username in the `copy` command if you want to specify only a username for that copy operation.

If the server has a directory structure, the configuration file is written to or copied from the directory associated with the username on the server. For example, if the configuration file resides in the home directory of a user on the server, specify that user’s name as the remote username.

For more information, see the documentation for your FTP server.

These sections contain this configuration information:
- Preparing to Download or Upload a Configuration File By Using FTP, page 1-14
- Downloading a Configuration File By Using FTP, page 1-14
- Uploading a Configuration File By Using FTP, page 1-16

## Preparing to Download or Upload a Configuration File By Using FTP

Before you begin downloading or uploading a configuration file by using FTP, do these tasks:

- Ensure that the switch has a route to the FTP server. The switch and the FTP server must be in the same subnet if you do not have a router to route traffic between subnets. Check connectivity to the FTP server by using the `ping` command.

- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current FTP username is the one that you want to use for the FTP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new FTP username by using the `ip ftp username username` global configuration command during all copy operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the FTP username. Include the username in the `copy` command if you want to specify a username for only that copy operation.

- When you upload a configuration file to the FTP server, it must be properly configured to accept the write request from the user on the switch.

For more information, see the documentation for your FTP server.

## Downloading a Configuration File By Using FTP

Beginning in privileged EXEC mode, follow these steps to download a configuration file by using FTP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page 1-14.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode on the switch.</td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
</tbody>
</table>
This example shows how to copy a configuration file named `host1-confg` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 and to load and run those commands on the switch:

```plaintext
Switch# copy ftp://netadmin1:mypass@172.16.101.101/host1-confg system:running-config
Connected to 172.16.101.101
Loading 1112 byte file host1-confg:[OK]
%SYS-5-CONFIG: Configured from host1-config by ftp from 172.16.101.101
```

This example shows how to specify a remote username of `netadmin1`. The software copies the configuration file `host2-confg` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 to the switch startup configuration.

```plaintext
Switch# configure terminal
Switch(config)# ip ftp username netadmin1
Switch(config)# ip ftp password mypass
Switch(config)# end
Switch# copy ftp: nvram:startup-config
Address of remote host [255.255.255.255]? 172.16.101.101
Name of configuration file[rtr2-confg]? host2-confg
Configure using host2-confg from 172.16.101.101?[confirm]
Connected to 172.16.101.101
Loading 1112 byte file host2-confg:[OK]
%SYS-5-CONFIG_NV:Non-volatile store configured from host2-config by ftp from 172.16.101.101
```

### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ip ftp username &lt;username&gt;</td>
<td>(Optional) Change the default remote username.</td>
</tr>
<tr>
<td>5</td>
<td>ip ftp password &lt;password&gt;</td>
<td>(Optional) Change the default password.</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td>copy ftp://&lt;username&gt;:&lt;password&gt;@&lt;location&gt;/&lt;directory&gt;/&lt;filename&gt; system:running-config or copy ftp://&lt;username&gt;:&lt;password&gt;@&lt;location&gt;/&lt;directory&gt;/&lt;filename&gt; nvram:startup-config</td>
<td>Using FTP, copy the configuration file from a network server to the running configuration or to the startup configuration file.</td>
</tr>
</tbody>
</table>
Uploading a Configuration File By Using FTP

Beginning in privileged EXEC mode, follow these steps to upload a configuration file by using FTP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page 1-14.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>configure terminal Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip ftp username username (Optional) Change the default remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>ip ftp password password (Optional) Change the default password.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy system:running-config ftp://[[username]:password]@[location]/directory/filename Using FTP, store the switch running or startup configuration file to the specified location.</td>
</tr>
<tr>
<td>or</td>
<td>copy nvram:startup-config ftp://[[username]:password]@[location]/directory/filename</td>
</tr>
</tbody>
</table>

This example shows how to copy the running configuration file named switch2-confg to the netadmin1 directory on the remote host with an IP address of 172.16.101.101:

```
Switch# copy system:running-config ftp://netadmin1:mypass@172.16.101.101/switch2-confg
Write file switch2-confg on host 172.16.101.101?[confirm]
Building configuration...[OK]
Connected to 172.16.101.101
Switch#
```

This example shows how to store a startup configuration file on a server by using FTP to copy the file:

```
Switch# configure terminal
Switch(config)# ip ftp username netadmin2
Switch(config)# ip ftp password mypass
Switch(config)# end
Switch# copy nvram:startup-config ftp:
Remote host[]? 172.16.101.101
Name of configuration file to write [switch2-confg]?
Write file switch2-confg on host 172.16.101.101?[confirm]
! [OK]
```
Appendix 1      Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with Configuration Files

Copying Configuration Files By Using RCP

The RCP provides another method of downloading, uploading, and copying configuration files between remote hosts and the switch. Unlike TFTP, which uses User Datagram Protocol (UDP), a connectionless protocol, RCP uses TCP, which is connection-oriented.

To use RCP to copy files, the server from or to which you will be copying files must support RCP. The RCP copy commands rely on the rsh server (or daemon) on the remote system. To copy files by using RCP, you do not need to create a server for file distribution as you do with TFTP. You only need to have access to a server that supports the remote shell (rsh). (Most UNIX systems support rsh.) Because you are copying a file from one place to another, you must have read permission on the source file and write permission on the destination file. If the destination file does not exist, RCP creates it for you.

The RCP requires a client to send a remote username with each RCP request to a server. When you copy a configuration file from the switch to a server, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `copy` command if a username is specified.
- The username set by the `ip rcmd remote-username username` global configuration command if the command is configured.
- The remote username associated with the current TTY (terminal) process. For example, if the user is connected to the router through Telnet and was authenticated through the `username` command, the switch software sends the Telnet username as the remote username.
- The switch hostname.

For a successful RCP copy request, you must define an account on the network server for the remote username. If the server has a directory structure, the configuration file is written to or copied from the directory associated with the remote username on the server. For example, if the configuration file is in the home directory of a user on the server, specify that user's name as the remote username.

These sections contain this configuration information:

- Preparing to Download or Upload a Configuration File By Using RCP, page 1-17
- Downloading a Configuration File By Using RCP, page 1-18
- Uploading a Configuration File By Using RCP, page 1-19

Preparing to Download or Upload a Configuration File By Using RCP

Before you begin downloading or uploading a configuration file by using RCP, do these tasks:

- Ensure that the workstation acting as the RCP server supports the remote shell (rsh).
- Ensure that the switch has a route to the RCP server. The switch and the server must be in the same subnet if you do not have a router to route traffic between subnets. Check connectivity to the RCP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current RCP username is the one that you want to use for the RCP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new RCP username by using the `ip rcmd remote-username username` global configuration command to be used during all copy operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the RCP username. Include the username in the `copy` command if you want to specify a username for only that copy operation.
Appendix 1  Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with Configuration Files

- When you upload a file to the RCP server, it must be properly configured to accept the RCP write request from the user on the switch. For UNIX systems, you must add an entry to the .rhosts file for the remote user on the RCP server. For example, suppose that the switch contains these configuration lines:

  hostname Switch1
  ip rcmd remote-username User0

  If the switch IP address translates to Switch1.company.com, the .rhosts file for User0 on the RCP server should contain this line:

  Switch1.company.com Switch1

  For more information, see the documentation for your RCP server.

Downloading a Configuration File By Using RCP

Beginning in privileged EXEC mode, follow these steps to download a configuration file by using RCP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using RCP” section on page 1-17.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>configure terminal Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip rcmd remote-username <em>username</em> (Optional) Specify the remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy rcp:////[username@]location[/directory[/filename]] system:running-config Using RCP, copy the configuration file from a network server to the running configuration or to the startup configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to copy a configuration file named *host1-config* from the *netadmin1* directory on the remote server with an IP address of 172.16.101.101 and load and run those commands on the switch:

```
Switch# copy rcp://netadmin1@172.16.101.101/host1-config system:running-config
Configure using host1-config from 172.16.101.101? [confirm]
Connected to 172.16.101.101
Loading 1112 byte file host1-config: [OK]
Switch#
%SYS-5-CONFIG: Configured from host1-config by rcp from 172.16.101.101
```
This example shows how to specify a remote username of netadmin1. Then it copies the configuration file host2-config from the netadmin1 directory on the remote server with an IP address of 172.16.101.101 to the startup configuration:

```
Switch# configure terminal
Switch(config)# ip rcmd remote-username netadmin1
Switch(config)# end
Switch# copy rcp: nvram:startup-config
Address of remote host [255.255.255.255]?
Name of configuration file[rtr2-config]? host2-config
Configure using host2-config from 172.16.101.101?[confirm]
Connected to 172.16.101.101
Loading 1112 byte file host2-config:![OK]
[OK]
Switch#
%SYS-5-CONFIG_NV:Non-volatile store configured from host2-config by rcp from 172.16.101.101
```

### Uploading a Configuration File By Using RCP

Beginning in privileged EXEC mode, follow these steps to upload a configuration file by using RCP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using RCP” section on page 1-17.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Specify the remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Using RCP, copy the configuration file from a switch running or startup configuration file to a network server.</td>
</tr>
</tbody>
</table>

This example shows how to copy the running configuration file named switch2-config to the netadmin1 directory on the remote host with an IP address of 172.16.101.101:

```
Switch# copy system:running-config rcp://netadmin1@172.16.101.101/switch2-config
Write file switch-config on host 172.16.101.101?[confirm]
Building configuration...[OK]
Connected to 172.16.101.101
Switch#
```
This example shows how to store a startup configuration file on a server:

Switch# configure terminal
Switch(config)# ip rcmd remote-username netadmin2
Switch(config)# end
Switch# copy nvram:startup-config rcp:
Remote host[]? 172.16.101.101
Name of configuration file to write [switch2-config]?
Write file switch2-config on host 172.16.101.101?[confirm]
|OK|

Clearing Configuration Information

You can clear the configuration information from the startup configuration. If you reboot the switch with no startup configuration, the switch enters the setup program so that you can reconfigure the switch with all new settings.

Clearing the Startup Configuration File

To clear the contents of your startup configuration, use the `erase nvram:` or the `erase startup-config` privileged EXEC command.

⚠️ Caution

You cannot restore the startup configuration file after it has been deleted.

Deleting a Stored Configuration File

To delete a saved configuration from flash memory, use the `delete flash:filename` privileged EXEC command. Depending on the setting of the `file prompt` global configuration command, you might be prompted for confirmation before you delete a file. By default, the switch prompts for confirmation on destructive file operations. For more information about the `file prompt` command, see the Cisco IOS Command Reference for Release 12.4.

⚠️ Caution

You cannot restore a file after it has been deleted.

Replacing and Rolling Back Configurations

The configuration replacement and rollback feature replaces the running configuration with any saved Cisco IOS configuration file. You can use the rollback function to roll back to a previous configuration.

- Understanding Configuration Replacement and Rollback, page 1-21
- Configuration Guidelines, page 1-22
- Configuring the Configuration Archive, page 1-23
- Performing a Configuration Replacement or Rollback Operation, page 1-23
Understanding Configuration Replacement and Rollback

- Archiving a Configuration, page 1-21
- Replacing a Configuration, page 1-21
- Rolling Back a Configuration, page 1-22

Archiving a Configuration

The configuration archive provides a mechanism to store, organize, and manage an archive of configuration files. The `configure replace` privileged EXEC command increases the configuration rollback capability. As an alternative, you can save copies of the running configuration by using the `copy running-config destination-url` privileged EXEC command, storing the replacement file either locally or remotely. However, this method lacks any automated file management. The configuration replacement and rollback feature can automatically save copies of the running configuration to the configuration archive.

You use the `archive config` privileged EXEC command to save configurations in the configuration archive by using a standard location and filename prefix that is automatically appended with an incremental version number (and optional timestamp) as each consecutive file is saved. You can specify how many versions of the running configuration are kept in the archive. After the maximum number of files are saved, the oldest file is automatically deleted when the next, most recent file is saved. The `show archive` privileged EXEC command displays information for all the configuration files saved in the configuration archive.

The Cisco IOS configuration archive, in which the configuration files are stored and available for use with the `configure replace` command, is in any of these file systems: FTP, HTTP, RCP, TFTP.

Replacing a Configuration

The `configure replace` privileged EXEC command replaces the running configuration with any saved configuration file. When you enter the `configure replace` command, the running configuration is compared with the specified replacement configuration, and a set of configuration differences is generated. The resulting differences are used to replace the configuration. The configuration replacement operation is usually completed in no more than three passes. To prevent looping behavior no more than five passes are performed.

You can use the `copy source-url running-config` privileged EXEC command to copy a stored configuration file to the running configuration. When using this command as an alternative to the `configure replace target-url` privileged EXEC command, note these major differences:

- The `copy source-url running-config` command is a merge operation and preserves all the commands from both the source file and the running configuration. This command does not remove commands from the running configuration that are not present in the source file. In contrast, the `configure replace target-url` command removes commands from the running configuration that are not present in the replacement file and adds commands to the running configuration that are not present.
- You can use a partial configuration file as the source file for the `copy source-url running-config` command. You must use a complete configuration file as the replacement file for the `configure replace target-url` command.
Rolling Back a Configuration

You can also use the `configure replace` command to roll back changes that were made since the previous configuration was saved. Instead of basing the rollback operation on a specific set of changes that were applied, the configuration rollback capability reverts to a specific configuration based on a saved configuration file.

If you want the configuration rollback capability, you must first save the running configuration before making any configuration changes. Then, after entering configuration changes, you can use that saved configuration file to roll back the changes by using the `configure replace target-url` command.

You can specify any saved configuration file as the rollback configuration. You are not limited to a fixed number of rollbacks, as is the case in some rollback models.

Configuration Guidelines

Follow these guidelines when configuring and performing configuration replacement and rollback:

- Make sure that the switch has free memory larger than the combined size of the two configuration files (the running configuration and the saved replacement configuration). Otherwise, the configuration replacement operation fails.
- Make sure that the switch also has sufficient free memory to execute the configuration replacement or rollback configuration commands.
- Certain configuration commands, such as those pertaining to physical components of a networking device (for example, physical interfaces), cannot be added or removed from the running configuration.
  - A configuration replacement operation cannot remove the `interface interface-id` command line from the running configuration if that interface is physically present on the device.
  - The `interface interface-id` command line cannot be added to the running configuration if no such interface is physically present on the device.
- When using the `configure replace` command, you must specify a saved configuration as the replacement configuration file for the running configuration. The replacement file must be a complete configuration generated by a Cisco IOS device (for example, a configuration generated by the `copy running-config destination-url` command).

Note: If you generate the replacement configuration file externally, it must comply with the format of files generated by Cisco IOS devices.
Configuring the Configuration Archive

Using the `configure replace` command with the configuration archive and with the `archive config` command is optional but offers significant benefit for configuration rollback scenarios. Before using the `archive config command`, you must first configure the configuration archive. Starting in privileged EXEC mode, follow these steps to configure the configuration archive:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 archive</td>
<td>Enter archive configuration mode.</td>
</tr>
<tr>
<td>Step 3 path <code>url</code></td>
<td>Specify the location and filename prefix for the files in the configuration archive.</td>
</tr>
</tbody>
</table>
| Step 4 maximum `number` | (Optional) Set the maximum number of archive files of the running configuration to be saved in the configuration archive.  
  `number`—Maximum files of the running configuration file in the configuration archive. Valid values are from 1 to 14. The default is 10.  
  Note Before using this command, you must first enter the `path archive` configuration command to specify the location and filename prefix for the files in the configuration archive. |
| Step 5 time-period `minutes` | (Optional) Set the time increment for automatically saving an archive file of the running configuration in the configuration archive.  
  `minutes`—Specify how often, in minutes, to automatically save an archive file of the running configuration in the configuration archive. |
| Step 6 end | Return to privileged EXEC mode.                                      |
| Step 7 show running-config | Verify the configuration.                                           |
| Step 8 copy running-config startup-config | (Optional) Save your entries in the configuration file.          |

Performing a Configuration Replacement or Rollback Operation

Starting in privileged EXEC mode, follow these steps to replace the running configuration file with a saved configuration file:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 archive config | (Optional) Save the running configuration file to the configuration archive.  
  Note Enter the `path archive` configuration command before using this command.  |
| Step 2 configure terminal | Enter global configuration mode.                                        |
| Step 3           | Make necessary changes to the running configuration.                     |
| Step 4 exit      | Return to privileged EXEC mode.                                      |
Working with Configuration Files

### Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `configure replace target-url [list] [force] [time seconds] [nolock]` | Replace the running configuration file with a saved configuration file.  
  `target-url`—URL (accessible by the file system) of the saved configuration file that is to replace the running configuration, such as the configuration file created in Step 2 by using the `archive config` privileged EXEC command.  
  `list`—Display a list of the command entries applied by the software parser during each pass of the configuration replacement operation. The total number of passes also appears.  
  `force`—Replace the running configuration file with the specified saved configuration file without prompting you for confirmation.  
  `time seconds`—Specify the time (in seconds) within which you must enter the `configure confirm` command to confirm replacement of the running configuration file. If you do not enter the `configure confirm` command within the specified time limit, the configuration replacement operation is automatically stopped. (In other words, the running configuration file is restored to the configuration that existed before you entered the `configure replace` command).  
  `nolock`—Disable the locking of the running configuration file that prevents other users from changing the running configuration during a configuration replacement operation.  

**Note** You must first enable the configuration archive before you can use the `time seconds` command line option.

### Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `configure confirm` | (Optional) Confirm replacement of the running configuration with a saved configuration file.  
  **Note** Use this command only if the `time seconds` keyword and argument of the `configure replace` command are specified. |

### Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Working with Software Images

This section describes how to archive (download and upload) software image files, which contain the system software, the Cisco IOS code, and the embedded device manager software.

Instead of using the copy privileged EXEC command or the archive tar privileged EXEC command, we recommend using the archive download-sw and archive upload-sw privileged EXEC commands to download and upload software image files. For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

When a power stack contains members without a PSU, use the archive download-sw /force-ucode-reload privileged EXEC command to download software image files.

To upgrade a switch with an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

You can download a switch image file from a TFTP, FTP, or RCP server to upgrade the switch software. If you do not have access to a TFTP server, you can download a software image file directly to your PC or workstation by using a web browser (HTTP) and then by using the device manager or Cisco Network Assistant to upgrade your switch. For information about upgrading your switch by using a TFTP server or a web browser (HTTP), see the release notes.

You can replace the current image with the new one or keep the current image in flash memory after a download.

You can use the archive download-sw /allow-feature-upgrade privileged EXEC command to allow installation of an image with a different feature set, for example, upgrading from the universal image to the IP services feature set. You can also use the boot auto-download-sw global configuration command to specify a URL to use to get an image for automatic software upgrades. When you enter this command, the master switch uses this URL in case of a version mismatch.

You upload a switch image file to a TFTP, FTP, or RCP server for backup purposes. You can use this uploaded image for future downloads to the same switch or to another of the same type.

The protocol that you use depends on which type of server you are using. The FTP and RCP transport mechanisms provide faster performance and more reliable delivery of data than TFTP. These improvements are possible because FTP and RCP are built on and use the TCP/IP stack, which is connection-oriented.

These sections contain this configuration information:

- Image Location on the Switch, page 1-26
- File Format of Images on a Server or Cisco.com, page 1-26
- Copying Image Files By Using TFTP, page 1-27
- Copying Image Files By Using FTP, page 1-31
- Copying Image Files By Using RCP, page 1-35
- Copying an Image File from One Stack Member to Another, page 1-39
- Software for the Network Services Module Software, page 1-40
Note

For a list of software images and the supported upgrade paths, see the release notes.

Image Location on the Switch

The Cisco IOS image is stored as a .bin file in a directory that shows the version number. A subdirectory contains the files needed for web management. The image is stored on the system board flash memory (flash:).

You can use the show version privileged EXEC command to see the software version that is currently running on your switch. In the display, check the line that begins with System image file is.... It shows the directory name in flash memory where the image is stored.

You can also use the dir filesystem: privileged EXEC command to see the directory names of other software images that you might have stored in flash memory. You can use the archive download-sw /directory privileged EXEC command to specify a directory once followed by a tar file or list of tar files to be downloaded instead of specifying complete paths with each tar file. For example, in a mixed hardware stack, you can enter archive download-sw /directory tftp://10.1.1.10/c3750-ipservices-tar.122-35.SE.tar c3750e-universal-tar.122-35.SE2.tar.

File Format of Images on a Server or Cisco.com

Software images on a server or downloaded from Cisco.com are in a file format, which contains these files:

- An info file, which serves as a table of contents for the file
- One or more subdirectories containing other images and files, such as Cisco IOS images and web management files

This example shows some of the information contained in an info file. Table 1-3 provides additional details about this information:

```
system_type:0x00000000:c3750e-universal-mz.122-35.SE2
image_family:C3750E
stacking_number:1.9
info_end:
version_suffix:universal-mz.122-35.SE2
version_directory:c3750e-universal-mz.122-35.SE2.bin
image_system_type_id:0x00000000
image_name:c3750e-universal-mz.122-35.SE2.bin
ios_image_file_size:6398464
total_image_file_size:8133632
image_feature:IP|LAYER_3|PLUS|MIN_DRAM_MEG=128
image_family:C3750E
stacking_number:1.9
board_ids:0x401100c4 0x00000000 0x00000001 0x00000000 0x00000002 0x00000000 0x00008000 0x40110000
info_end:
```

Note

On Catalyst 3560-E Catalyst 3560-X switches, the stacking_number field does not apply to the switch.
### Appendix 1
Working with the Cisco IOS File System, Configuration Files, and Software Images

#### Working with Software Images

#### Copying Image Files By Using TFTP

You can download a switch image from a TFTP server or upload the image from the switch to a TFTP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes; this uploaded image can be used for future downloads to the same or another switch of the same type.

Instead of using the `copy` privileged EXEC command or the `archive tar` privileged EXEC command, we recommend using the `archive download-sw` and `archive upload-sw` privileged EXEC commands to download and upload software image files. For switch stacks, the `archive download-sw` and `archive upload-sw` privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the `archive copy-sw` privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

These sections contain this configuration information:

- Preparing to Download or Upload an Image File By Using TFTP, page 1-28
- Downloading an Image File By Using TFTP, page 1-28
-Uploading an Image File By Using TFTP, page 1-30

### Table 1-3

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version_suffix</td>
<td>Specifies the Cisco IOS image version string suffix</td>
</tr>
<tr>
<td>version_directory</td>
<td>Specifies the directory where the Cisco IOS image and the HTML subdirectory are installed</td>
</tr>
<tr>
<td>image_name</td>
<td>Specifies the name of the Cisco IOS image in the file</td>
</tr>
<tr>
<td>ios_image_file_size</td>
<td>Specifies the Cisco IOS image size in the file, which is an approximate measure of the flash memory that the Cisco IOS image needs.</td>
</tr>
<tr>
<td>total_image_file_size</td>
<td>Specifies the size of all the images (the Cisco IOS image and the web management files) in the file, which is an approximate measure of the flash memory needed.</td>
</tr>
<tr>
<td>image_feature</td>
<td>Describes the core functionality of the image</td>
</tr>
<tr>
<td>image_min_dram</td>
<td>Specifies the minimum amount of DRAM needed to run this image</td>
</tr>
<tr>
<td>image_family</td>
<td>Describes the family of products on which the software can be installed</td>
</tr>
</tbody>
</table>
Preparing to Download or Upload an Image File By Using TFTP

Before you begin downloading or uploading an image file by using TFTP, do these tasks:

- Ensure that the workstation acting as the TFTP server is properly configured. On a Sun workstation, make sure that the /etc/inetd.conf file contains this line:
  
  tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -p -s /tftpboot

  Make sure that the /etc/services file contains this line:
  
  tftp 69/udp

  **Note** You must restart the inetd daemon after modifying the /etc/inetd.conf and /etc/services files. To restart the daemon, either stop the inetd process and restart it, or enter a `fastboot` command (on the SunOS 4.x) or a `reboot` command (on Solaris 2.x or SunOS 5.x). For more information on the TFTP daemon, see the documentation for your workstation.

- Ensure that the switch has a route to the TFTP server. The switch and the TFTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the TFTP server by using the `ping` command.

- Ensure that the image to be downloaded is in the correct directory on the TFTP server (usually /tftpboot on a UNIX workstation).

- For download operations, ensure that the permissions on the file are set correctly. The permission on the file should be world-read.

- Before uploading the image file, you might need to create an empty file on the TFTP server. To create an empty file, enter the `touch filename` command, where `filename` is the name of the file you will use when uploading the image to the server.

- During upload operations, if you are overwriting an existing file (including an empty file, if you had to create one) on the server, ensure that the permissions on the file are set correctly. Permissions on the file should be world-write.

Downloading an Image File By Using TFTP

You can download a new image file and replace the current image or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 3 to download a new image from a TFTP server and to overwrite the existing image. To keep the current image, follow Steps 1, 2, and 4.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Copy the image to the appropriate TFTP directory on the workstation. Make sure the TFTP server is properly configured; see the “Preparing to Download or Upload an Image File By Using TFTP” section on page 1-28.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
</tbody>
</table>
### Working with Software Images

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the `/overwrite` option, the download algorithm removes the existing image on the flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

#### Step 3

**archive download-sw**

`/allow-feature-upgrade [/[directory]]`  
`/overwrite` `/reload`  
`tftp://[//location]/directory/image-name1.tar`  
`[image-name2.tar image-name3.tar image-name4.tar]`

(Optional) Download the image files from the TFTP server to the switch, and overwrite the current image.

- The `/allow-feature-upgrade` option allows installation of a software images with different feature sets.
- (Optional) The `/directory` option specifies a directory for the images.
- The `/overwrite` option overwrites the software image in flash memory with the downloaded image.
- The `/reload` option reloads the system after downloading the image unless the configuration has been changed and not been saved.
- For `/location`, specify the IP address of the TFTP server.
- For `/directory/image-name1.tar` `/directory/image-name2.tar image-name3.tar image-name4.tar`, specify the directory (optional) and the images to download. Directory and image names are case sensitive.

#### Step 4

**archive download-sw**  
`/[directory]`  
`/leave-old-sw` `/reload`  
`tftp://[//location]/directory/image-name1.tar`  
`[image-name2.tar image-name3.tar image-name4.tar]`

(Optional) Download the images file from the TFTP server to the switch, and keep the current image.

- (Optional) The `/directory` option specifies a directory for the images.
- The `/leave-old-sw` option keeps the old software version after a download.
- The `/reload` option reloads the system after downloading the image unless the configuration has been changed and not been saved.
- For `/location`, specify the IP address of the TFTP server.
- For `/directory/image-name1.tar` `/directory/image-name2.tar image-name3.tar image-name4.tar`, specify the directory (optional) and the images to download. Directory and image names are case sensitive.

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the `/overwrite` option, the download algorithm removes the existing image on the flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

#### Note

If the flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the `/overwrite` option.

If you specify the `/leave-old-sw`, the existing files are not removed. If there is not enough space to install the new image and keep the current running image, the download process stops, and an error message is displayed.
The algorithm installs the downloaded image on the system board flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old image during the download process (you specified the /leave-old-sw keyword), you can remove it by entering the delete /force /recursive filesystem:file-url privileged EXEC command. For filesystem, use flash: for the system board flash device. For file-url, enter the directory name of the old image. All the files in the directory and the directory are removed.

⚠️ **Caution**

For the download and upload algorithms to operate properly, do not rename image names.

### Uploading an Image File By Using TFTP

You can upload an image from the switch to a TFTP server. You can later download this image to the switch or to another switch of the same type.

Use the upload feature only if the web management pages associated with the embedded device manager have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to a TFTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Make sure the TFTP server is properly configured; see the “Preparing to Download or Upload an Image File By Using TFTP” section on page 1-28.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
<tr>
<td>Step 3 archive upload-sw</td>
<td>Upload the currently running switch image to the TFTP server.</td>
</tr>
</tbody>
</table>
| tftp://[//location]/directory/image-name.tar | • For //location, specify the IP address of the TFTP server.  
  • For /directory/image-name.tar, specify the directory (optional) and the name of the software image to be uploaded. Directory and image names are case sensitive. The image-name.tar is the name of the software image to be stored on the server. |

The **archive upload-sw** privileged EXEC command builds an image file on the server by uploading these files in order: info, the Cisco IOS image, and the web management files. After these files are uploaded, the upload algorithm creates the file format.

⚠️ **Caution**

For the download and upload algorithms to operate properly, do not rename image names.
Appendix 1 Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with Software Images

Copying Image Files By Using FTP

You can download a switch image from an FTP server or upload the image from the switch to an FTP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes. You can use this uploaded image for future downloads to the switch or another switch of the same type.

Note

Instead of using the copy privileged EXEC command or the archive tar privileged EXEC command, we recommend using the archive download-sw and archive upload-sw privileged EXEC commands to download and upload software image files. For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

These sections contain this configuration information:

- Preparing to Download or Upload an Image File By Using FTP, page 1-31
- Downloading an Image File By Using FTP, page 1-32
- Uploading an Image File By Using FTP, page 1-34

Preparing to Download or Upload an Image File By Using FTP

You can copy images files to or from an FTP server.

The FTP protocol requires a client to send a remote username and password on each FTP request to a server. When you copy an image file from the switch to a server by using FTP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the archive download-sw or archive upload-sw privileged EXEC command if a username is specified.
- The username set by the ip ftp username username global configuration command if the command is configured.
- Anonymous.

The switch sends the first valid password in this list:

- The password specified in the archive download-sw or archive upload-sw privileged EXEC command if a password is specified.
- The password set by the ip ftp password password global configuration command if the command is configured.
- The switch forms a password named username@switchname.domain. The variable username is the username associated with the current session, switchname is the configured hostname, and domain is the domain of the switch.

The username and password must be associated with an account on the FTP server. If you are writing to the server, the FTP server must be properly configured to accept the FTP write request from you.
Use the `ip ftp username` and `ip ftp password` commands to specify a username and password for all copies. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username only for that operation.

If the server has a directory structure, the image file is written to or copied from the directory associated with the username on the server. For example, if the image file resides in the home directory of a user on the server, specify that user's name as the remote username.

Before you begin downloading or uploading an image file by using FTP, do these tasks:

- Ensure that the switch has a route to the FTP server. The switch and the FTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the FTP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current FTP username is the one that you want to use for the FTP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new FTP username by using the `ip ftp username username` global configuration command. This new name will be used during all archive operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the FTP username. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username for that operation only.
- When you upload an image file to the FTP server, it must be properly configured to accept the write request from the user on the switch.

For more information, see the documentation for your FTP server.

### Downloading an Image File By Using FTP

You can download a new image file and overwrite the current image or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 7 to download a new image from an FTP server and to overwrite the existing image. To keep the current image, follow Steps 1 to 6 and Step 8.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using FTP” section on page 1-31.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>ip ftp username username</code> (Optional) Change the default remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>ip ftp password password</code> (Optional) Change the default password.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
### Working with Software Images

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the `/overwrite` option, the download algorithm removes the existing image on the flash device, whether or not it is the same as the new one, downloads the new image, and then reloads the software.

#### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>archive download-sw /allow-feature-upgrade [/directory] /overwrite /reload tftp://[//location]/directory/image-name1.tar [image-name2.tar image-name3.tar image-name4.tar]</td>
<td>(Optional) Download the image files from the FTP server to the switch, and overwrite the current image.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>/allow-feature-upgrade</code> option allows installation of a software image with a different feature set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) The <code>/directory</code> option specifies a directory for the images.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>/overwrite</code> option overwrites the software image in flash memory with the downloaded image.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>/reload</code> option reloads the system after downloading the image unless the configuration has been changed and not been saved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>//username[:password]</code>, specify the username and password; these must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page 1-31.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>@location</code>, specify the IP address of the FTP server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>/directory/image-name1.tar [image-name2.tar image-name3.tar image-name4.tar]</code>, specify the directory (optional) and the images to download. Directory and image names are case sensitive.</td>
</tr>
<tr>
<td>8</td>
<td>archive download-sw [/directory] /leave-old-sw /reload tftp://[//location]/directory/image-name1.tar [image-name2.tar image-name3.tar image-name4.tar]</td>
<td>(Optional) Download the image files from the FTP server to the switch, and keep the current image.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) The <code>/directory</code> option specifies a directory for the images.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>/leave-old-sw</code> option keeps the old software version after a download.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>/reload</code> option reloads the system after downloading the image unless the configuration has been changed and not been saved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>//username[:password]</code>, specify the username and password. These must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page 1-31.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>@location</code>, specify the IP address of the FTP server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>/directory/image-name.tar</code>, specify the directory and the image to download. Directory and image names are case sensitive.</td>
</tr>
</tbody>
</table>
Note

If the flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the `/overwrite` option.

If you specify the `/leave-old-sw`, the existing files are not removed. If there is not enough space to install the new image and keep the running image, the download process stops, and an error message is displayed.

The algorithm installs the downloaded image onto the system board flash device (`flash:`). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old image during the download process (you specified the `/leave-old-sw` keyword), you can remove it by entering the `delete /force /recursive filesystem:file-url` privileged EXEC command. For `filesystem`, use `flash:` for the system board flash device. For `file-url`, enter the directory name of the old software image. All the files in the directory and the directory are removed.

Caution

For the download and upload algorithms to operate properly, do not rename image names.

Uploading an Image File By Using FTP

You can upload an image from the switch to an FTP server. You can later download this image to the same switch or to another switch of the same type.

Use the upload feature only if the web management pages associated with the embedded device manager have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to an FTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page 1-14.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port, the Ethernet management port, or remotely through a Telnet session by using the IP address of the Ethernet management port.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>ip ftp username username</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Change the default remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>ip ftp password password</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Change the default password.</td>
</tr>
</tbody>
</table>
Step 6

**Command**

```
end
```

**Purpose**

Return to privileged EXEC mode.

---

Step 7

**Command**

```
archive upload-sw
ftp://[//username:password@]location/directory/image-name.tar.
```

**Purpose**

Upload the currently running switch image to the FTP server.

- For `//username:password`, specify the username and password. These must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page 1-31.
- For `@location`, specify the IP address of the FTP server.
- For `directory/image-name.tar`, specify the directory and the name of the software image to be uploaded. Directory and image names are case sensitive. The `image-name.tar` is the name of the software image to be stored on the server.

---

The **archive upload-sw** command builds an image file on the server by uploading these files in order: info, the Cisco IOS image, and the web management files. After these files are uploaded, the upload algorithm creates the file format.

---

**Caution**

For the download and upload algorithms to operate properly, do **not** rename image names.

---

### Copying Image Files By Using RCP

You can download a switch image from an RCP server or upload the image from the switch to an RCP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes. You can use this uploaded image for future downloads to the same switch or another of the same type.

---

**Note**

Instead of using the **copy** privileged EXEC command or the **archive tar** privileged EXEC command, we recommend using the **archive download-sw** and **archive upload-sw** privileged EXEC commands to download and upload software image files. For switch stacks, the **archive download-sw** and **archive upload-sw** privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the **archive copy-sw** privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

---

These sections contain this configuration information:

- **Preparing to Download or Upload an Image File By Using RCP**, page 1-36
- **Downloading an Image File By Using RCP**, page 1-37
- **Uploading an Image File By Using RCP**, page 1-38
Preparing to Download or Upload an Image File By Using RCP

RCP provides another method of downloading and uploading image files between remote hosts and the switch. Unlike TFTP, which uses User Datagram Protocol (UDP), a connectionless protocol, RCP uses TCP, which is connection-oriented.

To use RCP to copy files, the server from or to which you will be copying files must support RCP. The RCP copy commands rely on the rsh server (or daemon) on the remote system. To copy files by using RCP, you do not need to create a server for file distribution as you do with TFTP. You only need to have access to a server that supports the remote shell (rsh). (Most UNIX systems support rsh.) Because you are copying a file from one place to another, you must have read permission on the source file and write permission on the destination file. If the destination file does not exist, RCP creates it for you.

RCP requires a client to send a remote username on each RCP request to a server. When you copy an image from the switch to a server by using RCP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `archive download-sw` or `archive upload-sw` privileged EXEC command if a username is specified.
- The username set by the `ip rcmd remote-username username` global configuration command if the command is entered.
- The remote username associated with the current TTY (terminal) process. For example, if the user is connected to the router through Telnet and was authenticated through the `username` command, the switch software sends the Telnet username as the remote username.
- The switch hostname.

For the RCP copy request to execute successfully, an account must be defined on the network server for the remote username. If the server has a directory structure, the image file is written to or copied from the directory associated with the remote username on the server. For example, if the image file resides in the home directory of a user on the server, specify that user's name as the remote username.

Before you begin downloading or uploading an image file by using RCP, do these tasks:

- Ensure that the workstation acting as the RCP server supports the remote shell (rsh).
- Ensure that the switch has a route to the RCP server. The switch and the server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the RCP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current RCP username is the one that you want to use for the RCP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new RCP username by using the `ip rcmd remote-username username` global configuration command to be used during all archive operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and there is no need to set the RCP username. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username only for that operation.
- When you upload an image to the RCP to the server, it must be properly configured to accept the RCP write request from the user on the switch. For UNIX systems, you must add an entry to the .rhosts file for the remote user on the RCP server. For example, suppose the switch contains these configuration lines:

  ```
 hostname Switch1
 ip rcmd remote-username User0
  ```
If the switch IP address translates to Switch1.company.com, the .rhosts file for User0 on the RCP server should contain this line:

Switch1.company.com Switch1

For more information, see the documentation for your RCP server.

### Downloading an Image File By Using RCP

You can download a new image file and replace or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 6 to download a new image from an RCP server and overwrite the existing image. To keep the current image, go to Step 6.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using RCP” section on page 1-36.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
<tr>
<td>Step 3 configure terminal</td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td>Step 4 ip rcmd remote-username username</td>
<td>(Optional) Specify the remote username.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 download-sw /allow-feature-upgrade /directory /overwrite /reload tftp://@location/directory/image-name1.tar [image-name2.tar image-name3.tar image-name4.tar]</td>
<td>Download the images file from the RCP server to the switch and overwrite the current image.</td>
</tr>
<tr>
<td></td>
<td>• The /allow-feature-upgrade allows installation of a software image with a different feature set.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) The /directory option specifies a directory for the images.</td>
</tr>
<tr>
<td></td>
<td>• The /overwrite option overwrites the software image in flash memory with the downloaded image.</td>
</tr>
<tr>
<td></td>
<td>• The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.</td>
</tr>
<tr>
<td></td>
<td>• For Username, specify the username. For the RCP copy request to execute successfully, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page 1-36.</td>
</tr>
<tr>
<td></td>
<td>• For @location, specify the IP address of the RCP server.</td>
</tr>
<tr>
<td></td>
<td>• For /directory/image-name1.tar [/directory/image-name2.tar image-name3.tar image-name4.tar], specify the directory (optional) and the images to download. Directory and image names are case sensitive.</td>
</tr>
</tbody>
</table>
The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the /overwrite option, the download algorithm removes the existing image on the flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

The download algorithm removes the existing image on the flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

### Downloading an Image File By Using RCP

#### Command

```shell
archive download-sw [/directory] /leave-old-sw /reload tftp://[//location][directory]/image-name1.tar [image-name2.tar image-name3.tar image-name4.tar]
```

#### Purpose

Download the images file from the RCP server to the switch and keep the current image.

- (Optional) The `/directory` option specifies a directory for the images.
- The `/leave-old-sw` option keeps the old software version after a download.
- The `/reload` option reloads the system after downloading the image unless the configuration has been changed and not been saved.
- For `//username`, specify the username. For the RCP copy request to execute, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page 1-36.
- For `@location`, specify the IP address of the RCP server.
- For `//directory/image-name1.tar [//directory/image-name2.tar image-name3.tar image-name4.tar]`, specify the directory (optional) and the images to download. Directory and image names are case sensitive.

If the flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the `/overwrite` option.

If you specify the `/leave-old-sw`, the existing files are not removed. If there is not enough room to install the new image an keep the running image, the download process stops, and an error message is displayed.

The algorithm installs the downloaded image onto the system board flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old software during the download process (you specified the `/leave-old-sw` keyword), you can remove it by entering the `delete /force /recursive filesystem://file-url` privileged EXEC command. For `filesystem`, use `flash:` for the system board flash device. For `file-url`, enter the directory name of the old software image. All the files in the directory and the directory are removed.

### Caution

For the download and upload algorithms to operate properly, do not rename image names.

**Uploading an Image File By Using RCP**

You can upload an image from the switch to an RCP server. You can later download this image to the same switch or to another switch of the same type.
The upload feature should be used only if the web management pages associated with the embedded device manager have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to an RCP server:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using RCP” section on page 1-36.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(Optional) Specify the remote username.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Upload the currently running switch image to the RCP server.</td>
<td></td>
</tr>
</tbody>
</table>

The archive upload-sw privileged EXEC command builds an image file on the server by uploading these files in order: info, the Cisco IOS image, and the web management files. After these files are uploaded, the upload algorithm creates the file format.

Caution
For the download and upload algorithms to operate properly, do not rename image names.

Copying an Image File from One Stack Member to Another

For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can be used only through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch that has an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the one that has incompatible software. That switch automatically reloads and joins the stack as a fully functioning member.
Appendix 1      Working with the Cisco IOS File System, Configuration Files, and Software Images

Note  
To use the archive copy-sw privileged EXEC command, you must have downloaded from a TFTP server the images for both the stack member switch being added and the stack master. You use the archive download-sw privileged EXEC command to perform the download.

Beginning in privileged EXEC mode from the stack member that you want to upgrade, follow these steps to copy the running image file from the flash memory of a different stack member:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>archive copy-sw /destination-system destination-stack-member-number /force-reload source-stack-member-number</td>
<td>Copy the running image file from a stack member, and then unconditionally reload the updated stack member.</td>
</tr>
<tr>
<td>Note</td>
<td>At least one stack member must be running the image that is to be copied to the switch that is running the incompatible software.</td>
</tr>
<tr>
<td>For/destination-system destination-stack-member-number, specify the number of the stack member (the destination) to which to copy the source running image file. If you do not specify this stack member number, the default is to copy the running image file to all stack members.</td>
<td></td>
</tr>
<tr>
<td>Specify /force-reload to unconditionally force a system reload after the software image downloads.</td>
<td></td>
</tr>
<tr>
<td>For source-stack-member-number, specify the number of the stack member (the source) from which to copy the running image file. The stack member number range is 1 to 9.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>reload slot stack-member-number</td>
<td>Reset the updated stack member, and put this configuration change into effect.</td>
</tr>
</tbody>
</table>

Software for the Network Services Module Software

The C3KX-SM-10GT 10-Gigabit Ethernet network services module requires an additional software image to support the features that are available only on the service module. You use the archive download-sw privileged EXEC command on the switch to download the software image, which must be compatible with the Cisco IOS software running on the switch. If the versions are not compatible, the service module runs in pass-through mode, which means that none of the service-module-specific features are available.

When you install a network services module and boot up the switch, the switch runs a compatibility check to verify that the software version in the service module is compatible with the software running on the switch.

When you download software by entering the archive download-sw privileged EXEC command, the switch also runs a version check to verify software compatibility, if applicable:

- If the switch is in a switch stack, it checks the compatibility of the stack protocol and the switches in the stack.
- If a network services module is installed, it checks the compatibility of the switch software and the network services module software.
If the switch is not in a stack or if there is no network services module installed, no version compatibility check is needed.

If a mismatch between the service module and the switch is detected, this syslog message appears:

```
Mar 1 00:01:32.341: %PLATFORM_SM10G-6-LICENSE: FRULink 10G Service Module (C3KX-SM-10G) software version is incompatible with the IOS software version. Please update the software. Module is in pass-thru mode.
```

Service-module-specific features require the IP base or IP services feature set. If the switch is running the LAN base software feature set, this message appears:

```
Mar 1 00:01:32.341: %PLATFORM_SM10G-6-LICENSE: FRULink 10G Service Module (C3KX-SM-10G) features are not supported with this license level. Module is in pass-thru mode.
```

You can use the `show switch service-module` user EXEC command to view a service module on the switch or any service modules in the stack, and the service module software version supported by the switch:

This is an example of output when the software versions are compatible:

```
Switch# show switch service-modules
Switch/Stack supports service module CPU version: 03.00.24

Switch# H/W Status (CPU/FPGA) CPU Link Version

1 OK 86C/70C connected 03.00.24
```

This is an example of output when a switch with a service module installed is running the LAN base feature set:

```
Switch# show switch service-modules
Switch/Stack supports service module CPU version: 03.00.25

Switch# H/W Status (CPU/FPGA) CPU Link Version

1 LB-PASS-THRU * 71C/59C notconnected N/A

* Module services not supported on a Lanbase license
```
Unsupported Commands in Cisco IOS Release 15.2(1)E

This appendix lists some of the command-line interface (CLI) commands that appear when you enter the question mark (?) at the Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch prompt but are not supported in this release, either because they are not tested or because of Catalyst 3750-E or 3560-E Catalyst 3750-X or 3560-X switch hardware limitations. This is not a complete list. The unsupported commands are listed by software feature and command mode.

**Access Control Lists**

**Unsupported Privileged EXEC Commands**

- `access-enable [host] [timeout minutes]`
- `access-template [access-list-number | name] [dynamic-name] [source] [destination] [timeout minutes]`
- `clear access-template [access-list-number | name] [dynamic-name] [source] [destination].`
- `show access-lists rate-limit [destination]`
- `show accounting`
- `show ip accounting [checkpoint] [output-packets | access violations]`
- `show ip cache [prefix-mask] [type number]`

**Unsupported Global Configuration Commands**

- `access-list rate-limit acl-index {precedence | mask prec-mask}`
- `access-list dynamic extended`

Note: In addition to those listed, Layer 3 commands are not supported on switches running the LAN base feature set.
Unsupported Route-Map Configuration Commands

match ip address prefix-list prefix-list-name [prefix-list-name...]

Archive Commands

Unsupported Privileged EXEC Commands

archive config
logging persistent
show archive config
show archive log

ARP Commands

Unsupported Global Configuration Commands

arp ip-address hardware-address smds
arp ip-address hardware-address srp-a
arp ip-address hardware-address srp-b

Unsupported Interface Configuration Commands

arp probe
ip probe proxy

Boot Loader Commands

Unsupported User EXEC Commands

verify

Unsupported Global Configuration Commands

boot buffersize
boot enable-break
Debug Commands

Note
These commands are supported only on Catalyst 3750-E Catalyst 3750-X switches.

Unsupported Privileged EXEC Commands

debug platform cli-redirection main
debug platform configuration

Embedded Event Manager

Unsupported Privileged EXEC Commands

event manager scheduler clear
event manager update user policy [policy-filename | group [group name expression]] | repository [url location]
Parameters are not supported for this command:
event manager run [policy name] [paramater1]... [paramater15]
show event manager detector
show event manager version

Unsupported Global Configuration Commands

event manager detector rpc
no event manager directory user repository [url location]
event manager applet [applet-name] maxrun

Unsupported Commands in Applet Configuration Mode

attribute (EEM)
correlate
event rpc
event snmp-notification
no event interface name [interface-name] parameter [counter-name] entry-val [entry counter value]
entry-op {gt|ge|eq|ne|lt|le} [entry-type {increment | rate | value}] [exit-val [exit value] exit-op
{gt|ge|eq|ne|lt|le} [exit-type {increment | rate | value}] [average-factor <average-factor-value>]
no trigger
tag
trigger (EEM)

Unsupported Commands in Event Trigger Configuration Mode

event owner
event owner

Embedded Syslog Manager

Unsupported Global Configuration Commands

All

Unsupported Privileged EXEC Commands

All

Fallback Bridging

Unsupported Privileged EXEC Commands

```
clear bridge [bridge-group] multicast [router-ports | groups | counts] [group-address] [interface-unit] [counts]
clear vlan statistics
show bridge [bridge-group] circuit-group [circuit-group] [src-mac-address] [dst-mac-address]
show bridge [bridge-group] multicast [router-ports | groups] [group-address]
show bridge vlan
show interfaces crb
show interfaces [ethernet | fastethernet] [interface | slot/port] irb
show subscriber-policy range
```
bridge  bridge-group  bridge ip
bridge  bridge-group  circuit-group  circuit-group  pause  milliseconds
bridge  bridge-group  circuit-group  circuit-group  source-based
bridge  cmf
bridge  crb
bridge  bridge-group  domain  domain-name
bridge  irb
bridge  bridge-group  mac-address-table  limit  number
bridge  bridge-group  multicast-source
bridge  bridge-group  protocol  dec
bridge  bridge-group  route  protocol
bridge  bridge-group  subscriber  policy  policy
subscriber-policy  policy  [[no  |  default]  packet  [permit  |  deny]]

Unsupported Interface Configuration Commands

bridge-group  bridge-group  cbus-bridging
bridge-group  bridge-group  circuit-group  circuit-number
bridge-group  bridge-group  input-address-list  access-list-number
bridge-group  bridge-group  input-lat-service-deny  group-list
bridge-group  bridge-group  input-lat-service-permit  group-list
bridge-group  bridge-group  input-lsap-list  access-list-number
bridge-group  bridge-group  input-pattern-list  access-list-number
bridge-group  bridge-group  input-type-list  access-list-number
bridge-group  bridge-group  lat-compression
bridge-group  bridge-group  output-address-list  access-list-number
bridge-group  bridge-group  output-lat-service-deny  group-list
bridge-group  bridge-group  output-lat-service-permit  group-list
bridge-group  bridge-group  output-lsap-list  access-list-number
bridge-group  bridge-group  output-pattern-list  access-list-number
bridge-group  bridge-group  output-type-list  access-list-number
bridge-group  bridge-group  sse
bridge-group  bridge-group  subscriber-loop-control
bridge-group  bridge-group  subscriber-trunk
bridge  bridge-group  lat-service-filtering
frame-relay  map  bridge  dlci  broadcast
interface  bvi  bridge-group
x25  map  bridge  x.121-address  broadcast  [options-keywords]
HSRP

Unsupported Global Configuration Commands

interface Async
interface BVI
interface Dialer
interface Group-Async
interface Lex
interface Multilink
interface Virtual-Template
interface Virtual-Tokenring

Unsupported Interface Configuration Commands

mtu
standby mac-refresh seconds
standby use-bia

IGMP Snooping Commands

Unsupported Global Configuration Commands

ip igmp snooping tcn

Interface Commands

Unsupported Privileged EXEC Commands

show interfaces [interface-id | vlan vlan-id] [crb | fair-queue | irb | mac-accounting | precedence | irb
| random-detect | rate-limit | shape]

Unsupported Global Configuration Commands

interface tunnel
Unsupported Interface Configuration Commands

transmit-interface type number
Appendix 1  Unsupported Commands in Cisco IOS Release 15.2(1)E

IP Multicast Routing

Unsupported Privileged EXEC Commands

clear ip rtp header-compression [type number]

The debug ip packet command displays packets received by the switch CPU. It does not display packets that are hardware-switched.

The debug ip mcache command affects packets received by the switch CPU. It does not display packets that are hardware-switched.

The debug ip mpacket [detail] [access-list-number [group-name-or-address] command affects only packets received by the switch CPU. Because most multicast packets are hardware-switched, use this command only when you know that the route will forward the packet to the CPU.

ddebug ip pim atm
show frame-relay ip rtp header-compression [interface type number]

The show ip mcache command displays entries in the cache for those packets that are sent to the switch CPU. Because most multicast packets are switched in hardware without CPU involvement, you can use this command, but multicast packet information is not displayed.

The show ip mpacket commands are supported but are only useful for packets received at the switch CPU. If the route is hardware-switched, the command has no effect because the CPU does not receive the packet and cannot display it.

show ip pim vc [group-address | name] [type number]
show ip rtp header-compression [type number] [detail]

Unsupported Global Configuration Commands

ip pim accept-rp {address | auto-rp} [group-access-list-number]
ip pim message-interval seconds

Unsupported Interface Configuration Commands

frame-relay ip rtp header-compression [active | passive]
frame-relay map ip ip-address dlci [broadcast] compress
frame-relay map ip ip-address dlci rtp header-compression [active | passive]
ip igmp helper-address ip-address
ip multicast helper-map {group-address | broadcast} {broadcast-address | multicast-address} extended-access-list-number
ip multicast rate-limit {in | out} [video | whiteboard] [group-list access-list] [source-list access-list] kbps
ip multicast ttl-threshold ttl-value (instead, use the ip multicast boundary access-list-number interface configuration command)
ip multicast use-functional
Appendix 1  Unsupported Commands in Cisco IOS Release 15.2(1)E

IP Unicast Routing

Unsupported Privileged EXEC or User EXEC Commands

clear ip accounting [checkpoint]
clear ip bgp address flap-statistics
clear ip bgp prefix-list
debug ip cef stats
show cef [drop | not-cef-switched]
show ip accounting [checkpoint] [output-packets | access-violations]
show ip bgp dampened-paths
show ip bgp inconsistent-as
show ip bgp regexp regular expression

Unsupported Global Configuration Commands

ip accounting precedence {input | output}
ip accounting-list ip-address wildcard
ip accounting-transits count
ip cef accounting [per-prefix] [non-recursive]
ip cef traffic-statistics [load-interval seconds] [update-rate seconds]
ip flow-aggregation
ip flow-cache
ip flow-export
ip gratuitous-arps
ip local
ip reflexive-list
router egp
router-isis
router iso-igrp
Unsupported Interface Configuration Commands

- ip accounting
- ip load-sharing [per-packet]
- ip mtu bytes
- ip ospf dead-interval minimal hello-multiplier multiplier
- ip verify
- ip unnumbered type number
- All ip security commands

Unsupported BGP Router Configuration Commands

- address-family vpnv4
- default-information originate
- neighbor advertise-map
- neighbor allowas-in
- neighbor default-originate
- neighbor description
- network backdoor
- table-map

Unsupported VPN Configuration Commands

- All

Unsupported Route Map Commands

- match route-type for policy-based routing (PBR)
- set automatic-tag
- set dampening half-life reuse suppress max-suppress-time
- set default interface interface-id [interface-id....]
- set interface interface-id [interface-id.....]
- set ip default next-hop ip-address [ip-address.....]
- set ip destination ip-address mask
- set ip next-hop verify-availability
set ip precedence \textit{value}
set ip qos-group
set metric-type internal
set origin
set metric-type internal

MAC Address Commands

Unsupported Privileged EXEC Commands

\begin{itemize}
\item show mac-address-table
\item show mac-address-table address
\item show mac-address-table aging-time
\item show mac-address-table count
\item show mac-address-table dynamic
\item show mac-address-table interface
\item show mac-address-table multicast
\item show mac-address-table notification
\item show mac-address-table static
\item show mac-address-table vlan
\item show mac-address-table multicast
\end{itemize}

\begin{footnotesize}
\begin{itemize}
\item \textbf{Note}: Use the \texttt{show ip igmp snooping groups} privileged EXEC command to display Layer 2 multicast address-table entries for a VLAN.
\end{itemize}
\end{footnotesize}

Unsupported Global Configuration Commands

\begin{itemize}
\item mac-address-table aging-time
\item mac-address-table notification
\item mac-address-table static
\end{itemize}

Miscellaneous

Unsupported User EXEC Commands

\begin{itemize}
\item verify
\end{itemize}
Unsupported Privileged EXEC Commands

- `file verify auto`
- `remote command` (supported on Catalyst 3750-E switches only)
- `show cable-diagnostics prbs`
- `test cable-diagnostics prbs`
- `show facility-alarm status`

Unsupported Global Configuration Commands

- `logging discriminator`
- `errdisable recovery cause unicast flood`
- `l2protocol-tunnel global drop-threshold`
- `memory reserve critical`
- `service compress-config`
- `stack-mac persistent timer` (supported on Catalyst 3750-E Catalyst 3750-X switches only)
- `track object-number rtr`

MSDP

Unsupported Privileged EXEC Commands

- `show access-expression`
- `show exception`
- `show location`
- `show pm LINE`
- `show smf [interface-id]`
- `show subscriber-policy [policy-number]`
- `show template [template-name]`

Unsupported Global Configuration Commands

- `ip msdp default-peer ip-address | name [prefix-list list]` (Because BGP/MBGP is not supported, use the `ip msdp peer` command instead of this command.)
Multicast

Unsupported BiDirectional PIM Commands
All

Unsupported Multicast Routing Manager Commands
All

Unsupported IP Multicast Rate Limiting Commands
All

Unsupported UDLR Commands
All

Unsupported Multicast Over GRE Commands
All

NetFlow Commands

Unsupported Global Configuration Commands
  ip flow-aggregation cache
  ip flow-cache entries
  ip flow-export

Network Address Translation (NAT) Commands

Unsupported Privileged EXEC Commands
  show ip nat statistics
  show ip nat translations
QoS

Unsupported Global Configuration Command

priority-list

Unsupported Interface Configuration Commands

priority-group
rate-limit

Unsupported Policy-Map Configuration Command

class class-default where class-default is the class-map-name.

RADIUS

Unsupported Global Configuration Commands

aaa nas port extended
aaa authentication feature default enable
aaa authentication feature default line
radius-server attribute nas-port
radius-server configure
radius-server extended-portnames

SNMP

Unsupported Global Configuration Commands

snmp-server enable informs
snmp-server ifindex persist
logging discriminator discr-name [[facility] [mnemonics] [msg-body] {drops string | includes string}] [severity {drops sev-num | includes sev-num}] [rate-limit msglimit]
logging buffered discriminator
Spanning Tree

Unsupported Global Configuration Command

spanning-tree pathcost method {long | short}

Unsupported Interface Configuration Command

spanning-tree stack-port

VLAN

Unsupported Global Configuration Command

vlan internal allocation policy {ascending | descending}

Unsupported User EXEC Commands

show running-config vlan
show vlan ifindex

VTP

Unsupported Privileged EXEC Command

vtp {password password | pruning | version number}

Note

This command has been replaced by the vtp global configuration command.
### Numerics

<table>
<thead>
<tr>
<th>Key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-Gigabit Ethernet interfaces</td>
<td>1-7</td>
</tr>
<tr>
<td>802.1AE standard</td>
<td>1-2</td>
</tr>
<tr>
<td>802.1AE Tagging</td>
<td>1-2</td>
</tr>
<tr>
<td>802.1x-REV</td>
<td>1-2</td>
</tr>
</tbody>
</table>

### A

<table>
<thead>
<tr>
<th>Key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA down policy, NAC Layer 2 IP validation</td>
<td>1-13</td>
</tr>
<tr>
<td>abbreviating commands</td>
<td>1-3</td>
</tr>
<tr>
<td>ABRs</td>
<td>1-27</td>
</tr>
<tr>
<td>AC (command switch)</td>
<td>1-10</td>
</tr>
<tr>
<td>access control entries</td>
<td>1-10</td>
</tr>
<tr>
<td>See ACEs</td>
<td></td>
</tr>
<tr>
<td>access-denied response, VMPS</td>
<td>1-26</td>
</tr>
<tr>
<td>access groups</td>
<td>1-22</td>
</tr>
<tr>
<td>applying IPv4 ACLs to interfaces</td>
<td>1-22</td>
</tr>
<tr>
<td>Layer 3</td>
<td>1-22</td>
</tr>
<tr>
<td>access groups, applying IPv4 ACLs to interfaces</td>
<td>1-22</td>
</tr>
<tr>
<td>accessing clusters, switch</td>
<td>1-13</td>
</tr>
<tr>
<td>command switches</td>
<td>1-11</td>
</tr>
<tr>
<td>member switches</td>
<td>1-13</td>
</tr>
<tr>
<td>switch clusters</td>
<td>1-13</td>
</tr>
<tr>
<td>accessing stack members</td>
<td>1-30</td>
</tr>
<tr>
<td>access lists</td>
<td>1-20</td>
</tr>
<tr>
<td>See ACLs</td>
<td></td>
</tr>
<tr>
<td>access ports and Layer 2 protocol tunneling</td>
<td>1-12</td>
</tr>
<tr>
<td>defined</td>
<td>1-3</td>
</tr>
<tr>
<td>in switch clusters</td>
<td>1-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>access template</td>
<td>1-2</td>
</tr>
<tr>
<td>accounting with 802.1x</td>
<td>1-53</td>
</tr>
<tr>
<td>with IEEE 802.1x</td>
<td>1-14</td>
</tr>
<tr>
<td>with RADIUS</td>
<td>1-34</td>
</tr>
<tr>
<td>with TACACS+</td>
<td>1-11, 1-17</td>
</tr>
<tr>
<td>ACEs and QoS</td>
<td>1-8</td>
</tr>
<tr>
<td>defined</td>
<td>1-2</td>
</tr>
<tr>
<td>Ethernet</td>
<td>1-2</td>
</tr>
<tr>
<td>IP</td>
<td>1-2</td>
</tr>
<tr>
<td>ACLs ACEs</td>
<td>1-2</td>
</tr>
<tr>
<td>applying on bridged packets</td>
<td>1-42</td>
</tr>
<tr>
<td>on multicast packets</td>
<td>1-43</td>
</tr>
<tr>
<td>on routed packets</td>
<td>1-43</td>
</tr>
<tr>
<td>on switched packets</td>
<td>1-41</td>
</tr>
<tr>
<td>time ranges to</td>
<td>1-18</td>
</tr>
<tr>
<td>to an interface</td>
<td>1-21, 1-7</td>
</tr>
<tr>
<td>to QoS</td>
<td>1-7</td>
</tr>
<tr>
<td>classifying traffic for QoS</td>
<td>1-50</td>
</tr>
<tr>
<td>comments in</td>
<td>1-20</td>
</tr>
<tr>
<td>compiling</td>
<td>1-24</td>
</tr>
<tr>
<td>defined</td>
<td>1-2, 1-8</td>
</tr>
<tr>
<td>examples of</td>
<td>1-24, 1-50</td>
</tr>
<tr>
<td>extended IP, configuring for QoS classification</td>
<td>1-51</td>
</tr>
<tr>
<td>extended IPv4 creating</td>
<td>1-11</td>
</tr>
<tr>
<td>matching criteria</td>
<td>1-8</td>
</tr>
<tr>
<td>hardware and software handling</td>
<td>1-23</td>
</tr>
<tr>
<td>IP creating</td>
<td>1-8</td>
</tr>
</tbody>
</table>
fragments and QoS guidelines 1-40
implicit deny 1-11, 1-15, 1-18
implicit masks 1-11
matching criteria 1-8
undefined 1-23
IPv4
applying to interfaces 1-21
creating 1-8
matching criteria 1-8
named 1-16
numbers 1-9
terminal lines, setting on 1-20
unsupported features 1-7
IPv6
and stacking 1-3
applying to interfaces 1-7
configuring 1-4, 1-5
displaying 1-8
interactions with other features 1-4
limitations 1-3
matching criteria 1-3
named 1-3
precedence of 1-2
supported 1-2
unsupported features 1-3
Layer 4 information in 1-41
logging messages 1-9
MAC extended 1-29, 1-54
matching 1-8, 1-22
monitoring 1-44, 1-8
named
IPv4 1-16
IPv6 1-3
names 1-4
number per QoS class map 1-40
port 1-3, 1-2
precedence of 1-3
QoS 1-7, 1-50
resequencing entries 1-16
router 1-3, 1-2
router ACLs and VLAN map configuration guidelines 1-40
standard IP, configuring for QoS classification 1-50, 1-52
standard IPv4
creating 1-10
matching criteria 1-8
support for 1-12
support in hardware 1-23
time ranges 1-18
types supported 1-2
unsupported features
IPv4 1-7
IPv6 1-3
using router ACLs with VLAN maps 1-40
VLAN maps
configuration guidelines 1-33
configuring 1-32
active link 1-4, 1-5, 1-6
active links 1-2
active router 1-2
active traffic monitoring, IP SLAs 1-1
address aliasing 1-2
addresses
displaying the MAC address table 1-23
dynamic
accelerated aging 1-9
changing the aging time 1-14
default aging 1-9
defined 1-12
learning 1-13
removing 1-15
IPv4 1-2
MAC, discovering 1-24
multicast
group address range 1-3
STP address management 1-9
static
adding and removing 1-20
  defined 1-12
address resolution 1-24, 1-10
Address Resolution Protocol
  See ARP
adjacency tables, with CEF 1-92
administrative distances
  defined 1-104
OSPF 1-35
  routing protocol defaults 1-94
administrative VLAN
  REP, configuring 1-8
administrative VLAN, REP 1-8
advertisements
  CDP 1-1
  LLDP 1-2
  RIP 1-21
  VTP 1-17, 1-3, 1-4
age timer, REP 1-8
aggregatable global unicast addresses 1-3
aggregate addresses, BGP 1-62
aggregated ports
  See EtherChannel
aggregate policers 1-72
aggregate policing 1-15
aging, accelerating 1-9
aging time
  accelerated
    for MSTP 1-24
    for STP 1-9, 1-24
MAC address table 1-14
  maximum
    for MSTP 1-24, 1-25
    for STP 1-24, 1-25
alarms, RMON 1-3
allowed-VLAN list 1-19
AP1250 (wireless access point) 1-18
application engines, redirecting traffic to 1-1
area border routers
  See ABRs
area routing
  IS-IS 1-67
  ISO IGRP 1-67
ARP
  configuring 1-11
  defined 1-7, 1-24, 1-11
  encapsulation 1-12
  static cache configuration 1-11
  table
    address resolution 1-24
    managing 1-24
ASBRs 1-27
AS-path filters, BGP 1-56
asymmetrical links, and IEEE 802.1Q tunneling 1-4
attributes, RADIUS
  vendor-proprietary 1-36
  vendor-specific 1-35
attribute-value pairs 1-20
authentication
  EIGRP 1-43
  HSRP 1-10
  local mode with AAA 1-43
  open1x 1-31
  RADIUS
    key 1-27
    login 1-29
  TACACS+
    defined 1-11
    key 1-13
    login 1-14
See also port-based authentication
authentication compatibility with Catalyst 6000 switches 1-8
authentication failed VLAN
  See restricted VLAN
authentication keys, and routing protocols 1-105
authentication manager
  CLI commands 1-9
compatibility with older 802.1x CLI commands 1-9 to 1-10
overview 1-7
single session ID 1-35
authoritative time source, described 1-2
authorization
with RADIUS 1-33
with TACACS+ 1-11, 1-16
authorized ports with IEEE 802.1x 1-10
autoconfiguration 1-3
auto enablement 1-33
automatic advise (auto-advice) in switch stacks 1-13
automatic copy (auto-copy) in switch stacks 1-13
automatic discovery
considerations
beyond a noncandidate device 1-8
brand new switches 1-9
connectivity 1-5
different VLANs 1-7
management VLANs 1-7
non-CDP-capable devices 1-6
noncluster-capable devices 1-6
routed ports 1-8
in switch clusters 1-5
See also CDP
automatic extraction (auto-extract) in switch stacks 1-13
automatic QoS
See QoS
automatic recovery, clusters 1-10
See also HSRP
automatic upgrades (auto-upgrade) in switch stacks 1-12
auto-MDIX
configuring 1-33
described 1-32
autonegotiation
duplex mode 1-4
interface configuration guidelines 1-30
mismatches 1-13
autonomous system boundary routers
See ASBRs
autonomous systems, in BGP 1-50
Auto-RP, described 1-7
autosensing, port speed 1-4
autostate exclude 1-6
auxiliary VLAN
See voice VLAN
availability, features 1-9
B
BackboneFast
described 1-7
disabling 1-17
enabling 1-16
support for 1-9
backup interfaces
See Flex Links
backup links 1-2
backup static routing, configuring 1-12
banners
configuring
login 1-12
message-of-the-day login 1-11
default configuration 1-10
when displayed 1-10
Berkeley r-tools replacement 1-54
BFD
configuration example
BFD in an EIGRP network with echo mode enabled by default 1-17
BFD in an OSPF network 1-21
support for static routing 1-25
configuring
Echo mode 1-14
session parameters on the interface 1-7
Slow timer 1-15
support for BGP 1-8
support for dynamic routing protocols 1-8
support for EIGRP 1-9
support for OSPF 1-10
support for static routing 1-12
disabling echo mode without asymmetry 1-15
monitoring and troubleshooting 1-16
neighbor relationships 1-3
operation 1-2
prerequisites 1-2
restrictions 1-2

BGP
aggregate addresses 1-62
aggregate routes, configuring 1-62
CIDR 1-62
clear commands 1-65
community filtering 1-59
configuring neighbors 1-60
default configuration 1-47
described 1-47
enabling 1-50
monitoring 1-65
multipath support 1-54
neighbors, types of 1-50
path selection 1-54
peers, configuring 1-60
prefix filtering 1-58
resetting sessions 1-52
route dampening 1-64
route maps 1-56
route reflectors 1-63
routing domain confederation 1-63
routing session with multi-VRF CE 1-86, 1-45
show commands 1-65
supernets 1-62
support for 1-16
Version 4 1-47

binding cluster group and HSRP group 1-12

DHCP snooping
   See DHCP snooping binding database
   bindings
      address, Cisco IOS DHCP server 1-6
      DHCP snooping database 1-6
      IP source guard 1-16
   binding table, DHCP snooping
      See DHCP snooping binding database
   blocking packets 1-7
   Boolean expressions in tracked lists 1-4
   booting
      boot loader, function of 1-2
      boot process 1-2
      manually 1-19
      specific image 1-20
   boot loader
      accessing 1-21
      described 1-2
      environment variables 1-21
      prompt 1-21
      trap-door mechanism 1-2
   Boot Loader Upgrade and Image Verification for the FIPS Mode of Operation 1-25
   bootstrap router (BSR), described 1-7
   Border Gateway Protocol
      See BGP
   BPDUs
      error-disabled state 1-2
      filtering 1-3
      RSTP format 1-12
   BPDUs filtering
      described 1-3
      disabling 1-15
      enabling 1-14
      support for 1-9
   BPDUs guard
      described 1-2
      disabling 1-14
      enabling 1-13
support for 1-9
bridged packets, ACLs on 1-42
bridge groups
See fallback bridging
bridge protocol data unit
See BPDU
broadcast flooding 1-18
broadcast packets
directed 1-15
floated 1-15
broadcast storm-control command 1-4
broadcast storms 1-1, 1-15

cables, monitoring for unidirectional links 1-1
candidate switch
automatic discovery 1-5
defined 1-4
requirements 1-4
See also command switch, cluster standby group, and member switch
Catalyst 6000 switches, authentication compatibility 1-8
CA trustpoint
configuring 1-51
defined 1-49

CDP
and trusted boundary 1-46
automatic discovery in switch clusters 1-5
configuring 1-2
default configuration 1-2
defined with LLDP 1-1
described 1-1
disabling for routing device 1-4
enabling and disabling
on an interface 1-4
on a switch 1-4
Layer 2 protocol tunneling 1-8
monitoring 1-5

CEF
overview 1-1
power negotiation extensions 1-8
support for 1-7
switch stack considerations 1-2
transmission timer and holdtime, setting 1-2
updates 1-2

CGMP
as IGMP snooping learning method 1-9
enabling server support 1-45
joining multicast group 1-3
overview 1-9
server support only 1-9
switch support of 1-5

CIDR 1-62
CipherSuites 1-50
Cisco 7960 IP Phone 1-1
Cisco AP1250 (wireless access point) 1-18
Cisco Discovery Protocol
See CDP
Cisco Express Forwarding
See CEF
Cisco Group Management Protocol
See CGMP
Cisco intelligent power management 1-8
Cisco IOS DHCP server
See DHCP, Cisco IOS DHCP server
Cisco IOS File System
See IFS
Cisco IOS IP SLAs 1-2
Cisco Redundant Power System 2300
configuring 1-46
managing 1-46
Cisco Secure ACS
attribute-value pairs for downloadable ACLs 1-20
attribute-value pairs for redirect URL 1-20
Cisco StackWise Plus technology 1-3
   See also stacks, switch
Cisco TrustSec
   credentials 1-10
   switch-to-switch security
   802.1x mode 1-11
   configuration example 1-14
   manual mode 1-12
Cisco TrustSec Network Device Admission Control
   See NDAC
CiscoWorks 2000 1-6, 1-4
CISP 1-33
CIST regional root
   See MSTP
CIST root
   See MSTP
civic location 1-3
classless interdomain routing
   See CIDR
classless routing 1-9
class maps for QoS
   configuring 1-55
   described 1-8
class of service
   See CoS
clearing interfaces 1-53
CLI
   abbreviating commands 1-3
   command modes 1-1
   configuration logging 1-4
   described 1-6
   editing features
   enabling and disabling 1-6
   keystroke editing 1-7
   wrapped lines 1-8
   error messages 1-4
   filtering command output 1-9
   getting help 1-3
   history
   changing the buffer size 1-5
   described 1-5
   disabling 1-6
   recalling commands 1-6
   managing clusters 1-16
   no and default forms of commands 1-4
Client Information Signalling Protocol
   See CISP
client mode, VTP 1-3
client processes, tracking 1-1
CLNS
   See ISO CLNS
clock
   See system clock
clusters, switch
   accessing 1-13
   automatic discovery 1-5
   automatic recovery 1-10
   benefits 1-2
   compatibility 1-4
   described 1-1
   LRE profile considerations 1-16
   managing
      through CLI 1-16
      through SNMP 1-17
   planning 1-4
   planning considerations
      automatic discovery 1-5
      automatic recovery 1-10
      CLI 1-16
      host names 1-13
      IP addresses 1-13
      LRE profiles 1-16
      passwords 1-14
      RADIUS 1-16
      SNMP 1-14, 1-17
      switch stacks 1-14
      TACACS+ 1-16
cluster standby group
and HSRP group 1-12
automatic recovery 1-12
considerations 1-11
defined 1-2
requirements 1-3
virtual IP address 1-11
See also HSRP
CNS
Configuration Engine
  configID, deviceID, hostname 1-3
  configuration service 1-2
described 1-1
event service 1-3
embedded agents
described 1-5
enabling automated configuration 1-6
enabling configuration agent 1-9
enabling event agent 1-8
management functions 1-7
CoA Request Commands 1-23
Coarse Wave Division Multiplexer
  See CWDM SFPs
command-line interface
  See CLI
command modes 1-1
commands
  abbreviating 1-3
  no and default 1-4
commands, setting privilege levels 1-8
command switch
  accessing 1-11
  active (AC) 1-10
  configuration conflicts 1-12
defined 1-2
  passive (PC) 1-10
password privilege levels 1-17
priority 1-10
recovery
  from command-switch failure 1-10, 1-9
  from lost member connectivity 1-12
redundant 1-10
replacing
  with another switch 1-11
  with cluster member 1-9
requirements 1-3
standby (SC) 1-10
See also candidate switch, cluster standby group, member switch, and standby command switch
Common Criteria 1-11
common session ID
  see single session ID 1-35
community list, BGP 1-59
community ports 1-2
community strings
  configuring 1-14, 1-9
  for cluster switches 1-4
  in clusters 1-14
  overview 1-4
SNMP 1-14
community VLANs 1-2, 1-3
compatibility, feature 1-12
compatibility, software
  See stacks, switch
configurable leave timer, IGMP 1-6
configuration, initial
defaults 1-20
Express Setup 1-2
configuration conflicts, recovering from lost member connectivity 1-12
configuration examples, network 1-23
configuration files
  archiving 1-21
  clearing the startup configuration 1-20
  creating and using, guidelines for 1-10
creating using a text editor 1-11
deleting a stored configuration 1-20
described 1-9
downloading
  automatically 1-18
  preparing 1-11, 1-14, 1-17
  reasons for 1-9
  using FTP 1-14
  using RCP 1-18
  using TFTP 1-12
invalid combinations when copying 1-6
limiting TFTP server access 1-19
obtaining with DHCP 1-9
password recovery disable considerations 1-5
replacing and rolling back, guidelines for 1-22
replacing a running configuration 1-20, 1-21
rolling back a running configuration 1-20, 1-22
specifying the filename 1-19
system contact and location information 1-18
types and location 1-10
uploading
  preparing 1-11, 1-14, 1-17
  reasons for 1-9
  using FTP 1-16
  using RCP 1-19
  using TFTP 1-13
configuration guidelines
  REP 1-7
configuration guidelines, multi-VRF CE 1-79
configuration logging 1-4
configuration replacement 1-20
configuration rollback 1-20, 1-21
configuration settings, saving 1-16
configure terminal command 1-20
Configuring First Hop Security in IPv6 1-20
Configuring IPv6 Source Guard 1-24
configuring multicast VRFs 1-85
configuring port-based authentication violation modes 1-43 to 1-44
configuring small-frame arrival rate 1-5
Configuring VACL Logging 1-39
conflicts, configuration 1-12
connections, secure remote 1-44
connectivity problems 1-15, 1-16, 1-18
consistency checks in VTP Version 2 1-5
core port
  RJ-45 1-14
  USB 1-14
core port, connecting to 1-10
content-routing technology
  See WCCP
control protocol, IP SLAs 1-4
coregence
  REP 1-4
corrupted software, recovery steps with Xmodem 1-2
CoS
  in Layer 2 frames 1-2
  override priority 1-6
  trust priority 1-6
CoS input queue threshold map for QoS 1-18
CoS output queue threshold map for QoS 1-21
CoS-to-DSCP map for QoS 1-74
counters, clearing interface 1-53
CPU utilization, troubleshooting 1-30
crashinfo file 1-24
critical authentication, IEEE 802.1x 1-63
critical VLAN 1-23
cross-stack EtherChannel
  configuration guidelines 1-13
  configuring
    on Layer 2 interfaces 1-13
    on Layer 3 physical interfaces 1-16
described 1-3
  illustration 1-4
  support for 1-9
cross-stack UplinkFast, STP
  described 1-5
disabling 1-16
enabling 1-16
fast-convergence events 1-7
Fast Uplink Transition Protocol 1-6
normal-convergence events 1-7
support for 1-9
cryptographic software image
 switch stack considerations 1-3, 1-18
customer edge devices 1-77
customizeable web pages, web-based authentication 1-6
CWDM SFPs 1-36

D

DAACL
 See downloadable ACL
daylight saving time 1-6
dCEF in the switch stack 1-92
debugging
 enabling all system diagnostics 1-21
 enabling for a specific feature 1-21
 redirecting error message output 1-22
 using commands 1-20
default commands 1-4
default configuration
 802.1x 1-38
 auto-QoS 1-24
 banners 1-10
 BGP 1-47
 booting 1-18
 CDP 1-2
 DHCP 1-8
 DHCP option 82 1-8
 DHCP snooping 1-8
 DHCP snooping binding database 1-9
 DNS 1-9
dynamic ARP inspection 1-5
EIGRP 1-39
EtherChannel 1-11
Ethernet interfaces 1-28
fallback bridging 1-3
Flex Links 1-8
HSRP 1-5
IEEE 802.1Q tunneling 1-4
IGMP 1-39
IGMP filtering 1-24
IGMP snooping 1-7, 1-6
IGMP throttling 1-25
initial switch information 1-3
IP addressing, IP routing 1-7
IP multicast routing 1-11
IP SLAs 1-6
IP source guard 1-18
IPv6 1-17
IS-IS 1-68
Layer 2 interfaces 1-28
Layer 2 protocol tunneling 1-12
LLDP 1-5
MAC address table 1-14
MAC address-table move update 1-8
MSDP 1-4
MSTP 1-14
multi-VRF CE 1-79, 1-41
MVR 1-20
optional spanning-tree configuration 1-12
OSPF 1-28
password and privilege level 1-2
PIM 1-11
private VLANs 1-6
RADIUS 1-27
REP 1-7
RIP 1-22
RMON 1-3
RSPAN 1-12
SDM template 1-5
SNMP 1-8
SPAN 1-12
SSL 1-51
standard QoS 1-37
Index

STP  1-13
switch stacks  1-24
system message logging  1-4
system name and prompt  1-8
TACACS+  1-13
UDLD  1-4
VLAN, Layer 2 Ethernet interfaces  1-17
VLANs  1-7
VMPS  1-27
voice VLAN  1-3
VTP  1-9
WCCP  1-5
default gateway  1-15, 1-13
default networks  1-95
default router preference
  See DRP
default routes  1-95
default routing  1-3
default web-based authentication configuration
802.1X  1-9
deleting VLANs  1-9
denial-of-service attack  1-1
description command  1-38
designing your network, examples  1-23
desktop template  1-11
destination-IP address-based forwarding, EtherChannel  1-9
destination-MAC address forwarding, EtherChannel  1-9
detecting indirect link failures, STP  1-8
device discovery protocol  1-1
device manager
  benefits  1-2
  described  1-3, 1-6
  in-band management  1-8
device sensor
  configuring  1-54
DHCP
  Cisco IOS server database
  configuring  1-14
default configuration  1-9
  described  1-6
  DHCP for IPv6
    See DHCPv6
  enabling
    relay agent  1-11
    server  1-10
  DHCP-based autoconfiguration
    client request message exchange  1-4
    configuring
      client side  1-4
      DNS  1-8
      relay device  1-8
      server side  1-7
      server-side  1-10
      TFTP server  1-7
      example  1-10
      lease options
        for IP address information  1-7
        for receiving the configuration file  1-7
      overview  1-3
      relationship to BOOTP  1-4
      relay support  1-7, 1-17
      support for  1-7
  DHCP-based autoconfiguration and image update
    configuring  1-11 to 1-14
    understanding  1-5 to 1-6
  DHCP binding database
    See DHCP snooping binding database
  DHCP binding table
    See DHCP snooping binding database
  DHCP object tracking, configuring primary interface  1-11
  DHCP option 82
    circuit ID suboption  1-5
    configuration guidelines  1-9
    default configuration  1-8
    displaying  1-16
    forwarding address, specifying  1-11
    helper address  1-11

Catalyst 3750-X and 3560-X Switch Software Configuration Guide
overview 1-3
packet format, suboption
circuit ID 1-5
remote ID 1-5
remote ID suboption 1-5
DHCP server port-based address allocation
configuration guidelines 1-27
default configuration 1-27
described 1-26
displaying 1-29, 1-12
enabling 1-27
reserved addresses 1-28
DHCP snooping
accepting untrusted packets form edge switch 1-3, 1-13
and private VLANs 1-14
binding database
See DHCP snooping binding database
configuration guidelines 1-9
default configuration 1-8
message exchange process 1-4
option 82 data insertion 1-3
trusted interface 1-2
untrusted interface 1-2
untrusted messages 1-2
DHCP snooping binding database
adding bindings 1-15
binding file
format 1-7
location 1-6
bindings 1-6
clearing agent statistics 1-15
configuration guidelines 1-9
configuring 1-15
default configuration 1-8, 1-9
deleting
binding file 1-15
bindings 1-15
database agent 1-15
described 1-6
enabling 1-15
entry 1-6
renewing database 1-15
resetting
delay value 1-15
timeout value 1-15
DHCP snooping binding table
See DHCP snooping binding database
DHCPv6
configuration guidelines 1-29
default configuration 1-29
described 1-12
enabling client function 1-31
enabling DHCPv6 server function 1-29
diagnostic schedule command 1-2
Differentiated Services architecture, QoS 1-2
Differentiated Services Code Point 1-2
Diffusing Update Algorithm (DUAL) 1-37
directed unicast requests 1-7
directories
changing 1-4
creating and removing 1-5
displaying the working 1-4
discovery, clusters
See automatic discovery
Distance Vector Multicast Routing Protocol
See DVMRP
distance-vector protocols 1-3
distribute-list command 1-104
DNS
and DHCP-based autoconfiguration 1-8
default configuration 1-9
displaying the configuration 1-10
in IPv6 1-4
overview 1-8
setting up 1-9
support for 1-7
DNS-based SSM mapping 1-18, 1-20
domain names
   DNS  1-8
   VTP  1-9
Domain Name System
   See DNS
domains, ISO IGRP routing  1-67
dot1q-tunnel switchport mode  1-16
double-tagged packets
   IEEE 802.1Q tunneling  1-2
   Layer 2 protocol tunneling  1-11
downloadable ACL  1-18, 1-20, 1-71
downloading
   configuration files
      preparing  1-11, 1-14, 1-17
      reasons for  1-9
      using FTP  1-14
      using RCP  1-18
      using TFTP  1-12
image files
   deleting old image  1-30
   preparing  1-28, 1-31, 1-36
   reasons for  1-25
   using CMS  1-3
   using FTP  1-32
   using HTTP  1-3, 1-25
   using RCP  1-37
   using TFTP  1-28
   using the device manager or Network Assistant  1-25
drop threshold for Layer 2 protocol packets  1-12
DRP
   configuring  1-26
   described  1-10
   IPv6  1-10
DSCP  1-15, 1-2
DSCP input queue threshold map for QoS  1-18
DSCP output queue threshold map for QoS  1-21
DSCP-to-CoS map for QoS  1-77
DSCP-to-DSCP-mutation map for QoS  1-78
DSCP transparency  1-47
DTP  1-10, 1-15
dual-action detection  1-6
DUAL finite state machine, EIGRP  1-38
dual IPv4 and IPv6 templates  1-3, 1-11
dual protocol stacks
   IPv4 and IPv6  1-11
   SDM templates supporting  1-11
DVMRP
   autosummarization
      configuring a summary address  1-59
      disabling  1-61
   connecting PIM domain to DVMRP router  1-51
   enabling unicast routing  1-54
   interoperability
      with Cisco devices  1-49
      with Cisco IOS software  1-9
   mrinfo requests, responding to  1-54
   neighbors
      advertising the default route to  1-53
      discovery with Probe messages  1-49
      displaying information  1-54
      prevent peering with nonpruning  1-57
      rejecting nonpruning  1-55
   overview  1-9
   routes
      adding a metric offset  1-62
      advertising all  1-61
      advertising the default route to neighbors  1-53
      caching DVMRP routes learned in report messages  1-55
      changing the threshold for syslog messages  1-58
      favoring one over another  1-62
      limiting the number injected into MBONE  1-58
      limiting unicast route advertisements  1-49
   routing table  1-9
   source distribution tree, building  1-9
   support for  1-17
   tunnels
Configuring dynamic access ports 1-29
Defined 1-3
Dynamic access ports characteristics 1-4
dynamic address 1-3
dynamic addresses
See addresses
dynamic ARP inspection
ARP cache poisoning 1-1
ARP requests, described 1-1
ARP spoofing attack 1-1
Clearing log buffer 1-15
Statistics 1-15
configuration guidelines 1-6
counting ACLs for non-DHCP environments 1-9
in DHCP environments 1-7
log buffer 1-13
Rate limit for incoming ARP packets 1-4, 1-10
default configuration 1-5
denial-of-service attacks, preventing 1-10
described 1-1
DHCP snooping binding database 1-2
displaying statistics 1-15
error-disabled state for exceeding rate limit 1-4
Function of 1-2
Interface trust states 1-3
log buffer clearing 1-15
configuring 1-13
logging of dropped packets, described 1-5
man-in-the-middle attack, described 1-2
Network security issues and interface trust states 1-3
Priority of ARP ACLs and DHCP snooping entries 1-4
Rate limiting of ARP packets
configuring 1-10
described 1-4
error-disabled state 1-4
Statistics
Clearing 1-15
Displaying 1-15
Validation checks, performing 1-12
dynamic auto trunking mode 1-16
dynamic desirable trunking mode 1-16
Dynamic Host Configuration Protocol
See DHCP-based autoconfiguration
dynamic port VLAN membership
Described 1-27
Reconfirming 1-29
Troubleshooting 1-31
Types of connections 1-29
dynamic routing 1-3
ISO CLNS 1-66
Dynamic Trunking Protocol
See DTP

E
EAC 1-2
EBGP 1-46
Echo mode, configuring BFD 1-14
Editing features
Enabling and disabling 1-6
Keystrokes used 1-7
Wrapped lines 1-8
EEM 3.2 1-5
EIGRP
Authentication 1-43
Components 1-38
Configuring 1-41
default configuration 1-39
Definition 1-37
Interface parameters, configuring 1-42
Monitoring 1-45
stub routing 1-44
support for 1-16
EIGRP IPv6 1-14
elections
  See stack master
ELIN location 1-3
embedded event manager
  3.2  1-5
    actions 1-4
    configuring 1-1, 1-6
    displaying information 1-8
    environmental variables 1-5
    event detectors 1-3
    policies 1-4
    registering and defining an applet 1-6
    registering and defining a TCL script 1-7
    understanding 1-1
enable password 1-3
enable secret password 1-3
Enable the FIPS mode 1-25
encryption, CipherSuite 1-50
encryption for passwords 1-3
encryption keying 1-2
encryption keys, MKA 1-2
Endpoint Admission Control (EAC) 1-2
Enhanced IGRP
  See EIGRP
enhanced object tracking static routing 1-10
enhanced PoE 1-18, 1-8, 1-36
environmental variables, embedded event manager 1-5
environment variables, function of 1-22
equal-cost routing 1-17, 1-93
error-disabled state, BPDU 1-2
error messages during command entry 1-4
EtherChannel
  automatic creation of 1-5, 1-7
  channel groups
    binding physical and logical interfaces 1-4
    numbering of 1-4
    configuration guidelines 1-12
    configuring
      Layer 2 interfaces 1-13
      Layer 3 physical interfaces 1-16
      Layer 3 port-channel logical interfaces 1-15
default configuration 1-11
  described 1-2
  displaying status 1-22
  forwarding methods 1-8, 1-18
  IEEE 802.3ad, described 1-7
  interaction
    with STP 1-12
    with VLANs 1-12
LACP
  described 1-7
  displaying status 1-22
  hot-standby ports 1-20
  interaction with other features 1-8
  modes 1-7
  port priority 1-22
  system priority 1-21
Layer 3 interface 1-5
load balancing 1-8, 1-18
logical interfaces, described 1-4
PAgP
  aggregate-port learners 1-19
  described 1-5
displaying status 1-22
interaction with other features 1-7
interaction with virtual switches 1-6
learn method and priority configuration 1-19
modes 1-6
support for 1-5
with dual-action detection 1-6
port-channel interfaces
described 1-4
numbering of 1-4
port groups 1-6
stack changes, effects of 1-10
support for 1-5
EtherChannel guard
described 1-10
disabling 1-17
enabling 1-17
Ethernet management port
active link 1-25
and routing 1-25
and routing protocols 1-25
and TFTP 1-27
configuring 1-27
connecting to 1-10
default setting 1-25
described 1-24
for network management 1-24
specifying 1-27
supported features 1-26
unsupported features 1-27
Ethernet management port, internal
and routing 1-25
and routing protocols 1-25
unsupported features 1-27
Ethernet VLANs
adding 1-8
defaults and ranges 1-7
modifying 1-8
EUI 1-4
event detectors, embedded event manager 1-3
events, RMON 1-3
disabling 1-17
enabling 1-17
Examples
network configuration 1-23
expedite queue for QoS 1-90
Express Setup 1-2
See also getting started guide
extended crashinfo file 1-24
extended-range VLANs
canonical name for 1-3
configuration guidelines 1-11
configuring 1-10
creating 1-12
creating with an internal VLAN ID 1-13
defined 1-1
extended system ID
MSTP 1-18
STP 1-5, 1-17
extended universal identifier
See EUI
Extensible Authentication Protocol over LAN 1-2
external BGP
See EBGP
external neighbors, BGP 1-50
F
Fa0 port
See Ethernet management port
failover support 1-9
Failure detection, using BFD 1-6
fallback bridging
and protected ports 1-4
bridge groups
creating 1-4
described 1-2
function of 1-2
number supported 1-4
removing 1-5
configuration guidelines 1-4
connecting interfaces with default configuration described frame forwarding flooding packets forwarding packets overview protocol, unsupported stack changes, effects of STP disabling on an interface forward-delay interval hello BPDU interval interface priority keepalive messages maximum-idle interval path cost VLAN-bridge spanning-tree priority VLAN-bridge STP support for SVIs and routed ports unsupported protocols VLAN-bridge STP Fast Convergence fastethernet0 port See Ethernet management port Fast Uplink Transition Protocol features, incompatible FIB fiber-optic, detecting unidirectional links files basic crashinfo description location copying crashing info, description deleting displaying the contents of extended crashinfo description location tar creating displaying the contents of extracting image file format file system displaying available file systems displaying file information local file system names network file system names setting the default filtering in a VLAN IPv6 traffic non-IP traffic show and more command output filtering show and more command output filters, IP See ACLs, IP FIPS 140-2 flash device, number of flexible authentication ordering configuring overview Flexible NetFlow components configuring a flow monitor configuring flow records configuring the exported configuring the exporter interface configuration purpose sampling unsupported features Flex Link Multicast Fast Convergence Flex Links configuring
configuring preferred VLAN 1-11
configuring VLAN load balancing 1-10
default configuration 1-8
description 1-1
link load balancing 1-2
monitoring 1-14
VLANs 1-2
flooded traffic, blocking 1-8
flow-based packet classification 1-15
flowcharts
  QoS classification 1-7
  QoS egress queueing and scheduling 1-19
  QoS ingress queueing and scheduling 1-16
  QoS policing and marking 1-11
flowcontrol
  configuring 1-32
  described 1-31
forward-delay time
  MSTP 1-24
  STP 1-24
Forwarding Information Base
  See FIB
forwarding nonroutable protocols 1-1
FTP
  configuration files
    downloading 1-14
    overview 1-13
    preparing the server 1-14
    uploading 1-16
  image files
    deleting old image 1-34
    downloading 1-32
    preparing the server 1-31
    uploading 1-34
get-next-request operation 1-5
get-request operation 1-5
Gigabit modules
  See SFPs
global leave, IGMP 1-13
guest VLAN and IEEE 802.1x 1-21
guide mode 1-3
GUIs
  See device manager and Network Assistant
H
  hardware limitations and Layer 3 interfaces 1-39
  hello time
    MSTP 1-23
    STP 1-23
  help, for the command line 1-3
  hierarchical policy maps 1-9
    configuration guidelines 1-41
    configuring 1-64
    described 1-12
  history
    changing the buffer size 1-5
    described 1-5
    disabling 1-6
    recalling commands 1-6
  history table, level and number of syslog messages 1-10
  host modes, MACsec 1-4
  host names in clusters 1-13
  host ports
    configuring 1-11
    kinds of 1-2
  hosts, limit on dynamic ports 1-31
  Hot Standby Router Protocol
    See HSRP
  HP OpenView 1-6
  HSRP
    authentication string 1-10
    automatic cluster recovery 1-12
binding to cluster group  1-12
cluster standby group considerations  1-11
command-switch redundancy  1-2, 1-9
configuring  1-5
default configuration  1-5
definition  1-1
guidelines  1-6
monitoring  1-13
object tracking  1-7
overview  1-1
priority  1-8
routering redundancy  1-16
support for ICMP redirect messages  1-12
switch stack considerations  1-5
timers  1-10
tracking  1-8
See also clusters, cluster standby group, and standby command switch

HSRP for IPv6
configuring  1-39
guidelines  1-38

HTTP(S) Over IPv6  1-15

HTTP over SSL
see HTTPS

HTTPS
configuring  1-52
described  1-48
self-signed certificate  1-49
HTTP secure server  1-48

ICMP
IPv6  1-4
redirect messages  1-13
support for  1-17
time-exceeded messages  1-18
traceroute and  1-18

unreachable messages  1-22
unreachable messages and IPv6  1-4
unreachables and ACLs  1-23

ICMP Echo operation
configuring  1-11
IP SLAs  1-11

ICMP ping
executing  1-15
overview  1-15

ICMP Router Discovery Protocol
See IRDP

ICMPv6  1-4

IDS appliances
and ingress RSPAN  1-25
and ingress SPAN  1-16

IEEE 802.1D
See STP

IEEE 802.1p  1-1

IEEE 802.1Q
and trunk ports  1-4
configuration limitations  1-17
encapsulation  1-15
native VLAN for untagged traffic  1-21
tunneling
compatibility with other features  1-6
defaults  1-4
described  1-1
tunnel ports with other features  1-6

IEEE 802.1s
See MSTP

IEEE 802.1w
See RSTP

IEEE 802.1x
See port-based authentication

IEEE 802.3ad
See EtherChannel

IEEE 802.3af
See PoE

IEEE 802.3x flow control  1-31
ifIndex values, SNMP 1-6
IFS 1-8
IGMP
   configurable leave timer
described 1-6
   enabling 1-11
configuring the switch
   as a member of a group 1-39
   statically connected member 1-44
controlling access to groups 1-40
default configuration 1-39
fast switching 1-44
flooding multicast traffic
   controlling the length of time 1-12
   disabling on an interface 1-13
   global leave 1-13
   query solicitation 1-13
   recovering from flood mode 1-13
host-query interval, modifying 1-42
joining multicast group 1-3
join messages 1-3
leave processing, enabling 1-11, 1-9
leaving multicast group 1-5
multicast reachability 1-39
overview 1-3
queries 1-4
report suppression
described 1-6
   disabling 1-16, 1-11
supported versions 1-3
support for 1-5
Version 1
   changing to Version 2 1-41
described 1-3
Version 2
   changing to Version 1 1-41
described 1-3
   maximum query response time value 1-43
   pruning groups 1-43
   query timeout value 1-42
IGMP filtering
   configuring 1-25
   default configuration 1-24
described 1-24
   support for 1-5
IGMP groups
   configuring filtering 1-27
   setting the maximum number 1-27
IGMP helper 1-6
IGMP Immediate Leave
   configuration guidelines 1-11
described 1-6
   enabling 1-11
IGMP profile
   applying 1-26
   configuration mode 1-25
   configuring 1-25
IGMP snooping
   and address aliasing 1-2
   and stack changes 1-7
   configuring 1-7
default configuration 1-7, 1-6
definition 1-2
   enabling and disabling 1-8, 1-7
global configuration 1-8
Immediate Leave 1-6
   in the switch stack 1-7
   method 1-8
   monitoring 1-16, 1-12
   querier
      configuration guidelines 1-14
      configuring 1-14
      supported versions 1-3
   support for 1-5
   VLAN configuration 1-8
IGMP throttling
   configuring 1-27
default configuration 1-25
described 1-24
displaying action 1-29
IGP 1-27
Immediate Leave, IGMP
described 1-6
enabling 1-9
inaccessible authentication bypass 802.1x 1-23
support for multiauth ports 1-23
initial configuration
defaults 1-20
Express Setup 1-2
interface
number 1-19
range macros 1-22
interface command 1-19 to 1-20
interface configuration
REP 1-9
interfaces
auto-MDIX, configuring 1-32
configuring
procedure 1-20
counters, clearing 1-53
default configuration 1-28
described 1-38
descriptive name, adding 1-38
displaying information about 1-52
duplex and speed configuration guidelines 1-29
flow control 1-31
management 1-6
monitoring 1-51
naming 1-38
physical, identifying 1-19
range of 1-20
restarting 1-53, 1-54
shutting down 1-53
speed and duplex, configuring 1-30
status 1-51
supported 1-19
types of 1-1
interfaces range macro command 1-22
interface types 1-19
Interior Gateway Protocol
See IGP
internal BGP
See IBGP
internal neighbors, BGP 1-50
internal power supplies
See power supplies
Internet Control Message Protocol
See ICMP
Internet Group Management Protocol
See IGMP
Internet Protocol version 6
See IPv6
Inter-Switch Link
See ISL
inter-VLAN routing 1-16, 1-2
Intrusion Detection System
See IDS appliances
inventory management TLV 1-3
IP ACLs
for QoS classification 1-7
implicit deny 1-11, 1-15
implicit masks 1-11
named 1-16
undefined 1-23
IP addresses
128-bit 1-2
candidate or member 1-4, 1-13
classes of 1-7
cluster access 1-2
command switch 1-3, 1-11, 1-13
default configuration 1-7
discovering 1-24
for IP routing 1-6
IPv6 1-2
MAC address association 1-10
monitoring 1-19
redundant clusters 1-11
standby command switch 1-11, 1-13
See also IP information
IP base feature set 1-2
IP base software image 1-1
IP broadcast address 1-17
ip cef distributed command 1-92
IP directed broadcasts 1-16
ip igmp profile command 1-25
IP information
assigned
  manually 1-15
  through DHCP-based autoconfiguration 1-3
default configuration 1-3
IP multicast routing
addresses
  all-hosts 1-3
  all-multicast-routers 1-3
  host group address range 1-3
administratively-scoped boundaries, described 1-47
and IGMP snooping 1-2
Auto-RP
  adding to an existing sparse-mode cloud 1-26
  benefits of 1-26
  configuration guidelines 1-12
  filtering incoming RP announcement messages 1-28
  overview 1-7
  preventing candidate RP spoofing 1-28
  preventing join messages to false RPs 1-28
  setting up in a new internetwork 1-26
  using with BSR 1-34
bootstrap router
  configuration guidelines 1-12
  configuring candidate BSRs 1-32
  configuring candidate RPs 1-33
  defining the IP multicast boundary 1-31
  defining the PIM domain border 1-30
  overview 1-7
  using with Auto-RP 1-34
Cisco implementation 1-2
configuring
  basic multicast routing 1-12
  IP multicast boundary 1-47
default configuration 1-11
enabling
  PIM mode 1-13
group-to-RP mappings
  Auto-RP 1-7
  BSR 1-7
MBONE
  described 1-46
  enabling sdr listener support 1-46
  limiting DVMRP routes advertised 1-58
  limiting sdr cache entry lifetime 1-46
  SAP packets for conference session announcement 1-46
  Session Directory (sdr) tool, described 1-46
  multicast forwarding, described 1-8
  PIMv1 and PIMv2 interoperability 1-11
  protocol interaction 1-2
  reverse path check (RPF) 1-8
RP
  assigning manually 1-24
  configuring Auto-RP 1-26
  configuring PIMv2 BSR 1-30
  monitoring mapping information 1-35
  using Auto-RP and BSR 1-34
stacking
  stack master functions 1-10
  stack member functions 1-10
statistics, displaying system and network 1-63
See also CGMP
See also DVMRP
See also IGMP
See also PIM
IP phones
and QoS 1-1
automatic classification and queueing 1-23
configuring 1-4
ensuring port security with QoS 1-46
trusted boundary for QoS 1-46
IP Port Security for Static Hosts
on a Layer 2 access port 1-20
on a PVLAN host port 1-24
IP precedence 1-2
IP-precedence-to-DSCP map for QoS 1-75
IP protocols
routing 1-16
IP routes, monitoring 1-106
IP routing
connecting interfaces with 1-14
disabling 1-20
enabling 1-20
IP Service Level Agreements
See IP SLAs
IP service levels, analyzing 1-1
IP services feature set 1-2
IP SLAs
benefits 1-2
configuration guidelines 1-6
configuring object tracking 1-9
Control Protocol 1-4
default configuration 1-6
description 1-1
ICMP echo operation 1-11
measuring network performance 1-3
monitoring 1-13
multioperations scheduling 1-5
object tracking 1-9
operation 1-3
reachability tracking 1-9
responder
described 1-4
enabling 1-7
response time 1-4
scheduling 1-5
SNMP support 1-2
supported metrics 1-2
threshold monitoring 1-6
track object monitoring agent, configuring 1-11
track state 1-9
UDP jitter operation 1-8
IP source guard
and 802.1x 1-19
and DHCP snooping 1-16
and port security 1-19
and private VLANs 1-19
and routed ports 1-18
and TCAM entries 1-19
and trunk interfaces 1-18
and VRF 1-19
binding configuration
automatic 1-16
manual 1-16
binding table 1-16
configuration guidelines 1-18
default configuration 1-18
described 1-16
disabling 1-19, 1-20
displaying
bindings 1-26
configuration 1-26
enabling 1-19, 1-21
filtering
source IP address 1-17
source IP and MAC address 1-17
source IP address filtering 1-17
source IP and MAC address filtering 1-17
static bindings
adding 1-19, 1-21
deleting 1-20
static hosts 1-21
IP traceroute
executing 1-18
overview 1-18

IP unicast routing

address resolution 1-10
administrative distances 1-94, 1-104
ARP 1-11
assigning IP addresses to Layer 3 interfaces 1-8
authentication keys 1-105
broadcast
  address 1-17
  flooding 1-18
  packets 1-15
  storms 1-15
classless routing 1-9
configuring static routes 1-94
default
  addressing configuration 1-7
  gateways 1-13
  networks 1-95
  routes 1-95
  routing 1-3
directed broadcasts 1-16
disabling 1-20
dynamic routing 1-3
enabling 1-20
EtherChannel Layer 3 interface 1-5
IGP 1-27
inter-VLAN 1-2
IP addressing
  classes 1-7
  configuring 1-6
IPv6 1-3
IRDP 1-14
Layer 3 interfaces 1-5
MAC address and IP address 1-10
passive interfaces 1-103
protocols
  distance-vector 1-3
  dynamic 1-3
  link-state 1-3
proxy ARP 1-11
redistribution 1-96
reverse address resolution 1-10
routed ports 1-5
static routing 1-3
steps to configure 1-6
subnet mask 1-8
subnet zero 1-8
supernet 1-9
UDP 1-17
unicast reverse path forwarding 1-17, 1-91
with SVIs 1-5
See also BGP
See also EIGRP
See also OSPF
See also RIP
IPv4 ACLs
  applying to interfaces 1-21
  extended, creating 1-11
  named 1-16
  standard, creating 1-10
IPv4 and IPv6
  port-based trust 1-3
IPv6
  ACLs
    displaying 1-8
    limitations 1-3
    matching criteria 1-3
    port 1-2
    precedence 1-2
    router 1-2
    supported 1-2
  addresses 1-2
  address formats 1-2
  and switch stacks 1-16
  applications 1-11
  assigning address 1-18
  autoconfiguration 1-10
  CEFv6 1-32
default configuration 1-17
default router preference (DRP) 1-10
defined 1-1
Enhanced Interior Gateway Routing Protocol (EIGRP)
IPv6 1-14
EIGRP IPv6 Commands 1-14
Router ID 1-14
features not supported 1-15
forwarding 1-18
ICMP 1-4
monitoring 1-49
neighbor discovery 1-4
OSPF 1-13
path MTU discovery 1-4
SDM templates 1-3, 1-1
stack master functions 1-16
Stateless Autoconfiguration 1-10
supported features 1-3
switch limitations 1-15
understanding static routes 1-12
IPv6 traffic, filtering 1-4
IRDP
configuring 1-14
definition 1-14
support for 1-17
IS-IS
addresses 1-67
area routing 1-67
default configuration 1-68
monitoring 1-76
show commands 1-76
system routing 1-67
ISL
and IPv6 1-3
and trunk ports 1-4
encapsulation 1-10, 1-15
trunking with IEEE 802.1 tunneling 1-5
ISO CLNS
clear commands 1-76
dynamic routing protocols 1-66
monitoring 1-76
NETs 1-66
NSAPs 1-66
OSI standard 1-66
ISO IGRP
area routing 1-67
system routing 1-67
isolated port 1-2
isolated VLANs 1-2, 1-3
J
join messages, IGMP 1-3
K
KDC
described 1-39
See also Kerberos
keepalive messages 1-3
Kerberos
authenticating to
boundary switch 1-41
KDC 1-41
network services 1-42
configuration examples 1-39
configuring 1-42
credentials 1-39
described 1-39
KDC 1-39
operation 1-41
realm 1-40
server 1-41
support for 1-14
switch as trusted third party 1-39
terms 1-40
TGT 1-41
Index

IN-26

Catalyst 3750-X and 3560-X Switch Software Configuration Guide

OL-29703-01

Index


tickets 1-39

key distribution center
   See KDC

L

l2protocol-tunnel command 1-14

LACP
   Layer 2 protocol tunneling 1-10
      See EtherChannel
   Layer 2 frames, classification with CoS 1-2
   Layer 2 interfaces, default configuration 1-28

Layer 2 protocol tunneling
   configuring 1-11
   configuring for EtherChannels 1-15
   default configuration 1-12
   defined 1-8
   guidelines 1-13

Layer 2 traceroute
   and ARP 1-17
   and CDP 1-17
   broadcast traffic 1-16
   described 1-16
   IP addresses and subnets 1-17
   MAC addresses and VLANs 1-17
   multicast traffic 1-17
   multiple devices on a port 1-17
   unicast traffic 1-16
   usage guidelines 1-17

Layer 3 features 1-16

Layer 3 interfaces
   assigning IP addresses to 1-8
   assigning IPv4 and IPv6 addresses to 1-27
   assigning IPv6 addresses to 1-18
   changing from Layer 2 mode 1-83, 1-43
   types of 1-5

Layer 3 packets, classification methods 1-2

LDAP 1-2

Leaking IGMP Reports 1-4

LEDs, switch
   See hardware installation guide

Lightweight Directory Access Protocol
   See LDAP

Link Aggregation Control Protocol
   See EtherChannel

Link Failure, detecting unidirectional 1-7

link integrity, verifying with REP 1-3

Link Layer Discovery Protocol
   See CDP
   link local unicast addresses 1-4
   link redundancy
      See Flex Links
   links, unidirectional 1-1
   link state advertisements (LSAs) 1-33
   link-state protocols 1-3
   link-state tracking
      configuring 1-25
      described 1-23

LLDP
   configuring 1-5
   characteristics 1-6
   default configuration 1-5
   enabling 1-6
   monitoring and maintaining 1-11
   overview 1-1
   supported TLVs 1-2
   switch stack considerations 1-2
   transmission timer and holdtime, setting 1-6

LLDP-MED
   configuring
      procedures 1-5
      TLVs 1-7
   monitoring and maintaining 1-11
   overview 1-1, 1-2
   supported TLVs 1-2

LLDP Media Endpoint Discovery
   See LLDP-MED

load balancing 1-4
Index

MAC address learning 1-7
MAC address learning, disabling on a VLAN 1-23
MAC address notification, support for 1-18
MAC address-table move update
  configuration guidelines 1-8
  configuring 1-12
  default configuration 1-8
  description 1-6
  monitoring 1-14
MAC address-to-VLAN mapping 1-26
MAC authentication bypass 1-15
MAC extended access lists
  applying to Layer 2 interfaces 1-31
  configuring for QoS 1-54
  creating 1-29
  defined 1-29
  for QoS classification 1-5
MACsec 1-2
  802.1AE Tagging 1-9
MACsec 1-2
  and stacking 1-3
  configuring on an interface 1-7
  defined 1-1, 1-2
  switch-to-switch security 1-1
MACsec Key Agreement Protocol
  See MKA
magic packet 1-28
manageability features 1-7
management access
  in-band
    browser session 1-8
    CLI session 1-8
    device manager 1-8
    SNMP 1-8
  out-of-band console port connection 1-8
management address TLV 1-2
management options
  CLI 1-1
  clustering 1-4

MAC/PHY configuration status TLV 1-2
MAC addresses
  aging time 1-14
  and VLAN association 1-13
  building the address table 1-13
  default configuration 1-14
  disabling learning on a VLAN 1-23
  discovering 1-24
  displaying 1-23
  displaying in the IP source binding table 1-26
  dynamic
    learning 1-13
    removing 1-15
  in ACLs 1-29
  IP address association 1-10
  static
    adding 1-20
    allowing 1-22, 1-23
    characteristics of 1-20
    dropping 1-21
    removing 1-20

LRE profiles, considerations in switch clusters 1-16

Long-Reach Ethernet (LRE) technology 1-35
loop guard
  described 1-11
  enabling 1-18
  support for 1-10

MAC address learning 1-7
MAC address learning, disabling on a VLAN 1-23
MAC address notification, support for 1-18
MAC address-table move update
  configuration guidelines 1-8
  configuring 1-12
  default configuration 1-8
  description 1-6
  monitoring 1-14
MAC address-to-VLAN mapping 1-26
MAC authentication bypass 1-15
MAC extended access lists
  applying to Layer 2 interfaces 1-31
  configuring for QoS 1-54
  creating 1-29
  defined 1-29
  for QoS classification 1-5
MACsec 1-2
  802.1AE Tagging 1-9
MACsec 1-2
  and stacking 1-3
  configuring on an interface 1-7
  defined 1-1, 1-2
  switch-to-switch security 1-1
MACsec Key Agreement Protocol
  See MKA
magic packet 1-28
manageability features 1-7
management access
  in-band
    browser session 1-8
    CLI session 1-8
    device manager 1-8
    SNMP 1-8
  out-of-band console port connection 1-8
management address TLV 1-2
management options
  CLI 1-1
  clustering 1-4

MAC/PHY configuration status TLV 1-2
MAC addresses
  aging time 1-14
  and VLAN association 1-13
  building the address table 1-13
  default configuration 1-14
  disabling learning on a VLAN 1-23
  discovering 1-24
  displaying 1-23
  displaying in the IP source binding table 1-26
  dynamic
    learning 1-13
    removing 1-15
  in ACLs 1-29
  IP address association 1-10
  static
    adding 1-20
    allowing 1-22, 1-23
    characteristics of 1-20
    dropping 1-21
    removing 1-20

local SPAN 1-2
location TLV 1-3
logging messages, ACL 1-9
login authentication
  with RADIUS 1-29
  with TACACS+ 1-14
login banners 1-10
log messages
  See system message logging

Long-Reach Ethernet (LRE) technology 1-35
loop guard
  described 1-11
  enabling 1-18
  support for 1-10

LRE profiles, considerations in switch clusters 1-16
CNS 1-1
Network Assistant 1-3
overview 1-6
switch stacks 1-3
management VLAN
  considerations in switch clusters 1-7
  discovery through different management VLANs 1-7
manual preemption, REP, configuring 1-13
mapping tables for QoS
  configuring
    CoS-to-DSCP 1-74
    DSCP 1-74
    DSCP-to-CoS 1-77
    DSCP-to-DSCP-mutation 1-78
    IP-precedence-to-DSCP 1-75
    policed-DSCP 1-76
described 1-13
marking
  action in policy map 1-59
  action with aggregate policers 1-72
described 1-4, 1-9
matching IPv4 ACLs 1-8
maximum aging time
  MSTP 1-24
  STP 1-24
maximum hop count, MSTP 1-25
maximum number of allowed devices, port-based authentication 1-41
maximum-paths command 1-54, 1-93
MDA
  configuration guidelines 1-31 to 1-32
described 1-12, 1-31
  exceptions with authentication process 1-4
Media Access Control Security
  See MACsec
membership mode, VLAN port 1-3
member switch
  automatic discovery 1-5
defined 1-2
managing 1-16
passwords 1-13
recovering from lost connectivity 1-12
requirements 1-4
See also candidate switch, cluster standby group, and standby command switch
messages, to users through banners 1-10
metrics, in BGP 1-54
metric translations, between routing protocols 1-99
metro tags 1-2
MHSRP 1-4
MIBs
  overview 1-1
  SNMP interaction with 1-4
mini-point-of-presence
  See POP
mini-type USB console port 1-14
mirroring traffic for analysis 1-1
mismatches, autonegotiation 1-13
MKA
  configuring policies 1-6
defined 1-2
  policies 1-2
  replay protection 1-3
  statistics 1-5
  virtual ports 1-3
module number 1-19
monitoring
  access groups 1-44
  BGP 1-65
cables for unidirectional links 1-1
  CDP 1-5
  CEF 1-92
  EIGRP 1-45
  fallback bridging 1-10
  features 1-18
  Flex Links 1-14
  HSRP 1-13
  IEEE 802.1Q tunneling 1-19
IGMP
  snooping  1-16, 1-12
interfaces  1-51
IP
  address tables  1-19
  multicast routing  1-63
  routes  1-106
IP SLAs operations  1-13
IPv4 ACL configuration  1-44
IPv6  1-49
IPv6 ACL configuration  1-8
IS-IS  1-76
ISO CLNS  1-76
Layer 2 protocol tunneling  1-19
MAC address-table move update  1-14
MSDP peers  1-19
multicast router interfaces  1-17
multi-VRF CE  1-91
network traffic for analysis with probe  1-2
object tracking  1-12
OSPF  1-37
private VLANs  1-15
REP  1-14
RP mapping information  1-35
SFP status  1-14
source-active messages  1-19
speed and duplex mode  1-31
SSM mapping  1-22
traffic flowing among switches  1-1
traffic suppression  1-21
tunneling  1-19
VLAN
  filters  1-45
  maps  1-45
VLANs  1-14
VMPS  1-30
VTP  1-18
monitoring and troubleshooting
  BFD  1-16
mrouter Port  1-3
mrouter port  1-5
MSDP
  benefits of  1-3
  clearing MSDP connections and statistics  1-19
  controlling source information
    forwarded by switch  1-12
    originated by switch  1-8
    received by switch  1-14
  default configuration  1-4
  dense-mode regions
    sending SA messages to  1-17
    specifying the originating address  1-18
  filtering
    incoming SA messages  1-14
    SA messages to a peer  1-12
    SA requests from a peer  1-11
  join latency, defined  1-6
  meshed groups
    configuring  1-16
    defined  1-16
    originating address, changing  1-18
    overview  1-1
  peer-RPF flooding  1-2
  peers
    configuring a default  1-4
    monitoring  1-19
    peering relationship, overview  1-1
    requesting source information from  1-8
    shutting down  1-16
  source-active messages
    caching  1-6
    defined  1-2
    filtering from a peer  1-11
    filtering incoming  1-14
    filtering to a peer  1-12
    limiting data with TTL  1-14
    restricting advertised sources  1-9
    support for  1-17
MSTP

boundary ports 1-16
configuration guidelines 1-6
described 1-6
BPDU filtering 1-3
described 1-3
enabling 1-14
BPDU guard 1-2
described 1-2
enabling 1-13
CIST, described 1-3
CIST regional root 1-3
CIST root 1-5
configuration guidelines 1-15, 1-12
configuring
forward-delay time 1-24
hello time 1-23
link type for rapid convergence 1-25
maximum aging time 1-24
maximum hop count 1-25
MST region 1-16
neighbor type 1-26
path cost 1-21
port priority 1-20
root switch 1-18
secondary root switch 1-19
switch priority 1-22
CST 1-3
defined 1-3
operations between regions 1-3
default configuration 1-14
default optional feature configuration 1-12
displaying status 1-27
enabling the mode 1-16
EtherChannel guard 1-10
described 1-10
enabling 1-17
extended system ID 1-18
effects on root switch 1-18
effects on secondary root switch 1-19
unexpected behavior 1-18
IEEE 802.1s 1-6
implementation 1-6
port role naming change 1-6
terminology 1-5
instances supported 1-10
interface state, blocking to forwarding 1-2
interoperability and compatibility among modes 1-11
interoperability with IEEE 802.1D 1-8
restarting migration process 1-26
IST 1-3
defined 1-2
master 1-3
operations within a region 1-3
loop guard 1-11
described 1-11
enabling 1-18
mapping VLANs to MST instance 1-17
MST region 1-16
CIST 1-3
configured 1-16
described 1-2
hop-count mechanism 1-5
IST 1-2
supported spanning-tree instances 1-2
optional features supported 1-9
overview 1-2
Port Fast 1-2
described 1-2
enabling 1-12
preventing root switch selection 1-10
root guard 1-10
described 1-10
enabling 1-18
root switch 1-18
configuring 1-18
effects of extended system ID 1-18
unexpected behavior 1-18
shutdown Port Fast-enabled port 1-2
stack changes, effects of 1-8
status, displaying 1-27

MTU
system 1-41
system jumbo 1-41
system routing 1-41

multiauth
support for inaccessible authentication bypass 1-23
multiauth mode
See multiple-authentication mode

multicast groups
Immediate Leave 1-6
joining 1-3
leaving 1-5
static joins 1-10, 1-8

multicast packets
ACLs on 1-43
blocking 1-8

multicast router interfaces, monitoring 1-17
multicast router ports, adding 1-9, 1-8

Multicast Source Discovery Protocol
See MSDP

multicast storm 1-1
multicast storm-control command 1-4
multicast television application 1-18
multicast VLAN 1-17

Multicast VLAN Registration
See MVR

multidomain authentication
See MDA

multioperations scheduling, IP SLAs 1-5
multiple authentication 1-12

Multiple HSRP
See MHSRP

multiple VPN routing/forwarding in customer edge devices
See multi-VRF CE

multi-VRF CE
configuration example 1-87
configuration guidelines 1-79
configuring 1-79
default configuration 1-79, 1-41
defined 1-76
displaying 1-91
monitoring 1-91
network components 1-79
packet-forwarding process 1-78
support for 1-16

MVR
and address aliasing 1-20
and IGMPv3 1-21
configuring interfaces 1-22
default configuration 1-20
described 1-17
example application 1-18
in the switch stack 1-20
modes 1-21
multicast television application 1-18
setting global parameters 1-21
support for 1-5

N

NAC
AAA down policy 1-13
critical authentication 1-23, 1-63
IEEE 802.1x authentication using a RADIUS server 1-68
IEEE 802.1x validation using RADIUS server 1-68
inaccessible authentication bypass 1-13, 1-63
Layer 2 IEEE 802.1x validation 1-13, 1-68
Layer 2 IEEE802.1x validation 1-30
Layer 2 IP validation 1-13

named IPv4 ACLs 1-16
named IPv6 ACLs 1-3
NameSpace Mapper
See NSM
native VLAN
  and IEEE 802.1Q tunneling  1-4
  configuring  1-21
default  1-21
NDAC  1-9, 1-2
  defined  1-9
MACsec  1-1
NEAT
  configuring  1-69
  overview  1-33
neighbor discovery, IPv6  1-4
neighbor discovery/recovery, EIGRP  1-38
neighbor offset numbers, REP  1-4
neighbors, BGP  1-60
Network Admission Control
  See NAC
Network Assistant
  benefits  1-2
  described  1-6
  downloading image files  1-3
guide mode  1-3
management options  1-3
managing switch stacks  1-3, 1-17
upgrading a switch  1-25
wizards  1-3
network configuration examples
  cost-effective wiring closet  1-24
  high-performance wiring closet  1-26
  increasing network performance  1-23
  large network  1-32
  long-distance, high-bandwidth transport  1-36
  multidwelling network  1-35
  providing network services  1-23
  redundant Gigabit backbone  1-28
  server aggregation and Linux server cluster  1-28
  small to medium-sized network  1-30
network design
  performance  1-23
  services  1-23
Network Device Admission Control (NDAC)  1-9, 1-2
Network Edge Access Topology
  See NEAT
network management
  CDP  1-1
  RMON  1-1
  SNMP  1-1
network performance, measuring with IP SLAs  1-3
network policy TLV  1-2
Network Time Protocol
  See NTP
no commands  1-4
nonhierarchical policy maps
  configuration guidelines  1-41
  configuring  1-59
  described  1-10
non-IP traffic filtering  1-29
nontrunking mode  1-16
normal-range VLANs  1-4
  configuration guidelines  1-6
  configuring  1-4
  defined  1-1
no switchport command  1-5
not-so-stubby areas
  See NSSA
NSAPs, as ISO IGRP addresses  1-67
NSF Awareness
  IS-IS  1-69
NSM  1-3
NSSA, OSPF  1-33
NTP
  associations
    defined  1-2
  overview  1-2
  stratum  1-2
  support for  1-7
time
  services  1-2
synchronizing 1-2

O

OBFL
configuring 1-27
described 1-27
displaying 1-28
object tracking
HSRP 1-7
IP SLAs 1-9
IP SLAs, configuring 1-9
monitoring 1-12
offline configuration for switch stacks 1-8
off mode, VTP 1-4
on-board failure logging
See OBFL
online diagnostics
described 1-1
overview 1-1
running tests 1-5
open1x
configuring 1-74
open1x authentication
overview 1-31
Open Shortest Path First
See OSPF
optimizing system resources 1-1
options, management 1-6
OSPF
area parameters, configuring 1-33
configuring 1-31
default configuration
metrics 1-34
route 1-34
settings 1-28
described 1-27
for IPv6 1-13
interface parameters, configuring 1-32

LSA group pacing 1-36
monitoring 1-37
router IDs 1-36
route summarization 1-34
support for 1-16
virtual links 1-34
out-of-profile markdown 1-15

P
packet modification, with QoS 1-22
PAgP
Layer 2 protocol tunneling 1-10
See EtherChannel
parallel paths, in routing tables 1-93
passive interfaces
configuring 1-103
OSPF 1-35
passwords
default configuration 1-2
disabling recovery of 1-5
encrypting 1-3
for security 1-11
in clusters 1-14
overview 1-1
recovery of 1-3
setting
enable 1-3
enable secret 1-3
Telnet 1-6
with usernames 1-6
VTP domain 1-10
path cost
MSTP 1-21
STP 1-21
path MTU discovery 1-4
payload encryption 1-1
PBR
defined 1-99
enabling 1-101
fast-switched policy-based routing 1-102
local policy-based routing 1-102
PC (passive command switch) 1-10
peers, BGP 1-60
percentage thresholds in tracked lists 1-6
performance, network design 1-23
performance features 1-4
persistent self-signed certificate 1-49
per-user ACLs and Filter-Ids 1-8
per-VLAN spanning-tree plus
See PVST+
PE to CE routing, configuring 1-86, 1-45
physical ports 1-3
PIM
default configuration 1-11
dense mode
  overview 1-4
  rendezvous point (RP), described 1-5
  RPF lookups 1-9
  enabling a mode 1-13
overview 1-4
router-query message interval, modifying 1-38
shared tree and source tree, overview 1-35
shortest path tree, delaying the use of
sparse mode
  join messages and shared tree 1-5
  overview 1-5
  prune messages 1-5
  RPF lookups 1-9
stub routing
  configuration guidelines 1-22
  enabling 1-23
  overview 1-5
support for 1-17
versions
  interoperability 1-11
  troubleshooting interoperability problems 1-35
v2 improvements 1-4
PIM-DVMRP, as snooping method 1-9
ping
  character output description 1-16
  executing 1-15
  overview 1-15
PoE
  auto mode 1-10
  CDP with power consumption, described 1-8
  CDP with power negotiation, described 1-8
  Cisco intelligent power management 1-8
  configuring 1-33
devices supported 1-7
high-power devices operating in low-power mode 1-8
IEEE power classification levels 1-9
monitoring 1-11
monitoring power 1-36
policing power consumption 1-36
policing power usage 1-11
power budgeting 1-35
power consumption 1-35
powered-device detection and initial power allocation 1-8
power management modes 1-10
power negotiation extensions to CDP 1-8
standards supported 1-8
static mode 1-10
supported watts per port 1-7
troubleshooting 1-13
policing
  described 1-4
types of 1-10
policing
described 1-4
hierarchical
See hierarchical policy maps 1-10

token-bucket algorithm 1-10
default configuration 1-10

See PBR

policy-based routing
See PBR

policy maps for QoS
characteristics of 1-60
described 1-8

hierarchical 1-9

hierarchical on SVIs
configuration guidelines 1-41
configuring 1-64
described 1-12

nonhierarchical on physical ports
configuration guidelines 1-41
configuring 1-59
described 1-10

POP 1-35

port ACLs
defined 1-3
types of 1-4

Port Aggregation Protocol
See EtherChannel

port-based authentication
accounting 1-14
authentication server
defined 1-3, 1-2
RADIUS server 1-3
client, defined 1-3, 1-2
configuration guidelines 1-39, 1-9
configuring
802.1x authentication 1-44
guest VLAN 1-60
host mode 1-47
inaccessible authentication bypass 1-63
manual re-authentication of a client 1-49
periodic re-authentication 1-48
quiet period 1-49
RADIUS server 1-47, 1-13

RADIUS server parameters on the switch 1-46, 1-11
restricted VLAN 1-62
switch-to-client frame-retransmission number 1-50, 1-51
switch-to-client retransmission time 1-50
violation modes 1-43 to 1-44

displaying statistics 1-76, 1-17
downloadable ACLs and redirect URLs
configuring 1-71 to 1-73, ?? to 1-73
overview 1-18 to 1-20

EAPOL-start frame 1-6
EAP-request/identity frame 1-6
EAP-response/identity frame 1-6

enabling
802.1X authentication 1-11
encapsulation 1-3
flexible authentication ordering
configuring 1-74
overview 1-31
guest VLAN
configuration guidelines 1-21, 1-22
described 1-21
host mode 1-12
inaccessible authentication bypass
configuring 1-63
described 1-23
guidelines 1-40
initiation and message exchange 1-6

magic packet 1-28

maximum number of allowed devices per port 1-41
method lists 1-44
multiple authentication 1-12
multiple-hosts mode, described 1-12
per-user ACLs
AAA authorization 1-44
configuration tasks 1-18
  described 1-17
RADIUS server attributes 1-17
ports
  authorization state and dot1x port-control command 1-11
  authorized and unauthorized 1-10
  voice VLAN 1-28
port security
  described 1-28
readiness check
  configuring 1-41
  described 1-15, 1-41
resetting to default values 1-76
stack changes, effects of 1-11
statistics, displaying 1-76
switch
  as proxy 1-3, 1-2
  RADIUS client 1-3
switch supplicant
  configuring 1-69
  overview 1-33
user distribution
  guidelines 1-27
  overview 1-27
VLAN assignment
  AAA authorization 1-44
  characteristics 1-16
  configuration tasks 1-17
  described 1-16
voice aware 802.1x security
  configuring 1-42
  described 1-34, 1-42
voice VLAN
  described 1-28
  PVID 1-28
  VVID 1-28
wake-on-LAN, described 1-28
port-based authentication methods, supported 1-8
port-based trust
  IPv4 and IPv6 1-3
port blocking 1-5, 1-7
port-channel
  See EtherChannel
port description TLV 1-2
Port Fast
  described 1-2
  enabling 1-12
  mode, spanning tree 1-27
  support for 1-9
port membership modes, VLAN 1-3
port priority
  MSTP 1-20
  STP 1-19
ports
  10-Gigabit Ethernet 1-7
  access 1-3
  blocking 1-7
  dynamic access 1-4
  protected 1-6
  REP 1-6
  routed 1-4
  secure 1-9
  static-access 1-3, 1-9
  switch 1-3
  trunks 1-3, 1-15
  VLAN assignments 1-9
port security
  aging 1-17
  and other features 1-11
  and private VLANs 1-18
  and QoS trusted boundary 1-46
  and stacking 1-18
  configuration guidelines 1-11
  configuring 1-13
  default configuration 1-11
  described 1-8
  on trunk ports 1-14
sticky learning 1-9
violations 1-10
port-shutdown response, VMPS 1-26
port VLAN ID TLV 1-2
power management TLV 1-3
Power over Ethernet
See PoE
power supply
configuring 1-45
managing 1-45
preempt delay time, REP 1-5
preemption, default configuration 1-8
preemption delay, default configuration 1-8
preferential treatment of traffic
See QoS
prefix lists, BGP 1-58
preventing unauthorized access 1-1
primary edge port, REP 1-4
primary interface for object tracking, DHCP, configuring 1-11
primary interface for static routing, configuring 1-10
primary links 1-2
primary VLANs 1-1, 1-3
priority
HSRP 1-8
overriding CoS 1-6
trusting CoS 1-6
private VLAN edge ports
See protected ports
private VLANs
across multiple switches 1-4
and SDM template 1-4
and SVIs 1-5
and switch stacks 1-5
benefits of 1-1
community ports 1-2
community VLANs 1-2, 1-3
configuration guidelines 1-7, 1-8
configuration tasks 1-6
configuring 1-10
default configuration 1-6
default configuration 1-6
default configuration 1-6
end station access to 1-3
end station access to 1-3
IP addressing 1-3
isolated 1-2
isolated VLANs 1-2, 1-3
mapping 1-13
monitoring 1-15
ports
community 1-2
configuration guidelines 1-8
configuring host ports 1-11
configuring promiscuous ports 1-13
isolated 1-2
promiscuous 1-2
primary VLANs 1-1, 1-3
promiscuous ports 1-2
secondary VLANs 1-2
subdomains 1-1
traffic in 1-5
privilege levels
changing the default for lines 1-9
command switch 1-17
exiting 1-9
logging into 1-9
mapping on member switches 1-17
overview 1-2, 1-7
setting a command with 1-8
promiscuous ports
configuring 1-13
defined 1-2
protected ports 1-11, 1-6
protocol-dependent modules, EIGRP 1-38
Protocol-Independent Multicast Protocol
See PIM
protocol storm protection 1-19
provider edge devices 1-77
provisioning new members for a switch stack 1-8
proxy ARP
configuring 1-13
definition 1-11
with IP routing disabled 1-13
proxy reports 1-3
pruning, VTP
  disabling
    in VTP domain 1-16
    on a port 1-21
  enabling
    in VTP domain 1-16
    on a port 1-21
examples 1-7
overview 1-6
pruning-eligible list
  changing 1-21
  for VTP pruning 1-6
VLANs 1-16
PVST+
  described 1-10
  IEEE 802.1Q trunking interoperability 1-12
  instances supported 1-10

Q

QoS
  and MQC commands 1-1
  auto-QoS
    categorizing traffic 1-24
    configuration and defaults display 1-36
    configuration guidelines 1-33
    described 1-23
    disabling 1-35
    displaying generated commands 1-35
    displaying the initial configuration 1-36
    effects on running configuration 1-36
    egress queue defaults 1-25
    list of generated commands 1-26
  basic model 1-4
class maps, described 1-8
defined 1-4
DSCP transparency, described 1-47
flowchart 1-7
forwarding treatment 1-3
in frames and packets 1-3
IP ACLs, described 1-7, 1-8
MAC ACLs, described 1-5, 1-8
options for IP traffic 1-6
options for non-IP traffic 1-5
policy maps, described 1-8
trust DSCP, described 1-5
trusted CoS, described 1-5
trust IP precedence, described 1-5
class maps
  configuring 1-55
configuration guidelines
  auto-QoS 1-33
  standard QoS 1-40
configuring
  aggregate policers 1-72
  auto-QoS 1-23
  default port CoS value 1-45
  DSCP maps 1-74
  DSCP transparency 1-47
  DSCP trust states bordering another domain 1-48
  egress queue characteristics 1-84
  ingress queue characteristics 1-80
  IP extended ACLs 1-51
  IP standard ACLs 1-50
  MAC ACLs 1-54
  policy maps, hierarchical 1-64
  policy maps on physical ports 1-59
  port trust states within the domain 1-44
  trusted boundary 1-46
  default auto configuration 1-24
  default standard configuration 1-37
  DSCP transparency 1-47
egress queues
allocating buffer space 1-85
buffer allocation scheme, described 1-20
configuring shaped weights for SRR 1-89
configuring shared weights for SRR 1-90
described 1-4
displaying the threshold map 1-88
flowchart 1-19
mapping DSCP or CoS values 1-87
scheduling, described 1-4
setting WTD thresholds 1-85
WTD, described 1-22
enabling globally 1-43
flowcharts
classification 1-7
egress queueing and scheduling 1-19
ingress queueing and scheduling 1-16
policing and marking 1-11
implicit deny 1-8
ingress queues
allocating bandwidth 1-82
allocating buffer space 1-82
buffer and bandwidth allocation, described 1-18
configuring shared weights for SRR 1-82
configuring the priority queue 1-83
described 1-4
displaying the threshold map 1-81
flowchart 1-16
mapping DSCP or CoS values 1-81
priority queue, described 1-18
scheduling, described 1-4
setting WTD thresholds 1-81
WTD, described 1-18
IP phones
automatic classification and queueing 1-23
detection and trusted settings 1-23, 1-46
limiting bandwidth on egress interface 1-91
mapping tables
CoS-to-DSCP 1-74
DSCP-to-CoS 1-77
DSCP-to-DSCP-mutation 1-78
IP-precedence-to-DSCP 1-78
policed-DSCP 1-76
types of 1-13
marked-down actions 1-62
marking, described 1-4, 1-9
overview 1-2
packet modification 1-22
policers
configuring 1-62, 1-72
described 1-9
number of 1-42
types of 1-10
policies, attaching to an interface 1-9
policing
described 1-4, 1-9
token bucket algorithm 1-10
policy maps
classification of 1-60
hierarchical 1-9
hierarchical on SVIs 1-64
nonhierarchical on physical ports 1-59
QoS label, defined 1-4
queues
configuring egress characteristics 1-84
configuring ingress characteristics 1-80
high priority (expedite) 1-22, 1-90
location of 1-14
SRR, described 1-15
WTD, described 1-15
rewrites 1-22
support for 1-15
trust states
bordering another domain 1-48
described 1-5
trusted device 1-46
within the domain 1-44
quality of service
See QoS
queries, IGMP 1-4
query solicitation, IGMP 1-13

R

RADIUS
attributes
   vendor-proprietary 1-36
   vendor-specific 1-35
configuring
   accounting 1-34
   authentication 1-29
   authorization 1-33
   communication, global 1-27, 1-35
   communication, per-server 1-27
   multiple UDP ports 1-27
default configuration 1-27
defining AAA server groups 1-31
displaying the configuration 1-39
identifying the server in clusters 1-16
limiting the services to the user 1-33
method list, defined 1-26
operation of 1-19
overview 1-18
server load balancing 1-39
suggested network environments 1-18
support for 1-13
tracking services accessed by user 1-34
RADIUS Change of Authorization 1-20
range
   macro 1-22
   of interfaces 1-21
rapid convergence 1-10
rapid per-VLAN spanning-tree plus
   See rapid PVST+
rapid PVST+
   described 1-10
   IEEE 802.1Q trunking interoperability 1-12
instances supported 1-10
Rapid Spanning Tree Protocol
   See RSTP
RARP 1-11
rcommand command 1-16
RCP
   configuration files
      downloading 1-18
      overview 1-17
      preparing the server 1-17
      uploading 1-19
   image files
      deleting old image 1-38
      downloading 1-37
      preparing the server 1-36
      uploading 1-38
reachability, tracking IP SLAs IP host 1-9
readiness check
   port-based authentication
      configuring 1-41
      described 1-15, 1-41
reconfirmation interval, VMPS, changing 1-29
reconfirming dynamic VLAN membership 1-29
redirect URL 1-18, 1-20, 1-71
redundancy
   EtherChannel 1-3
   HSRP 1-1
   STP
      backbone 1-9
      multidrop backbone 1-5
      path cost 1-24
      port priority 1-22
redundant links and UplinkFast 1-15
redundant power system
   See Cisco Redundant Power System 2300
reliable transport protocol, EIGRP 1-38
reloading software 1-23
Remote Authentication Dial-In User Service
   See RADIUS
Remote Copy Protocol
See RCP
Remote Network Monitoring
See RMON
Remote SPAN
See RSPAN
remote SPAN 1-3
REP
  administrative VLAN 1-8
  administrative VLAN, configuring 1-8
  age timer 1-8
  and STP 1-6
  configuration guidelines 1-7
  configuring interfaces 1-9
  convergence 1-4
  default configuration 1-7
  manual preemption, configuring 1-13
  monitoring 1-14
  neighbor offset numbers 1-4
  open segment 1-2
  ports 1-6
  preempt delay time 1-5
  primary edge port 1-4
  ring segment 1-2
  secondary edge port 1-4
  segments 1-1
    characteristics 1-2
  SNMP traps, configuring 1-13
  supported interfaces 1-1
  triggering VLAN load balancing 1-5
  verifying link integrity 1-3
  VLAN blocking 1-12
  VLAN load balancing 1-4
  report suppression, IGMP
described 1-6
  disabling 1-16, 1-11
  resequencing ACL entries 1-16
  reserved addresses in DHCP pools 1-28
  resets, in BGP 1-52
resetting a UDLD-shutdown interface 1-6
Resilient Ethernet Protocol
See REP
responder, IP SLAs
described 1-4
  enabling 1-7
response time, measuring with IP SLAs 1-4
restricted VLAN
  configuring 1-62
described 1-22
  using with IEEE 802.1x 1-22
restricting access
  overview 1-1
  passwords and privilege levels 1-2
  RADIUS 1-17
  TACACS+ 1-10
retry count, VMPS, changing 1-30
reverse address resolution 1-10
Reverse Address Resolution Protocol
See RARP
RFC
  1058, RIP 1-21
  1112, IP multicast and IGMP 1-2
  1157, SNMPv1 1-2
  1163, BGP 1-45
  1166, IP addresses 1-7
  1253, OSPF 1-27
  1267, BGP 1-45
  1305, NTP 1-2
  1587, NSSAs 1-27
  1757, RMON 1-2
  1771, BGP 1-45
  1901, SNMPv2C 1-2
  1902 to 1907, SNMPv2 1-2
  2236, IP multicast and IGMP 1-2
  2273-2275, SNMPv3 1-2
RFC 5176 Compliance 1-21
RIP
  advertisements 1-21
Index

authentication 1-24
configuring 1-22
default configuration 1-22
described 1-21
for IPv6 1-12
hop counts 1-21
split horizon 1-24
summary addresses 1-25
support for 1-16
RMON
default configuration 1-3
displaying status 1-6
enabling alarms and events 1-3
groups supported 1-2
overview 1-1
statistics
  collecting group Ethernet 1-5
  collecting group history 1-5
support for 1-18
root guard
described 1-10
enabling 1-18
support for 1-10
root switch
MSTP 1-18
STP 1-17
route calculation timers, OSPF 1-35
route dampening, BGP 1-64
routed packets, ACLs on 1-43
routed ports
  configuring 1-5
defined 1-4
  in switch clusters 1-8
  IP addresses on 1-39, 1-6
route-map command 1-102
route maps
  BGP 1-56
  policy-based routing 1-100
router ACLs
defined 1-3
types of 1-5
route reflectors, BGP 1-63
router ID, OSPF 1-36
route selection, BGP 1-54
route summarization, OSPF 1-34
route targets, VPN 1-79
routing
default 1-3
dynamic 1-3
  redistribution of information 1-96
  static 1-3
  routing domain confederation, BGP 1-63
Routing Information Protocol
  See RIP
routings protocol administrative distances 1-94
RPS
  See Cisco Redundant Power System 2300
RPS 2300
  See Cisco Redundant Power System 2300
RSPAN
  See Cisco Redundant Power System 2300
and stack changes 1-11
characteristics 1-9
collection guidelines 1-19
default configuration 1-12
destination ports 1-8
displaying status 1-31
in a switch stack 1-3
interaction with other features 1-10
monitored ports 1-7
monitoring ports 1-8
overview 1-18, 1-1
received traffic 1-6
session limits 1-13
sessions
  creating 1-20
defined 1-4
  limiting source traffic to specific VLANs 1-22
  specifying monitored ports 1-20
with ingress traffic enabled 1-25
source ports 1-7
transmitted traffic 1-6
VLAN-based 1-7

RSTP
active topology 1-9
BPDU
format 1-12
processing 1-13
designated port, defined 1-9
designated switch, defined 1-9
interoperability with IEEE 802.1D
described 1-8
restarting migration process 1-26
topology changes 1-13
overview 1-9
port roles
described 1-9
synchronized 1-11
proposal-agreement handshake process 1-10
rapid convergence
cross-stack rapid convergence 1-11
described 1-10
designated port, Port Fast 1-10
point-to-point links 1-10,1-25
root ports 1-10
root port, defined 1-9
See also MSTP
running configuration
replacing 1-20,1-21
rolling back 1-20,1-22
saving 1-16

SC (standby command switch) 1-10
scheduled reloads 1-23
scheduling, IP SLAs operations 1-5
SCP
and SSH 1-55
configuring 1-55
SDM
described 1-1
switch stack consideration 1-11
templates
configuring 1-6
number of 1-1
SDM template
configuring 1-5
dual IPv4 and IPv6 1-3
types of 1-1
secondary edge port, REP 1-4
secondary VLANs 1-2
Secure Copy Protocol
secure HTTP client
configuring 1-54
displaying 1-54
secure HTTP server
configuring 1-52
displaying 1-54
secure MAC addresses
and switch stacks 1-18
deleting 1-16
maximum number of 1-10
types of 1-9
secure ports
and switch stacks 1-18
configuring 1-9
secure remote connections 1-44
Secure Shell
See SSH
Secure Socket Layer
See SSL
security, port 1-8

S

SAP
defined 1-9
negotiation 1-9
support 1-1
Security Exchange Protocol
  See SXP
Security Exchange Protocol
  See SAP
Security Exchange Protocol (SXP) 1-2
security features 1-11
Security Group Access Control List (SGACL) 1-2
Security Group Tag (SGT) 1-2
See SCP
sequence numbers in log messages 1-8
server mode, VTP 1-3
service-provider network, MSTP and RSTP 1-1
service-provider networks
  and customer VLANs 1-2
  and IEEE 802.1Q tunneling 1-1
  Layer 2 protocols across 1-8
  Layer 2 protocol tunneling for EtherChannels 1-10
session keys, MKA 1-2
set-request operation 1-5
setup program
  failed command switch replacement 1-11
  replacing failed command switch 1-9
severity levels, defining in system messages 1-9
SFPs
  monitoring status of 1-14
  numbering of 1-20
  security and identification 1-14
  status, displaying 1-14
SGACL 1-2
SGT 1-2
shaped round robin
  See SRR
show access-lists hw-summary command 1-23
show and more command output, filtering 1-9
show cluster members command 1-16
show configuration command 1-38
show forward command 1-22
show interfaces command 1-31, 1-38
show interfaces switchport 1-4
show l2protocol command 1-14, 1-16, 1-17
show platform forward command 1-22
show running-config command
  displaying ACLs 1-34, 1-36
  interface description in 1-38
shut down command on interfaces 1-53
shut down threshold for Layer 2 protocol packets 1-12
Simple Network Management Protocol
  See SNMP
single session ID 1-35
Slow timer, configuring BFD 1-15
small form-factor pluggable modules
  See SFPs
small-frame arrival rate, configuring 1-5
smart logging 1-1, 1-14
SNAP 1-1
SNMP
  accessing MIB variables with 1-4
  agent
    described 1-4
    disabling 1-9
  and IP SLAs 1-2
  authentication level 1-12
  community strings
    configuring 1-9
    for cluster switches 1-4
    overview 1-4
  configuration examples 1-19
default configuration 1-8
engine ID 1-8
groups 1-8, 1-11
host 1-8
ifIndex values 1-6
in-band management 1-8
in clusters 1-14
informs
  and trap keyword 1-14
  described 1-5
  differences from traps 1-5
disabling  1-17
enabling  1-17
limiting access by TFTP servers  1-19
limiting system log messages to NMS  1-10
manager functions  1-6, 1-3
managing clusters with  1-17
notifications  1-5
overview  1-1, 1-4
security levels  1-3
setting CPU threshold notification  1-18
status, displaying  1-21
system contact and location  1-18
trap manager, configuring  1-16
traps
  described  1-5
differences from informs  1-5
disabling  1-17
enabling  1-14
enabling MAC address notification  1-15, 1-17, 1-18
overview  1-1, 1-5
types of  1-14
users  1-8, 1-11
versions supported  1-2
SNMP and Syslog Over IPv6  1-14
SNMP traps
  REP  1-13
SNMPv1  1-2
SNMPv2C  1-2
SNMPv3  1-3
snooping, IGMP  1-2
software compatibility
  See stacks, switch
software images
  location in flash  1-26
  recovery procedures  1-2
  scheduling reloads  1-24
tar file format, described  1-26
  See also downloading and uploading
software images in mixed stacks
  See the Cisco Software Activation and Compatibility Document
source-and-destination-IP address based forwarding, EtherChannel  1-9
source-and-destination MAC address forwarding, EtherChannel  1-9
source-IP address based forwarding, EtherChannel  1-9
source-MAC address forwarding, EtherChannel  1-8
Source-specific multicast
  See SSM
SPAN
  and stack changes  1-11
  configuration guidelines  1-13
default configuration  1-12
  destination ports  1-8
displaying status  1-31
  interaction with other features  1-10
  monitored ports  1-7
  monitoring ports  1-8
  overview  1-18, 1-1
  ports, restrictions  1-12
  received traffic  1-6
  session limits  1-13
  sessions
    configuring ingress forwarding  1-17, 1-26
    creating  1-14, 1-28
defined  1-4
  limiting source traffic to specific VLANs  1-18
  removing destination (monitoring) ports  1-15
  specifying monitored ports  1-14, 1-28
  with ingress traffic enabled  1-16
  source ports  1-7
  transmitted traffic  1-6
  VLAN-based  1-7
spanning tree and native VLANs  1-17
Spanning Tree Protocol
  See STP
SPAN traffic  1-6
split horizon, RIP  1-24
SRR
- configuring
  - shaped weights on egress queues 1-89
  - shared weights on egress queues 1-90
  - shared weights on ingress queues 1-82
described 1-15
shaped mode 1-15
shared mode 1-16
support for 1-15, 1-16

SSH
- configuring 1-45
described 1-8, 1-44
encryption methods 1-45
switch stack considerations 1-18
user authentication methods, supported 1-45

SSL
- configuration guidelines 1-51
configuring a secure HTTP client 1-54
configuring a secure HTTP server 1-52
described 1-48
monitoring 1-54

SSM
- address management restrictions 1-16
CGMP limitations 1-16
components 1-14
configuration guidelines 1-16
configuring 1-14, 1-17
differs from Internet standard multicast 1-14
IGMP snooping 1-16
IGMPv3 1-14
IGMPv3 Host Signalling 1-15
IP address range 1-15
monitoring 1-17
operations 1-15
PIM 1-14
state maintenance limitations 1-16

SSM mapping 1-17
- configuration guidelines 1-17
configuring 1-17, 1-19

DNS-based 1-18, 1-20
monitoring 1-22
overview 1-18
restrictions 1-18
static 1-18, 1-20
static traffic forwarding 1-21
stack changes
effects on
IPv6 routing 1-16

STACK changes, effects on
ACL configuration 1-7
CDP 1-2
cross-stack EtherChannel 1-13
EtherChannel 1-10
fallback bridging 1-3
HSRP 1-5
IEEE 802.1x port-based authentication 1-11
IGMP snooping 1-7
IP routing 1-4
IPv6 ACLs 1-3
MAC address tables 1-14
MSTP 1-8
multicast routing 1-10
MVR 1-18
port security 1-18
SDM template selection 1-4
SNMP 1-1
SPAN and RSPAN 1-11
STP 1-12
switch clusters 1-14
system message log 1-2
VLANs 1-6
VTP 1-8
stacking
and MACsec 1-3
stack master
bridge ID (MAC address) 1-7
defined 1-2
election 1-6
IPV6 1-16
re-election 1-6
See also stacks, switch
stack member
accessing CLI of specific member 1-30
configuring
member number 1-26
priority value 1-26
defined 1-2
displaying information of 1-30
IPv6 1-17
number 1-7
priority value 1-8
provisioning a new member 1-27
replacing 1-16
See also stacks, switch
stack member number 1-19
stack protocol version 1-12
stacks, switch
accessing CLI of specific member 1-30
assigning information
member number 1-26
priority value 1-26
provisioning a new member 1-27
auto-advise 1-13
auto-copy 1-13
auto-extract 1-13
auto-upgrade 1-12
bridge ID 1-7
Catalyst 3750-E-only 1-2
Catalyst 3750-X-only 1-2
CDP considerations 1-2
compatibility, software 1-11
configuration file 1-16
configuration scenarios 1-19
copying an image file from one member to another 1-39
default configuration 1-24
description of 1-2
displaying information of 1-30
enabling persistent MAC address timer 1-24
hardware compatibility and SDM mismatch mode 1-11
HSRP considerations 1-5
in clusters 1-14
incompatible software and image upgrades 1-15, 1-39
IPv6 on 1-16
MAC address considerations 1-14
MAC address of 1-24
management connectivity 1-17
managing 1-1
managing mixed
See Catalyst 3750-E and 3750 Switch Stacking Compatibility Guide
membership 1-4
merged 1-5
mixed
hardware 1-2
hardware and software 1-2
software 1-2
with Catalyst 3750-E and 3750 switches 1-2
mixed software images
See Cisco Software Activation and Compatibility Document
MSTP instances supported 1-10
multicast routing, stack master and member roles 1-10
offline configuration
described 1-8
effects of adding a provisioned switch 1-9
effects of removing a provisioned switch 1-11
effects of replacing a provisioned switch 1-11
provisioned configuration, defined 1-8
provisioned switch, defined 1-8
provisioning a new member 1-27
partitioned 1-5, 1-8
provisioned switch
adding 1-9
removing 1-11
replacing 1-11
replacing a failed member 1-16
software compatibility 1-11
software image version 1-11
stack protocol version 1-12
STP
  bridge ID 1-3
  instances supported 1-10
  root port selection 1-3
  stack root switch election 1-3
system messages
  hostnames in the display 1-1
  remotely monitoring 1-2
system prompt consideration 1-7
system-wide configuration considerations 1-16
upgrading 1-39
version-mismatch (VM) mode
  automatic upgrades with auto-upgrade 1-12
  described 1-12
  examples 1-13
  manual upgrades with auto-advises 1-13
  upgrades with auto-extract 1-13
See also stack master and stack member
StackWise Plus technology, Cisco 1-3
  See also stacks, switch
standby command switch
  configuring
    considerations 1-11
  defined 1-2
  priority 1-10
  requirements 1-3
  virtual IP address 1-11
See also stack standby group and HSRP
standby group, cluster
  See cluster standby group and HSRP
standby ip command 1-6
standby links 1-2
standby router 1-2
standby timers, HSRP 1-10
startup configuration
  booting
    manually 1-19
  specific image 1-20
  clearing 1-20
  configuration file
    automatically downloading 1-18
    specifying the filename 1-19
  default boot configuration 1-18
static access ports
  assigning to VLAN 1-9
  defined 1-3
static addresses
  See addresses
  static IP routing 1-17
  static MAC addressing 1-11
  static route primary interface, configuring 1-10
  static routes
    configuring 1-94
    understanding 1-12
  static routing 1-3
  static routing support, enhanced object tracking 1-10
  static SSM mapping 1-18, 1-20
  static traffic forwarding 1-21
  static VLAN membership 1-2
statistics
  802.1X 1-17
  CDP 1-5
  IEEE 802.1x 1-76
  interface 1-52
  IP multicast routing 1-63
  MKA 1-5
  OSPF 1-37
  RMON group Ethernet 1-5
  RMON group history 1-5
  SNMP input and output 1-21
  VTP 1-18
  sticky learning 1-9
  storm control
configuring 1-3
described 1-1
disabling 1-5
support for 1-5
thresholds 1-2

STP
accelerating root port selection 1-4
and REP 1-6
BackboneFast
   described 1-7
disabling 1-17
   enabling 1-16
BPDU filtering
   described 1-3
disabling 1-15
enabling 1-14
BPDU guard
   described 1-2
disabling 1-14
   enabling 1-13
BPDU message exchange 1-3
configuration guidelines 1-14, 1-12
configuring
   forward-delay time 1-24
   hello time 1-23
   maximum aging time 1-24
   path cost 1-21
   port priority 1-19
   root switch 1-17
   secondary root switch 1-18
   spanning-tree mode 1-15
   switch priority 1-22
transmit hold-count 1-25
counters, clearing 1-25
cross-stack UplinkFast
   described 1-5
   enabling 1-16
default configuration 1-13
default optional feature configuration 1-12
designated port, defined 1-4
designated switch, defined 1-4
detecting indirect link failures 1-8
disabling 1-16
displaying status 1-25
EtherChannel guard
   described 1-10
disabling 1-17
enabling 1-17
extended system ID
   effects on root switch 1-17
   effects on the secondary root switch 1-18
   overview 1-5
   unexpected behavior 1-17
features supported 1-9
IEEE 802.1D and bridge ID 1-5
IEEE 802.1D and multicast addresses 1-9
IEEE 802.1t and VLAN identifier 1-5
inferior BPDU 1-3
instances supported 1-10
interface state, blocking to forwarding 1-2
interface states
   blocking 1-6
   disabled 1-8
   forwarding 1-6, 1-7
   learning 1-7
   listening 1-7
   overview 1-5
interoperability and compatibility among modes 1-11
keepalive messages 1-3
Layer 2 protocol tunneling 1-8
limitations with IEEE 802.1Q trunks 1-12
load sharing
   overview 1-22
   using path costs 1-24
   using port priorities 1-22
loop guard
   described 1-11
   enabling 1-18
modes supported 1-10
multicast addresses, effect of 1-9
optional features supported 1-9
overview 1-2
path costs 1-24, 1-25
Port Fast
described 1-2
enabling 1-12
port priorities 1-23
preventing root switch selection 1-10
protocols supported 1-10
redundant connectivity 1-9
root guard
described 1-10
enabling 1-18
root port, defined 1-3
root port selection on a switch stack 1-3
root switch
configuring 1-17
effects of extended system ID 1-5, 1-17
election 1-3
unexpected behavior 1-17
shutdown Port Fast-enabled port 1-2
stack changes, effects of 1-12
status, displaying 1-12
superior BPDU 1-3
timers, described 1-23
UplinkFast
described 1-3
enabling 1-15
VLAN-bridge 1-12
stratum, NTP 1-2
stub areas, OSPF 1-33
stub routing, EIGRP 1-44
subdomains, private VLAN 1-1
subnet mask 1-8
subnet zero 1-8
success response, VMPS 1-26
summer time 1-6
SunNet Manager 1-6
supernet 1-9
supported port-based authentication methods 1-8
SVI autostate exclude
configuring 1-40
defined 1-6
SVI link state 1-6
SVIs
and IP unicast routing 1-5
and router ACLs 1-5
connecting VLANs 1-13
defined 1-5
routing between VLANs 1-2
switch 1-2
switch clustering technology 1-1
See also clusters, switch
switch console port 1-8
Switch Database Management
See SDM
switched packets, ACLs on 1-41
Switched Port Analyzer
See SPAN
switched ports 1-3
switchport backup interface 1-4, 1-5
switchport block multicast command 1-8
switchport block unicast command 1-8
switchport command 1-28
switchport mode dot1q-tunnel command 1-7
switchport protected command 1-7
switch priority
MSTP 1-22
STP 1-22
switch software features 1-1
switch virtual interface
See SVI
SXP 1-2
synchronization, BGP 1-50
syslog
See system message logging
system capabilities TLV 1-2
system clock
  configuring
    daylight saving time 1-6
    manually 1-4
    summer time 1-6
    time zones 1-5
displaying the time and date 1-5
overview 1-2
See also NTP
system description TLV 1-2
system message logging
  default configuration 1-4
  defining error message severity levels 1-9
  disabling 1-4
  displaying the configuration 1-17
  enabling 1-5
  facility keywords, described 1-14
  level keywords, described 1-10
  limiting messages 1-10
  message format 1-2
  overview 1-1
  sequence numbers, enabling and disabling 1-8
  setting the display destination device 1-5
  stack changes, effects of 1-2
  synchronizing log messages 1-6
  syslog facility 1-18
  time stamps, enabling and disabling 1-8
UNIX syslog servers
  configuring the daemon 1-12
  configuring the logging facility 1-13
  facilities supported 1-14
system MTU
  and IS-IS LSPs 1-71
system MTU and IEEE 802.1Q tunneling 1-5
system name
  default configuration 1-8
  default setting 1-8
  manual configuration 1-8

See also DNS
system name TLV 1-2
system prompt, default setting 1-7, 1-8
system resources, optimizing 1-1
system routing
  IS-IS 1-67
  ISO IGRP 1-67

T
TACACS+
  accounting, defined 1-11
  authentication, defined 1-11
  authorization, defined 1-11
  configuring
    accounting 1-17
    authentication key 1-13
    authorization 1-16
    login authentication 1-14
  default configuration 1-13
  displaying the configuration 1-17
  identifying the server 1-13
  in clusters 1-16
  limiting the services to the user 1-16
  operation of 1-12
  overview 1-10
  support for 1-13
  tracking services accessed by user 1-17
tagged packets
  IEEE 802.1Q 1-3
  Layer 2 protocol 1-8
tar files
  creating 1-7
  displaying the contents of 1-7
  extracting 1-8
  image file format 1-26
TCL script, registering and defining with embedded event manager 1-7
TDR 1-18
Telnet
   accessing management interfaces  1-10
   number of connections  1-8
   setting a password  1-6
templates, SDM  1-2
temporary self-signed certificate  1-49
Terminal Access Controller Access Control System Plus
   See TACACS+
terminal lines, setting a password  1-6
ternary content addressable memory  1-26
TFTP
   configuration files
      downloading  1-12
      preparing the server  1-11
      uploading  1-13
   configuration files in base directory  1-8
   configuring for autoconfiguration  1-7
   image files
      deleting  1-30
      downloading  1-28
      preparing the server  1-28
      uploading  1-30
   limiting access by servers  1-19
TFTP server  1-7
threshold, traffic level  1-2
threshold monitoring, IP SLAs  1-6
time
   See NTP and system clock
Time Domain Reflector
   See TDR
time-range command  1-18
time ranges in ACLs  1-18
time stamps in log messages  1-8
time zones  1-5
TLVs
   defined  1-2
   LLDP  1-2
   LLDP-MED  1-2
Token Ring VLANs
   support for  1-5
   VTP support  1-5
ToS  1-15
traceroute, Layer 2
   and ARP  1-17
   and CDP  1-17
   broadcast traffic  1-16
   described  1-16
   IP addresses and subnets  1-17
   MAC addresses and VLANs  1-17
   multicast traffic  1-17
   multiple devices on a port  1-17
   unicast traffic  1-16
   usage guidelines  1-17
traceroute command
   See also IP traceroute
tracked lists
   configuring  1-3
   types  1-3
tracked objects
   by Boolean expression  1-4
   by threshold percentage  1-6
   by threshold weight  1-5
tracking interface line-protocol state  1-2
tracking IP routing state  1-2
tracking objects  1-1
tracking process  1-1
track state, tracking IP SLAs  1-9
traffic
   blocking flooded  1-8
   fragmented  1-6
   fragmented IPv6  1-2
   unfragmented  1-6
   traffic policing  1-15
   traffic suppression  1-2
   transmit hold-count
      see STP
   transparent mode, VTP  1-4
   trap-door mechanism  1-2
traps
  configuring MAC address notification 1-15, 1-17, 1-18
  configuring managers 1-14
  enabling 1-15, 1-17, 1-18, 1-14
  notification types 1-14
  overview 1-1, 1-5

troubleshooting
  connectivity problems 1-15, 1-16, 1-18
  CPU utilization 1-30
  detecting unidirectional links 1-1
  displaying crash information 1-24
  PIMv1 and PIMv2 interoperability problems 1-35
  setting packet forwarding 1-22
  SFP security and identification 1-14
  show forward command 1-22
  with CiscoWorks 1-4
  with debug commands 1-20
  with ping 1-15
  with system message logging 1-1
  with traceroute 1-18

trunk failover
  See link-state tracking

trunking encapsulation 1-10

trunk ports
  configuring 1-18
  defined 1-4, 1-3
  encapsulation 1-19, 1-23

trunks
  allowed-VLAN list 1-19
  configuring 1-19, 1-23
  ISL 1-15
  load sharing
    setting STP path costs 1-24
    using STP port priorities 1-22, 1-23
  native VLAN for untagged traffic 1-21
  parallel 1-24
  pruning-eligible list 1-21
  to non-DTP device 1-15
  trusted boundary for QoS 1-46

trusted port states
  between QoS domains 1-48
  classification options 1-5
  ensuring port security for IP phones 1-46
  support for 1-15
  within a QoS domain 1-44

trustpoints, CA 1-49

tunneling
  defined 1-1
  IEEE 802.1Q 1-1
  Layer 2 protocol 1-8
  tunnel ports
    described 1-4, 1-2
    IEEE 802.1Q, configuring 1-7
    incompatibilities with other features 1-6
  twisted-pair Ethernet, detecting unidirectional links 1-1
  type of service
    See ToS

U

UDLD
  configuration guidelines 1-4
  default configuration 1-4
  disabling
    globally 1-5
    on fiber-optic interfaces 1-5
    per interface 1-6
  echoing detection mechanism 1-3
  enabling
    globally 1-5
    per interface 1-6
  Layer 2 protocol tunneling 1-11
  link-detection mechanism 1-1
  neighbor database 1-2
  overview 1-1
  resetting an interface 1-6
  status, displaying 1-7
  support for 1-9
UDP, configuring 1-17
UDP jitter, configuring 1-9
UDP jitter operation, IP SLAs 1-8
unauthorized ports with IEEE 802.1x 1-10
unicast MAC address filtering 1-7
and adding static addresses 1-21
and broadcast MAC addresses 1-21
and CPU packets 1-21
and multicast addresses 1-21
and router MAC addresses 1-21
configuration guidelines 1-21
described 1-21
unicast storm 1-1
unicast storm control command 1-4
unicast traffic, blocking 1-8
UniDirectional Link Detection protocol
See UDLD
universal software image 1-1
cryptographic 1-1
feature set
IP base 1-2
IP services 1-2
noncryptographic 1-1
UNIX syslog servers
daemon configuration 1-12
facilities supported 1-14
message logging configuration 1-13
unrecognized Type-Length-Value (TLV) support 1-5
upgrading software images
See downloading
UplinkFast
described 1-3
disabling 1-16
enabling 1-15
support for 1-9
uploading
configuration files
preparing 1-11, 1-14, 1-17
reasons for 1-9
using FTP 1-16
using RCP 1-19
using TFTP 1-13
image files
preparing 1-28, 1-31, 1-36
reasons for 1-25
using FTP 1-34
using RCP 1-38
using TFTP 1-30
USB flash devices 1-17
USB inactivity timer 1-16
USB port
mini-type B 1-14
USB ports 1-14
USB Type A port 1-9
USB type A port 1-17
User Datagram Protocol
See UDP
username-based authentication 1-6
Using Memory Consistency Check Routines 1-26

V

VACLs
logging
configuration example 1-40
version-dependent transparent mode 1-5
version-mismatch (VM) mode
automatic upgrades with auto-upgrade 1-12
described 1-12
displaying 1-12
manual upgrades with auto-advises 1-13
upgrades with auto-extracts 1-13
virtual IP address
cluster standby group 1-11
command switch 1-11
virtual ports, MKA 1-3
Virtual Private Network
See VPN
virtual router 1-1, 1-2
virtual switches and PAgP 1-6
vlan.dat file 1-4
VLAN 1
  disabling on a trunk port 1-20
  minimization 1-20
VLAN ACLs
  See VLAN maps
vlan-assignment response, VMPS 1-26
VLAN blocking, REP 1-12
VLAN configuration
  at bootup 1-7
  saving 1-7
VLAN database
  and startup configuration file 1-7
  and VTP 1-1
  VLAN configuration saved in 1-7
  VLANs saved in 1-4
vlan dot1q tag native command 1-5
VLAN filtering and SPAN 1-8
vlan global configuration command 1-6
VLAN ID, discovering 1-24
VLAN link state 1-6
VLAN load balancing
  REP 1-4
VLAN load balancing, triggering 1-5
VLAN load balancing on flex links
  configuration guidelines 1-8
  described 1-2
VLAN management domain 1-2
VLAN Management Policy Server
  See VMPS
VLAN map entries, order of 1-33
VLAN maps
  applying 1-36
  common uses for 1-36
  configuration guidelines 1-33
  configuring 1-32
  creating 1-34
defined 1-3
denying access to a server example 1-38
denying and permitting packets 1-34
displaying 1-45
examples of ACLs and VLAN maps 1-34
removing 1-36
support for 1-12
wiring closet configuration example 1-37
VLAN membership
  confirming 1-29
  modes 1-3
VLAN Query Protocol
  See VQP
VLANs
  adding 1-8
  adding to VLAN database 1-8
  aging dynamic addresses 1-10
  allowed on trunk 1-19
  and spanning-tree instances 1-3, 1-6, 1-11
  configuration guidelines, extended-range VLANs 1-11
  configuration guidelines, normal-range VLANs 1-6
  configuring 1-1
  configuring IDs 1006 to 4094 1-11
  connecting through SVIs 1-13
  customer numbering in service-provider networks 1-3
  default configuration 1-7
  deleting 1-9
  described 1-2, 1-1
  displaying 1-14
  extended-range 1-1, 1-10
  features 1-10
  illustrated 1-2
  internal 1-11
  in the switch stack 1-6
  limiting source traffic with RSPAN 1-22
  limiting source traffic with SPAN 1-18
  modifying 1-8
multicast 1-17
native, configuring 1-21
normal-range 1-1, 1-4
number supported 1-10
parameters 1-5
port membership modes 1-3
static-access ports 1-9
STP and IEEE 802.1Q trunks 1-12
supported 1-2
Token Ring 1-5
traffic between 1-2
VLAN-bridge STP 1-12, 1-2
VTP modes 1-3
VLAN Trunking Protocol
See VTP
VLAN trunks 1-15
VMPS
administering 1-30
configuration example 1-31
configuration guidelines 1-27
default configuration 1-27
description 1-26
dynamic port membership
described 1-27
reconfirming 1-29
troubleshooting 1-31
entering server address 1-28
mapping MAC addresses to VLANs 1-26
monitoring 1-30
reconfirmation interval, changing 1-29
reconfirming membership 1-29
retry count, changing 1-30
voice aware 802.1x security
port-based authentication
configuring 1-42
described 1-34, 1-42
voice-over-IP 1-1
voice VLAN
Cisco 7960 phone, port connections 1-1
configuration guidelines 1-3
configuring IP phones for data traffic
override CoS of incoming frame 1-6
trust CoS priority of incoming frame 1-6
configuring ports for voice traffic in
802.1p priority tagged frames 1-5
IEEE 802.1Q frames 1-5
connecting to an IP phone 1-4
default configuration 1-3
described 1-1
displaying 1-7
IP phone data traffic, described 1-2
IP phone voice traffic, described 1-2
VPN
configuring routing in 1-86
forwarding 1-79
in service provider networks 1-76
routes 1-77
VPN routing and forwarding table
See VRF
VQP 1-10, 1-26
VRF
defining 1-79
tables 1-76
VRF-aware services
ARP 1-82
configuring 1-81
ftp 1-84
HSRP 1-82, 1-43
ping 1-82
RADIUS 1-83
SNMP 1-82
syslog 1-84
tftp 1-84
traceroute 1-84, 1-43
uRPF 1-83
VRFs, configuring multicast 1-85
VTP
adding a client to a domain 1-17
advertisements 1-17, 1-4
and extended-range VLANs 1-3, 1-2
and normal-range VLANs 1-2
client mode, configuring 1-13
configuration
  requirements 1-11
  saving 1-9
configuration revision number
  guideline 1-17
  resetting 1-17
consistency checks 1-5
default configuration 1-9
described 1-1
domain names 1-9
domains 1-2
Layer 2 protocol tunneling 1-8
modes
  client 1-3
  off 1-4
  server 1-3
  transitions 1-3
  transparent 1-4
monitoring 1-18
passwords 1-10
 pruning
  disabling 1-16
  enabling 1-16
  examples 1-7
  overview 1-6
  support for 1-10
 pruning-eligible list, changing 1-21
server mode, configuring 1-11, 1-14
statistics 1-18
support for 1-10
Token Ring support 1-5
transparent mode, configuring 1-12
using 1-1
Version
  enabling 1-15
version, guidelines 1-10
Version 1 1-5
Version 2
  configuration guidelines 1-10
  overview 1-5
Version 3
  overview 1-5

W

WCCP
  authentication 1-3
  configuration guidelines 1-5
  default configuration 1-5
  described 1-2
  displaying 1-10
  dynamic service groups 1-3
  enabling 1-6
  features unsupported 1-5
  forwarding method 1-3
  Layer-2 header rewrite 1-3
  MD5 security 1-3
  message exchange 1-2
  monitoring and maintaining 1-10
  negotiation 1-3
  packet redirection 1-3
  packet-return method 1-3
  redirecting traffic received from a client 1-6
  setting the password 1-7
  unsupported WCCPv2 features 1-5
web authentication 1-15
  configuring 1-16 to ??
  described 1-11
web-based authentication
  customizable web pages 1-6
  description 1-1
web-based authentication, interactions with other features 1-7
Web Cache Communication Protocol
  See WCCP
weighted tail drop
  See WTD
weight thresholds in tracked lists  1-5
wired location service
  configuring  1-10
  displaying  1-11
location TLV  1-3
understanding  1-3
wizards  1-3
WTD
  described  1-15
  setting thresholds
    egress queue-sets  1-85
    ingress queues  1-81
  support for  1-15, 1-16